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ON PERFECT CO-ANNIHILATING-IDEAL GRAPH OF A
COMMUTATIVE ARTINIAN RING

S. M. SAADAT MIRGHADIM1, M. J. NIKMEHR2, AND R. NIKANDISH3

Abstract. Let R be a commutative ring with identity. The co-annihilating-ideal
graph of R, denoted by AR, is a graph whose vertex set is the set of all non-
zero proper ideals of R and two distinct vertices I and J are adjacent whenever
Ann(I) ∩Ann(J) = (0). In this paper, we characterize all Artinian rings for which
both of the graphs AR and AR (the complement of AR), are chordal. Moreover, all
Artinian rings whose AR (and thus AR) is perfect are characterized.

1. Introduction

Assigning a graph to a ring gives us the ability to translate algebraic properties
of rings into graph-theoretic language and vice versa. It leads to arising interesting
algebraic and combinatorics problems. Therefore, the study of graphs associated
with rings has attracted many researches. There are a lot of papers which apply
combinatorial methods to obtain algebraic results in ring theory; for instance see
[2, 3, 5, 6, 10,11] and [12].

Throughout this paper, all rings are assumed to be commutative with identity. We
denote by Z(R), Max(R), Nil(R) and J(R) the set of all zero-divisor elements of R,
the set of all maximal ideals of R, the set of all nilpotent elements of R and jacobson
radical of R, respectively. We call an ideal I of R, an annihilating-ideal if there exists
r ∈ R \ {0} such that Ir = (0). The set of all annihilating-ideals of R is denote by
A(R). Let I be an ideal of R. We denote by A(I) the set of all ideals of R contained
in I. The ring R is said to be reduced if it has no non-zero nilpotent element. For
every ideal I of R, we denote the annihilator of I by Ann(I). We let A∗ = A \ {0}.
For any undefined notation or terminology in ring theory, we refer the reader to [4,7].
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We use the standard terminology of graphs following [13]. Let G = (V,E) be a
graph, where V = V (G) is the set of vertices and E = E(G) is the set of edges. By
G, we mean the complement graph of G. We write u − v, to denote an edge with
ends u, v. A graph H = (V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E.
Moreover, H is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and
E0 = {{u, v} ∈ E | u, v ∈ V0}. Also G is called a null graph if it has no edge. A
complete graph of n vertices is denoted by Kn. An n-part graph is one whose vertex
set can be partitioned into n subsets, so that no edge has both ends in any one subset.
A complete n-partite graph is an n-part graph such that every pair of graph vertices
in the n sets are adjacent. In a graph G, a vertex x is isolated, if no vertices of G is
adjacent to x. Let G1 and G2 be two disjoint graphs. The join of G1 and G2, denoted
by G1 ∨ G2, is a graph with the vertex set V (G1 ∨ G2) = V (G1) ∪ V (G2) and edge
set E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}. For a graph G,
S ⊆ V (G) is called a clique if the subgraph induced on S is complete. The number
of vertices in the largest clique of graph G is called the clique number of G and is
often denoted by ω(G). For a graph G, let χ(G) denote the chromatic number of G,
i.e., the minimal number of colors which can be assigned to the vertices of G in such
a way that every two adjacent vertices have different colors. Clearly, for every graph
G, ω(G) ≤ χ(G). A graph G is said to be weakly perfect if ω(G) = χ(G). A perfect
graph G is a graph in which every induced subgraph is weakly perfect. A chord of a
cycle C is an edge which is not in C but has both its endvertices in C. A graph G is
chordal if every cycle of length at least 4 has a chord.

Let R be a commutative ring with identity. The co-annihilating-ideal graph of R,
denoted by AR, is a graph whose vertex set is the set of all non-zero proper ideals of
R and two distinct vertices I and J are adjacent whenever Ann(I) ∩ Ann(J) = (0).
This graph was first introduced and studied in [1] and many interesting properties of
this graph were explored by the authors. In [1, Theorem 17], it was proved AR is a
weakly perfect graph, if R is an Artinian ring. In this paper, we continue study the
perfectness of AR. Indeed, we characterize all Artinian rings for which both of the
graphs AR and AR, are chordal. Moreover, all Artinian rings whose AR is perfect are
given.

