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INTEGRAL BOUNDARY VALUE PROBLEMS FOR IMPLICIT

FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING

HADAMARD AND CAPUTO-HADAMARD FRACTIONAL

DERIVATIVES

P. KARTHIKEYAN1 AND R. ARUL1

Abstract. In this paper, we examine the existence and uniqueness of integral
boundary value problem for implicit fractional differential equations (IFDE’s) in-
volving Hadamard and Caputo-Hadamard fractional derivative. We prove the exis-
tence and uniqueness results by utilizing Banach and Schauder’s fixed point theorem.
Finally, examples are introduced of our results.

1. Introduction

FDE’s are considered to be a different model to integer differential equations. It
has been proved by applying importance in the modeling of various fields of physical
sciences, medicine, electronics and wave transformation [8, 16, 21, 23, 26]. The dom-
inant techniques are the method of introducing a parameter for solving an implicit
differential equations. In past three years, the most of research paper to devel-
oped existence and uniqueness of implicit FDE’s involving various derivatives like
the Caputo,Riemann-Liouville, Caputo-Hadamard, Hadamard, Hilfer-Hadamard frac-
tional derivatives etc., (see [4–7,9, 14,15,19,20,24]).

Caputo Hadamard fractional derivatives were studied in [12] by the authors F. Jarad,
T. Abdeljawad and D. Baleanu, where a Caputo-type modification for Hadamard
derivatives was introduced and studied. Later, more properties of Hadamard fractional
derivatives were investigated in [1, 2, 10, 13].

Key words and phrases. Implicit fractional differential equations, Hadamard fractional operators,
boundary condition, fixed point theorem, existence and uniqueness.
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332 P. KARTHIKEYAN AND R. ARUL

The applications of Hadamard fractional differential equations in mathematical
physics cuold be found in [11, 17, 18, 22, 25]. In [3] the authors have studied Hilfer-
Hadamard FDE’s with variable-order fractional integral and fractional derivative.
Motivated by the above cited work, we studies the solutions of existence and uniqueness
results to the following implicit fractional differential equations with integral boundary
conditions of the form

HDϑx(t) = g(t, x(t),H Dϑx(t)), t ∈ J := (b,T),(1.1)

x(b) = 0, x(T) = λ

∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(1.2)

where HDϑ is the Hadamard fractional derivative of order 1 < ϑ ≤ 2,
CHDϑx(t) = g(t, x(t),CH Dϑx(t)), t ∈ J := [b,T],(1.3)

x(b) = 0, x(T) = λ

∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(1.4)

where CHDϑ is the Caputo-Hadamard fractional derivative of order 1 < ϑ ≤ 2 and
g : J × R × R → R is a continuous function.

In this paper, Section 2, has definitions and some of the most important basic
concepts of the fractional calculus. In Section 3, existence and uniqueness of solutions
for integral boundary conditions of implicit fractional differential equations involv-
ing Hadamard fractional derivative and Caputo-Hadamard fractional derivatives are
proved by utilizing Banach and Schauder’s fixed point theorems. In Section 4, an
illustrative examples are provided to explain of the results of the problem (1.1)–(1.4).

2. Basic Results

In this section, the some most important basic concepts, definitions and some
supporting results are used in this paper. By C(J,R) we denote the Banach space of
all continuous functions form J into R with the norm ||x||∞ = sup{|x(t)| : t ∈ J}.

Definition 2.1 ([15]). The derivative of fractional order ϑ > 0 of a function g :
(0, ∞) → R is given by

Dϑ
0+x(t) =

1

Γ(n − ϑ)

(

d

dt

)n
∫ t

0

g(s)

(t − s)ϑ−n+1
ds,

where n = [ϑ] + 1, provided the right side is pointwise defined on (0, ∞).

Definition 2.2 ([15]). The Hadamard fractional integral of g is defined by

HJ
ϑx(t) =

1

Γ(ϑ)

∫ t

b

(

log
t

s

)ϑ−1 g(s)

s
ds, ϑ > 0.

Definition 2.3 ([15]). The Hadamard fractional derivative of g is continuous
function and further, log(·) = loge(·) is defined as

HD
ϑx(t) =

1

Γ(n − ϑ)

(

t
d

dt

)n ∫ t

b

(

log
t

s

)n−ϑ−1 g(s)

s
ds,
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where n − 1 < ϑ < n, n = [ϑ] + 1 and [ϑ] denotes the integer part of the real number
ϑ.

