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CHEBYSHEV POLYNOMIALS FOR CERTAIN SUBCLASS OF
BAZILEVIĆ FUNCTIONS ASSOCIATED WITH RUSCHEWEYH

DERIVATIVE

ABDUL RAHMAN S. JUMA1, SABA N. AL-KHAFAJI2, AND OLGA ENGEL3

Abstract. In this paper, through the instrument of the well-known Chebyshev
polynomials and subordination, we defined a family of functions, consisting of
Bazilević functions of type α, involving the Ruscheweyh derivative operator. Also,
we investigate coefficient bounds and Fekete-Szegö inequalities for this class.

1. Introduction and definitions

Let A be the class of functions f of the form

(1.1) f(z) = z +
∞
∑

k=2

akzk,

which are analytic in the open unit disk U = {z : z ∈ C : |z| < 1}. Let S denote the
class of analytic functions f ∈ A, which are univalent in U and are normalized with
the following conditions:

f(0) = 0 and f ′(0) = 1.

Let f and g be analytic functions in U. We say that the function f is a subordinate
to g in U, written as f ≺ g, if there exists a Schwarz function w, which is analytic in
U with w(0) = 0 and |w(z)| < 1, (z ∈ U) such that f(z) = g(w(z)). Furthermore, if
g is univalent in U, then we get

f(z) ≺ g(z), (z ∈ U) ⇔ f(0) = g(0) and f(U) ⊂ g(U) (see [6]).

Key words and phrases. Analytic functions, univalent functions, Chebyshev polynomials,
Ruscheweyh derivative operator, subordination, Fekete-Szegö inequalities, Bazilević functions.
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The problem of finding the sharp bounds for the non-linear functional |a3 − µa2
2| for

Taylor-Mclaurin series is popularly known as the Fekete-Szegö problem. This problem
has a rich history in the geometric functions theory. Its source was in the disproof by
Fekete and Szegö of the 1933 guess of Littlewood and Paley that the coefficients of
odd univalent functions are limited by unity (see [7], has since received great attention,
especially in many subclasses of the family of univalent functions. For that reason
Fekete-Szegö functional was studied by many authors and a some assessments were
found in a numerous subclasses of normalized univalent functions (see [3,9,11,12,14]).

The significance of Chebyshev polynomial in numerical analysis is increased in both
theoretical and practical points of view. Out of four kinds of Chebyshev polynomials,
many researchers dealing with orthogonal polynomials of Chebyshev, contain chiefly
results of first and second kinds of Chebyshev polynomials Tk(t) and Uk(t) respectively
and their numerous uses in different applications. Additionally, one can see those
given by the papers in ([1, 2, 4, 5] and [8]). The Chebyshev polynomials of the first
and second kinds are well known in the case of a real variable t on (−1, 1), which are
defined as follows

Tk(t) = cos kθ,

Uk(t) =
sin(k + 1)θ

sin θ
,

where k is the degree of the polynomial and t = cos θ.
In [14] (also see [13]) Ruscheweyh introduced the following derivative operator:

D0f(z) =f(z),

Dnf(z) =
z(zn−1f(z))(n)

n!
,

for n ∈ N = {1, 2, . . . }. The symbol Dnf is called the nth order Ruscheweyh derivative
of f .

We observe that

D0f(z) =f(z),

D1f(z) =zf ′(z),

and in general

Dnf(z) = z +
∞
∑

k=2

ρ(n, k)akzk,

where

ρ(n, k) =

(

n + k − 1
n

)

.
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Definition 1.1. A function f ∈ A of the form (1.1) belongs to class G(α, t), if it
satisfies the following subordination

(1.2) G(α, t) =

{

f ∈ A :
(Dnf(z))′(Dnf(z))α−1

zα−1
≺ 1

1 − 2tz + z2

}

,

where 0 ≤ α ≤ 1, t ∈
(

1
2
, 1
]

and z ∈ U.

Note that, if t = cos α, α ∈ (−π/3, π/3), then

H(z, t) :=
1

1 − 2 cos αz + z2

=1 +
∞
∑

k=1

sin((k + 1)α)

sin α
zk (z ∈ U).

Thus

H(z, t) = 1 + 2 cos αz + (3 cos2 α − sin2 α)z2 + · · · (z ∈ U).

Therefore, from [15] we can write

H(z, t) = 1 + U1(t)z + U2(t)z
2 + · · · (z ∈ U, t ∈ (−1, 1)),

where

Uk−1(t) =
sin(k arccos t)√

1 − t2
(k ∈ N)

denotes the Chebyshev polynomials of the second kind. It is known that

Uk(t) = 2tUk−1(t) − Uk−2(t)

and

U1(t) =2t,

U2(t) =4t2 − 1,(1.3)

U3(t) =8t3 − 4t.

...

The ordinary generating function for Chebyshev polynomials Tk(t), t ∈ [−1, 1], of the
first kind have the following form

∞
∑

k=0

T(t)zk =
1 − tz

1 − 2tz + z2
(z ∈ U).

The Chebyshev polynomials of the first kinds Tk(t) and of the second kinds Uk(t)
are connected by the following relations:

dTk(t)

dt
=kUk−1(t),

Tk(t) =Uk(t) − tUk−1(t),

2Tk(t) =Uk(t) − Uk−2(t).
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By giving specific values to the parameters α and n in this class we obtain the
following cases.

(i) If α = 0 and n = 0, then we get

zf ′(z)

f(z)
≺ H(z, t) :=

1

1 − 2tz + z2
,

it reduces to a special case of the class B
µ
Σ(λ, t), which was introduced by Bulut,

Magesh and Abirami [5].
(ii) If n = 0 and α = 1, then we get

f ′(z) ≺ H(z, t) :=
1

1 − 2tz + z2
,

it also reduces to a special case of the class B
µ
Σ(λ, t), which was introduced by Bulut,

Magesh and Abirami [5].
(iii) If n = 0, then we get

f ′(z)

(

z

f(z)

)1−α

≺ H(z, t) :=
1

1 − 2tz + z2
,

it reduces to the class H(α), which was introduced by Bulut, Magesh and Abirami
[5], as a special case to the class B

µ
Σ(λ, t).

The aim of this paper is to provide estimates for initial coefficients of Bazilević
functions of type α in the class G(α, t), involving by the Ruscheweyh derivative
operator. Besides that, the problem of Fekete- Szegö in this class is additionally
explained.

2. Preliminaries

We need the following lemma to prove our main result.

Lemma 2.1 ([10]). If w ∈ S, then for any complex number µ

|w2 − µw2
1| ≤ max{1, |µ|}.

The result is sharp for the functions w(z) = z2 or w(z) = z.

3. Main Results

Theorem 3.1. Let f ∈ A belong to the class G(α, t). Then

|a2| ≤ 2t

(α + 1)
(

n+1
n

)
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and

|a3| ≤ 4t2 + 2t − 1

(α + 2)
(

n+2
n

) +
4t2

(α + 1)(α + 2)
(

n+2
n

) − 8αt2

(α + 1)2(α + 2)
(

n+2
n

)

− 4α(α − 1)t2

2(α + 1)2(α + 2)
(

n+1
n

)(

n+2
n

) .

Proof. If f ∈ G(α, t), then from (1.2) we have

(3.1)
(Dnf(z))′(Dnf(z))α−1

zα−1
= 1 + U1(t)w(z) + U2(t)w

2(z) + · · · .

Replacing the value of Dn(f(z)) and (Dn(f(z)))′ with their equivalent series expres-
sions in (3.1), it follows that
(

z +
∞
∑

k=2
kρ(n, k)akzk

)(

1 +
∞
∑

k=2
ρ(n, k)ak(α)zk−1

)

z +
∞
∑

k=2
ρ(n, k)akzk

= 1+U1(t)w(z)+U2(t)w
2(z)+· · · .

By using the binomial expansion of 1 +
∞
∑

k=2
ρ(n, k)ak(α)zk−1, upon simplification we

obtain
(

z + 2

(

n + 1

n

)

a2z
2 + 3

(

n + 2

n

)

a3z
3 + · · ·

)

×
(

1 + α

(

n + 1

n

)

a2z +

[

α

(

n + 2

n

)

a3 +
α(α − 1)

2!

(

n + 1

n

)

a2
2

]

z2 + · · ·
)

=
[

1 + U1(t)w(z) + U2(t)w
2(z) + · · ·

]

(

z +

(

n + 1

n

)

a2z
2 +

(

n + 2

n

)

a3z
3 + · · ·

)

,

where w is an analytic function, such that w(0) = 0 and

(3.2) |w(z)| = |c1z + c2z
2 + c3z

3 + · · · | < 1 (z ∈ U),

where

(3.3) |cj| ≤ 1 (j ∈ N).

From (3.2) and (3.3), we have
(

z + 2

(

n + 1

n

)

a2z
2 + 3

(

n + 2

n

)

a3z
3 + · · ·

)

(3.4)

×
(

1 + α

(

n + 1

n

)

a2z +

[

α

(

n + 2

n

)

a3 +
α(α − 1)

2!

(

n + 1

n

)

a2
2

]

z2 + · · ·
)

=
[

1 + U1(t)c1z + (U1(t)c2 + U2(t)c
2
1)z

2 + · · ·
]

×
(

z +

(

n + 1

n

)

a2z
2 +

(

n + 2

n

)

a3z
3 + · · ·

)

.
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From (3.4), we obtain

(3.5) a2 =
U1(t)c1

(α + 1)
(

n+1
n

) .

It is easily seen that from (1.3) and (3.5), we have

|a2| ≤ 2t

(α + 1)
(

n+1
n

) .

Now, in order to find the bound on |a3|, from (9), we get

a3 =
U1(t)c2 + U2(t)c

2
1

(α + 2)
(

n+2
n

) +
U2

1(t)c
2
1

(α + 1)(α + 2)
(

n+2
n

) − 2αU2
1(t)c

2
1

(α + 1)2(α + 2)
(

n+2
n

)

− α(α − 1)U2
1(t)c

2
1

2(α + 1)2(α + 2)
(

n+1
n

)(

n+2
n

) .(3.6)

By using (1.3) and (3.5) in (3.6), we get

|a3| ≤ 4t2 + 2t − 1

(α + 2)
(

n+2
n

) +
4t2

(α + 1)(α + 2)
(

n+2
n

) − 8αt2

(α + 1)2(α + 2)
(

n+2
n

)

− 4α(α − 1)t2

2(α + 1)2(α + 2)
(

n+1
n

)(

n+2
n

) . �

Theorem 3.2. If function f of the form (1.1) belongs to the class G(α, t), then

|a3 − µa2
2| ≤ 2t

(α2 + 2)
(

n+2
n

) max







1,

∣

∣

∣

∣

∣

∣

4t2 − 1

2t
+

2t

(α2 + 1)
− 4α2t

(α2 + 1)

−
α(α − 1)t

(

n+2
n

)

(α2 + 1)
(

n+1
n

)2 − µ
2t
(

n+2
n

)

(α2 + 2)

(α2 + 1)2
(

n+1
n

)

∣

∣

∣

∣

∣

∣







.

The result is sharp.

Proof. From (3.5) and (3.6), we get

a3 − µa2
2 =

U1(t)c2 + U2(t)c
2
1

(α + 2)
(

n+2
n

) +
U2

1(t)c
2
1

(α + 1)(α + 2)
(

n+2
n

) − 2αU2
1(t)c

2
1

(α + 1)2(α + 2)
(

n+2
n

)

− α(α − 1)U2
1(t)c

2
1

2(α + 1)2(α + 2)
(

n+1
n

)(

n+2
n

) − µ
U2

1(t)c
2
1

(α + 1)2
(

n+1
n

)2 .
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Therefore,

a3 − µa2
2 =

U1(t)

(α + 2)
(

n+2
n

)



c2 +





U2(t)

U1(t)
+

U1(t)

(α + 1)
− 2α2U1(t)

(α + 1)2

−
α(α − 1)U1(t)

(

n+2
n

)

2(α + 1)2
(

n+1
n

)2 − µ
U1(t)

(

n+2
n

)

(α + 2)

(α + 1)2
(

n+1
n

)2



c2
1



.

Then, in view of Lemma 2.1, we conclude that

|a3 − µa2
2| ≤ U1(t)

(α + 2)
(

n+2
n

) max







1,

∣

∣

∣

∣

∣

∣

U2(t)

U1(t)
+

U1(t)

(α + 1)
− 2α2U1(t)

(α + 1)2

−
α(α − 1)U1(t)

(

n+2
n

)

2(α + 1)2
(

n+1
n

)2 − µ
U1(t)

(

n+2
n

)

(α + 2)

(α + 1)2
(

n+1
n

)2

∣

∣

∣

∣

∣

∣







,

which is equivalent to

|a3 − µa2
2| ≤ 2t

(α + 2)
(

n+2
n

) max







1,

∣

∣

∣

∣

∣

∣

4t2 − 1

2t
+

2t

α + 1
− 4α2t

(α + 1)2

−
α(α − 1)t

(

n+2
n

)

(α + 1)2
(

n+1
n

)2 − µ
2t
(

n+2
n

)

(α + 2)

(α + 1)2
(

n+1
n

)2

∣

∣

∣

∣

∣

∣







.

This completes the proof. �

Putting α = 1 in Theorem 3.2, we obtain the following result.

Corollary 3.1. If f given by (1.1) belongs to the class G(1, t), then

|a3 − µa2
2| ≤ 2t

3
(

n+2
n

) max







1,

∣

∣

∣

∣

∣

∣

4t2 − 1

2t
− t − µ

3t
(

n+2
n

)

2
(

n+1
n

)

∣

∣

∣

∣

∣

∣







.

The result is sharp.
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A UNITARY TREATMENT OF CERTAIN INEQUALITIES

INVOLVING MEANS

A. F. ALBIŞORU1 AND M. STROE2

Abstract. The aim of this paper is to state and prove certain inequalities that
involve means (e.g., the arithmetic, geometric, logarithmic means) using a particular
result. First of all we recall useful properties of a real-valued convex function that will
be used in the proof of our inequalities. Further, we present three inequalities, the
first involving the logarithmic mean, the second involving the classical arithmetical
and geometrical means and in the last we introduce a new mean. Finally, we give
alternate proofs to the Schweitzer’s inequality and Khanin’s inequality.

1. Introduction

Recall that, for a, b ∈ (0, ∞), the logarithmic mean is given by the relation

L(a, b) :=
b − a

log b − log a
,

and for k ∈ N \ {1} and x1, . . . , xn ∈ [a, b] we introduce the generalized mean as
follows

k

√

xk
1 + · · · + xk

n

n
.

These means frequently appear in the setting of inequalities.
The subject of inequalities has fascinated a great deal of mathematicians and the

proof of this fact lives in the classical and recent results that bear their names. A large
number of inequalities have been the subject of well-known books such as [1, 3, 4, 6].

Note that, an important notion that we employ in this paper is that of a convex
function, and we are interesed in the property that the maximum of a convex function

Key words and phrases. Generalized mean, logarithmic mean, convex function, maximum point.
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is attained on the boundary of the convex and bounded domain, on which it is defined
(for additional details, see, e.g., [2, 7, 8]).

The aim of our work is to establish certain inequalities using convex functions. In
Section 2 we give the important notions that will be used throughout the paper. We
introduce here the notion of a convex function and we also give a fundamental result
which will be used in the proof of our inequalities, namely Theorem 2.1. Through
this particular result we point some properties of convex (see, e.g., [5], [7, pp. 89,
118]) functions of several variables and their applications. In Section 3 we have three
important applications. Application 3.1 gives an estimate for the difference between
the arithmetic and geometric mean in terms of the logarithmic mean. Application 3.2
gives another estimate for the difference between the arithmetic and geometric mean
and in Application 3.3 we give an estimate for the difference between the generalized
mean and arithmetic mean using a new mean. We end this section with Schweitzer’s
inequality (Theorem 3.4) and Khanin’s Inequality (Theorem 3.5). We have provided
alternative proofs for these inequalities using Theorem 2.1.

2. Prelimiaries

If C ⊂ R
n is a convex set, then, a function f : C → R is said to be convex if

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y), for all x, y ∈ C, for all λ ∈ [0, 1].

We point out the fact that, if f : [a, b] → R is convex, then the maximum value of
f is attained at the boundary. We shall prove this useful property at Lemma 2.1.

In the latter, for a, b ∈ R, we have the following notations:

[a, b]n =[a, b] × · · · × [a, b],

{a, b}n ={a, b} × · · · × {a, b}.

In the latter, we shall prove a theorem that points out that, in certain conditions,
the maximum of a convex and continuous function f : [a, b]n → R can be found by
taking the maximum of the function on the vertices of the considered hypercube [a, b]n,
where a, b ∈ R.

Before we proceed to the proof of this result, we shall state a useful lemma (see,
e.g., [7, Theorem 3.4.6, Theorem 3.4.7]).

Lemma 2.1. Let a, b ∈ R and let f : [a, b] → R be a convex and continuous function.

Then

max
x∈[a,b]

f(x) = max
x∈{a,b}

f(x).

Proof. Since f is continuous on [a, b], we deduce that there is an α ∈ [a, b] such that

f(α) = max
x∈[a,b]

f(x).
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Now, we argue by contradiction. Assume that α ∈ (a, b). This means that there is
some λ ∈ (0, 1), such that

α = (1 − λ)a + λb.

Hence,

f(α) =f((1 − λ)a + λb) ≤ (1 − λ)f(a) + λf(b)

<(1 − λ)f(α) + λf(α),

i.e., f(α) < f(α), which is absurd and our proof is complete. �

We have the following theorem.

Theorem 2.1. Let f : [a, b]n → R be a C
2-class function on [a, b]n, such that:

∂2f

∂x2
i

≥ 0, for all i = 1, n.(2.1)

Then

max
x∈[a,b]n

f(x) = max
x∈{a,b}n

f(x).

Proof. Define the function g1 : [a, b] → R in the following manner

g1(x1) = f(x1, . . . , xn),

where the variables x2, . . . , xn are arbitrarily fixed. Using condition (2.1) for i = 1,
we deduce that g1 is convex, hence:

max
x1∈[a,b]

f(x1, . . . , xn) = max
x1∈{a,b}

f(x1, . . . , xn).

Let x1 ∈ {a, b} be the value for which the maximum is attained. We apply the same
steps as above to the function g2 : [a, b] → R, g2(x2) = f(x1, x2, . . . , xn) and we deduce
that there exists x2 ∈ {a, b} such that

max
x2∈[a,b]

f(x1, x2, . . . , xn) = max
x2∈{a,b}

f(x1, x2, . . . , xn),

and we use the same arguments for x3, . . . , xn. Consequently, we obtain

max
x∈[a,b]n

f(x) = max
x∈{a,b}n

f(x),

where x = (x1, . . . , xn) ∈ R
n.

This completes our proof. �
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3. Applications of Theorem 2.1

In this section we give the main results of our paper.

Application 3.1. Let x1, . . . , xn ∈ [a, b] ⊂ (0, ∞), where a = min
i=1,n

xi and b = max
i=1,n

xi.

Then
x1 + · · · + xn

n
− n

√
x1 · · · xn ≤ (L(a, b) − a)

(

L(a, b)

L(a, L(a, b))
− 1

)

,

where

L(a, b) =
b − a

log b − log a
,

denotes the logarithmic mean of a and b.

Proof. Consider the function f : [a, b]n → R, given by the relation

f(x1, . . . , xn) =
x1 + · · · + xn

n
− n

√
x1 · · · xn.

Take note that

∂2f

∂x2
i

=
n − 1

n2
(x1 · · · xi−1xi+1 · · · xn)

1

n x
− 2n−1

n

i ,

for i = 1, n.
Since all partial derivatives of second order of f are positive, by applying Theo-

rem 2.1 we obtain
max

x∈[a,b]n
f(x) = max

x∈{a,b}n

f(x).

We shall determine now max
x∈{a,b}n

f(x).

Without loss of generality, we may now assume that the maximum of f is obtained
at the point (x1, . . . , xn), where

x1 = x2 = · · · = xn−k = a,

xn−k+1 = xn−k+2 = · · · = xn = b.

Hence, to determine max
x∈{a,b}n

f(x), it is enough to find the maximum of the expression

E =
(n − k)a + kb

n
− n

√
an−kbk = a +

k

n
(b − a) − a

(

a

b

)
k

n

,

for k = 1, n − 1.
To this end, let g : (0, 1) → R be given by

g(t) = a + t(b − a) − a

(

a

b

)t

.

The derivative of g is as follows

g′(t) = b − a − a

(

b

a

)t

log

(

b

a

)

.
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Hence,

g′(t) = 0 ⇔
(

b

a

)t

=
L(a, b)

a
⇔ t′ := t =

log(L(a, b)) − log a

log b − log a
∈ (0, 1).

We deduce that t′ is a global maximum point for g. Consequently,

max
t∈(0,1)

g(t) = g(t′).

Our claim is that

g(t′) = (L(a, b) − a)

[

L(a, b)

L(a, L(a, b))
− 1

]

.

Indeed,

g(t′) = a + t′(b − a) − a

(

b

a

)t′

= a + t′(b − a) − a
L(a, b)

a

= a +
b − a

log b − log a
· log(L(a, b)) − log a

L(a, b) − a
(L(a, b) − a) − L(a, b)

= a + L(a, b)
1

L(a, L(a, b))
(L(a, b) − a) − L(a, b)

= −(L(a, b) − a) +
L(a, b)

L(a, L(a, b))
(L(a, b) − a)

= (L(a, b) − a)

[

L(a, b)

L(a, L(a, b))
− 1

]

,

and our claim is verified. This concludes the proof. �

Application 3.2. Let x1, . . . , xn ∈ [a, b] ⊂ (0, ∞), where a = min
i=1,n

xi and b = max
i=1,n

xi.

Then
x1 + · · · + xn

n
− n

√
x1 · · · xn ≤ (

√
b −

√
a)2.

Proof. Using similar arguments to those in the proof of Application 3.1, we consider
the expression

E =
(n − k)a + kb

n
− n

√
an−kbk.

Note that,

E ≤ (n − k)a + kb

n
− n

n−k
a

+ k
b

,

due to the geometric and harmonic mean inequality, i.e.,

n
√

an−kbk ≥ n
n−k

a
+ k

b

.
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Thus, one obtains

E ≤ a +
k

n
(b − a) − ab

b − k
n
(b − a)

.

On the other hand, we introduce the function h : (0, 1) → R as follows

h(t) = 1 + t(b − a) − ab

b − t(b − a)
.

The derivative of the function h is

h′(t) = b − a − ab

(b − t(b − a))2
(b − a).

Then we have

h′(t) = 0 ⇔ t′ := t =

√
b

√
a +

√
b

∈ (0, 1).

It follows that t′ is a global maximum point for h and therefore,

h(t) ≤ h(t′) = (
√

b −
√

a)2.

Consequently, we obtain

x1 + · · · + xn

n
− n

√
x1 · · · xn ≤ (

√
b −

√
a)2,

and our proof is finished. �

Now, we introduce the quantity

Pk(a, b) = k

√

√

√

√

bk+1 − ak+1

(k − 1)(b − a)
=

k

√

ak + ak−1b + · · · + bk

k + 1
,

for k ∈ N, k ≥ 2 and P1(a, b) = a+b
2

.
One can easily see that a < Pk(a, b) < b, and thus Pk(a, b) is a mean.

Application 3.3. Let x1, . . . , xn ∈ [a, b] ⊂ (0, ∞), where a = min
i=1,n

xi and b = max
i=1,n

xi.

Then

k

√

xk
1 + · · · + xk

n

n
− x1 + · · · + xn

n
≤ (Pk−1(a, b) − a)

(

1 − P k−1
k−1 (a, Pk−1(a, b))

P k−1
k−1 (a, b)

)

.

Proof. Let f : [a, b]n → R be given by

f(x1, . . . , xn) =
k

√

xk
1 + · · · + xk

n

n
− x1 + · · · + xn

n
.

One can easily see that

∂2f

∂x2
i

=
k − 1

n2
xk−2

i

(

xk
1 + · · · + xk

n

n

)
1

k
−2

xk
1 + · · · + xk

i−1 + xk
i+1 + · · · + xk

n

n
> 0,

for all i = 1, n.
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We apply Theorem 2.1 and we obtain that

max
x∈[a,b]n

f(x) = max
p∈{1,...,n−1}

k

√

(n − p)ak + pbk

n
− (n − a)p + pb

n

= max
p∈{1,...,n−1}

(

k

√

p

n
(bk − ak) + ak − p

n
(b − a) − a

)

.

Consider, now, the function g : (0, 1) → R given by

g(t) = k

√

t(bk − ak) + ak − t(b − a) − a.

We deduce that

g′(t) =
bk − ak

k
(

k

√

t(bk − ak) + ak
)k−1 − (b − a).

Hence,

g′(t) = 0 ⇔ α := t =
P k

k−1(a, b) − ak

bk − ak
∈ (0, 1).

Consequently, we have
max
t∈(0,1)

g(t) = g(α).

On the other hand, we get

g(α) = Pk−1(a, b) − P k
k−1(a, b) − a

bk − ak
(b − a) − a

= Pk−1(a, b) − a − k(b − a)

bk − ak

P k
k−1(a, b) − ak

k(Pk−1(a, b) − a)
(Pk−1(a, b) − a)

= Pk−1(a, b) − a − 1

P k−1
k−1

(a, b)P k−1
k−1 (a, P (a, b))(Pk−1(a, b) − a)

= (Pk−1(a, b) − a)

(

1 − P k−1
k−1 (a, Pk−1(a, b))

P k−1
k−1 (a, b)

)

.

This concludes our proof. �

Remark 3.1. Setting n = 2 in Application 3.3 yields the following inequality
√

x2
1 + · · · + x2

n

n
− x1 + · · · + xn

n
≤ (b − a)2

4(a + b)
.

In the latter, we shall state and prove Schweitzer’s inequality.

Theorem 3.4 (Schweitzer). Let x1, . . . , xn, a, b > 0 such that xi ∈ [a, b] for all i = 1, n.

Then,

(x1 + · · · + xn)
(

1

x1

+ · · · +
1

xn

)

≤ (a + b)2

4ab
n2, for n even,

(x1 + · · · + xn)
(

1

x1

+ · · · +
1

xn

)

≤ (a + b)2

4ab
n2 − (a − b)2

4ab
, for n odd.
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Proof. Define f : [a, b]n → R as follows

f(x1, . . . , xn) = (x1 + · · · + xn)
(

1

x1

+ · · · +
1

xn

)

.

Then, for all i = 1, n, we have

∂2f

∂x2
i

=
2(x1 + · · · + xi−1 + xi+1 + · · · + xn)

x3
i

> 0.

Apply Theorem 2.1 and deduce that

max
x∈[a,b]n

f(x) = max
x∈{a,b}n

f(x),

where x = (x1, . . . , xn) ∈ R
n. Now, we determine max

x∈{a,b}n

f(x). Without loss of

generality, we may assume that

x1 = x2 = · · · = xk = a,

xk+1 = xk+2 = · · · = xn = b.

Hence,

max
x∈{a,b}n

f(x) = max
k∈{1,...,n}

(ka + (n − k)b)

(

k

a
+

n − k

b

)

.

We consider the function g : (0, ∞) → R, defined by

g(k) = (ka + (n − k)b)

(

k

a
+

n − k

b

)

.

A short computation yields

g(k) = −(b − a)2

ab
k2 +

n(b − a)2

ab
k + n2.

One can easily deduce that the maximum of g is obtained when x = n
2
. Moreover,

the restriction of g to the set {1, . . . , n} obtains its maximum value at k = n
2

if n is

even and k = n−1
2

or k = n+1
2

is n is odd. On the other hand, take note that

g

(

n

2

)

=
(a + b)2

4ab
n2, for n even,

g

(

n − 1

2

)

= g

(

n + 1

2

)

=
(a + b)2

4ab
n2 − (b − a)2

4ab
, for n odd.

This concludes our proof. �

Now we focus on the statement and proof of Khanin’s inequality.
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Theorem 3.5 (Khanin). Let x1, . . . , xn, a, b ∈ R such that xi ∈ [a, b] for all i = 1, n.

Then

x2
1 + · · · + x2

n

n
−
(

x1 + · · · + xn

n

)2

≤(b − a)2

4
, for n even,(3.1)

x2
1 + · · · + x2

n

n
−
(

x1 + · · · + xn

n

)2

≤
(

b − a

4

)2

− (b − a)2

4n2
, for n odd.

Proof. Let f : [a, b]n → R, given by

f(x1, . . . , xn) =
x2

1 + · · · + x2
n

n
−
(

x1 + · · · + xn

n

)2

.

Note that

∂2f

∂x2
i

=
2(n − 1)

n2
> 0.

Now, apply Theorem 2.1 and deduce that

x2
1 + · · · + x2

n

n
−
(

x1 + · · · + xn

n

)2

≤ ka2 + (n − k)b2

n
−
(

ka + (n − k)b

n

)2

.

Further, we consider the function g : (0, ∞) → R, given by

g(k) =
ka2 + (n − k)b2

n
−
(

ka + (n − k)b

n

)2

.

It can be easily seen that the restriction of g, i.e., g : {1, 2, . . . , n} → R obtains its
maximum value when k = n

2
if n is even and when k = n−1

2
or k = n+1

2
if n is odd.

Taking note that

g

(

n

2

)

=
(b − a)2

4
, for n even,

g

(

n − 1

2

)

=g

(

n + 1

2

)

=

(

b − a

4

)2

− (b − a)2

4n2
, for n odd,

we obtain relations (3.1).
This completes our proof. �
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SOME REFINEMENTS OF THE NUMERICAL RADIUS

INEQUALITIES VIA YOUNG INEQUALITY

Z. HEYDARBEYGI1 AND M. AMYARI1∗

Abstract. In this paper, we get an improvement of the Hölder-McCarthy operator
inequality in the case when r ≥ 1 and refine generalized inequalities involving powers
of the numerical radius for sums and products of Hilbert space operators.

1. Introduction

Let (H, 〈·, ·〉) be a complex Hilbert space and B(H) denote the C∗-algebra of all
bounded linear operators on H. Recall that for A ∈ B(H), W (A) = {〈Ax, x〉 :
x ∈ H, ‖x‖ = 1}, w(A) = sup{|λ| : λ ∈ W (A)} and ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1},

denote the numerical range, the numerical radius and the usual operator norm of A,
respectively. Also an operator A ∈ B(H) is said to be positive if 〈Ax, x〉 > 0 for each
x ∈ H and, in this case, is denoted by A > 0.

It is well-known that W (A) is a convex subset of the complex plane that contains
the convex hull spectrum of A (see [4, p. 7]). It is known that w(·) defines a norm on
B(H), which is equivalent to the usual operator norm ‖ · ‖ [4, Theorem 1.3-1]. For
A ∈ B(H), we have

1

2
‖A‖ ≤ w(A) ≤ ‖A‖.(1.1)

The inequalities in (1.1) have been improved by many mathematicians, (see [2, 7, 10,
13,17–19]).
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Kittaneh in [7, 8] showed that if A ∈ B(H), then

w(A) ≤ 1

2
‖|A| + |A∗|‖ ≤ 1

2
(‖A‖ + ‖A2‖ 1

2 ),(1.2)

where |A|2 = A∗A, and

1

4
‖A∗A + AA∗‖ ≤ w2(A) ≤ 1

2
‖A∗A + AA∗‖.(1.3)

He also obtained the following generalizations of the first inequality in (1.2) and the
second inequality in (1.3):

wr(A) ≤ 1

2

∥

∥

∥|A|2λr + |A∗|2(1−λ)r
∥

∥

∥(1.4)

and

w2r(A) ≤
∥

∥

∥λ|A|2r + (1 − λ)|A∗|2r
∥

∥

∥ ,(1.5)

where 0 < λ < 1, and r ≥ 1 in [9, Theorem 1, Theorem 2], respectively.
In Section 2 of this paper, we get an improvement of the Hölder-McCarthy operator

inequality in the case when r ≥ 1 and refine inequality (1.4) for r ≥ 1 and inequality
(1.5) for r ≥ 2, see ([3, 12, 16]). In addition, we establish some improvements of norm
and numerical radius inequalities for sums and powers of operators acting on a Hilbert
space in Section 3. For recent work on the numerical radius inequalities, we refer the
reader to [13–15,18].

2. Refinements of the Hölder-McCarthy Operator Inequality

In this section, we obtain an improvement of Hölder-McCarthy’s operator inequality
in the case when r ≥ 1 and get some improvements of numerical radius inequalities
for Hilbert space operators. The following lemmas are essential for our investigation.
The first lemma is a simple consequence of the Jensen inequality for convex function
f(t) = tr, where r ≥ 1.

Lemma 2.1. ([13, Lemma 2.1]). Let a, b ≥ 0 and 0 ≤ λ ≤ 1. Then

aλb1−λ ≤ λa + (1 − λ)b ≤ (λar + (1 − λ)br)
1

r , for r ≥ 1.

The second lemma is known as a generalized mixed Schwarz inequality.

Lemma 2.2. ([8, Lemma 5]). Let A ∈ B(H) and x, y ∈ H be two vectors and

0 ≤ λ ≤ 1. Then

|〈Ax, y〉|2 ≤ 〈|A|2λx, x〉〈|A∗|2(1−λ)y, y〉.
The third lemma follows from the spectral theorem for positive operators and the

Jensen inequality and is known as the Hölder McCarthy inequality.

Lemma 2.3. ([13, Lemma 2.2]). Suppose that A is a positive operator in B(H) and

x ∈ H is any unit vector. Then

(i) 〈Ax, x〉r ≤ 〈Arx, x〉 for r ≥ 1;
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(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r for 0 < r ≤ 1.

The last lemma is an improvement of Hölder-McCarthy’s inequality.

Lemma 2.4. ([6, Corollary 3.1]). Let A be a positive operator on H. If x ∈ H is a

unit vector, then

〈Ax, x〉r ≤ 〈Arx, x〉 − 〈|A − 〈Ax, x〉|rx, x〉, for r ≥ 2.

The next theorem is a refinement of inequality (1.5) for r ≥ 2.

Theorem 2.1. If A ∈ B(H), 0 < λ < 1 and r ≥ 2, then

w2r(A) ≤ ‖λ|A|2r + (1 − λ)|A∗|2r‖ − inf
‖x‖=1

ζ(x),

where

ζ(x) =
〈(

λ
∣

∣

∣|A|2 − 〈|A|2x, x〉
∣

∣

∣

r
+ (1 − λ)

∣

∣

∣|A∗|2 − 〈|A∗|2x, x〉
∣

∣

∣

r)

x, x
〉

.

Proof. Let x ∈ H be a unit vector.

|〈Ax, x〉|2 ≤ 〈|A|2λx, x〉〈|A∗|2(1−λ)x, x〉 (by Lemma 2.2)

≤ 〈|A|2x, x〉λ〈|A∗|2x, x〉1−λ (by Lemma 2.3 (ii))

≤ (λ〈|A|2x, x〉r + (1 − λ)〈|A∗|2x, x〉r)
1

r (by Lemma 2.1)

≤
(

λ
(

〈|A|2rx, x〉 −
〈∣

∣

∣|A|2 − 〈|A|2x, x〉
∣

∣

∣

r
x, x

〉)

+ (1 − λ)
(

〈|A∗|2rx, x〉 −
〈∣

∣

∣|A∗|2 − 〈|A∗|2x, x〉
∣

∣

∣

r
x, x

〉)

)
1

r

(by Lemma 2.4).

Hence,

|〈Ax, x〉|2r ≤ λ
(

〈|A|2rx, x〉 −
〈∣

∣

∣|A|2 − 〈|A|2x, x〉
∣

∣

∣

r
x, x

〉)

+ (1 − λ)
(

〈|A∗|2rx, x〉 −
〈∣

∣

∣|A∗|2 − 〈|A∗|2x, x〉
∣

∣

∣

r
x, x

〉)

.

By taking supremum over x ∈ H with ‖x‖ = 1, we get the desired relation. �

Recall that the Young inequality says that if a, b ≥ 0 and λ ∈ [0, 1], then

(1 − λ)a + λb ≥ a1−λbλ.

Many mathematicians improved the Young inequality and its reverse. Kober [11],
proved that for a, b > 0

(2.1) (1 − λ)a + λb ≤ a1−λbλ + (1 − λ)(
√

a −
√

b)2, λ ≥ 1.

