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THE RECIPROCAL COMPLEMENTARY WIENER NUMBER OF
GRAPH OPERATIONS

R. NASIRI, A. NAKHAEI, AND A. R. SHOJAEIFARD

Abstract. The reciprocal complementary Wiener number of a connected graph G
is defined as

∑
{x,y}⊆V (G)

1
D+1−dG(x,y) , where D is the diameter of G and dG(x, y)

is the distance between vertices x and y. In this work, we study the reciprocal
complementary Wiener number of various graph operations such as join, Cartesian
product, composition, strong product, disjunction, symmetric difference, corona
product, splice and link of graphs.

1. Introduction

Throughout this work, all graphs considered are simple, connected and finite. Let
G = (V (G), E(G)) be a connected graph. For x, y ∈ V (G), the distance dG(x, y)
between the vertices x and y is equal to the length of a shortest path that connects
x and y. For a vertex x in a connected nontrivial graph G, the eccentricity εG(x) of
x is the greatest geodesic distance between x and any other vertex of G. Also, the
diameter D = D(G) of the graph G is defined as the maximum eccentricity of any
vertex in G. In other words,

εG(x) = max {dG(x, y)|y ∈ V (G)} , D = D(G) = max {εG(x)|x ∈ V (G)} .

In mathematical chemistry, a molecular graph (or chemical graph) is a labeled graph
whose vertices correspond to the atoms of the compound and edges correspond to
chemical bonds. It is natural to study mathematical properties of these graph models
to find chemico-physical properties of the molecule under consideration.

Let G be a n-vertex graph with the vertex-set V (G) = {v1, v2, . . . , vn} and diameter
D. The reciprocal complementary distance matrix RCD = [rcij] of G is an n × n
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matrix such that rcij = 1
D+1−dG(vi,vj) if i 6= j, and 0 otherwise (see [7]). Ivanciuc et al.

[5, 6] introduced the reciprocal complementary Wiener number of the graph G as:

(1.1) RCW (G) =
n−1∑
i=1

n∑
j=i+1

rcij =
∑

{vi,vj}⊆V (G)

1
D + 1− dG(vi, vj)

.

This invariant has been successfully applied in the structure-property modeling of the
molar hear capacity, standard Gibbs energy of formation and vaporization enthalpy
of 134 alkanes C6-C10 (see [5]).

Zhou et al. [14] gave various bounds for this quantity and Nordhaus-Gaddum-
type result. Moreover, the trees with the smallest, the second smallest and the third
smallest RCW , and the unicyclic and bicyclic graphs with the smallest and the second
smallest RCW are characterized (see [2]). Zhu et al. [15] obtained the unique tree
with 4 ≤ D ≤ n− 3 and minimum reciprocal complementary Wiener number. They
also specified the non-caterpillars with the smallest, the second smallest and the third
smallest RCW -value. In [10], some bounds for the reciprocal complementary Wiener
index of line graphs are presented.

Up to now, various topological indices have been introduced and used in the
QSAR/QSPR studies. The Wiener index (or Wiener number) is the oldest and
is one of the most studied topological quantities, both from a theoretical point of view
and applications. This concept is defined as the sum of distances over all unordered
vertex pairs in a graph G (see [12]). This invariant obtained wide attention and
numerous results have been worked out, see the survey [13]. In special classes of
graphs, such as trees, unicyclic and bicyclic graphs, this index has been studied in
[3, 9, 11]. After it, a large number of other distance-based topological indices have
been proposed and considered in the chemical and mathematico-chemical literature.

Brückler et al. [1] introduced a general distance-based topological index, called
Q-index. The Q-index is defined as

(1.2) Q(G) =
∑
k≥0

f(k)D(G, k) ,

where f is a function such that f(0) = 0, and D(G, k) is the number of vertex
pairs at distance k. Q is an additive function of increments associated with pairs
of vertices of G. The Wiener, hyper-Wiener, Harary, and reciprocal complementary
Wiener indices are all special cases of the Q-index. More precisely, by choosing
f(k) = k, k2

2 + k
2 , 1

k
and k3

6 + k2

2 + k
3 , the Q-index is equal to the Wiener, hyper-

Wiener, Harary, and Tratch-Stankevich-Zefirov indices, respectively. In other special
case, if consider f(k) = 1

D+1−k
, then the Q-index will be equal to the reciprocal

complementary Wiener number. In other words, it holds

(1.3) RCW (G) =
D∑

k=1

D(G, k)
D + 1− k

.
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In this research, we study the reciprocal complementary Wiener number of various
graph operations like join, Cartesian product, composition, strong product, disjunc-
tion, symmetric difference, corona product, splice and link of graphs.

