KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 45(1) (2021), PAGES 63–73.

ON PERFECT CO-ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE ARTINIAN RING

S. M. SAADAT MIRGHADIM¹, M. J. NIKMEHR², AND R. NIKANDISH³

ABSTRACT. Let R be a commutative ring with identity. The co-annihilating-ideal graph of R, denoted by A_R , is a graph whose vertex set is the set of all nonzero proper ideals of R and two distinct vertices I and J are adjacent whenever $\operatorname{Ann}(I) \cap \operatorname{Ann}(J) = (0)$. In this paper, we characterize all Artinian rings for which both of the graphs A_R and $\overline{A_R}$ (the complement of A_R), are chordal. Moreover, all Artinian rings whose A_R (and thus $\overline{A_R}$) is perfect are characterized.

1. INTRODUCTION

Assigning a graph to a ring gives us the ability to translate algebraic properties of rings into graph-theoretic language and vice versa. It leads to arising interesting algebraic and combinatorics problems. Therefore, the study of graphs associated with rings has attracted many researches. There are a lot of papers which apply combinatorial methods to obtain algebraic results in ring theory; for instance see [2,3,5,6,10,11] and [12].

Throughout this paper, all rings are assumed to be commutative with identity. We denote by Z(R), Max(R), Nil(R) and J(R) the set of all zero-divisor elements of R, the set of all maximal ideals of R, the set of all nilpotent elements of R and jacobson radical of R, respectively. We call an ideal I of R, an *annihilating-ideal* if there exists $r \in R \setminus \{0\}$ such that Ir = (0). The set of all annihilating-ideals of R is denote by A(R). Let I be an ideal of R. We denote by A(I) the set of all ideals of R contained in I. The ring R is said to be *reduced* if it has no non-zero nilpotent element. For every ideal I of R, we denote the *annihilator* of I by Ann(I). We let $A^* = A \setminus \{0\}$. For any undefined notation or terminology in ring theory, we refer the reader to [4, 7].

Key words and phrases. Co-annihilating-ideal graph, perfect graph, chordal graph.

²⁰¹⁰ Mathematics Subject Classification. Primary: 05C19. Secondary: 05C75, 05C25.

DOI 10.46793/KgJMat2101.063M

Received: January 03, 2018.

Accepted: September 06, 2018.

We use the standard terminology of graphs following [13]. Let G = (V, E) be a graph, where V = V(G) is the set of vertices and E = E(G) is the set of edges. By \overline{G} , we mean the complement graph of G. We write u - v, to denote an edge with ends u, v. A graph $H = (V_0, E_0)$ is called a subgraph of G if $V_0 \subseteq V$ and $E_0 \subseteq E$. Moreover, H is called an *induced subgraph by* V_0 , denoted by $G[V_0]$, if $V_0 \subseteq V$ and $E_0 = \{\{u, v\} \in E \mid u, v \in V_0\}$. Also G is called a *null graph* if it has no edge. A complete graph of n vertices is denoted by K_n . An *n*-part graph is one whose vertex set can be partitioned into n subsets, so that no edge has both ends in any one subset. A complete *n*-partite graph is an n-part graph such that every pair of graph vertices in the n sets are adjacent. In a graph G, a vertex x is *isolated*, if no vertices of G is adjacent to x. Let G_1 and G_2 be two disjoint graphs. The *join* of G_1 and G_2 , denoted by $G_1 \vee G_2$, is a graph with the vertex set $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$. For a graph G, $S \subseteq V(G)$ is called a *clique* if the subgraph induced on S is complete. The number of vertices in the largest clique of graph G is called the *clique number* of G and is often denoted by $\omega(G)$. For a graph G, let $\chi(G)$ denote the chromatic number of G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. Clearly, for every graph $G, \omega(G) \leq \chi(G)$. A graph G is said to be weakly perfect if $\omega(G) = \chi(G)$. A perfect graph G is a graph in which every induced subgraph is weakly perfect. A chord of a cycle C is an edge which is not in C but has both its endvertices in C. A graph G is *chordal* if every cycle of length at least 4 has a chord.