By using (2.1), we obtain a refinement of the Hölder-McCarthy inequality.
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Lemma 2.5. Let A ∈ B (H) be a positive operator. Then

(2.2) 〈Ax, x〉λ



1 + 2(λ − 1)



1 − 〈A 1

2 x, x〉
〈Ax, x〉 1

2







 ≤ 〈Aλx, x〉,

for any λ ≥ 1 and x ∈ H with ‖x‖ = 1.

Proof. Applying functional calculus for the positive operator A in (2.1), we get

(1 − λ)aI + λA ≤ a1−λAλ + (1 − λ)
(

aI + A − 2
√

aA
1

2

)

.

The above inequality is equivalent to

(2.3) (1 − λ)a + λ〈Ax, x〉 ≤ a1−λ〈Aλx, x〉 + (1 − λ)
(

a + 〈Ax, x〉 − 2
√

a〈A 1

2 x, x〉
)

,

for any x ∈ H with ‖x‖ = 1. By substituting a = 〈Ax, x〉 in (2.3), we get

〈Ax, x〉 ≤ 〈Ax, x〉1−λ〈Aλx, x〉 + 2(1 − λ)〈Ax, x〉


1 − 〈A 1

2 x, x〉
〈Ax, x〉 1

2



 .

By rearranging terms, we get the desired result (2.2). �

Note that by the Hölder-McCarthy inequality, 1 ≥ 1 − 〈A
1

2 x,x〉

〈Ax,x〉
1

2

≥ 0. Hence, the

following chain of inequalities are true:

〈Ax, x〉λ ≤ 〈Ax, x〉λ



1 + 2(λ − 1)



1 − 〈A 1

2 x, x〉
〈Ax, x〉 1

2







 ≤ 〈Aλx, x〉,

where A is positive and λ ≥ 1. One can easily see that

1 −
〈

A
1

2 x, x
〉

〈Ax, x〉
1

2

≥ inf







1 −
〈

A
1

2 x, x
〉

〈Ax, x〉
1

2

: x ∈ H, ‖x‖ = 1







.

So,
(2.4)

1 + 2 (λ − 1)



1 −
〈

A
1

2 x, x
〉

〈Ax, x〉
1

2



 ≥ 1 + 2 (λ − 1) inf







1 −
〈

A
1

2 x, x
〉

〈Ax, x〉
1

2

: x ∈ H, ‖x‖ = 1







.

If we denote the right-hand side of inequality (2.4) by ζ(x), then from inequality (2.2),
we get

(2.5) 〈Ax, x〉λ ≤ 1

ζ
〈Aλx, x〉, λ ≥ 1.

The following theorem is an improvement of inequality (1.4).

Theorem 2.2. Let A ∈ B(H) be an invertible operator, 0 < λ < 1 and r > 1. If for

each unit vector x ∈ H

ζ(x) =

(

1 + 2(r − 1)

(

1 − 〈|A|λx, x〉
〈|A|2λx, x〉 1

2

))
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and

γ(x) =

(

1 + 2(r − 1)

(

1 − 〈|A∗|(1−λ)x, x〉
〈|A∗|2(1−λ)x, x〉 1

2

))

,

then

wr(A) ≤ 1

2µ

∥

∥

∥|A|2λr + |A∗|2(1−λ)r
∥

∥

∥ ,

where ζ = inf‖x‖=1ζ(x), γ = inf‖x‖=1γ(x) and µ = min{ζ, γ}.

Proof. Let x ∈ H be a unit vector. Then

|〈Ax, x〉| ≤
〈

|A|2λ
x, x

〉
1

2

〈

|A∗|2(1−λ)
x, x

〉
1

2

≤




〈

|A|2λ
x, x

〉r
+
〈

|A∗|2(1−λ)
x, x

〉r

2





1

r

≤
(

1

2

(

1

ζ

〈

|A|2rλ
x, x

〉

+
1

γ

〈

|A∗|2r(1−λ)
x, x

〉r
))

1

r

.

Hence,

|〈Ax, x〉|r ≤ 1

2µ

〈

(|A|2λr + |A∗|2(1−λ)r)x, x
〉

.

By taking supremum over x ∈ H with ‖x‖ = 1, we get the desired relation. �

3. Inequalities for Sums and Products of Operators

In this section, we recall that some general result for the product of operators
from [5].

If A, B ∈ B(H), then

w(AB) ≤ 4w(A)w(B).

If A is an isometry and AB = BA, or a unitary operator that commutes with another
operator B, then

w(AB) ≤ w(B),

(see [4, Corollary 2.5-3]). Dragomir in [1, Theorem 2] showed that for A, B ∈ B(H),
any λ ∈ (0, 1) and r ≥ 1

|〈Ax, By〉|2r ≤ λ〈(A∗A)
r

λ x, x〉 + (1 − λ)〈(B∗B)
r

1−λ y, y〉,(3.1)

where x, y ∈ H, with ‖x‖ = ‖y‖ = 1.
Let A, B ∈ B(H). The Schwarz inequality states that

|〈Ax, By〉|2 ≤ 〈Ax, Ax〉〈By, By〉, for all x, y ∈ H.

We get the following refinements of inequality (3.1) for r ≥ 2.
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Lemma 3.1. For A, B ∈ B(H), 0 < λ < 1 and r ≥ 2

|〈Ax, By〉|2r ≤λ〈(A∗A)
r

λ x, x〉 − λ
〈∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
x, x

〉

+ (1 − λ)

× 〈(B∗B)
r

1−λ y, y〉 − (1 − λ)
〈∣

∣

∣(B∗B)
1

1−λ − 〈(B∗B)
1

1−λ y, y〉
∣

∣

∣

r

y, y
〉

,(3.2)

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1.

Proof. For any unit vectors x, y ∈ H, we have

|〈(B∗A)x, y〉|2 ≤〈(A∗A)x, x〉〈(B∗B)y, y〉 (by Schwarz inequality)

=〈((A∗A)
1

λ )λx, x〉〈((B∗B)
1

1−λ )1−λy, y〉
≤〈(A∗A)

1

λ x, x〉λ〈(B∗B)
1

1−λ y, y〉1−λ (by Lemma 2.3)

≤(λ〈(A∗A)
1

λ x, x〉r + (1 − λ)〈(B∗B)
1

1−λ y, y〉r)
1

r (by Lemma 2.1)

≤
(

λ〈(A∗A)
r

λ x, x〉 − λ
〈∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
x, x

〉

+ (1 − λ)〈(B∗B)
r

1−λ y, y〉

− (1 − λ)
〈∣

∣

∣(B∗B)
1

1−λ − 〈(B∗B)
1

1−λ y, y〉
∣

∣

∣

r

y, y
〉

)
1

r

(by Lemma 2.4).

Therefore,

|〈Ax, By〉|2r ≤λ〈(A∗A)
r

λ x, x〉 − λ
〈∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
x, x

〉

+ (1 − λ)〈(B∗B)
r

1−λ y, y〉
− (1 − λ)

〈∣

∣

∣(B∗B)
1

1−λ − 〈(B∗B)
1

1−λ y, y〉
∣

∣

∣

r

y, y
〉

,

for any x, y ∈ H, with ‖x‖ = ‖y‖ = 1. �

Theorem 3.1. Let A, B ∈ B(H), 0 < λ < 1 and r ≥ 2. Then

‖B∗A‖2r ≤ λ‖(A∗A)
r

λ ‖ + (1 − λ)‖(B∗B)
r

1−λ ‖ − inf
‖x‖=1

ζ(x) − inf
‖y‖=1

ζ(y),(3.3)

where

ζ(x) =λ
〈∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
x, x

〉

,

ζ(y) =(1 − λ)
〈∣

∣

∣(B∗B)
1

1−λ − 〈(B∗B)
1

1−λ y, y〉
∣

∣

∣

r

y, y
〉

.

In addition,

w2r(B∗A) ≤ ‖λ(A∗A)
r

λ + (1 − λ)(B∗B)
r

1−λ ‖ − inf
‖x‖=1

γ(x),(3.4)

where

γ(x) =
〈(

λ
∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
+ (1 − λ)

∣

∣

∣(B∗B)
1

1−λ − 〈(B∗B)
1

1−λ x, x〉
∣

∣

∣

r)

x, x
〉

.
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Proof. By taking supremum over x, y ∈ H with ‖x‖ = ‖y‖ = 1 in inequality (3.2), we
get the required inequality (3.3).

Putting x = y in inequality (3.2), we obtain the numerical radius inequality (3.4).
�

Corollary 3.1. For A, B ∈ B(H), 0 < λ < 1 and r ≥ 2, the following inequalities

hold:

|〈Ax, y〉|2r ≤ λ〈(A∗A)
r

λ x, x〉 − λ
〈∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
x, x

〉

+ (1 − λ),

|〈A2x, y〉|2r ≤ λ〈(A∗A)
r

λ x, x〉 − λ
〈∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
x, x

〉

+ (1 − λ)〈(AA∗)
r

1−λ y, y〉 − (1 − λ)
〈∣

∣

∣(AA∗)
1

1−λ − 〈(AA∗)
1

1−λ y, y〉
∣

∣

∣

r

y, y
〉

,

where x, y ∈ H, ‖x‖ = ‖y‖ = 1.

Corollary 3.2. For A, B ∈ B(H), 0 < λ < 1 and r ≥ 2, the following norm

inequalities and numerical radius inequalities hold:

(i) ‖A‖2r ≤ λ‖(A∗A)
r

λ ‖ + (1 − λ) − inf
‖x‖=1

ζ(x);

(ii) ‖A2‖2r ≤ λ‖(A∗A)
r

λ ‖ + (1 − λ)‖(AA∗)
r

1−λ ‖ − inf
‖x‖=1

ζ(x) − inf
‖y‖=1

ζ(y);

(iii) w2r(A) ≤ ‖λ(A∗A)
r

λ + (1 − λ)I‖ − inf
‖x‖=1

ζ(x), where

ζ(x) =λ
〈∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
x, x

〉

,

ζ(y) =(1 − λ)
〈∣

∣

∣(AA∗)
1

1−λ − 〈(AA∗)
1

1−λ y, y〉
∣

∣

∣

r

y, y
〉

;

(iv) w2r(A2) ≤ ‖λ(A∗A)
r

λ + (1 − λ)(AA∗)
r

1−λ ‖ − inf
‖x‖=1

ζ(x), where

ζ(x) =
〈(

λ
∣

∣

∣(A∗A)
1

λ − 〈(A∗A)
1

λ x, x〉
∣

∣

∣

r
+ (1 − λ)

∣

∣

∣(AA∗)
1

1−λ − 〈(AA∗)
1

1−λ x, x〉
∣

∣

∣

r)

x, x
〉

.

We are going to establish a refinement of a numerical inequality for Hilbert space
operators. We need the following lemmas. The first lemma is a generalization of the
mixed Schwarz inequality.

Lemma 3.2. ([17, Lemma 2.1]). Let A ∈ B(H) and f and g be nonnegative functions

on [0, ∞) which are continuous and satisfy the relation f(t)g(t) = t for all t ∈ [0, ∞).
Then

|〈Ax, y〉| ≤ ‖f(|A|)x‖‖g(|A∗|)y‖,

for all x, y ∈ H.

The next lemma is a consequence of the convexity of the function f(t) = tr, r ≥ 1.

Lemma 3.3. ([17, Lemma 2.3]). Let ai, i = 1, 2, . . . , n, be positive real numbers.

Then
(

n
∑

i=1

ai

)r

≤ nr−1
n
∑

i=1

ar
i , for r ≥ 1.
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The following theorem is a generalization of the inequalities (1.3) and (1.4).

Theorem 3.2. ([17, Lemma 2.5]). Let Ai, Xi, Bi ∈ B(H), i = 1, 2, . . . , n, and let f

and g be nonnegative functions on [0, ∞) which are continuous and satisfy the relation

f(t)g(t) = t for all t ∈ [0, ∞). Then

wr

(

n
∑

i=1

A∗
i XiBi

)

≤ nr−1

2

∥

∥

∥

∥

∥

n
∑

i=1

((B∗
i f 2(|Xi|)Bi)

r + (A∗
i g

2(|X∗
i |)Ai)

r)

∥

∥

∥

∥

∥

, r ≥ 1.

We refine the above inequality for r ≥ 1 by applying a refinement of the Hölder-
McCarthy inequality. To achieve our next result, we utilize the strategy of [17,
Lemma 2.5].

Theorem 3.3. Let Ai, Xi, Bi ∈ B(H), i = 1, 2, . . . , n, be invertible operators and

let f and g be nonnegative functions on [0, ∞) which are continuous and satisfy in

f(t)g(t) = t for all t ∈ [0, ∞). Then, for all r > 1,

wr

(

n
∑

i=1

A∗
i XiBi

)

≤ nr−1

2µ

∥

∥

∥

∥

∥

n
∑

i=1

(B∗
i f 2(|Xi|)Bi)

r + (A∗
i g

2(|X∗
i |)Ai)

r

∥

∥

∥

∥

∥

,

where µ = min{ζ, γ}, ζ = inf







1 + 2 (r − 1)



1 −
〈

(B∗

i
f2(|Xi|)Bi)

1

2 x,x

〉

〈(B∗

i
f2(|Xi|)Bi)x,x〉 1

2



 : ‖x‖ = 1







and γ = inf







1 + 2 (r − 1)



1 −
〈

(A∗

i
g2(|X∗

i
|)Ai)

1

2 x,x

〉

〈(A∗

i
g2(|X∗

i
|)Ai)x,x〉 1

2



 : ‖x‖ = 1







.

Proof. For every unit vector x ∈ H, we have
∣

∣

∣

∣

∣

〈(

n
∑

i=1

A∗
i XiBi

)

x, x

〉∣

∣

∣

∣

∣

r

=

∣

∣

∣

∣

∣

n
∑

i=1

〈(A∗
i XiBi)x, x〉

∣

∣

∣

∣

∣

r

≤
(

n
∑

i=1

|〈A∗
i XiBix, x〉|

)r

=

(

n
∑

i=1

|〈XiBix, Aix〉|
)r

≤
(

n
∑

i=1

〈f 2(|Xi|)Bix, Bix〉 1

2 〈g2(|X∗
i |)Aix, Aix〉 1

2

)r

(by Lemma 3.2)

≤nr−1
n
∑

i=1

〈

B∗
i f 2(|Xi|)Bix, x

〉
r

2

〈

A∗
i g

2(|X∗
i |)Aix, x

〉
r

2

(by Lemma 3.3)

=nr−1
n
∑

i=1

(

〈B∗
i f 2(|Xi|)Bix, x〉r

)
1

2

(

〈A∗
i g

2(|X∗
i |)Aix, x〉r

)
1

2

≤nr−1

2

(

n
∑

i=1

(

〈B∗
i f 2(|Xi|)Bix, x〉r + 〈A∗

i g
2(|X∗

i |)Aix, x〉r

))

(by AM − GM)
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≤nr−1

2

(

n
∑

i=1

(

1

ζ(x)
〈(B∗

i f 2(|Xi|)Bi)
rx, x〉 +

1

γ(x)
〈(A∗

i g
2(|X∗

i |)Ai)
rx, x〉

))

(by (2.5))

≤nr−1

2µ

n
∑

i=1

〈(

(B∗
i f 2(|Xi|)Bi)

r + (A∗
i g

2(|X∗
i |)Ai)

r

)

x, x

〉

=
nr−1

2µ

〈

n
∑

i=1

(

(B∗
i f 2(|Xi|)Bi)

r + (A∗
i g

2(|X∗
i |)Ai)

r

)

x, x

〉

.

Therefore, by taking supremum over x ∈ H with ‖x‖ = 1, we have the desired
relation. �

If we assume that f(t) = tλ and g(t) = t1−λ, 0 < λ < 1, in Theorem 3.3, then we
get the following corollary.

Corollary 3.3. Let Ai, Xi, Bi ∈ B(H), i = 1, 2, . . . , n, be invertible operators, r > 1
and 0 < λ < 1. Then

wr

(

n
∑

i=1

A∗
i XiBi

)

≤ nr−1

2µ

∥

∥

∥

∥

∥

n
∑

i=1

(B∗
i |Xi|2λBi)

r + (A∗
i |X∗

i |2(1−λ)Ai)
r

∥

∥

∥

∥

∥

,

where µ = min {ζ, γ},

ζ = inf















1 + 2 (r − 1)









1 −

〈

(

B∗
i |Xi|2λ

Bi

)
1

2

x, x

〉

〈(

B∗
i |Xi|2λ

Bi

)

x : x
〉

1

2









: ‖x‖ = 1















,

γ = inf















1 + 2 (r − 1)









1 −

〈

(

A∗
i |Xi|2(1−λ)

Ai

)
1

2

x, x

〉

〈(

A∗
i |Xi|2(1−λ)

Ai

)

x, x
〉

1

2









: ‖x‖ = 1















.

In particular,

w

(

n
∑

i=1

A∗
i XiBi

)

≤ 1

2

∥

∥

∥

∥

∥

n
∑

i=1

(B∗
i |Xi|Bi + A∗

i |X∗
i |Ai)

∥

∥

∥

∥

∥

.

Setting Ai = Bi = I, i = 1, 2, · · · , n, in Theorem 3.3, the following inequalities for
sums of operators are obtained.

Corollary 3.4. Let Xi ∈ B(H), i = 1, 2, . . . , n, be invertible operators and f and g be

continuous nonnegative functions on [0, ∞), such that f(t)g(t) = t for all t ∈ [0, ∞).
Then, for r > 1,

wr

(

n
∑

i=1

Xi

)

≤ nr−1

2µ

∥

∥

∥

∥

∥

n
∑

i=1

(f 2r(|Xi|) + g2r(|X∗
i |))

∥

∥

∥

∥

∥

,
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where µ = min{ζ, γ},

ζ = inf







1 + 2 (r − 1)



1 − 〈f(|Xi|)x, x〉
〈f 2(|Xi|)x, x〉

1

2



 : ‖x‖ = 1







,

γ = inf







1 + 2 (r − 1)



1 − 〈g(|X∗
i |)x, x〉

〈g2(|X∗
i |)x, x〉

1

2



 : ‖x‖ = 1







.

In particular,

wr

(

n
∑

i=1

Xi

)

≤ nr−1

2µ

∥

∥

∥

∥

∥

n
∑

i=1

|Xi|2λr + |X∗
i |2(1−λ)r

∥

∥

∥

∥

∥

, λ ∈ (0, 1),

where µ = min{ζ, γ},

ζ = inf







1 + 2 (r − 1)



1 −
〈

|Xi|λx, x
〉

〈|Xi|2λx, x〉
1

2



 : ‖x‖ = 1







,

γ = inf







1 + 2 (r − 1)



1 −
〈

|X∗
i |(1−λ)x, x

〉

〈|X∗
i |2(1−λ)x, x〉

1

2



 : ‖x‖ = 1







.

If λ = 1
2

in above inequality, we get

wr

(

n
∑

i=1

Xi

)

≤ nr−1

2µ

∥

∥

∥

∥

∥

n
∑

i=1

|Xi|r + |X∗
i |r
∥

∥

∥

∥

∥

, r ≥ 1,

where µ = min{ζ, γ},

ζ = inf







1 + 2 (r − 1)



1 −
〈

|Xi|
1

2 x, x
〉

〈|Xi|x, x〉
1

2



 : ‖x‖ = 1







,

γ = inf







1 + 2 (r − 1)



1 −
〈

|X∗
i | 1

2 x, x
〉

〈|X∗
i |x, x〉

1

2



 : ‖x‖ = 1







.

Letting n = 1 in inequality (3.3), we obtain

wr(X) ≤ 1

2µ
‖|X|r + |X∗|r‖ ,

where µ = min{ζ, γ},

ζ = inf







1 + 2 (r − 1)



1 −
〈

|X| 1

2 x, x
〉

〈|X|x, x〉
1

2



 : ‖x‖ = 1







,

γ = inf







1 + 2 (r − 1)



1 −
〈

|X∗| 1

2 x, x
〉

〈|X∗|x, x〉
1

2



 : ‖x‖ = 1







.

Next, we present some numerical radius inequalities for products of operators. Put
Xi = I, i = 1, 2, . . . , n, in Theorem 3.3, to get the following.
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Corollary 3.5. Let Ai, Bi ∈ B(H), i = 1, 2, . . . , n, be invertible operators and r ≥ 1.

Then

wr

(

n
∑

i=1

A∗
i Bi

)

≤ nr−1

2µ

∥

∥

∥

∥

∥

n
∑

i=1

|Bi|2r + |Ai|2r

∥

∥

∥

∥

∥

,

where µ = min{ζ, γ},

ζ = inf







1 + 2 (r − 1)



1 − 〈|Bi|x, x〉
〈|Bi|x, x〉

1

2



 : ‖x‖ = 1







,

γ = inf







1 + 2 (r − 1)



1 − 〈|Ai|x, x〉
〈|Ai|x, x〉

1

2



 : ‖x‖ = 1







.

In particular,

w

(

n
∑

i=1

A∗
i Bi

)

≤ 1

2

∥

∥

∥

∥

∥

n
∑

i=1

(B∗
i Bi + A∗

i Ai)

∥

∥

∥

∥

∥

.

Remark 3.1. If we set n = 1 in Corollary 3.5, then

wr(A∗B) ≤ 1

2µ

∥

∥

∥

∥

∥

(B∗B)r + (A∗A)r

∥

∥

∥

∥

∥

,

where µ = min{ζ, γ},

ζ = inf







1 + 2 (r − 1)



1 −
〈

(B∗B)
1

2 x, x
〉

〈(B∗B)x, x〉
1

2



 : ‖x‖ = 1







,

γ = inf







1 + 2 (r − 1)



1 −
〈

(A∗A)
1

2 x, x
〉

〈(A∗A)x, x〉
1

2



 : ‖x‖ = 1







.
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APPROXIMATE SOLUTION OF BRATU DIFFERENTIAL

EQUATIONS USING TRIGONOMETRIC BASIC FUNCTIONS

BAHRAM AGHELI

Abstract. In this paper, I have proposed a method for finding an approximate
function for Bratu differential equations (BDEs), in which trigonometric basic func-
tions are used. First, by defining trigonometric basic functions, I define the values
of the transformation function in relation to trigonometric basis functions (TBFs).
Following that, the approximate function is defined as a linear combination of trigono-
metric base functions and values of transform function which is named trigonometric
transform method (TTM), and the convergence of the method is also presented. To
get an approximate solution function with discrete derivatives of the solution func-
tion, we have determined the approximate solution function which satisfies in the
Bratu differential equations (BDEs). In the end, the algorithm of the method is
elaborated with several examples. In one example, I have presented an absolute
error comparison of some approximate methods.

1. Introduction

A problem of the non-linear eigenvalue problem in n dimensions is the Bratu
differential equations (BDEs) as follows [13]

(1.1)
n
∑

i=1

(

∂

∂ ti

)2

Φ (t1, t2, . . . , tn) + λ exp(Φ (t1, t2, . . . , tn)) = 0,

in which |xi| ≤ 1 for i = 1, 2, . . . , n, with the following boundary conditions as |xi| = 1,

(1.2) Φ (t1, t2, . . . , tn) = 0.

The main objective in this paper is to offer a simple method in which it is possible
to apply trigonometric transform method (TTM) to tackle with the one-dimensional

Key words and phrases. Trigonometric transform, Bratu differential equations, basic functions.
2010 Mathematics Subject Classification. Primary: 33D52. Secondary: 35A24, 65C30.
DOI 10.46793/KgJMat2102.203A
Received: May 29. 2018.
Accepted: November 06, 2018.
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(1D) BDEs of the following form

u′′(t) + λ exp(u(t)) = 0, 0 < t ≤ T,(1.3)

u(0) = u0, ut(0) = u′

0,(1.4)

where λ > 0 and t ∈ R are constant functions (see [12,23]).
The analytic solution for BDEs is presented as follows:

u(t) = log





cosh
(

φ

2

(

t− 1
2

))

cosh
(

φ

4

)





−2

,

in which φ is the solution of φ =
√

2λ cosh
(

φ

4

)

(see [12, 23]). Whereas λǫ =

3.513830719, the BDEs has

• one solutions when λ = λǫ;
• two solutions if λ < λǫ;
• no solution when λ > λǫ.

Researchers and scholars are requested to check papers that have been introduced
to get a better grasp of thoroughgoing introduction about BDEs and its history
in [10,18].

On the importance and motivation for Bratu differential equation, it should noted
that it has a key role in many of the physical phenomena, chemical models and other
sciences. Such applications include the model of thermal reaction process, the fuel
ignition model of the thermal combustion theory, the Chandrasekhar model of the
expansion of the universe, the radiative heat transfer nanotechnology and the chemical
reaction theory (see [9, 10,12,18]).

As another instance, mathematical modeling in chemistry for the electro-spinning
process is related to BDEs via thermo-electro-hydrodynamics balance equations.
Colantoni and his co-author in [5] represented a model that is the mono-dimensional
Bratu equation as follows:

(1.5) u′′(t)− λ exp(u(t)) = 0,

featuring λ = 18 E2(I−r2k E)2

ρ2 r4 , in which

• r is the radius of the jet at axial coordinate X in the Figure 1;
• I is the electrical current intensity;
• E is the electric area in the axial direction;
• ρ is the material density;
• k is a fixed value which is only dependent on temperature with regard to

incompressible polymer.

Many researchers have used numerical methods for the purpose of solving the BDEs.
We can refer to a number of familiar methods, including Homotopic perturbation
method [8], Finite difference [19], Optimal homotopy asymptotic method [6], Wavelet
method [17], Laplace transform decomposition method [15], B-splines method [4],
Variational iteration technique [7], Adomian decomposition method [23], Differential
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Figure 1. Electro-spinning process setup.

quadrature method [21], Lie-group shooting method [1], Reproducing kernel Hilbert
space method [2], Pseudo-spectral collocation method [3] and [11,12,14,16,22].

This paper is organized as what follows: in Section 2, discretization of the derivative
is given. In Section 3, we have expressed the trigonometric Basic functions (TBFs).
In Section 4, a description of the new approach that is named trigonometric transform
method (TTM) is presented. Some numerical examples are offered in Section 5. And
conclusions are drawn in Section 6.

2. Discretization of the Derivative

In this section, we introduce discretization of the derivative of a function. The
approximation of derivatives by forward differences is one of the most basic tools
in finite difference methods for the approximate solution of differential equations,
especially initial value problems. The n-th order forward difference is given by

u(n)(t) ≈ 1

hn

n
∑

i=0

(−1)i

(

n

i

)

u ((n− i)h + t) , n ∈ N.

Depending on the application, the spacing h may be a variable or a fixed. In this
paper, we consider τ = tj+1 − tj and tj = a + j τ for j = 0, 1, 2, . . . . For second order
derivative we have:

u′′(tk+1) ≈
1

h2
(u(tj+1)− 2u(tj) + u(tj−1)),(2.1)

in which u(t0) and u′(t0) are known and u(t−1) = u(0)− τ ut(0).

3. Trigonometric Basic Functions (TBFs)

In this section, we introduce the trigonometric basis functions and properties that
are used in the main sections of the paper to approximate the function of the solution.

Definition 3.1. Presuming that for n ≥ 1, a = t0 < t1 < · · · < tn−1 < tn = b be
specified nodes, we express that basic functions T0, T1, . . . , Tn are defined on [a, b]
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with their trigonometric functions T0(t), T1(t), . . . , Tn(t), as follows:

T0(t) =

{

0.5
(

1 + cos π
h0

(t− t0)
)

, t0 ≤ t ≤ t1,

0, otherwise,

Tk(t) =















0.5
(

1 + cos π
hk−1

(t− tk)
)

, tk−1 ≤ t ≤ tk,

0.5
(

1 + cos π
hk

(t− tk)
)

, tk ≤ t ≤ tk+1, k = 1, 2, 3, . . . , n− 1,

0, otherwise,

(3.1)

Tn(t) =

{

0.5
(

1 + cos π
hn−1

(t− tn)
)

, tn−1 ≤ t ≤ tn,

0, otherwise,

in which hk = tk+1 − tk for k = 0, 1, . . . , n− 1.

Remark 3.1. The trigonometric functions introduced in Definition 3.1 are the trigono-
metric basis functions (TBFs) in which the following properties are satisfied.

(1) Tk of [a, b] to [0, 1] is continuous,
n
∑

k=0
Tk(t) = 1 for all t ∈ [a, b] and Tk(tk) = 1,

k = 0, 1, 2, . . . , n.
(2) Tk(t) = 0 if t /∈ (tk−1, tk+1), for k = 1, 2, . . . , n− 1, T0(t) = 0 if t /∈ (t0, t1) and

Tn(t) = 0 if t /∈ (tn−1, tn).
(3) On subinterval [tk−1, tk+1] for k = 1, 2, . . . , n−1, Tk(t), certainly is an increasing

function on [tk−1, tk] and decreasing function on [tk, tk+1]. Basic functions are
called uniform as long as tk+1 − tk = h = b−a

n
and two additional properties

coincide.
(4) Tk(tk − t) = Tk(tk + t), for all t ∈ [0, h] and k = 1, 2, . . . , n− 1;
(5) Tk(t) = Tk−1(t − h) and Tk+1(t) = Tk(t − h), for k = 1, 2, . . . , n − 1 and

t ∈ [tk, tk+1].

Lemma 3.1 ([20]). Consider n ≥ 2, T0, T1, . . . , Tn, be the TBFs which builds on [a, b].
Therefore,

(3.2)
∫ t1

t0

T1(t)dt =
∫ tn

tn−1

Tn(t)dt =
h

2

and

(3.3)
∫ tk+1

tk−1

Tk(t)dt = h,

for k = 1, 2, . . . , n− 1, in which h is the distance between each of the two neighboring

nodes.

Definition 3.2. Let f be a function belonging to C[a, b] and Ti, i = 0, 1, . . . , n, be
the TBFs which buildup on [a, b]. We define the Fk that is the transform of function
f on [a, b] with respect to basic functions Tk given by

(3.4) Fk =

∫ b
a f(t)Tk(t)dt
∫ b

a Tk(t)dt
, k = 0, 1, 2, . . . , n.
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Definition 3.3. Let f be a function belonging to C[a, b] and Ti, i = 0, 1, . . . , n, be
the TBFs which buildup on [a, b] and Fk be transform of function f on [a, b] with
respect to basic functions Tk. Then

fn(t) =
n
∑

k=0

FkTk(t)

is approximate of function f on [a, b] with respect to TBFs.

Theorem 3.1 (Convergence). Let f be a uniformly continuous function on [a, b].
Thus, for any ǫ > 0, there exists nǫ such that for all n ≥ nǫ

(3.5) |f(t)− fnǫ
(t)| < ǫ.

Proof. f is a uniformly continuous function on [a, b]. Therefore,

(∀ǫ > 0) (∃δ = δ(ǫ)) (|x− t| < δ ⇒ |f(x)− f(t)| < ǫ (0 < δ < ǫ)).

For all ǫ > 0, we have

|f(t)− fn(t)| =
∣

∣

∣

∣

∣

n
∑

i=0

Ti(t)f(t)−
n
∑

i=0

FiTi(t)

∣

∣

∣

∣

∣

≤
n
∑

i=0

Ti(t) |f(t)− Fi| < ǫ.

It is sufficient to show that |f(t)− Fi| < ǫ. Let x, t ∈ [xi−1, xi+1], i = 1, 2, . . . , n− 1,
so that we can evaluate

|f(x)− Fi| =
∣

∣

∣

∣

∣

f(x)−
∫ b

a f(t)Ti(t)dt
∫ b

a Ti(t)dt

∣

∣

∣

∣

∣

≤
∫ xi+1

xi−1
Ti(t) |f(x)− f(t)| dt
∫ xi+1

xi−1
Ti(t)dt

< ǫ,

if and only if

δ < 2h < ǫ or h <
ǫ

2
.

Regarding h = b−a
n

, it is sufficient that nǫ > 2(b−a)
ǫ

. �

For description of fractional derivative, we have the following proposition.

Proposition 3.1. With substituting fn(t) =
n
∑

k=0
Fk Tk(t) in (2.1), we will have the

next equation for k = 0, 1, 2, . . . , n− 1:

f ′′

n(tk+1) ≈
1

h2
(Fj+1 − 2Fj + Fj−1).(3.6)

4. Description of the New Approach

Let solution of (1.3) be continuous on [0, b]. To gain approximate solution of u(x),
we divide [0, b] to n equal partition with step length τ :

(4.1) t0 = 0, ti = t0 + iτ, i = 0, 1, . . . , n, τ =
b

n
.

Considering the trigonometric functions with regard to Definition 3.1 on [0, b] and

Definition 3.3, we can gain approximate function u(x) by un(x) =
n
∑

k=0
Uk Tk(t). It is
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evident that for calculating un(t), t ∈ [0, b], we should calculate Uk, k = 0, 1, 2, . . . , n.
In order to gain the approximate solution of the problem (1.3), un(t) for points
t0, t1, . . . , tn must be satisfied in (1.3). Due to the boundary conditions (1.4), un(t0) :=
u(t0) = u0 and for other points t1, t2, . . . , tn, we have

u′′

n(tk+1) + λ exp(un(tk+1)) = 0, k = 0, 1, 2, . . . , n− 1,(4.2)

in which m− 1 < ρ ≤ m and m ∈ Z
+.

Using (3.6) and (4.2) converts to the following form for k = 0, 1, 2 . . . , n− 1:

1

h2
(Uk+1 − 2 Uk + Uk−1) + λ exp(Un(tk+1)) = 0,(4.3)

where U0 = u(0) and U−1 = u(0)− u′(0) are known initial conditions.
Now, using the boundary condition, we can calculate U1, U2, . . . , Un by the obtained

recursive equation (4.3) and then gain the approximate solution u(t) ≈ un(t) for (1.3).
In order to gain approximation of BDEs, an algorithm by this method is offered in

the subsequent algorithm.

Algorithm 1: An algorithm for approximation of BDEs
Step 1: Input n and b.
Step 2: Set τ ← b

n
.

Step 3: Locate tk ← k τ, k = 0, 1, 2, . . . , n.
Step 4: Choose TBFs Tk(t) toward k = 0, 1, 2, . . . , n.
Step 5: Set recursive equations

1

h2
(Uk+1 − 2 Uk + Uk−1) + λ exp(Un(tk+1)) = 0,

where U0 = u(0) and U−1 = u(0)− τu′(0).
Step 6: Calculate every Uk, k = 1, 2, . . . , n, of an equation of degree one.
Step 7: The approximate solution is

un(t) ≈
n
∑

k=0

UkTk(t).

5. Examples

Now that it is easier to understand trigonometric transform, a number of examples
will be given in this section and then will be calculated. These examples include BDEs.
In all these examples, software Mathematica 11 has been used for calculations and
graphs.

Example 5.1. We propose the BDEs for the first example [23]:

u′′(t)− 2 exp(u(t)) = 0, 0 ≤ t ≤ 1,(5.1)

with the precise solution u(t) = log((cos t)−2) and the primary conditions:

u(0) = 0, u′(0) = 0.(5.2)
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Following the TTM, according to what was formulated and presented in section 4 for
(5.1)–(5.2), we can calculate U1, U2, . . . , Un, and then gain the approximate solution
un(t) of (5.1).

In Table 1, we can see the estimated solutions for Eq.(5.1), which is derived for
various values of n applying TTM. Also, the estimated and approximate solutions are
illustrate in Figure 2.

Table 1. Approximate result of Example 5.1 with various values of n.

TTM

t n = 50 n = 500 n = 1000 n = 1500 Exact

0.0 0.0 0.0 0.0 0.0 0.0

0.2 0.0543317 0.0407728 0.0404703 0.0402949 0.0402695

0.4 0.193714 0.165493 0.164871 0.164416 0.164458

0.6 0.42896 0.385508 0.384559 0.383323 0.38393

0.8 0.799043 0.725417 0.723832 0.722438 0.722781

Figure 2. Figure for Example 5.1 exact and the approximation solutions.

Noteworthy in the values obtained in the Table 1 is that by increasing the amount
n, a more accurate answer for (5.1) can be achieved.

Example 5.2. Consider the BDEs for the second example [23]:

u′′(t) + π2 exp(−u(t)) = 0, 0 ≤ t ≤ 1,(5.3)

given that the primary conditions:

u(0) = 0, u′(0) = π.(5.4)

The unknown coefficient U1, U2, . . . , Un with due attention to the TTM, according
to Section 4 for (5.3)–(5.4) are calculated.

