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ρ-ATTRACTIVE ELEMENTS IN MODULAR FUNCTION SPACES

H. IQBAL1, M. ABBAS2, AND S. H. KHAN3

Abstract. In this paper, we introduce the notion of ρ-attractive elements in mod-
ular function spaces. A new class of mappings called ρ-k-nonspreading mappings
is also introduced. Making a good use of the two notions, we first prove existence
results and then some approximation results in the setup of modular function spaces.
An example is presented to support the results proved herein.

1. Introduction and preliminaries

The notion of attractive points of nonlinear mappings in Hilbert spaces was coined
by Takahashi and Takeuchi [16] in 2011.

Let E be a nonempty subset of a Hilbert space H and T : E → H then the set of
attractive points A(T ) is given by,

A(T ) = {z ∈ H : ‖Tx− z‖ ≤ ‖x− z‖ for all x ∈ E}.
They proved an existence result on attractive points for the so-called hybrid mappings
in a Hilbert space. They went on to prove a weak convergence theorem of Mann-type
without closedness.

Motivated by the idea of Takahashi et al. [17], study of attractive points gained
momentum. Several different classes of mappings were introduced. Kohsaka et al. [8]
presented a new class of mappings called nonspreading mappings.

A mapping T : E → E is said to be nonspreading mapping if for any x, y ∈ E,
2 ‖Tx− Ty‖2 ≤ ‖x− Ty‖2 + ‖Tx− y‖2 .

Suantai et al. [15], using Hausdorff metric, introduced the class of generalized non-
spreading mappings, known as k-nonspreading multivalued mappings. Kaewkhao et
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al. [1] studied the attractive points and convergence theorems for normally generalized
hybrid mappings in CAT (0) spaces in 2015.

In the same year, Zheng [18] proved strong and weak convergence theorem of the
Ishikawa iteration for an (α, β)-generalized hybrid mapping in a uniformly convex
Banach space. Kunwai et al. [5] proved an attractive point theorem for normally
generalized hybrid mappings in CAT (0) spaces under certain conditions. Recently,
fixed point theory in modular function spaces has gained interest of many mathemati-
cians. The idea of modular function spaces was established by Nakano in [13] and
was improved and generalized by Musielak and Orlicz [12]. Later on, Khamsi et al.
[11] introduced the fixed point theory in modular function spaces and proved Banach
contraction principle in modular function spaces (also see [6]). Kuaket and Kumam
[10] established some fixed point for generalized contraction mappings in modular
function spaces. Dehaish and Kozolwoski [2], proved results on approximating fixed
points in modular function spaces for the first time. Recently, Khan et al. [14] suc-
cessfully handled the problem of approximating fixed points for multivalued ρ-quasi
nonexpansive mappings in modular function spaces. Ilchev and Zlatanov [3] presented
some sufficient conditions for the existence and uniqueness of best proximity points
and fixed points for cyclic Kannan maps in modular function spaces. For further
discussion in modular spaces see [4, 9, 19].

The above efforts stimulate us to define attractive elements in the setting of modular
function spaces. Another purpose of this paper is to define a class of ρ−k-nonspreading
mappings. This will lead us proving existence and approximation results for attractive
elements in modular function spaces. Towards the end of this paper, our results will
be vindicated using some examples.

Let us recall some basic definitions and notions which can be found in [7]. Let
Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let P be a
nontrivial δ-ring of subsets of Ω which means that P is closed with respect to forming
of countable intersections, and finite unions and differences. Assume further that
E ∩ A ∈ P for any E ∈ P and A ∈ ∑. Let us assume that there exists an increasing
sequence of sets Kn ∈ P such that Ω = ⋃

Kn. By E we denote the linear space of
all simple functions with supports from P . M∞ represents the space of all extended
measurable functions, that is, all functions f : Ω→ [−∞,∞] such that there exists a
sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω)→ f(ω) for all ω ∈ Ω.