Let R be a commutative ring with identity. The co-annihilating-ideal graph of R, denoted by A_R , is a graph whose vertex set is the set of all non-zero proper ideals of R and two distinct vertices I and J are adjacent whenever $\operatorname{Ann}(I) \cap \operatorname{Ann}(J) = (0)$. This graph was first introduced and studied in [1] and many interesting properties of this graph were explored by the authors. In [1, Theorem 17], it was proved A_R is a weakly perfect graph, if R is an Artinian ring. In this paper, we continue study the perfectness of A_R . Indeed, we characterize all Artinian rings for which both of the graphs A_R and $\overline{A_R}$, are chordal. Moreover, all Artinian rings whose A_R is perfect are given.

2. When A_R and $\overline{A_R}$ are Chordal?

In this section, we characterize all Artinian rings R, for which A_R and $\overline{A_R}$ are chordal. We begin with the following lemmas.

Lemma 2.1. Let R be an Artinian ring. Then there exists a positive integer n such that $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring, for every $1 \le i \le n$.

Proof. See [4, Theorem 8.7].

Lemma 2.2. Let R be an Artinian ring and I be a non-zero ideal of R. Then I is a nilpotent ideal of R if and only if I is an isolated vertex in A_R .

Proof. Assume that I is a non-zero nilpotent ideal of R. First, we show that $\operatorname{Ann}(I)$ is an essential ideal of R. Suppose to the contrary, there exists an ideal J such that $J \cap \operatorname{Ann}(I) = (0)$. Thus $KI \neq (0)$, for every $K \subseteq J$. Obviously, $KI \subseteq J$ and so $(KI)I = KI^2 \neq (0)$. By continuing this procedure, $KI^n \neq 0$, for every positive integer n, a contradiction. Hence $\operatorname{Ann}(I)$ is an essential ideal of R and so $\operatorname{Ann}(I) \cap \operatorname{Ann}(J) \neq (0)$, for every $J \in A(R)^*$. Therefore, I is an isolated vertex in A_R .

Conversely, suppose that I is an isolated vertex in A_R . If I is not a nilpotent ideal of R, then $I \nsubseteq J(R)$, i.e., there exists $\mathfrak{m} \in \operatorname{Max}(R)$ such that $I + \mathfrak{m} = R$, and so I is adjacent to \mathfrak{m} , a contradiction. Thus I is a nilpotent ideal of R.

Next we need to study the structure of A_R , where R is an Artinian ring with at most two maximal ideals.

Theorem 2.1. Let R be an Artinian ring. Then the following statements are equivalent:

- (1) |Max(R)| = 1;
- (2) $A_R = \overline{K_n}$, where $n = |A(R)^*|$.

Proof. (1) \Rightarrow (2) Since R is an Artinian local ring, every ideal of $A(R)^*$ is a nilpotent ideal of R and thus by Lemma 2.2, A_R is a null graph.

 $(2) \Rightarrow (1)$ is obtained by Lemma 2.2.

Theorem 2.2. Let R be an Artinian ring. Then the following statements are equivalent:

(1) |Max(R)| = 2;

(2) $A_R = \overline{K_{n_1}} + K_{n_2,n_3}$, where $n_1 = |A(\operatorname{Nil}(R))^*|$, $n_2 = |A(\mathfrak{m}_1)^*| - n_1$, $n_3 = |A(\mathfrak{m}_2)^*| - n_1$ and $\mathfrak{m}_1, \mathfrak{m}_2 \in \operatorname{Max}(R)$.

Proof. (1) \Rightarrow (2) Let Max(R) = { $\mathfrak{m}_1, \mathfrak{m}_2$ }. Since $\mathfrak{m}_1 \cap \mathfrak{m}_2$ = Nil(R), Lemma 2.2 implies that $A_R[A(\operatorname{Nil}(R))^*]$ is a null graph. Let $A = \{I \in A(\mathfrak{m}_1) \setminus A(\operatorname{Nil}(R))\}$ and $B = \{I \in A(\mathfrak{m}_2) \setminus A(\operatorname{Nil}(R))\}$. If $I \in A$ and $J \in B$, then I + J = R, and thus I is adjacent to J. Moreover, $A_R[A]$ and $A_R[B]$ are null graphs. This means that $A_R[A \cup B] = K_{|A|,|B|}$. Since $A \cup B \cup A(\operatorname{Nil}(R))^* = A(R)^*$, we deduce that $A_R = \overline{K_{n_1}} + K_{n_2,n_3}$, where $n_1 = |A(\operatorname{Nil}(R))^*|$, $n_2 = |A(\mathfrak{m}_1)^*| - n_1$, $n_3 = |A(\mathfrak{m}_2)^*| - n_1$ and $\mathfrak{m}_1, \mathfrak{m}_2 \in \operatorname{Max}(R)$.