In Table 2 and in Figure 3, we can view the precise and approximate answers for
n = 1500 through applying TTM.

The approximate solution obtained by the proposed method corresponds to the
precise solution u(t) = log(1 + sin(πt)).

In Figure 3, we can see the estimated solutions toward n = 1500, which is derived
for various value of t applying TTM.
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Table 2. Approximate result of example 5.2.

t TTM Exact Absolute Error Relative Error
0.2 0.462127 0.46234 212.789 ×10−6 460.455 ×10−6

0.4 0.66794 0.668371 430.849 ×10−6 645.042 ×10−6

0.6 0.667754 0.668371 616.549 ×10−6 923.317 ×10−6

0.8 0.46142 0.46234 920.306 ×10−6 1.99451 ×10−3

Figure 3. Comparison of the approximate solution (5.3) with exact
solution for n = 1500.

Example 5.3. We offer the BDEs for the third example [23]:

u′′(t)− π2 exp(u(t)) = 0, 0 ≤ t ≤ 1,(5.5)

including the primary conditions:

u(0) = 0, u′(0) = −π.(5.6)

It can be seen in Table 3 and Figure 4 that solving equations with approximate
expression is calculated and displayed for n = 1500 and various values of t.

Table 3. Approximate result of Example 5.3.

t TTM Exact Absolute Error Relative Error
0.2 0.451242 0.451272 30.7122 ×10−6 68.0615 ×10−6

0.4 -0.227657 -0.226202 1.45505 ×10−3 6.39141 ×10−3

0.6 -0.576992 -0.573173 3.81849 ×10−3 6.61792×10−3

0.8 -0.699629 -0.69232 7.30951 ×10−3 10.4477 ×10−3

In Table 4, we can see the estimated solutions toward n = 1500, which is derived
for various values of t applying TTM.

Toward n = 1500, the solution that we have gained is in accordance with the precise

solution u(t) = log
(

1
1−sin(1−πt)

)

.

Example 5.4. Consider the BDEs [1]:

u′′(t) + 2 exp(u(t)) = 0, 0 ≤ t ≤ 1,(5.7)

supposing that the primary conditions:

u(0) = 0, u′(0) = 0.(5.8)
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TTM
t BNM NPS LTM DM BSM LGSM SCM n=1500

0.1 1.91 ×10−14 9.71 ×10−9 2.13 ×10−3 1.52 ×10−2 1.72 ×10−5 4.03416 ×10−6 6:88×10−4 0
0.3 1.17 ×10−13 1.98 ×10−8 6.19 ×10−3 5.89 ×10−3 4.49 ×10−5 5.22122 ×10−6 8:21×10−4 169.624×10−6

0.5 1.88 ×10−13 2.60 ×10−8 9.60 ×10−3 6.98 ×10−3 5.56 ×10−5 1.4554 ×10−8 8:60×10−4 341.417 ×10−6

0.7 1.16 ×10−13 1.98 ×10−8 1.19 ×10−3 5.89 ×10−3 4.49 ×10−5 5.19455 ×10−6 8:21 ×10−4 424.587 ×10−6

0.9 1.90 ×10−14 9.71 ×10−9 1.09 ×10−3 1.52 ×10−3 1.72×10−5 4.01345 ×10−6 6:88 ×10−4 445.899 ×10−6
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Figure 4. Comparison of the approximate solution (5.5) with exact
solution for n = 1500.

The unknown coefficient U1, U2, . . . , Un, with due attention to the TTM, according
to Section 4 for (5.7)–(5.8) are calculated.

Table 4 illustrates an absolute error comparison of the TTM and approximate
methods: Block Nyström method (BNM) [12], Non-polynomial spline (NPS) [11],
Laplace transform method (LTM) [18], Decomposition method (DM) [16], B-splines
method (BSM) [4], Lie-group shooting method (LGSM) [1] and Sinc-collocation
method (SCM).

In Figure 5, we can see the estimated solutions toward n = 1500, which is derived
for various value of t applying TTM.

Figure 5. Comparison of the approximate solution (5.7) with exact
solution for n = 1500.

Noteworthy in the values obtained in the last column Table 4 is that by increasing
the amount n, a more accurate answer for (5.7) can be achieved.

6. Conclusion

I have proposed a method for finding an approximate function of Bratu differential
equations (BDEs), in which TTM are used. All examples with absolute and relative
errors show that we have favorably applied trigonometric transform method TTM
to obtain approximate solution of the BDEs. The obtained solutions that are very
close analytical solutions indicate that a little iteration of TTM will result in some
useful solutions. As the result seems necessary from the authors’ point of view, the
suggested technique has the potentials to be practical in solving other similar ordinary
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differential equations of integer orders and partial differential equations of non integer
orders.
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DENSITY PROBLEMS IN SOBOLEV’S SPACES ON TIME SCALES

AMINE BENAISSA CHERIF1 AND FATIMA ZOHRA LADRANI2

Abstract. In this paper, we present a generalization of the density some of the
functional spaces on the time scale, for example, spaces of rd-continuous function,
spaces of Lebesgue ∆-integral and first-order Sobolev’s spaces.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was
originally introduced by Stefan Hilger in his Ph.D. Thesis in 1988 in order to unify,
extend and generalize continuous and discrete analysis (see Hilger [4]).

Recently, the Lebesgue ∆-integral has been introduced by Bohner and Guseinov
in [2, Chapter 5]. For the fundamental relationship between Riemann and Lebesgue
∆-integrals see A. Cabada, D. Vivero [3]. The first study Sobolev’s spaces on time
scales R. Agarwal et al. (see [7]).

In this paper, we study the density relationship between some of the functional
spaces on the time scale, for example, spaces of rd-continuous function, spaces of
Lebesgue ∆-integral and first-order Sobolev’s spaces.

2. Preliminaries

We will briefly recall some basic definitions and facts from time scale calculus that
we will use in the sequel.

Let T be a closed subset of R. It follows that the jump operators σ, ρ : T → T

defined by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},
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(supplemented by inf ∅ := supT and sup ∅ := inf T) are well defined. The point t ∈ T

is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) =
t, σ(t) > t, respectively. If T has a right-scattered minimum m, define Tk := T−{m},
otherwise, set Tk = T. If T has a left-scattered maximum M , define T

k := T − {M},
otherwise, set T

k = T.

Definition 2.1 ([1]). The function ϕ : T → R will be called rd-continuous provided
it is continuous at each right-dense point and has a left-sided limit at each point, we
write ϕ ∈ Crd(T) = Crd(T,R).

Definition 2.2 ([1]). Assume ϕ : T → R is a function and let t ∈ T
k. Then we define

ϕ∆ to be the number (provided it exists), with the property that given any ε > 0,
there is a neighbourhood U of t (i.e., U = (t− δ, t+ δ) ∩ T) for some δ > 0 such that

|ϕ(σ(t)) − ϕ(s) − ϕ∆(t)[σ(t) − s]| ≤ ε|σ(t) − s|, for all s ∈ U.

We call ϕ∆ the delta (or Hilger) derivative of ϕ at t.

Lemma 2.1 ([3]). The set of all right-scattered points of T is at most countable, that

is, there are J ⊂ N and {tj}j∈J ⊂ T such that

R := {t ∈ T, σ(t) > t} = {tj}j∈J .

In order to do this, given a function ϕ : T −→R, we need an auxiliary function
which extends ϕ to the interval [a, b] defined as

(2.1) ϕ̃(t) :=

{
ϕ(t), if t ∈ T,
ϕ(tj), if t ∈ (tj, σ(tj)) for all j ∈ J.

Let E ⊂ T, we define

(2.2) JE = {j ∈ J : tj ∈ E ∩ R} and Ẽ = E ∪
⋃

j∈JE

(tj, σ (tj)) .

Proposition 2.1 ([3]). Let A ⊂ T. Then A is a ∆-measurable if and only if, A is

Lebesgue measurable.

In this case the following properties hold for every ∆-measurable set A.

1. If b /∈ A, then

(2.3) µ∆ (A) = µL (A) +
∑

j∈JA

µ (tj );

2. µ∆ (A) = µL (A) if and only if b /∈ A and A has no right-scattered point.

Theorem 2.1 ([3]). Let E ⊂ T be a ∆-measurable such that b /∈ E, let Ẽ be the set

defined in (2.2), let ϕ : T →R be a ∆-measurable function and ϕ̃ : [a, b] → R be the

extension of ϕ to [a, b] . Then, ϕ is Lebesgue ∆-integrable on E if and only if ϕ̃ is

Lebesgue integrable on Ẽ and we have

(2.4)
∫

E
ϕ (t) ∆t =

∫

Ẽ
ϕ̃ (t) dt =

∫

E
ϕ (t) dt+

∑

j∈JE

µ (tj)ϕ (tj ).
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We state some of their properties whose proofs can be found in [7, 8].

Definition 2.3 ([7]). Let p ∈ [1,+∞). Then, the set Lp
∆ (T,R) is a Banach space

together with the norm defined for every ϕ ∈ Lp
∆ (T,R) as

‖ϕ‖L
p

∆
(T,R) =

(∫

[a,b)∩T

|ϕ(s)|p∆s

) 1

p

.

We denote by:

C1 (T,R) :=
{
ϕ : T → R : ϕ is ∆-differentiable on T

k and ϕ∆ ∈ C
(
T

k,R
)}
,

C1
rd (T,R) :=

{
ϕ : T → R : ϕ is ∆-differentiable on T

k and ϕ∆ ∈ Crd

(
T

k,R
)}
.

Theorem 2.2 ([8]). Let p ∈ [1,∞), then, we have the following properties:

1. Crd (T,R) is dense in Lp
∆ (T,R);

2. Lp
∆(T,R) is dense in L1

∆(T,R);
3. C1

rd(T,R) is dense in C(T,R).

Theorem 2.3 ([7]). Let p ∈ [1,+∞). The set W 1,p(T,R) is a Banach space together

with the norm defined for every ϕ ∈ W 1,p(T,R) as

‖ϕ‖W 1,p(T,R) = ‖ϕ‖L
p

∆
(T,R) +

∥∥∥ϕ∆
∥∥∥

L
p

∆
(T,R)

.

3. Main Results

In this section, assume that T is bounded with a := minT and b := maxT and for
simplification, we note

[c, d)
T

= [c, d) ∩ T and [c, d]
T

= [c, d] ∩ T, for all c, d ∈ T.

Remark 3.1. C(T,R) and Crd(T,R) are Banach spaces together with the norm defined
by

‖ϕ‖∞ := sup
t∈[a,b]T

|ϕ (t) |.

Set

I := {j ∈ J : ρ (tj) = tj} .

To derive main results in this section, we need the following lemma.

Lemma 3.1. Let p ∈ [1,+∞[ , C (T,R) is dense in Crd (T,R) provided with the

induced topology of Lp
∆ (T,R) .

Proof. For all i ∈ I, we defined ri by ri = {tj : tj < ti}. Let (vi
n)n∈N

be a sequence
defined by

vi
n =

ti − ri

(b− a) 2n
µ (ti) , for all i ∈ I.



218 A. BENAISSA CHERIF AND F. Z. LADRANI

Then, for all i ∈ I, we have (vi
n)n ∈ (ri, ti). Let (tin)n∈N

be a sequence on time scale T

defined by

(3.1) tin = inf
[
ti − vi

n, ti
)

T
, for all n ∈ N, i ∈ I.

Let ϕ ∈ Crd (T,R), we consider the sequence function (ϕn)n∈N
given by

ϕn (t) =





ϕ (ti) +
ϕ (ti) − ϕ (tin)

ti − tin
(t− ti) , if t ∈ [tin, ti]T for all i ∈ I,

lim
t→b−

ϕ (t) , if t = b,

ϕ (t) , if not.

Set t ∈ [tin, ti]T, for all i ∈ I, which implies that

|ϕn (t) − ϕ (t)| ≤ |ϕ (ti)| + |ϕ (t)| +
∣∣∣ϕ (ti) − ϕ

(
tin
)∣∣∣
∣∣∣∣∣
t− ti
ti − tin

∣∣∣∣∣

≤2 ‖ϕ‖∞ +
∣∣∣ϕ (ti) − ϕ

(
tin
)∣∣∣

≤4 ‖ϕ‖∞ .

Finally, we get that|ϕn (t) − ϕ (t)| ≤ 4 ‖ϕ‖∞ for all t ∈ [a, b)
T
. It is clear that (ϕn)n

is continuous in T. Now, we show that (ϕn)n∈N
converges to ϕ in Lp

∆ (T,R) . In
particular, we have

∫

[a,b)
T

|ϕn (t) − ϕ (t)|p ∆t =
∫

An

|ϕn (t) − ϕ (t)|p ∆t ≤ 4p ‖ϕ‖p

∞

∫

An

∆t

=4p ‖ϕ‖p

∞ µ∆ (An) ,

with An =
⋃

i∈I
[tin, ti)T , for all n ∈ N. From (2.3), we have

µ∆ (An) =λ (An) +
∑

i∈I

∑

t∈[ti
n,ti)R

µ (t)

≤
∑

i∈I

λ
([
tin, ti

[)
+
∑

i∈I

(
ti − tin

)

≤2
∑

i∈I

(
ti − tin

)
≤
∑

i∈I

vi
n

≤
∑

i∈I

ti − ri

(b− a) 2n
µ (ti) ≤

b− a

2n−1
.(3.2)

Therefore, we obtain

‖ϕn − ϕ‖p

L
p

∆
(T,R) ≤ 4p ‖ϕ‖p

∞

b− a

2n−1
, for all n ∈ N.

The proof is complete. �

Remark 3.2. C1(T,R) and C1
rd(T,R) are Banach spaces together with the norm defined

by
‖ϕ‖1 := ‖ϕ‖∞ + ‖ϕ∆‖∞.
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Let us define a second type of extension for a function ϕ on [a, b]. We introduce the
following function

(3.3) ϕ(t) :=





ϕ(t), if t ∈ T,
ϕ(σ (tj)) − ϕ(tj)

µ (tj)
(t− tj) + ϕ(tj), if t ∈ (tj, σ(tj)) for all j ∈ J.

Lemma 3.2. If ϕ : [a, b] → R belongs to C1 (a, b), then ϕ|T belongs to C1
rd (T,R).

Proof. We note ψ = ϕ|T, then ψ is ∆−differentiable on T
k, and ψ∆ is given by

ψ∆ (t) =





ϕ
′

(t) , if t ∈ T
k\R,

ϕ (σ (tj)) − ϕ (tj)

µ (ti)
, if t = tj ∈ T

k for all j ∈ J.

Now, we show that ψ∆ is rd-continuous. Let t ∈ T
k a left-dense or a right-dense point

and prove that

lim
s→t

ψ∆ (s) = ϕ
′

(t) .

Since ϕ ∈ C1 (a, b), then for all ε > 0, there exists α > 0, such that

(3.4)
∣∣∣ϕ

′

(s) − ϕ
′

(t)
∣∣∣ ≤ ε, for all s ∈ (t− α, t+ α) .

We define ξ on (t− α, t+ α) by ξ (s) = ϕ (s)−ϕ (t) (t− s). By (3.4) we have
∣∣∣ξ′

(s)
∣∣∣ ≤

ε, for all s ∈ (t− α, t+ α) . Then ξ is an ε-Lipschitz function on (t− α, t+ α), so we
get ∣∣∣∣∣ϕ

′ (τ) −
ϕ (τ) − ϕ (s)

τ − s

∣∣∣∣∣ < ε, for all s, τ ∈ (t− α, t+ α) and τ 6= s.

And we have lim
s→t

σ (s) = t. There exists γ > 0, such that |σ (s) − t| ≤ ε, for all

s ∈ (t− γ, t+ γ) ∩ T. Put δ = min (α, γ) for all s ∈ (t− δ, t+ δ) ∩ T. We consider
the following two cases.

If s is right-dense, then
∣∣∣ϕ′ (τ) − ψ∆ (s)

∣∣∣ = |ϕ′ (τ) − ϕ′ (s)| ≤ ε.

If s is right-scattered, one has σ (s) , s ∈ (t− δ, t+ δ) ∩ T, then

∣∣∣ϕ′ (τ) − ψ∆ (s)
∣∣∣ =

∣∣∣∣∣ϕ
′ (τ) −

ϕ (σ (s)) − ϕ (s)

σ (s) − s

∣∣∣∣∣ ≤ ε.

Finally, we obtain that ψ∆ is a continuous function at right-dense points in T, and
its left-sided limits exist at left dense points in T. �

Lemma 3.3. Let p ∈ [1,+∞[ , C1 (T,R) is dense in C1
rd (T,R) provided with the

induced topology of W 1,p
∆ (T,R) .

Proof. Let ϕ ∈ C1
rd (T,R), we define Pi,n by

Pi,n (t) = ϕ (ti) + ϕ∆ (ti) (t− ti) + αh2 (t, ti) + βh3 (t, ti) , for all t ∈
[
tin, ti

]

T
,
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where (tin)n∈N
is defined in (3.1) and (hk)k are polynomials defined in [1], we choose

α and β such that

(3.5) Pi,n

(
tin
)

= ϕ
(
tin
)

and P∆
i,n

(
tin
)

= ϕ∆
(
tin
)
, for all i ∈ I, n ∈ N.

Then α and β is the solution of the following system
{
αh2 (tni , ti) + βh3 (tni , ti) = ϕ (tni ) − ϕ (ti) − ϕ∆ (ti)h1 (tni , ti) ,
αh1 (tni , ti) + βh2 (tni , ti) = ϕ∆ (tni ) − ϕ∆ (ti) .

Let (ϕn)n∈N
be a sequence defined by

ϕn (t) =





Pi,n (t) , if t ∈ [tin, ti]T for all i ∈ I,
lim

t→b−

ϕ (t) , if t = b,

ϕ (t) , if not.

By (3.5), we conclude that ϕn is ∆-differentiable on T
k and

(
ϕ∆

n

)
is continuous in T

k.

For all i ∈ I, we get
∫

[ti
n,ti[∩T

|ϕn (t) − ϕ (t)| ∆t ≤
∫

[ti
n,ti[∩T

(
|ϕ (t)| + |ϕ (ti)| +

∣∣∣ϕ∆ (ti)
∣∣∣h1 (t, ti)

)
∆t

+
∫

[ti
n,ti[∩T

|αh2 (t, ti) + βh3 (t, ti)| ∆t

≤2 ‖ϕ‖∞ h1 (ti, t
n
i ) +

∥∥∥ϕ∆
∥∥∥

∞
h1 (ti, t

n
i )

+ |αh3 (tni , ti) + βh4 (tni , ti)|(3.6)

and
∫

[ti
n,ti[∩T

∣∣∣ϕ∆
n (t) − ϕ∆ (t)

∣∣∣∆t

≤
∫

[ti
n,ti[∩T

(∣∣∣ϕ∆ (t)
∣∣∣+

∣∣∣ϕ∆ (ti)
∣∣∣+ |αh1 (t, ti) + βh2 (t, ti)|

)
∆t

≤2
∥∥∥ϕ∆

∥∥∥
∞
h1 (ti, t

n
i ) + |αh2 (tni , ti) + βh3 (tni , ti)| .(3.7)

For all i ∈ I, we define ηk,i,n on [tin, ti)T by

ηk,i,n (s) = αhk (s, ti) + βhk+1 (s, ti) , for all k ∈ N.

Hence, we deduce that

(3.8) η∆
k,i,n (s) = αhk−1 (s, ti) + βhk (s, ti) = ηk−1,i,n (s) , for all s ∈

[
tin, ti

)

Tk
,

by (3.8), we get

(3.9) |ηk,i,n (s)| ≤
∫ ti

s
|ηk−1,i,n (τ)| ∆τ , for all k ∈ N, s ∈

[
tin, ti

)

Tk
.

Since, |η1,i,n (s)| ≤ |η1,i,n (tni )| for all s ∈ [tin, ti)T, using the inequality (3.9) , we find

(3.10) |η2,i,n (s)| ≤ (ti − tni ) |η1,i,n (tni )| , for all s ∈
[
tin, ti

)

T
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and

(3.11) |η3,i,n (s)| ≤ (ti − tni )2 |η1,i,n (tni )| , for all s ∈
[
tin, ti

)

T
.

By (3.10), we obtain

|αh2 (tni , ti) + βh3 (tni , ti)| ≤ (ti − tni ) |η1,i,n (tni )|

≤ (ti − tni )
∣∣∣ϕ∆ (tni ) − ϕ∆ (ti)

∣∣∣

≤2 (ti − tni )
∥∥∥ϕ∆

∥∥∥
∞
,(3.12)

and by (3.11), we have

|αh3 (tni , ti) + βh4 (tni , ti)| ≤ (ti − tni )2 |η1,i,n (tni )|

≤ (ti − tni )2
∣∣∣ϕ∆ (tni ) − ϕ∆ (ti)

∣∣∣

≤2
∥∥∥ϕ∆

∥∥∥ (ti − tni )2 .(3.13)

Substituting (3.13) in (3.6), we get
∫

[a,b)
T

|ϕn (t) − ϕ (t)| ∆t ≤
(
2 ‖ϕ‖∞ +

∥∥∥ϕ∆
∥∥∥

∞

)∑

i∈I

(ti − tni ) +
∥∥∥ϕ∆

∥∥∥
∞

∑

i∈I

(ti − tni )2

≤
b− a

2n

(
2 ‖ϕ‖∞ + (b− a+ 1)

∥∥∥ϕ∆
∥∥∥

∞

)
.(3.14)

It follows from (3.12) and (3.7), that

(3.15)
∫

[a,b)
T

∣∣∣ϕ∆
n (t) − ϕ∆ (t)

∣∣∣∆t ≤ 4
∥∥∥ϕ∆

∥∥∥
∞

∑

i∈I

(ti − tni ) ≤
b− a

2n−2

∥∥∥ϕ∆
∥∥∥

∞
.

By inequality (3.14) and (3.15), we obtain that (ϕn)n converges to ϕ in W 1,1
∆ (T,R).

Finally, by Hölder’s inequality, we conclude that (ϕn)n converges to ϕ in W 1,p
∆ (T,R) .

�

Remark 3.3. Let E,F, G be three spaces such that E ⊂ F ⊂ G and (G, τ) is a
topological space.

1) If F is dense in (G, τ) and E is dense in (F, τ), then E is dense in (G, τ).
2) If E is dense in G, then F is dense in G.

The following theorem is a new generalization of the Theorem 2.2.

Theorem 3.1. Let p ∈ [1,+∞[, then C (T,R) is dense in Lp
∆ (T,R) .

Proof. Let p ∈ [1,+∞[, we have C (T,R) ⊂ Crd (T,R) ⊂ Lp
∆ (T,R). By Lemma 3.1

and Theorem 2.2, hence Crd (T,R) is dense in Lp
∆ (T,R) and C (T,R) is dense in

Crd (T,R) provided with the induced topology of Lp
∆ (T,R). Then, by Remark 3.3,

we obtain C (T,R) is dense in Lp
∆ (T,R) . �

The following results are consequences of Theorem 3.2.
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Proposition 3.1. Let p ∈ [1,+∞[, then C1
rd (T,R) is dense in Lp

∆ (T,R) .

Proof. Let p ∈ [1,+∞[. By Theorem 2.2, we have C1
rd (T,R) is dense in C (T,R),

then C1
rd (T,R) is dense in C (T,R) provided with the induced topology of Lp

∆ (T,R),
and we have C (T,R) is dense in Lp

∆ (T,R), by Remark 3.3 , we conclude C (T,R) is
dense in Lp

∆ (T,R) . �

As a proposition of the previous result, we deduce the following corollary.

Corollary 3.1. Let p ∈ [1,+∞), then W 1,p
∆ (T,R) is dense in C (T,R) .

Proof. We have C1
rd (T,R) ⊂ W 1,p

∆ (T,R) ⊂ C (T,R) , by Theorem 2.2, C1
rd (T,R)

is dense in C (T,R). Therefore, Remark 3.3 implies that W 1,p
∆ (T,R) is dense in

C (T,R) . �

In the same way, we find the following corollary.

Corollary 3.2. Let p ∈ [1,+∞), then W 1,p
∆ (T,R) is dense in Crd (T,R) .

Corollary 3.3. Let p ∈ [1,+∞), then W 1,p
∆ (T,R) is dense in Lp

∆ (T,R) .

The next result show that spaces C1
rd (T,R) and C1 (T,R) are dense in W 1,p

∆ (T,R).

Theorem 3.2. Let p ∈ [1,+∞), C1
rd (T,R) is dense in W 1,p

∆ (T,R).

Proof. Let ϕ ∈ W 1,p
∆ (T,R), by Corollary 3.9 in [7], we have ϕ ∈ W 1,p (a, b). Since

C1 ((a, b)) is dense in W 1,p (a, b), then there exists a sequence (ψn)n∈N
∈ C1 (a, b) that

converges to ϕ in W 1,p (a, b). Let (ϕn)n∈N
be a sequence defined by

ϕn = ψn|T, for all n ∈ N.

By Lemma 3.2, we get (ϕn)n ∈ C1
rd (T,R). Now we show that (ϕn)n converges to ϕ

in W 1,p
∆ (T,R) , we have

∥∥∥(ψn − ϕ)|T

∥∥∥
W

1,p

∆
(T,R)

= ‖ϕn − ϕ‖W
1,p

∆
(T,R) ,

by Corollary 3.10 in [7], there exists a constant C > 0 which only depends on (b− a)
such that

‖ϕn − ϕ‖W
1,p

∆
(T,R) ≤ C ‖ψn − ϕ‖W 1,p((a,b)) ,

we prove that (ϕn)n converges to ϕ in W 1,p
∆ (T,R). �

Theorem 3.3. Let p ∈ [1,+∞[, then C1 (T,R) is dense in W 1,p
∆ (T,R) .

Proof. Let p ∈ [1,+∞[. We have C1 (T,R) ⊂ C1
rd (T,R) ⊂ W 1,p

∆ (T,R). By Lemma

3.3 and Theorem 3.2, hence C1
rd (T,R) is dense in W 1,p

∆ (T,R) and C1 (T,R) is dense

in C1
rd (T,R) provided with the induced topology of W 1,p

∆ (T,R). Then, by Remark

3.3, we obtain C1 (T,R) is dense in W 1,p
∆ (T,R) . �
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4. Conclusion

Finally, we give a diagrams that summarizes the main results

C1
rd (T,R) Crd (T,R)

↓ ↓
W 1,p

∆ (T,R) −→ Lp
∆ (T,R) −→ L1

∆ (T,R)
↑ ↑

C1 (T,R) C (T,R)

For T is bounded and p ∈ [1,+∞) .
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A NOTE ON PAIR OF LEFT CENTRALIZERS IN PRIME RING

WITH INVOLUTION

MUZIBUR RAHMAN MOZUMDER1, ADNAN ABBASI1, NADEEM AHMAD DAR2,
AND AFTAB HUSSAIN SHAH3

Abstract. The purpose of this paper is to study pair of left centralizers in prime
rings with involution satisfying certain identities.

1. Introduction

In the present article, R will represent an associative ring with centre Z(R). Qmr

and C represents the maximal ring of quotient and the extended centroid of a prime
ring, respectively. For the explanation of Qmr and C refer to [4]. R is said to be
n-torsion free if na = 0 (where a ∈ R) implies a = 0. R is called prime if aRb = (0)
(where a, b ∈ R) implies a = 0 or b = 0. We write [x, y] for xy − yx and xoy for
xy + yx, respectively. An additive map x 7→ x∗ of R into itself is called an involution
if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x holds, for all x, y ∈ R. A ring R together with
an involution ∗ is said to be a ring with involution or ∗-ring. An element x in a ring
with involution ∗ is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x.
The sets of all hermitian and skew-hermitian elements of R will be denoted by H(R)
and S(R), respectively. The involution is said to be of the first kind if Z(R) ⊆ H(R),
otherwise it is said to be of the second kind. In the latter case, S(R) ∩ Z(R) 6= (0). A
description of such rings can be found in [7], where further references can be found.

Following [17], an additive mapping T : R → R is said to be a left (resp. right)
centralizer (multiplier) of R if T (xy) = T (x)y (resp. T (xy) = xT (y)) for all x, y ∈ R.
An additive mapping T is called a centralizer in case T is a left and a right centralizer
of R. Considerable work has been done on left (resp. right) centralizers in prime and
semiprime rings during the last few decades (see for example [3,6,10,11,14–17]) where

Key words and phrases. Prime ring, centralizing mapping, involution.
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further references can be found. The first result studying the commutativity of prime
ring involving a special mapping was due to Divinsky [5], who proved that a simple
artinian ring is commutative if it has a commuting non-trivial automorphism. This
result was later refined and extended by a number of authors in various directions
(see [2, 3, 8, 9, 12, 13]). Moreover in [3] some related results involving left centralizers
have also been discussed. In [10] Oukhtite established similar problems for certain
situations involving left centralizers acting on Lie ideals. Recently Ali and Dar [1]
proved that if a prime ring with involution of the second kind such that char(R) 6= 2
admits a left centralizer T : R → R satisfying any one of the following conditions:

(i) T ([x, x∗]) = 0;
(ii) T (xox∗) = 0;
(iii) T ([x, x∗]) ± [x, x∗] = 0;
(iv) T (xox∗) ± (xox∗) = 0,

for all x ∈ R, then R is commutative. In this paper, we shall consider similar problems
involving pair of centralizers. We shall restrict our attention on left centralizers, since
all results presented in this article are also true for right centralizers because of
left-right symmetry.

Lemma 1.1 ([7], p. 20-23). Suppose that the elements ai, bi in the central closure of

a prime ring R satisfy
∑

aixbi = 0 for all x ∈ R. If bi 6= 0 for some i, then a′

i
s are

C-dependent.

2. Main Results

Theorem 2.1. Let R be a prime ring with involution ∗ of the second kind such that

char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R to R such that

[T1(x), T2(x
∗)] ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

(2.1) [T1(x), T2(x
∗)] ∈ Z(R), for all x ∈ R.

Linearizing (2.1), we get

(2.2) [T1(x), T2(y
∗)] + [T1(y), T2(x

∗)] ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.2) and using (2.2), we get 2([T1(y), T2(x
∗)])k ∈ Z(R) for

all x, y ∈ R and k ∈ S(R) ∩ Z(R), since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0).
This implies that [T1(y), T2(x

∗)] ∈ Z(R) for all x, y ∈ R. Taking x = x∗, we have
[T1(y), T2(x)] ∈ Z(R) for all x, y ∈ R. This can be further written as

(2.3) [[T1(y), T2(x)], r] = 0, for all x, y, r ∈ R.

Replacing y by ym, where m ∈ R in (2.3) and using (2.3) we get

T1(y)[[m, T2(x)], r] + [T1(y), r][m, T2(x)] + [T1(y), T2(x)][m, r] = 0,
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for all x, y, m, r ∈ R. Replacing m by T2(x) we get

(2.4) [T1(y), T2(x)][T2(x), r] = 0, for all x, y, r ∈ R.

Replacing r by ru, where u ∈ R in (2.4) and using (2.4) we get

[T1(y), T2(x)]r[T2(x), u] = 0, for all x, y, r, u ∈ R.

Then by primeness of R, for each fixed x ∈ R, we get either [T1(y), T2(x)] = 0 for all
y ∈ R or [T2(x), u] = 0 for all u ∈ R. Define A = {x ∈ R | [T2(x), u] = 0 for all u ∈ R}
and B = {x ∈ R | [T1(y), T2(x)] = 0 for all y ∈ R}. Clearly, A and B are additive
subgroups of R whose union is R. Hence, by Brauer’s trick, either A = R or B = R.
If A = R

(2.5) [T2(x), u] = 0, for all x, u ∈ R.

Then taking x = xy in (2.5), where y ∈ R and using (2.5) we get T2(x)[y, u] = 0 for
all x, y, u ∈ R. Now take x = xm, where m ∈ R, then as T2 is nonzero, applying the
primeness of R, we obtain R is commutative. If B = R

(2.6) [T1(y), T2(x)] = 0, for all x, y ∈ R.

Then replacing y by yv, where v ∈ R in (2.6) and using (2.6) we get T1(y)[v, T2(x)] = 0
for all x, y, v ∈ R. Now replace y by yr, where r ∈ R. Then as T1 is nozero, by
primeness of R, we have [v, T2(x)] = 0 for all v, x ∈ R. With similar steps as we did
before we get R is commutative. �

Theorem 2.2. Let R be a prime ring with involution ∗ of the second kind such that

char(R) 6= 2. If R admits two nonzero left centralizer T1 and T2 from R to R such

that T1(x) ◦ T2(x
∗) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

(2.7) T1(x) ◦ T2(x
∗) ∈ Z(R), for all x ∈ R.

Linearizing (2.7), we get

(2.8) T1(x) ◦ T2(y
∗) + T1(y) ◦ T2(x

∗) ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.8) and using (2.8), we get

2(T1(y) ◦ T2(x
∗))k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that T1(y) ◦ T2(x
∗) ∈ Z(R)

for all x, y ∈ R. Replacing x by x∗ we get T1(y) ◦ T2(x) ∈ Z(R) for all x, y ∈ R. This
can be further written as

[T1(y) ◦ T2(x), r] = 0,

[T1(y)T2(x), r] + [T2(x)T1(y), r] = 0,

T1(y)[T2(x), r] + [T1(y), r]T2(x) + T2(x)[T1(y), r] + [T2(x), r]T1(y) = 0,(2.9)
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for all x, y, r ∈ R. Replacing y by yT2(x) in (2.9), we get

T1(y)T2(x)[T2(x), r] + T1(y)[T2(x), r]T2(x) + [T1(y), r](T2(x))2(2.10)

+T2(x)T1(y)[T2(x), r] + T2(x)[T1(y), r]T2(x) + [T2(x), r]T1(y)T2(x) = 0,

for all x, y, r ∈ R. Left multiplying (2.9) by T2(x) and subtracting it from (2.10), we
get

(2.11) (T1(y)T2(x) + T2(x)T1(y))[T2(x), r] = 0, for all x, y, r ∈ R.

Replacing r by rm, where m ∈ R in (2.11) and using (2.11), we get

(T1(y)T2(x) + T2(x)T1(y))r[T2(x), m] = 0, for all x, y, r, m ∈ R.

Then by primeness of R, for each fixed x ∈ R, we get either [T2(x), m] = 0 for all
m ∈ R or T1(y)T2(x)+T2(x)T1(y) = 0 for all y ∈ R. Define A = {x ∈ R | [T2(x), m] =
0 for all m ∈ R} and B = {x ∈ R | T1(y)T2(x) + T2(x)T1(y) = 0 for all y ∈ R}.
Clearly, A and B are additive subgroups of R whose union is R. Hence by Brauer’s
trick, either A = R or B = R. If A = R, then we consider [T2(x), r] = 0 for all
x, r ∈ R, proceeding similarly as we did after (2.5), we get R is commutative. Now,
consider B = R, in this situation

(2.12) T1(y)T2(x) + T2(x)T1(y) = 0, for all x, y ∈ R.

Then replacing y by yu, where u ∈ R in (2.12) and using (2.12), we get T1(y)[u, T2(x)]
= 0 for all x, y, u ∈ R. Replacing y, where v ∈ R by yv, we get T1(y)v[u, T2(x)] = 0
for all x, y, v, u ∈ R. Then as T1 is nonzero, by primeness we get [u, T2(x)] = 0 for
all x, u ∈ R. Now, following same line of proof as we did after (2.5), we get R is
commutative. �

Theorem 2.3. Let R be a noncommutative 6-torsion free prime ring with involution

∗ of the second kind. If R admit two nonzero left centralizers T1 and T2 from R to R,

such that [T1(x), T2(x
∗)] ± [x, x∗] ∈ Z(R) for all x ∈ R, then T1 = λT2.

Proof. We have

(2.13) [T1(x), T2(x
∗)] ± [x, x∗] ∈ Z(R), for all x ∈ R.

Linearizing (2.13), we get

(2.14) [T1(x), T2(y
∗)] + [T1(y), T2(x

∗)] ± [x, y∗] ± [y, x∗] ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.14) and using (2.14), we get

2([T1(y), T2(x
∗)] ± [y, x∗])k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

This further implies that

6([T1(y), T2(x
∗)] ± [y, x∗])k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since R is 6-torsion free and S(R) ∩ Z(R) 6= (0), we have

[T1(y), T2(x
∗)] ± [y, x∗] ∈ Z(R), for all x, y ∈ R.
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Replacing x by x∗, we get

[T1(y), T2(x)] ± [y, x] ∈ Z(R), for all x, y ∈ R.