Definition 2.4 ([12]). For at least n-times differentiable function g, the Caputo-

Hadamard fractional derivative of order ϑ is defined as

CHDϑx(t) =
1

Γ(n − ϑ)

∫ t

a

(

ln
t

s

)n−ϑ−1

δn g(s)

s
ds.

Lemma 2.1 (Hadamard fractional derivative). Let v ∈ C([b,T],R) and x ∈
C2

δ([b,T],R). Then

HDϑx(t) = v(t), t ∈ J := [b,T],

x(b) = 0, x(T) = λ

∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(2.1)

is equivalent to the integral equation given by

x(t) =
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 v(s)

s
ds +

(

ln t
s

)ϑ−1

Γ(ϑ)
[

(

ln T

s

)ϑ−1
− λ

[

∫ σ
b

(

ln s
b

)ϑ−1
ds

]]

×



λ

∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 v(r)

r
drds −

∫ T

b

(

ln
T

s

)ϑ−1
v(s)

s
ds



(2.2)

Lemma 2.2 (Caputo-Hadamard fractional derivative). Let v ∈ C([b,T],R) and x ∈
C2

δ([b,T],R).
CHDϑx(t) = v(t), t ∈ J := [b,T],

x(b) = 0, x(T) = λ

∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(2.3)

is equivalent to the integral equation given by

x(t) =
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 v(s)

s
ds +

(

ln t
s

)

Γ(ϑ)
[(

ln T

s

)

− λ
[

σ
(

ln σ
b

− 1
)

+ b
]]

×



λ

∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 v(r)

r
drds −

∫ T

b

(

ln
T

s

)ϑ−1
v(s)

s
ds



 .(2.4)

Lemma 2.3 (Nonlinear alternative of Lerary-Schauder type, [7]). Let B be a Banach

space, C a closed, convex subset of B, U an open subset of C and 0 ∈ U. Suppose that

F : U → C is a continuous, compact map. Then either (i) F has a fixed point in U,

or (ii) there is a u ∈ ∂U and λ ∈ (0, 1), with u = λF (u).

3. Main Results

To prove the existence and uniqueness results we need the following assumptions.

Assumption 3.1. The function g : J × R × R → R is a continuous function.
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Assumption 3.2. There exists constants Kg > 0 and 0 < Lg < 1 such that

|g(t, u, v) − g(t, u1, v1)| ≤ Kg|u − u1| + Lg|v − v1|, for any u, v, u1, v1 ∈ R.

Assumption 3.3. There exist a continuous nondecreasing function ϕ on [0, ∞) → (0, ∞)
and a function p(t) ∈ C1([b,T],R+) such that

||g(t, u, v)|| ≤ p(t)ϕ(||u|| + ||v||).

The integral boundary conditions for implicit fractional differential equations with
Hadamard fractional derivative (1.1)–(1.2) is equivalent to the integral equation

x(t) =
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 g(s, x(s),H Dϑx(s))

s
ds +

(

ln t
b

)ϑ−1

Γ(ϑ)
[

(

ln T

b

)ϑ−1
− λN1

]

×
[

λ

∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 g(r, x(r),H Dϑx(r))

r
drds

−
∫ T

b

(

ln
T

s

)ϑ−1
g(s, x(s)),H Dϑx(s))

s
ds

]

,

where N1 =
∫ σ

b

(

ln s
b

)ϑ−1
ds.

The integral boundary conditions for implicit fractional differential equations with
Caputo-Hadamard fractional derivative (1.3)–(1.4) is equivalent to the integral equa-
tion

x(t) =
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 g(s, x(s)),CH Dϑx(s))

s
ds +

(

ln t
b

)

Γ(ϑ)
[(

ln T

b

)

− λN2

]

×
[

λ

∫ σ

b

∫ s

r

(

ln
s

r

)ϑ−1 g(r, x(r),CH Dϑx(r))

r
drds

−
∫ T

b

(

ln
T

s

)ϑ−1
g(s, x(s)),CH Dϑx(s))

s
ds

]

or

x(t) = Iϑf(s) +





(ln t
s
)

Γ(ϑ)
[(

ln T

s

)

