
Kragujevac Journal of Mathematics
Volume 45(2) (2021), Pages 181–190.

A UNITARY TREATMENT OF CERTAIN INEQUALITIES
INVOLVING MEANS

A. F. ALBIŞORU1 AND M. STROE2

Abstract. The aim of this paper is to state and prove certain inequalities that
involve means (e.g., the arithmetic, geometric, logarithmic means) using a particular
result. First of all we recall useful properties of a real-valued convex function that will
be used in the proof of our inequalities. Further, we present three inequalities, the
first involving the logarithmic mean, the second involving the classical arithmetical
and geometrical means and in the last we introduce a new mean. Finally, we give
alternate proofs to the Schweitzer’s inequality and Khanin’s inequality.

1. Introduction

Recall that, for a, b ∈ (0,∞), the logarithmic mean is given by the relation

L(a, b) := b− a
log b− log a,

and for k ∈ N \ {1} and x1, . . . , xn ∈ [a, b] we introduce the generalized mean as
follows

k

√
xk

1 + · · ·+ xk
n

n
.

These means frequently appear in the setting of inequalities.
The subject of inequalities has fascinated a great deal of mathematicians and the

proof of this fact lives in the classical and recent results that bear their names. A large
number of inequalities have been the subject of well-known books such as [1, 3, 4, 6].

Note that, an important notion that we employ in this paper is that of a convex
function, and we are interesed in the property that the maximum of a convex function
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is attained on the boundary of the convex and bounded domain, on which it is defined
(for additional details, see, e.g., [2, 7, 8]).

The aim of our work is to establish certain inequalities using convex functions. In
Section 2 we give the important notions that will be used throughout the paper. We
introduce here the notion of a convex function and we also give a fundamental result
which will be used in the proof of our inequalities, namely Theorem 2.1. Through
this particular result we point some properties of convex (see, e.g., [5], [7, pp. 89,
118]) functions of several variables and their applications. In Section 3 we have three
important applications. Application 3.1 gives an estimate for the difference between
the arithmetic and geometric mean in terms of the logarithmic mean. Application 3.2
gives another estimate for the difference between the arithmetic and geometric mean
and in Application 3.3 we give an estimate for the difference between the generalized
mean and arithmetic mean using a new mean. We end this section with Schweitzer’s
inequality (Theorem 3.4) and Khanin’s Inequality (Theorem 3.5). We have provided
alternative proofs for these inequalities using Theorem 2.1.

2. Prelimiaries

If C ⊂ Rn is a convex set, then, a function f : C→ R is said to be convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), for all x, y ∈ C, for all λ ∈ [0, 1].

We point out the fact that, if f : [a, b]→ R is convex, then the maximum value of
f is attained at the boundary. We shall prove this useful property at Lemma 2.1.

In the latter, for a, b ∈ R, we have the following notations:

[a, b]n =[a, b]× · · · × [a, b],
{a, b}n ={a, b} × · · · × {a, b}.

In the latter, we shall prove a theorem that points out that, in certain conditions,
the maximum of a convex and continuous function f : [a, b]n → R can be found by
taking the maximum of the function on the vertices of the considered hypercube [a, b]n,
where a, b ∈ R.

Before we proceed to the proof of this result, we shall state a useful lemma (see,
e.g., [7, Theorem 3.4.6, Theorem 3.4.7]).

Lemma 2.1. Let a, b ∈ R and let f : [a, b]→ R be a convex and continuous function.
Then

max
x∈[a,b]

f(x) = max
x∈{a,b}

f(x).

Proof. Since f is continuous on [a, b], we deduce that there is an α ∈ [a, b] such that

f(α) = max
x∈[a,b]

f(x).
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Now, we argue by contradiction. Assume that α ∈ (a, b). This means that there is
some λ ∈ (0, 1), such that

α = (1− λ)a+ λb.

Hence,

f(α) =f((1− λ)a+ λb) ≤ (1− λ)f(a) + λf(b)
<(1− λ)f(α) + λf(α),

i.e., f(α) < f(α), which is absurd and our proof is complete. �

We have the following theorem.