Taking y = x, we have

(2.15) [T1(x), T2(x)] ∈ Z(R), for all x ∈ R.

This further implies that

(2.16) [[T1(x), T2(x)], r] = 0, for all x, r ∈ R.

On linearization, we get

(2.17) [[T1(x), T2(y)], r] + [[T1(y), T2(x)], r] = 0, for all x, y, r ∈ R.

Replacing y by yT1(x) in (2.17) and using (2.16) and (2.17), we obtain

(2.18) [T1(x), T2(y)][T1(x), r] + [T1(y), r][T1(x), T2(x)] + [T1(y), T2(x)][T1(x), r] = 0,

for all x, y, r ∈ R. Taking y = x in (2.18) and using (2.15), we arrive at

3[T1(x), T2(x)][T1(x), r] = 0, for all x, r ∈ R.

This further implies that

6[T1(x), T2(x)][T1(x), r] = 0, for all x, r ∈ R.

Since R is 6-torsion free ring, we have

(2.19) [T1(x), T2(x)][T1(x), r] = 0, for all x, r ∈ R.

Replacing r by rm, where m ∈ R in (2.19) and making use of (2.19), we get

[T1(x), T2(x)]r[T1(x), m] = 0, for all x, m, r ∈ R.

Using the primeness of R, for each fixed x ∈ R, we have either [T1(x), T2(x)] = 0
or [T1(x), m] = 0. Define B = {x ∈ R | [T1(x), T2(x)] = 0} and A = {x ∈ R |
[T1(x), m] = 0 for all m ∈ R}. Clearly, A and B are additive subgroups of R whose
union is R. Hence by Brauer’s trick, either B = R or A = R. If B = R,

(2.20) [T1(x), m] = 0, for all x, m ∈ R.

Replacing x by xy, where y ∈ R and using (2.20), we get

T1(x)[y, m] = 0, for all x, y, m ∈ R.

This further implies that

T1(x)w[y, m] = 0, for all x, w, y, m ∈ R.

Using the primeness, we get T1(x) = 0 for all x ∈ R or [y, m] = 0 for all y, m ∈ R.
Since T1 is nonzero, therefore we get R is commutative, which is a contradiction to
our assumption. Therefore we are left with B = R

(2.21) [T1(x), T2(x)] = 0, for all x ∈ R.

Linearizing (2.21), we get

(2.22) [T1(x), T2(y)] + [T1(y), T2(x)] = 0, for all x, y ∈ R.
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Replacing x by xz, where z ∈ R in (2.22) and using (2.22), we get

(2.23) T1(x)[z, T2(y)] + T2(x)[T1(y), z] = 0, for all x, y, z ∈ R.

Again taking x = xw, where w ∈ R in (2.23), we get

(2.24) T1(x)w[z, T2(y)] + T2(x)w[T1(y), z] = 0, for all x, y, z, w ∈ R.

In view of Lemma 1.1, we have [z, T2(y)] = 0 for all y, z ∈ R or T1(x) = λ(x)T2(x),
where λ(x) ∈ C. But since T2 6= 0, [z, T2(y)] = 0 implies R is commutative, a
contradiction. Hence we get T1(x) = λ(x)T2(x), where λ(x) ∈ C. Using this in (2.24),
we have

λ(x)T2(x)w[z, T2(y)] + T2(x)w[λ(y)T2(y), z] = 0,

(λ(x)T2(x) − λ(y)T2(x))w[z, T2(y)] = 0,

for all x, y, z, w ∈ R. Using the primeness of R and Brauer’s trick we finally get
T1 = λT2. This completes the proof. �

Theorem 2.4. Let R be a prime ring with involution ∗ of the second kind such

that char(R) 6= 2. If R admits two nonzero left centralizer T1 and T2 from R to R

such that T1(x)x∗ ± x∗T2(x) ∈ Z(R) for all x ∈ R, then either R is commutative or

T1(y) = ∓T2(y) for all y ∈ R.

Proof. We have

(2.25) T1(x)x∗ ± x∗T2(x) ∈ Z(R), for all x ∈ R.

Linearaizing (2.25), we get

(2.26) T1(x)y∗ + T1(y)x∗ ± x∗T2(y) ± y∗T2(x) ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.26) and using (2.26), we have

2(T1(y)x∗ ± x∗T2(y))k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that

T1(y)x∗ ± x∗T2(y) ∈ Z(R), for all x, y ∈ R.

Taking x = x∗, we get

T1(y)x ± xT2(y) ∈ Z(R), for all x, y ∈ R.

Replacing x by z, where z ∈ Z(R) and using the primeness of R and the fact that
S(R) ∩ Z(R) 6= (0), we obtain T1(y) ± T2(y) ∈ Z(R) for all y ∈ R. This can be further
written as

(2.27) [T1(y), r] ± [T2(y), r] = 0, for all y, r ∈ R.

Replacing y by yw, where w ∈ R and using (2.27), we have

(2.28) (T1(y) ± T2(y))[w, r] = 0, for all y, w, r ∈ R.

Replacing w by wm, where m ∈ R in (2.28) and using (2.28), we obtain

(T1(y) ± T2(y))w[m, r] = 0, for all m, y, w, r ∈ R.
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In view of the primeness of R we get either R is commutative or T1(y) = ∓T2(y) for
all y ∈ R. �

Theorem 2.5. Let R be a prime ring with involution ∗ of the second kind such that

char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R to R, such

that T1(x)T2(x
∗) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

(2.29) T1(x)T2(x
∗) ∈ Z(R), for all x ∈ R.

Linearizing (2.29), we get

(2.30) T1(x)T2(y
∗) + T1(y)T2(x

∗) ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.30), where k ∈ S(R) ∩ Z(R) and using (2.30), we have

2T1(y)T2(x
∗)k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that

T1(y)T2(x
∗) ∈ Z(R), for all x, y ∈ R.

Taking x = x∗, we obtain

T1(y)T2(x) ∈ Z(R), for all x, y ∈ R.

This can be further written as

(2.31) T1(y)[T2(x), r] + [T1(y), r]T2(x) = 0, for all x, y ∈ R.

Replacing x by xw, where w ∈ R in (2.31) and using (2.31), we get

T1(y)T2(x)[w, r] = 0, for all x, y, w, r ∈ R.

Replacing y by ym, where m ∈ R, we get

T1(y)RT2(x)[w, r] = (0), for all x, y, w, r ∈ R.

This implies in view of the primeness of ring R, either T1(y) = 0 for all y ∈ R

or T2(x)[w, r] = 0 for all x, w, r ∈ R. Since T1 6= 0, we get T2(x)[w, r] = 0 for all
x, w, r ∈ R. This further implies that T2(x)y[w, r] = 0 for all x, y, w, r ∈ R. Since
T2 6= 0, using the primeness of R, we get R is commutative. �

Theorem 2.6. Let R be a prime ring with involution ∗ of the second kind such that

char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R to R such that

T1(x)x ± x∗T2(x) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

T1(x)x ± x∗T2(x) ∈ Z(R), for all x ∈ R.

Linearizing (2.48), we get

(2.32) T1(x)y + T1(y)x ± x∗T2(y) ± y∗T2(x) ∈ Z(R), for all x, y ∈ R.
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Replacing y by ky in (2.32) and using (2.32), we arrive at

2(T1(x)y + T1(y)x ± x∗T2(y))k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that

(2.33) T1(x)y + T1(y)x ± x∗T2(y) ∈ Z(R), for all x, y ∈ R.

Again, replacing x by kx in(2.33) and using (2.33), we get

2(T1(x)y + T1(y)x)k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we have

T1(x)y + T1(y)x ∈ Z(R), for all x, y ∈ R.

This can be further written as T1(x ◦ y) ∈ Z(R) for all x, y ∈ R. Taking y = z, where
z ∈ Z(R), we get T1(x) ∈ Z(R) for all x ∈ R. This further implies that [T1(x), y] = 0
for all x, y ∈ R. Replacing x by xw, where w ∈ R, we get T1(x)[w, y] + [T1(x), y]w = 0
for all x, y, w ∈ R. That is, T1(x)[w, y] = 0 for all x, y, w ∈ R. Replacing x by xm,
where m ∈ R and using the facts that T1 6= 0 and the primeness of R, we obtain
[w, y] = 0 for all w, y ∈ R. That is, R is commutative. �

Theorem 2.7. Let R be a noncommutative prime ring with involution ∗ of the second

kind such that char(R) 6= 2. If R admit two nonzero left centralizer T1 and T2 from R

to R such that xT1(x
∗) ± T2(x)x∗ ∈ Z(R) for all x ∈ R, then T1 = ∓T2.

Proof. We have

(2.34) xT1(x
∗) ± T2(x)x∗ ∈ Z(R), for all x ∈ R.

Linearizing (2.34), we get

(2.35) xT1(y
∗) + yT1(x

∗) ± T2(x)y∗ ± T2(y)x∗ ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.35) and using (2.35), we get

2(yT1(x
∗) ± T2(y)x∗)k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), this implies that

yT1(x
∗) ± T2(y)x∗ ∈ Z(R), for all x, y ∈ R.

Taking x = x∗, we get

yT1(x) ± T2(y)x ∈ Z(R), for all x, y ∈ R.

This further implies that

[yT1(x), r] ± [T2(y)x, r] = 0, for all x, y, r ∈ R.

That is,

(2.36) y[T1(x), r] + [y, r]T1(x) ± T2(y)[x, r] ± [T2(y), r]x = 0, for all x, y, r ∈ R.

Replacing x by xw, where w ∈ R in (2.36) and using (2.36), we obtain

(2.37) (yT1(x) ± T2(y)x)[w, r] = 0, for all x, y, w, r ∈ R.
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Replacing w by wm, where m ∈ R in (2.37) and using (2.37), we get

(2.38) yT1(x) ± T2(y)x = 0, for all x, y ∈ R,

since R is noncommutative. Replacing y by yx in (2.38) and using (2.38), we get

y(xT1(x) − T1(x)x) = 0, for all x, y ∈ R.

Using the primeness of R, we get

(xT1(x) − T1(x)x) = 0, for all x ∈ R.

Linearizing the above equation, we get

(2.39) xT1(y) + yT1(x) − T1(x)y − T1(y)x = 0, for all x, y ∈ R.

Replacing y by yu, where u ∈ R in (2.39) and using (2.39), we arrive at

(2.40) y[T1(x), u] + T1(y)[u, x] = 0, for all x, y, u ∈ R.

Replacing x by xm, where m ∈ R in (2.40) and using (2.40), we get

(2.41) (yT1(x) − T1(y)x)[m, u] = 0, for all x, y, m, u ∈ R.

Replacing m by wm, where m ∈ R in (2.41) and using (2.41), we have T1 is centralizer,
since R is noncommutative. Hence in view of (2.38), we get (T1(y) ± T2(y))x = 0 for
all x, y ∈ R. Using the primeness of R, we obtain T1(y) = ∓T2(y) for all y ∈ R. �

Theorem 2.8. Let R be a prime ring with involution ∗ of the second kind such that

char(R) 6= 2. If R admits two left centralizer T1 and T2 from R to R such that

T1(x)T2(x
∗) ± xx∗ ∈ Z(R) for all x ∈ R, then either R is commutative or T1 and T2

centralizer.

Proof. We have

(2.42) T1(x)T2(x
∗) ± xx∗ ∈ Z(R), for all x ∈ R.

If either T1 or T2 is zero, then we get ±xx∗ ∈ Z(R) for all x ∈ Z(R). Replacing x by
x + y, where x, y ∈ R, we get xy∗ + yx∗ ∈ Z(R) for all x, y ∈ R. Taking y = yk where
k ∈ Z(R) ∩ S(R) and adding with the previous equation, we get 2yx∗k ∈ Z(R) for all
x, y ∈ Z(R) and k ∈ S(R) ∩ Z(R). Since char(R) 6= 2, this implies that yx∗k ∈ Z(R)
for all x, y ∈ R and k ∈ S(R)∩Z(R). Use primeness and the fact that S(R)∩Z(R) 6= 0,
we have yx∗ ∈ Z(R) for all x, y ∈ R. This further implies that yx ∈ Z(R) for all
x, y ∈ R. Thus xz ∈ Z(R) for all x ∈ R and z ∈ Z(R). Use primeness and the fact
that S(R) ∩ Z(R) 6= (0), we obtain R is commutative. Now consider neither T1 nor
T2 is zero. Linearizing (2.42), we get

(2.43) T1(x)T2(y
∗) + T1(y)T2(x

∗) ± xy∗ ± yx∗ ∈ Z(R), for all x, y ∈ R.

Replacing y by ky in (2.43) and using (2.43), we get 2(T1(y)T2(x∗)±yx∗)k ∈ Z(R) for
all x, y ∈ R. Since char(R) 6= 2 and S(R)∩Z(R) 6= (0), this implies that T1(y)T2(x∗)±
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yx∗ ∈ Z(R) for all x, y ∈ R. This can be written as

[T1(y)T2(x
∗), r] ± [yx∗, r] = 0,

T1(y)[T2(x
∗), r] + [T1(y), r]T2(x

∗) ± y[x∗, r] ± [y, r]x∗ = 0,

for all x, y, r ∈ R. Taking x = x∗, we obtain

(2.44) T1(y)[T2(x), r] + [T1(y), r]T2(x) ± y[x, r] ± [y, r]x = 0, for all x, y, r ∈ R.

Replacing x by xw, where w ∈ R in (2.44) and using (2.44), we get (T1(y)T2(x) ±
yx)[w, r] = 0 for all x, y, w, r ∈ R. Replacing w by wm, where m ∈ R and using the
previous equation, we get (T1(y)T2(x) ± yx)w[m, r] = 0 for all x, y, w, m, r ∈ R. Now
using the primeness we get either T1(y)T2(x) ± yx = 0 for all x, y ∈ R or [m, r] = 0
for all m, r ∈ R. If [m, r] = 0 for m, r ∈ R, this implies that R is commutative. Now
suppose

(2.45) T1(y)T2(x) ± yx = 0, for all x, y ∈ R.

Replacing y by yT1(w) in (2.45), we get

(2.46) T1(y)T1(w)T2(x) ± yT1(w)x = 0, for all x, y, w ∈ R.

Taking y = w in (2.45) and left multiplying by T1(y), we get

(2.47) T1(y)T1(w)T2(x) ± T1(y)wx = 0, for all x, y, w ∈ R.

Subtracting (2.47) from (2.46), we have (±yT1(w) ∓ T1(y)w)x = 0 for all x, y, w ∈ R.

Since R 6= (0) and using primeness of R we get (±yT1(w) ∓ T1(y)w) = 0 for all
y, w ∈ R. This implies that T1 is a centralizer. Similarly, we can show that T2 is a
centralizer. �

Theorem 2.9. Let R be a prime ring with involution ∗ of the second kind such that

char(R) 6= 2. If R admits two nonzero left centralizer T1 and T2 from R to R such

that T1(x)x∗ ± xT2(x) ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We have

(2.48) T1(x)x∗ ± xT2(x) ∈ Z(R), for all x ∈ R.

Linearizing (2.48), we have

(2.49) T1(x)y∗ + T2(y)x∗ ± xT2(y) ± yT2(x) ∈ Z(R), for all x, y ∈ R.

Replacing x, y by kx, ky in (2.49) where k ∈ S(R) ∩ Z(R) and subtracting it from
(2.49), we get

−2(T1(x)y∗ + T2(y)x∗)k2 ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

This implies that

2(T1(x)y∗ + T2(y)x∗)k2 ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we get

(2.50) T1(x)y∗ + T2(y)x∗ ∈ Z(R), for all x, y ∈ R.
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Replacing y by yk in (2.50), where k ∈ S(R) ∩ Z(R) and using (2.50), we get

2T2(y)x∗k ∈ Z(R), for all x, y ∈ R and k ∈ S(R) ∩ Z(R).

Taking x = h, where h ∈ H(R) ∩ Z(R), we get 2T2(y)hk ∈ Z(R) for all y ∈ R,
h ∈ H(R) ∩ Z(R) and k ∈ S(R) ∩ Z(R). Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0),
we get T2(y) ∈ Z(R) for all y ∈ R. This can be further written as

[T2(y), r] = 0, for all y, r ∈ R.

Replacing y by ym, where m ∈ R, we get T2(y)[m, r] = 0 for all y, m, r ∈ R. Further,
replacing y by yw, where w ∈ R, we get T2(y)w[m, r] = 0 for all y, w, m, r ∈ R. Then
by primeness, we get either T2 = 0 or [m, r] = 0 for all m, r ∈ R. Since T2 6= 0,
therefore we only have [m, r] = 0 for all m, r ∈ R. That is, R is commutative. �
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CURVATURE PROPERTIES OF GENERALIZED PP-WAVE

METRICS

ABSOS ALI SHAIKH1, TRAN QUOC BINH2, AND HARADHAN KUNDU1

Abstract. The main objective of the present paper is to investigate the curvature
properties of generalized pp-wave metrics. It is shown that a generalized pp-wave
spacetime is Ricci generalized pseudosymmetric, 2-quasi-Einstein and generalized
quasi-Einstein in the sense of Chaki. As a special case it is shown that pp-wave
spacetime is semisymmetric, semisymmetric due to conformal and projective cur-
vature tensors, R-space by Venzi and satisfies the pseudosymmetric type condition
P · P = − 1

3
Q(S, P ). Again we investigate the sufficient condition for which a gener-

alized pp-wave spacetime turns into pp-wave spacetime, pure radiation spacetime,
locally symmetric and recurrent. Finally, it is shown that the energy-momentum
tensor of pp-wave spacetime is parallel if and only if it is cyclic parallel. Again the
energy momentum tensor is Codazzi type if it is cyclic parallel but the converse
is not true as shown by an example. Finally, we make a comparison between the
curvature properties of the Robinson-Trautman metric and generalized pp-wave
metric.

1. Introduction

The class of pp-wave metrics (see [29,71]) arose during the study of exact solutions
of Einstein’s field equations. The term “pp-wave” is given by Ehlers and Kundt [29],
where “pp” abbreviates the term “plane-fronted gravitational waves with parallel
rays”. The term “plane-fronted gravitational waves” means there admit a geodesic
null vector field whose twist, expansion and shear are zero. The term “plane rays”
implies that the rotation of the vector field vanishes. For vacuum type N, this ensures
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the existence of a covariantly constant vector field which is parallel to the null vector
field. There are various forms of generalized pp-wave metrics in different coordinates.
The pp-wave belongs to the class of solutions admitting a non-expanding, shear-free
and twist-free null congruence and it admits a null Killing vector.

The family of pp-wave space-times was first discussed by Brinkmann [4] and in-
terpreted in terms of gravitational waves by Peres [46]. According to Brinkmann, a
pp-wave spacetime is any Lorentzian manifold whose metric tensor can be described,
with respect to Brinkmann coordinates, in the form

(1.1) ds2 = H(u, x, y)du2 + 2dudv + dx2 + dy2,

where H is any nowhere vanishing smooth function. Again it is well known that a
Lorentzian manifold with parallel lightlike (null) vector field is called Brinkmann-wave
([4, 30]). A Brinkmann-wave is called pp-wave if its curvature tensor R satisfies the
condition Rij

pqRpqkl = 0 ([30,44,69]). In 1984, Radhakrishna and Singh [47] presented
a class of solutions to Einstein-Maxwell equation for the null electrovac Petrov type
N gravitational field. They presented a metric of the form

ds2 = −2Udu2 + 2dudr −
1

2
P [(dx3)2 + (dx4)2],

where U = U(u, x3, x4) and P = P (x3, x4) are two nowhere vanishing smooth functions.
For the simplicity of notation, we write the variable u as x, and the function U as h

and P as f . Then the aforesaid metric can be written as

(1.2) ds2 = −2h(x, x3, x4)(dx)2 + 2dxdr −
1

2
f(x3, x4)[(dx3)2 + (dx4)2].

In Section 3 we show that the metric (1.2) admits a covariantly constant null vector
field and it satisfies the condition Rij

pqRpqkl = 0 if

(1.3) f 2
3 + f 2

4 − f (f33 + f44) = 0.

Thus we can say that the metric (1.2) is a Brinkmann-wave and it becomes a pp-wave
if (1.3) holds. Hence we can say the metric (1.2) as “generalized pp-wave metric”.
We note that for f ≡ −2 and h = −1

2
H(u, x3, x4), the solution (1.2) reduces to the

pp-wave metric (1.1).
In the study of differential geometry the notion of manifold of constant curvature

has been generalized by many authors in different directions such as locally symmetric
manifold by Cartan [5], semisymmetric manifold by Cartan [6] (see also [73–75]), pseu-
dosymmetric manifold by Adamów and Deszcz [1] (see also [15,22,24,34,35,78–80]),
recurrent manifold by Ruse ([49–51], see also [82]), weakly generalized recurrent mani-
fold by Shaikh and Roy ([52,66]), hyper generalized recurrent manifold by Shaikh and
Patra ([65,68]), super generalized recurrent manifold by Shaikh et al. [67]. We note
that in such geometric structures the first order and second order covariant derivatives
of the Riemann curvature tensor and other curvature tensors are involved. We mention
that the notion of pseudosymmetry by Deszcz is important in the study of differential
geometry due to its application in relativity and cosmology (see [14,23,28] and also
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references therein). The notion of pseudosymmetry is extended by considering other
curvature tensors in its defining condition, such as conformal pseudosymmetry, pseu-
dosymmetric Weyl conformal curvature tensor, Ricci generalized pseudosymmetry
etc. and they are called pseudosymmetric type conditions. It may be mentioned
that different pseudosymmetric type conditions are admitted by various spacetimes,
such as Gödel spacetime ([26,32]), Som-Raychaudhuri spacetime ([57,70]), Reissner-
Nordström spacetime [37], Vaidya spacetime [63] and Robertson-Walker spacetime
([2, 13,27]).

The main object of the present paper is to investigate the geometric structures
admitted by the generalized pp-wave metric (1.2). It is interesting to note that the
metric (1.2) without any other condition admits several geometric structures, such
as Ricci generalized pseudosymmetry, 2-quasi Einstein and generalized quasi-Einstein
in the sense of Chaki [8]. Again it is shown that the pp-wave metric (i.e., (1.2) with
condition (1.3)) is Ricci recurrent but not recurrent, semisymmetric, R-space by Venzi,
conformal curvature 2-forms are recurrent, Ricci tensor is Riemann compatible and
fulfills a pseudosymmetric type condition due to the projective curvature tensor P .
For the study of pseudosymmetric type conditions with projective curvature tensor
we refer the reader to see the recent papers of Shaikh and Kundu ([58, 59]). It is
interesting to note that for such a metric P · R = 0 but P · R 6= 0.

It is also shown that the metric is weakly Ricci symmetric and weakly cyclic Ricci
symmetric for different associated 1-forms, which ensures the existence of infinitely
many solutions of associated 1-forms of such structures. Again we investigate the
condition for which such a spacetime is locally symmetric and recurrent.

The paper is organized as follows. Section 2 deals with defining conditions of
different curvature restricted geometric structures, such as recurrent, semisymmetry,
pseudosymmetry, weakly symmetry etc. as preliminaries. Section 3 is devoted to the
investigation of curvature restricted geometric structures admitted by the generalized
pp-wave metric (1.2). Section 4 is mainly concerned with the geometric structures
admitted by pp-wave metric and plane wave metric. Section 5 deals with the investi-
gation of the conditions under which the energy-momentum tensor of such spacetimes
are parallel, Codazzi type and cyclic parallel. Finally, the last section is devoted
to make a comparison between the curvature properties of the Robinson-Trautman
metric and generalized pp-wave metric as well as pp-wave metric.

2. Preliminaries

Let M be a connected smooth semi-Riemannian manifold of dimension n (≥ 3)
equipped with the semi-Riemannian metric g. Let R, R, S, S and κ be respectively the
Riemann-Christoffel curvature tensor of type (0, 4), the Riemann-Christoffel curvature
tensor of type (1, 3), the Ricci tensor of type (0, 2), the Ricci tensor of type (1, 1) and
the scalar curvature of M .

For two symmetric (0, 2)-tensors A and E, their Kulkarni-Nomizu product A ∧ E
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is defined as (see e.g. [22,33]):

(A ∧ E)(X1, X2, X3, X4) =A(X1, X4)E(X2, X3) + A(X2, X3)E(X1, X4)

− A(X1, X3)E(X2, X4) − A(X2, X4)E(X1, X3),

where X1, X2, X3, X4 ∈ χ(M), the Lie algebra of all smooth vector fields on M .
Throughout the paper we will consider X, Y, X1, X2, . . . ∈ χ(M).

In terms of Kulkarni-Nomizu product, the conformal curvature tensor C, the con-
circular curvature tensor W , the conharmonic curvature tensor K ([36, 83]) and the
Gaussian curvature tensor G can be expressed as

C =R −
1

n − 2
(g ∧ S) +

κ

2(n − 2)(n − 1)
(g ∧ g),

W =R −
r

2n(n − 1)
(g ∧ g),

K =R −
1

n − 2
(g ∧ S),

G =
1

2
(g ∧ g).

Again the projective curvature tensor P of type (0, 4) is given by

P (X1, X2, X3, X4) =R(X1, X2, X3, X4)

−
1

n − 1
[g(X1, X4)S(X2, X3) − g(X2, X4)S(X1, X3)].

For a symmetric (0, 2)-tensor A, we get an endomorphism A defined by g(AX, Y ) =
A(X, Y ). Then its k-th level tensor Ak of type (0, 2) is given by

Ak(X, Y ) = A(Ak−1X, Y ),

where Ak−1 is the endomorphism corresponding to Ak−1, k = 2, 3, . . ., and A1 = A.

Definition 2.1 ([3,60]). A semi-Riemannian manifold M is said to be Ein(2), Ein(3)
and Ein(4) respectively if

S2 + λ1S + λ2g =0,

S3 + λ3S
2 + λ4S + λ5g =0,

S4 + λ6S
3 + λ7S

2 + λ8S + λ9g =0,

holds for some scalars λi, 1 ≤ i ≤ 9.

Definition 2.2 ([3, 60]). A semi-Riemannian manifold M is said to be generalized
Roter type ([56, 60]) if its Riemann-Christoffel curvature tensor R can be expressed
as a linear combination of g ∧ g, g ∧ S, S ∧ S, g ∧ S2, S ∧ S2 and S2 ∧ S2. Again M

is said to be Roter type (see [16,17]) if R can be expressed as a linear combination of
g ∧ g, g ∧ S and S ∧ S.
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Again for a (0, 4)-tensor D, an endomorphism D(X, Y ) and the corresponding
(1, 3)-tensor D can be defined as

D(X, Y )X1 = D(X, Y )X1, D(X1, X2, X3, X4) = g(D(X1, X2)X3, X4).

Again for a symmetric (0, 2)-tensor A, another endomorphism X ∧A Y (see [13, 22])
can be defined as

(X ∧A Y )X1 = A(Y, X1)X − A(X, X1)Y.

By operating D(X, Y ) and X ∧A Y on a (0, k)-tensor B, k ≥ 1, we can obtain two
(0, k + 2)-tensors D · B and Q(A, B) respectively given by (see [18,19,25,54,55] and
also references therein):

D · B(X1, X2, . . . , Xk, X, Y )

= − B(D(X, Y )X1, X2, . . . , Xk) − · · · − B(X1, X2, . . . ,D(X, Y )Xk).

and

Q(A, B)(X1, X2, . . . , Xk, X, Y )

=((X ∧A Y ) · B)(X1, X2, . . . , Xk)

=A(X, X1)B(Y, X2, . . . , Xk) + · · · + A(X, Xk)B(X1, X2, . . . , Y )

− A(Y, X1)B(X, X2, . . . , Xk) − · · · − A(Y, Xk)B(X1, X2, . . . , X).

In terms of local coordinates system, D · B and Q(A, B) can be written as

(D · B)i1i2···ikjl = − gpq [Djli1qBpi2···ik
+ · · · + DjlikqBi1i2···p] ,

Q(A, B)i1i2···ikjl =Ali1
Bji2···ik

+ · · · + Alik
Bi1i2···j

− Aji1
Bli2···ik

− · · · − Ajik
Bi1i2···l.

Definition 2.3 ([45,49–51]). A semi-Riemannian manifold M is said to be B-recurrent
if ∇B = Π ⊗ B for an 1-form Π. In particular for B = R (resp., S), the manifold M

is called a recurrent (resp., Ricci recurrent) manifold.

Definition 2.4 ([1, 6, 15, 55, 73]). A semi-Riemannian manifold M is said to be B-
semisymmetric type if D · B = 0 and it is said to be B-pseudosymmetric type if
(

k
∑

i=1
ciDi

)

· B = 0 for some scalars ci’s, where D and each Di, i = 1, . . . , k, k ≥ 2,

are (0,4) curvature tensors. In particular, if ci’s are all constants, then it is called
B-pseudosymmetric type manifold of constant type or otherwise non-constant type.

In particular, if i = 2, D1 = R, D2 = G and B = R, then M is called Ricci
generalized pseudosymmetric [12].

Definition 2.5. A semi-Riemannian manifold M is said to be quasi-Einstein (resp.
2-quasi-Einstein) if at each point of M , rank(S − αg) ≤ 1 (resp., ≤ 2) for a scalar α.
Also M is said to be generalized quasi-Einstein in the sense of Chaki [8] if

S = αg + βΠ ⊗ Π + γ[Π ⊗ Ω + Π ⊗ Ω],

for some 1-forms Π and Ω.
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Quasi-Einstein, as well as 2-quasi-Einstein manifolds were investigated among others
in [2, 9–11,19,21,22] and [25].

Definition 2.6. Let D be a (0, 4)-tensor and E be a symmetric (0, 2)-tensor on a
semi-Riemannian manifold M . Then E is said to be D-compatible ([20,39,40]) if

D(EX1, X, X2, X3) + D(EX2, X, X3, X1) + D(EX3, X, X1, X2) = 0

holds, where E is the endomorphism corresponding to E defined as g(EX1, X2) =
E(X1, X2). Again an 1-form Π is said to be D-compatible if Π ⊗ Π is D-compatible.

Definition 2.7. A semi-Riemannian manifold M is said to be weakly cyclic Ricci
symmetric [64] if its Ricci tensor satisfies the condition

(∇XS)(X1, X2) + (∇X1
S)(X, X2) + (∇X2

S)(X1, X)(2.1)

=Π(X) S(X1, X2) + Ω(X1) S(X, X2) + Θ(X2) S(X1, X),

for three 1-forms Π, Ω and Θ on M . Such a manifold is called weakly cyclic Ricci
symmetric manifold with solution (Π, Ω, Θ). Moreover if the first term of left hand side
is equal to the right hand side, then it is called weakly Ricci symmetric manifold [77].

Definition 2.8. Let D be a (0, 4) tensor and Z be a (0, 2)-tensor on a semi-Riemannian
manifold M . Then the corresponding curvature 2-forms Ωm

(D)l (see [3,38]) are called

recurrent if and only if ([41–43])

(∇X1
D)(X2, X3, X, Y ) + (∇X2

D)(X3, X1, X, Y ) + (∇X3
D)(X1, X2, X, Y )

=Π(X1)D(X2, X3, X, Y ) + Π(X2)D(X3, X1, X, Y ) + Π(X3)D(X1, X2, X, Y ),

and 1-forms Λ(Z)l [72] are called recurrent if and only if

(∇X1
Z)(X2, X) − (∇X2

Z)(X1, X) = Π(X1)Z(X2, X) − Π(X2)Z(X1, X),

for an 1-form Π.

Definition 2.9 ([48, 59, 81]). Let L(M) be the vector space formed by all 1-forms Θ
on a semi-Riemannian manifold M satisfying

Θ(X1)D(X2, X3, X4, X5) + Θ(X2)D(X3, X1, X4, X5) + Θ(X3)D(X1, X2, X4, X5) = 0,

where D is a (0, 4)-tensor. Then M is said to be a D-space by Venzi if dimL(M) ≥ 1.

3. Curvature Properties of Generalized pp-Wave Metric

We can now write the metric tensor g of the generalized pp-wave metric (1.2) as
follows:

g =











−2h 1 0 0
1 0 0 0
0 0 −1

2
f 0

0 0 0 −1
2
f











.
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Then the non-zero components of its Riemann-Christoffel curvature tensor R, Ricci
tensor S and scalar curvature κ of (1.2) are given by

R1313 =
−f3h3 + f4h4 + 2fh33

2f
, R1314 =

−f4h3 − f3h4 + 2fh34

2f
,

R1414 =
f3h3 − f4h4 + 2fh44

2f
, R3434 =

−f 2
3 − f 2

4 + ff33 + ff44

4f
,

S11 =
2 (h33 + h44)

f
, S33 = S44 =

−f 2
3 − f 2

4 + ff33 + ff44

2f 2
,

κ =
2 (f 2

3 + f 2
4 − f (f33 + f44))

f 3
,

where f3 = ∂f

∂x3 , f4 = ∂f

∂x4 , f33 = ∂f3

∂x3 , f34 = ∂f3

∂x4 , f44 = ∂f4

∂x4 etc.
Again the non-zero components of the conformal curvature tensor C and the projective
curvature tensor P are given by

C1313 = − C1414 =
−f3h3 + f4h4 + fh33 − fh44

2f
, C1314 =

−f4h3 − f3h4 + 2fh34

2f
,

P1211 =
2 (h33 + h44)

3f
, P1313 =

−3f3h3 + 3f4h4 + 4fh33 − 2fh44

6f
,

P1314 = − P1341 = P1413 = −P1431 =
−f4h3 − f3h4 + 2fh34

2f
,

P1441 = −
f3h3 − f4h4 + 2fh44

2f
,

P1331 = −
−f3h3 + f4h4 + 2fh33

2f
, P1414 = −

−3f3h3 + 3f4h4 + 2fh33 − 4fh44

6f
.

Now the non-zero components (upto symmetry) of the energy momentum tensor

T =
c4

8πG

[

S −
(

κ

2
− Λ

)

g

]

,

where c = speed of light in vacuum, G = gravitational constant and Λ = cosmological
constant, are given by

T11 = −
c4 (f 3hΛ − f 2h33 − f 2h44 + f33fh + f44fh − f 2

3 h − f 2
4 h)

4πf 3G
,

T12 =
c4 (f 3Λ + f33f + f44f − f 2

3 − f 2
4 )

8πf 3G
, T33 = T44 = −

c4fΛ

16πG
.
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Then the non-zero components (upto symmetry) of covariant derivative ∇T of the
energy momentum tensor T are given by

T11,1 =
c4 (h133 + h144)

4πfG
,

T11,3 =
c4

4πf 4G

(

−f 2hf344 − f 2hf333 + f 3h333 + f 3h344 − f3f
2h33 − f3f

2h44

+4f3f33fh + 2f4f34fh + 2f3f44fh − 3f 3
3 h − 3f3f

2
4 h
)

,

T11,4 =
c4

4πf 4G

(

−f 2hf444 − f 2hf344 + f 3h334 + f 3h444 − f4f
2h33 − f4f

2h44

+2f4f33fh + 2f3f34fh + 4f4f44fh − 3f 3
4 h − 3f 2

3 f4h
)

,

T12,3 =
c4 (f 2f344 + f 2f333 + 3f 3

3 + 3f 2
4 f3 − 4ff33f3 − 2ff44f3 − 2ff4f34)

8πf 4G
,

T12,4 =
c4 (f 2f444 + f 2f334 + 3f 3

4 + 3f 2
3 f4 − 2ff33f4 − 4ff44f4 − 2ff3f34)

8πf 4G
,

T13,1 =
c4 (−f 2

3 − f 2
4 + ff33 + ff44) h3

8πf 3G
,

T14,1 =
c4 (−f 2

3 − f 2
4 + ff33 + ff44) h4

8πf 3G
.

From above we see that the Ricci tensor S of (1.2) is of the form

(3.1) S(X, Y ) = αg(X, Y ) + βη(X)η(Y ) + γ[η(X)δ(Y ) + η(Y )δ(X)],

where α =
f2

3
+f2

4
−ff33−ff44

f3 , β = 1, γ = 1, η = {1, 0, 0, 0} and

δ =

{

2f2 (h33 + h44) − 2 (f33 + f44) fh + 2
(

f2
3 + f2

4

)

h − f3

2f3
,
f
(

f33 + f44 − f2
3 − f2

4

)

f3
, 0, 0

}

.