 $(2) \Rightarrow (1)$ By Theorem 2.1, $|Max(R)| \ge 2$. If $|Max(R)| \ge 3$, then A_R has a cycle of length 3, as $A_R[Max(R)]$ is a complete graph, a contradiction. Thus |Max(R)| = 2.

We are now in a position to characterize all Artinian rings for which both of the graphs A_R and $\overline{A_R}$ are chordal.

Theorem 2.3. Let R be an Artinian ring. Then

- (1) A_R is chordal if and only if one of the following statements holds:
 (i) R is local;
 - (ii) $R \cong F \times S$, where F is a field and S is local;

(iii) $R \cong F_1 \times F_2 \times F_3$, where F_i is a field for every $1 \le i \le 3$; (2) $\overline{A_R}$ is chordal if and only if $|Max(R)| \le 3$.

Proof. (1) Let A_R be chordal. First we show that $|Max(R)| \leq 3$. If $|Max(R)| \geq 4$, then Figure 1 is a cycle of length 4,

FIGURE 1. A cycle of length 4 in A_R

where

$$I_1 = (0) \times R_2 \times R_3 \times (0) \times R_5 \times \cdots \times R_n,$$

$$I_2 = R_1 \times (0) \times (0) \times R_4 \times R_5 \times \cdots \times R_n,$$

$$I_3 = R_1 \times R_2 \times R_3 \times (0) \times R_5 \times \cdots \times R_n,$$

$$I_4 = R_1 \times (0) \times R_3 \times R_4 \times R_5 \times \cdots \times R_n.$$

Thus $|Max(R)| \leq 3$. If |Max(R)| = 3, then $R \cong R_1 \times R_2 \times R_3$, where R_i is an Artinian local ring, for every $1 \leq i \leq n$. If R_1 is not field, then consider $I \in A(Nil(R_1))^*$ and thus Figure 2 is a cycle of length 4,

FIGURE 2. A cycle of length 4 in A_R

where

$$I_1 = R_1 \times (0) \times (0),$$

$$I_2 = (0) \times R_2 \times R_3,$$

$$I_3 = R_1 \times R_2 \times (0),$$

$$I_4 = I \times R_2 \times R_3.$$

Hence R_1 is a field. Similarly, R_2 and R_3 are fields. Let |Max(R)| = 2. Then $R \cong R_1 \times R_2$, where R_i is an Artinian local ring, for every $1 \le i \le 2$. We show that

one of the rings R_1 and R_2 is a field. If I, J are non-zero proper ideals of R_1 and R_2 , respectively, then Figure 3 is a cycle of length 4, where

FIGURE 3. A cycle of length 4 in A_R

This means that one of the rings R_1 and R_2 is a field. Thus in this case $R \cong F \times S$, where F is a field and S is local. Clearly, if |Max(R)| = 1, R is local.

Conversely, suppose that one of the conditions (i), (ii), (ii) is satisfied. Condition (i) implies that A_R is a null graph by Theorem 2.1, and thus A_R is chordal. If (*ii*) holds, then by Theorem 2.2, $A_R = \overline{K_n} + K_{1,n+1}$ where $n = |A(\text{Nil}(R))^*|$. This implies that A_R is chordal. If (iii) holds, then Figure 4 shows that A_R is chordal where

FIGURE 4. $A_{F_1 \times F_2 \times F_3}$

```
I_{1} = (0) \times (0) \times F_{3},

I_{2} = F_{1} \times F_{2} \times (0),

I_{3} = F_{1} \times (0) \times F_{3},

I_{4} = (0) \times F_{2} \times (0),

I_{5} = (0) \times F_{2} \times F_{3},
```

$$I_6 = F_1 \times (0) \times (0).$$

(2) First suppose that $\overline{A_R}$ is chordal. If $|Max(R)| \ge 4$, then we put

$$I_1 = (0) \times R_2 \times R_3 \times (0) \times R_5 \times \cdots \times R_n,$$

$$I_2 = (0) \times R_2 \times (0) \times R_4 \times R_5 \times \cdots \times R_n,$$

$$I_3 = R_1 \times (0) \times (0) \times R_4 \times R_5 \times \cdots \times R_n,$$

$$I_4 = R_1 \times (0) \times R_3 \times (0) \times R_5 \times \cdots \times R_n.$$

Now, it is not hard to see that $I_1 - I_2 - I_3 - I_4 - I_1$ is a cycle of length 4, a contradiction. Thus $|Max(R)| \leq 3$.

