THE RECIPROCAL COMPLEMENTARY WIENER NUMBER OF GRAPH OPERATIONS

R. NASIRI, A. NAKHAEI, AND A. R. SHOJAEIFARD

Abstract

The reciprocal complementary Wiener number of a connected graph G is defined as $\sum_{\{x, y\} \subseteq V(G)} \frac{1}{D+1-d_{G}(x, y)}$, where D is the diameter of G and $d_{G}(x, y)$ is the distance between vertices x and y. In this work, we study the reciprocal complementary Wiener number of various graph operations such as join, Cartesian product, composition, strong product, disjunction, symmetric difference, corona product, splice and link of graphs.

1. Introduction

Throughout this work, all graphs considered are simple, connected and finite. Let $G=(V(G), E(G))$ be a connected graph. For $x, y \in V(G)$, the distance $d_{G}(x, y)$ between the vertices x and y is equal to the length of a shortest path that connects x and y. For a vertex x in a connected nontrivial graph G, the eccentricity $\varepsilon_{G}(x)$ of x is the greatest geodesic distance between x and any other vertex of G. Also, the diameter $D=D(G)$ of the graph G is defined as the maximum eccentricity of any vertex in G. In other words,

$$
\varepsilon_{G}(x)=\max \left\{d_{G}(x, y) \mid y \in V(G)\right\}, \quad D=D(G)=\max \left\{\varepsilon_{G}(x) \mid x \in V(G)\right\} .
$$

In mathematical chemistry, a molecular graph (or chemical graph) is a labeled graph whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. It is natural to study mathematical properties of these graph models to find chemico-physical properties of the molecule under consideration.

Let G be a n-vertex graph with the vertex-set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and diameter D. The reciprocal complementary distance matrix $R C D=\left[r c_{i j}\right]$ of G is an $n \times n$

[^0]matrix such that $r c_{i j}=\frac{1}{D+1-d_{G}\left(v_{i}, v_{j}\right)}$ if $i \neq j$, and 0 otherwise (see [7]). Ivanciuc et al. $[5,6]$ introduced the reciprocal complementary Wiener number of the graph G as:
\[

$$
\begin{equation*}
R C W(G)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} r c_{i j}=\sum_{\left\{v_{i}, v_{j}\right\} \subseteq V(G)} \frac{1}{D+1-d_{G}\left(v_{i}, v_{j}\right)} . \tag{1.1}
\end{equation*}
$$

\]

This invariant has been successfully applied in the structure-property modeling of the molar hear capacity, standard Gibbs energy of formation and vaporization enthalpy of 134 alkanes $C_{6}-C_{10}$ (see [5]).

Zhou et al. [14] gave various bounds for this quantity and Nordhaus-Gaddumtype result. Moreover, the trees with the smallest, the second smallest and the third smallest $R C W$, and the unicyclic and bicyclic graphs with the smallest and the second smallest $R C W$ are characterized (see [2]). Zhu et al. [15] obtained the unique tree with $4 \leq D \leq n-3$ and minimum reciprocal complementary Wiener number. They also specified the non-caterpillars with the smallest, the second smallest and the third smallest $R C W$-value. In [10], some bounds for the reciprocal complementary Wiener index of line graphs are presented.

Up to now, various topological indices have been introduced and used in the QSAR/QSPR studies. The Wiener index (or Wiener number) is the oldest and is one of the most studied topological quantities, both from a theoretical point of view and applications. This concept is defined as the sum of distances over all unordered vertex pairs in a graph G (see [12]). This invariant obtained wide attention and numerous results have been worked out, see the survey [13]. In special classes of graphs, such as trees, unicyclic and bicyclic graphs, this index has been studied in [3, 9,11$]$. After it, a large number of other distance-based topological indices have been proposed and considered in the chemical and mathematico-chemical literature.

Brückler et al. [1] introduced a general distance-based topological index, called Q-index. The Q-index is defined as

$$
\begin{equation*}
Q(G)=\sum_{k \geq 0} f(k) D(G, k) \tag{1.2}
\end{equation*}
$$

where f is a function such that $f(0)=0$, and $D(G, k)$ is the number of vertex pairs at distance $k . Q$ is an additive function of increments associated with pairs of vertices of G. The Wiener, hyper-Wiener, Harary, and reciprocal complementary Wiener indices are all special cases of the Q-index. More precisely, by choosing $f(k)=k, \frac{k^{2}}{2}+\frac{k}{2}, \frac{1}{k}$ and $\frac{k^{3}}{6}+\frac{k^{2}}{2}+\frac{k}{3}$, the Q-index is equal to the Wiener, hyperWiener, Harary, and Tratch-Stankevich-Zefirov indices, respectively. In other special case, if consider $f(k)=\frac{1}{D+1-k}$, then the Q-index will be equal to the reciprocal complementary Wiener number. In other words, it holds

$$
\begin{equation*}
R C W(G)=\sum_{k=1}^{D} \frac{D(G, k)}{D+1-k} \tag{1.3}
\end{equation*}
$$

In this research, we study the reciprocal complementary Wiener number of various graph operations like join, Cartesian product, composition, strong product, disjunction, symmetric difference, corona product, splice and link of graphs.

2. Main Results

Throughout this paper, we consider graphs G_{i} with n_{i} vertices, m_{i} edges and the diameter $D_{i}, i=1,2$. Also, note that whenever we say $x y \notin E$, it is assumed that $x \neq y$. Moreover, we use standard notations of graph theory. The path, cycle, star, wheel and complete graphs with n vertices are denoted by $P_{n}, C_{n}, S_{n}, W_{n}$ and K_{n}, respectively.

By applying relation (1.3), we compute $R C W$ of some special graphs in the following example.

Example 2.1. Let P_{n}, K_{n}, S_{n} and W_{n} denote a path graph, complete graph, star graph and wheel graph with n vertices, respectively. Then

$$
\begin{aligned}
R C W\left(P_{n}\right) & =n-1, \\
R C W\left(K_{n}\right) & =\frac{1}{2} n(n-1), \\
R C W\left(S_{n}\right) & =\frac{1}{2}(n-1)^{2}, \\
R C W\left(W_{n}\right) & = \begin{cases}6, & n=4, \\
\frac{1}{2}(n-1)(n-2), & n \geq 5 .\end{cases}
\end{aligned}
$$

We begin by computing the reciprocal complementary Wiener number of join of graphs.
2.1. Join. The join $G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}. In the following lemma, we determine the reciprocal complementary Wiener number of join of graphs with respect to their numbers of vertices and edges.