2. When AR and AR are Chordal?

In this section, we characterize all Artinian rings R, for which AR and AR are
chordal. We begin with the following lemmas.
Lemma 2.1. Let R be an Artinian ring. Then there exists a positive integer n such
that R ∼= R1 × · · · ×Rn, where Ri is an Artinian local ring, for every 1 ≤ i ≤ n.

Proof. See [4, Theorem 8.7]. �

Lemma 2.2. Let R be an Artinian ring and I be a non-zero ideal of R. Then I is a
nilpotent ideal of R if and only if I is an isolated vertex in AR.
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Proof. Assume that I is a non-zero nilpotent ideal of R. First, we show that Ann(I)
is an essential ideal of R. Suppose to the contrary, there exists an ideal J such
that J ∩ Ann(I) = (0). Thus KI 6= (0), for every K ⊆ J . Obviously, KI ⊆ J
and so (KI)I = KI2 6= (0). By continuing this procedure, KIn 6= 0, for every
positive integer n, a contradiction. Hence Ann(I) is an essential ideal of R and so
Ann(I)∩Ann(J) 6= (0), for every J ∈ A(R)∗. Therefore, I is an isolated vertex in AR.

Conversely, suppose that I is an isolated vertex in AR. If I is not a nilpotent ideal
of R, then I * J(R), i.e, there exists m ∈ Max(R) such that I + m = R, and so I is
adjacent to m, a contradiction. Thus I is a nilpotent ideal of R. �

Next we need to study the structure of AR, where R is an Artinian ring with at
most two maximal ideals.
Theorem 2.1. Let R be an Artinian ring. Then the following statements are equiva-
lent:

(1) |Max(R)| = 1;
(2) AR = Kn, where n = |A(R)∗|.

Proof. (1)⇒ (2) Since R is an Artinian local ring, every ideal of A(R)∗ is a nilpotent
ideal of R and thus by Lemma 2.2, AR is a null graph.

(2)⇒ (1) is obtained by Lemma 2.2. �

Theorem 2.2. Let R be an Artinian ring. Then the following statements are equiva-
lent:

(1) |Max(R)| = 2;
(2) AR = Kn1 + Kn2,n3, where n1 = |A(Nil(R))∗|, n2 = |A(m1)∗| − n1, n3 =
|A(m2)∗| − n1 and m1,m2 ∈ Max(R).
Proof. (1) ⇒ (2) Let Max(R) = {m1,m2}. Since m1 ∩ m2 = Nil(R), Lemma 2.2
implies that AR[A(Nil(R))∗] is a null graph. Let A = {I ∈ A(m1) \ A(Nil(R))}
and B = {I ∈ A(m2) \ A(Nil(R))}. If I ∈ A and J ∈ B, then I + J = R, and
thus I is adjacent to J . Moreover, AR[A] and AR[B] are null graphs. This means
that AR[A ∪ B] = K|A|,|B|. Since A ∪ B ∪ A(Nil(R))∗ = A(R)∗, we deduce that
AR = Kn1 +Kn2,n3 , where n1 = |A(Nil(R))∗|, n2 = |A(m1)∗| − n1, n3 = |A(m2)∗| − n1
and m1,m2 ∈ Max(R).

(2) ⇒ (1) By Theorem 2.1, |Max(R)| ≥ 2. If |Max(R)| ≥ 3, then AR has a cycle
of length 3, as AR[Max(R)] is a complete graph, a contradiction. Thus |Max(R)| = 2.

�

We are now in a position to characterize all Artinian rings for which both of the
graphs AR and AR are chordal.
Theorem 2.3. Let R be an Artinian ring. Then

(1) AR is chordal if and only if one of the following statements holds:
(i) R is local;
(ii) R ∼= F × S, where F is a field and S is local;
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(iii) R ∼= F1 × F2 × F3, where Fi is a field for every 1 ≤ i ≤ 3;
(2) AR is chordal if and only if |Max(R)| ≤ 3.

Proof. (1) Let AR be chordal. First we show that |Max(R)| ≤ 3. If |Max(R)| ≥ 4,
then Figure 1 is a cycle of length 4,

vI1 vI2

vI4 vI3

Figure 1. A cycle of length 4 in AR

where

I1 = (0)×R2 ×R3 × (0)×R5 × · · · ×Rn,

I2 = R1 × (0)× (0)×R4 ×R5 × · · · ×Rn,

I3 = R1 ×R2 ×R3 × (0)×R5 × · · · ×Rn,

I4 = R1 × (0)×R3 ×R4 ×R5 × · · · ×Rn.