2. Main Results

Throughout this paper, we consider graphs Gi with ni vertices, mi edges and the
diameter Di, i = 1, 2. Also, note that whenever we say xy /∈ E, it is assumed that
x 6= y. Moreover, we use standard notations of graph theory. The path, cycle, star,
wheel and complete graphs with n vertices are denoted by Pn, Cn, Sn, Wn and Kn,
respectively.

By applying relation (1.3), we compute RCW of some special graphs in the following
example.

Example 2.1. Let Pn, Kn, Sn and Wn denote a path graph, complete graph, star graph
and wheel graph with n vertices, respectively. Then

RCW (Pn) = n− 1,

RCW (Kn) = 1
2n(n− 1),

RCW (Sn) = 1
2(n− 1)2,

RCW (Wn) =

6, n = 4,
1
2(n− 1)(n− 2), n ≥ 5.

We begin by computing the reciprocal complementary Wiener number of join of
graphs.

2.1. Join. The join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and
V2 is the graph union G1 ∪G2 together with all the edges joining V1 and V2. In the
following lemma, we determine the reciprocal complementary Wiener number of join
of graphs with respect to their numbers of vertices and edges.

Theorem 2.1. Let G1 and G2 be two n1- and n2-vertex graphs, respectively.
(i) If G1 and G2 are complete graphs, then

RCW (G1 + G2) = 1
2(n1 + n2)(n1 + n2 − 1).

(ii) If {G1, G2} 6= {Kn1 , Kn2}, then

RCW (G1 + G2) = 1
2
(
n1(n1 + n2 − 1) + n2(n2 − 1)−m1 −m2

)
.
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Proof. Suppose x and y are two vertices of G1 + G2. By definition of the join of two
graphs, one can easily see that

dG1+G2(x, y) =


0, x = y,

1, xy ∈ E1 or xy ∈ E2 or (x ∈ V1 and y ∈ V2),
2, otherwise.

Assume that G1 and G2 are complete graphs, then G1 + G2 = Kn1+n2 . Therefore,
RCW (G1 + G2) = RCW (Kn1+n2) =

(
n1+n2

2

)
(see Example 2.1). This completes the

proof of part (i). To prove the second part, suppose that at least one of graphs G1 or
G2 is not complete. So, we have D = D(G1 + G2) = 2, and

RCW (G1 + G2) =
∑

{x,y}⊆V (G1+G2)

1
3− dG1+G2(x, y)

=
∑

{x,y}⊆V1

1
3− dG1+G2(x, y) +

∑
{x,y}⊆V2

1
3− dG1+G2(x, y)

+
∑

x∈V1
y∈V2

1
3− dG1+G2(x, y)

=
∑

xy∈E1

1
3− dG1+G2(x, y) +

∑
xy /∈E1

1
3− dG1+G2(x, y)

+
∑

xy∈E2

1
3− dG1+G2(x, y) +

∑
xy /∈E2

1
3− dG1+G2(x, y)

+
∑

x∈V1
y∈V2

1
3− dG1+G2(x, y)

=1
2
(
n1(n1 + n2 − 1) + n2(n2 − 1)−m1 −m2

)
. �

Example 2.2. We know that Kr + Ks = Kr,s (in particular, K1 + Kn−1 = K1,n−1 = Sn)
is the complete bipartite graph. From Theorem 2.1 we obtain explicit formulas for
the reciprocal complementary Wiener number of the these graphs

RCW (Kr,s) = 1
2
(
r(r + s− 1) + s(s− 1)

)
, RCW (Sn) = 1

2(n− 1)2.

2.2. Cartesian product. The Cartesian product G1�G2 of graphs G1 and G2 has
the vertex set V1 × V2 and (x, y)(u, v) is an edge of G1�G2 if (x = u and yv ∈ E2),
or (xu ∈ E1 and y = v). For example, the ladder graph L2,n can be obtained as the
Cartesian product of two path graphs P2 and Pn.

Now, we study the reciprocal complementary Wiener number of the Cartesian
product of graphs. To do this, we need the following well-known relation related to
distance properties of the Cartesian product of two graphs (see [4])
(2.1) dG1�G2

(
(x, y), (u, v)

)
= dG1(x, u) + dG2(y, v).
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Theorem 2.2. Let G1 and G2 be two non-complete graphs. Then

RCW (G1�G2) <
n1m2 + n2m1

D1 + D2
+ 2m1m2

D1 + D2 − 1 + (n1 + 2m1)
(

RCW (G2)−
m2

D2

)
+ (n2 + 4m2)

(
RCW (G1)−

m1

D1

)
.