Theorem 2.1. Let G_{1} and G_{2} be two n_{1} - and n_{2}-vertex graphs, respectively.
(i) If G_{1} and G_{2} are complete graphs, then

$$
R C W\left(G_{1}+G_{2}\right)=\frac{1}{2}\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right) .
$$

(ii) If $\left\{G_{1}, G_{2}\right\} \neq\left\{K_{n_{1}}, K_{n_{2}}\right\}$, then

$$
R C W\left(G_{1}+G_{2}\right)=\frac{1}{2}\left(n_{1}\left(n_{1}+n_{2}-1\right)+n_{2}\left(n_{2}-1\right)-m_{1}-m_{2}\right) .
$$

Proof. Suppose x and y are two vertices of $G_{1}+G_{2}$. By definition of the join of two graphs, one can easily see that

$$
d_{G_{1}+G_{2}}(x, y)= \begin{cases}0, & x=y \\ 1, & x y \in E_{1} \text { or } x y \in E_{2} \text { or }\left(x \in V_{1} \text { and } y \in V_{2}\right), \\ 2, & \text { otherwise. }\end{cases}
$$

Assume that G_{1} and G_{2} are complete graphs, then $G_{1}+G_{2}=K_{n_{1}+n_{2}}$. Therefore, $R C W\left(G_{1}+G_{2}\right)=R C W\left(K_{n_{1}+n_{2}}\right)=\binom{n_{1}+n_{2}}{2}$ (see Example 2.1). This completes the proof of part (i). To prove the second part, suppose that at least one of graphs G_{1} or G_{2} is not complete. So, we have $D=D\left(G_{1}+G_{2}\right)=2$, and

$$
\begin{aligned}
R C W\left(G_{1}+G_{2}\right)= & \sum_{\{x, y\} \subseteq V\left(G_{1}+G_{2}\right)} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)} \\
= & \sum_{\{x, y\} \subseteq V_{1}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)}+\sum_{\{x, y\} \subseteq V_{2}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)} \\
& +\sum_{\substack{x \in V_{1} \\
y \in V_{2}}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)} \\
= & \sum_{x y \in E_{1}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)}+\sum_{x y \notin E_{1}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)} \\
& +\sum_{x y \in E_{2}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)}+\sum_{x y \notin E_{2}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)} \\
& +\sum_{\substack{x \in V_{1} \\
y \in V_{2}}} \frac{1}{3-d_{G_{1}+G_{2}}(x, y)} \\
= & \frac{1}{2}\left(n_{1}\left(n_{1}+n_{2}-1\right)+n_{2}\left(n_{2}-1\right)-m_{1}-m_{2}\right) .
\end{aligned}
$$

Example 2.2. We know that $\overline{K_{r}}+\overline{K_{s}}=K_{r, s}$ (in particular, $K_{1}+\overline{K_{n-1}}=K_{1, n-1}=S_{n}$) is the complete bipartite graph. From Theorem 2.1 we obtain explicit formulas for the reciprocal complementary Wiener number of the these graphs

$$
R C W\left(K_{r, s}\right)=\frac{1}{2}(r(r+s-1)+s(s-1)), \quad R C W\left(S_{n}\right)=\frac{1}{2}(n-1)^{2} .
$$

2.2. Cartesian product. The Cartesian product $G_{1} \square G_{2}$ of graphs G_{1} and G_{2} has the vertex set $V_{1} \times V_{2}$ and $(x, y)(u, v)$ is an edge of $G_{1} \square G_{2}$ if $\left(x=u\right.$ and $\left.y v \in E_{2}\right)$, or ($x u \in E_{1}$ and $y=v$). For example, the ladder graph $L_{2, n}$ can be obtained as the Cartesian product of two path graphs P_{2} and P_{n}.

Now, we study the reciprocal complementary Wiener number of the Cartesian product of graphs. To do this, we need the following well-known relation related to distance properties of the Cartesian product of two graphs (see [4])

$$
\begin{equation*}
d_{G_{1} \square G_{2}}((x, y),(u, v))=d_{G_{1}}(x, u)+d_{G_{2}}(y, v) . \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let G_{1} and G_{2} be two non-complete graphs. Then

$$
\begin{aligned}
R C W\left(G_{1} \square G_{2}\right)< & \frac{n_{1} m_{2}+n_{2} m_{1}}{D_{1}+D_{2}}+\frac{2 m_{1} m_{2}}{D_{1}+D_{2}-1}+\left(n_{1}+2 m_{1}\right)\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right) \\
& +\left(n_{2}+4 m_{2}\right)\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right) .
\end{aligned}
$$

Proof. Applying (2.1), we have $D=D\left(G_{1} \square G_{2}\right)=D_{1}+D_{2}$. Therefore,

$$
\begin{aligned}
R C W\left(G_{1} \square G_{2}\right)= & \sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \square G_{2}\right)}} \frac{1}{D+1-d_{G_{1} \square G_{2}}((x, y),(u, v))} \\
= & \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
y v \in E_{2}}} \frac{1}{D_{1}+D_{2}} \\
& +\sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
y v \notin E_{2}}} \frac{1}{\sum_{1}+D_{2}+1-d_{G_{2}}(y, v)} \\
& +\sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
x \in E_{1}}} \frac{1}{D_{1}+D_{2}} \\
& +\sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
x u \notin E_{1}}} \frac{\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
x u \in E_{1}, y v \in E_{2}}} \frac{1}{D_{1}+D_{2}+1-d_{G_{1}}(x, u)}}{} \\
& +\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
x u \in E_{1}, y v \notin E_{2}}} \frac{1}{D_{1}+D_{2}-d_{G_{2}}(y, v)} \\
& +\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
x u \notin E_{1}, y v \in E_{2}}} \frac{1}{D_{1}+D_{2}-d_{G_{1}}(x, u)} \\
& +\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \square G_{2}\right) \\
x u \notin E_{1}, y v \notin E_{2}}} \frac{1}{\sum_{1}+D_{2}+1-d_{G_{1}}(x, u)-d_{G_{2}}(y, v)} \\
& \frac{n_{1} m_{2}}{D_{1}+D_{2}}+n_{1}\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right)+\frac{n_{2} m_{1}}{D_{1}+D_{2}} \\
& +n_{2}\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right)+\frac{2 m_{1} m_{2}}{D_{1}+D_{2}-1} \\
& +2 m_{1}\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right)+2 m_{2}\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right) \\
& +2 m_{2}\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{n_{1} m_{2}+n_{2} m_{1}}{D_{1}+D_{2}}+\frac{2 m_{1} m_{2}}{D_{1}+D_{2}-1}+\left(n_{1}+2 m_{1}\right)\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right) \\
& +\left(n_{2}+4 m_{2}\right)\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right) .
\end{aligned}
$$