Definition 1.1. Let ρ : M∞ → [0,∞] be a nontrivial, convex, and even function. We
say that ρ is a regular convex function pseudomodular if

(a) ρ(0) = 0;
(b) ρ is monotone, i.e., |f(ω)| ≤ |g(ω)| for any ω ∈ Ω implies ρ(f) ≤ ρ(g), where

f, g ∈M∞;
(c) ρ is orthogonally subadditive, i.e., ρ(f1A∪B) ≤ ρ(f1A) + ρ(f1B) for any A,B ∈ Σ

such that A ∪B 6= φ, f ∈M∞;
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(d) ρ has Fatou property, that is, |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω implies ρ(fn) ↑ ρ(f),
where f ∈M∞;

(e) ρ is order continuous in E , i.e., gn ∈ E , and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

We say that a set A ∈ Σ is ρ-null if ρ(g1A) = 0 for every g ∈ E . A property holds
ρ-almost everywhere (ρ-a.e.) if the set {ω ∈ Ω : p(ω) does not hold} is ρ-null. We
identify any pair of measurable sets whose symmetric difference is ρ-null as well as
any pair of measurable functions differing only on a ρ-null set. With this in mind
we define M = {f ∈ M∞ : |f(ω)| < ∞ ρ–a.e.} where each f ∈ M is actually an
equivalence class of functions equal ρ–a.e. rather than an individual function.

Definition 1.2. Let ρ be a regular convex function pseudomodular. Then, we say
that ρ is a regular convex function modular if ρ(f) = 0 implies that f = 0 ρ – a.e.

The class of all nonzero regular convex function modular defined on Ω is denoted
by < .

Definition 1.3. The convex function modular ρ defines the modular function space
Lρ as

Lρ = {f ∈M∞ : ρ(λf)→ 0 as λ→ 0}.

Generally, the modular ρ is not subadditive and hence doesn’t behave like a norm.
However, the modular space Lρ can be equipped with an F -norm defined by

‖f‖ρ = inf
{
α > 0 : ρ

(
f

α

)
≤ α

}
.

If ρ is a convex modular,

||f ||ρ = inf
{
α > 0 : ρ

(
f

α

)
≤ 1

}
defines a norm on the modular space Lρ, and is called the Luxemburg norm. The
following definitions will be needed in this paper.

Definition 1.4. Let Lρ be a modular space. Then
(a) the sequence {fn} ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn − f)→ 0 as

n→∞;
(b) the sequence {fn} ⊂ Lρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n and m

approach ∞;
(c) we say that Lρ is ρ-complete if and only if any ρ-Cauchy sequence in Lρ is

ρ-convergent.

Definition 1.5. A subset E of Lρ is called
(a) ρ-closed if the ρ-limit of a ρ-convergent sequence of E always belongs to E;
(b) ρ-compact if every sequence in E has a ρ-convergent subsequence in E;
(c) ρ-bounded if δρ(E) = sup{ρ(f − g) : f, g ∈ E} <∞;



50 H. IQBAL, M. ABBAS, AND S. H. KHAN

(d) the ρ-distance between f and E is defined as:
dρ(f, E) = inf{ρ(f − j) : j ∈ E}.

The terminology defined for ρ is similar to metric spaces but ρ does not satisfy
triangle inequality. Hence, if a sequence in Lρ is ρ-convergent it does not imply
ρ-Cauchy. This is only true if and only if ρ satisfies ∆2-condition.
Definition 1.6. The modular function ρ is said to satisfy the ∆2-condition if
ρ(2fn)→ 0 as n approaches ∞, whenever ρ(fn)→ 0 as n approaches ∞.

The modular ρ satisfies some uniform convexity type properties. A few of those are
given below which can be found in [7].
Definition 1.7. Let ρ ∈ <.
(a) Let r > 0, ε > 0. Define,

D1(r, ε) = {(f, h) : f, h ∈ Lp, ρ(f) ≤ r, ρ(h) ≤ r, ρ(f − h) ≥ εr}.
Let

δ1(r, ε) = inf
{

1− 1
r
ρ

(
f + h

2

)
: (f, h) ∈ D1(r, ε)

}
, if D1(r, ε) 6= φ,

and δ1(r, ε) = 1 if D1(r, ε) = φ. We say that ρ satisfies (UC1) if for every r > 0,
ε > 0, δ1(r, ε) > 0. Note that for every r > 0, D1(r, ε) 6= φ for every ε > 0 small
enough.