Proof. Applying (2.1), we have D = D(G1�G2) = D1 + D2. Therefore,

RCW (G1�G2) =
∑

{(x,y),(u,v)}⊆V (G1�G2)

1
D + 1− dG1�G2

(
(x, y), (u, v)

)
=

∑
{(x,y),(x,v)}⊆V (G1�G2)

yv∈E2

1
D1 + D2

+
∑

{(x,y),(x,v)}⊆V (G1�G2)
yv /∈E2

1
D1 + D2 + 1− dG2(y, v)

+
∑

{(x,y),(u,y)}⊆V (G1�G2)
xu∈E1

1
D1 + D2

+
∑

{(x,y),(u,y)}⊆V (G1�G2)
xu/∈E1

1
D1 + D2 + 1− dG1(x, u)

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu∈E1,yv∈E2

1
D1 + D2 − 1

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu∈E1,yv /∈E2

1
D1 + D2 − dG2(y, v)

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu/∈E1,yv∈E2

1
D1 + D2 − dG1(x, u)

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu/∈E1,yv /∈E2

1
D1 + D2 + 1− dG1(x, u)− dG2(y, v)

<
n1m2

D1 + D2
+ n1

(
RCW (G2)−

m2

D2

)
+ n2m1

D1 + D2

+ n2

(
RCW (G1)−

m1

D1

)
+ 2m1m2

D1 + D2 − 1

+ 2m1

(
RCW (G2)−

m2

D2

)
+ 2m2

(
RCW (G1)−

m1

D1

)
+ 2m2

(
RCW (G1)−

m1

D1

)
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=n1m2 + n2m1

D1 + D2
+ 2m1m2

D1 + D2 − 1 + (n1 + 2m1)
(

RCW (G2)−
m2

D2

)
+ (n2 + 4m2)

(
RCW (G1)−

m1

D1

)
. �

Corollary 2.1. Let G1 ∼= Kn1 and G2 � Kn2 be two graphs. Then

RCW (G1�G2) =
n1m2 + n2

(
n1
2

)
1 + D2

+
2
(

n1
2

)
m2

D2
+ 2

(
n1

2

)(
RCW (G2)−

m2

D2

)
+

∑
yv /∈E2

n1

D2 + 2− dG2(y, v)

<
n1m2 + n2

(
n1
2

)
1 + D2

+
2
(

n1
2

)
m2

D2
+
(

n1 + 2
(

n1

2

))(
RCW (G2)−

m2

D2

)
.

Example 2.3. Consider the graph whose vertices are the n-tuples b1, b2, . . . , bn with bi ∈
{0, 1}, let two vertices be adjacent if the corresponding tuples differ in precisely one
place. Such a graph is called a hypercube of dimension n and denoted by Qn. It is well-
known fact that the hypercube Qn can be written in the form Qn = K2�K2� · · ·�K2︸ ︷︷ ︸

n times

.

For n = 3, by Corollary 2.1 we have
RCW (Q3) = K2�K2�K2 = K2�C4 = 14.

Corollary 2.2. Let L2,n be the ladder graph, then

RCW (L2,n) = 4n− 1− 2
n∑

k=1

1
k

.

Proof.
RCW (L2,n) =RCW (P2�Pn)

=2(n− 1) + n

n
+ 2(n− 1)

n− 1 + 2
(
n− 2) + 2

∑
yv /∈E(Pn)

1
n + 1− dPn(y, v)

=− 2
n

+ 2n + 1 + 2
n−1∑
k=2

D(Pn, k)
n + 1− k

.

On the other hand, it is clear that D(Pn, k) = n− k, for k = 1, . . . , n− 1. Therefore,

RCW (L2,n) = − 2
n

+ 2n + 1 + 2
n−1∑
k=2

n− k

n + 1− k

= 4n− 1− 2
n∑

k=1

1
k

. �

Corollary 2.3. Let G1 ∼= Kn1 and G2 ∼= Kn2 be two complete graphs. Then

RCW (G1�G2) = n1n2

4 (2n1n2 − n1 − n2).
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2.3. Composition. The composition G1[G2] (also known as the graph lexicographic
product) of simple undirected graphs G1 and G2 is the graph with the vertex set
V (G1[G2]) = V1 × V2 and any two vertices (x, y) and (u, v) are adjacent if and only if
xu ∈ E1 or (x = u and yv ∈ E2).