− λN2

]





[

λ

∫ σ

b
Iϑf1(r)ds − Iϑf2(s)

]

,

where N2 = σ
(

ln σ
b

− 1
)

+ b and f, f1, f2 ∈ C(J,R) satisfies the functional equations

f(s) = g(s, Iϑf(s), f(s)),

f1(r) = g(r, Iϑf1(r), f1(r)),

f2(s) = g(s, Iϑf2(s), f2(r)),

Iϑf(s) =
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 g(s, x(s)),CH Dϑx(s))

s
ds,
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Iϑf1(r) =
∫ s

b

(

ln
s

r

)ϑ−1 g(r, x(r),CH Dϑx(r))

r
dr,

Iϑf2(s) =
∫ T

b

(

ln
T

s

)ϑ−1
g(s, x(s)),CH Dϑx(s))

s
ds.

Theorem 3.1. Assume that assumptions 3.1 and 3.2 hold. If








1

Γ(ϑ + 1)

(

ln
T

b

)ϑ

+

(

ln T

b

)2ϑ−1

Γ(ϑ + 1)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

(|λ|(σ − b) − 1)









Kg

(1 − Lg)
< 1,

then there exists a unique solution for (1.1)–(1.2) on J := [b,T].

Proof. Let Br = {x ∈ C([b,T],R) : ‖x‖ ≤ r}. Consider the operator H : C([b,T],R) →
C([b,T],R) defined by

(3.1) H(x)(t) = Iϑf(s) +









(

ln t
b

)ϑ−1

Γ(ϑ)
[

(

ln T

b

)ϑ−1
− λN1

]









(

λ

∫ σ

b
Iϑf1(r)ds − Iϑf2(s)

)

,

where f, f1, f2 ∈ C(J,R) satisfies the functional equations

f(s) = f(s, Iϑf(s), f(s)),

f1(r) = f(r, Iϑf1(r), f1(r)),

f2(s) = f(s, Iϑf2(s), f2(s)),

where N1 =
∫ σ

b

(

ln s
b

)ϑ−1
ds and

Iϑf(s) =
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 g(s, x(s)),H Dϑx(s))

s
ds,

Iϑf1(r) =
∫ s

b

(

ln
s

r

)ϑ−1 g(r, x(r),H Dϑx(r))

r
dr,

Iϑf2(s) =
∫ T

b

(

ln
T

s

)ϑ−1
g(s, x(s)),H Dϑx(s))

s
ds.

Clearly, the fixed point of operator H is solution of problem (1.1)–(1.2). Let
x1, x2 ∈ C([b,T],R). Then

(Hx1)(t) − (Hx2)(t) =
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 f(s) − h(s)

s
ds

+









(

ln t
s

)ϑ−1

Γ(ϑ)
[

(

ln T

s

)ϑ−1
− λN1

]









×
[

λ

∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 f(r) − h(r)

r
drds
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−
∫ T

b

(

ln
T

b

)ϑ−1
f(s) − h(s)

s
ds

]

,

where f(s), h(s), f(r), h(r) ∈ C([b,T],R) are such that

f(s) = f(s, x1(s), f(s)), f(r) = f(r, x2(r), f(r)),

h(s) = h(s, x1(s), h(s)), h(r) = h(r, x2(r), h(r)).

Now,

|(Hx1)(t) − (Hx2)(t)| ≤
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 |f(s) − h(s)|

s
ds

+









(

ln t
s

)ϑ−1

Γ(ϑ)
∣

∣

∣

∣

(

ln T

s

)ϑ−1
− λN1

∣

∣

∣

∣









×
[

|λ|
∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 |f(r) − h(r)|

r
drds

−
∫ T

b

(

ln
T

b

)ϑ−1
|f(s) − h(s)|

s
ds

]

,(3.2)

and, by Assumption 3.2, we have

|(f(s) − h(s))| = |g(s, x1(s), f(s)) − g(s, x2(s), h(s))|,

|(f(s) − h(s))| ≤ Kg|x1(s) − x2(s)| + Lg|x1(s) − x2(s)| ≤
Kg

1 − Lg

|x1(s) − x2(s)|,

|(f(s) − h(s))| ≤
Kg

1 − Lg

|x1(s) − x2(s)|.

Similary,

|(f(r) − h(r))| ≤
Kg

1 − Lg

|x1(r) − x2(r)|.