Therefore, the metric (1.2) is generalized quasi-Einstein in the sense of Chaki. More-

over, ||η|| = 0, ||δ||2 =
(f2

3
+f2

4
−f(f33+f44))(f−2(h33+h44))

f4 , g(η, δ) = −
f2

3
+f2

4
−f(f33+f44)

f3 and

∇η = 0. So there exists a null covariantly constant vector field ζ, where ζ is the cor-
responding vector field of η (i.e., g(ζ, X) = η(X), for all X). Hence we can conclude
that the spacetime with the metric (1.2) is a generalized pp-wave metric.

Now from the value of the components of various tensors related to (1.2), we can
state the following.

Theorem 3.1. The generalized pp-wave metric (1.2) possesses the following curvature

restricted geometric structures:

(i) Ricci generalized pseudosymmetric such that R · R = Q(S, R);

(ii) 2-quasi-Einstein, since rank
(

S −
f2

3
+f2

4
−f(f33+f44)

f3 g
)

= 2;

(iii) generalized quasi-Einstein in the sense of Chaki such that (3.1) holds;

(iv) Ricci tensor is Riemann compatible as well as Weyl compatible;
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(v) Ein(3) manifold such that S3 = −
f2

3
+f2

4
−f(f33+f44)

f3 S2.

Now from the components of R, we see that the only non-zero component (upto

symmetry) of the tensor Dijkl = R
pq
ij Rpqkl is given by D3434 =

(f2

3
+f2

4
−f(f33+f44))

2

2f4 .
Hence from definition, we can state the following.

Theorem 3.2. The generalized pp-wave metric (1.2) becomes a pp-wave metric if

f 2
3 + f 2

4 − f (f33 + f44) = 0.

Example 3.1. If we consider f(x3, x4) = ex3+x4

, then f 2
3 +f 2

4 −f (f33 + f44) = 0. Hence
by above theorem the metric

ds2 = −2h(x, x3, x4)(dx)2 + 2dxdr −
1

2
ex3+x4

[(dx3)2 + (dx4)2]

is a pp-wave metric.

4. Curvature Properties of pp-Wave and Plane Wave Metric

In this section we investigate the curvature restricted geometric structures admitted
by the pp-wave metric. Since under the condition (1.3) the generalized pp-wave metric
(1.2) becomes a pp-wave metric, putting this condition we get the non-zero components
of R, S, C and P of the pp-wave metric given as follows:

R1313 =
−f3h3 + f4h4 + 2fh33

2f
, R1314 =

−f4h3 − f3h4 + 2fh34

2f
,

R1414 =
f3h3 − f4h4 + 2fh44

2f
,

S11 =
2 (h33 + h44)

f
,

C1313 = − C1414 =
−f3h3 + f4h4 + fh33 − fh44

2f
, C1314 =

−f4h3 − f3h4 + 2fh34

2f
,

P1211 =
2 (h33 + h44)

3f
, P1313 =

−3f3h3 + 3f4h4 + 4fh33 − 2fh44

6f
,

P1314 = − P1341 = P1413 = −P1431 =
−f4h3 − f3h4 + 2fh34

2f
,

P1441 = −
f3h3 − f4h4 + 2fh44

2f
,

P1331 = −
−f3h3 + f4h4 + 2fh33

2f
, P1414 = −

−3f3h3 + 3f4h4 + 2fh33 − 4fh44

6f
.

Using the values of the components of g, R, S and C we get
(i) κ = 0, (ii) R · R = 0, (iii) R · S = 0, (iv) Q(S, R) = 0, (v) R · C = 0, (vi) C · R = 0,
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(vii) C · C = 0 and (viii) Q(S, C) = 0.
The energy momentum tensor T is given by

(4.1) T11 = −
c4 (fhΛ − h33 − h44)

4πfG
, T12 =

c4Λ

8πG
, T33 = T44 = −

c4fΛ

16πG
.

Then the non-zero components of covariant derivative of T are given by

(4.2)







































T11,1 =
c4 (h144 + h133)

4πfG
,

T11,3 =
c4 (fh344 + fh333 − f3h33 − f3h44)

4πf 2G
,

T11,4 =
c4 (fh444 + fh334 − f4h33 − f4h44)

4πf 2G
.

From the above calculations, we can state the following.

Theorem 4.1. The pp-wave metric (1.2) with the additional condition (1.3) possesses

the following curvature properties.

(i) κ = 0 and hence R = W and C = K.

(ii) R-space and C-space by Venzi for {1, 0, 0, 0}. Hence, from second Bianchi

identity, the curvature 2-forms Ωm
(R)l are recurrent for the 1-form {1, 0, 0, 0}.

(iii) It is semisymmetric and hence Ricci semisymmetric, conformally semisymmet-

ric and projectively semisymmetric.

(iv) If α
3

+ α
4

6= 0, then the conformal 2-forms Ωm
(C)l are recurrent with 1-form of

recurrency

Π =

{

1, 0,
α

1
+ α

2

α
3

+ α
4

,
α

5
+ α

6
+ α

7

α
3

+ α
4

}

,

where

α
1

= (f3h3 − f4h4 − f (h33 − h44)) (f3 (h33 + h44) − f (h333 + h344)) ,

α
2

= (−f4h3 − f3h4 + 2fh34) (f (h334 + h444) − f4 (h33 + h44)) ,

α
3

=f 2
(

4h2
34 + (h33 − h44)

2
)

+ f 2
3

(

h2
3 + h2

4

)

+ f 2
4

(

h2
3 + h2

4

)

,

α
4

=2ff4 (h4 (h33 − h44) − 2h3h34) − 2ff3 (2h4h34 + h3 (h33 − h44)) ,

α
5

=f 2 (2h34 (h333 + h344) + (h44 − h33) (h334 + h444))

+ f 2
3 h4 (h33 + h44) + f 2

4 h4 (h33 + h44) ,

α
6

=ff3 (−2h34 (h33 + h44) − h4 (h333 + h344) + h3 (h334 + h444)) ,

α
7

= − ff4

(

−h2
33 + h2

44 + h3 (h333 + h344) + h4 (h334 + h444)
)

.

(v) It is not recurrent but if h33 + h44 6= 0, then it is Ricci recurrent with 1-form

of recurrency

Π =

{

h144 + h133

h33 + h44

, 0,
fh344 + fh333 − f3h33 − f3h44

f (h33 + h44)
,
fh444 + fh334 − f4h33 − f4h44

f (h33 + h44)

}

.
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(vi) If h33 +h44 6= 0, then it is weakly cyclic Ricci symmetric with solution (Π, Ω, Θ),
given by

Π =

{

Π1, 0,
f (h333 + h344) − f3 (h33 + h44)

f (h33 + h44)
,
f (h334 + h444) − f4 (h33 + h44)

f (h33 + h44)

}

,

Ω =

{

Ω1, 0,
f (h333 + h344) − f3 (h33 + h44)

f (h33 + h44)
,
f (h334 + h444) − f4 (h33 + h44)

f (h33 + h44)

}

,

Θ =

{

3 (h133 + h144)

h33 + h44

− Π1 − Ω1, 0,
f (h333 + h344) − f3 (h33 + h44)

f (h33 + h44)
,

f (h334 + h444) − f4 (h33 + h44)

f (h33 + h44)

}

,

where Π1 and Ω1 are arbitrary scalars.

(vii) Ricci simple (i.e., S = αη ⊗ η) for

α =
2(h33 + h44)

f
and η = {1, 0, 0, 0}

and hence S ∧ S = 0 and S2 = 0. Again, ||η|| = 0 and ∇η = 0.

(viii) Q(S, R) = Q(S, C) = 0 but R or C is not a scalar multiple of S ∧ S as S is of

rank 1.

(ix) C · R = 0 and hence C · S = 0, C · C = 0 and C · P = 0.

(x) P · R = 0 but P · R 6= 0. Also but P · S = P · S = 0.

(xi) Ricci tensor is Riemann compatible as well as Weyl compatible.

(xii) P · P = −1
3
Q(S, P ).

Remark 4.1. From the value of the local components (presented in Section 4) of various
tensors of the pp-wave metric, we can easily conclude that the metric is

(i) not conformally symmetric and hence not locally symmetric or projectively
symmetric;

(ii) not conformally recurrent and hence not recurrent or not projectively recurrent;
(iii) not super generalized recurrent [67] and hence not hyper generalized recurrent

[65], weakly generalized recurrent [66];
(iv) not weakly symmetric [76] for R, C, P, W and K and hence not Chaki pseu-

dosymmetric [7] for R, C, P, W and K;
(v) neither cyclic Ricci parallel [31] nor of Codazzi type Ricci tensor although its

scalar curvature is constant;
(vi) not harmonic, i.e., div R 6= 0 and moreover div C 6= 0, div P 6= 0.

Remark 4.2. In [12] it was shown that if Q(S, R) = 0, then R = LS ∧S for some scalar
L if S is not of rank 1. Recently, in Example 1 of [59] a metric with Q(S, R) = 0, on

which S is not of rank 1 and R = ex1

S ∧ S is presented. It is interesting to mention
that the rank of the Ricci tensor of the pp-wave metric is 1 and here R 6= 0 but
S ∧ S = 0.
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Remark 4.3. It is well-known that every Ricci recurrent space with Π as the 1-form
of recurrency, is weakly Ricci symmetric with solution (Π, 0, 0). It is interesting
to mention that there may infinitely many solutions for a weakly Ricci symmetric
manifold. The pp-wave metric ((1.2) with condition (1.3)) is weakly Ricci symmetric
with solution

Π =

{

Π1, 0,
f (h333 + h344) − f3 (h33 + h44)

f (h33 + h44)
,
f (h334 + h444) − f4 (h33 + h44)

f (h33 + h44)

}

,

Ω = {Ω1, 0, 0, 0} ,

Θ =

{

h133 + h144

h33 + h44

− Π1 − Ω1, 0, 0, 0

}

,

where Π1 and Ω1 are arbitrary scalars.

Again it is clear that the pp-wave metric (1.1) in Brinkmann coordinates, is a
special case of (1.2) for f ≡ −2 and h = −1

2
H and hence satisfies (1.3). Therefore

from Theorem 4.1, we can state the following about the geometric properties of the
metic (1.1).

Corollary 4.1. The metric given in (1.1) possesses the following curvature properties.

(i) κ = 0 and hence R = W and C = K.

(ii) R-space and C-space by Venzi for {1, 0, 0, 0}. Hence, from second Bianchi

identity, the curvature 2-forms Ωm
(R)l are recurrent for the 1-form {1, 0, 0, 0}.

(iii) Semisymmetric and hence Ricci semisymmetric, conformally semisymmetric

and projectively semisymmetric.

(iv) If 4H2
34 + (H33 − H44)

2 6= 0, then its conformal curvature 2-forms Ωm
(C)l are

recurrent with 1-form of recurrency Π, given by

Π1 =1, Π2 = 0,

Π3 =
2H34 (H334 + H444) + (H33 − H44) (H333 + H344)

4H2
34 + (H33 − H44)

2 ,

Π4 =
2H34 (H333 + H344) − (H33 − H44) (H334 + H444)

4H2
34 + (H33 − H44)

2 .

(v) If H33 + H44 6= 0, then it is Ricci recurrent with 1-form of recurrency Π, given

by

Π =
{

1, 0,
H333 + H344

H33 + H44

,
H334 + H444

H33 + H44

}

.
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(vi) If H33 + H44 6= 0, then it is weakly Ricci symmetric with solution (Π, Ω, Θ),
given by

Π =
{

Π1, 0,
H333 + H344

H33 + H44

,
H334 + H444

H33 + H44

}

,

Ω = {Ω1, 0, 0, 0} ,

Θ =
{

H133 + H144

H33 + H44

− Π1 − Ω1, 0, 0, 0
}

,

where Π1 and Ω1 are arbitrary scalars.

(vii) If H33+H44 6= 0, then it is weakly cyclic Ricci symmetric with solution (Π, Ω, Θ),
given by

Π =
{

Π1, 0,
H333 + H344

H33 + H44

,
H334 + H444

H33 + H44

}

,

Ω =
{

Ω1, 0,
H333 + H344

H33 + H44

,
H334 + H444

H33 + H44

}

,

Θ =

{

3 (H133 + H144)

H33 + H44

− Π1 − Ω1, 0,
H333 + H344

H33 + H44

,
H334 + H444

H33 + H44

}

,

where Π1 and Ω1 are arbitrary scalars.

(viii) Ricci simple [44] (i.e., S = αη ⊗ η) for

α =
1

2
(H33 + H44) and η = {1, 0, 0, 0} ,

and hence S ∧ S = 0 and S2 = 0. Here ||η|| = 0 and ∇η = 0.

(ix) Q(S, R) = Q(S, C) = 0 but R or C is not a scalar multiple of S ∧ S as S is of

rank 1.

(x) C · R = 0 and hence C · S = 0, C · C = 0 and C · P = 0.

(xi) P · R = 0 but P · R 6= 0. Also but P · S = P · S = 0.

(xii) Ricci tensor is Riemann compatible as well as Weyl compatible.

(xiii) P · P = −1
3
Q(S, P ).

Again the non-vacuum pp-wave solution presented in [69] is a special case of (1.1)

for H(x, x3, x4) = 2a1e
a2x3

−a3x4

. Hence the line element is explicitly given by:

(4.3) ds2 = 2a1e
a2x3

−a3x4

(dx)2 + 2dxdr + [(dx3)2 + (dx4)2].

Now the geometric properties of the metric (4.3) can be stated as follows.

Corollary 4.2. The metric given in (4.3) possesses the following curvature properties.

(i) It satisfies the curvature conditions (i)-(xiii) of Corollary 4.1 with different

associated 1-forms of the corresponding structures.

(ii) Moreover it is recurrent for the 1-form of recurrency {0, 0, 2a2, −2a3}. Hence

it is Ricci recurrent, conformally recurrent and projectively recurrent. Also it

is semisymmetric and hence Ricci semisymmetric, conformally semisymmetric

and projectively semisymmetric.
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Again the generalized plane wave metric [71] is given by

(4.4) ds2 = 2H(x, x3, x4)(dx)2 + 2dxdr + (dx3)2 + (dx4)2,

where H(x, x3, x4) = a1(x
3)2 + a2(x

4)2 + a3x
3x4 + a4x

3 + a5x
4 + a6, ai’s are scalar.

Hence, it is a special case of (1.1) and we can state the following.

Corollary 4.3. The metric given in (4.4) possesses the following curvature properties:

(i) it satisfies the curvature conditions (i)-(ix) of Corollary 4.1 with different as-

sociated 1-forms of the corresponding structures;

(ii) moreover it is locally symmetric and hence Ricci symmetric, conformally sym-

metric and projectively symmetric.

From Corollary 4.1, Corollary 4.2 and Corollary 4.3, we can state the following
about the recurrent structure on a semi-Riemannian manifold.

Remark 4.4. From Corollary 4.2 we see that the metric (4.3) is recurrent but not locally
symmetric and from Corollary 4.1 we see that the metric (1.1) is Ricci recurrent but
not recurrent. These results support the well-known facts that every locally symmetric
manifold is recurrent but not conversely, and every recurrent manifold is Ricci recurrent
but not conversely.

5. Energy-Momentum Tensor of Generalized pp-Wave Metric

In this section we discuss about the energy-momentum tensor of the generalized
pp-wave metric (1.2) and also the other special forms, such as (1.1), (4.3) and (4.4).
From the values of the energy momentum tensor T of the generalized pp-wave metric
(1.2), we can conclude that T is of rank 1 if the cosmological constant is zero and
(1.3) holds. In this case

T =
c4 (h33 + h44)

4πfG
η ⊗ η, η = {1, 0, 0, 0}.

Again it is easy to check that η is null. Thus we can state the following.

Theorem 5.1. For zero cosmological constant, the generalized pp-wave metric (1.2)
is a pure radiation metric if and only if it is a pp-wave metric.

Corollary 5.1. For zero cosmological constant, the pp-wave metric ((1.2) with (1.3)
or (1.1)) is a pure radiation metric.

We note that recently Shaikh et al. [62] studied the curvature properties of pure
radiation metric. Again from the values of the components of ∇T of the metric (1.2),
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we get

T11,1 + T11,1 + T11,1

=
3c4 (h133 + h144)

4πfG
,

T11,3 + T13,1 + T31,1

=
c4

4πf 4G

(

f 3h333 + f 3h344 − f333f
2h − f344f

2h + f33f
2h3 + f44f

2h3 − f3f
2h33

− f3f
2h44 + 4f3f33fh +2f4f34fh + 2f3f44fh − f 2

3 fh3 − f 2
4 fh3 − 3f 3

3 h − 3f3f
2
4 h
)

,

T11,4 + T14,1 + T41,1

=
c4

4πf 4G

(

f 3h334 + f 3h444 − f334f
2h − f444f

2h + f44f
2h4 − f4f

2h33 − f4f
2h44

+2f4f33fh + 2f3f34fh + f33f
2h4 + 4f4f44fh − f 2

3 fh4 − f 2
4 fh4 − 3f 3

4 h − 3f 2
3 f4h

)

,

T12,3 + T23,1 + T31,2

=
c4 (f 2f333 + f 2f344 + 3f 3

3 + 3f 2
4 f3 − 4ff33f3 − 2ff44f3 − 2ff4f34)

8πf 4G
,

T12,4 + T24,1 + T41,2

=
c4 (f 2f334 + f 2f444 + 3f 3

4 + 3f 2
3 f4 − 2ff33f4 − 4ff44f4 − 2ff3f34)

8πf 4G

and

T11,3 − T13,1 =
c4

8πf 4G

(

2f 3h333 + 2f 3h344 − 2f333f
2h − 2f344f

2h

− f33f
2h3 − f44f

2h3 − 2f3f
2h33 − 2f3f

2h44 + 8f3f33fh + 4f4f34fh

+4f3f44fh + f 2
3 fh3 + f 2

4 fh3 − 6f 3
3 h − 6f3f

2
4 h
)

,

T11,4 − T14,1 =
c4

8πf 4G

(

2f 3h334 + 2f 3h444 − 2f334f
2h − 2f444f

2h − f33f
2h4

− f44f
2h4 − 2f4f

2h33 − 2f4f
2h44 + 4f4f33fh + 4f3f34fh + 8f4f44fh

+f 2
3 fh4 + f 2

4 fh4 − 6f 3
4 h − 6f 2

3 f4h
)

and

T12,3 − T13,2 = T23,1 − T21,3

= −
c4 (f 2f333 + f 2f344 + 3f 3

3 + 3f 2
4 f3 − 4ff33f3 − 2ff44f3 − 2ff4f34)

8πf 4G
,

T12,4 − T14,2 = T24,1 − T21,4

= −
c4 (f 2f334 + f 2f444 + 3f 3

4 + 3f 2
3 f4 − 2ff33f4 − 4ff44f4 − 2ff3f34)

8πf 4G
.
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Now putting the condition (1.3) to above, we get

(5.1)



















T11,3 − T13,1 =
c4 (fh344 + fh333 − f3h33 − f3h44)

4πf 2G
,

T11,4 − T14,1 =
c4 (fh444 + fh334 − f4h33 − f4h44)

4πf 2G
,

and

(5.2)







































T11,1 + T11,1 + T11,1 =
3c4 (h144 + h133)

4πfG
,

T11,3 + T13,1 + T31,1 =
c4 (fh344 + fh333 − f3h33 − f3h44)

4πf 2G
,

T14,1 + T41,1 + T11,4 =
c4 (fh444 + fh334 − f4h33 − f4h44)

4πf 2G
.

Now, from (4.2), (5.1) and (5.2), we can state the following.

Proposition 5.1. The energy momentum tensor T of the pp-wave metric (1.2) with

the condition (1.3) is

(i) parallel if

h144 + h133 = fh344 + fh333 − f3h33 − f3h44 = fh444 + fh334 − f4h33 − f4h44 = 0;

(For example: f(x3, x4) = ex3+x4

and h(x1, x3, x4) = ex3+x4

).
(ii) Codazzi type if

fh344 + fh333 − f3h33 − f3h44 = fh444 + fh334 − f4h33 − f4h44 = 0;

(For example: f(x3, x4) = ex3+x4

and h(x1, x3, x4) = ex+x3+x4

).
(iii) cyclic parallel if

h144 + h133 = fh344 + fh333 − f3h33 − f3h44 = fh444 + fh334 − f4h33 − f4h44 = 0.

(For example: f(x3, x4) = ex3+x4

and h(x1, x3, x4) = ex3+x4

).

Proposition 5.2. The energy-momentum tensor of the pp-wave metric of the form

(1.1) is

(i) parallel if H144 + H133 = H344 + H333 = H444 + H334 = 0;
(For example: H(u, x, y) = (x)2 + (y)2).

(ii) Codazzi type if H344 + H333 = H444 + H334 = 0;
(For example: H(u, x, y) = (ux)2 + (uy)2).

(iii) cyclic parallel if H144 + H133 = H344 + H333 = H444 + H334 = 0.

(For example: H(u, x, y) = (x)2 + (y)2).

Now we can conclude the following.

Theorem 5.2. On a pp-wave spacetime (endowed with the metric (1.2) with (1.3) or

(1.1))

(i) the energy-momentum tensor is parallel if and only if it is cyclic parallel;



CURVATURE PROPERTIES OF GENERALIZED PP-WAVE METRICS 253

(ii) the energy-momentum tensor is Codazzi type if it is cyclic parallel but not

conversely (see Example 5.1);
(iii) the Ricci tensor is zero, i.e., the space is vacuum if h or H is harmonic, i.e.,

h33 + h44 = 0 or H33 + H44 = 0 and in this case ∇T = 0.

Example 5.1. We now consider a special form of the generalized pp-wave metric (1.2)
as

(5.3) ds2 = −2ex+x3
−x4

(dx)2 + 2dxdr −
1

2
ex3

−x4

[(dx3)2 + (dx4)2].

Then the non-zero components of its R, ∇R, S and ∇S are given by

R1313 =R1414 = ex+x3
−x4

, R1313,1 = R1414,1 = ex+x3
−x4

,

S11 =4ex, S11,1 = 4ex.

It is easy to check that the scalar curvature of this metric is zero and it is conformally
flat. Now the non-zero components of its energy momentum tensor T and its derivative
∇T are given by

T11 =
c4ex−x4

(

2ex4

− Λex3
)

4πG
, T12 =

c4Λ

8πG
, T33 = T44 = −

c4Λex3
−x4

16πG
,

T11,1 =
c4ex

2πG
.

Thus we can easily check that the Ricci tensor and the energy momentum tensor of
(5.3) are codazzi type but not cyclic parallel.

6. Robinson-Trautman Metric and Generalized pp-Wave Metric

Recently, Shaikh et al. [53] studied the curvature properties of Robinson-Trautman
metric. The line element of Robinson-Trautman metric in {t, r, x3, x4}-coordinate is
given by

(6.1) ds2 = −2(a − 2br − qr−1)dt2 + 2dtdr −
r2

f 2
[(dx3)2 + (dx4)2],

where a, b, q are constants and f is a function of the real variables x3 and x4. In
this section we make a comparison between the curvature properties of the Robinson-
Trautman metric (6.1) and generalized pp-wave metric (1.2) as well as the pp-wave
metric (1.1).

Theorem 6.1. The Robinson-Trautman metric (6.1) and generalized pp-wave metric

(1.2) have the following similarities and dissimilarities.

A. Similarities:

(i) both the metrics are 2-quasi-Einstein;

(ii) both are generalized quasi-Einstein in the sense of Chaki;

(iii) Ricci tensors of both the metrics are Riemann compatible as well as Weyl

compatible.
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B. Dissimilarities:

(iv) (6.1) is Deszcz pseudosymmetric whereas (1.2) is Ricci generalized pseudosym-

metric;

(v) the conformal curvature 2-forms are recurrent for (6.1) but not recurrent for

(1.2);
(vi) the metric (6.1) is Roter type and hence Ein(2) but (1.2) is not Roter type but

Ein(3).

Theorem 6.2. The Robinson-Trautman metric (6.1) and pp-wave metric (1.1) have

the following similarities and dissimilarities.

A. Similarities:

(i) for both the metrics, the conformal curvature 2-forms are recurrent;

(ii) Ricci tensor of both the metrics are Riemann compatible as well as Weyl

compatible.

B. Dissimilarities:

(iii) the metric (6.1) is 2-quasi-Einstein, where as (1.1) is Ricci simple and hence

quasi-Einstein;

(iv) (6.1) is Deszcz pseudosymmetric whereas (1.1) is semisymmetric;

(v) (6.1) is pseudosymmetric due to conformal curvature tensor whereas (1.1) is

semisymmetric due to conformal curvature tensor;

(vi) the metric (6.1) realizes S ∧ S 6= 0 but (1.1) satisfies S ∧ S = 0;

(vii) the metric (6.1) is Roter type and hence Ein(2) but (1.1) is not Roter type but

Ein(3).
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SOME REMARKS ON DIFFERENTIAL IDENTITIES IN RINGS

MOHD ARIF RAZA1, HUSAIN ALHAZMI1, AND SHAKIR ALI2

Abstract. Let 1 < k and m, k ∈ Z
+. In this manuscript, we analyse the action of

(semi)-prime rings satisfying certain differential identities on some suitable subset
of rings. To be more specific, we discuss the behaviour of the semiprime ring
R satisfying the differential identities ([d([s, t]m), [s, t]m])k = [d([s, t]m), [s, t]m] for
every s, t ∈ R.

1. Motivation

The work of this manuscript is motivated by the various results established by many
well known algebraists (see [1,2,4,6,7,9–11,14,15,17,19], and references therein). The
famous and classical result in this direction is due to Jacobson [12]. The theorem to
which we want to mention is the following: “any ring in which sk = s, 1 < k ∈ Z

+

is necessarily commutative”. The above mentioned result generalizes Wedderburn
theorem, i.e., “every finite division ring is commutative”, and also the result that
“any Boolean ring is a commutative ring”.

In [10], Herstein discussed the commutativity of a ring and he established that
“a ring must be commutative if it satisfies [s, t]n = [s, t], for every s, t ∈ R, where

1 < n ∈ Z
+”. In 2011, Huang [11] proved that “if a prime ring R admits a deriva-

tion d such that d([s, t])k = [s, t]n for all s, t ∈ I, a nonzero ideal of R (where

1 < k, n ∈ Z
+) R is commutative”. In 2017, De Filippis et al. [8] proved the fol-

lowing “let R be a prime ring of characteristic different from 2, d be a nonzero

derivation of R, f(x1, . . . , xn) be a multilinear polynomial over C and 1 < k ∈ Z
+

such that
(

[d(f(r1, . . . , rn)), f(r1, . . . , rn)]
)k

= [d(f(r1, . . . , rn)), f(r1, . . . , rn)] for all

Key words and phrases. (Semi)-prime ring, derivation, Engel polynomial, maximal right ring of
quotients, generalized polynomial identity (GPI).
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r1, . . . , rn ∈ R. Then f(x1, . . . , xn) is central valued on R”. In particular, if multi-
linear polynomial replace by commutator, then we conclude with the commutativity
of rings. On the other hand, Giambruno et al. [9] generalizes Herstein result for
Engel polynomial and they established that “a ring must be commutative if it satisfies

([s, t]m)n = [s, t]m”. In view of Giambruno et al. result Raza and Rehman [18] proved
that “a prime ring R is commutative if it satisfies d([s, t]m)n = [s, t]m for all s, t ∈ I,

a nonzero ideal of R”.
In the prospect of above motivation, our intention is to explore the action of prime

and semiprime rings satisfying Engel polynomials, which are not multilinear associated
with derivations. To be more specific, we discuss the behaviour of the semiprime ring R

satisfying the differential identities ([d([s, t]m), [s, t]m])k = [d([s, t]m), [s, t]m] for every
s, t ∈ R.

2. The Results

We use the following notations and definitions, unless otherwise mention, R be a
ring, Z(R) be the center of R, Q be a Martindale quotient ring of R, U be a Utumi
quotient ring of R, and C be the extended centroid of R (see [3] for further details).
A ring R is said to be prime if for any s, t ∈ R, sRt = (0) implies s = 0 or t = 0,
and R is semiprime if for any s ∈ R, sRs = (0) implies s = 0. An additive mapping
d : R −→ R is said to be a derivation if it satisfies d(st) = d(s)t + sd(t) for every
s, t ∈ R. If for any fixed p ∈ R, d(s) = [p, s], for every s ∈ R, then d is said to be
inner derivation. Moreover, d is said to be Q-inner if the extension of d to Q is inner
otherwise Q-outer.

We will proceed by first proving the following auxiliary result.

Lemma 2.1. Let 1 < k ∈ Z
+ and 1 ≤ m ∈ Z

+. Next, R = Mm(C) be the ring of

m × m matrices over the field C such that [[p, [s, t]m], [s, t]m]k = [[p, [s, t]m], [s, t]m].
Then p ∈ Z(R).

Proof. Let p =
∑

ij pijeij, where eij denotes the usual unit matrix with 1 in (i, j)-entry
and zero elsewhere and pij ∈ C. We show that p is a diagonal matrix. Next, let s = eij

and t = ejj and in view of our hypothesis, we deduce that ([p, eij]2)
k = [p, eij]2, i.e,

−2eijqeij = 0 and hence pji = 0 for any i 6= j. Therefore, p is a diagonal matrix.
Further, we see that

([[ϕ(p), [s, t]m]]2)
k = [[ϕ(p), [s, t]m]]2

is a generalized polynomial identity of R for ϕ ∈ AutC(R). This shows that ϕ(p) is
diagonal matrix. Precisely, we consider the automorphism ϕ(p) = (1 + eij)p(1 − eij)
for any i 6= j and say ϕ(p) =

∑

ij p′

ijeij, where p′

ij ∈ C. Since p′

ij = 0, then by easy
computation we obtain 0 = p′

ij = pjj − pii. So, that pjj = pii holds for any i 6= j. This
implies that p ∈ Z(R). This completes the proof. �
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Lemma 2.2. Let 1 < k ∈ Z
+ and 1 ≤ m ∈ Z

+. Next, let R be a non-commutative

prime ring of characteristic different from 2. If p ∈ Q and [[p, [s, t]m], [s, t]m]k =
[[p, [s, t]m], [s, t]m] be a generalized polynomial identity for R, then p ∈ C.

Proof. We prove this lemma by contradiction, i.e., we assume that p /∈ C. Clearly, Q
satisfies [[p, [s, t]m], [s, t]m]k = [[p, [s, t]m], [s, t]m] (see [5]). Specifically, as p /∈ C then
the above identity is a non-trivial generalized polynomial identity for Q. Thus, Q is a
primitive ring which is isomorphic to a dense ring of linear transformations of a vector
space V over C (by Martindale’s theorem in [16]).

Now firstly we discuss the case when dimC(V) = m, where m > 1, a finite positive
integer. In this case, the contradiction follows by Lemma 2.1.

We now assume that dimC V = ∞. Then, we have

(2.1) ([p, [s, t]m]2)
k = [p, [s, t]m]2, for all s, t ∈ Q.

Moreover, again by Martindale’s theorem [16], it follows that soc(Q) = H 6= (0) and
eHe is a finite dimensional simple central algebra over C, for any minimal idempotent
element e ∈ H. Moreover, we may assume that H is non-commutative, otherwise
Q must be commutative. Of course, H satisfies ([p, [s, t]m]2)

k = [p, [s, t]m]2 (see for
example proof of [14, Theorem 1]). As H is a simple ring, either H does not contain
any non-trivial idempotent element or H is generated by its idempotents. In this last
case, suppose that H contains two minimal orthogonal idempotent elements e and f .
By the hypothesis, for [s, t]m = [es, f ]m = esf , we have

(2.2) exf(p)exf = 0,

in case we get fpesfpesfpe = 0, by the primeness of R, we get fpe = 0, where e
and f are orthogonal idempotent element of rank 1. Specifically, as e of rank 1, we
have ep(1 − e) = 0 and (1 − e)pe = 0, i.e., ep = epe = pe. Therefore, [p, e] = 0 and
[p,H] = 0, where H is generated by these idempotent elements. This argument gives
the conclusion that p ∈ C or R is commutative. In this last case, we conclude with
contradiction.

Thus we take the case when H cannot contain two minimal orthogonal idempotent
elements and so, H = D for a suitable division ring D finite dimensional over its
center. This implies that Q = H and p ∈ H. By [20, Theorem 2.3.29 ] ([14, Lemma
2]), H ⊆ Mn(K), Mn(K) satisfies ([p, [s, t]m]2)

k = [p, [s, t]m]2, where K is a field. If
n = 1, then H ⊆ F , a contradiction. Moreover, if n ≥ 2, then p ∈ Z(Mn(F )), as we
have just seen.

Finally, consider if H does not contain any non-trivial idempotent element, then H

is finite dimensional division algebra over C and p ∈ H = RC = Q. If C is finite, then
H is finite division ring, that is, H is a commutative field and so R is commutative
too. If C is infinite, then H ⊗C K ∼= Mn(K), where K is a splitting field of H. In this
case, we get the conclusion by Lemma 2.1. �
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Theorem 2.1. Let 1 < k ∈ Z
+ and 1 ≤ m ∈ Z

+. Next, let R be a prime ring

of characteristic different from 2 and I be a nonzero ideal of R. If I satisfies

[d([s, t]m), [s, t]m]k = [d([s, t]m), [s, t]m] for all s, t ∈ I, then R is commutative.

Proof. We suppose on contrary that R is non-commutative. Then, by Lemma 2.1 and
Lemma 2.2, we discuss the case when d is not Q-inner. Note that

d([s, t]m) =
k
∑

m=1

(−1)m

(

k

m

)

∑

i+j=m−1

tid(t)tj)xyk−m(2.3)

+
k
∑

m=0

(−1)m

(

k

m

)

tmd(s)tk−m

+
k−1
∑

m=0

(−1)m

(

k

m

)

tms





∑

r+s=k−m−1

trd(t)ts



 .

Using the hypothesis and well known results, we can say that R satisfies

[d([s, t]m), [s, t]m]k = [d([s, t]m), [s, t]m].

Therefore, we obtain
(

[ k
∑

m=1

(−1)m

(

k

m

)

∑

i+j=m−1

tid(t)tj)stk−m +
k
∑

m=0

(−1)m

(

k

m

)

tmd(s)tk−m

+
k−1
∑

m=0

(−1)m

(

k

m

)

tms





∑

r+s=k−m−1

trd(t)ts



 ,
k
∑

m=0

(−1)m

(

k

m

)

tkxyk−m

]

)k

=
[ k
∑

m=1

(−1)m

(

k

m

)

∑

i+j=m−1

tid(t)tj)stk−m +
k
∑

m=0

(−1)m

(

k

m

)

tmd(s)tk−m

+
k−1
∑

m=0

(−1)m

(

k

m

)

tms





∑

r+s=k−m−1

trd(t)ts



 ,
k
∑

m=0

(−1)m

(

k

m

)

tkstk−m

]

.

In view of Kharchenko’s theorem [13], we get
(

[ k
∑

m=1

(−1)m

(

k

m

)

∑

i+j=m−1

tiwtj)stk−m +
k
∑

m=0

(−1)m

(

k

m

)

tmztk−m

+
k−1
∑

m=0

(−1)m

(

k

m

)

tms
∑

r+s=k−m−1

trwts,
k
∑

m=0

(−1)m

(

k

m

)

tkstk−m

]

)k

=
[ k
∑

m=1

(−1)m

(

k

m

)

∑

i+j=m−1

tiwtj)stk−m +
k
∑

m=0

(−1)m

(

k

m

)

tmztk−m

+
k−1
∑

m=0

(−1)m

(

k

m

)

tms
∑

r+s=k−m−1

trwts,
k
∑

m=0

(−1)m

(

k

m

)

tkstk−m

]

,
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for all s, t, z, w ∈ R and hence it satisfied by Q [3, Theorem 6.4.4]. Thus, Q is non-
commutative as R. Let us take p′ ∈ Q with p′ /∈ C. Also, we can see that d′ : Q → Q

is a nonzero derivation of Q defined by d′(s) = [p′, s] for all s ∈ Q. Replacing z, w by
d′(s), d′(t) in the last identity and using (2.3), we obtain that

[d′([s, t]m), [s, t]m]k = [d′([s, t]m), [s, t]m],

for all s, t ∈ Q. Thus, we can write

[[p′, [s, t]m], [s, t]m]k = [[p′, [s, t]m], [s, t]m],

for all s, t ∈ R. Application of Lemma 2.2 yields the desire conclusion. �

As the immediate consequences of the above theorem, we obtain the following
results.