Corollary 2.1. Let $G_{1} \cong K_{n_{1}}$ and $G_{2} \nexists K_{n_{2}}$ be two graphs. Then

$$
\begin{aligned}
R C W\left(G_{1} \square G_{2}\right)= & \frac{n_{1} m_{2}+n_{2}\binom{n_{1}}{2}}{1+D_{2}}+\frac{2\binom{n_{1}}{2} m_{2}}{D_{2}}+2\binom{n_{1}}{2}\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right) \\
& +\sum_{y v \notin E_{2}} \frac{n_{1}}{D_{2}+2-d_{G_{2}}(y, v)} \\
< & \frac{n_{1} m_{2}+n_{2}\binom{n_{1}}{2}}{1+D_{2}}+\frac{2\binom{n_{1}}{2} m_{2}}{D_{2}}+\left(n_{1}+2\binom{n_{1}}{2}\right)\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right) .
\end{aligned}
$$

Example 2.3. Consider the graph whose vertices are the n-tuples $b_{1}, b_{2}, \ldots, b_{n}$ with $b_{i} \in$ $\{0,1\}$, let two vertices be adjacent if the corresponding tuples differ in precisely one place. Such a graph is called a hypercube of dimension n and denoted by Q_{n}. It is wellknown fact that the hypercube Q_{n} can be written in the form $Q_{n}=\underbrace{K_{2} \square K_{2} \square \cdots \square K_{2}}_{n \text { times }}$. For $n=3$, by Corollary 2.1 we have

$$
R C W\left(Q_{3}\right)=K_{2} \square K_{2} \square K_{2}=K_{2} \square C_{4}=14 .
$$

Corollary 2.2. Let $L_{2, n}$ be the ladder graph, then

$$
R C W\left(L_{2, n}\right)=4 n-1-2 \sum_{k=1}^{n} \frac{1}{k} .
$$

Proof.

$$
\begin{aligned}
R C W\left(L_{2, n}\right) & =R C W\left(P_{2} \square P_{n}\right) \\
& =\frac{2(n-1)+n}{n}+\frac{2(n-1)}{n-1}+2(n-2)+2 \sum_{y v \notin E\left(P_{n}\right)} \frac{1}{n+1-d_{P_{n}}(y, v)} \\
& =-\frac{2}{n}+2 n+1+2 \sum_{k=2}^{n-1} \frac{D\left(P_{n}, k\right)}{n+1-k} .
\end{aligned}
$$

On the other hand, it is clear that $D\left(P_{n}, k\right)=n-k$, for $k=1, \ldots, n-1$. Therefore,

$$
\begin{aligned}
R C W\left(L_{2, n}\right) & =-\frac{2}{n}+2 n+1+2 \sum_{k=2}^{n-1} \frac{n-k}{n+1-k} \\
& =4 n-1-2 \sum_{k=1}^{n} \frac{1}{k} .
\end{aligned}
$$

Corollary 2.3. Let $G_{1} \cong K_{n_{1}}$ and $G_{2} \cong K_{n_{2}}$ be two complete graphs. Then

$$
R C W\left(G_{1} \square G_{2}\right)=\frac{n_{1} n_{2}}{4}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right) .
$$

2.3. Composition. The composition $G_{1}\left[G_{2}\right]$ (also known as the graph lexicographic product) of simple undirected graphs G_{1} and G_{2} is the graph with the vertex set $V\left(G_{1}\left[G_{2}\right]\right)=V_{1} \times V_{2}$ and any two vertices (x, y) and (u, v) are adjacent if and only if $x u \in E_{1}$ or $\left(x=u\right.$ and $\left.y v \in E_{2}\right)$.

Let G_{1} and G_{2} be graphs on $n_{1}>1$ and n_{2} vertices, respectively. It follows from the definition that the distance between two distinct vertices (x, y) and (u, v) of $G_{1}\left[G_{2}\right]$ is given by

$$
d_{G_{1}\left[G_{2}\right]}((x, y),(u, v))= \begin{cases}0, & x=u \text { and } y=v, \\ 1, & x=u \text { and } y v \in E_{2}, \\ 2, & x=u \text { and } y v \notin E_{2}, \\ d_{G_{1}}(x, u), & x \neq u .\end{cases}
$$

Note that if $G_{1} \cong K_{1}$ then $G_{1}\left[G_{2}\right] \cong G_{2}$. So, in the following lemma we study the reciprocal complementary Wiener number of composition $G_{1}\left[G_{2}\right]$ for case $n_{1}>1$.

Theorem 2.3. Let G_{1} and G_{2} be two graphs on $n_{1}>1$ and n_{2} vertices, respectively.
(i) If G_{1} is a non-complete graph, then

$$
R C W\left(G_{1}\left[G_{2}\right]\right)=\frac{n_{1} m_{2}}{D_{1}}+\frac{n_{1}\left(\binom{n_{2}}{2}-m_{2}\right)}{D_{1}-1}+n_{2}^{2} R C W\left(G_{1}\right) .
$$

(ii) If $G_{1} \cong K_{n_{1}}$ and G_{2} is a non-complete graph, then

$$
R C W\left(G_{1}\left[G_{2}\right]\right)=\frac{n_{1} m_{2}}{2}+n_{1}\left(\binom{n_{2}}{2}-m_{2}\right)+\frac{n_{2}^{2}}{2}\binom{n_{1}}{2} .
$$

(iii) If G_{1} and G_{2} are complete graphs, then

$$
R C W\left(G_{1}\left[G_{2}\right]\right)=\left(n_{1}+n_{2}^{2}\right)\binom{n_{1}}{2} .
$$

Proof. By the definition of the composition of two graphs one can see that,

$$
D=D\left(G_{1}\left[G_{2}\right]\right)= \begin{cases}1, & G_{1} \cong K_{n_{1}} \text { and } G_{2} \cong K_{n_{2}} \\ 2, & G_{1} \cong K_{n_{1}} \text { and } G_{2} \nsubseteq K_{n_{2}}, \\ D_{1}=D\left(G_{1}\right), & G_{1} \nsubseteq K_{n_{1}} .\end{cases}
$$