Conversely, suppose that $|Max(R)| \leq 3$. We show that $\overline{A_R}$ is chordal. To see this, we consider the following cases.

Case 1. |Max(R)| = 1. In this case, R is local and thus by Theorem 2.1, $\overline{A_R}$ is a complete graph. Hence $\overline{A_R}$ is chordal.

Case 2. |Max(R)| = 2. By Theorem 2.2, $\overline{A_R} = K_{n_1} \vee (K_{n_2} + K_{n_3})$, where $n_1 = |A(Nil(R))^*|$, $n_2 = |A(\mathfrak{m}_1)^*| - n_1$, $n_3 = |A(\mathfrak{m}_2)^*| - n_1$ and $\mathfrak{m}_1, \mathfrak{m}_2 \in Max(R)$. Thus every cycle is a triangle, i.e, $\overline{A_R}$ is chordal.

Case 3. |Max(R)| = 3. In this case, $R \cong R_1 \times R_2 \times R_3$. Let I_i be an ideal of R_i , for every $1 \le i \le 3$. Suppose that

$$A_{1} = \{I_{1} \times I_{2} \times I_{3} \mid I_{i} \subseteq \operatorname{Nil}(R_{i}), \text{ for } i = 1, 2, 3\} \setminus \{(0) \times (0) \times (0)\}, \\ A_{2} = \{R_{1} \times I_{2} \times I_{3} \mid I_{i} \subseteq \operatorname{Nil}(R_{i}), \text{ for } i = 2, 3\}, \\ A_{3} = \{I_{1} \times R_{2} \times I_{3} \mid I_{i} \subseteq \operatorname{Nil}(R_{i}), \text{ for } i = 1, 3\}, \\ A_{4} = \{I_{1} \times I_{2} \times R_{3} \mid I_{i} \subseteq \operatorname{Nil}(R_{i}), \text{ for } i = 1, 2\}, \\ B_{1} = \{R_{1} \times R_{2} \times I_{3} \mid I_{3} \subseteq \operatorname{Nil}(R_{3})\}, \\ B_{2} = \{R_{1} \times I_{2} \times R_{3} \mid I_{2} \subseteq \operatorname{Nil}(R_{2})\}, \\ B_{3} = \{I_{1} \times R_{2} \times R_{3} \mid I_{1} \subseteq \operatorname{Nil}(R_{1})\}.$$

Let $A = \bigcup_{i=1}^{4} A_i$ and $B = \bigcup_{i=1}^{3} B_i$. One may check that $A \cap B = \emptyset$ and $V(\overline{A_R}) = A \cup B$ and so $\{A, B\}$ is a partition of $V(\overline{A_R})$. We claim that $\overline{A_R}$ contains no induced cycle of length at least 4. Assume to the contrary, $a_1 - a_2 - \cdots - a_n - a_1$ is an induced cycle of length at least 4 in $\overline{A_R}$. We show that

$$\{a_1, a_2, \ldots, a_n\} \cap B_1 = \emptyset.$$

Suppose to the contrary (and with no loss of generality), $a_1 \in B_1$. Thus $a_1 = R_1 \times R_2 \times I_3$, where $I_3 \subseteq \text{Nil}(R_3)$. Since a_2 and a_n are adjacent to a_1 , we conclude that the third components of a_2 and a_n must be nilpotent ideals of R_3 . This implies that a_2 and a_n are adjacent, a contradiction. Hence,

$$\{a_1, a_2, \ldots, a_n\} \cap B_1 = \emptyset.$$

Similarly,

$$\{a_1, a_2, \ldots, a_n\} \cap B_2 = \{a_1, a_2, \ldots, a_n\} \cap B_3 = \emptyset.$$

68

This means that

$$\{a_1, a_2, \ldots, a_n\} \subseteq A.$$

But this contradicts the fact that $\overline{A_R}[A]$ is a complete graph, and so $\overline{A_R}$ contains no induced cycle of length at least 4. Thus $\overline{A_R}$ is chordal.

3. When A_R is Perfect?

In this section, we characterize all Artinian rings rings R whose A_R is Perfect. First, we need two celebrate results.