Corollary 2.1. Let 1 < k ∈ Z
+ and 1 ≤ m ∈ Z

+. Next, let R be a prime ring of

characteristic different from 2 and d be a derivation of R such that [d([s, t]m), [s, t]m]k =
[d([s, t]m), [s, t]m] for all s, t ∈ R. Then, R is commutative.

Corollary 2.2. Let 1 < k ∈ Z
+. Next, let R be a prime ring of characteristic

different from 2, d be a derivation and L be a noncentral Lie ideal of R. If R satisfies

[d(u), u]k = [d(u), u] for all u ∈ L, then R is commutative.

Now, we discuss the our last result for semiprime case. We set out with few
preliminary notions which are required for the establishment of the proof of our main
theorem. More or less of these notions are classical and we introduce them briefly,
let R be a semiprime ring and C be the extended centroid R. Also, the orthogonal
completion of R is the intersection of all orthogonally complete subset of Q containing
R and is denoted by A = O(R). In [3, Theorem 3.2.7], Beidar et al. proved that “if

M ∈ spec(B), then RM = R/RM is prime, where B = B(C) is a Boolean ring of C

and spec(B) is the set of all maximal ideal of B”. We use the notations Ω-∆-ring,
Horn formulas and Hereditary formulas. For more definitions and related results
see ([3], pages 37, 38, 43, 120). Also we use the results obtained by Beidar et el.
[3, Proposition 2.5.1 and Theorem 3.2.18] which state that “any derivation d of a

semiprime ring R can be uniquely extended to a derivation of U (we shall let d also

denote its extension to U)” and “let R be an orthogonally complete Ω-∆-ring with

extended centroid C, Θi(s1, s2, . . . , sn) Horn formulas of signature of Ω-∆, i = 1, 2, . . .
and Φ(t1, t2, . . . , tk) a hereditary first-order formula such that ¬Φ is a Horn formula.

Further, let ~a = (a1, a2, . . . , an) ∈ R(n), ~c = (c1, c2, . . . , ck) ∈ R(k). Suppose that

R |= Φ(c) and for every maximal ideal M of the Boolean ring B = B(C), there exists

a natural number i = i(M) > 0 such that

RM |= Φ(φM(~c)) ⇒ Θi(φM(~a)).

Then there exist a natural number N and pairwise orthogonal idempotents e1, e2, . . . , eN

∈ B such that e1 + e2 + · · · + eN = 1 and eiR |= Θi(ei~a) for all ei 6= 0”, respectively.
Now, we are able to discuss our last result.
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Theorem 2.2. Let R be a 2-torsion free semiprime ring and d be a nonzero derivation

of R such that ([d([s, t]m), [s, t]m])k = d([s, t]m), [s, t]m] for all s, t ∈ R. Further, let

A = O(R) is the orthogonal completion of R and B = BC, where C is the extended

centroid of R. Then there exists a central idempotent element e ∈ B such that d
vanishes identically on eA and the ring (1 − e)A is commutative.

Proof. In view of our hypothesis, R satisfies

([d([s, t]m), [s, t]m])k = [d([s, t]m), [s, t]m].

Moreover, U satisfies ([d([s, t]m), [s, t]m])k − [d([s, t]m), [s, t]m] = 0 for every s, t ∈ U

(see [15]). By Remark 3.1.16 of [3], we conclude that d(A) ⊆ A and d(e) = 0 for every
e ∈ B. Therefore, A is an orthogonally complete Ω-∆- ring, where Ω = {0, +, −, ., d}.
Consider the formulas

Φ = ‖ ([d([s, t]m), [s, t]m])k − [d([s, t]m), [s, t]m] = 0 ‖, for all s, t,

Θ1 = ‖ st = ts ‖, for all s, t,

Θ2 = ‖ d(s) = 0 ‖, for all s.

One can smartly verify that Φ is a hereditary first-order formula and ¬Φ, Θ1, Θ2 are
Horn formulas. Using Theorem 2.1, we can smartly verify that all the requirements of
[3, Theorem 3.2. 18] are satisfied. Therefore, there exist two orthogonal idempotent
e1 and e2 such that e1 + e2 = 1 and if ei 6= 0, then eiA |= Θi, i = 1, 2. This completes
the proof of the theorem. �
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APPLICATION OF THE SUMUDU TRANSFORM TO SOLVE

REGULAR FRACTIONAL CONTINUOUS-TIME LINEAR

SYSTEMS

ZINEB KAISSERLI1 AND DJILLALI BOUAGADA1

Abstract. In this work, Sumudu transform is used to establish the solution of a reg-
ular fractional continuous-time linear system based on Caputo fractional derivative-
integral. First results of the proposed method are presented and compared to the
existing ones.

1. Introduction

In recent years, fractional calculus and fractional systems appear and play a key
role in several applications and domains [7, 9, 12, 13]. The use of the mathematical
tools, theories and methods is required to solve such problems. Find the solution of a
regular fractional continuous-time linear system with regular pencil is one of the most
important problems in systems and control theory [3, 14].

In this paper, instead of Laplace transform [2, 7], the Sumudu transform [1, 16],
which is a kind of the Laplace transform but does not require any conditions on the
function to be transformable [15], is used to solve such a regular fractional continuous-
time linear system based on the Caputo fractional derivative-integral [7]. The Sumudu
transform is relatively new but it is as powerful as the Laplace transform and has some
good features as for instance, unlike the Laplace transform, the Sumudu transform of
the Heaviside step function is also Heaviside step function [6].

More than that, an interesting fact about this transformation is that the original
function and its Sumudu transform have the same Taylor coefficients expect n!. Hence,

Key words and phrases. Regular fractional linear system, Caputo fractional derivative-integral,
Sumudu Transform.
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the Sumudu transform, can be viewed as a power series transformation as shown in
[11,16].

Another very interesting property, which makes the Sumudu transform more advan-
tageous then the Laplace transform is the scale and unit preserving properties which
could provide convenience when solving differential equations. In other words, the
Sumudu transform can be used to solve various mathematical and physical sciences
problems without restoring to a new frequency domain [1, 16].

Furthermore, the solution of a regular fractional continuous-time linear system, us-
ing the Sumudu transform, requires only some boundary conditions and compatibility
requirements.

The rest of the present paper is organized as follows. Basic definitions and properties
are recalled in Section 2. Then, in Section 3, the solution of the regular fractional
continuous-time linear systems is proposed using Sumudu transform followed by some
academic and real examples which are presented in Section 4. The obtained results are
compared to the state-of-the-art methods [2, 7]. Finally, the last Section summarizes
and discusses the obtained results.

2. Preliminaries

In the present section, main definitions and properties are recalled.

Definition 2.1 ([4]). The function defined by:

(2.1) D αx(t) =
1

Γ(n − α)

∫ t

0

x(n)(τ)

(t − τ)α−n+1
dτ, x(n)(τ) =

dnx(τ)

dτn
,

is called the Caputo fractional derivative-integral of the function x(t), where
n − 1 < α ≤ n, n ∈ N

∗, and Γ refers to the standard Gamma function.

Definition 2.2 ([1, 16]). Let us consider the set of functions:

A =
{

x(t) | exists M, τ1, τ2 > 0, |x(t)| < Me
−

|t|
τj , if t ∈ (−1)j × [0, ∞)

}

.

The Sumudu transform X(v) of the function x(t) is defined over the set of functions
A by:

(2.2) X(v) = S[x(t)](v) = v−1
∫

∞

0
x(t)e−

t
v dv, v ∈ (−τ1, τ2).

Theorem 2.1 ([10]). The Sumudu transform of the fractional derivative-integral (2.1)
for n − 1 < α ≤ n, n ∈ N

∗ has the form:

(2.3) S[D αx(t)](v) = v−α

(

X(v) −
n
∑

k=1

vk−1
[

x(k−1)(t)
]

t=0

)

,

where X(v) refers to the Sumudu transform of the function x(t).
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Proposition 2.1 ([1]). Let x1(t) and x2(t) be in A, having the Sumudu transforms

X1(v) and X2(v), respectively. Then, the Sumudu transform of the convolution product

of x1 and x2

(x1 ⋆ x2)(t) =
∫

∞

0
x1(t − τ) x2(τ) dτ,

is given by:

S[(x1 ⋆ x2)(t)](v) = v X1(v) X2(v).

Proposition 2.2 ([1]). For any a ∈ R
∗

+, the Sumudu transform of ta

Γ(a+1)
is:

S

[

ta

Γ(a + 1)

]

(v) = va.

In the following, we denote by R
m×n, the set of real matrices with m rows and n

columns and by R
m, the set of real columns vectors.

Proposition 2.3 ([7]). Let F ∈ R
n×n be a real matrix. Then, for any v ∈ C and

n − 1 < α ≤ n, n ∈ N
∗, the Laurent series is given by:

(2.4) (In − vαF )−1 =
∞
∑

k=0

F k vk α.

3. Main Results

Let us consider the following regular fractional continuous-time linear systems:

Dαx(t) = Ax(t) + Bu(t),(3.1)

y(t) = Cx(t) + Du(t),(3.2)

where Dα is the Caputo fractional derivative-integral, x(t) ∈ R
n, u(t) ∈ R

m and
y(t) ∈ R

p are the state, the input and the output vectors of the model respectively,
and A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n and D ∈ R
p×m.

The boundary conditions of the system (3.1) are given by:

x(0) = x0.

Furthermore, the solution x(t) is impulse free which is equivalent to the following
compatibility conditions:

• vk+iα Ai x(k)(0) exists for all i ∈ N, and 0 ≤ k ≤ n−1, n ∈ N
∗ and v ∈ (−τ1, τ2);

• u(t) is provided.

It is assumed that the pencil of the pair (In, A) is regular, i.e.,

(3.3) det(In − vαA)−1 6= 0,

for almost v ∈ C.
By applying the Sumudu transform (formulas (2.2) and (2.3)) to the system (3.1),

we obtain:

S[Dαx(t)](v) = S[Ax(t) + Bu(t)](v).
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Let us denote X(v) and U(v) as the Sumudu transforms of x(t) and u(t) respectively.
Then, the use of the formula (3.3), yields:

X(v) = (In − vαA)−1

(

vαBU(t) +
n
∑

k=1

vk−1x(k−1)(0)

)

,

which is equivalent to:

X(v) = vα(In − vαA)−1BU(t) + (I − vαA)−1
n−1
∑

k=0

vkx(k)(0).

By the Laurent series (2.4), we obtain:

X(v) =
∞
∑

i=0

AiB v
(

v(i+1)α−1
)

(

U(v)
)

+
∞
∑

i=0

n−1
∑

k=0

Aiviα+kx(k)(0).

Finally, applying the convolution theorem (Proposition 2.1) and the inverse Sumudu
transform (Proposition 2.2) give the following theorem.

Theorem 3.1. The solution of the implicit fractional dynamical system (3.1) is given

by:

x(t) =
∞
∑

i=0

AiB

Γ((i + 1)α)

∫ t

0
(t − τ)(i+1)α−1u(τ)dτ

+
∞
∑

i=0

n−1
∑

k=0

Ai tiα+k

Γ(iα + k + 1)
x(k)(0),(3.4)

where α and Γ represent the fractional derivative-integral order and the standard

Gamma function, respectively.

If α = 1, its remain to the following.

Corollary 3.1. For α = 1, we get:

x(t) =
∞
∑

i=0

AiB
1

Γ(i + 1)

∫ t

0
(t − τ)i u(τ) dτ

+
∞
∑

i=0

Ai ti

Γ(i + 1)
x0.

4. Experimental Results

This section present academic and real examples. In both cases the obtained results
are compared to the existing ones.

Example 4.1. Find the solution of the system (3.1) for 0 < α ≤ 1 and:

A =

(

0 1
0 0

)

, B =

(

0
1

)

, x0 =

(

1
1

)

and u(t) = I(t).
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Using (3.4), it follows that:

x(t) =











1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)

1 +
tα

Γ(α + 1)











,

which is the same result obtained in [7].

Example 4.2. Let us consider the following system:

DαEx(t) = Ax(t) + Bu(t),(4.1)

with 0 < α ≤ 1 and the matrices:

E =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0











, A =











0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1











, B =











0
0
0
1











,

(4.2) C =
(

1 1 0 1
)

, D = 0

and the initial conditions:

x0 =











1
1
0
1











.

It is clear that det E 6= 0. Therefore, the system (4.1) becomes:

Dαx(t) = Ãx(t) + B̃u(t),

where

Ã = E−1A =











0 0 0 0
1 0 0 0
0 0 0 −1
0 1 0 0











and B̃ = E−1B =











0
0

−1
0











.

It follows then

x(t) =

























1

1 +
tα

Γ(α + 1)

− 1

Γ(α)

∫ t

0
(t − τ)α−1 u(τ) d τ − tα

Γ(α + 1)
− t2α

Γ(2α + 1)
− t3α

Γ(3α + 1)

1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)

























.

Finally, using the systems (3.2) and (4.2), and the state x(t) the output result is:

y(t) = 3 +
2tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
,
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the same result is obtained using Laplace transform [2].

Example 4.3. Let us consider the following regular fractional continuous-time system:

(4.3) D1.5x(t) = Ax(t) + Bu(t),

where

A =







0 1 0
0 0 1
0 0 −w1.5

h





 , B =







0
0
1





 and wh = 20.

The fractional continuous-time linear system (4.3) is derived from the one degree
of freedom model of a passive car suspension as shown in Figure 1.

 

 

  

M z1(t) 

f1(t) z0(t) 

f0(t) 

Insulated system 

Suspension 

Figure 1. One degree of freedom general model of a car suspension [5].

M represents the car quarter mass, z0 is the profile of the road, f0 is the efforts
applied on the suspension, and z1, f1 are the force generated by the suspension and
the vertical movement of the mass respectively.

In this example α = 1.5. Then, using (3.4), the solution is:

x(t) =
2
√

π

π







0
0
1







∫ t

0
(t − τ)0.5u(τ)dτ +

1

2







0
1

−w1.5
h







∫ t

0
(t − τ)2u(τ)dτ

+







x0,1

x0,2

x0,3





+
4
√

π

3π







x0,2

x0,3

−x0,3 w1.5
h





 t1.5 +







x′

0,1

x′

0,2

x′

0,3





 t

+
8
√

π

15π







x′

0,2

x′

0,3

−x′

0,3 w1.5
h





 t2.5

+
∞
∑

i=2







(−w1.5
h )i−2

(−w1.5
h )i−1

(−w1.5
h )i











1

(1.5i + 0.5) Γ(1.5i + 0.5)

∫ t

0
(t − τ)1.5i+0.5u(τ)dτ

+
x0,3

1.5iΓ(1.5i)
t1.5i +

x′

3,0

(2.25i2 + 1.5i)Γ(1.5i)
t1.5i+1



,
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where

x(0) = x0 =







x0,1

x0,2

x0,3





 and x′(0) =







x′

0,1

x′

0,2

x′

0,3





 .

5. Discussion and Conclusion

In this paper, a new method for solving regular fractional continuous-time linear
systems is presented which has been already introduced in [8]. The main idea consist
on using the Sumudu transform to solve such a system. Thanks to the interesting
properties of the Sumudu transform, the result can be derived easily and the method
can be used for several practical applications.

The first results obtained are promising and encourage us to extend the method to
singular fractional continuous-time linear systems, and to other type of systems and
circuits, and also to other applications as for example to crone suspension which are
one of our future research topics and will be discussed in a separate paper.
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ON THE NON-NEGATIVE RADIAL SOLUTIONS OF THE TWO

DIMENSIONAL BRATU EQUATION

MBE KOUA CHRISTOPHE NDJATCHI1, PANAYOTIS VYRIDIS1, JUAN MARTÍNEZ2,
AND J. JUAN ROSALES3

Abstract. In this paper, we study the boundary value problem on the unit circle
for the Bratu’s equation depending on the real parameter µ. From the parameter
estimate, the existence of non-negative solution is set. A numerical method is
suggested to justify the theoretical result. It is a combination of the adaptation of
finite difference and Gauss-Seidel method allowing us to obtain a good approximation
of µc, with respect to the exact theoretical method µc = λ = 5.7831859629467.

The vast majority of phenomena that occur in nature are described by a non-linear
differential equation or by a system of non-linear equations. Among these equations,
the Bratu’s equation, given by

∇2u + µ eu = 0 ,

is a classical example of equation with a strong nonlinear exponential term and a real
parameter µ. This equation arises originally as a simplified model for the description
of the combustion of solid fuels. Also it is often appears in science and engineering
as a model in various physical applications, from chemical reactions, thermal combus-
tion theory, heat transfer radiation until the Chandrasekhar’s model of the universe
expansion and even nanotechnology [2, 3, 9, 13]. In [5], the dynamics of the Bratu
equation were analyzed and the existence of bifurcations was shown. They are also
devoted to describe the Gaussian curvature problem in Riemannian geometry [15], the
mean field limit of vortices in Euler flows [8], the Onsager formulation in statistical
mechanics [6], the Keller-Siegel system of chemotaxis [19] and the Chern-Simon-Higgs

Key words and phrases. Non-linear eigenvalue problem, finite difference method, Gauss-Seidel
method.
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gauge theory [7, 21].

Recently, most of the research has focused on better and more efficient solution
methods for determining solutions, approximate or exact, analytical or numerical to
this non-linear Bratu model [1, 4, 11,12,17,18,20].

In this paper we study the two-dimensional Bratu’s equation depending on a real
parameter µ on the unit circle with the Dirichlet homogeneous boundary condition.
We prove the existence of non-negative radial solutions for a certain range of the real
parameter µ. A numerical method is suggested to justify the theoretical result.

1. Theoretical Result: Existence of the Solution

We study the two dimensional Bratu’s equation on the unit circle with the homo-
geneous boundary condition,

(1.1)

{

−∇2u(x, y) = µeu(x,y), x2 + y2 < 1,
u(x, y) = 0 , x2 + y2 = 1,

where µ is a real parameter. The existence of the solution for the problem (1.1)
beyond a certain limit of the parameter µ is based on a general theory of the non-
linear eigenvalue problem

(1.2)

{

−∇2u(x) = µf(x, u), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

where Ω is an open bounded region of Rn and f(x, u) is a non-negative and continuous
function on (x, u) ∈ Ω × R. We have the next result [17]:

Theorem 1.1. Assume that

(1.3) f(x, u) ≥ h(x) + r(x)u , (x, u) ∈ Ω × [0, ∞),

where h and r are non-negative and continuous functions in Ω. Then the non-linear

eigenvalue problem (1.2) has no non-negative solutions for any µ ≥ λ, where λ is the

principal eigenvalue of the linear eigenvalue problem

(1.4)

{

−∇2u(x) = λr(x)u, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω .

In particular, due to the estimate

f(x, u) = eu ≥ 1 + u,

the linear eigenvalue problem (1.4) corresponding to the nonlinear problem (1.1) is
given by h(x) = r(x) = 1, i.e.,

(1.5)

{

−∇2u(x, y) = λ u(x, y), x2 + y2 < 1,
u(x, y) = 0, x2 + y2 = 1.

Introducing the polar coordinates on the plane

x(r, θ) = r cos θ, y(r, θ) = r sin θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,
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we obtain the equivalent, to the (1.5), problem

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+ λu = 0, u(1, θ) = 0 .

The standard method of separation of variables

u(r, θ) = R(r) Θ(θ),

with the boundary values

(1.6) R(1) = 0, Θ(θ) = Θ(θ + 2π),

leads to the ordinary differential equations

(1.7) Θ′′(θ) + K Θ(θ) = 0,

and

(1.8) r2R′′(r) + rR′(r) + (λr2 − K)R(r) = 0

where K is a constant. In order to obtain a periodic solution, according to the second
relation of (1.6) for the equation (1.7), the condition K = n2 is necessarily required,
where n ∈ N. Therefore, the equation (1.8) becomes

r2R′′(r) + rR′(r) + (λr2 − n2)R(r) = 0,

which is the Bessel’s equation with the general solution

R(r) = c1Jn(
√

λ r) + c2Yn(
√

λ r) ,

where c1 and c2 are arbitrary constants. Requiring a bounded solution, when r = 0,
we set c2 = 0. Furthermore, using the first relation of (1.6) we obtain

Jn(
√

λ) = 0 ,

which implies that

λ(m),n = j2
(m),n .

Thus, the boundary value problem (1.1) has no non-negative solution for µ ≥ j2
(m),n.

Since, the first root of the Bessel’s function J0(x) is j1,0 = 2.40482555769577, then
the threshold is µc = λ = 5.7831859629467.

In the next section we applied this result for the corresponding radial solution.

2. Radial Positive Solution of the Bratu’s Equation

The positive solution on the unit disc B1 has a radial symmetry i.e. depends only
on r =

√
x2 + y2. In order to prove this we follow the technique developed in [10].

First, we observe that the homogeneous boundary condition implies, that ∂B1 is a
level set of the positive solution u ∈ C2(B̄1) and therefore for the outer unit normal
vector to ∂B1, we have

~ν(x, y) ≡ (x, y) = ± ∇u

|∇u| or (x, y) · ∇u = ±|∇u|.
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Furthermore,

eu(x,y) = 1 +
∫ 1

0

d

dt
et u(x,y) dt = 1 + u(x, y)

∫ 1

0
et u(x,y) dt.

Next, we write the Bratu’s equation in the equivalent form

∇2u + c(x, y)u = −µ < 0,

where

c(x, y) = µ
∫ 1

0
etu(x,y)dt > 0.

The Serrin’s maximum principle implies, that

(2.1)
∂u

∂~ν
= (x, y) · ∇u = −|∇u| < 0, on ∂B1.

Denote by B+
1 = B1 ∩ {(x, y) ∈ R

2, y > 0} the upper unit half disc and B−

1 =
B1 ∩ {(x, y) ∈ R

2, y < 0} the lower unit half disc. Thus, (2.1) implies

y
∂u

∂y
(x, y) = −|∇u(x, y)| − x

∂u

∂x
(x, y) < 0, on ∂B+

1 ,

which means that ∂u/∂y < 0 on ∂B+
1 . The smoothness of u implies that ∂u/∂y < 0

in B+
1 close to ∂B+

1 . Thus, the solution u is a decreasing function on the y - direction
close to ∂B+

1 . Furthermore, define the sets la = {(x, a), x ∈ R}, for 0 ≤ a ≤ 1 and
Ea = {(x, y) ∈ B+

1 , a < y < 1}. To any (x, y) 6= (x, a), we assign its reflection with
respect to the line la, the point (x, 2a − y).

Theorem 2.1. If u ∈ C2(B̄1) is a positive solution of the Bratu’s equation, then u is

a function of r =
√

x2 + y2.

Proof. It is sufficient to show that u(x, y) = u(x, 2a − y) whenever a = 0 i.e. the line
la coincides with the axis x. To this end, define

a0 = inf{a ∈ [0, 1] : u(x, y) < u(x, 2β − y) , (x, y) ∈ Eβ , a ≤ β ≤ 1}.

The above infimum is well defined, since the solution u is a decreasing function on
the y - direction close to ∂B+

1 . We will prove that a0 = 0. Suppose that a0 > 0 and
define the function

v(x, y) = u(x, 2a0 − y) − u(x, y), (x, y) ∈ Ea0
.

Then v(x, y) > 0 and

∇2v(x, y) − C(x, y)v(x, y) = 0,

where

C(x, y) =
[

u(x, 2a0 − y) − u(x, y)
]

∫ 1

0
e[tu(x,2a0−y)+(1−t)u(x,y)]dt > 0.

The Serrin’s maximum principle and the above discussion implies that

v(x, y) > 0, , (x, y) ∈ Ea0
,

∂v

∂y
(x, y) < 0, (x, y) ∈ la0

∩ B+
1
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and, equivalently

u(x, y) < u(x, 2a0 − y), (x, y) ∈ Ea0
,

∂u

∂y
(x, y) < 0, (x, y) ∈ la0

∩ B+
1 ,

with the partial derivatives with respect to y, always taken close to ∂B+
1 . Thus, we

have, that the positive solution u is also decreasing function on la0
∩ B+

1 . Choosing
any ε > 0, sufficiently small for 0 < β = a0 − ε < a0, we have

u(x, y) < u(x, 2a0 − y) < u(x, 2β − y), (x, y) ∈ lβ ∩ B+
1 ,

and by the smoothness of u

u(x, y) < u(x, 2β − y), (x, y) ∈ Eβ, β < a0 ,

which contradicts to the definition of a0. Thus, necessarily a0 = 0, and

u(x, y) ≤ u(x, −y), (x, y) ∈ B+
1 .

In the same way, we can obtain

u(x, y) ≥ u(x, −y), (x, y) ∈ B−

1 ,

which implies u(x, y) = u(x, −y) in the unit disc. Finally, the axis x can be any
diameter of the unit disc, thus we have the radial symmetry of the solution. �

3. Numerical Method

To find the numerical solution of (1.1), we have used an adaptation of the second-
order Finite Difference Method (FDM). First, we consider a rectangular region (R)
defined by

{

−1 ≤ x ≤ 1,
−1 ≤ y ≤ 1,

in the cartesian system (OXY ), and we insert into (R) the circle (C) defined by
x2 + y2 = 1. Next, the region (R) is subdivided into the grid n × n equal subregions:
h × h where

h =
2

n
,

i.e, the axis (OX) and (OY ) are partitioned in n equal part each one. So, each point
or node (xi, yj) of the grid is the intersection of the x = xi vertical line and the y = yj

horizontal line, where
xi = −1 + ih, i = 0, . . . , n,

and
yj = −1 + jh, j = 0, . . . , n.

Then, it is not difficult to see the following.
(a) For an exterior point or endpoint Pi,j = (xi, yj) of the circle (C), i.e., x2

i +y2
j ≥ 1.

See the Figure 1.
We have

(3.1) Pi,j : u(xi, yj) = wi,j = 0.
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1

−1

1

−1

0

Pij

Figure 1.

(b) For each interior point Pi,j of the circle (C), i.e., x2
i + y2

j < 1, we apply the
Finite Difference Method (FDM) using the Taylor series with the variable x around
xi, and with the variable y around yj [16], i.e., without loss of generality, around of
this point Pi,j we suppose the next four points Pi+1,j, Pi,j+1, Pi−1,j, Pi,j−1 which are
known respectively as East(E), North(N), South(S), West(W) point with respect to
Pi,j, see Figure 2.

1

−1

1

−1

0

Pi,j+1

Pi,j−1

Pi−1,j

Pi+1,j

Pij

Figure 2.

So, we define:

Pi+1,j : u(x + h, y) = u(xi+1, yj) = wi+1,j,

Pi,j+1 : u(x, y + h) = u(xi, yj+1) = wi,j+1,

Pi,j−1 : u(x, y − h) = u(xi, yj−1) = wi,j−1,

Pi−1,j : u(x − h, yj) = u(xi−1, yj) = wi−1,j.
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Next, for every interior point (x, y) of the circle, we have

∂2u

∂x2
≈ 1

h2
[u(x + h, y) − 2u(x, y) + u(x − h, y)],

∂2u

∂y2
≈ 1

h2
[u(x, y + h) − 2u(x, y) + u(x, y − h)].(3.2)

By adding these two equations (3.2), the equation (1.1) for all interior point of the
circle can be replaced by the difference equation:

∂2u

∂x2
+

∂2u

∂y2
≈ 1

h2
[u(x + h, y) + u(x, y + h) + u(x − h, y) + u(x, y − h) − 4u(x, y)]

=(−µ)(1 + u(x, y)).

Then, it is easy to see that

(3.3) 4wi,j − wi+1,j − wi−1,j − wi,j+1 − wi,j−1 = (−µ)(−h2)(1 + wi,j),

where u(xi, yj) = wi,j and ewi,j ∼= 1 + wi,j + · · · .
So, (3.3) implies that for each interior point Pi,j of the circle (C), we have

(3.4) (4 − µh2)wi,j − wi+1,j − wi−1,j − wi,j+1 − wi,j−1 = µh2,

where i = 0, . . . , n, and j = 0, . . . , n.
The reader may find an illustrative example in the Appendix.
To find the value u(xi, yj) = wi,j of the point Pi,j on the region (R), the system

of linear equations (3.1) and (3.4) is established, moreover, the solution of (1.1) is
reduced to the solution wi,j of the system of linear equations (3.1) and (3.4), depending
on the parameter µ. Finally, to solve the system of linear equations (3.1) and (3.4),
the Gauss-Seidel’s Method is used [4].

Since (1.1) and (3.4) depends on the parameter µ, we determine the threshold µc,
giving the grid n × n of (R), and also giving a value the parameter µ for the grid
n × n of (R) the norm |wi,j| = umax is found.
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Algorithm

1 Input: Value n of the subdivision of the region (R); Initial value of µ = µ0;
k =step of µ.

2 Output: Value of the threshold µc; Approximate solution u(xi, yj) ≥ 0 of the
interior point of the circle for certain range of µ; Maximum value umax of the
solution u(xi, yj).

3 for ∀(xi, yj) ∈ (R) do

4 if (xi, yj) satisfy x2
i + y2

j ≥ 1 then

5 Output: u(xi, yj) = 0.
6 else

7 for ∀(xi, yj) that satisfy x2
i + y2

j < 1 do

8 (1) Using FDM, establish the system of linear equations AX = B
which depends on parameter µ.

9 (2) Solve the system of linear equations AX = B by the
Gauss-Seidel’s Method for given initial value µ = µ0.

10 if ∃u(xi, yj) < 0 then

11 Change Initial value of µ = µ0; goto (2)
12 else

13 (3) while ∀u(xi, yj) ≥ 0 do

14 (3.1) µ = µ + k.
15 (3.2) Solve the system of linear equations AX = B by the

Gauss-Seidel’s Method.
16 (3.3) if ∃u(xi, yj) < 0 then

17 Output: µc = µ − k; u(xi, yj) ≥ 0; umax = max(u(xi, yj)).
18 Stop.
19 else

20 Output: µ; u(xi, yj) ≥ 0; umax = max(u(xi, yj)).
21 end

22 end

23 end

24 end

25 end

26 end
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4. Results

We developed a software in high-level programming language (in this case, Java)
based on the algorithm mentioned above. The following tables show the result of (1.1)
for the respective partition 40 × 40 and 70 × 70 (see Figure 3).

(a) Result for 40 × 40

4.1. Finding of µc. For each grid, we find the respective µc and the norm umax given
in Table 1.

Table 1.

n × n µc umax

30 × 30 5.505499999999999 126.26207775999859
40 × 40 5.6065999999999985 697.6299282170618
50 × 50 5.6065999999999985 114.5670432582935
60 × 60 5.6065999999999985 102.23255929486518
70 × 70 5.6065999999999985 101.79863813473932
75 × 75 5.584800000000021 60.012385961525645
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(b) Result for 70 × 70

Figure 3. Result for 40 × 40 and 70 × 70

Figure 4. Graph of umax vs µ, for 40 × 40
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4.2. Graph of umax vs µ, for 40 × 40. We have drawn the graph of umax vs µ, for
40 × 40, given in Figure 4.

4.3. The graph of the solution u(x, y), for 50 × 50 and 75 × 75 with µ = 4.

The graphs of the solution u(x, y) of the equation (1.1) are drawn with the parameter
µ = 4, for the respective partition 50 × 50 and 75 × 75, given in Figure 5.

Figure 5. Graphs of the solution u(x, y), for 50 × 50 and 75 × 75

So, from the Figure 5, we can see that, as u ∈ C2(B̄1 = {(x, y) : x2 + y2 ≤ 1})
is a positive solution of the Bratu’s equation for µ ≤ µc, then u is a function of
r =

√
x2 + y2.

5. Conclusion

In this paper, we have studied the boundary value problem on the unit circle for the
Bratu’s equation which depends on a real parameter µ, we show that the boundary
equation has the no non-negative solutions when µ ≥ µc = 5.7831859629467, where we
have implemented the numerical method, that is, the combination of the adaptation of
finite difference and Gauss-Seidel method, which allows us to obtain a good approach
of µc with respect to the exact theoretical method µc = λ = 5.7831859629467.

A possible application of these results could be to the simplified stationary model
for energy functional related to thermo-electro-hydrodynamics description of electro-
spinning [14].

6. Appendix

Example 6.1. Let n = 4, so h = 2
n

= 1
2
. The grid has 5 × 5 = 25 points, in which 9

are interior points of the circle, i.e., P1,1, P1,2, P1,3, P2,1, P2,2, P2,3, P3,1, P3,2, P3,3

(see Figure 6).
The points which satisfy x2

i + y2
j ≥ 1, i.e.,

P0,0 :u(x0, y0) = u(−1, −1) = w0,0 = 0,
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P00

P01

P02−1

P03

P04

P10

P11

P12

P13

P14

P20−1

P21

P220

P23

P241

P30

P31

P32

P33

P34

P40

P41

P421

P43

P44

P32

Figure 6.

P0,1 :u(x0, y1) = u
(

−1, −1

2

)

= w0,1 = 0,

P0,2 :u(x0, y2) = u(−1, 0) = w0,2 = 0,

P0,3 :u(x0, y3) = u
(

−1,
1

2

)

= w0,3 = 0,

P0,4 :u(x0, y4) = u(−1, 1) = w0,4 = 0,

...

P4,0 :u(x4, y0) = u(1, −1) = w4,0 = 0,

P4,1 :u(x4, y1) = u
(

1, −1

2

)

= w4,1 = 0,

P4,2 :u(x4, y2) = u(1, 0) = w4,2 = 0,

P4,3 :u(x4, y3) = u(1,
1

2
) = w4,3 = 0,

P4,4 :u(x4, y4) = u(1, −1) = w4,4 = 0.

So, for the interior points of the circle which satisfy x2
i + y2

j < 1:

P1,1 :
(

4 − µ

4

)

w1,1 − w2,1 − w0,1 − w1,2 − w1,0 =
µ

4
,

P1,2 :
(

4 − µ

4

)

w1,2 − w2,2 − w0,2 − w1,3 − w1,1 =
µ

4
,

P1,3 :
(

4 − µ

4

)

w1,3 − w2,3 − w0,3 − w1,4 − w1,2 =
µ

4
,

P2,1 :
(

4 − µ

4

)

w2,1 − w3,1 − w1,1 − w2,2 − w2,0 =
µ

4
,

P2,2 :
(

4 − µ

4

)

w2,2 − w3,2 − w1,2 − w2,3 − w2,1 =
µ

4
,
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P2,3 :
(

4 − µ

4

)

w2,3 − w3,3 − w1,3 − w2,4 − w2,2 =
µ

4
,

P3,1 :
(

4 − µ

4

)

w3,1 − w4,1 − w2,1 − w3,2 − w3,0 =
µ

4
,

P3,2 :
(

4 − µ

4

)

w3,2 − w4,2 − w2,2 − w3,3 − w3,1 =
µ

4
,

P3,3 :
(

4 − µ

4

)

w3,3 − w4,3 − w2,3 − w3,4 − w3,2 =
µ

4
.

It is not defficult to establish the system of linear equations AX = B, where

A=



































(4 − µ

4
) −1 0 −1 0 0 0 0 0

−1 (4 − µ

4
) −1 0 −1 0 0 0 0

0 −1 (4 − µ

4
) 0 0 −1 0 0 0

−1 0 0 (4 − µ

4
) −1 0 −1 0 0

0 −1 0 0 (4 − µ

4
) −1 0 −1 0

0 0 −1 0 −1 (4 − µ

4
) 0 0 −1

0 0 0 −1 0 0 (4 − µ

4
) −1 0

0 0 0 0 −1 0 −1 (4 − µ

4
) −1

0 0 0 0 0 −1 0 −1 (4 − µ

4
)



































,

X =
[

w1,1 w1,2 w1,3 w2,1 w2,2 w2,3 w3,1 w3,2 w3,3

]T
,

B =
[

µ

4

µ

4

µ

4

µ

4

µ

4

µ

4

µ

4

µ

4

µ

4

]T

.
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LYAPUNOV-TYPE INEQUALITY FOR AN ANTI-PERIODIC

CONFORMABLE BOUNDARY VALUE PROBLEM

JAGAN MOHAN JONNALAGADDA1, DEBANANDA BASUA2,
AND DIPAK KUMAR SATPATHI3

Abstract. In this article, we present a Lyapunov-type inequality for a conformable
boundary value problem associated with anti-periodic boundary conditions. To
demonstrate the applicability of established result, we obtain a lower bound on the
eigenvalue of the corresponding eigenvalue problem.