Suppose G_{1} and G_{2} are non-complete graphs, then

$$
\begin{aligned}
R C W\left(G_{1}\left[G_{2}\right]\right)= & \sum_{\{(x, y),(u, v)\} \subseteq V\left(G_{1}\left[G_{2}\right]\right)} \frac{1}{D+1-d_{G_{1}\left[G_{2}\right]}((x, y),(u, v))} \\
= & \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1}\left[G_{2}\right]\right) \\
y v \in E_{2}}} \frac{1}{D_{1}}+\sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1}\left[G_{2}\right]\right) \\
y \cup \notin E_{2}}} \frac{1}{D_{1}-1} \\
& +\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1}\left[G_{2}\right]\right) \\
x \neq u}} \frac{1}{D_{1}+1-d_{G_{1}}(x, u)}
\end{aligned}
$$

$$
=\frac{n_{1} m_{2}}{D_{1}}+\frac{n_{1}\left(\binom{n_{2}}{2}-m_{2}\right)}{D_{1}-1}+n_{2}^{2} R C W\left(G_{1}\right)
$$

which completes part (i).
The proof is completed by a similar argument as proof of the first part.
2.4. Disjunction. The disjunction $G_{1} \wedge G_{2}$ of graphs G_{1} and G_{2} is the graph with vertex set $V_{1} \times V_{2}$ and (x, y) is adjacent with (u, v) whenever $x u \in E_{1}$ or $y v \in E_{2}$.

Let G_{1} and G_{2} be graphs on $n_{1}>1$ and $n_{2}>1$ vertices, respectively. Clearly, the distance between two vertices (x, y) and (u, v) of $G_{1} \wedge G_{2}$ is given by

$$
d_{G_{1} \wedge G_{2}}((x, y),(u, v))= \begin{cases}0, & x=u \text { and } y=v \\ 1, & x u \in E_{1} \text { or } y v \in E_{2} \\ 2, & \text { otherwise }\end{cases}
$$

Note that if $n_{i}=1$ for some $i \in\{1,2\}$, then $G_{1} \wedge G_{2} \cong G_{n_{i}^{\prime}}$, where $n_{i}^{\prime}=3-i$. So, we determine the reciprocal complementary Wiener number of disjunction $G_{1} \wedge G_{2}$ for cases $n_{1}>1$ and $n_{2}>1$.

Theorem 2.4. Let G_{1} and G_{2} be graphs on $n_{1}>1$ and $n_{2}>1$ vertices, respectively.
(i) If G_{1} and G_{2} are complete graphs, then

$$
R C W\left(G_{1} \wedge G_{2}\right)=\frac{1}{2}\left[n_{1}\binom{n_{2}}{2}+n_{2}\binom{n_{1}}{2}+\binom{n_{1}}{2}\binom{n_{2}}{2}\right] .
$$

(ii) If $\left\{G_{1}, G_{2}\right\} \neq\left\{K_{n_{1}}, K_{n_{2}}\right\}$, then

$$
R C W\left(G_{1} \wedge G_{2}\right)=\frac{1}{2}\left(n_{1}^{2} n_{2}^{2}+2 m_{1} m_{2}-m_{2} n_{1}^{2}-m_{1} n_{2}^{2}-n_{1} n_{2}\right)
$$

Proof. From definition of disjunction it is clear that if at least one of graphs G_{1} and G_{2} is not complete, then $D=D\left(G_{1} \wedge G_{2}\right)=2$, otherwise $D=1$. To prove part (ii), assume that $\left\{G_{1}, G_{2}\right\} \neq\left\{K_{n_{1}}, K_{n_{2}}\right\}$. Hence, we can write

$$
\begin{aligned}
& R C W\left(G_{1} \wedge G_{2}\right)=\sum_{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \wedge G_{2}\right)} \frac{1}{D+1-d_{G_{1} \wedge G_{2}}((x, y),(u, v))} \\
& =\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \wedge G_{2}\right) \\
x u \in E_{1}}} \frac{1}{2}+\sum_{\substack{\{(x, y),(u v)\} \subset V\left(G_{1} \wedge G_{2}\right) \\
y v \in E_{2}}} \frac{1}{2} \\
& -\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \wedge G_{2}\right) \\
x u \in E_{1}, y v \in E_{2}}} \frac{1}{2}+\sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \wedge G_{2}\right) \\
y v \notin E_{2}}} 1 \\
& +\sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \wedge G_{2}\right) \\
x u \notin E_{1}}} 1+\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \wedge G_{2}\right) \\
x u \notin E_{1}, y v \notin E_{2}}} 1 \\
& =\frac{1}{2}\left(n_{1}^{2} n_{2}^{2}+2 m_{1} m_{2}-m_{2} n_{1}^{2}-m_{1} n_{2}^{2}-n_{1} n_{2}\right) .
\end{aligned}
$$

A similar argument as part (ii), shows that

$$
R C W\left(K_{n_{1}} \wedge K_{n_{2}}\right)=\frac{1}{2}\left[n_{1}\binom{n_{2}}{2}+n_{2}\binom{n_{1}}{2}+\binom{n_{1}}{2}\binom{n_{2}}{2}\right] .
$$

This completes the proof.
2.5. Strong product. The strong product of graphs G_{1} and G_{2}, denoted by $G_{1} \boxtimes G_{2}$, is the graph with vertex set $V_{1} \times V_{2}$ and $(x, y)(u, v)$ is an edge whenever $(x=u$ and $\left.y v \in E_{2}\right)$, or ($y=v$ and $x u \in E_{1}$), or $\left(x u \in E_{1}\right.$ and $\left.y v \in E_{2}\right)$.