Let G1 and G2 be graphs on n1 > 1 and n2 vertices, respectively. It follows from the
definition that the distance between two distinct vertices (x, y) and (u, v) of G1[G2]
is given by

dG1[G2]
(
(x, y), (u, v)

)
=


0, x = u and y = v,

1, x = u and yv ∈ E2,

2, x = u and yv /∈ E2,

dG1(x, u), x 6= u.

Note that if G1 ∼= K1 then G1[G2] ∼= G2. So, in the following lemma we study the
reciprocal complementary Wiener number of composition G1[G2] for case n1 > 1.

Theorem 2.3. Let G1 and G2 be two graphs on n1 > 1 and n2 vertices, respectively.
(i) If G1 is a non-complete graph, then

RCW (G1[G2]) = n1m2

D1
+

n1
((

n2
2

)
−m2

)
D1 − 1 + n2

2RCW (G1).

(ii) If G1 ∼= Kn1 and G2 is a non-complete graph, then

RCW (G1[G2]) = n1m2

2 + n1

((
n2

2

)
−m2

)
+ n2

2
2

(
n1

2

)
.

(iii) If G1 and G2 are complete graphs, then

RCW (G1[G2]) = (n1 + n2
2)
(

n1

2

)
.

Proof. By the definition of the composition of two graphs one can see that,

D = D(G1[G2]) =


1, G1 ∼= Kn1 and G2 ∼= Kn2 ,

2, G1 ∼= Kn1 and G2 � Kn2 ,

D1 = D(G1), G1 � Kn1 .

Suppose G1 and G2 are non-complete graphs, then

RCW (G1[G2]) =
∑

{(x,y),(u,v)}⊆V (G1[G2])

1
D + 1− dG1[G2]

(
(x, y), (u, v)

)
=

∑
{(x,y),(x,v)}⊆V (G1[G2])

yv∈E2

1
D1

+
∑

{(x,y),(x,v)}⊆V (G1[G2])
yv /∈E2

1
D1 − 1

+
∑

{(x,y),(u,v)}⊆V (G1[G2])
x 6=u

1
D1 + 1− dG1(x, u)
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=n1m2

D1
+

n1
((

n2
2

)
−m2

)
D1 − 1 + n2

2RCW (G1),

which completes part (i).
The proof is completed by a similar argument as proof of the first part. �

2.4. Disjunction. The disjunction G1 ∧G2 of graphs G1 and G2 is the graph with
vertex set V1 × V2 and (x, y) is adjacent with (u, v) whenever xu ∈ E1 or yv ∈ E2.

Let G1 and G2 be graphs on n1 > 1 and n2 > 1 vertices, respectively. Clearly, the
distance between two vertices (x, y) and (u, v) of G1 ∧G2 is given by

dG1∧G2

(
(x, y), (u, v)

)
=


0, x = u and y = v,

1, xu ∈ E1 or yv ∈ E2,

2, otherwise.
Note that if ni = 1 for some i ∈ {1, 2}, then G1 ∧G2 ∼= Gn′i

, where n′i = 3− i. So, we
determine the reciprocal complementary Wiener number of disjunction G1 ∧ G2 for
cases n1 > 1 and n2 > 1.

Theorem 2.4. Let G1 and G2 be graphs on n1 > 1 and n2 > 1 vertices, respectively.
(i) If G1 and G2 are complete graphs, then

RCW (G1 ∧G2) = 1
2

[
n1

(
n2

2

)
+ n2

(
n1

2

)
+
(

n1

2

)(
n2

2

)]
.

(ii) If {G1, G2} 6= {Kn1 , Kn2}, then

RCW (G1 ∧G2) = 1
2
(
n2

1n
2
2 + 2m1m2 −m2n

2
1 −m1n

2
2 − n1n2

)
.