(b) We say that ρ satisfies (UUC1) if for every s ≥ 0, ε > 0, there exists η1(s, ε) > 0
depending only upon s and ε such that δ1(r, ε) > η1(s, ε) > 0 for any r > s.

(c) We say that ρ satisfies (UUC2) if for every s ≥ 0, ε > 0, there exists η2(s, ε) > 0
depending upon s and ε such that δ2(r, ε) > η2(s, ε) > 0 for any r > s.

Note that (UC1) implies (UUC1) and (UCC1) implies (UUC2). If ρ ∈ < satisfies
∆2, then (UUC2) and (UCC1) are equivalent (see [9]).
Definition 1.8. We will say that ρ is uniformly continuous if for every ε > 0 and
R > 0, there exists δ > 0 such that

|ρ(g)− ρ(g + h)| < ε if ρ(h) ≤ δ, ρ(g) ≤ R.

A sequence {tn} ⊂ (0, 1) is called bounded away from 0 if there exists a > 0 such
that tn ≥ a for every n ∈ N. Similarly, {tn} ⊂ (0, 1) is called bounded away from 1 if
there exists b < 1 such that tn ≤ b for every n ∈ N. The following lemma helpful in
studying the convergence of fixed points as well as attractive elements in the (UUC1)
modular function spaces.
Lemma 1.1. Let ρ ∈ < satisfy (UUC1) and let {tn} ⊂ (0, 1) be bounded away from
0 and 1. If there exists R ≥ 0 such that

lim sup
n→∞

ρ(fn) ≤ R, lim sup
n→∞

ρ(gn) ≤ R and lim
n→∞

ρ(tnfn + (1− tn)gn) = R,

then limn→∞ ρ(fn − gn) = 0.
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Since the modular function space doesn’t satisfy the triangle inequality so, the
following theorem is useful.

Theorem 1.1. Let ρ ∈ < satisfy ∆2-condition. Let {fn} and {gn} be two sequences
in Lρ. Then,

lim
n→∞

ρ(gn) = 0 implies lim sup
n→∞

ρ(fn + gn) = lim
n→∞

ρ(fn)

and
lim
n→∞

ρ(gn) = 0 implies lim inf
n→∞

ρ(fn + gn) = lim
n→∞

ρ(fn).

The notion of a ρ-type is a powerful tool that will be used in our result.

Definition 1.9. Let E ⊂ Lp be convex and ρ-bounded. A function τ : E → [0,∞]
is called a ρ-type (or shortly a type) if there exists a sequence {gk} of elements of E
such that for any f ∈ E there holds τ(f) = lim supk→∞ ρ(gk − f).

The following lemma [7] establishes an important minimizing sequence property of
uniformly convex modular function spaces which is used proving existence of fixed
points.

Lemma 1.2. Assume that ρ ∈ < is (UUC1). Let E be a ρ-closed ρ-bounded convex
nonempty subset of Lρ. Let τ be a ρ-type defined on E. Then, any minimizing sequence
of τ is ρ-convergent. Its ρ-limit is independent of the minimizing sequence.

Since our goal is to prove existence of attractive elements without the condition of
ρ-closedness. The following is the modified version of the above lemma which can be
proved exactly on lines of [7].

Lemma 1.3. Assume that ρ ∈ < is (UUC1). Let E be a ρ-bounded convex nonempty
subset of Lρ. Let τ be a ρ-type defined on E. Then, any minimizing sequence of τ is
ρ-convergent in Lρ. Its ρ-limit is independent of the minimizing sequence.

Definition 1.10. Let ρ ∈ <. The growth function ωρ of a function modular ρ is
defined as:

ωρ(β) = sup
{
ρ(βf)
ρ(f) , 0 ≤ ρ(f) <∞

}
, for all 0 ≤ β <∞.

Notice that whenever β ∈ [0, 1], ωρ(β) ≤ 1.

Let T : E → E be a mapping then a point x ∈ E is said to be a fixed point of T if
x = Tx. We denote the set of fixed points by F (T ). A mapping T is said to be

(a) ρ-nonexpansive if ρ(Tf − Tg) ≤ ρ(f − g) for all f, g ∈ E;
(b) ρ-quasi-nonexpansive mapping if ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E and

g ∈ F (T ).
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2. Main Results

In this section, we introduce a new class of ρ−k-nonspreading mappings and present
the concept ρ-attractive elements. Then, we prove an existence and some convergence
results.