Theorem 2.1. Let f : [a, b]n → R be a C2-class function on [a, b]n, such that:

∂2f

∂x2
i

≥ 0, for all i = 1, n.(2.1)

Then

max
x∈[a,b]n

f(x) = max
x∈{a,b}n

f(x).

Proof. Define the function g1 : [a, b]→ R in the following manner

g1(x1) = f(x1, . . . , xn),

where the variables x2, . . . , xn are arbitrarily fixed. Using condition (2.1) for i = 1,
we deduce that g1 is convex, hence:

max
x1∈[a,b]

f(x1, . . . , xn) = max
x1∈{a,b}

f(x1, . . . , xn).

Let x1 ∈ {a, b} be the value for which the maximum is attained. We apply the same
steps as above to the function g2 : [a, b]→ R, g2(x2) = f(x1, x2, . . . , xn) and we deduce
that there exists x2 ∈ {a, b} such that

max
x2∈[a,b]

f(x1, x2, . . . , xn) = max
x2∈{a,b}

f(x1, x2, . . . , xn),

and we use the same arguments for x3, . . . , xn. Consequently, we obtain

max
x∈[a,b]n

f(x) = max
x∈{a,b}n

f(x),

where x = (x1, . . . , xn) ∈ Rn.
This completes our proof. �
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3. Applications of Theorem 2.1

In this section we give the main results of our paper.

Application 3.1. Let x1, . . . , xn ∈ [a, b] ⊂ (0,∞), where a = min
i=1,n

xi and b = max
i=1,n

xi.
Then

x1 + · · ·+ xn

n
− n
√
x1 · · ·xn ≤ (L(a, b)− a)

(
L(a, b)

L(a, L(a, b)) − 1
)
,

where

L(a, b) = b− a
log b− log a,

denotes the logarithmic mean of a and b.

Proof. Consider the function f : [a, b]n → R, given by the relation

f(x1, . . . , xn) = x1 + · · ·+ xn

n
− n
√
x1 · · ·xn.

Take note that
∂2f

∂x2
i

= n− 1
n2 (x1 · · ·xi−1xi+1 · · ·xn) 1

nx
− 2n−1

n
i ,

for i = 1, n.
Since all partial derivatives of second order of f are positive, by applying Theo-

rem 2.1 we obtain
max

x∈[a,b]n
f(x) = max

x∈{a,b}n
f(x).

We shall determine now max
x∈{a,b}n

f(x).
Without loss of generality, we may now assume that the maximum of f is obtained

at the point (x1, . . . , xn), where
x1 = x2 = · · · = xn−k = a,

xn−k+1 = xn−k+2 = · · · = xn = b.

Hence, to determine max
x∈{a,b}n

f(x), it is enough to find the maximum of the expression

E = (n− k)a+ kb

n
− n
√
an−kbk = a+ k

n
(b− a)− a

(
a

b

) k
n

,

for k = 1, n− 1.
To this end, let g : (0, 1)→ R be given by

g(t) = a+ t(b− a)− a
(
a

b

)t

.

The derivative of g is as follows

g′(t) = b− a− a
(
b

a

)t

log
(
b

a

)
.
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Hence,

g′(t) = 0⇔
(
b

a

)t

= L(a, b)
a

⇔ t′ := t = log(L(a, b))− log a
log b− log a ∈ (0, 1).

We deduce that t′ is a global maximum point for g. Consequently,
max
t∈(0,1)

g(t) = g(t′).

Our claim is that

g(t′) = (L(a, b)− a)
[

L(a, b)
L(a, L(a, b)) − 1

]
.

Indeed,

g(t′) = a+ t′(b− a)− a
(
b

a

)t′

= a+ t′(b− a)− aL(a, b)
a

= a+ b− a
log b− log a ·

log(L(a, b))− log a
L(a, b)− a (L(a, b)− a)− L(a, b)

= a+ L(a, b) 1
L(a, L(a, b))(L(a, b)− a)− L(a, b)

= −(L(a, b)− a) + L(a, b)
L(a, L(a, b))(L(a, b)− a)

= (L(a, b)− a)
[

L(a, b)
L(a, L(a, b)) − 1

]
,

and our claim is verified. This concludes the proof. �

Application 3.2. Let x1, . . . , xn ∈ [a, b] ⊂ (0,∞), where a = min
i=1,n

xi and b = max
i=1,n

xi.
Then

x1 + · · ·+ xn

n
− n
√
x1 · · ·xn ≤ (

√
b−
√
a)2.