In the following result, we give a basic property about the strong product of graphs.
Lemma 2.1 ([4]). Let G_{1} and G_{2} be two connected graphs, $x, u \in V\left(G_{1}\right)$ and $y, v \in$ $V\left(G_{2}\right)$. Then $d_{G_{1} \boxtimes G_{2}}((x, y),(u, v))=\max \left\{d_{G_{1}}(x, u), d_{G_{2}}(y, v)\right\}$.
Corollary 2.4. Let $G_{1} \boxtimes G_{2}$ be the strong product of connected graphs G_{1} and G_{2}. Then $D=\max \left\{D_{1}, D_{2}\right\}$, where D, D_{1} and D_{2} are the diameter of $G_{1} \boxtimes G_{2}, G_{1}$ and G_{2}, respectively.
Theorem 2.5. Let $G_{1} \boxtimes G_{2}$ be the strong product of connected graphs G_{1} and G_{2}. Then

$$
\begin{aligned}
R C W\left(G_{1} \boxtimes G_{2}\right) \leq & \frac{1}{D}\left(2 m_{1} m_{2}+n_{1} m_{2}+n_{2} m_{1}\right)+\left(n_{1}+2 m_{1}\right)\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right) \\
& +\left(n_{2}+2 m_{2}\right)\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right)+2\left[\binom{n_{1}}{2}-m_{1}\right]\left[\binom{n_{2}}{2}-m_{2}\right]
\end{aligned}
$$

The equality is satisfied if and only if G_{1} or G_{2} is a complete graph.
Proof.

$$
\begin{aligned}
R C W\left(G_{1} \boxtimes G_{2}\right)= & \sum_{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right)} \frac{1}{D+1-d_{G_{1} \boxtimes G_{2}}((x, y),(u, v))} \\
= & \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
y v \in E_{2}}} \frac{1}{D}+\sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
y v \notin E_{2}}} \frac{1}{D+1-d_{G_{2}}(y, v)} \\
& +\sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \in E_{1}}} \frac{1}{D}+\sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \notin E_{1}}} \frac{1}{D+1-d_{G_{1}}(x, u)} \\
& +\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \in E_{1}, y v \in E_{2}}} \frac{1}{D}+\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \in E_{1}, y v \notin E_{2}}} \frac{1}{D+1-d_{G_{2}}(y, v)} \\
& +\sum_{\substack{\{(x, y))(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \notin E_{1}, y v \in E_{2}}} \frac{1}{D+1-d_{G_{1}}(x, u)} \\
& +\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \notin E_{1}, y v \notin E_{2}}} \frac{1}{D+1-\max \left\{d_{G_{1}}(x, u), d_{G_{2}}(y, v)\right\}} .
\end{aligned}
$$

By (1.1), we have

$$
\begin{aligned}
n_{1} R C W\left(G_{2}\right)= & \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
y v \notin E_{2}}} \frac{1}{D_{2}+1-d_{G_{2}}(y, v)} \\
& +\sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
y v \in E_{2}}} \frac{1}{D_{2}+1-\underbrace{d_{G_{2}}(y, v)}_{1}} \\
= & \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
y v \notin E_{2}}} \frac{1}{D_{2}+1-d_{G_{2}}(y, v)}+\frac{n_{1} m_{2}}{D_{2}},
\end{aligned}
$$

hence,

$$
\begin{aligned}
\sum_{\substack{\{(x, y),(x, v)\} \subset V\left(G_{1} \boxtimes G_{2}\right) \\
y v \notin E_{2}}} \frac{1}{D+1-d_{G_{2}}(y, v)} & \leq \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
y v \notin E_{2}}} \frac{1}{D_{2}+1-d_{G_{2}}(y, v)} \\
& =n_{1}\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right) .
\end{aligned}
$$

Similarly, we can check that

$$
\begin{aligned}
& \sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \notin E_{1}}} \frac{1}{D+1-d_{G_{1}}(x, u)} \leq n_{2}\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right), \\
& \sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \in E_{1}, y v \notin E_{2}}} \frac{1}{D+1-d_{G_{2}}(y, v)} \leq 2 m_{1}\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right), \\
& \sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \notin E_{1}, y v \in E_{2}}} \frac{1}{D+1-d_{G_{1}}(x, u)} \leq 2 m_{2}\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right) .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \notin E_{1}, y v \notin E_{2}}} \frac{1}{D+1-\underbrace{\max \left\{d_{G_{1}}(x, u), d_{G_{2}}(y, v)\right\}}_{\leq D}} & \leq \sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \notin E_{1}, y v \notin E_{2}}} 1 \\
& =2\left[\binom{n_{1}}{2}-m_{1}\right]\left[\binom{n_{2}}{2}-m_{2}\right] .
\end{aligned}
$$

On the other hand, it is easy to see that

$$
\begin{aligned}
& \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
y v \in E_{2}}} \frac{1}{D}=\frac{n_{1} m_{2}}{D}, \quad \sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \in E_{1}}} \frac{1}{D}=\frac{n_{2} m_{1}}{D}, \\
& \sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \boxtimes G_{2}\right) \\
x u \in E_{1}, y v \in E_{2}}} \frac{1}{D}=\frac{2 m_{1} m_{2}}{D} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
R C W\left(G_{1} \boxtimes G_{2}\right) \leq & \frac{1}{D}\left(2 m_{1} m_{2}+n_{1} m_{2}+n_{2} m_{1}\right)+\left(n_{1}+2 m_{1}\right)\left(R C W\left(G_{2}\right)-\frac{m_{2}}{D_{2}}\right) \\
& +\left(n_{2}+2 m_{2}\right)\left(R C W\left(G_{1}\right)-\frac{m_{1}}{D_{1}}\right)+2\left[\binom{n_{1}}{2}-m_{1}\right]\left[\binom{n_{2}}{2}-m_{2}\right] .
\end{aligned}
$$

Using similar arguments as in the proof of Theorem 2.5, one can prove the following result.

Lemma 2.2. Let K_{r} be a complete graph on r vertices and G be a graph with n vertices, m edges and diameter d. Then

$$
R C W\left(G \boxtimes K_{r}\right)=\frac{1}{d}\left[r m+d r^{2}\left(R C W(G)-\frac{m}{d}\right)+(n+2 m)\binom{r}{2}\right] .
$$

Example 2.4. By the definition of the composition and strong product of two graphs one can see that, $G\left[K_{n}\right]=G \boxtimes K_{n}$. The open fence graph is the composition (or strong product) of path P_{n} and K_{2}. So, from Theorem 2.3 (i) (or Lemma 2.2), we have

$$
R C W\left(P_{n}\left[K_{2}\right]\right)=R C W\left(P_{n} \boxtimes K_{2}\right)=\frac{n}{n-1}+4 n-4, \quad n \geq 3 .
$$

As an application, in the following result, we obtain the reciprocal complementary Wiener number of the closed fence graph $C_{n} \boxtimes K_{2}$.