Theorem 3.1 (The Strong Perfect Graph Theorem [8]). A graph G is perfect if and only if neither G nor \overline{G} contains an induced odd cycle of length at least 5.

In light of Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph. Then the following statements hold.

- (1) G is a perfect graph if and only if \overline{G} is a perfect graph.
- (2) If G is a complete bipartite graph, then G is a perfect graph.

Theorem 3.2. [9] Every chordal graph is perfect.

Lemma 3.1. Let n be a positive integer and $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian ring for every $1 \leq i \leq n$. Let $I = I_1 \times \cdots \times I_n$, $J = J_1 \times \cdots \times J_n$ be two distinct ideals of R and $n \geq 2$. Then I - J is an edge of A_R if and only if for every $1 \leq i \leq n$, $I_i \notin A(\operatorname{Nil}(R_i))$ or $J_i \notin A(\operatorname{Nil}(R_i))$.

Proof. Let I - J be an edge of A_R . If there exists $1 \leq i \leq n$ such that $I_i, J_i \in A(\operatorname{Nil}(R_i))$, then by Lemma 2.2, $\operatorname{Ann}(I_i) \cap \operatorname{Ann}(J_i) \neq (0)$. So if $0 \neq a_i \in \operatorname{Ann}(I_i) \cap \operatorname{Ann}(J_i)$, then $(0) \times \cdots \times (0) \times R_i a_i \times (0) \times \cdots \times (0) \subseteq \operatorname{Ann}(I) \cap \operatorname{Ann}(J)$ and thus I - J is not an edge of A_R , a contradiction.

Conversely, suppose that $I_i \notin A(\operatorname{Nil}(R_i))$ or $J_i \notin A(\operatorname{Nil}(R_i))$, for every $1 \leq i \leq n$. Thus $I_i = R_i$ or $J_i = R_i$, for every $1 \leq i \leq n$. This implies that $\operatorname{Ann}(I) \cap \operatorname{Ann}(J) = (0)$. Hence I - J is an edge of A_R .

We are now in a position to state our main result in this paper.

Theorem 3.3. Let R be an Artinian rings. Then $\overline{A_R}$ is a perfect graph if and only if $|Max(R)| \leq 4$.

Proof. First suppose $\overline{A_R}$ is perfect. Since R is an Artinian ring, there exists a positive integer n = |Max(R)| such that $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring, for every $1 \le i \le n$, by Lemma 2.1. If $n \ge 5$, then we put

$$I_1 = (0) \times R_2 \times R_3 \times (0) \times R_5 \times R_6 \times \cdots \times R_n,$$

$$I_2 = (0) \times R_2 \times (0) \times R_4 \times R_5 \times R_6 \times \cdots \times R_n,$$

$$I_3 = R_1 \times (0) \times (0) \times R_4 \times R_5 \times R_6 \times \cdots \times R_n,$$

$$I_4 = R_1 \times (0) \times R_3 \times R_4 \times (0) \times R_6 \times \cdots \times R_n,$$

$$I_5 = R_1 \times R_2 \times R_3 \times (0) \times (0) \times R_6 \times \cdots \times R_n.$$

Then it is easily seen that

$$I_1 - I_2 - I_3 - I_4 - I_5 - I_1$$

is a cycle of length 5 in $\overline{A_R}$, a contradiction (by Theorem 3.1). So $n \leq 4$.

Conversely, suppose that $|\operatorname{Max}(R)| \leq 4$. We show that $\overline{A_R}$ is a perfect graph. If $|\operatorname{Max}(R)| \leq 3$, then by part (2) of Theorem 2.3, $\overline{A_R}$ is chordal and thus by Theorem 3.2, $\overline{A_R}$ is a perfect graph. Therefore, we need only to check the case $|\operatorname{Max}(R)| = 4$. Let $R \cong R_1 \times R_2 \times R_3 \times R_4$. We have the following claims.