Proof. From definition of disjunction it is clear that if at least one of graphs G1 and
G2 is not complete, then D = D(G1 ∧G2) = 2, otherwise D = 1. To prove part (ii),
assume that {G1, G2} 6= {Kn1 , Kn2}. Hence, we can write

RCW (G1 ∧G2) =
∑

{(x,y),(u,v)}⊆V (G1∧G2)

1
D + 1− dG1∧G2

(
(x, y), (u, v)

)
=

∑
{(x,y),(u,v)}⊆V (G1∧G2)

xu∈E1

1
2 +

∑
{(x,y),(u,v)}⊆V (G1∧G2)

yv∈E2

1
2

−
∑

{(x,y),(u,v)}⊆V (G1∧G2)
xu∈E1,yv∈E2

1
2 +

∑
{(x,y),(x,v)}⊆V (G1∧G2)

yv /∈E2

1

+
∑

{(x,y),(u,y)}⊆V (G1∧G2)
xu/∈E1

1 +
∑

{(x,y),(u,v)}⊆V (G1∧G2)
xu/∈E1,yv /∈E2

1

= 1
2
(
n2

1n
2
2 + 2m1m2 −m2n

2
1 −m1n

2
2 − n1n2

)
.
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A similar argument as part (ii), shows that

RCW (Kn1 ∧Kn2) = 1
2

[
n1

(
n2

2

)
+ n2

(
n1

2

)
+
(

n1

2

)(
n2

2

)]
.

This completes the proof. �

2.5. Strong product. The strong product of graphs G1 and G2, denoted by G14G2,
is the graph with vertex set V1 × V2 and (x, y)(u, v) is an edge whenever (x = u and
yv ∈ E2), or (y = v and xu ∈ E1), or (xu ∈ E1 and yv ∈ E2).

In the following result, we give a basic property about the strong product of graphs.
Lemma 2.1 ([4]). Let G1 and G2 be two connected graphs, x, u ∈ V (G1) and y, v ∈
V (G2). Then dG14G2

(
(x, y), (u, v)

)
= max {dG1(x, u), dG2(y, v)} .

Corollary 2.4. Let G14G2 be the strong product of connected graphs G1 and G2.
Then D = max {D1, D2}, where D, D1 and D2 are the diameter of G14G2, G1 and
G2, respectively.
Theorem 2.5. Let G14G2 be the strong product of connected graphs G1 and G2.
Then

RCW (G14G2) ≤
1
D

(2m1m2 + n1m2 + n2m1) + (n1 + 2m1)
(

RCW (G2)−
m2

D2

)

+ (n2 + 2m2)
(

RCW (G1)−
m1

D1

)
+ 2

[(
n1

2

)
−m1

] [(
n2

2

)
−m2

]
.

The equality is satisfied if and only if G1 or G2 is a complete graph.
Proof.

RCW (G14G2) =
∑

{(x,y),(u,v)}⊆V (G14G2)

1
D + 1− dG14G2

(
(x, y), (u, v)

)
=

∑
{(x,y),(x,v)}⊆V (G14G2)

yv∈E2

1
D

+
∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1
D + 1− dG2(y, v)

+
∑

{(x,y),(u,y)}⊆V (G14G2)
xu∈E1

1
D

+
∑

{(x,y),(u,y)}⊆V (G14G2)
xu/∈E1

1
D + 1− dG1(x, u)

+
∑

{(x,y),(u,v)}⊆V (G14G2)
xu∈E1,yv∈E2

1
D

+
∑

{(x,y),(u,v)}⊆V (G14G2)
xu∈E1,yv /∈E2

1
D + 1− dG2(y, v)

+
∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv∈E2

1
D + 1− dG1(x, u)

+
∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv /∈E2

1
D + 1−max {dG1(x, u), dG2(y, v)} .
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By (1.1), we have

n1RCW (G2) =
∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1
D2 + 1− dG2(y, v)

+
∑

{(x,y),(x,v)}⊆V (G14G2)
yv∈E2

1
D2 + 1− dG2(y, v)︸ ︷︷ ︸

1

=
∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1
D2 + 1− dG2(y, v) + n1m2

D2
,

hence, ∑
{(x,y),(x,v)}⊆V (G14G2)

yv /∈E2

1
D + 1− dG2(y, v) ≤

∑
{(x,y),(x,v)}⊆V (G14G2)

yv /∈E2

1
D2 + 1− dG2(y, v)

= n1

(
RCW (G2)−

m2

D2

)
.

Similarly, we can check that∑
{(x,y),(u,y)}⊆V (G14G2)

xu/∈E1

1
D + 1− dG1(x, u) ≤ n2

(
RCW (G1)−

m1

D1

)
,

∑
{(x,y),(u,v)}⊆V (G14G2)

xu∈E1,yv /∈E2

1
D + 1− dG2(y, v) ≤ 2m1

(
RCW (G2)−

m2

D2

)
,

∑
{(x,y),(u,v)}⊆V (G14G2)

xu/∈E1,yv∈E2

1
D + 1− dG1(x, u) ≤ 2m2

(
RCW (G1)−

m1

D1

)
.