Thus |Max(R)| ≤ 3. If |Max(R)| = 3, then R ∼= R1×R2×R3, where Ri is an Artinian
local ring, for every 1 ≤ i ≤ n. If R1 is not field, then consider I ∈ A(Nil(R1))∗ and
thus Figure 2 is a cycle of length 4,

vI1 vI2

vI4 vI3

Figure 2. A cycle of length 4 in AR

where

I1 = R1 × (0)× (0),
I2 = (0)×R2 ×R3,

I3 = R1 ×R2 × (0),
I4 = I ×R2 ×R3.

Hence R1 is a field. Similarly, R2 and R3 are fields. Let |Max(R)| = 2. Then
R ∼= R1 ×R2, where Ri is an Artinian local ring, for every 1 ≤ i ≤ 2. We show that
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one of the rings R1 and R2 is a field. If I, J are non-zero proper ideals of R1 and R2,
respectively, then Figure 3 is a cycle of length 4, where

I1 = I ×R2,

I2 = R1 × J,
I3 = (0)×R2,

I4 = R1 × (0).

vI1 vI2

vI4 vI3

Figure 3. A cycle of length 4 in AR

This means that one of the rings R1 and R2 is a field. Thus in this case R ∼= F ×S,
where F is a field and S is local. Clearly, if |Max(R)| = 1, R is local.

Conversely, suppose that one of the conditions (i), (ii), (ii) is satisfied. Condition
(i) implies that AR is a null graph by Theorem 2.1, and thus AR is chordal. If (ii)
holds, then by Theorem 2.2, AR = Kn +K1,n+1 where n = |A(Nil(R))∗|. This implies
that AR is chordal. If (iii) holds, then Figure 4 shows that AR is chordal where

vI1

vI2
J
J
J
J
J
J
J














vI5

vI6 �
��

vI3

@
@@ vI4

Figure 4. AF1×F2×F3

I1 = (0)× (0)× F3,

I2 = F1 × F2 × (0),
I3 = F1 × (0)× F3,

I4 = (0)× F2 × (0),
I5 = (0)× F2 × F3,
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I6 = F1 × (0)× (0).

(2) First suppose that AR is chordal. If |Max(R)| ≥ 4, then we put
I1 = (0)×R2 ×R3 × (0)×R5 × · · · ×Rn,

I2 = (0)×R2 × (0)×R4 ×R5 × · · · ×Rn,

I3 = R1 × (0)× (0)×R4 ×R5 × · · · ×Rn,

I4 = R1 × (0)×R3 × (0)×R5 × · · · ×Rn.

Now, it is not hard to see that I1−I2−I3−I4−I1 is a cycle of length 4, a contradiction.
Thus |Max(R)| ≤ 3.

Conversely, suppose that |Max(R)| ≤ 3. We show that AR is chordal. To see this,
we consider the following cases.

Case 1. |Max(R)| = 1. In this case, R is local and thus by Theorem 2.1, AR is a
complete graph. Hence AR is chordal.

Case 2. |Max(R)| = 2. By Theorem 2.2, AR = Kn1

∨(Kn2 + Kn3), where n1 =
|A(Nil(R))∗|, n2 = |A(m1)∗| − n1, n3 = |A(m2)∗| − n1 and m1,m2 ∈ Max(R). Thus
every cycle is a triangle, i.e, AR is chordal.

Case 3. |Max(R)| = 3. In this case, R ∼= R1 × R2 × R3. Let Ii be an ideal of Ri,
for every 1 ≤ i ≤ 3. Suppose that

A1 = {I1 × I2 × I3 | Ii ⊆ Nil(Ri), for i = 1, 2, 3} \ {(0)× (0)× (0)},
A2 = {R1 × I2 × I3 | Ii ⊆ Nil(Ri), for i = 2, 3},
A3 = {I1 ×R2 × I3 | Ii ⊆ Nil(Ri), for i = 1, 3},
A4 = {I1 × I2 ×R3 | Ii ⊆ Nil(Ri), for i = 1, 2},
B1 = {R1 ×R2 × I3 | I3 ⊆ Nil(R3)},
B2 = {R1 × I2 ×R3 | I2 ⊆ Nil(R2)},
B3 = {I1 ×R2 ×R3 | I1 ⊆ Nil(R1)}.

