SOME IDENTITIES IN RINGS AND NEAR-RINGS WITH DERIVATIONS

ABDELKARIM BOUA

Abstract. In the present paper we investigate commutativity in prime rings and 3-prime near-rings admitting a generalized derivation satisfying certain algebraic identities. Some well-known results characterizing commutativity of prime rings and 3-prime near-rings have been generalized.

1. Introduction

In this paper, \mathcal{N} will denote a right near-ring with center $Z(\mathcal{N})$. A near-ring \mathcal{N} is called zero-symmetric if $x0 = 0$ for all $x \in \mathcal{N}$ (recall that right distributivity yields $0x = 0$). A non empty subset U of \mathcal{N} is said to be a semigroup left (resp. right) ideal of \mathcal{N} if $\mathcal{N}U \subseteq U$ (resp. $UN \subseteq U$) and if U is both a semigroup left ideal and a semigroup right ideal, it is called a semigroup ideal of \mathcal{N}. As usual for all x, y in \mathcal{N}, the symbol $[x, y]$ stands for Lie product (commutator) $xy - yx$ and $x \circ y$ stands for Jordan product (anticommutator) $xy + yx$. We note that for a near-ring, $-(x + y) = -y - x$. Recall that \mathcal{N} is 3-prime if for a, b in \mathcal{N}, $aNb = \{0\}$ implies that $a = 0$ or $b = 0$. \mathcal{N} is said to be 2-torsion free if whenever $2x = 0$, with $x \in \mathcal{N}$, then $x = 0$. An additive mapping $d : \mathcal{N} \rightarrow \mathcal{N}$ is a derivation if $d(xy) = xd(y) + d(x)y$ for all $x, y \in \mathcal{N}$, or equivalently, as noted in [20], that $d(xy) = d(x)y + xd(y)$ for all $x, y \in \mathcal{N}$. The concept of derivation in rings has been generalized in several ways by various authors. Generalized derivation has been introduced already in rings by M. Brešar [10]. Also the notions of generalized derivation has been introduced in near-rings by Öznur Gölbasi [14]. An additive mapping $\mathcal{F} : \mathcal{N} \rightarrow \mathcal{N}$ is called a right generalized derivation with associated derivation d if $\mathcal{F}(xy) = \mathcal{F}(x)y + xd(y)$ for all $x, y \in \mathcal{N}$ and \mathcal{F} is called a left generalized derivation with associated derivation d if...
\(\mathcal{F}(xy) = d(x)y + x\mathcal{F}(y) \), for all \(x, y \in \mathbb{N} \). \(\mathcal{F} \) is called a generalized derivation with associated derivation \(d \) if it is both a left as well as a right generalized derivation with associated derivation \(d \). An additive mapping \(\mathcal{F} : \mathbb{N} \to \mathbb{N} \) is said to be a left (resp. right) multiplier (or centralizer) if \(\mathcal{F}(xy) = \mathcal{F}(x)y \) (resp. \(\mathcal{F}(xy) = x\mathcal{F}(y) \)) holds for all \(x, y \in \mathbb{N} \). \(\mathcal{F} \) is said to be a multiplier if it is both left as well as right multiplier. Notice that a right (resp. left) generalized derivation with associated derivation \(d = 0 \) is a left (resp. right) multiplier.

Lemma 2.1. Let \(K \) be a nonzero ideal of \(\mathbb{N} \). In 2002, Rehman [18] established that if a prime ring of a characteristic not 2 admits a generalized derivation \(F \) with a nonzero derivation such that \(F([x, y]) = [x, y] \) (resp. \(F([x, y]) = -[x, y] \)) for all \(x, y \) in a nonzero square closed Lie ideal \(U \), then \(U \subseteq Z(\mathbb{R}) \). Quadri, Khan and Rehman [16], without the characteristic assumption on the ring, proved that a prime ring must be commutative if it admits a generalized derivation \(F \) associated with a nonzero derivation, such that \(F([x, y]) = [x, y] \) (resp. \(F([x, y]) = -[x, y] \)) for all \(x, y \) in a nonzero ideal \(I \). Motivated by the above results, in the following theorem we explore the commutativity of a prime ring, provided with a generalized derivation \(F \) and left multiplier \(G \) satisfying the following conditions: \(F([x, y]_{\alpha, \beta}) = [x, y]_{u, v}, \quad F([x, y]_{\alpha, \beta}) = G([\beta(x), y]) \) for all \(x, y \in \mathbb{R} \), where \(\alpha, \beta, u, v \) automorphisms of \(\mathbb{R} \) and \([x, y]_{\alpha, \beta} = \alpha(x)y - y\beta(x) \).

2. Some Preliminaries

For the proofs of our main theorems, we need the following lemmas. The first lemmas appear in [7] and [20] in the context of left near-rings, and it is easy to see that they hold for right near-rings as well.