Definition 2.1. Let ρ ∈ <. Let T : E → Lρ then T is a ρ− k-nonspreading mapping
if there exists a k > 0 such that

ρ2(Tf − Tg) ≤ k(ρ2(f − Tg) + ρ2(Tf − g)),

for all f, g ∈ E.

A ρ− 1
2 -nonspreading mapping with F (T ) 6= φ is ρ-quasi nonexpansive. In fact, if

g is a fixed point of T , then in Definition 2.1, with k = 1
2 , we have

2ρ2(g − Tf) ≤ ρ2(g − f) + ρ2(g − Tf),

and, hence
ρ2(Tf − g) ≤ ρ2(f − g).

This implies,
ρ(Tf − g) ≤ ρ(f − g).

Now, we give an example of a ρ − k−nonspreading mapping which is not a ρ-
nonexpansive mapping.

Example 2.1. Let the real number system R be the space modulared as ρ(f) = |f |k
for k ≥ 1. Let E = {f ∈ Lρ : −3 < f < 2} and

Tf =


|f | − 1

2 , −2 < f < 2,
−|f |
|f |+ 1 , −3 < f ≤ −2.

It is easy to see that T is a ρ − 1
2 -nonspreading mapping. However, T is not a

ρ-nonexpansive mapping since if f = −2 and g = −1.5, then

ρ(Tf − Tg) =
∣∣∣∣−2

3 −
1
4

∣∣∣∣k =
∣∣∣∣11
12

∣∣∣∣k > ρ(f − g) = | − 2 + 1.5|k =
∣∣∣∣12
∣∣∣∣k .

Definition 2.2. Let ρ be a convex function modular. Let E be a nonempty subset
of Lρ and T : E → E be a mapping then a function g ∈ Lρ is called a ρ−attractive
element of T if for all f ∈ E, we have ρ(Tf − g) ≤ ρ(f − g). Let Aρ(T ) denote the set
of ρ-attractive elements, i.e., Aρ(T ) = {g ∈ Lρ : ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E}.

First of all, we will give some useful properties of Aρ(T ).

Lemma 2.1. Let ρ ∈ < and be uniformly continuous. Let E be a nonempty subset
of Lρ and T : E → Lρ, with Aρ(T ) 6= φ. Then Aρ(T ) is closed.
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Proof. Let {gn} ⊂ Aρ(T ) such that limn→∞ ρ(gn − g) = 0. Then for any f ∈ E, we
have
(2.1) ρ(Tf − g) = ρ((Tf − gn)− (g − gn)).
Then taking limit as n→∞ in (2.1) and using the uniform continuity of ρ, we get

ρ(Tf − g) ≤ lim
n→∞

ρ(Tf − gn) ≤ lim
n→∞

ρ(f − gn) = ρ(f − g).

This shows g ∈ Aρ(T ). Hence, Aρ(T ) is closed. �

An attractive point need not be a fixed point. However, if a mapping T : E → E
is ρ-quasi nonexpansive then the ρ-attractive elements lying in E are also its fixed
points.

Lemma 2.2. Let ρ ∈ <. Let E be a nonempty subset of Lρ and T : E → Lρ be a
ρ-quasi nonexpansive mapping. Then Aρ(T ) ∩ E = F (T ).

Proof. Let g ∈ Aρ(T )∩E, then ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E. In particular, let
f = g ∈ E, then we have ρ(Tf − f) ≤ ρ(f − f) = ρ(0) = 0. Hence, Tf = f showing
f ∈ F (T ). Conversely, since T is ρ-quasi nonexpansive, then for any h ∈ F (T ) and
f ∈ E, we get ρ(Tf − h) ≤ ρ(f − h). Then, clearly h ∈ Aρ(T ). �

Now, we will prove existence of a ρ-attractive point for ρ−k-nonspreading mapping
for k ∈ (0, 1

2 ].