Let A = ∪4
i=1Ai and B = ∪3

i=1Bi. One may check that A∩B = ∅ and V (AR) = A∪B
and so {A,B} is a partition of V (AR). We claim that AR contains no induced cycle
of length at least 4. Assume to the contrary, a1 − a2 − · · · − an − a1 is an induced
cycle of length at least 4 in AR. We show that

{a1, a2, . . . , an} ∩B1 = ∅.
Suppose to the contrary (and with no loss of generality), a1 ∈ B1. Thus a1 =
R1 × R2 × I3, where I3 ⊆ Nil(R3). Since a2 and an are adjacent to a1, we conclude
that the third components of a2 and an must be nilpotent ideals of R3. This implies
that a2 and an are adjacent, a contradiction. Hence,

{a1, a2, . . . , an} ∩B1 = ∅.
Similarly,

{a1, a2, . . . , an} ∩B2 = {a1, a2, . . . , an} ∩B3 = ∅.
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This means that
{a1, a2, . . . , an} ⊆ A.

But this contradicts the fact that AR[A] is a complete graph, and so AR contains no
induced cycle of length at least 4. Thus AR is chordal. �

3. When AR is Perfect?

In this section, we characterize all Artinian rings rings R whose AR is Perfect. First,
we need two celebrate results.
Theorem 3.1 (The Strong Perfect Graph Theorem [8]). A graph G is perfect if and
only if neither G nor G contains an induced odd cycle of length at least 5.

In light of Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph. Then the following statements hold.
(1) G is a perfect graph if and only if G is a perfect graph.
(2) If G is a complete bipartite graph, then G is a perfect graph.

Theorem 3.2. [9] Every chordal graph is perfect.

Lemma 3.1. Let n be a positive integer and R ∼= R1 × · · · × Rn, where Ri is an
Artinian ring for every 1 ≤ i ≤ n. Let I = I1 × · · · × In, J = J1 × · · · × Jn be two
distinct ideals of R and n ≥ 2. Then I − J is an edge of AR if and only if for every
1 ≤ i ≤ n, Ii 6∈ A(Nil(Ri)) or Ji 6∈ A(Nil(Ri)).

Proof. Let I − J be an edge of AR. If there exists 1 ≤ i ≤ n such that Ii, Ji ∈
A(Nil(Ri)), then by Lemma 2.2, Ann(Ii) ∩ Ann(Ji) 6= (0). So if 0 6= ai ∈ Ann(Ii) ∩
Ann(Ji), then (0) × · · · × (0) × Riai × (0) × · · · × (0) ⊆ Ann(I) ∩ Ann(J) and thus
I − J is not an edge of AR, a contradiction.

Conversely, suppose that Ii 6∈ A(Nil(Ri)) or Ji 6∈ A(Nil(Ri)), for every 1 ≤ i ≤ n.
Thus Ii = Ri or Ji = Ri, for every 1 ≤ i ≤ n. This implies that Ann(I)∩Ann(J) = (0).
Hence I − J is an edge of AR. �

We are now in a position to state our main result in this paper.

Theorem 3.3. Let R be an Artinian rings. Then AR is a perfect graph if and only
if |Max(R)| ≤ 4.

Proof. First suppose AR is perfect. Since R is an Artinian ring, there exists a positive
integer n = |Max(R)| such that R ∼= R1 × · · · × Rn, where Ri is an Artinian local
ring, for every 1 ≤ i ≤ n, by Lemma 2.1. If n ≥ 5, then we put

I1 = (0)×R2 ×R3 × (0)×R5 ×R6 × · · · ×Rn,

I2 = (0)×R2 × (0)×R4 ×R5 ×R6 × · · · ×Rn,

I3 = R1 × (0)× (0)×R4 ×R5 ×R6 × · · · ×Rn,

I4 = R1 × (0)×R3 ×R4 × (0)×R6 × · · · ×Rn,
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I5 = R1 ×R2 ×R3 × (0)× (0)×R6 × · · · ×Rn.