Also, we have∑
{(x,y),(u,v)}⊆V (G14G2)

xu/∈E1,yv /∈E2

1
D + 1−max {dG1(x, u), dG2(y, v)}︸ ︷︷ ︸

≤D

≤
∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv /∈E2

1

=2
[(

n1
2

)
−m1

] [(
n2
2

)
−m2

]
.

On the other hand, it is easy to see that∑
{(x,y),(x,v)}⊆V (G14G2)

yv∈E2

1
D

= n1m2

D
,

∑
{(x,y),(u,y)}⊆V (G14G2)

xu∈E1

1
D

= n2m1

D
,

∑
{(x,y),(u,v)}⊆V (G14G2)

xu∈E1,yv∈E2

1
D

= 2m1m2

D
.
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Therefore,

RCW (G14G2) ≤
1
D

(2m1m2 + n1m2 + n2m1) + (n1 + 2m1)
(

RCW (G2)−
m2

D2

)

+ (n2 + 2m2)
(

RCW (G1)−
m1

D1

)
+ 2

[(
n1

2

)
−m1

] [(
n2

2

)
−m2

]
.

�

Using similar arguments as in the proof of Theorem 2.5, one can prove the following
result.

Lemma 2.2. Let Kr be a complete graph on r vertices and G be a graph with n
vertices, m edges and diameter d. Then

RCW (G4Kr) = 1
d

[
rm + dr2

(
RCW (G)− m

d

)
+ (n + 2m)

(
r

2

)]
.

Example 2.4. By the definition of the composition and strong product of two graphs
one can see that, G[Kn] = G4Kn. The open fence graph is the composition (or strong
product) of path Pn and K2. So, from Theorem 2.3 (i) (or Lemma 2.2), we have

RCW (Pn[K2]) = RCW (Pn4K2) = n

n− 1 + 4n− 4, n ≥ 3.

As an application, in the following result, we obtain the reciprocal complementary
Wiener number of the closed fence graph Cn4K2.

Lemma 2.3. Let Cn be a cycle graph on n vertices. Then

RCW (Cn4K2) =


4n

n
2∑

k=1

1
k
− 2n + 8, 2 | n,

4n

n−1
2∑

k=1

1
k

+ 2n

n− 1 , 2 - n.

Proof. We first obtain the reciprocal complementary Wiener number of a cycle graph
Cn on n vertices. Regarding the structure of the cycle Cn, it can easily be concluded
that if n is even then D(Cn, k) = n, k = 1, 2, . . . , n

2 − 1 and D(Cn, n
2 ) = n

2 . On the
other hand, if n is odd then D(Cn, k) = n, k = 1, 2, . . . , n−1

2 . Hence, by applying
relation (1.3), we have

RCW (Cn) =


−n

2 + n

n
2∑

k=1

1
k

, 2 | n,

n

n−1
2∑

k=1

1
k

, 2 - n.

Finally, the proof is completed using Lemma 2.2. �
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2.6. Symmetric difference. The symmetric difference G1 ⊕ G2 of graphs G1 and
G2 is the graph with vertex set V1 × V2 and (x, y) is adjacent with (u, v) whenever
xu ∈ E1 or yv ∈ E2 but not both. Note that if ni = 1 for some i ∈ {1, 2}, then
G1 ⊕G2 ∼= Gn′i

, where n′i = 3− i.
In the following lemma, we compute the symmetric difference of two graphs with

respect to their numbers of vertices and edges.

Theorem 2.6. Let G1 and G2 be two graphs on n1 > 1 and n2 > 1 vertices, respec-
tively. Then

RCW (G1 ⊕G2) = 1
2
(
4m1m2 + n2

1n
2
2 −m1n

2
2 −m2n

2
1 − n1n2

)
.

Proof. By [8, Lemma 4], we have

dG1⊕G2

(
(x, y), (u, v)

)
=


0, x = u and y = v,

1, xu ∈ E1 or yv ∈ E2, but not both,

2, otherwise.