1. Introduction

The subject of fractional calculus deals with the theory and applications of integral
and differential operators of arbitrary order. The combined efforts of a number of
scientists for many years resulted a strong basic theory of fractional calculus [13,19].
In this process, several types of fractional differential operators were proposed so far.
Unfortunately, each type obeys only some of the properties of the classical derivative.

In 2015, Ortigueira et al. [15] formulated two criteria required by an operator
capable of being interpreted as fractional derivative. Recently, Tarasov [20] proposed
a principle of nonlocality for fractional derivatives. As a result of these two articles,
neither of the conformable differential operators proposed by Khalil et al. [12] are
interpreted as fractional derivatives. Further, differential equations with conformable
derivatives can be represented as differential equations of integer order for the space
of differentiable functions. Subsequently, the conformable derivative was generalized
in many ways [1, 10,11]. Several authors have explored properties [3–7] and physical
applications of the conformable derivative [5, 6, 24]. Recently, Anderson et al. [5]

Key words and phrases. Conformable derivative, boundary value problem, anti-periodic boundary
conditions, Green’s function, Lyapunov-type inequality, eigenvalue.
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argued that there is a significant value in exploring the mathematics and physical
applications of these derivatives.

The Lyapunov inequality is a necessary condition for the existence of a nontrivial
solution of Hill’s equation associated with Dirichlet boundary conditions.

Theorem 1.1 ([14]). If the boundary value problem

(1.1)







y′′(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where p : [a, b] → R is a continuous function, then

(1.2)
∫ b

a
|p(s)|ds >

4

(b − a)
.

The Lyapunov inequality (1.2) finds its applications in various problems related
to the theory of differential equations and allied fields. Due to its importance, the
Lyapunov inequality has been generalized in many forms. For a detailed discussion
on Lyapunov-type inequalities and their applications, one can refer [8, 16, 18, 21–23]
and the references therein.

On the other hand, Abdeljawad [2] and Gholami et al. [9] independently generalized
Theorem 1.1 to the case where the classical second-order derivative in (1.1) is replaced
by an αth-order, 1 < α ≤ 2, conformable derivative.

Theorem 1.2 ([2]). If the boundary value problem






(

T α
a+y

)

(t) + p(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = 0,

has a nontrivial solution, where p : [a, b] → R is a continuous function, then

∫ b

a
|p(s)|ds >

αα

(α − 1)α−1(b − a)α−1
.

Here T α
a+ denotes the αth-order conformable differential operator. Motivated by

these works, in this article, we derive a Lyapunov-type inequality for the following
two-point anti-periodic conformable boundary value problem:

(1.3)







(

T α
0+y

)

(t) + p(t)y(t) = 0, 1 < α ≤ 2, 0 < t < T,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0.

2. Preliminaries

Throughout, we shall use the following notations, definitions and known results of
conformable calculus [1, 12].
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Definition 2.1 ([1]). Let y : [a, ∞) → R and 0 < α ≤ 1. The αth-order conformable
derivative of y starting from a is defined by

(

T α
a+y

)

(t) = lim
ε→0





y
(

t + ε(t − a)1−α
)

− y(t)

ε



 , t ∈ (a, ∞).

If
(

T α
a+y

)

exists on (a, b), then
(

T α
a+y

)

(a) = lim
t→a+

(

T α
a+y

)

(t).

Definition 2.2 ([1]). Let y : [a, ∞) → R, α > 0 and choose n ∈ N1 such that
n − 1 < α ≤ n. Assume that y(n−1) exists on (a, ∞). The αth-order conformable
derivative of y starting from a is defined by

(

T α
a+y

)

(t) =
(

T α−n+1
a+ y(n−1)

)

(t)

= lim
ε→0





y(n−1)
(

t + ε(t − a)n−α
)

− y(n−1)(t)

ε



 , t ∈ (a, ∞).

If y(n) exists on (a, ∞), we have
(

T α
a+y

)

(t) = (t − a)n−αy(n)(t), t ∈ (a, ∞).

Also, we define
(

T 0
a+y

)

(t) = y(t), t ∈ (a, ∞).

Definition 2.3 ([1]). Let y : [a, b] → R, α > 0 and choose n ∈ N1 such that
n − 1 < α ≤ n. The αth-order conformable integral of y starting from a is defined by

(

Iα
a+y

)

(t) =
1

(n − 1)!

∫ t

a
(t − s)n−1(s − a)α−ny(s)ds, t ∈ [a, b].

Theorem 2.1 ([1]). Let y : [a, b] → R, α > 0 and choose n ∈ N1 such that n − 1 <

α ≤ n. If y(n−1) exists on (a, b), then

(

Iα
a+T α

a+y
)

(t) = y(t) −
n−1
∑

k=0

y(k)(a)(t − a)k

k!
, t ∈ (a, b).

3. Anti-Periodic Boundary Value Problem

In this section, we derive a few properties of the Green’s function for the boundary
value problem (1.3) and obtain the corresponding Lyapunov-type inequality.

Theorem 3.1. Let 1 < α ≤ 2 and h : [0, T ] → R is a continuous function. The

conformal boundary value problem

(3.1)







(

T α
0+y

)

(t) + h(t) = 0, 0 < t < T,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0,
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has the unique solution

y(t) =
∫ T

0
G(t, s)h(s)ds,

where

(3.2) G(t, s) =



















(

T

4
+

t − s

2

)

sα−2, 0 < t ≤ s ≤ T,

(

T

4
+

s − t

2

)

sα−2, 0 < s ≤ t ≤ T.

Proof. Applying Iα
0+ on both sides of (3.1) and using Theorem 2.1, we have

(3.3) y(t) = C1 + C2t −
∫ t

0
(t − s)sα−2h(s)ds.

Differentiating (3.3) with respect to t, we get

(3.4) y′(t) = C2 −
∫ t

0
sα−2h(s)ds.

Using y(0) + y(T ) = 0 in (3.3) we get

(3.5) 2C1 + C2T =
∫ T

0
(T − s)sα−2h(s)ds.

Using y′(0) + y′(T ) = 0 in (3.4) we get

(3.6) C2 =
1

2

∫ T

0
sα−2h(s)ds.

Then, from (3.5) and (3.6), we have

2C1 = −
T

2

∫ T

0
sα−2h(s)ds +

∫ T

0
(T − s)sα−2h(s)ds,

which implies

(3.7) C1 =
1

2

∫ T

0

(

T

2
− s

)

sα−2h(s)ds.

Then, from (3.3), (3.6) and (3.7) we have

y(t) =
1

2

∫ T

0

(

T

2
− s

)

sα−2h(s)ds +
t

2

∫ T

0
sα−2h(s)ds −

∫ t

0
(t − s)sα−2h(s)ds

=
1

2

∫ t

0

(

T

2
+ t − s

)

sα−2h(s)ds +
1

2

∫ T

t

(

T

2
+ t − s

)

sα−2h(s)ds

−
∫ t

0
(t − s)sα−2h(s)ds

=
∫ t

0

(

T

4
+

s − t

2

)

sα−2h(s)ds +
∫ T

t

(

T

4
+

t − s

2

)

sα−2h(s)ds

=
∫ T

0
G(t, s)h(s)ds.

The proof is complete. �
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Lemma 3.1. The Green’s function G(t, s) defined in (3.2) satisfies the following

properties:

(a) G(t, s) ≤ G(s, s), (t, s) ∈ (0, T ] × (0, T ];
(b) s2−αG(s, s) = T

4
, s ∈ [0, T ];

(c)
∣

∣

∣s2−αG(t, s)
∣

∣

∣ ≤ T
4
, (t, s) ∈ [0, T ] × [0, T ];

(d) maxt∈[0,T ]

∫ T
0 G(t, s)ds =

T α

(

2−α+2
α−2
α−1 (α−1)

)

4α(α−1)
;

(e) maxt∈[0,T ]

∫ T
0 s2−αG(t, s)ds = T 2

8
;

(f) maxt∈[0,T ]

∫ T
0 G′(t, s)ds = T α−1

2(α−1)
;

(g) maxt∈[0,T ]

∫ T
0 s2−αG′(t, s)ds = T

2
;

(h) maxt∈[0,T ]

∫ T
0

∣

∣

∣G(t, s)
∣

∣

∣ds = T α(7α−2)
4α(α−1)

.

Proof. Define the functions

G1(t, s) =
(

T

4
+

t − s

2

)

sα−2 and G2(t, s) =
(

T

4
+

s − t

2

)

sα−2.

We can easily check that G1(t, s) is an increasing function of t. Differentiating G2(t, s)
with respect to t for every fixed s, we observe that, G2(t, s) is a decreasing function
of t. Thus, we have (a). The proof of (b) follows from (3.2). Clearly, from (a) and
(b), we have

(3.8) s2−αG(t, s) ≤
T

4
, (t, s) ∈ [0, T ] × [0, T ].

Consider

s2−αG1(t, s) =
T

4
+

s − t

2
≥

T

4
+

0 − T

2
≥ −

T

4
,

which implies

(3.9) − s2−αG1(t, s) ≤
T

4
.

Similarly

s2−αG2(t, s) =
T

4
+

t − s

2
≥

T

4
+

0 − T

2
≥ −

T

4
,

implies

(3.10) − s2−αG2(t, s) ≤
T

4
.

So, from (3.9) and (3.10), we get

(3.11) − s2−αG(t, s) ≤
T

4
, (t, s) ∈ [0, T ] × [0, T ].

Then, from (3.8) and (3.11), (c) follows. For (d), consider
∫ T

0
G(t, s)ds =

∫ t

0

(

T

4
+

s − t

2

)

sα−2ds +
∫ T

t

(

T

4
+

t − s

2

)

sα−2ds
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=
(

T

4
−

t

2

)

(

tα−1

α − 1

)

+
tα

2α
+
(

T

4
+

t

2

)

[

T α−1

α − 1
−

tα−1

α − 1

]

−
1

2

[

T α

α
−

tα

α

]

.(3.12)

Define H1(t) as the right hand side of (3.12). Now, differentiating H1(t) with respect
to t and equating it to 0, we obtain t = T

2
1

α−1

. Again, differentiating H1
′(t) with

respect to t, we observe that H1
′′(t) ≤ 0 at t = T

2
1

α−1

. So, H1(t) attains its maximum

at t = T

2
1

α−1

. Thus, we have (d). Consider

∫ T

0
s2−αG(t, s)ds =

∫ t

0

(

T

4
+

s − t

2

)

ds +
∫ T

t

(

T

4
+

t − s

2

)

ds

=
(

T

4
−

t

2

)

t +
t2

4
+
(

T

4
+

t

2

)

(T − t) −

(

T 2 − t2

4

)

.(3.13)

Define H2(t) as the right hand side of (3.13). Now, differentiating H2(t) with respect
to t and equating it to 0, we obtain t = T

2
. Again, differentiating H2

′(t) with respect

to t, we observe that H2
′′(t) < 0 at t = T

2
. So, H2(t) attains its maximum at t = T

2
.

Thus, we have (e). Consider
∫ T

0
G′(t, s)ds = −

1

2

∫ t

0
sα−2ds +

1

2

∫ T

t
sα−2ds

= −
1

2

[

tα−1

α − 1

]

+
1

2

[

T α−1

α − 1
−

tα−1

α − 1

]

≤
T α−1

2(α − 1)
.

This completes the proof of (f). For (g), consider
∫ T

0
s2−αG′(t, s)ds = −

1

2

∫ t

0
ds +

1

2

∫ T

t
ds = −

t

2
+

T

2
−

t

2
=

T

2
− t ≤

T

2
.

Consider
∫ T

0
|G(t, s)|ds =

∫ t

0
|G1(t, s)|ds +

∫ T

t
|G2(t, s)|ds

≤
∫ t

0

(

T

4
+
∣

∣

∣

∣

s − t

2

∣

∣

∣

∣

)

sα−2ds +
∫ T

t

(

T

4
+
∣

∣

∣

∣

t − s

2

∣

∣

∣

∣

)

sα−2ds

=
Ttα−1

4(α − 1)
−
∫ t

0

(

s − t

2

)

sα−2ds +
T

4

(

T α−1

α − 1
−

tα−1

α − 1

)

−
∫ T

t

(

t − s

2

)

sα−2ds

=
Ttα−1

4(α − 1)
−

tα

2α
+

tα

2(α − 1)
−

t (T α−1 − tα−1)

2(α − 1)
+

T α−1 − tα−1

2α
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≤
T α

4(α − 1)
+

T α

α − 1
+

T α

2α
=

T α(7α − 2)

4α(α − 1)
.(3.14)

Thus, we have (h). The proof is complete. �

We are now able to formulate a Lyapunov-type inequality for the anti-periodic
boundary value problem.

Theorem 3.2. If (1.3) has a nontrivial solution, then

(3.15)
∫ T

0
sα−2|p(s)|ds ≥

4

T
.

Proof. Let C[0, T ] be the Banach space of continuous functions y on [0, T ] with the
norm

‖y‖C = max
t∈[0,T ]

|y(t)|.

It follows from Theorem 3.1 that a solution to (1.3) satisfies the equation

y(t) =
∫ T

0
G(t, s)p(s)y(s)ds.

Consider

|y(t)| =
∣

∣

∣

∣

∫ T

0
G(t, s)p(s)y(s)ds

∣

∣

∣

∣

≤
∫ T

0

∣

∣

∣G(t, s)
∣

∣

∣|p(s)||y(s)|ds

≤ ‖y‖
∫ T

0

∣

∣

∣G(t, s)
∣

∣

∣|p(s)|ds

= ‖y‖
∫ T

0

[

s2−α
∣

∣

∣G(t, s)
∣

∣

∣

]
∣

∣

∣sα−2p(s)
∣

∣

∣ds,

which implies

‖y‖ ≤ ‖y‖ max
s∈[0,T ]

[

s2−α
∣

∣

∣G(t, s)
∣

∣

∣

][
∫ T

0

∣

∣

∣sα−2p(s)
∣

∣

∣ds

]

.

An application of Lemma 3.1 yields the result. The proof is complete. �

4. Application

In this section, we estimate a lower bound for the eigenvalue of the conformable
eigenvalue problem corresponding to the conformable boundary value problem (1.3)
using three different methods.

Definition 4.1 ([17]). A Lyapunov Inequality Lower Bound (LILB) is defined as a
lower estimate for the smallest eigenvalue obtained from Lyapunov-type inequality
given in (3.15) by setting p(s) = λ, that is,

λ ≥
1

TGmax

,

where Gmax = max0≤t≤T |G(t, s)|.
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Definition 4.2 ([17]). A Cauchy-Schwartz Inequality Lower Bound (CSILB) is defined
as a lower bound for the smallest eigenvalue obtained from Cauchy-Schwartz inequality
of type given in (3.15) by setting p(s) = λ, that is,

λ ≥

[

∫ T

0

∫ T

0
G2(t, s)dsdt

]− 1

2

.

Definition 4.3 ([17]). A Semi Maximum Norm Lower Bound (SMNLB) is defined
as a lower bound for the smallest eigenvalue obtained from Semi Maximum Norm
inequality of type given in given in (3.15) by setting p(s) = λ, that is,

(4.1) λ ≥
1

max0≤t≤T

∫ T
0 |G(t, s)|ds

.

Theorem 4.1. Assume that y is a nontrivial solution of the conformable eigenvalue

problem






(

T α
0+y

)

(t) + λy(t) = 0, 0 < t < T,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0,

where y(t) 6= 0 for each t ∈ (0, T ). Then

λ(LILB) ≥
4(α − 1)

T α
, 1 < α ≤ 2,(4.2)

λ(CSILB) ≥
4
√

(2α − 3)

T α
,

3

2
≤ α ≤ 2,(4.3)

λ(SMNLB) ≥
4α(α − 1)

T α(7α − 2)
, 1 < α ≤ 2.(4.4)

Proof. We choose p(s) = λ in (3.15). Then, we obtain,

λ

∫ T

0
sα−2ds ≥

4

T
,

implies

λ

(

T α−1

α − 1

)

≥
4

T
.

This proves the result (4.2). Consider,

λ ≥

[

∫ T

0

∫ T

0
G2(t, s)dsdt

]− 1

2

=

(

∫ T

0

∫ T

0

∣

∣

∣s2−αG(t, s)
∣

∣

∣

2
s2α−4dsdt

)− 1

2

≥

(

T 2

16

∫ T

0

∫ T

0
s2α−4dsdt

)− 1

2
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=
4

T

(

T 2α−2

2α − 3

)− 1

2

=
4
√

(2α − 3)

T α
.

So, (4.3) is proved. The result (4.4) follows from (4.1) and (3.14). The proof is
complete. �
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ON THE HARMONIC INDEX AND THE SIGNLESS LAPLACIAN

SPECTRAL RADIUS OF GRAPHS

HANYUAN DENG1, TOMÁŠ VETRÍK2, AND SELVARAJ BALACHANDRAN2,3

Abstract. The harmonic index of a conected graph G is defined as H(G) =
∑

uv∈E(G)
2

d(u)+d(v) , where E(G) is the edge set of G, d(u) and d(v) are the degrees
of vertices u and v, respectively. The spectral radius of a square matrix M is the
maximum among the absolute values of the eigenvalues of M . Let q(G) be the
spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G)
is the diagonal matrix having degrees of the vertices on the main diagonal and A(G)
is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the
spectral radius of the matrix Q(G) have been extensively studied. We investigate
the relationship between the harmonic index of a graph G and the spectral radius of
the matrix Q(G). We prove that for a connected graph G with n vertices, we have

q(G)
H(G)

≤























n2

2(n − 1)
, if n ≥ 6,

16
5

, if n = 5,

3, if n = 4,

and the bounds are best possible.

1. Introduction

A lot of research has been done on topological indices due to their chemical impor-
tance. Chemical-based experiments show that there is a strong relationship between
the properties of chemical compounds and their molecular structures. Topological
indices are used for modelling properties of chemical compounds and biological activ-
ities in chemistry, biochemistry and nanotechnology. We study the harmonic index
which is one of the most known topological indices.

Key words and phrases. Harmonic index, spectral radius, eigenvalue, signless Laplacian matrix.
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Let G be a simple connected graph with vertex set V (G) and edge set E(G).
The degree of a vertex v ∈ V (G), d(v), is the number of edges incident with v. A tree
is a connected graph containing no cycles and a unicyclic graph is a connected graph
containing exactly one cycle. A bicyclic graph is a connected graph G having n + 1
edges where n is the number of vertices of G. Let us denote the complete graph, the
star and the path having n vertices by Kn, Sn and Pn, respectively.

Let e1, e2, . . . , ek ∈ E(G). We denote by G − {e1, e2, . . . , ek} the graph with
vertex set V (G) and edge set E(G) \ {e1, e2, . . . , ek}. An edge-induced subgraph
G[e1, e2, . . . , ek] is a subgraph of G which consists of the edges e1, e2, . . . , ek and ver-
tices incident with e1, e2, . . . , ek.

The spectral radius of a square matrix M is the maximum among the absolute values
of the eigenvalues of M . Let q(G) be the spectral radius of the signless Laplacian
matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of
the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. We
denote the spectral radius (of the adjacency matrix A(G)) of a graph G by λ(G).

The Randić index of a graph G is defined as

R(G) =
∑

uv∈E(G)

1
√

d(u)d(v)
.

This topological index has been successfully related to chemical and physical properties
of organic molecules, and become one of the most important molecular descriptors.
The Randić index was introduced by Randić [16] and generalized by Bollobás and
Erdős [3]. Using the AutoGraphiX2 system, Aouchiche, Hansen and Zheng [1, 2]
studied lower and upper bounds on R(G) ⊕ i(G) in terms of the number of vertices of
G, where i(G) is one of the following invariants: the maximum, minimum and average
degree, diameter, girth, algebraic and vertex connectivity, matching number and the
spectral radius of G, and ⊕ denotes one of the four operations +, −, ×, /.

The harmonic index

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)

of a graph G was introduced by Fajtlowicz [8]. Hansen and Vukicević [12] studied
the connection between the Randić index and the chromatic number of graphs. Deng
et al. [6] considered the relation connecting the harmonic index and the chromatic
number and strengthened the result relating the Randić index and the chromatic
number conjectured by the system AutoGraphiX and proved in [12]. Favaron, Mahéo
and Saclé [9] considered the relationship between the harmonic index and eigenvalues
of a graph.
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Using the AutoGraphiX system, Hansen and Lucas [11] gave a conjecture saying
that if G is a connected graph having n ≥ 4 vertices, then

q(G)

R(G)
≤



















4n − 4

n
, if 4 ≤ n ≤ 12,

n√
n − 1

, if n ≥ 13,

with equality if and only if G is Kn for 4 ≤ n ≤ 12 and G is Sn for n ≥ 13. Recently,
Ning and Peng [15] solved this conjecture.

Motivated by the work of [15] we study the relationship between the harmonic index
H(G) of a graph G and the spectral radius of the signless Laplacian matrix Q(G). In
particular, we prove the following theorem.

Theorem 1.1. Let G be a connected graph having n vertices. Then

q(G)

H(G)
≤































n2

2(n − 1)
, if n ≥ 6,

16

5
, if n = 5,

3 if n = 4,

with equality if and only if G is Sn for n ≥ 6 and G is Kn for 4 ≤ n ≤ 5.

2. Preliminaries

In this section, we present known results, which will be used in the proofs of our
theorems. Upper bounds on the spectral radius of the signless Laplacian matrix and
the adjacency matrix of a graph were given in [10] and [13], respectively.

Lemma 2.1 ([10]). Let G be a connected graph with n vertices, m edges and let q(G)
be the spectral radius of the signless Laplacian matrix of G. Then

q(G) ≤ 2m

n − 1
+ n − 2,

with equality if and only if G is Kn or Sn.

Lemma 2.2 ([13]). Let G be a connected graph G with n vertices, m edges and let

λ(G) be the spectral radius of the adjacency matrix of G. Then

λ(G) ≤
√

2m − n + 1,

with equality if and only if G is Kn or Sn.

Let us present three lower bounds on the harmonic index H(G) of a graph G for
general graphs, unicyclic graphs and bicyclic graphs.

Lemma 2.3 ([5]). Let G be a connected graph with n vertices and m edges. Then

H(G) ≥ 2m2

nλ(G)2
.
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Lemma 2.4 ([7, 14,17]). Let G be a unicyclic graph with n ≥ 3 vertices. Then

H(G) ≥ 5n2 + n − 12

2n(n + 1)
.

Lemma 2.5 ([7, 14]). Let G be a bicyclic graph with n ≥ 4 vertices. Then

H(G) ≥ 14

5
− 2n2 + 14n + 16

n(n + 1)(n + 2)
.

3. Results

First we consider graphs with n ≥ 6 vertices, m edges and the harmonic index at
least 2(n−1)

n
+ 4(m−n+1)

n2 .

Theorem 3.1. Let G be a connected graph with n ≥ 6 vertices and m edges. If

H(G) ≥ 2(n−1)
n

+ 4(m−n+1)
n2 , then

q(G)

H(G)
≤ n2

2(n − 1)
,

with equality if and only if G is Sn.

Proof. Let H(G) ≥ 2(n−1)
n

+ 4(m−n+1)
n2 . By Lemma 2.1, we have q(G) ≤ 2m

n−1
+ n − 2,

with equality if and only if G is either Kn or Sn. Thus,

q(G)

H(G)
≤

2m
n−1

+ n − 2
2(n−1)

n
+ 4(m−n+1)

n2

=

(

2(n−1)
n

+ 4(m−n+1)
n2

)

n2

2(n−1)

2(n−1)
n

+ 4(m−n+1)
n2

=
n2

2(n − 1)
.

Note that for Kn we have m = n(n−1)
2

and for this value we get 2(n−1)
n

+ 4(m−n+1)
n2 =

4(n−1
n

)2. Since H(Kn) = n
2

> 4(n−1
n

)2 for every n ≥ 6, we obtain q(Kn)
H(Kn)

< n2

2(n−1)
.

For the graph Sn we have m = n − 1. Since H(Sn) = 2(n−1)
n

= 2(n−1)
n

+ 4(m−n+1)
n2 for

m = n − 1, we get q(Sn)
H(Sn)

= n2

2(n−1)
, which implies that q(G)

H(G)
≤ n2

2(n−1)
, with equality if

and only if G is Sn. �

Let us show that the main result holds for trees and graphs satisfying the inequality
m ≥ n + 1 + 6

n−4
.

Theorem 3.2. Let G be a connected graph with n ≥ 6 vertices and m edges.

(i) If m = n − 1, then
q(G)
H(G)

≤ n2

2(n−1)
, with equality if and only if G is Sn.

(ii) If m ≥ n + 1 + 6
n−4

, then
q(G)
H(G)

< n2

2(n−1)
.

(iii) If n = 6, 7 and m = 10, then
q(G)
H(G)

< n2

2(n−1)
.

Proof. By Lemmas 2.2 and 2.3 we have H(G) ≥ 2m2

nλ2 ≥ 2m2

n(2m−n+1)
. Let f(m) =

H(G) − 2(n−1)
n

− 4(m−n+1)
n2 . Then

f(m) ≥ 2m2

n(2m − n + 1)
− 2(n − 1)

n
− 4(m − n + 1)

n2
=

2 × g(m)

n2(2m − n + 1)
,
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where g(m) = (m − n + 1)[(n − 4)m − (n2 − 3n + 2)].
(i) If m = n − 1, then g(m) = 0 which implies that f(m) ≥ 0 and H(G) ≥

2(n−1)
n

+ 4(m−n+1)
n2 . From Theorem 3.1 we get q(G)

H(G)
≤ n2

2(n−1)
, with equality if and only

if G is Sn.
(ii) If m ≥ n + 1 + 6

n−4
= n2−3n+2

n−4
, then (n − 4)m − (n2 − 3n + 2) ≥ 0. This implies

that g(m) ≥ 0 and f(m) ≥ 0. Thus, H(G) ≥ 2(n−1)
n

+ 4(m−n+1)
n2 . Since G is not Sn,

from Theorem 3.1, we get q(G)
H(G)

< n2

2(n−1)
.

(iii) If n = 6 and m = 10, or n = 7 and m = 10, or n = 10 and m = 12, then

g(m) = 0. Thus f(m) ≥ 0 and H(G) ≥ 2(n−1)
n

+ 4(m−n+1)
n2 . Since G is not Sn, from

Theorem 3.1 we get q(G)
H(G)

< n2

2(n−1)
. �

The following two results solve our problem for every m = n and m = n + 1,
respectively.

Theorem 3.3. Let G be a connected graph with n ≥ 6 vertices and m = n edges.

Then
q(G)

H(G)
<

n2

2(n − 1)
.

Proof. If m = n, then G is a unicyclic graph and by Lemma 2.4 we have H(G) ≥
5n2+n−12
2n(n+1)

. It can be checked that 5n2+n−12
2n(n+1)

> 2(n−1)
n

+ 4
n2 . Then from Theorem 3.1 we

obtain q(G)
H(G)

< n2

2(n−1)
. �

Theorem 3.4. Let G be a connected graph with n ≥ 6 and m = n + 1 edges. Then

q(G)

H(G)
<

n2

2(n − 1)
.

Proof. If m = n + 1, then G is a bicyclic graph and by Lemma 2.5 we have H(G) ≥
14
5

− 2n2+14n+16
n(n+1)(n+2)

. It can be checked that 14
5

− 2n2+14n+16
n(n+1)(n+2)

> 2(n−1)
n

+ 8
n2 . Then, from

Theorem 3.1, we obtain q(G)
H(G)

< n2

2(n−1)
. �

From Theorems 3.2, 3.3 and 3.4 we obtain the best possible bound on q(G)
H(G)

for

graphs G having n ≥ 10 vertices.

Corollary 3.1. Let G be a connected graph with n ≥ 10 vertices. Then

q(G)

H(G)
≤ n2

2(n − 1)
,

with equality if and only if G is Sn.

Proof. Since n + 2 ≥ n + 1 + 6
n−4

for n ≥ 10, by Theorem 3.2 (ii), q(G)
H(G)

< n2

2(n−1)
for

every n ≥ 10 and m ≥ n + 2. By Theorems 3.3 and 3.4, q(G)
H(G)

< n2

2(n−1)
for graphs G

such that m = n and m = n + 1, and by Theorem 3.2 (i), q(G)
H(G)

≤ n2

2(n−1)
for graphs G

such that m = n − 1 with equality if and only if G is Sn. �
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From Theorems 3.2, 3.3 and 3.4 we also know that if 6 ≤ n ≤ 9, then the only cases
which remain unsolved are:

(i) n = 6 and m = 8, 9;
(ii) n = 7 and m = 9;
(iii) n = 8 and m = 10;
(iv) n = 9 and m = 11.

For this purpose we present results on the spectral radius of connected graphs with
n vertices and n + 2 ≤ m ≤ n + 3 edges. From [4, Theorems 3.2 and 3.3] and their
proofs we obtain the following lemma.

Lemma 3.1 ([4]). The maximum spectral radius λ(G) of a connected graph G with

n ≥ 4 vertices and m edges is the maximum root of

(i) ϕ1(λ) = λ3 − 2λ2 − (n − 1)λ + 2(n − 4) if m = n + 2;

(ii) ϕ2(λ) = λ4 − (n + 3)λ2 − 8λ + 4(n − 6) and

ϕ3(λ) = λ6 − (n + 3)λ4 − 10λ3 + (4n − 21)λ2 + (2n − 8)λ − (n − 5) if m = n + 3.

We use Lemma 3.1 in the proof of Theorem 3.5.

Theorem 3.5. Let G be a connected graph with n vertices and m edges. If

(i) n = 6 and m = 8, 9;

(ii) n = 7 and m = 9;

(iii) n = 8 and m = 10;

(iv) n = 9 and m = 11,

then
q(G)
H(G)

< n2

2(n−1)
.

Proof. By Lemma 3.1, we can calculate the upper bounds on the maximum spectral
radius λ. We have λ < 3.1775 if n = 6 and m = 8, λ < 3.274 if n = 7 and m = 9,
λ < 3.373 if n = 8 and m = 10, λ < 3.475 if n = 9 and m = 11, λ < 3.404 if n = 6
and m = 9.

Thus, from Lemma 2.3 we obtain the lower bounds on the harmonic index of
G. H(G) > 2.11294 if n = 6 and m = 8, H(G) > 2.15903 if n = 7 and m = 9,
H(G) > 2.19739 if n = 8 and m = 10, H(G) > 2.22671 if n = 9 and m = 11,
H(G) > 2.33015 if n = 6 and m = 9.

By Lemma 2.1, we obtain upper bounds on q(G). We have q(G) ≤ 36
5

if n = 6 and

m = 8, q(G) ≤ 8 if n = 7 and m = 9, q(G) ≤ 62
7

if n = 8 and m = 10, q(G) ≤ 39
4

if

n = 9 and m = 11, q(G) ≤ 38
5

if n = 6 and m = 9.

It is easy to verify that q(G)
H(G)

< n2

2(n−1)
for all these cases. �

From Theorems 3.2, 3.3, 3.4 and 3.5 we get Corollary 3.2.

Corollary 3.2. Let G be a connected graph with n vertices where 6 ≤ n ≤ 9. Then

q(G)

H(G)
≤ n2

2(n − 1)
,

with equality if and only if G is Sn.
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It remains to find upper bounds on q(G)
H(G)

for graphs G having n ≤ 5 vertices. For

n = 3 there are only two non-isomorphic graphs: K3 and K3 − {e}, where e ∈ E(K3).

We have H(K3) = 3
2

and by Lemma 2.1, q(K3) = 4, thus q(K3)
H(K3)

= 8
3
. For K3 − {e}

we obtain H(K3 − {e}) = 4
3

and by Lemma 2.1, q(K3 − {e}) ≤ 3, so q(K3−{e})
H(K3−{e})

≤ 9
4
.

Hence q(G)
H(G)

≤ 8
3

for any graph G having 3 vertices with equality if and only if G is

K3.
Let us present bounds for graphs having 4 and 5 vertices.

Theorem 3.6. Let G be a connected graph with 4 vertices. Then

q(G)

H(G)
≤ 3,

with equality if and only if G is K4.

Proof. The only graph with 4 vertices and 6 edges is K4, and the only graph with 4
vertices and 5 edges is K4 − {e}. Since H(K4) = 2 and q(K4) = 6 (by Lemma 2.1),

we get q(K4)
H(K4)

= 3.

For K4 − {e} where e ∈ E(K4), we obtain H(K4 − {e}) = 29
15

, and from Lemma 2.1

we have q(K4 − {e}) ≤ 16
3

, which gives q(K4−{e})
H(K4−{e})

≤ 80
29

< 3.

We have two non-isomorphic graphs for m = 4, namely C4 and S4 + {e}. We

get H(C4) = 2 and q(C4) ≤ 14
3

(by Lemma 2.1), so q(C4)
H(C4)

≤ 7
3

< 3. Similarly,

H(S4 + {e}) = 9
5

and q(S4 + {e}) ≤ 14
3

, thus q(S4+{e})
H(S4+{e})

≤ 70
27

< 3.

There are two non-isomorphic graphs for m = 3, namely S4 and P4. We have
H(S4) = 3

2
and q(S4) = 4 (by Lemma 2.1), thus q(S4)

H(S4)
= 8

3
. Similarly, H(P4) = 11

6
and

q(P4) ≤ 4, hence q(P4)
H(P4)

≤ 24
11

< 3. �

Theorem 3.7. Let G be a connected graph with 5 vertices. Then

q(G)

H(G)
≤ 16

5
,

with equality if and only if G is K5.

Proof. We consider the cases m = 7, 8, 9, 10. The only graph with 5 vertices and 10
edges is K5. Since H(K5) = 5

2
and q(K5) = 8 (by Lemma 2.1), we get q(K5)

H(K5)
= 16

5
.

The only graph with 5 vertices and 9 edges is K5 − {e} where e ∈ E(K5). We
have H(K5 − {e}) = 69

28
and from Lemma 2.1 we obtain q(K5 − e) ≤ 15

2
, which gives

q(K5−e)
H(K5−e)

≤ 210
69

< 16
5

.

For m = 8 we have G = K5 − {e1, e2} where e1, e2 ∈ E(K5). There are two non-
isomorphic graphs having 8 edges. If e1 and e2 are adjacent, then H(K5−{e1, e2}) = 67

28
,

and if e1 and e2 are not adjacent, then H(K5−{e1, e2}) = 52
21

. So, H(K5−{e1, e2}) ≥ 67
28
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and from Lemma 2.1 we obtain q(K5 − {e1, e2}) ≤ 7, which gives

q(K5 − {e1, e2})

H(K5 − {e1, e2})
≤ 196

67
<

16

5
.

For m = 7 we have G = K5 − {e1, e2, e3} where e1, e2, e3 ∈ E(K5). There are four
non-isomorphic graphs having 7 edges. If G[e1, e2, e3] is K3, then H(K5−{e1, e2, e3}) =
9
4
. If G[e1, e2, e3] is S4, then H(K5 − {e1, e2, e3}) = 79

35
. If G[e1, e2, e3] is a path, then

H(K5 − {e1, e2, e3}) = 83
35

. If G[e1, e2, e3] is not connected (G[e1, e2, e3] is K2 ∪ P3),

then H(K5 − {e1, e2, e3}) = 37
15

. Thus H(K5 − {e1, e2, e3}) ≥ 9
4

and from Lemma 2.1

we obtain q(K5 − {e1, e2, e3}) ≤ 13
2

, which gives

q(K5 − {e1, e2, e3})

H(K5 − {e1, e2, e3})
≤ 26

9
<

16

5
.