Then it is easily seen that

I1 − I2 − I3 − I4 − I5 − I1

is a cycle of length 5 in AR, a contradiction (by Theorem 3.1). So n ≤ 4.
Conversely, suppose that |Max(R)| ≤ 4. We show that AR is a perfect graph. If
|Max(R)| ≤ 3, then by part (2) of Theorem 2.3, AR is chordal and thus by Theorem
3.2, AR is a perfect graph. Therefore, we need only to check the case |Max(R)| = 4.
Let R ∼= R1 ×R2 ×R3 ×R4. We have the following claims.

Claim 1. AR contains no induced odd cycle of length at least 5. We consider the
following partition for V (AR):

A = {I1 × I2 × I3 × I4 | Ii ∈ A(Ri) for every 1 ≤ i ≤ 4 and I4 ∈ A(Nil(R4))},
B = {I1 × I2 × I3 ×R4 | Ii ∈ A(Ri) for every 1 ≤ i ≤ 3 and I3 ∈ A(Nil(R3))},
C = {I1 × I2 ×R3 ×R4 | Ii ∈ A(Ri) for every 1 ≤ i ≤ 2 and I2 ∈ A(Nil(R2))},
D = {R1 × I2 ×R3 ×R4, I1 ×R2 ×R3 ×R4 | for every 1 ≤ i ≤ 2 Ii ∈ A(Nil(Ri))}.

Now, assume to the contrary, a1− a2− · · · − an− a1 is an induced odd cycle of length
at least 5 in AR. We consider the following cases.

Case 1. {a1, a2, . . . , an}∩D = ∅. Let ai ∈ {a1, a2, . . . , an}∩D, for some 1 ≤ i ≤ n.
Then we can let ai = I1×R2×R3×R4 or ai = R1×I2×R3×R4. If ai = I1×R2×R3×R4,
then the first components of ai−1 and ai+1 must be in A(Nil(Ri)) and A(Nil(Ri)),
respectively. So by Lemma 3.1, ai−1 is adjacent to ai+1, a contradiction. Thus,
ai 6= I1 × R2 × R3 × R4. Similarly, ai 6= R1 × I2 × R3 × R4. This means that
{a1, a2, . . . , an} ∩D = ∅.

Case 2. {a1, a2, . . . , an} ∩ C = ∅. First we show that |{a1, a2, . . . , an} ∩ C| ≤ 1.
Let a, b ∈ {a1, a2, . . . , an}∩C. Then we can easily check that if there exits x ∈ V (AR)
such that Ann(x) ∩Ann(a) 6= (0), then Ann(x) ∩Ann(b) 6= (0). This means that if x
is adjacent to a, then x is adjacent to b, a contradiction. So |{a1, a2, . . . , an}∩C| ≤ 1.
This together with the fact that AR[A] and AR[B] are complete subgraphs, imply that
n = 5 and |{a1, a2, . . . , an}∩B| = |{a1, a2, . . . , an}∩A| = 2. Hence |{a1, a2, . . . , an}∩
C| = 1, and thus we can let a ∈ {a1, a2, . . . , an} ∩ C. Since a is adjacent to all
vertices of B \ {R1×R2× I3×R4 | I3 ⊆ Nil(R3)} and AR[B] is a complete subgraph,
ai ∈ {a1, a2, . . . , an} ∩ {R1 × R2 × I3 × R4 | I3 ⊆ Nil(R3)}, for some 1 ≤ i ≤ n. We
can let ai = R1 ×R2 × I3 ×R4. Since only one of the components of ai is a nilpotent
ideal of Ri, by a similar argument to that of case 1, we get a contradiction. Hence,
{a1, a2, . . . , an} ∩ C = ∅.