Theorem 2.1. Assume that Lρ is complete, ρ ∈ < is (UUC1) and uniformly con-
tinuous. Let E be a nonempty ρ-bounded convex subset of Lρ. Let T : E → E be a
ρ− k-nonspreading mapping with k ∈ (0, 1

2 ]. Then T has a ρ-attractive point.

Proof. Let {f0} ∈ E. Define the ρ-type, τ : E → [0,∞] by
τ(f) = lim sup

n→∞
ρ(f − T n(f0)).

Then by Lemma 1.3, there exists a minimizing sequence, say, {gn}, of τ such that
τ(gn) = inff∈E τ(f). Since {T n(f0)} ⊂ E and E is ρ-bounded we have

τ(f) ≤ δρ(E) <∞, for every f ∈ E,
and

τ(Tf) = lim sup
n→∞

ρ(Tf − T n(f0)).

Now,
ρ2(T n(f0)− Tf) ≤ k(ρ2(Tf − T n−1(f0)) + ρ2(f − T n(f0))).

Taking n→∞ implies,
lim sup
n→∞

ρ2(T n(f0)− Tf) ≤ k(lim sup
n→∞

(ρ2(Tf − T n−1(f0)) + lim sup
n→∞

ρ2(T n(f0)− f)).

Thus we have
τ 2(Tf) ≤ kτ 2(Tf) + kτ 2(f),



54 H. IQBAL, M. ABBAS, AND S. H. KHAN

which implies

τ 2(Tf) ≤ k

1− kτ
2(f).

Since k
1−k < 1, we obtain τ(Tf) ≤ τ(f). Thus, τ(Tgn) ≤ τ(gn). Hence, {T (gn)} is

also a minimizing sequence of τ .
Again, according to Lemma 1.3, {gn} converges to some g in Lρ and if there is any

other minimizing sequence it also converges to g then limn→∞ Tgn = g. Next, we
show that g is the ρ-attractive element of T .

From Definition 2.1 and uniform continuity of ρ, we have

lim
n→∞

ρ2(Tgn − Tf) ≤ k lim
n→∞

ρ2(Tf − gn) + k lim
n→∞

ρ2(f − Tgn).

Therefore,
ρ2(g − Tf) ≤ kρ2(Tf − g) + kρ2(f − g),

which implies
(1− k)ρ2(g − Tf) ≤ kρ2(f − g).

Consequently,
ρ(Tf − g) ≤ ρ(f − g).

Hence, g is a ρ-attractive element of T . �

As an immediate consequence of Theorem 2.1, we obtain the next result.

Theorem 2.2. Assume that Lρ is complete, ρ ∈ < is (UUC1) and uniformly con-
tinuous. Let E be a nonempty ρ-bounded, ρ-closed and convex subset of Lρ. Let
T : E → E be a ρ − k-nonspreading mapping with k ∈

(
0, 1

2

]
. Then T has a fixed

point.

Theorem 2.3. Let ρ ∈ < satisfy (UUC2) and ∆2-condition. Let E be a nonempty
convex subset of Lρ and T : E → Lρ be a ρ− k-nonspreading mapping with k ∈ (0, 1

2 ].
Suppose Aρ(T ) is nonempty and let {fn} be defined by

fn+1 = αnTfn + (1− αn)Tgn,
gn = βnfn + (1− βn)Tfn,(2.2)

with 0 < αn, βn < 1, then limn→∞ ρ(fn − h) exists for h ∈ Aρ(T ) and
limn→∞ ρ(fn − Tfn) = 0.

Proof. Let h be a ρ-attractive point of T . Then by convexity of ρ we have

ρ(fn+1 − h) = ρ(αnTfn + (1− αn)Tgn − h)
≤ ρ(αn(Tfn − h) + (1− αn)(Tgn − h))
≤ αnρ(Tfn − h) + (1− αn)ρ(Tgn − h)
≤ αnρ(fn − h) + (1− αn)ρ(gn − h).(2.3)
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Also,
ρ(gn − h) = ρ(βnfn + (1− βn)Tfn − h)

≤ ρ(βn(fn − h) + (1− βn)(Tfn − h))
≤ βnρ(fn − h) + (1− βn)ρ(fn − h)
≤ ρ(fn − h).(2.4)

Thus, from (2.3) and (2.4) we have
ρ(fn+1 − h) ≤ ρ(fn − h).