Claim 1. $\overline{A_R}$ contains no induced odd cycle of length at least 5. We consider the following partition for $V(\overline{A_R})$:

$$A = \{I_1 \times I_2 \times I_3 \times I_4 \mid I_i \in A(R_i) \text{ for every } 1 \le i \le 4 \text{ and } I_4 \in A(\operatorname{Nil}(R_4))\},\$$

$$B = \{I_1 \times I_2 \times I_3 \times R_4 \mid I_i \in A(R_i) \text{ for every } 1 \le i \le 3 \text{ and } I_3 \in A(\operatorname{Nil}(R_3))\},\$$

$$C = \{I_1 \times I_2 \times R_3 \times R_4 \mid I_i \in A(R_i) \text{ for every } 1 \le i \le 2 \text{ and } I_2 \in A(\operatorname{Nil}(R_2))\},\$$

$$D = \{R_1 \times I_2 \times R_3 \times R_4, I_1 \times R_2 \times R_3 \times R_4 \mid \text{ for every } 1 \le i \le 2 I_i \in A(\operatorname{Nil}(R_i))\}$$

Now, assume to the contrary, $a_1 - a_2 - \cdots - a_n - a_1$ is an induced odd cycle of length at least 5 in $\overline{A_R}$. We consider the following cases.

Case 1. $\{a_1, a_2, \ldots, a_n\} \cap D = \emptyset$. Let $a_i \in \{a_1, a_2, \ldots, a_n\} \cap D$, for some $1 \le i \le n$. Then we can let $a_i = I_1 \times R_2 \times R_3 \times R_4$ or $a_i = R_1 \times I_2 \times R_3 \times R_4$. If $a_i = I_1 \times R_2 \times R_3 \times R_4$, then the first components of a_{i-1} and a_{i+1} must be in $A(\operatorname{Nil}(R_i))$ and $A(\operatorname{Nil}(R_i))$, respectively. So by Lemma 3.1, a_{i-1} is adjacent to a_{i+1} , a contradiction. Thus, $a_i \ne I_1 \times R_2 \times R_3 \times R_4$. Similarly, $a_i \ne R_1 \times I_2 \times R_3 \times R_4$. This means that $\{a_1, a_2, \ldots, a_n\} \cap D = \emptyset$.

Case 2. $\{a_1, a_2, \ldots, a_n\} \cap C = \emptyset$. First we show that $|\{a_1, a_2, \ldots, a_n\} \cap C| \leq 1$. Let $a, b \in \{a_1, a_2, \ldots, a_n\} \cap C$. Then we can easily check that if there exits $x \in V(\overline{A_R})$ such that $\operatorname{Ann}(x) \cap \operatorname{Ann}(a) \neq (0)$, then $\operatorname{Ann}(x) \cap \operatorname{Ann}(b) \neq (0)$. This means that if x is adjacent to a, then x is adjacent to b, a contradiction. So $|\{a_1, a_2, \ldots, a_n\} \cap C| \leq 1$. This together with the fact that $\overline{A_R}[A]$ and $\overline{A_R}[B]$ are complete subgraphs, imply that n = 5 and $|\{a_1, a_2, \ldots, a_n\} \cap B| = |\{a_1, a_2, \ldots, a_n\} \cap A| = 2$. Hence $|\{a_1, a_2, \ldots, a_n\} \cap C| = 1$, and thus we can let $a \in \{a_1, a_2, \ldots, a_n\} \cap C$. Since a is adjacent to all vertices of $B \setminus \{R_1 \times R_2 \times I_3 \times R_4 \mid I_3 \subseteq \operatorname{Nil}(R_3)\}$ and $\overline{A_R}[B]$ is a complete subgraph, $a_i \in \{a_1, a_2, \ldots, a_n\} \cap \{R_1 \times R_2 \times I_3 \times R_4 \mid I_3 \subseteq \operatorname{Nil}(R_3)\}$, for some $1 \leq i \leq n$. We can let $a_i = R_1 \times R_2 \times I_3 \times R_4$. Since only one of the components of a_i is a nilpotent ideal of R_i , by a similar argument to that of case 1, we get a contradiction. Hence, $\{a_1, a_2, \ldots, a_n\} \cap C = \emptyset$.

By the above cases, $\{a_1, a_2, \ldots, a_n\} \subseteq A \cup B$, but this contradicts the fact $\overline{A_R}[A]$ and $\overline{A_R}[B]$ are complete graphs, and thus $\overline{A_R}$ contains no induced odd cycle of length at least 5.