Lemma 2.3. Let C_{n} be a cycle graph on n vertices. Then

$$
R C W\left(C_{n} \boxtimes K_{2}\right)= \begin{cases}\left.4 n \sum_{\substack{k=1 \\ \frac{n}{2}} \frac{1}{k}-2 n+8,} 2 \right\rvert\, n, \\ 4 n \sum_{k=1}^{2} \frac{1}{k}+\frac{2 n}{n-1}, & 2 \nmid n .\end{cases}
$$

Proof. We first obtain the reciprocal complementary Wiener number of a cycle graph C_{n} on n vertices. Regarding the structure of the cycle C_{n}, it can easily be concluded that if n is even then $D\left(C_{n}, k\right)=n, k=1,2, \ldots, \frac{n}{2}-1$ and $D\left(C_{n}, \frac{n}{2}\right)=\frac{n}{2}$. On the other hand, if n is odd then $D\left(C_{n}, k\right)=n, k=1,2, \ldots, \frac{n-1}{2}$. Hence, by applying relation (1.3), we have

$$
R C W\left(C_{n}\right)= \begin{cases}-\frac{n}{2}+n \sum_{k=1}^{\frac{n}{2}} \frac{1}{k}, & 2 \mid n, \\ n \sum_{k=1}^{\frac{n-1}{2}} \frac{1}{k}, & 2 \nmid n .\end{cases}
$$

Finally, the proof is completed using Lemma 2.2.
2.6. Symmetric difference. The symmetric difference $G_{1} \oplus G_{2}$ of graphs G_{1} and G_{2} is the graph with vertex set $V_{1} \times V_{2}$ and (x, y) is adjacent with (u, v) whenever $x u \in E_{1}$ or $y v \in E_{2}$ but not both. Note that if $n_{i}=1$ for some $i \in\{1,2\}$, then $G_{1} \oplus G_{2} \cong G_{n_{i}^{\prime}}$, where $n_{i}^{\prime}=3-i$.

In the following lemma, we compute the symmetric difference of two graphs with respect to their numbers of vertices and edges.

Theorem 2.6. Let G_{1} and G_{2} be two graphs on $n_{1}>1$ and $n_{2}>1$ vertices, respectively. Then

$$
R C W\left(G_{1} \oplus G_{2}\right)=\frac{1}{2}\left(4 m_{1} m_{2}+n_{1}^{2} n_{2}^{2}-m_{1} n_{2}^{2}-m_{2} n_{1}^{2}-n_{1} n_{2}\right)
$$

Proof. By [8, Lemma 4], we have

$$
d_{G_{1} \oplus G_{2}}((x, y),(u, v))= \begin{cases}0, & x=u \text { and } y=v \\ 1, & x u \in E_{1} \text { or } y v \in E_{2}, \text { but not both, } \\ 2, & \text { otherwise }\end{cases}
$$

Hence, by applying these relations, we get $D=D\left(G_{1} \oplus G_{2}\right)=2$. So,

$$
\begin{aligned}
R C W\left(G_{1} \oplus G_{2}\right)= & \sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \oplus G_{2}\right)}} \frac{1}{D+1-d_{G_{1} \oplus G_{2}}((x, y),(u, v))} \\
= & \sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
y v \in E_{2}}} \frac{1}{2}+\sum_{\substack{\{(x, y),(x, v)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
y v \notin E_{2}}} 1 \\
& +\sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
x u \in E_{1}}} \frac{1}{2}+\sum_{\substack{\{(x, y),(u, y)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
x u \notin E E_{1}}} 1 \\
& +\sum_{\substack{\{(x, y)(u, v)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
x u \in E_{1}, y v \notin E_{2}}} \frac{1}{2}+\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
x u \in E_{1}, y v \in E_{2}}} 1 \\
& +\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
x u \notin E_{1}, y v \in E_{2}}} \frac{1}{2}+\sum_{\substack{\{(x, y),(u, v)\} \subseteq V\left(G_{1} \oplus G_{2}\right) \\
x u \notin E_{1}, y v \notin E_{2}}} 1 \\
= & \frac{1}{2}\left(4 m_{1} m_{2}+n_{1}^{2} n_{2}^{2}-m_{1} n_{2}^{2}-m_{2} n_{1}^{2}-n_{1} n_{2}\right) .
\end{aligned}
$$

2.7. Corona product. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$ be the vertex sets of given graphs G_{1} and G_{2}, respectively. The corona product of G_{1} and G_{2} is denoted by $G_{1} \circ G_{2}$ and defined as the graph obtained by taking n_{1} copies of G_{2} and joining each vertex of the $i^{\text {th }}$ copy with vertex u_{i} of $V_{1}, i=1,2, \ldots, n_{1}$. Denote by G_{2}^{i} the $i^{\text {th }}$ copy of G_{2} joined to the vertex u_{i} of G_{1}, and let $V_{2}^{i}=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n_{2}}\right\}$, $i=1,2, \ldots, n_{1}$.

Theorem 2.7. Let G_{1} and G_{2} be two graphs on $n_{1}>1$ and $n_{2} \geq 1$ vertices, respectively. Then

$$
R C W\left(G_{1} \circ G_{2}\right)<\left(n_{2}+1\right)^{2} R C W\left(G_{1}\right)+\frac{n_{1} n_{2}}{D_{1}+2}+\frac{\left.n_{1}\left[\begin{array}{c}
n_{2} \\
2
\end{array}\right)-m_{2}\right]}{D_{1}+1} .
$$

Proof. From definition of the corona product of graphs, it is easy to check that

$$
\begin{aligned}
d_{G_{1} \circ G_{2}}\left(u_{i}, u_{p}\right) & =d_{G_{1}}\left(u_{i}, u_{p}\right), \\
d_{G_{1} \circ G_{2}}\left(u_{i}, v_{p q}\right) & =d_{G_{1}}\left(u_{i}, u_{p}\right)+1, \\
d_{G_{1} \circ G_{2}}\left(v_{i j}, v_{p q}\right) & = \begin{cases}0, & i=p \text { and } j=q, \\
1, & i=p \text { and } v_{j} v_{q} \in E_{2}, \\
2, & i \neq p .\end{cases}
\end{aligned}
$$