Hence, {fn} is ρ-bounded and ρ(fn − h) is a nonincreasing sequence. Then
limn→∞ ρ(fn − h) exists for each h ∈ Aρ(T ).

Now we show that limn→∞ ρ(fn − Tfn) = 0. Suppose that
(2.5) lim

n→∞
ρ(fn − h) = L.

Since h ∈ Aρ(T ), we have ρ(Tfn − h) ≤ ρ(fn − h). Thus,
lim sup
n→∞

ρ(Tfn − h) ≤ lim sup
n→∞

ρ(fn − h).

It follows,
(2.6) lim sup

n→∞
ρ(Tfn − h) ≤ L.

Also,
ρ(Tgn − h) ≤ ρ(gn − h)

≤ ρ(fn − h)
implies
(2.7) ρ(Tgn − h) ≤ lim sup

n→∞
ρ(Tgn − h) ≤ L

and
ρ(gn − h) ≤ ρ(fn − h).

Thus
(2.8) lim sup

n→∞
ρ(gn − h) ≤ L.

Therefore,
L = lim

n→∞
ρ(fn+1 − h)

= lim
n→∞

ρ(αnTfn + (1− αn)Tgn − h)
= lim

n→∞
ρ(αn(Tfn − h) + (1− αn)(Tgn − h)).(2.9)

Then using (2.6), (2.7), (2.9) and Lemma 1.1 we have limn→∞ ρ(Tfn − Tgn) = 0.
Fix ε > 0. Then there exists n0 ∈ N such that

ρ(Tfn − Tgn) < ε, for all n ≥ n0.
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Now, using the definition of growth function,
ρ(αn(Tfn − Tgn)) ≤ ωρ(αn)ρ(Tfn − Tgn)

≤ ρ(Tfn − Tgn)
< ε.

Therefore,
(2.10) lim

n→∞
ρ(αn(Tfn − Tgn)) = 0.

Next,
ρ(fn+1 − h) = ρ(αnTfn + (1− αn)Tgn − h)

= ρ(αn(Tfn − Tgn) + (Tgn − h)).
By using Theorem 1.1 and (2.10), we get

lim inf
n→∞

ρ(fn+1 − h) = lim inf
n→∞

ρ(αn(Tfn − Tgn) + (Tgn − h))
= lim inf

n→∞
ρ(Tgn − h).

Thus,
lim inf
n→∞

ρ(Tgn − h) = L.

Now,
lim inf
n→∞

ρ(Tgn − h) ≤ lim inf
n→∞

ρ(gn − h),
⇒L ≤ lim inf

n→∞
ρ(gn − h).(2.11)

Again, from (2.8) and (2.11),
lim
n→∞

ρ(gn − h) = L.

Consequently,
lim
n→∞

ρ(gn − h) = lim
n→∞

ρ(β(fn − h) + (1− β)(Tfn − h))(2.12)
= L.

Hence, using (2.5), (2.6), (2.12) and Lemma 1.1 we get
lim
n→∞

ρ(fn − Tfn) = 0. �

Our next result discusses the ρ-convergence of the iterative process (2.2) to attractive
elements of the mapping T where T satisfies condition (I).

Definition 2.3. Let E be a nonempty subset of Lρ. A mapping T : E → E is said to
satisfy condition (I) if there exists a nondecreasing function ` : [0,∞)→ [0,∞) with
`(0) = 0, `(r) > 0 for all r ∈ (0,∞) such that ρ(f − Tf) ≥ `(distρ(f, Aρ(T ))) where
distρ(f, Aρ(T )) = inf{ρ(f − g) : g ∈ Aρ(T )}.

We give an example of a mapping that satisfies the condition (I).
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Example 2.2. Let the set of real numbers R be the space modulared as ρ(f) = |f |.
Let E = {f ∈ Lρ : 0 < f < 1}, define T : E → E as Tf = f

2 . Clearly, T is
ρ− 1

4 -nonspreading mapping. We know that an element g ∈ Lρ is an attractive point
of T if ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E. Assume that g ∈ Aρ(T ), then

∣∣∣∣∣f2 − g
∣∣∣∣∣ ≤

∣∣∣∣∣f − g
∣∣∣∣∣,(2.13) ∣∣∣∣∣f2 − g

∣∣∣∣∣
2

≤
∣∣∣∣∣f − g

∣∣∣∣∣
2

,∣∣∣∣∣f2 − g
∣∣∣∣∣
2

−
∣∣∣∣∣f − g

∣∣∣∣∣
2

≤ 0,(
f

2 − g + f − g
)(

f

2 − g − f + g

)
≤ 0,(

3f
2 − 2g

)(
−f
2

)
≤ 0.