Claim 2. A_R contains no induced odd cycle of length at least 5. We consider the following partition for $V(A_R)$:

$$\begin{split} A_1 &= \{I_1 \times R_2 \times R_3 \times R_4 \mid I_1 \in A(\operatorname{Nil}(R_1))\}, \\ A_2 &= \{R_1 \times I_2 \times R_3 \times R_4 \mid I_2 \in A(\operatorname{Nil}(R_2))\}, \\ A_3 &= \{R_1 \times R_2 \times I_3 \times R_4 \mid I_3 \in A(\operatorname{Nil}(R_3))\}, \\ A_4 &= \{R_1 \times R_2 \times R_3 \times I_4 \mid I_4 \in A(\operatorname{Nil}(R_4))\}, \\ B_1 &= \{I_1 \times I_2 \times R_3 \times R_4 \mid I_1 \in A(\operatorname{Nil}(R_1)), I_2 \in A(\operatorname{Nil}(R_2))\}, \\ B_2 &= \{R_1 \times R_2 \times I_3 \times I_4 \mid I_3 \in A(\operatorname{Nil}(R_3)), I_4 \in A(\operatorname{Nil}(R_4))\}, \\ B_3 &= \{I_1 \times R_2 \times I_3 \times R_4 \mid I_1 \in A(\operatorname{Nil}(R_1)), I_3 \in A(\operatorname{Nil}(R_3))\}, \\ B_4 &= \{R_1 \times I_2 \times R_3 \times I_4 \mid I_2 \in A(\operatorname{Nil}(R_2)), I_4 \in A(\operatorname{Nil}(R_4))\}, \\ B_5 &= \{I_1 \times R_2 \times R_3 \times I_4 \mid I_2 \in A(\operatorname{Nil}(R_2)), I_4 \in A(\operatorname{Nil}(R_4))\}, \\ B_6 &= \{R_1 \times I_2 \times I_3 \times R_4 \mid I_2 \in A(\operatorname{Nil}(R_2)), I_3 \in A(\operatorname{Nil}(R_3)), I_4 \in A(\operatorname{Nil}(R_4))\}, \\ C_1 &= \{R_1 \times I_2 \times I_3 \times I_4 \mid I_2 \in A(\operatorname{Nil}(R_2)), I_3 \in A(\operatorname{Nil}(R_3)), I_4 \in A(\operatorname{Nil}(R_4))\}, \\ C_2 &= \{I_1 \times R_2 \times I_3 \times I_4 \mid I_1 \in A(\operatorname{Nil}(R_1)), I_3 \in A(\operatorname{Nil}(R_3)), I_4 \in A(\operatorname{Nil}(R_4))\}, \\ C_3 &= \{I_1 \times I_2 \times I_3 \times I_4 \mid I_1 \in A(\operatorname{Nil}(R_1)), I_2 \in A(\operatorname{Nil}(R_2)), I_3 \in A(\operatorname{Nil}(R_3)), \\ C_4 &= \{I_1 \times I_2 \times I_3 \times I_4 \mid I_1 \in A(\operatorname{Nil}(R_1)), I_2 \in A(\operatorname{Nil}(R_2)), I_3 \in A(\operatorname{Nil}(R_3)), \\ D &= \{I_1 \times I_2 \times I_3 \times I_4 \mid I_1 \in A(\operatorname{Nil}(R_1)), I_2 \in A(\operatorname{Nil}(R_2)), I_3 \in A(\operatorname{Nil}(R_3)), \\ I_4 \in A(\operatorname{Nil}(R_4))\}. \end{split}$$

If we put $A = \bigcup_{i=1}^{4} A_i$, $B = \bigcup_{i=1}^{6} B_i$ and $C = \bigcup_{i=1}^{4} C_i$, then one may check that $\{A, B, C, D\}$ is a partition of $V(A_R)$. We show that A_R contains no induced odd cycle of length at least 5. Assume to the contrary, $a_1 - a_2 - \cdots - a_n - a_1$ is a induced odd cycle of length at least 5 in A_R . By Lemma 2.2, every vertex in D is an isolated vertex in A_R and thus $\{a_1, a_2, \ldots, a_n\} \cap D = \emptyset$. Next, we show that

$$\{a_1, a_2, \ldots, a_n\} \cap C_1 = \emptyset.$$

To see this, if $a_i \in \{a_1, a_2, \ldots, a_n\} \cap C_1$, for some $1 \leq i \leq n$, then with no loss of generality, assume that $a_1 \in C_1$. Since every vertex of C_1 is adjacent only to vertices of $A_1, a_2, a_n \in A_1$. This is impossible, as every vertex of A_R is adjacent to a_2 if and only if it is adjacent to a_n . Therefore

$$\{a_1, a_2, \ldots, a_n\} \cap C_1 = \emptyset$$

Similarly,

$$\{a_1, a_2, \dots, a_n\} \cap C_2 = \{a_1, a_2, \dots, a_n\} \cap C_3 = \{a_1, a_2, \dots, a_n\} \cap C_4 = \emptyset.$$