Lemma 2.1. Let \(\mathbb{N} \) be a 3-prime near-ring and \(U \) be a nonzero semigroup ideal of \(\mathbb{N} \). Let \(d \) be a nonzero derivation on \(\mathbb{N} \).

(i) If \(x, y \in \mathbb{N} \) and \(xUy = \{0\} \), then \(x = 0 \) or \(y = 0 \).

(ii) If \(x \in \mathbb{N} \) and \(xU = \{0\} \) or \(Ux = \{0\} \), then \(x = 0 \).

(iii) If \(z \in Z(\mathbb{N}) \), then \(d(z) \in Z(\mathbb{N}) \).

Lemma 2.2. Let \(d \) be an arbitrary derivation of a near-ring \(\mathbb{N} \). Then \(\mathbb{N} \) satisfies the following partial distributive laws:

(i) \(z(xd(y) + d(x)y) = zxd(y) + zd(x)y \) for all \(x, y, z \in \mathbb{N} \);

(ii) \(z(d(x)y + xd(y)) = zd(x)y + zxd(y) \) for all \(x, y, z \in \mathbb{N} \).
Lemma 2.3. ([5, Theorem 2.1]). Let N be a 3-prime near-ring, U a nonzero semigroup left ideal or semigroup right ideal. If N admits a nonzero derivation d such that $d(U) \subseteq Z(N)$, then N is a commutative ring.

3. SOME RESULTS INVOLVING PRIME RINGS

Theorem 3.1. Let R be a prime ring, I a nonzero ideal of R and α, β, u, v automorphisms of R such that $\beta(I) = I$. If F is a generalized derivation of R associated with a derivation d and G is a left multiplier of R which satisfy one of the following conditions:

(i) $F([x, y]_{\alpha, \beta}) = [x, y]_{u, v}$ for all $x, y \in I$;

(ii) $F([x, y]_{\alpha, \beta}) = G([\beta(x), y])$ for all $x, y \in I$;

then R is commutative.

Proof. (i) Suppose that

\begin{equation}
F([x, y]_{\alpha, \beta}) = [x, y]_{u, v}, \quad \text{for all } x, y \in I.
\end{equation}

Replacing y by $y\beta(x)$ in (3.1), and using the fact that $[x, y\beta(x)]_{\alpha, \beta} = [x, y]_{\alpha, \beta}\beta(x)$ and $[x, y\beta(x)]_{u, v} = [x, y]_{u, v}\beta(x) + y[v(x), \beta(x)]$ for all $x, y \in I$, we arrive at

\begin{equation}
F([x, y]_{\alpha, \beta})\beta(x) + [x, y]_{\alpha, \beta}d(\beta(x)) = [x, y]_{u, v}\beta(x) + y[v(x), \beta(x)], \quad \text{for all } x, y \in I.
\end{equation}

Using (3.1), (3.2) implies that

\begin{equation}
[x, y]_{\alpha, \beta}d(\beta(x)) = y[v(x), \beta(x)], \quad \text{for all } x, y \in I.
\end{equation}

Substituting ry instead of y in (3.3) where $r \in R$, we arrive at

\[[\alpha(x), r]Id(\beta(x)) = \{0\}, \quad \text{for all } x \in I, r \in R. \]

By Lemma 2.1 (i), we get $[\alpha(x), r] = 0$ or $d(\beta(x)) = 0$ for all $x \in I, r \in R$ which gives $\alpha(x) \in Z(R)$ or $d(\beta(x)) = 0$ for all $x \in I$. Since α and β are automorphisms of R, we get $x \in Z(R)$ or $d(\beta(x)) = 0$ for all $x \in I$. Using Lemma 2.1 (iii), we obtain $d(\beta(I)) \subseteq Z(R)$ i.e., $d(I) \subseteq Z(R)$ which forces that R is commutative by Lemma 2.3.

(ii) Assume that

\begin{equation}
F([x, y]_{\alpha, \beta}) = G([\beta(x), y]), \quad \text{for all } x, y \in I.
\end{equation}

Putting $y\beta(x)$ instead of y in (3.4), we get

\[F([x, y]_{\alpha, \beta})\beta(x) + [x, y]_{\alpha, \beta}d(\beta(x)) = G([\beta(x), y])\beta(x), \quad \text{for all } x, y \in I. \]

Using (3.4), we obtain $[x, y]_{\alpha, \beta}d(\beta(x)) = 0$ for all $x, y \in I$, which implies that

\begin{equation}
\alpha(x)yd(\beta(x)) = y\beta(x)d(\beta(x)), \quad \text{for all } x, y \in I.
\end{equation}

Taking ry in place of y in (3.5) where $r \in R$ and using it again, we conclude that

\[[\alpha(x), r]Id(\beta(x)) = \{0\}, \quad \text{for all } x \in I, r \in R. \]

By Lemma 2.1 (i), we get $\alpha(x) \in Z(R)$ or $d(\beta(x)) = 0$ for all $x \in R$ and using the same techniques as used above, we conclude that R is commutative.

\[\square \]
For $\alpha = \beta = u = v = \text{id}_R$, we get the following result.