Hence, we have g ≤ 3f
4 . Since g must satisfy (2.13) for all f such that 0 < f <

1, g must be less or equal to 0. Hence, Aρ(T ) = (−∞, 0]. Define a continuous
nondecreasing function ` : [0,∞)→ [0,∞) by `(r) = r

8 . Then,

`(dρ(f, Aρ(T ))) = `(dρ(f, (−∞, 0])) = `(|f |) = |f |8 <

∣∣∣∣∣f2 − f
∣∣∣∣∣ .

Hence, ρ(f − Tf) ≥ `(dρ(f, Aρ(T ))) for all f ∈ E.

Theorem 2.4. Let ρ ∈ < satisfies (UUC2) and ∆2-condition. In addition, ρ is
uniformly continuous. Let E be a nonempty convex subset of Lρ and T : E → E be
a ρ − k-nonspreading mapping with k ∈

(
0, 1

2

]
. Assume Aρ(T ) 6= φ and T satisfies

condition (I). Let {fn} be defined as in (2.2), with 0 < αn, βn < 1. Then {fn}
ρ-converges to a ρ-attractive point of T .

Proof. We already know ρ(fn+1 − h) ≤ ρ(fn − h) and limn→∞ ρ(fn − Tfn) = 0. Then
by condition (I) and Theorem (2.3), we have

lim inf
n→∞

ρ(fn − Tfn) ≥ lim inf
n→∞

`(dρ(fn, Aρ(T )),
0 ≥ lim inf

n→∞
`(dρ(fn, Aρ(T )).

This implies limn→∞ `(dρ(fn, Aρ(T )) = 0. It follows limn→∞ dρ(fn, Aρ(T )) = 0, since
`(0) = 0.

Now, we show that {fn} is ρ-Cauchy. Since limn→∞ dρ(fn, Aρ(T )) = 0, let ε > 0,
then there exists a constant n0 such that for n ≥ n0

dρ(fn, Aρ(T )) < ε

2 ,
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{inf ρ(fn − h) : h ∈ Aρ(T )} < ε

2 .

Then there must exist some h∗ ∈ Aρ(T ) such that ρ(fn0−h∗) < ε. Now for m,n ≥ n0,
we have by convexity of ρ and the fact that ρ({fn − h}) is non increasing,

ρ

(
fn+m − fn

2

)
≤ ρ

(
(fn+m − h)− (fn − h)

2

)

≤ 1
2(ρ(fn+m − h)) + 1

2(ρ(fn − h))

<
1
2(ρ(fn0 − h∗)) + 1

2(ρ(fn0 − h∗))

= ρ(fn0 − h∗)
< ε.

Hence, by ∆2-condition, {fn} is a ρ-Cauchy sequence. Since Lρ is complete, the
sequence {fn} ρ-converges to some q in Lρ.

Let limn→∞ ρ(fn − q) = 0. Then, by convexity of ρ and Theorem 2.3,
lim
n→∞

ρ(Tfn − q) = 0.

Further, by definition (2.1) and uniform convexity of ρ, we get the following
lim
n→∞

ρ2(Tfn − Tf) ≤ k lim
n→∞

ρ2(fn − Tf) + k lim
n→∞

ρ2(Tfn − f).

This implies
ρ2(q − Tf) ≤ kρ2(q − Tf) + kρ2(q − f).

This results
ρ(q − Tf) ≤ k

1− kρ(q − f) ≤ ρ(q − f).

Hence, q ∈ Aρ(T ) and limn→∞ ρ(fn − q) = 0. �

Let E be a subset of Lρ. A mapping T : E → Lρ is said to be ρ-demicompact if it
has the property that whenever a sequence {fn} ∈ E is ρ-bounded and the sequence
{fn − Tfn} ρ-converges, then there exists a subsequence {fnk

} which is ρ-convergent.