The equation (3.2) implies

|(Hx1)(t) − (Hx2)(t)| ≤
1

Γ(ϑ + 1)

(

Kg

1 − Lg

)

||x1 − x2||

(

ln
T

b

)ϑ

+

(

ln T

b

)2ϑ−1

Γ(ϑ + 1)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

×

(

(|λ|(σ − b) − 1)
(

Kg

1 − Lg

)

)

||x1 − x2||
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≤
(

1

Γ(ϑ + 1)

(

ln
T

b

)ϑ

+

(

ln T

b

)2ϑ−1

Γ(ϑ + 1)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

× (|λ|(σ − b) − 1)
)(

Kg

1 − Lg

)

||x1 − x2||∞.

Thus,

|(Hx1)(t) − (Hx2)(t)| ≤
(

1

Γ(ϑ + 1)

(

ln
T

b

)ϑ

+

(

ln T

b

)2ϑ−1

Γ(ϑ + 1)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

× (|λ|(σ − b) − 1)
(

Kg

1 − Lg

)

||x1 − x2||∞.

By (3.1), the operator H is continuous. Hence, by Banach’s contraction principle,
H has a unique fixed point which is a unique solution of the problem (1.1)–(1.2) on
J := [b,T]. �

Theorem 3.2. Assume that assumptions 3.1 and 3.2 hold. If






1

Γ(ϑ + 1)

(

ln
T

b

)ϑ

+

(

ln T

b

)ϑ+1

Γ(ϑ + 1)
∣

∣

∣

(

ln T

b

)

− λN2

∣

∣

∣

(|λ|(σ − b) − 1)







(

Kg

1 − Lg

)

< 1,

then there exists a unique solution for (1.3)–(1.4) on J := [b,T].

The proof of Theorem 3.2 is similar to the Theorem 3.1.

Theorem 3.3. Assume that assumptions 3.1 and 3.3 hold. Then there is at least one

solution for the problem (1.1)–(1.2) on J =: [b,T].

Proof. Step 1. Show that H maps bounded sets (balls) into bounded sets in
C([b,T],R).

For a positive number r1, let Br1
= {x ∈ C([b,T],R) : ||Z∗|| ≤ r1} be a bounded

ball in C([b,T],R), where

||Z∗|| = sup
t∈[b,T]

(||x|| + ||g||).

Then

|H(x)(t)| ≤
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 |g(s, x(s)),c Dϑx(s))|

s
ds +

(

ln t
b

)ϑ−1

Γ(ϑ)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

×
[

|λ|
∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 |g(r, x(r),c Dϑx(r))|

r
drds

−
∫ T

b

(

ln
T

s

)ϑ−1
|g(s, x(s)),c Dϑx(s))|

s
ds

]
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≤
1

Γ(ϑ)

∫ t

b

(

ln
t

s

)ϑ−1 ϕ(||Z∗||)||p||

s
ds +

(

ln t
b

)ϑ−1

Γ(ϑ)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

×

[

|λ|
∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 ϕ(||Z∗||)||p||

r
drds

−
∫ T

b

(

ln
T

s

)ϑ−1
ϕ(||Z∗||)||p||

s
ds



 ,

i.e.,

|H(x)(t)| ≤
(

1

Γ(ϑ + 1)

(

ln
T

s

)ϑ

+

(

ln T

b

)2ϑ−1

Γ(ϑ + 1)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

× (|λ|(σ − b) − 1)
)

ϕ(r)||p||.

Step 2. Show that H maps bounded sets (balls) into equicontinuous sets in C([b,T],R).
Let µ1, µ2 ∈ [b,T], µ1 < µ2. Then, we have

||H(x)(µ1) − H(x)(µ2)|| ≤
1

Γ(ϑ)

[ ∫ µ1

b

[

(

ln
µ2

r

)ϑ−1

−
(

ln
µ1

r

)ϑ−1
]

ϕ(||Z∗||)||p||

s
ds

+
∫ µ2

µ1

(

ln
µ2

s

)ϑ−1 ϕ(||Z∗||)||p||

s
ds

]

+

(

ln µ2

b

)ϑ−1
−
(

ln µ1

b

)ϑ−1

Γ(ϑ)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

×
[

|λ|
∫ σ

b

∫ s

b

(

ln
s

r

)ϑ−1 ϕ(||Z∗||)||p||

r
drds

−
∫ T

b

(

ln
T

s

)ϑ−1
ϕ(||Z∗||)||p||

s
ds

]

.