Corollary 3.1. ([16, Theorem 2.1]). Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized derivation F associated with a nonzero derivation d such that $F([x,y]) = [x,y]$ for all $x, y \in I$, then R is commutative.

For $\alpha = \beta = u = \text{id}_R$ and $v = -\text{id}_R$, we get the following result.

Corollary 3.2. ([16, Theorem 2.2]). Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized derivation F associated with a nonzero derivation d such that $F([x,y] + [x,y]) = 0$ for all $x, y \in I$, then R is commutative.

4. SOME RESULTS INVOLVING 3-PRIME NEAR-RINGS

In this section, we will present a very important result that generalizes several theorems that are well known in the literature. More precisely, we will show that a 2-torsion prime near-ring N is a commutative ring if and only if N admits a derivation d and a left multiplier G such that $G([x,y]) = [d(x),y] - [x,d(y)]$ for all $x, y \in U$.

Theorem 4.1. Let N be a 2-torsion free prime near-ring and U a nonzero semigroup ideal of N. If N admits a derivation d and left multiplier G, then the following assertions are equivalents:

1. $G([x,y]) = [d(x),y] - [x,d(y)]$ for all $x, y \in U$;
2. N is a commutative ring.

Proof. It is easy to notice that (ii) implies (i).

(i)\Rightarrow(ii) Suppose that

$$G([x,y]) = [d(x),y] - [x,d(y)], \quad \text{for all } x, y \in U. \quad (4.1)$$

Replacing x by xy in (4.1) and using the fact that $[xy,y] = [x,y]y$, we obtain

$$[d(xy),y] - [xy,d(y)] = G([x,y])y, \quad \text{for all } x, y \in U.$$

Which implies that

$$[d(xy),y] - [xy,d(y)] = ([d(x),y] - [x,d(y)])y, \quad \text{for all } x, y \in U.$$

Using Lemma 2.2 and by developing the last expression, we arrive at

$$d(x)y^2 + xd(y)y - yxd(y) - yd(x)y + d(y)xy - xyd(y) = d(x)y^2 - yd(x)y + d(y)xy - xd(y)y.$$

For $x = y$, the equation (4.1) and 2-torsion freeness we give easily $d(y)y = yd(y)$ for all $y \in U$. In this case, by a simplification of last equation, we find that

$$xd(y)y = yxd(y), \quad \text{for all } x, y \in U. \quad (4.2)$$

Substituting tx in place of x, where $t \in N$ in (4.2) and using it again, we arrive at

$$[y,t]Ud(y) = \{0\}, \quad \text{for all } y \in U, t \in N.$$

Using Lemma 2.1 (i), we obtain

$$y \in Z(N) \text{ or } d(y) = 0, \quad \text{for all } y \in U. \quad (4.3)$$
If there exists $y_0 \in Z(\mathcal{N}) \cap U$, then by (4.1), we get $xd(y_0) = d(y_0)x$ for all $x \in U$. In this case, (4.3) gives $xd(y) = d(y)x$ for all $x, y \in U$. Replace x by tx, where $t \in \mathbb{N}$, we get $[d(y), t]x = 0$ for all $x, y \in U$, $t \in \mathbb{N}$ which implies that $[d(y), t]U = \{0\}$ for all $y \in U$, $t \in \mathbb{N}$. Since $U \neq \{0\}$, by Lemma 2.1 (ii), we obtain $d(U) \subseteq Z(\mathcal{N})$ and Lemma 2.3 assures that \mathcal{N} is a commutative ring.

If we replace G by the null application or the identical application $id_\mathcal{N}$, we get the following results.

Corollary 4.1. ([8, Theorem 2.1]). Let \mathcal{N} be a 2-torsion free prime near-ring. If \mathcal{N} admits a derivation d such that $[d(x), y] = [x, d(y)]$ for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Corollary 4.2. Let \mathcal{N} be a 2-torsion free prime near-ring and U a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a derivation d, then the following assertions are equivalent:

(i) $[x, y] = [d(x), y] - [x, d(y)]$ for all $x, y \in U$;
(ii) $[d(x), y] = [x, d(y)]$ for all $x, y \in U$;
(iii) \mathcal{N} is a commutative ring.

When $d = 0$, we have the following result.

Corollary 4.3. Let \mathcal{N} be a 2-torsion free prime near-ring and U a nonzero semigroup ideal of \mathcal{N}. If \mathcal{N} admits a left multiplier G, then the following assertions are equivalent:

(i) $G([x, y]) = 0$ for all $x, y \in U$;
(ii) \mathcal{N} is a commutative ring.

References

80

A. BOUA

1 Polydisciplinary Faculty, LSI, Taza, Sidi Mohammed Ben Abdellah University, FEZ

Email address: abdelkarim.boua@yahoo.fr