By the above cases, {a1, a2, . . . , an} ⊆ A ∪ B, but this contradicts the fact AR[A]
and AR[B] are complete graphs, and thus AR contains no induced odd cycle of length
at least 5.
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Claim 2. AR contains no induced odd cycle of length at least 5. We consider the
following partition for V (AR):

A1 ={I1 ×R2 ×R3 ×R4 | I1 ∈ A(Nil(R1))},
A2 ={R1 × I2 ×R3 ×R4 | I2 ∈ A(Nil(R2))},
A3 ={R1 ×R2 × I3 ×R4 | I3 ∈ A(Nil(R3))},
A4 ={R1 ×R2 ×R3 × I4 | I4 ∈ A(Nil(R4))},
B1 ={I1 × I2 ×R3 ×R4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2))},
B2 ={R1 ×R2 × I3 × I4 | I3 ∈ A(Nil(R3)), I4 ∈ A(Nil(R4))},
B3 ={I1 ×R2 × I3 ×R4 | I1 ∈ A(Nil(R1)), I3 ∈ A(Nil(R3))},
B4 ={R1 × I2 ×R3 × I4 | I2 ∈ A(Nil(R2)), I4 ∈ A(Nil(R4))},
B5 ={I1 ×R2 ×R3 × I4 | I1 ∈ A(Nil(R1)), I4 ∈ A(Nil(R4))},
B6 ={R1 × I2 × I3 ×R4 | I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3))},
C1 ={R1 × I2 × I3 × I4 | I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3)), I4 ∈ A(Nil(R4))},
C2 ={I1 ×R2 × I3 × I4 | I1 ∈ A(Nil(R1)), I3 ∈ A(Nil(R3)), I4 ∈ A(Nil(R4))},
C3 ={I1 × I2 ×R3 × I4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2)), I4 ∈ A(Nil(R4))},
C4 ={I1 × I2 × I3 ×R4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3))},
D ={I1 × I2 × I3 × I4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3)),

I4 ∈ A(Nil(R4))}.
If we put A = ∪4

i=1Ai, B = ∪6
i=1Bi and C = ∪4

i=1Ci, then one may check that
{A,B,C,D} is a partition of V (AR). We show that AR contains no induced odd cycle
of length at least 5. Assume to the contrary, a1 − a2 − · · · − an − a1 is a induced
odd cycle of length at least 5 in AR. By Lemma 2.2, every vertex in D is an isolated
vertex in AR and thus {a1, a2, . . . , an} ∩D = ∅. Next, we show that

{a1, a2, . . . , an} ∩ C1 = ∅.
To see this, if ai ∈ {a1, a2, . . . , an} ∩ C1, for some 1 ≤ i ≤ n, then with no loss of
generality, assume that a1 ∈ C1. Since every vertex of C1 is adjacent only to vertices
of A1, a2, an ∈ A1. This is impossible, as every vertex of AR is adjacent to a2 if and
only if it is adjacent to an. Therefore

{a1, a2, . . . , an} ∩ C1 = ∅.
Similarly,

{a1, a2, . . . , an} ∩ C2 = {a1, a2, . . . , an} ∩ C3 = {a1, a2, . . . , an} ∩ C4 = ∅.
Thus

{a1, a2, . . . , an} ∩ C = ∅.
Finally, we show that

{a1, a2, . . . , an} ∩B1 = ∅.
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Assume to the contrary and with no loss of generality, a1 ∈ B1. As a1 is adjacent
only to vertices of B2 ∪ A3 ∪ A4, {a2, an} ⊆ B2 ∪ A3 ∪ A4. If a2 ∈ B2, then a3 is
adjacent to an (since if a is adjacent to a2 and b is adjacent to a1, a is adjacent to
b), a contradiction. Thus a2 6∈ B2. Similarly, an 6∈ B2 and so {a2, an} ⊆ A3 ∪ A4.
Since AR[A3 ∪ A4] is a complete bipartite graph, we conclude that {a2, an} ⊆ A3 or
{a2, an} ⊆ A4. With no loss of generality, we may assume that {a2, an} ⊆ A3. This
implies that a3 is adjacent to a2 and an (since a vertex is adjacent to a2 if and only if
it is adjacent to an), a contradiction. Hence,

{a1, a2, . . . , an} ∩B1 = ∅.

Similarly, for every 2 ≤ i ≤ 6

{a1, a2, . . . , an} ∩Bi = ∅.

This means that
{a1, a2, . . . , an} ⊆ A.

But AR[A] is a complete 4-partite graph with parts Ai for 1 ≤ i ≤ 4, a contradiction.
Therefore, AR contains no induced odd cycle of length at least 5 and thus by Claim
1, Claim 2 and Theorem 3.1, we have AR is a perfect graph. �
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