Obviously, the right-hand side of the above inequality tends to zero independently
of u, v ∈ Br1

as µ2 − µ1 → 0. As H satisfies the above assumptions, therefore, by
the Arzela-Ascoli theorem, it follows that H : C([b,T],R) → C([b,T],R) is completely
continuous. Let x be a solution. Then, for t ∈ [b,T] and following the similar
computations as in the first step, we have

|x(t)| =λ|H(x)(t)|

≤
(

1

Γ(ϑ + 1)

(

ln
T

s

)ϑ

+

(

lnT

b

)2ϑ−1

Γ(ϑ + 1)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

(|λ|(σ − b) − 1)
)
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× ϕ(||x||)||p||.

Consequently, we have

||x(t)||
(

1
Γ(ϑ+1)

(

ln T

s

)ϑ
+

(ln T

b )
2ϑ−1

Γ(ϑ+1)

∣

∣

∣(ln T

b )
ϑ−1

−λN1

∣

∣

∣

(|λ|(σ − b) − 1)
)

ϕ(||x||)||p||

≤ 1.

There exists M∗ such that ||x|| 6= M∗. Let us set

U = {x ∈ C([b,T],R) : ||x|| < M∗}.

Note that the operator H : U → C([b,T],R) is continuous and completely continuous.
From the choice of U, there is no x ∈ ∂U such that x = λHx for some 0 ≤ λ ≤ 1.
Consequently, by the nonlinear alternative of Lerary-Schauder type (Lemma 2.3), we
deduce that H has fixed point x ∈ U which is a solution of the problem (1.1)–(1.2). �

Theorem 3.4. Assume that assumptions 3.1 and 3.3 hold and there exists a constant

M∗ > 0, such that

M∗ >

(

1

Γ(ϑ + 1)

(

ln
T

s

)ϑ

+

(

ln T

b

)ϑ+1

Γ(ϑ + 1)
∣

∣

∣

(

ln T

b

)

− λN1

∣

∣

∣

(|λ|(σ − b) − 1)
)

||p||ϕ(||x||).

Then, there is at least one solution for the problem (1.3)–(1.4) on J =: [b,T].

The proof of Theorem 3.4 is similar to the Theorem 3.3.

4. Examples

In this section, some examples are introduced for Hadamard and Caputo-Hadamard
fractional derivatives of implicit fractional differential equations with integral boundary
conditions.

Example 4.1. Consider the implicit Hadamard FDE’s with three point integral bound-
ary conditions of the form

HD
10

7 x(t) =
|x|

(t + 6)2(|1 + |x| + |HD
10

7 x(t)|)
, 1 < ϑ ≤ 2,(4.1)

x(1) = 0, x(b) = λ

∫ σ

b
x(s)ds.(4.2)

Here ϑ = 10
7

,

g(t, x(t),H Dϑx(t)) =
|x|

(t + 6)2(|1 + |x| + |HD
10

7 x(t)|)
,
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σ = 3, λ = 5. Hence, the Assumption 3.2 holds, with Kg = Lg = 1
49

and we will check
that








1

Γ(ϑ + 1)

(

ln
T

b

)ϑ

+

(

ln T

b

)2ϑ−1

Γ(ϑ + 1)
∣

∣

∣

∣

(

ln T

b

)ϑ−1
− λN1

∣

∣

∣

∣

(|λ|(σ − b) − 1)









Kg

(1 − Lg)
< 1.

Thus, the Theorem 3.1 is satisfied and shows that the problem (4.1)–(4.2) has a unique
solution on J =: [b,T].