So, we can see that $D=D\left(G_{1} \circ G_{2}\right)=D_{1}+2$. Hence,

$$
\begin{aligned}
R C W\left(G_{1} \circ G_{2}\right)= & \sum_{\{x, y\} \subseteq V\left(G_{1} \circ G_{2}\right)} \frac{1}{D+1-d_{G_{1} \circ G_{2}}(x, y)} \\
= & \sum_{\{x, y\} \subseteq V_{1}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}(x, y)} \\
& +\sum_{i=1}^{n_{1}} \sum_{\left\{v_{i j}, v_{i q}\right\} \subseteq V_{2}^{i}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}\left(v_{i j}, v_{i q}\right)} \\
& +\sum_{i=1}^{n_{1}} \sum_{p=1}^{n_{1}} \sum_{q=1}^{n_{2}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}\left(u_{i}, v_{p q}\right)} \\
& +\sum_{i=1}^{n_{1}-1} \sum_{p=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{q=1}^{n_{2}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}\left(v_{i j}, v_{p q}\right)} .
\end{aligned}
$$

Consider now for convenience:

$$
\begin{aligned}
S_{1} & =\sum_{\{x, y\} \subseteq V_{1}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}(x, y)}, \\
S_{2} & =\sum_{i=1}^{n_{1}} \sum_{\left\{v_{i j}, v_{q}\right\} \subseteq \subseteq V_{2}^{i}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}\left(v_{i j}, v_{i q}\right)}, \\
S_{3} & =\sum_{i=1}^{n_{1}} \sum_{p=1}^{n_{1}} \sum_{q=1}^{n_{2}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}\left(u_{i}, v_{p q}\right)}, \\
S_{4} & =\sum_{i=1}^{n_{1}-1} \sum_{p=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{q=1}^{n_{2}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}\left(v_{i j}, v_{p q}\right)} .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
S_{1} & =\sum_{\{x, y\} \subseteq V_{1}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}(x, y)} \\
& =\sum_{\{x, y\} \subseteq V_{1}} \frac{1}{D_{1}+3-d_{G_{1}}(x, y)} \\
& <R C W\left(G_{1}\right), \\
S_{2} & =\sum_{i=1}^{n_{1}} \sum_{\left\{v_{i j}, v_{i q}\right\} \subseteq V_{2}^{i}} \frac{1}{D+1-d_{G_{1} \circ G_{2}\left(v_{i j}, v_{i q}\right)}} \\
& =\sum_{i=1}^{n_{1}} \sum_{\left\{v_{i j}, v_{i q}\right\} \subseteq V_{2}^{i}} \frac{1}{v_{j}+2}+\sum_{i=1}^{n_{1}} \sum_{\left\{v_{i j}, v_{i q}\right\} \subseteq V_{2}^{i}} \frac{1}{v_{v_{j}}+1} \\
& =\frac{n_{1} m_{2} \notin E_{2}}{D_{1}+2}+\frac{n_{1}\left[\binom{n_{2}}{2}-m_{2}\right]}{D_{1}+1}, \\
S_{3} & =\sum_{i=1}^{n_{1}} \sum_{p=1}^{n_{1}} \sum_{q=1}^{n_{2}} \frac{1}{D+1-d_{G_{1} \circ G_{2}}\left(u_{i}, v_{p q}\right)} \\
& =\sum_{i=1}^{n_{1}} \sum_{q=1}^{n_{2}} \frac{1}{D_{1}+2}+\sum_{i=1}^{n_{1}} \sum_{p=1}^{n_{1}} \sum_{q=1}^{n_{2}} \frac{1}{D_{1}+2-d_{G_{1}}\left(u_{i}, u_{p}\right)} \\
& <\frac{n_{1} n_{2}}{D_{1}+2}+2 n_{2} R C W\left(G_{1}\right), \\
S_{4} & =\sum_{i=1}^{n_{1}-1} \sum_{p=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{q=1}^{n_{2}} \frac{1}{D+1-d_{G_{1} \circ G_{2}\left(v_{i j}, v_{p q}\right)}} \\
& =\sum_{i=1}^{n_{1}-1} \sum_{p=i+1}^{n_{1}} \sum_{j=1}^{n_{2}} \sum_{q=1}^{n_{2}} \frac{1}{D_{1}+1-d_{G_{1}}\left(u_{i}, u_{p}\right)} \\
& =n_{2}^{2} R C W\left(G_{1}\right) .
\end{aligned}
$$

Therefore,

$$
R C W\left(G_{1} \circ G_{2}\right)<\left(n_{2}+1\right)^{2} R C W\left(G_{1}\right)+\frac{n_{1} n_{2}}{D_{1}+2}+\frac{\left.n_{1}\left[\begin{array}{c}
n_{2} \\
2
\end{array}\right)-m_{2}\right]}{D_{1}+1} .
$$

2.8. Splice and link. Let G_{1} and G_{2} be two connected graphs with disjoint vertex sets V_{1} and V_{2}, respectively. For given vertices $u \in V_{1}$ and $v \in V_{2}$, a splice of G_{1} and G_{2} by vertices u and v is denoted by $\left(G_{1} \cdot G_{2}\right)(u, v)$ and defined by identifying the vertices u and v in the union of G_{1} and G_{2}. Also, a link of G_{1} and G_{2} by vertices u and v is denoted by $\left(G_{1} \sim G_{2}\right)(u, v)$ and obtained by joining u and v by an edge in the union of these graphs.

Theorem 2.8. Let G_{1} and G_{2} be two graphs on n_{1} and n_{2} vertices, respectively. Then
(i) $R C W\left(\left(G_{1} \cdot G_{2}\right)(u, v)\right) \leq\left(n_{1}-1\right)\left(n_{2}-1\right)+R C W\left(G_{1}\right)+R C W\left(G_{2}\right)$;
(ii) $R C W\left(\left(G_{1} \sim G_{2}\right)(u, v)\right) \leq n_{1} n_{2}+R C W\left(G_{1}\right)+R C W\left(G_{2}\right)$.