Thus

$$\{a_1, a_2, \dots, a_n\} \cap C = \emptyset$$

Finally, we show that

$$\{a_1, a_2, \ldots, a_n\} \cap B_1 = \emptyset$$

Assume to the contrary and with no loss of generality, $a_1 \in B_1$. As a_1 is adjacent only to vertices of $B_2 \cup A_3 \cup A_4$, $\{a_2, a_n\} \subseteq B_2 \cup A_3 \cup A_4$. If $a_2 \in B_2$, then a_3 is adjacent to a_n (since if a is adjacent to a_2 and b is adjacent to a_1 , a is adjacent to b), a contradiction. Thus $a_2 \notin B_2$. Similarly, $a_n \notin B_2$ and so $\{a_2, a_n\} \subseteq A_3 \cup A_4$. Since $A_R[A_3 \cup A_4]$ is a complete bipartite graph, we conclude that $\{a_2, a_n\} \subseteq A_3$ or $\{a_2, a_n\} \subseteq A_4$. With no loss of generality, we may assume that $\{a_2, a_n\} \subseteq A_3$. This implies that a_3 is adjacent to a_2 and a_n (since a vertex is adjacent to a_2 if and only if it is adjacent to a_n), a contradiction. Hence,

$$\{a_1, a_2, \ldots, a_n\} \cap B_1 = \emptyset.$$

Similarly, for every $2 \le i \le 6$

$$\{a_1, a_2, \ldots, a_n\} \cap B_i = \emptyset$$

This means that

$$\{a_1, a_2, \dots, a_n\} \subseteq A.$$

But $A_R[A]$ is a complete 4-partite graph with parts A_i for $1 \le i \le 4$, a contradiction. Therefore, A_R contains no induced odd cycle of length at least 5 and thus by Claim 1, Claim 2 and Theorem 3.1, we have A_R is a perfect graph. \Box

Acknowledgements. The authors thank to the referees for their careful reading and their excellent suggestions.

References

- S. Akbari, A. Alilou, J. Amjadi and S. M. Sheikholeslami, The co-annihilating-ideal graphs of commutative rings, Canad. Math. Bull. 60 (2017), 3–11.
- [2] D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (2012), Article ID 1250074, 18 pages.
- [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434–447.
- [4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, Reading, Massachusetts, 1969.
- [5] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), 108–121.
- [6] A. Badawi, On the dot product graph of a commutative ring, Comm. Algebra 43 (2015), 43–50.
- [7] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1997.
- [8] R. Diestel, *Graph Theory*, Springer-Verlag, New York, USA, 2000.
- [9] G. A. Dirac, On rigid circuit graphs, Abh. Math. Semin. Univ. Hambg. 38 (1961), 71–76.
- [10] A. Mallika and R. Kala, A note on zero-divisor graph of amalgamated duplication of a ring along an ideal, AKCE Int. J. Graphs Comb. 14 (2017), 18–26.
- [11] R. Nikandish, M. J. Nikmehr and M. Bakhtyiari, Coloring of the the annihilator graph of a commutative ring, J. Algebra Appl. 15 (2016), Article ID 1650124, 13 pages.
- [12] T. T. Chelvam and K. Selvakumar, On the connectivity of the annihilating-ideal graphs, Discuss. Math. Gen. Algebra Appl. 35 (2015), 195–204.
- [13] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.

¹DEPARTMENT OF MATHEMATICS, KARAJ BRANCH, ISLAMIC AZAD UNIVERSITY, KARAJ, IRAN. *Email address*: m.saadat82m@yahoo.com

²FACULTY OF MATHEMATICS,
K. N. TOOSI UNIVERSITY OF TECHNOLOGY,
TEHRAN, IRAN.
Email address: nikmehr@kntu.ac.ir

³DEPARTMENT OF BASIC SCIENCES, JUNDI-SHAPUR UNIVERSITY OF TECHNOLOGY, DEZFUL, IRAN. *Email address*: r.nikandish@jsu.ac.ir