Proof. Using similar arguments to those in the proof of Application 3.1, we consider
the expression

E = (n− k)a+ kb

n
− n
√
an−kbk.

Note that,

E ≤ (n− k)a+ kb

n
− n

n−k
a

+ k
b

,

due to the geometric and harmonic mean inequality, i.e.,
n
√
an−kbk ≥ n

n−k
a

+ k
b

.
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Thus, one obtains
E ≤ a+ k

n
(b− a)− ab

b− k
n
(b− a)

.

On the other hand, we introduce the function h : (0, 1)→ R as follows

h(t) = 1 + t(b− a)− ab

b− t(b− a) .

The derivative of the function h is

h′(t) = b− a− ab

(b− t(b− a))2 (b− a).

Then we have

h′(t) = 0⇔ t′ := t =
√
b

√
a+
√
b
∈ (0, 1).

It follows that t′ is a global maximum point for h and therefore,
h(t) ≤ h(t′) = (

√
b−
√
a)2.

Consequently, we obtain
x1 + · · ·+ xn

n
− n
√
x1 · · ·xn ≤ (

√
b−
√
a)2,

and our proof is finished. �

Now, we introduce the quantity

Pk(a, b) = k

√√√√ bk+1 − ak+1

(k − 1)(b− a) = k

√
ak + ak−1b+ · · ·+ bk

k + 1 ,

for k ∈ N, k ≥ 2 and P1(a, b) = a+b
2 .

One can easily see that a < Pk(a, b) < b, and thus Pk(a, b) is a mean.

Application 3.3. Let x1, . . . , xn ∈ [a, b] ⊂ (0,∞), where a = min
i=1,n

xi and b = max
i=1,n

xi.
Then

k

√
xk

1 + · · ·+ xk
n

n
− x1 + · · ·+ xn

n
≤ (Pk−1(a, b)− a)

(
1− P k−1

k−1 (a, Pk−1(a, b))
P k−1

k−1 (a, b)

)
.

Proof. Let f : [a, b]n → R be given by

f(x1, . . . , xn) = k

√
xk

1 + · · ·+ xk
n

n
− x1 + · · ·+ xn

n
.

One can easily see that

∂2f

∂x2
i

= k − 1
n2 xk−2

i

(
xk

1 + · · ·+ xk
n

n

) 1
k
−2
xk

1 + · · ·+ xk
i−1 + xk

i+1 + · · ·+ xk
n

n
> 0,

for all i = 1, n.
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We apply Theorem 2.1 and we obtain that

max
x∈[a,b]n

f(x) = max
p∈{1,...,n−1}

k

√
(n− p)ak + pbk

n
− (n− a)p+ pb

n

= max
p∈{1,...,n−1}

(
k

√
p

n
(bk − ak) + ak − p

n
(b− a)− a

)
.

Consider, now, the function g : (0, 1)→ R given by

g(t) = k

√
t(bk − ak) + ak − t(b− a)− a.

We deduce that

g′(t) = bk − ak

k
(

k

√
t(bk − ak) + ak

)k−1 − (b− a).

Hence,

g′(t) = 0⇔ α := t = P k
k−1(a, b)− ak

bk − ak
∈ (0, 1).

Consequently, we have
max
t∈(0,1)

g(t) = g(α).

On the other hand, we get

g(α) = Pk−1(a, b)−
P k

k−1(a, b)− a
bk − ak

(b− a)− a

= Pk−1(a, b)− a−
k(b− a)
bk − ak

P k
k−1(a, b)− ak

k(Pk−1(a, b)− a)(Pk−1(a, b)− a)

= Pk−1(a, b)− a−
1

P k−1
k−1

(a, b)P k−1
k−1 (a, P (a, b))(Pk−1(a, b)− a)

= (Pk−1(a, b)− a)
(

1− P k−1
k−1 (a, Pk−1(a, b))
P k−1

k−1 (a, b)

)
.