Example 4.2. Consider the implicit Caputo-Hadamard FDE’s with three point integral
boundary conditions of the form

CHD
10

7 x(t) =
|x|

(t + 6)2(|1 + |x| + |CHD
10

7 x(t)|)
, 1 < ϑ ≤ 2,(4.3)

x(1) = 0, x(b) = λ

∫ σ

b
x(s)ds.(4.4)

Here ϑ = 10
7

,

g(t, x(t),CH Dϑx(t)) =
|x|

(t + 6)2(|1 + |x| + |CHD
10

7 x(t)|)
,

σ = 3, λ = 5. Hence, the Assumption 3.2 holds, with Kg = Lg = 1
49

and we will check
that







1

Γ(ϑ + 1)

(

ln
T

b

)ϑ

+

(

ln T

b

)ϑ+1

Γ(ϑ + 1)
∣

∣

∣

(

ln T

b

)

− λN2

∣

∣

∣

(|λ|(σ − b) − 1)







Kg

(1 − Lg)
< 1.

Thus, the Theorem 3.2 is satisfied and shows that the problem (4.3)–(4.4) has a unique
solution on J =: [b,T].
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SERIES EXPANSION OF A COTANGENT SUM RELATED TO

THE ESTERMANN ZETA FUNCTION

MOULOUD GOUBI1

Abstract. In this paper, we study the cotangent sum c0

(

q

p

)

related to the Ester-

mann zeta function for the special case when the numerator is equal to 1 and get

two useful series expansions of c0

(

1

p

)

.

1. Introduction

For a positive integer p and q = 1, 2, . . . , p−1, such that (p, q) = 1, let the cotangent
sum (see [10])

c0

(

q

p

)

= −
p−1
∑

k=1

k

p
cot

πkq

p
.

c0

(

q

p

)

is the value at s = 0,

E0

(

0,
q

p

)

=
1

4
+
i

2
c0

(

q

p

)

of the Estermann zeta function

E0

(

s,
q

p

)

=
∑

k≥1

d(k)

ks
exp

(

2πikq

p

)

.

It is well-known that the sum c0

(

q

p

)

satisfies the reciprocity formula (see [2])

c0

(

q

p

)

+
p

q
c0

(

p

q

)

− 1

πq
=
i

2
ψ0

(

q

p

)

.
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The Vasyunin cotangent sum (see [11])

V

(

q

p

)

=
p−1
∑

r=1

{

rq

p

}

cot

(

πr

p

)

= −c0

(

q

p

)

arises in the study of the Riemann zeta function by virtue of the formula (see [2, 9])

1

2π
√
pq

∫ +∞

−∞

∣

∣

∣

∣

ζ

(

1

2
+ it

)∣

∣

∣

∣

2
(

q

p

)it
dt

1
4

+ t2

=
log 2π − γ

2

(

1

p
+

1

q

)

+
p− q

2pq
log

q

p
− π

2pq

(

V

(

p

q

)

+ V

(

q

p

))

.

This formula is connected to the approach of Nyman, Beurling and Báez-Duarte to
the Riemann hypothesis (see [8]), which states that the Riemann hypothesis is true if
and only if lim

n→∞
dN = 0, where

d2
N = inf

AN

1

2π

∫ +∞

−∞

∣

∣

∣

∣

1 − ζA

(

1

2
+ it

)∣

∣

∣

∣

2 dt
1
4

+ t2
,

and the infimum is taken over all Dirichlet polynomials

AN(s) =
N
∑

n=1

an

ns
.

In a recent work with A. Bayad [7], we have proved that the sum V
(

q

p

)

satisfies the

reciprocity formula

(1.1) V

(

q

p

)

+ V

(

p

q

)

=
1

π

(

G (p, p) +G (q, q) +G (p, q) + (q − p) log
q

p

)

,

where

G (p, q) =
∑

k≥1

pq

k (k + 1)

{

k

p

}{

k

q

}

.

Thereafter the restriction of the relationship (1.1) to q = 1 gives

c0

(

1

p

)

= − 1

π
G (p, p) − (p− 1) log p.

Exactly our interest in this work is the case q = 1 in order to get two series

expansions of c0

(

1
p

)

. First we recall the different asymptotical writings of c0

(

1
p

)

in

the literature. In [10, Theorem 1.2, Theorrem 1.3] M. Th. Rassias proved that

c0

(

1

p

)

=
1

π
p log p− p

π
(log 2π − γ) + {O (log p) or O (1 )} .

In [9, Theorem 1.7] H. Maier and M. Th. Rassias provide the following improvement.