Hence, by applying these relations, we get D = D(G1 ⊕G2) = 2. So,

RCW (G1 ⊕G2) =
∑

{(x,y),(u,v)}⊆V (G1⊕G2)

1
D + 1− dG1⊕G2

(
(x, y), (u, v)

)
=

∑
{(x,y),(x,v)}⊆V (G1⊕G2)

yv∈E2

1
2 +

∑
{(x,y),(x,v)}⊆V (G1⊕G2)

yv /∈E2

1

+
∑

{(x,y),(u,y)}⊆V (G1⊕G2)
xu∈E1

1
2 +

∑
{(x,y),(u,y)}⊆V (G1⊕G2)

xu/∈E1

1

+
∑

{(x,y),(u,v)}⊆V (G1⊕G2)
xu∈E1,yv /∈E2

1
2 +

∑
{(x,y),(u,v)}⊆V (G1⊕G2)

xu∈E1,yv∈E2

1

+
∑

{(x,y),(u,v)}⊆V (G1⊕G2)
xu/∈E1,yv∈E2

1
2 +

∑
{(x,y),(u,v)}⊆V (G1⊕G2)

xu/∈E1,yv /∈E2

1

= 1
2
(
4m1m2 + n2

1n
2
2 −m1n

2
2 −m2n

2
1 − n1n2

)
. �

2.7. Corona product. Let V1 = {u1, u2, . . . , un1} and V2 = {v1, v2, . . . , vn2} be the
vertex sets of given graphs G1 and G2, respectively. The corona product of G1 and G2
is denoted by G1 ◦ G2 and defined as the graph obtained by taking n1 copies of G2
and joining each vertex of the ith copy with vertex ui of V1, i = 1, 2, . . . , n1. Denote
by Gi

2 the ith copy of G2 joined to the vertex ui of G1, and let V i
2 = {vi1, vi2, . . . , vin2},

i = 1, 2, . . . , n1.
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Theorem 2.7. Let G1 and G2 be two graphs on n1 > 1 and n2 ≥ 1 vertices, respec-
tively. Then

RCW (G1 ◦G2) < (n2 + 1)2RCW (G1) + n1n2

D1 + 2 +
n1
[(

n2
2

)
−m2

]
D1 + 1 .

Proof. From definition of the corona product of graphs, it is easy to check that

dG1◦G2(ui, up) = dG1(ui, up),
dG1◦G2(ui, vpq) = dG1(ui, up) + 1,

dG1◦G2(vij, vpq) =


0, i = p and j = q,

1, i = p and vjvq ∈ E2,

2, i = p and vjvq /∈ E2,

dG1(ui, up) + 2, i 6= p.

So, we can see that D = D(G1 ◦G2) = D1 + 2. Hence,

RCW (G1 ◦G2) =
∑

{x,y}⊆V (G1◦G2)

1
D + 1− dG1◦G2(x, y)

=
∑

{x,y}⊆V1

1
D + 1− dG1◦G2(x, y)

+
n1∑
i=1

∑
{vij ,viq}⊆V i

2

1
D + 1− dG1◦G2(vij, viq)

+
n1∑
i=1

n1∑
p=1

n2∑
q=1

1
D + 1− dG1◦G2(ui, vpq)

+
n1−1∑
i=1

n1∑
p=i+1

n2∑
j=1

n2∑
q=1

1
D + 1− dG1◦G2(vij, vpq)

.

Consider now for convenience:

S1 =
∑

{x,y}⊆V1

1
D + 1− dG1◦G2(x, y) ,

S2 =
n1∑
i=1

∑
{vij ,viq}⊆V i

2

1
D + 1− dG1◦G2(vij, viq)

,

S3 =
n1∑
i=1

n1∑
p=1

n2∑
q=1

1
D + 1− dG1◦G2(ui, vpq)

,

S4 =
n1−1∑
i=1

n1∑
p=i+1

n2∑
j=1

n2∑
q=1

1
D + 1− dG1◦G2(vij, vpq)

.
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So, we have

S1 =
∑

{x,y}⊆V1

1
D + 1− dG1◦G2(x, y)

=
∑

{x,y}⊆V1

1
D1 + 3− dG1(x, y)

< RCW (G1),

S2 =
n1∑
i=1

∑
{vij ,viq}⊆V i

2

1
D + 1− dG1◦G2(vij, viq)

=
n1∑
i=1

∑
{vij ,viq}⊆V i

2
vjvq∈E2

1
D1 + 2 +

n1∑
i=1

∑
{vij ,viq}⊆V i

2
vjvq /∈E2

1
D1 + 1

= n1m2

D1 + 2 +
n1
[(

n2
2

)
−m2

]
D1 + 1 ,

S3 =
n1∑
i=1

n1∑
p=1

n2∑
q=1

1
D + 1− dG1◦G2(ui, vpq)

=
n1∑
i=1

n2∑
q=1

1
D1 + 2 +

n1∑
i=1

n1∑
p=1
p 6=i

n2∑
q=1

1
D1 + 2− dG1(ui, up)

<
n1n2

D1 + 2 + 2n2RCW (G1),

S4=
n1−1∑
i=1

n1∑
p=i+1

n2∑
j=1

n2∑
q=1

1
D + 1− dG1◦G2(vij, vpq)

=
n1−1∑
i=1

n1∑
p=i+1

n2∑
j=1

n2∑
q=1

1
D1 + 1− dG1(ui, up)

= n2
2RCW (G1).