Theorem 2.5. Let ρ ∈ < satisfies (UUC2) and ∆2-condition. In addition, let ρ is
uniformly continuous. Let E be a nonempty convex subset of Lρ and T : E → E be
a ρ − k-nonspreading with k ∈ (0, 1

2 ] and ρ-demicompact mapping with Aρ(T ) 6= φ.
Let {fn} be defined as in (2.2) with 0 < αn, βn < 1. Then {fn} ρ-converges to a
ρ-attractive point of T .

Proof. From Theorem 2.3 we already know that {fn} is a bounded sequence and
limn→∞ ρ(fn − Tfn) = 0. Then by demicompactness of operator T there exists a
subsequence {fnk

} of {fn} and g ∈ Lρ such that limn→∞ ρ(fnk
− g) = 0. Also, by

uniform continuity of ρ and since limn→∞ ρ(fn − Tfn) = 0, we have
lim
n→∞

ρ(Tfnk
− g) = 0.
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Now, by definition of ρ − k-nonspreading mapping and uniform continuity of ρ we
have,

lim
n→∞

ρ2(Tfnk
− Tf) ≤ k lim

n→∞
ρ2(fnk

− Tf) + k lim
n→∞

ρ2(Tfnk
− f).

Consequently,

ρ2(g − Tf) ≤ kρ2(g − Tf) + kρ2(g − f).

That is,

ρ(g − Tf) ≤ ρ(g − f).

So, g ∈ Aρ(T ). By Theorem 2.3, if limn→∞ ρ(fn − g) exists for any g ∈ Aρ(T ), then
we have, limn→∞ ρ(fn − g) = 0. �

3. Numerical Results

Now the following examples verify the results in Theorems 2.4 and 2.5.

Example 3.1. Let the set of real numbers R be the space modulared as ρ(f) = |f |.
Let E = {f ∈ Lρ : 0 < f < 1}, define T : E → E as Tf = f

2 . Obviously, E is a
nonempty convex subset of R which satisfies (UC1) condition. Also ρ(f) = |f | is
uniformly continuous and (UUC2) holds. We have already seen Aρ(T ) is nonempty.
Finally, we generate the sequence (2.2) and show that it converges to its attractive
point. Choose f1 = 0.3125 and α = β = 1

2 , then we have the results in Table 1.

Table 1. Numerical results of Example 3.1

n fn
1 0.312500000000000
2 0.136718750000000
3 0.059814453125000
4 0.026168823242188
5 0.011448860168457
6 0.005008876323700
7 0.002191383391619
... ...
48 4.176559929877658e-18
49 1.827244969321475e-18
50 7.994196740781455e-19

This shows that {fn} converges to 0 ∈ Aρ(T ). This is worth mentioning here that
T does not have any fixed point in D.
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Example 3.2. Let the set of real numbers R be the space modulared as ρ(f) = |f |k.
Let E = {f ∈ Lρ : −3 < f < 2}, define T : E → E as:

Tf =


|f | − 1

2 , −2 < f < 2,
−|f |
|f |+ 1 , −3 < f ≤ −2.

Obviously, E is a nonempty convex subset of R which satisfies (UC1) condition. Also
ρ(f) = |f |k is uniformly continuous and (UUC2) holds. Since the mapping is ρ-quasi
nonexpansive and F (T ) = {−1

3} then Aρ(T ) 6= φ. T is ρ-demicompact since any
sequence {fn} ∈ (−3,−2) is bounded, i.e., |fn| < 3 and any bounded sequence in R
has a convergent subsequence. Now finally, we generate the sequence (2.2) and show
that it converges to its attractive point. Choose f1 = 1.5 and α = β = 1

2 , then we
have the results in Table 2. This shows that {fn} converges to −1

3 ∈ Aρ(T ).

Table 2. Numerical results of Example 3.2

n fn
1 1.5
2 0.093750000000000
3 -0.431640625000000
4 -0.302612304687500
5 -0.342933654785156
6 -0.330333232879639
7 -0.334270864725113
... ...
28 -0.333333333333310
29 -0.333333333333341
30 -0.333333333333331
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