Equality in (i) holds if and only if one of the following cases occurs:
(i_{1}) $n_{i}=1$, for some $i \in\{1,2\}$;
$\left(i_{2}\right) G_{1}$ and G_{2} are non-complete graphs and $\varepsilon_{G_{1}}(u)=\varepsilon_{G_{2}}(v)=1$.
Moreover, equality in (ii) holds if and only if $n_{1}=n_{2}=1$.
Proof. Suppose \dot{D} and \tilde{D} are the diameter of the splice and link of graphs G_{1} and G_{2} by vertices u and v, respectively. By above definitions of the splice and link of graphs, one can easily see that

$$
d_{\left(G_{1}, G_{2}\right)(u, v)}(x, y)= \begin{cases}d_{G_{1}}(x, y), & x, y \in V_{1}, \\ d_{G_{2}}(x, y), & x, y \in V_{2}, \\ d_{G_{1}}(x, u)+d_{G_{2}}(y, v), & x \in V_{1} \text { and } y \in V_{2},\end{cases}
$$

and also,

$$
d_{\left(G_{1} \sim G_{2}\right)(u, v)}(x, y)= \begin{cases}d_{G_{1}}(x, y), & x, y \in V_{1}, \\ d_{G_{2}}(x, y), & x, y \in V_{2}, \\ d_{G_{1}}(x, u)+d_{G_{2}}(y, v)+1, & x \in V_{1} \text { and } y \in V_{2}\end{cases}
$$

Hence, in graph $\left(G_{1} \cdot G_{2}\right)(u, v)$, if the endpoints of a diametral path (i.e. a shortest path between two vertices whose distance is equal to the diameter of the graph) are in the graph G_{1} (or G_{2}) then $\dot{D}=D_{1}$ (or D_{2}), otherwise if one of these endpoints belongs to V_{1} and the other endpoint belongs to V_{2}, then $\dot{D}=\varepsilon_{G_{1}}(u)+\varepsilon_{G_{2}}(v)$. Thus, $\dot{D}=\max \left\{D_{1}, D_{2}, \varepsilon_{G_{1}}(u)+\varepsilon_{G_{2}}(v)\right\}$. Similarly, $\tilde{D}=\max \left\{D_{1}, D_{2}, \varepsilon_{G_{1}}(u)+\varepsilon_{G_{2}}(v)+1\right\}$. By applying the above obtained relationships and also definitions of the splice and link of graphs, it is obvious that if $n_{1}=1$ or $n_{2}=1$, then the equality in (i) holds. Assume that $n_{1}, n_{2} \geq 2$, then

$$
\begin{aligned}
R C W\left(\left(G_{1} \cdot G_{2}\right)(u, v)\right)= & \sum_{\{x, y\} \subseteq V\left(\left(G_{1} \cdot G_{2}\right)(u, v)\right)} \frac{1}{\dot{D}+1-d_{\left(G_{1}, G_{2}\right)(u, v)}(x, y)} \\
& =\sum_{\{x, y\} \subseteq V_{1}} \frac{1}{\dot{D}+1-d_{G_{1}}(x, y)}+\sum_{\{x, y\} \subseteq V_{2}} \frac{1}{\dot{D}+1-d_{G_{2}}(x, y)} \\
& +\sum_{\substack{\left.x \in V_{V} \backslash\{u\} \\
y \in V_{2} \backslash v\right\}}} \frac{1}{\dot{D}+1-d_{G_{1}}(x, u)-d_{G_{2}}(y, v)} \\
& \leq\left(n_{1}-1\right)\left(n_{2}-1\right)+R C W\left(G_{1}\right)+R C W\left(G_{2}\right),
\end{aligned}
$$

and equality holds when $\dot{D}=D_{1}=D_{2}=d_{G_{1}}(x, u)+d_{G_{2}}(y, v)$, for all $x \in V_{1} \backslash\{u\}$ and $y \in V_{2} \backslash\{v\}$. On the other hand, since G_{1} and G_{2} are connected graphs, we conclude that equality holds if and only if $d_{G_{1}}(x, u)=d_{G_{2}}(y, v)=1$ and $D_{1}=D_{2}=2$, for all $x \in V_{1} \backslash\{u\}$ and $y \in V_{2} \backslash\{v\}$. This means that G_{1} and G_{2} are non-complete graphs
and $\varepsilon_{G_{1}}(u)=\varepsilon_{G_{2}}(v)=1$, which completes the proof of part (i). The proof of part (ii) can be completed by using the similar arguments as in the proof of part (i).

References

[1] F. M. Brückler, T. Došlić, A. Graovac and I. Gutman, On a class of distance-based molecular structure descriptors, Chemical Physics Letters 503 (2011), 336-338.
[2] X. Cai and B. Zhou, Reciprocal complementary Wiener numbers of trees, unicyclic graphs and bicyclic graphs, Discrete Appl. Math. 157 (2009), 3046-3054.
[3] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta. Appl. Math. 66 (2001), 211-249.
[4] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[5] O. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs, Journal of Chemical Information and Computer Sciences 40 (2000), 1412-1422.
[6] O. Ivanciuc, T. Ivanciuc and A. T. Balaban, The complementary distance matrix, a new molecular graph metric, Acta Chimica Hungarica - Models in Chemistry 137 (2000), 57-82.
[7] D. Janežič, A. Milićević, S. Nikolić and N. Trinajstić, Graph Theoretical Matrices in Chemistry, University of Kragujevac, Kragujevac, 2007.
[8] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008), 1402-1407.
[9] R. Nasiri, H. Yousefi-Azari, M. R. Darafsheh and A. R. Ashrafi, Remarks on the Wiener index of unicyclic graphs, J. Appl. Math. Comput. 41 (2013), 49-59.
[10] H. Ramane and V. Manjalapur, Reciprocal Wiener index and reciprocal complementary Wiener index of line graphs, Indian Journal of Discrete Mathematics 1 (2015), 23-32.
[11] Z. K. Tang and H. Y. Deng, The graphs with minimal and maximal Wiener indice among a class of bicyclic graphs, J. Nat. Sci. Hunan Norm. Univ. 31 (2008), 27-30.
[12] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.
[13] K. Xu, M. Liu, K. C. Das, I. Gutman and B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014), 461-508.
[14] B. Zhou, X. Cai and N. Trinajstić, On reciprocal complementary Wiener number, Discrete Appl. Math. 157 (2009), 1628-1633.
[15] Y. Zhu, F. Wei and F. Li, Reciprocal complementary Wiener numbers of non-caterpillars, Appl. Math. 7 (2016), 219-226.

Department of Mathematics, Imam Hossein Comprehensive University, Tehran, Iran
Email address: R.Nasiri.82@gmail.com
Email address: kpnakhaei@ihu.ac.ir
Email address: ashojaeifard@ihu.ac.ir

[^0]: Key words and phrases. Reciprocal complementary Wiener number, distance, graph operations. 2010 Mathematics Subject Classification. 05C12, 05C35.
 DOI 10.46793/KgJMat2101.139N
 Received: February 04, 2018.
 Accepted: October 27, 2018.