Therefore,

RCW (G1 ◦G2) < (n2 + 1)2RCW (G1) + n1n2

D1 + 2 +
n1
[(

n2
2

)
−m2

]
D1 + 1 . �

2.8. Splice and link. Let G1 and G2 be two connected graphs with disjoint vertex
sets V1 and V2, respectively. For given vertices u ∈ V1 and v ∈ V2, a splice of G1 and
G2 by vertices u and v is denoted by (G1.G2)(u, v) and defined by identifying the
vertices u and v in the union of G1 and G2. Also, a link of G1 and G2 by vertices u
and v is denoted by (G1 ∼ G2)(u, v) and obtained by joining u and v by an edge in
the union of these graphs.

Theorem 2.8. Let G1 and G2 be two graphs on n1 and n2 vertices, respectively. Then
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(i) RCW
(
(G1.G2)(u, v)

)
≤ (n1 − 1)(n2 − 1) + RCW (G1) + RCW (G2);

(ii) RCW
(
(G1 ∼ G2)(u, v)

)
≤ n1n2 + RCW (G1) + RCW (G2).

Equality in (i) holds if and only if one of the following cases occurs:
(i1) ni = 1, for some i ∈ {1, 2};
(i2) G1 and G2 are non-complete graphs and εG1(u) = εG2(v) = 1.

Moreover, equality in (ii) holds if and only if n1 = n2 = 1.

Proof. Suppose Ḋ and D̃ are the diameter of the splice and link of graphs G1 and G2
by vertices u and v, respectively. By above definitions of the splice and link of graphs,
one can easily see that

d(G1.G2)(u,v)(x, y) =


dG1(x, y), x, y ∈ V1,

dG2(x, y), x, y ∈ V2,

dG1(x, u) + dG2(y, v), x ∈ V1 and y ∈ V2,

and also,

d(G1∼G2)(u,v)(x, y) =


dG1(x, y), x, y ∈ V1,

dG2(x, y), x, y ∈ V2,

dG1(x, u) + dG2(y, v) + 1, x ∈ V1 and y ∈ V2.

Hence, in graph (G1.G2)(u, v), if the endpoints of a diametral path (i.e. a shortest
path between two vertices whose distance is equal to the diameter of the graph) are
in the graph G1 (or G2) then Ḋ=D1 (or D2), otherwise if one of these endpoints
belongs to V1 and the other endpoint belongs to V2, then Ḋ=εG1(u) + εG2(v). Thus,
Ḋ=max {D1, D2, εG1(u) + εG2(v)}. Similarly, D̃=max {D1, D2, εG1(u) + εG2(v) + 1} .
By applying the above obtained relationships and also definitions of the splice and
link of graphs, it is obvious that if n1 = 1 or n2 = 1, then the equality in (i) holds.
Assume that n1, n2 ≥ 2, then

RCW
(
(G1.G2)(u, v)

)
=

∑
{x,y}⊆V

(
(G1.G2)(u,v)

) 1
Ḋ + 1− d(G1.G2)(u,v)(x, y)

=
∑

{x,y}⊆V1

1
Ḋ + 1− dG1(x, y)

+
∑

{x,y}⊆V2

1
Ḋ + 1− dG2(x, y)

+
∑

x∈V1\{u}
y∈V2\{v}

1
Ḋ + 1− dG1(x, u)− dG2(y, v)

≤ (n1 − 1)(n2 − 1) + RCW (G1) + RCW (G2),

and equality holds when Ḋ = D1 = D2 = dG1(x, u)+dG2(y, v), for all x ∈ V1 \{u} and
y ∈ V2 \ {v}. On the other hand, since G1 and G2 are connected graphs, we conclude
that equality holds if and only if dG1(x, u) = dG2(y, v) = 1 and D1 = D2 = 2, for all
x ∈ V1 \ {u} and y ∈ V2 \ {v}. This means that G1 and G2 are non-complete graphs
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and εG1(u) = εG2(v) = 1, which completes the proof of part (i). The proof of part (ii)
can be completed by using the similar arguments as in the proof of part (i). �
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