If m = 4, 5 or 6, it can be proved similarly that q(G)
H(G)

< 16
5

. �

From Theorems 3.6 and 3.7, and Corollaries 3.1 and 3.2 we obtain our main result
(Theorem 1.1).
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SUMMATION-INTEGRAL TYPE OPERATORS BASED ON

LUPAŞ-JAIN FUNCTIONS

NESIBE MANAV1 AND NURHAYAT ISPIR1

Abstract. We introduce a genuine summation-integral type operators based on
Lupaş-Jain type base functions related to the unbounded sequences. We investigated
their degree of approximation in terms of modulus of continuity and K-functional
for the functions from bounded and continuous functions space. Furthermore, we
give some theorems for the local approximation properties of functions belonging to
Lipschitz class. Also, we give Voronovskaja theorem for these operators.

1. Introduction

Inspiring by Lupaş’s paper [12], Agratini studied the following operators

Ln (f, x) = 2−nx
∞∑

k=0

(nx)k

2kk!
f

(
k

n

)
,(1.1)

where f ∈ C [0, ∞), C [0, ∞) is the space of all real valued continuous functions on
[0, ∞) in [1]. Agratini gave some estimations for rates of convergence, an asymptotic
formula and a reobtained version by using probabilistic methods at the same study.
Also, he introduced a Kantorovich and a Durrmeyer modifications of the operators
(1.1). Agratini, in [2], gave some estimations on the Kantorovich variant of the
operators (1.1) by using modulus of smoothness. Moreover, he investigated rate of
convergence by the step weight function of Lupaş operators, for local Lipschitz class
functions. Also, he gave some approximation properties of the operators given by
(1.1) using probabilistic methods.

Key words and phrases. Lupaş-Jain functions, summation-integral type operators, moduli of
continuity, K-functional, Voronovskaja theorem.
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In [3], Erençin and Taşdelen introduced a generalization of the operators (1.1) with
the help of increasing and unbounded sequences of positive numbers (an), (bn). They
studied weighted approximation properties of these generalized operators. Later, in [4],
they studied convergence properties of the Kantorovich type version of these operators.
By using the modulus of continuity and Peetre’s K-functional, they gave the rate of
convergence of these operators. Also, they investigated convergence properties for the
functions from local Lipschitz class.

In [9], we generalized the operators (1.1) based on Lupaş base function by using
the sequences (an), (bn) as follows

(1.2) Lan,bn
(f ; x) = 2− an

bn
x

∞∑

k=0

(
an

bn
x
)

k

2kk!
f

(
bn

an

k

)
,

where (an) , (bn) are unbounded and increasing sequences of positive real numbers
such that

(1.3) lim
n→∞

bn

an

= 0 and
bn

an

≤ 1.

We gave and investigated some basic results for these operators. Also, using Lupaş
and Szász basis functions we defined summation-integral type operators

Dan,bn
(f ; x) =

an

bn

∞∑

k=0

ln,k (x)

∞∫

0

Pn,k (u) f (u) du,

where Pn,k (x) = e− an
bn

x

(
an

bn
x
)k

k!
, ln,k (x) =

(
an

bn
x
)

k

2kk!
2− an

bn
x. Then, we gave the degree of

approximation of these operators in terms of Ditzian-Totik modulus of smoothness
and corresponding K-functional. Also, we examined the convergence by using the
Lipschitz class functions and we gave some results in weighted spaces.

Govil et al. in [5], introduced a modification of Lupaş operators with weight of
Szász basis functions. They investigated the rate of convergence for the functions
which have bounded derivatives. In addition, they gave a new modification of the
Lupaş operators as follows

Dn (f ; x) = n
∞∑

k=1

ln,k(x)

∞∫

0

pn,k−1 (u) f (u) du + ln,0(x)f(0), x ≥ 0,

where

pn,k−1 (x) = e−nt (nx)k−1

(k − 1)!

and

ln,k (x) =
(nx)k

2kk!
2−nx.
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Jain in [10], introduced the modified form of the Szász-Mirakjan operator as follows

P β
n (f ; x) =

∞∑

k=0

p
β
n,k(x)f

(
k

n

)
, x ≥ 0,(1.4)

where the operators based on certain parameter 0 ≤ β < 1 and the base function

p
β
n,k(x) = e−nx+kβ nx (nx + kβ)k−1

k!
.

The rate of approximation of operators given by (1.4), for some values of n, is better
than the rate of approximation of operators Szász-Mirakjan.

Gupta and Greubel established the Durrmeyer variant of the operators (1.4) as
follow

Dβ
n (f ; x) =

∞∑

k=1




∞∫

0

p
β
n,k−1(u)du




−1

p
β
n,k(x)

∞∫

0

p
β
n,k−1 (u) f (u) du + e−nxf(0)

and investigated some approximation properties in [6].
Inspiring by the previous studies, we define a genuine summation-integral type

operators by using Jain and Lupaş base functions for integrable functions as follows

D
[β]
an,bn

(f ;x)(1.5)

=
∞∑

k=1




∞∫

0

θβ

(
k−1,

an

bn

u

)
du




−1

l∗
n,k(x)

∞∫

0

θβ

(
k−1,

an

bn

u

)
f(u)du+2− an

bn
xf(0),

where f∈C[0,∞) is integrable function, l∗
n,k(x)=

(an
bn

x)
k

2kk!
2− an

bn
x, (an) and (bn) are un-

bounded and increasing sequences of positive real numbers satisfying the condition
(1.3) and the Jain-type base function is

θβ

(
k,

an

bn

x

)
=

an

bn

x

(
an

bn

x+kβ

)k−1 e−(an
bn

x+kβ)

k!
,

for x∈[0,∞), n∈N and β∈[0,1). Here, by considering the definition of θβ we see that
∑∞

k=0θβ

(
k,an

bn
x
)
=1.

In addition, if we take 〈f,g〉=∫∞
0 f(t)g(t)dt at the definition of the operators D

[β]
an,bn

,
we can write these operators as follow (see [6, 7])

D
[β]
an,bn

(f ;x)=
∞∑

k=1

〈
θβ

(
k−1,an

bn
u
)
,f(t)

〉

〈
θβ

(
k−1,an

bn
u
)
,1
〉 l∗

n,k(x)+2− an
bn

xf(0).(1.6)

In this paper, we give the degree of approximation of these operators using the
modulus of continuity and Peetre’s K-functional. Also, we give some theorems about
local approximation and Voronovskaja theorem.
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1.1. Direct results for D
[β]
an,bn

operators. In this section, we give some basic prop-

erties of the operators D
[β]
an,bn

operators.

Lemma 1.1. For 0≤β<1 we define

P ∗
r (k−1,β)=

〈
θβ

(
k−1,an

bn
u
)
,tr
〉

〈
θβ

(
k−1,an

bn
u
)
,1
〉 ,

and we get the following

P ∗
0 (k−1,β)=1,

P ∗
1 (k−1,β)=

bn

an

[
(1−β)k+

β(2−β)

1−β

]
,

P ∗
2 (k−1,β)=

(
bn

an

)2[
(1−β)2

k2+(1+4β−2β2)k+
β2(3−β)

1−β

]
.

The proof is obtained by method of Lemma 2 at [6].

Lemma 1.2. ([9, Lemma 1]). For f∈C[0,∞) and x∈[0,∞), the operators Lan,bn
given

by (1.2) satisfy the following conditions

Lan,bn
(e0;x)=1,

Lan,bn
(e1;x)=x,

Lan,bn
(e2;x)=x2+2

bn

an

x,

where ei(x)=xi, i=0,1,2, and (an), (bn) are sequences of positive real numbers satisfying

the condition (1.3).

Now, we give the following equalities for the test functions of the operators defined
with (1.6).

Lemma 1.3. Let ek(x)=xk, k=0,1,2, and (an), (bn) are unbounded and increasing

sequences of positive real numbers satisfying the condition (1.3). For each x∈[0,∞),

the operators D
[β]
an,bn

satisfy the following equalities

D
[β]
an,bn

(e0;x)=1,

D
[β]
an,bn

(e1;x)=x(1−β)+
bn

an

β(2−β)

(1−β)
,

D
[β]
an,bn

(e2;x)=(1−β)2
x2+3

bn

an

x+

(
bn

an

)2
β2(3−β)

(1−β)
,

D
[β]
an,bn

(e3;x)=(1−β)3
x3+3

bn

an

(
9−15β+9β2−3β3

)
x2

+

(
bn

an

)2(
6+14β+16β2−2β3+

3β4

1−β

)
x+

(
bn

an

)3
β2(3−β)

1−β
,
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D
[β]
an,bn

(e4;x)=(1−β)4
x4+

bn

an

(
18−28β+22β2−8β3+2β4

)
x3

+

(
bn

an

)2(
47−40β+30β2−20β3+5β4

)
x2

+

(
bn

an

)3(
42−+30β2−20β3+20β4−10β5

1−β

)
x+

(
bn

an

)4
β4(5−β)

1−β
.

Proof. Considering the definition of the operator (1.6), the properties of Pochammer
symbol, and using the equality

2
an
bn

x=
∞∑

k=0

(
an

bn
x
)

k

2kk!
, x∈[0,∞),

and by considering Lemma 1.1 and Lemma 1.2, we get

D
[β]
an,bn

(e0;x)=
∞∑

k=1

P ∗
0 (k−1,β)l∗

n,k(x)+2− an
bn

xe0(0)=
∞∑

k=1

l∗
n,k(x)=Lan,bn

(e0;x)=1.

For e1 and e2 we have following results,

D
[β]
an,bn

(e1;x)=
∞∑

k=1

P ∗
1 (k−1,β)l∗

n,k(x)+2− an
bn

xe1(0)

=
∞∑

k=1

l∗
n,k(x)

[
bn

an

(
(1−β)k+

β

1−β
+1

)]

=
bn

an

(1−β)
∞∑

k=1

l∗
n,k(x)(k)+

bn

an

β(2−β)

1−β

=(1−β)Lan,bn
(e1;x)+

bn

an

β(2−β)

1−β
Lan,bn

(e0;x)

=(1−β)x+
bn

an

β(2−β)

1−β
,

D
[β]
an,bn

(e2;x)=
∞∑

k=1

P ∗
2 (k−1,β)l∗

n,k(x)+2− an
bn

xe2(0)

=

(
bn

an

)2

(1−β)2
∞∑

k=1

l∗
n,k(x)k2+

(
bn

an

)2

(1+4β−2β2)
∞∑

k=1

l∗
n,k(x)k

+

(
bn

an

)2
β2(3−β)

1−β

∞∑

k=1

l∗
n,k(x)

=(1−β)2
Lan,bn

(e2;x)+
bn

an

(
(1−β)2+

(
2+4β−2β2

))
Lan,bn

(e1;x)

+

(
bn

an

)2
β2(3−β)

(1−β)
Lan,bn

(e0;x)
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=(1−β)2
x2+3

bn

an

x+

(
bn

an

)2
β2(3−β)

(1−β)
.

By using same method, if we keep to continue the calculations we can get the values
of other test functions. �

As a result of this lemma, we can give the central moments.

Lemma 1.4. For each x∈[0,∞) and the operators D
[β]
an,bn

, we have

µn,1(x):=D
[β]
an,bn

((t−x);x)=x(−β)+
bn

an

β(2−β)

(1−β)
,(1.7)

µn,2(x):=D
[β]
an,bn

(
(t−x)2;x

)
=β2x2+2

2β2−7β+3

1−β

bn

an

x+

(
bn

an

)2
β2(3−β)

(1−β)
.(1.8)

and

µn,4(x):=D
[β]
an,bn

(
(t−x)4;x

)

=β4x4+
bn

an

(
32β+22β2+4β3−34β4−4β(2−β)

1−β

)
x3

+

(
bn

an

)2(
23−96β−2β2−12β3+5β4−12β4

1−β
+

6β2(3−β)

1−β

)
x2

+

(
bn

an

)3(
42+30β2+30β3+20β4−10β5

1−β
−4

β2(3−β)

(1−β)

)
x+

(
bn

an

)2
β2(3−β)

(1−β)
.

Proof of the last lemma is obvious from Lemma 1.3.

Remark 1.1. To obtain the Korovkin-type theorem we change β with the sequence
(βn) with the following property βn∈[0,1) for every n∈N and

lim
n→∞

βn=0.(1.9)

At the rest of this paper, we will use the notation D
[βn]
an,bn

instead of D
[β]
an,bn

. �

Remark 1.2. Using the conditions (1.3) and (1.9) for each 0≤x<∞, we get

µn,1(x)=D
[βn]
an,bn

((t−x);x)→0, as n→∞,

µn,2(x)=D
[βn]
an,bn

(
(t−x)2;x

)
→0, as n→∞,

and

µn,4(x)=D
[βn]
an,bn

(
(t−x)4;x

)
→0, as n→∞.

Lemma 1.5. For all n∈N and x∈[0,∞), if limn→∞
an

bn
βn=ζ∈R, we have

lim
n→∞

an

bn

µn,1(x)=−ζx,(1.10)

lim
n→∞

an

bn

µn,2(x)=3x,(1.11)
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lim
n→∞

(
an

bn

)2

µn,4(x)=32ζx3+23x2.(1.12)

To satisfy the Korovkin-type theorem we consider the lattice homomorphism Ta:
C[0,∞)→C[0,a] defined as Ta(f)=f |[0,a] with a fixed a≥0. It is clear that, from Lemma

1.3 and by using the condition (1.9), we have Ta

(
D

[βn]
an,bn

(ek)
)
→Ta(ek)=xk uniformly

on [0,a], where k=0,1,2. Then, by the well-known Korovkin theorem, the following
result is proven on any compact subset of [0,∞) as n→∞.

Theorem 1.1. Let
(
D

[βn]
an,bn

)
be the sequence of linear positive operators given by

(1.6), f∈C[0,a] and (βn) be the sequence satisfying the condition (1.9). The sequence(
D

[βn]
an,bn

)
converges uniformly to f(x) on [0,a].

2. Degree of Approximation

In this section, we give an estimate the degree of approximation for the operators

D
[β]
an,bn

(f ;x) in terms of the modulus of continuity, Ditzian-Totik moduli of smoothness,

and the Peetre’s K-functional. Also, we give Voronovskaja theorem for D
[β]
an,bn

(f ;x)
operators.

We begin by recalling some definitions and notations. By CB[0,∞), we denote the
class on real valued continuous and bounded functions f defined on the interval [0,∞)
with the norm ‖f‖=supx∈[0,∞)|f(x)|. For f∈CB[0,∞), δ>0, the mth order modulus
of continuity is defined as

ωm(f,δ)= sup
0<h≤δ

sup
x∈[0,∞)

|∆m
h f(x)|,

with ∆ is the forward difference.
The Petree’s K-functional is defined by

K2(f,δ)= inf
g∈C2

B
[0,∞)

{||f−g||+δ‖g′′‖}, δ>0,

where C2
B[0,∞)={g∈CB[0,∞) : g

′

,g′′∈CB[0,∞)} and ||·|| is the uniform norm on
CB[0,∞). By ([8], page 10), we have the following inequality

(2.1) K2(f,δ)≤Mω2(f,
√

δ),

where M is a positive constant and ω2 is the second order modulus of smoothness for
f∈CB[0,∞) defined as

ω2(f,
√

δ)= sup
0<h≤δ

sup
x,x+2h∈[0,∞)

|f(x+2h)−2f(x+h)+f(x)|.

Now, we can give the following result.

Theorem 2.1.
(
D

[βn]
an,bn

)
denotes a sequence of linear positive operators defined by (1.6)

and let (βn) be the sequence satisfying the condition (1.9). Then, for all f∈CB[0,∞)
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and for each x∈[0,∞), the following inequality

(2.2)
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤2ω
(
f,δ

[βn]
an,bn

)

holds, where δ
[βn]
an,bn

(x)={µn,2(x)}1/2
and ω is usual first moduli of continuity.

Proof. For every u,t∈[0,∞) and δ>0, considering the definition of modulus of conti-
nuity we can write

|f(u)−f(x)|≤(1+δ−1|u−x|)ω(f,δ).

Using the definition of (1.5) with the above inequality we have,
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣

≤
∞∑

k=1




∞∫

0

θβn

(
k−1,

an

bn

u

)
du




−1

l∗
n,k(x)

∞∫

0

θβn

(
k−1,

an

bn

u

)(
1+δ−1|u−x|

)
du

=ω(f,δ)D
[βn]
an,bn

(e0)(x)+δ−1ω(f,δ)D
[βn]
an,bn

(|u−x|)(x).(2.3)

Applying Cauchy-Schwartz inequality, we have
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤ω(f,δ)+δ−1ω(f,δ)
{
D

[βn]
an,bn

(
(u−x)2

)
(x)
}1/2

.

By considering (1.8), if we choose δ:=δ
[βn]
an,bn

(x) as follows

δ
[βn]
an,bn

(x)={µn,2(x)}1/2
,

we obtain (2.2) for each x∈[0,∞). �

Now, we give the rate of convergence by means of Peetre’s K-functional.

Theorem 2.2. For each x∈[0,∞) and f∈CB[0,∞), the following inequalities
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤4K2

(
f,d

[βn]
an,bn

(x)
)
+ω1

(
f,α

[βn]
an,bn

)
(2.4)

≤Mω2

(
f ;

√
d

[βn]
an,bn

(x)

)
+ω1

(
f,α

[βn]
an,bn

(x)
)

hold, where d
[βn]
an,bn

(x)=
(
δ

[βn]
an,bn

(x)
)2

+
(
α

[βn]
an,bn

(x)
)2

with δ
[βn]
an,bn

(x) is given in Theorem 2.1,

α
[βn]
an,bn

(x)= bn

an

βn(2−βn)
1−βn

−βnx and M is a constant independently of n and x.

Proof. Lets take auxiliary operators for D
[βn]
an,bn

operators as below

(2.5) D
[βn]

an,bn
(f ;x)=D

[βn]
an,bn

(f ;x)+f(x)−f

(
(1−βn)x+

bn

an

βn(2−βn)

1−βn

)
.

So, it is obvious to see that for all f∈CB[0,∞)
∣∣∣∣D

[βn]
an,bn

(f ;x)
∣∣∣∣≤
∣∣∣D[βn]

an,bn
(f ;x)

∣∣∣+|f(x)|+
∣∣∣∣∣f
(

(1−βn)x+
bn

an

βn(2−βn)

1−βn

)∣∣∣∣∣(2.6)

≤3‖f‖.
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From the Lemma 1.3 we see that the new operators D
[βn]

an,bn
(f ;x) obtain D

[βn]

an,bn
(t;x)=x

and as a direct result of this they obtain D
[βn]
an,bn

(t−x;x)=0. For g∈C2
B[0,∞), t∈[0,∞)

by using the Taylor formula, we know

g(t)=g(x)+(t−x)g′(x)+

t∫

x

(t−u)g′′(u)du.

Now, we apply the operators D
[βn]
an,bn

to both sides of this equality and using the equality
(2.5), we get

D
[βn]
an,bn

(g;x)−g(x)=D
[βn]
an,bn




t∫

x

(t−u)g′′(u)du;x




−
(1−βn)x+ bn

an

βn(2−βn)
1−βn∫

x

(
(1−βn)x+

bn

an

βn(2−βn)

1−βn

−u

)
g′′(u)du.

Now, passing absolute value and later considering the feature of norm give us following
inequalities

∣∣∣∣D
[βn]
an,bn

(g;x)−g(x)
∣∣∣∣

≤D
[βn]
an,bn




t∫

x

|t−u||g′′(u)|du;x




+

(1−βn)x+ bn
an

βn(2−βn)
1−βn∫

x

∣∣∣∣∣(1−βn)x+
bn

an

βn(2−βn)

1−βn

−u

∣∣∣∣∣|g
′′(u)|du

≤‖g′′‖

D

[βn]
an,bn

(
(t−x)2;x

)
+

(
(1−βn)x+

bn

an

βn(2−βn)

1−βn

−x

)2

.(2.7)

From Lemma 1.4, by using the (1.8) and taking (−βn)x+ bn

an

βn(2−βn)
1−βn

:=α
[βn]
an,bn

(x), we
get

D
[βn]
an,bn

(
(t−x)2;x

)
+

(
(1−βn)x+

bn

an

βn(2−βn)

1−βn

−x

)2

=
(
δ

[βn]
an,bn

(x)
)2

+
(
α

[βn]
an,bn

(x)
)2

=d
[βn]
an,bn

(x).(2.8)

Using the inequality (2.7) and equality (2.8) we can write

(2.9)
∣∣∣∣D

[βn]
an,bn

(g;x)−g(x)
∣∣∣∣≤
(
d

[βn]
an,bn

(x)
)
‖g′′‖.

For f∈CB[0,∞) and considering (1.5), we can write
∣∣∣D[βn]

an,bn
(f ;x)

∣∣∣
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≤
∞∑

k=1




∞∫

0

θβ

(
k−1,

an

bn

u

)
du




−1

l∗
n,k(x)

∞∫

0

θβ

(
k−1,

an

bn

u

)
|f(u)|du+2− an

bn
x|f(0)|

≤‖f‖
∞∑

k=1




∞∫

0

θβ

(
k−1,

an

bn

u

)
du




−1

l∗
n,k(x)

∞∫

0

θβ

(
k−1,

an

bn

u

)
du+2− an

bn
x

=‖f‖D
[βn]
an,bn

(e0;x)=‖f‖.(2.10)

Combining (2.9) and (2.6), for f∈CB[0,∞) and for g∈C
(2)
B [0,∞), we have

∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤
∣∣∣∣D

[βn]

an,bn
((f−g);x)

∣∣∣∣+|(f−g)(x)|+
∣∣∣∣D

[βn]

an,bn
(g;x)−g(x)

∣∣∣∣

+

∣∣∣∣∣f
(

(1−βn)x+
bn

an

βn(2−βn)

1−βn

)
−f(x)

∣∣∣∣∣

≤4‖f−g‖+
(
d

[βn]
an,bn

(x)
)
‖g′′‖+

∣∣∣∣∣f
(

(1−βn)x+
bn

an

βn(2−βn)

1−βn

)
−f(x)

∣∣∣∣∣.

Taking the infimum over all g∈C2
B[0,∞), we reach the result (2.4) and by using the

inequality (2.1) we find, for each x∈[0,∞)
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤4Mω2

(
f,d

[βn]
an,bn

(x)
)
+ω1

(
f,α

[βn]
an,bn

(x)
)
,

which implies the proof. �

Now we give the result by using Ditzian-Totik moduli of smoothness. Let start
with reminding the some definitions which will be used.

Let function f∈C[0,∞) and if we take step weight function φ:[0,∞)→R. The first
order Ditzian-Totik modulus of smoothness and corresponding K- functional are given
by, respectively,

ω
φ
1 (f,

√
δ)= sup

0<h≤
√

δ

{∣∣∣∣∣f
(

x+
hφ(x)

2

)
+f

(
x−hφ(x)

2

)∣∣∣∣∣ : x±hφ(x)

2
∈[0,∞)

}
,

K1,φ(f,δ)=inf{‖f−g‖∞+δ‖φg′‖∞ : g∈C ′(φ)}, δ>0,

where C(φ)={g∈ACloc[0,∞) : ‖φg′‖∞<∞}. g∈ACloc[0,∞) shows that the function g

is differentiable and g is absolutely continuous on every closed interval [a,b]⊂[0,∞).
It is known that there exists a positive constant M>0, such that (see [8], p.68)

(2.11)
1

M
ω

φ
1 (f,

√
δ)≤K1,φ(f,δ)≤Mω

φ
1 (f,

√
δ).

Theorem 2.3. Let f∈CB[0,∞). For x∈(0,∞), we have

∥∥∥D[βn]
an,bn

(f)−f
∥∥∥≤2K1,φ

(
f,δ

[βn]
an,bn

)
≤2Mω

φ
1

(
f,

√
δ

[βn]
an,bn

)
,(2.12)

where φ(x)=
√

x is a step function.
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Proof. For g∈C(φ), by using Taylor’s formula of g, we have

g(t)=g(x)+

t∫

x

g′(u)du=g(x)+

t∫

x

g′(u)

φ(u)
φ(u)du.

Then, for the step function φ(x)=
√

x, we get

|g(t)−g(x)|≤‖φg′‖∞

∣∣∣∣∣∣

t∫

x

1

φ(u)
du

∣∣∣∣∣∣
=‖φg′‖∞2

∣∣∣
√

t−
√

x
∣∣∣=2‖φg′‖∞

|t−x|√
t+

√
x

.

From the inequality
√

t+
√

x≥√
x, we get

|g(t)−g(x)|≤2‖φg′‖∞
|t−x|√

x
=2‖φg′‖∞

|t−x|
φ(x)

.(2.13)

Using (2.13) and (2.10), for f∈CB[0,∞) and g∈C(φ), we have
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤
∣∣∣D[βn]

an,bn
((f−g);x)

∣∣∣+
∣∣∣D[βn]

an,bn
(g;x)−g(x)

∣∣∣+|g(x)−f(x)|

≤2‖f−g‖+2
‖φg′‖∞

φ(x)
D

[βn]
an,bn

(|t−x|;x).

By applying Cauchy-Schwartz inequality, we can write

∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤2‖f−g‖+2

‖φg′‖∞
φ(x)

(
D

[βn]
an,bn

(
(t−x)2;x

))1/2

≤2‖f−g‖+2
‖φg′‖∞

φ(x)
δ

[βn]
an,bn

(x).

Taking the infimum on the right hand side over all g∈C2(φ) we obtain

|Dan,bn
(f ;x)−f(x)|≤2K1,φ

(
f,δ

[βn]
an,bn

)
.

Considering (2.11) we get (2.12) which is desired result. �

In this section, we obtain some pointwise estimates of rate of convergence of the
operators (1.6). The Lipschitz-type space is given as follow, in [13];

Lip∗
M(η)=

{
f∈C[0,∞) : |f(t)−f(x)|≤Mf

|t−x|η

(t+x)
η

2

, x,t∈(0,∞)

}
,

where Mf is a positive constant and η∈(0,1].

Theorem 2.4. Let f∈Lip∗
M(η). Then, for all x∈(0,∞), we get

(2.14)
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤M

(
µn,2(x)

x

)η/2

,

where µn,2(x) is the same as in Lemma 1.4.
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Proof. For a function f∈Lip∗
M(η), by using the definition, we get

|f(t)−f(x)|≤Mf
|t−x|η

(t+x)
η

2

.

Applying the operators D
[βn]
an,bn

on both sides of the above inequality, we have

∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤MfD

[βn]
an,bn

(
|t−x|η

(t+x)
η

2

;x

)
.

By using the Hölder’s inequality, with p= 2
η
, q= 2

2−η
and, using the Lemma 1.4, we can

write

∣∣∣D[βn]
an,bn

(f ;x)−f(x)
∣∣∣≤Mf

(
D

[βn]
an,bn

(
(t−x)2

(t+x)
;x

)) η

2 (
D

[βn]
an,bn

(1;x)
) 2−η

2

≤Mf
1

xη/2

(
D

[βn]
an,bn

(
(t−x)2;x

)) η

2
.

So, we obtain (2.14). �

Now we give an estimate for the rate of convergence by the means of the general
space of the Lipschitz-type maximal functions. Let C̃B[0,∞) be the space of bounded,
uniformly continuous real valued functions on [0,∞). The Lipschitz-type maximal

function of order η of f∈C̃B[0,∞) is introduced by Lenze [11] as

f̃η(x)= sup
t6=x,t∈[0,∞)

|f(t)−f(x)|
|t−x|η , x∈[0,∞),

and η∈(0,1].

Theorem 2.5. Let
(
D

[βn]
an,bn

)
be a sequence of linear positive operators defined by (1.6).

Then, for all f∈C̃B[0,∞), we get
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣≤f̃η(x)
(
δ

[βn]
an,bn

(x)
)η

,

where δ
[βn]
an,bn

is the same as in Theorem 2.1.

Proof. Using the definition of maximal function, we get

|f(t)−f(x)|≤f̃η(x)|t−x|η,

and applying the operators D
[βn]
an,bn

on both sides of this equation, we get
∣∣∣D[βn]

an,bn
(f ;x)−f(x)

∣∣∣ ≤ f̃η(x)D
[βn]
an,bn

(|t−x|η;x).

Applying the Hölder’s inequality with p= 2
η

and q= 2
2−η

, using Lemma 1.3, it follows
that

D
[βn]
an,bn

(|t−x|η;x)≤f̃η(x)
(
D

[βn]
an,bn

(|t−x|2;x)
) η

2
(
D

[βn]
an,bn

(1
2−η

2 ;x)
) 2−η

2

≤f̃η(x)
(
D

[βn]
an,bn

((t−x)2;x)
) η

2
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≤f̃η(x)
(
δ

[βn]
an,bn

(x)
)η

.

Hence, the proof is completed. �

3. Voronovskaja Theorem

We prove a Voronoskaja type theorem for the operators D
[βn]
an,bn

(f ;x) .

Theorem 3.1. For every f∈CB[0,∞) such that f ′,f ′′∈CB[0,∞), and for every fixed

x∈[0,∞), we have

lim
n→∞

an

bn

(
D

[βn]
an,bn

(f ;x)−f(x)
)
=−ζxf ′(x)+

3

2
xf ′′(x),

where ζ is the same with the Lemma 1.5.

Proof. Let x∈[0,∞) be a fixed point. For all t∈[0,∞), by using Taylor expansion we
have

f(t)=f(x)+(t−x)f ′(x)+
1

2
(t−x)2f ′′(x)+R(t,x)(t−x)2,

where R(t,x) is the remainder term, R(t,x)∈CB[0,∞), and R(t,x)→0 as t→x . Apply-

ing the operator D
[βn]
an,bn

to both sides of Taylor expansion and considering D
[βn]
an,bn

(e0;x)=
1, we get

an

bn

(
D

[βn]
an,bn

(f ;x)−f(x)
)
=

an

bn

D
[βn]
an,bn

((t−x);x)f ′(x)+
1

2

an

bn

D
[βn]
an,bn

(
(t−x)2;x

)
f ′′(x)

+
an

bn

D
[βn]
an,bn

(
R(t,x)(t−x)2;x

)

=A1+A2+A3.

Thus, we immediately have

A1=
an

bn

µn,1(x)f ′(x),

A2=
1

2

an

bn

µn,2(x)f ′′(x).

Now, we estimate A3. From Cauchy-Schwartz inequality, we have

A3=
an

bn

D
[βn]
an,bn

(
R(t,x)(t−x)2;x

)

≤
{
D

[βn]
an,bn

(
(R(t,x))2;x

)}1/2
{(

an

bn

)2

D
[βn]
an,bn

(
(t−x)4;x

)}1/2

.

The properties of the function R(t,x) implies that R2(x,x)=0 and R2(x,x)∈CB[0,∞).
Hence, we obtain

lim
n→∞

D
[βn]
an,bn

(
(R(t,x))2;x

)
=R2(x,x)=0, x∈[0,∞).

Furthermore, by applying equation (1.12) from Lemma 1.5, we get

lim
n→∞

D
[βn]
an,bn

(
R(t,x)(t−x)2;x

)
=0.
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Moreover, if we take limits as n→∞ over A1 and A2, from the equalities (1.10) and
(1.11), this implies the desired result. �

References

[1] O. Agratini, On a sequence of linear and positive operators, Facta Univ. Ser. Math. Inform. 14

(1999), 41–48.
[2] O. Agratini, On the rate of convergence of a positive approximation process, Nihonkai Math. J.

11 (2000), 47–56.
[3] A. Erençin and F. Taşdelen, On a family of linear and positive operators in weighted spaces,

Journal of Inequalities in Pure and Applied Mathematics 8(6) (2007), 2–39.
[4] A. Erençin and F. Taşdelen, On certain Kantorovich type operators, Fasc. Math. 41 (2009),

65–71.
[5] N. K. Govil, V. Gupta, and D. Soybaş, Certain new classes of Durrmeyer type operators, Appl.

Math. Comput. 225 (2013), 195–203.
[6] V. Gupta and G. C. Greubel, Moment Estimations of new Szász-Mirakyan-Durrmeyer operators,

Appl. Math. Comput. 271 (2015), 540–547.
[7] V. Gupta and G.Tachev, Approximation with Positive Linear Operators and Linear Combinations,

Springer, Cham, 2017.
[8] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, USA,

New York, 2014.
[9] N. Ispir and N. Manav, Approximation by the summation integral type operators based on

Lupaş-Szász basis functions, Journal of Science and Art 4(45), 2018, 853–868.
[10] G. C. Jain, Approximation of functions by a new class of linear operators, J. Aust. Math. Soc.

13(3) (1972), 271–276.
[11] B. Lenze, Bernstein-Baskakov-Kantorovich operators and Lipschitz-type maximal functions,

Colloq. Math. Soc. János Bolyai 58 (1990), 469–496.
[12] A. Lupaş, The approximation by some positive linear operators, in: M. W. Müller et al., (Eds.),

Proceedings of the International Dortmund Meeting on Approximation Theory, Akademie Verlag,
Berlin, 1995, 201–229.

[13] M. A. Özarslan and O. Duman, Local approximation behavior of modified SMK operators,
Miskolc Math. Notes 11(1) (2010), 87–89.

1Department of Mathematics,
Gazi University,
06500 Teknikokullar, Ankara, Turkey
Email address: nmanav@gazi.edu.tr

Email address: nispir@gazi.edu.tr



KRAGUJEVAC JOURNAL

OF MATHEMATICS

About this Journal

The Kragujevac Journal of Mathematics (KJM) is an international journal devoted
to research concerning all aspects of mathematics. The journal’s policy is to motivate
authors to publish original research that represents a significant contribution and is
of broad interest to the fields of pure and applied mathematics. All published papers
are reviewed and final versions are freely available online upon receipt. Volumes are
compiled and published and hard copies are available for purchase. From 2018 the
journal appears in one volume and four issues per annum: in March, June, September
and December. From 2021 the journal appears in one volume and six issues per
annum: in February, April, June, August, October and December.

During the period 1980–1999 (volumes 1–21) the journal appeared under the name
Zbornik radova Prirodno–matematičkog fakulteta Kragujevac (Collection of Scientific
Papers from the Faculty of Science, Kragujevac), after which two separate journals—
the Kragujevac Journal of Mathematics and the Kragujevac Journal of Science—were
formed.

Instructions for Authors

The journal’s acceptance criteria are originality, significance, and clarity of presen-
tation. The submitted contributions must be written in English and be typeset in
TEX or LATEX using the journal’s defined style (please refer to the Information for
Authors section of the journal’s website http://kjm.pmf.kg.ac.rs). Papers should
be submitted using the online system located on the journal’s website by creating
an account and following the submission instructions (the same account allows the
paper’s progress to be monitored). For additional information please contact the
Editorial Board via e-mail (krag_j_math@kg.ac.rs).

http://kjm.pmf.kg.ac.rs
mailto:krag_j_math@kg.ac.rs

	1. Introduction and definitions
	2. Preliminaries
	3. Main Results
	References
	1. Introduction
	2. Prelimiaries
	3. Applications of Theorem 2.1
	References
	1. Introduction
	2. Refinements of the Hölder-McCarthy Operator Inequality
	3. Inequalities for Sums and Products of Operators
	Acknowledgements.

	References
	1. Introduction
	2. Discretization of the Derivative
	3. Trigonometric Basic Functions (TBFs)
	4. Description of the New Approach
	5. Examples
	6. Conclusion
	References
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Conclusion
	References
	1. Introduction
	2. Main Results
	References
	1. Introduction
	2. Preliminaries
	3. Curvature Properties of Generalized pp-Wave Metric
	4. Curvature Properties of pp-Wave and Plane Wave Metric
	5.  Energy-Momentum Tensor of Generalized pp-Wave Metric
	6. Robinson-Trautman Metric and Generalized pp-Wave Metric
	Acknowledgements.

	References
	1. Motivation
	2. The Results
	References
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Experimental Results
	5. Discussion and Conclusion
	References
	1. Theoretical Result: Existence of the Solution
	2. Radial Positive Solution of the Bratu's Equation
	3. Numerical Method
	4. Results
	4.1. Finding of c
	4.2. Graph of umax vs , for 4040
	4.3. The graph of the solution u(x,y), for 5050 and 7575 with =4 

	5. Conclusion
	6. Appendix
	Acknowledgements.

	References
	1. Introduction
	2. Preliminaries
	3. Anti-Periodic Boundary Value Problem
	4. Application
	References
	1. Introduction
	2. Preliminaries
	3. Results
	Acknowledgements.

	References
	1. Introduction
	1.1. Direct results for Dan,bn[ ]  operators 

	2. Degree of Approximation
	3. Voronovskaja Theorem
	References