This concludes our proof. �

Remark 3.1. Setting n = 2 in Application 3.3 yields the following inequality√
x2

1 + · · ·+ x2
n

n
− x1 + · · ·+ xn

n
≤ (b− a)2

4(a+ b) .

In the latter, we shall state and prove Schweitzer’s inequality.

Theorem 3.4 (Schweitzer). Let x1, . . . , xn, a, b > 0 such that xi ∈ [a, b] for all i = 1, n.
Then,

(x1 + · · ·+ xn)
( 1
x1

+ · · ·+ 1
xn

)
≤ (a+ b)2

4ab n2, for n even,

(x1 + · · ·+ xn)
( 1
x1

+ · · ·+ 1
xn

)
≤ (a+ b)2

4ab n2 − (a− b)2

4ab , for n odd.
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Proof. Define f : [a, b]n → R as follows

f(x1, . . . , xn) = (x1 + · · ·+ xn)
( 1
x1

+ · · ·+ 1
xn

)
.

Then, for all i = 1, n, we have

∂2f

∂x2
i

= 2(x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn)
x3

i

> 0.

Apply Theorem 2.1 and deduce that

max
x∈[a,b]n

f(x) = max
x∈{a,b}n

f(x),

where x = (x1, . . . , xn) ∈ Rn. Now, we determine max
x∈{a,b}n

f(x). Without loss of
generality, we may assume that

x1 = x2 = · · · = xk = a,

xk+1 = xk+2 = · · · = xn = b.

Hence,

max
x∈{a,b}n

f(x) = max
k∈{1,...,n}

(ka+ (n− k)b)
(
k

a
+ n− k

b

)
.

We consider the function g : (0,∞)→ R, defined by

g(k) = (ka+ (n− k)b)
(
k

a
+ n− k

b

)
.

A short computation yields

g(k) = −(b− a)2

ab
k2 + n(b− a)2

ab
k + n2.

One can easily deduce that the maximum of g is obtained when x = n
2 . Moreover,

the restriction of g to the set {1, . . . , n} obtains its maximum value at k = n
2 if n is

even and k = n−1
2 or k = n+1

2 is n is odd. On the other hand, take note that

g
(
n

2

)
= (a+ b)2

4ab n2, for n even,

g
(
n− 1

2

)
= g

(
n+ 1

2

)
= (a+ b)2

4ab n2 − (b− a)2

4ab , for n odd.

This concludes our proof. �

Now we focus on the statement and proof of Khanin’s inequality.



A UNITARY TREATMENT OF CERTAIN INEQUALITIES INVOLVING MEANS 189

Theorem 3.5 (Khanin). Let x1, . . . , xn, a, b ∈ R such that xi ∈ [a, b] for all i = 1, n.
Then

x2
1 + · · ·+ x2

n

n
−
(
x1 + · · ·+ xn

n

)2
≤(b− a)2

4 , for n even,(3.1)

x2
1 + · · ·+ x2

n

n
−
(
x1 + · · ·+ xn

n

)2
≤
(
b− a

4

)2

− (b− a)2

4n2 , for n odd.

Proof. Let f : [a, b]n → R, given by

f(x1, . . . , xn) = x2
1 + · · ·+ x2

n

n
−
(
x1 + · · ·+ xn

n

)2
.

Note that
∂2f

∂x2
i

= 2(n− 1)
n2 > 0.

Now, apply Theorem 2.1 and deduce that

x2
1 + · · ·+ x2

n

n
−
(
x1 + · · ·+ xn

n

)2
≤ ka2 + (n− k)b2

n
−
(
ka+ (n− k)b

n

)2

.

Further, we consider the function g : (0,∞)→ R, given by

g(k) = ka2 + (n− k)b2

n
−
(
ka+ (n− k)b

n

)2

.

It can be easily seen that the restriction of g, i.e., g : {1, 2, . . . , n} → R obtains its
maximum value when k = n

2 if n is even and when k = n−1
2 or k = n+1

2 if n is odd.
Taking note that

g
(
n

2

)
=(b− a)2

4 , for n even,

g
(
n− 1

2

)
=g

(
n+ 1

2

)
=
(
b− a

4

)2

− (b− a)2

4n2 , for n odd,

we obtain relations (3.1).
This completes our proof. �
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