Let b, n ∈ N, b ≥ 6N , with N =
⌊

n
2

⌋

+1. There exist absolute real constants A1, A2 ≥ 1
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and absolute real constants El, l, with |El| ≤ (A1l)
2l, such that for each n ∈ N we

have

c0

(

1

p

)

=
1

π
p log p− p

π
(log 2π − γ) − 1

π
+

n
∑

l=1

Elp
−l +R⋆

n (p) ,

where |R⋆
n (p) | ≤ (A2n)4n

p−(n+1).

Only in [9, Theorem 1.9] H. Maier and M. Th. Rassias provide another improvement,

c0

(

1

p

)

=
1

π
p log p− p

π
(log 2π − γ) + C1p+ O (1) .

We draw attention that S. Bettin finds other reformulations of c0

(

1
p

)

inspired from

continued fraction theory (see [3]).
Finally from another point of view we show in [5] with A. Bayad and M. O. Hernane

that

c0

(

1

p

)

= − 1

π

(

log
2π

p
− γ

)

p+
1

π
+

π

36p

− 1

2

⌊N

2
⌋

∑

k=2

(−1)k 4kπ2k−1B2
2k

k (2k)!

(

1

p

)2k−1

+ O

(

1

pN

)

.

There is a misprint in the formula (1.22) Corollary 1.2 in [5] the correct one is in the
formula (1.21) Corollary 1.2.

Otherwise in the same paper [5], an integral representation of c0(
1
p
) is given by

(1.2) c0

(

1

p

)

=
1

π

∫ 1

0

(p− 2)xp − pxp−1 + px− p+ 2

(x− 1)2 (xp − 1)
dx.

In this work we prove that

(p− 2)xp − pxp−1 + px− p+ 2 = (x− 1)3
p−1
∑

r=1

(p− r − 1) rxr−1

and we get another formulation that is

c0

(

1

p

)

=
1

π

∫ 1

0

∑p−1
r=1 (p− r − 1) rxr−1

1 + x+ · · · + xp−1
dx.

Applying some techniques from the generating function theory [4] to previous integrals;

we find two series expansions of c0

(

1
p

)

, as they are well explained in the next section.

2. Series Expansion of c0

(

1
p

)

Let bk be the integer sequence defined by b0 = 1, b1 = 2 and the recursive formulae:

bk − 2bk−1 + bk−2 = 0, 2 ≤ k ≤ p− 1, k = p+ 1,

bp − 2bp−1 + bp−2 = 1
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and
bk − 2bk−1 + bk−2 − bk−p + 2bk−p−1 − bk−p−2 = 0, k ≥ p+ 2.

According to the terms bk we get the first series expansion in the following theorem.

Theorem 2.1.

(2.1) c0

(

1

p

)

=
1

π
p (p− 1) (p− 2)

∑

k≥0

bk

(k + 1) (k + p+ 1) (k + 2) (k + p)
.

For p ≥ 1 we define the arithmetic function ap in the form

ap(k) =











1, if p | k,
−1, if k ≡ 1 (mod p),
0, otherwise.

This function is not multiplicative. In general the arithmetical functions are defined
from the set of natural integers N into C. We can extend this definition to F (C,C); set
of functions from C to C. In that case the corresponding function is A : N → F (C,C)
with A(p) = ap. Furthermore, A (pq) = ±A(p)A(q) and |A| is multiplicative.

Let the function M (p, k) defined by

M (p, 0) =
1

2
p2 − 3

2
p+ 1

and

M (p, k) = (p− 1)
(

1

2
p+ k − 1

)

− k (p+ k − 1) (Hp+k−1 −Hk) , k ≥ 1,

where Hk is the Harmonic number

Hk =
k
∑

j=1

1

j
.

Following this function a second series expansion of c0

(

1
p

)

is given in the following

theorem.

Theorem 2.2.

(2.2) c0

(

1

p

)

=
1

π

∑

k≥0

ap(k)M (p, k) .

2.1. Proof of Theorem 2.1. We take inspiration from the theory of generating
functions [4,6], and prove that the sequence (bk) is generated by the rational function:

f (x) =
1

1 − 2x+ x2 − xp + 2xp+1 − xp+2
.

More precisely we get the following lemma.

Lemma 2.1.

(2.3)
1

1 − 2x+ x2 − xp + 2xp+1 − xp+2
=
∑

k≥0

bkx
k, |x| < 1.
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Proof. It is well known that

(2.4)
1

1 − x
=
∑

k≥0

xk, |x| < 1.

Since for 0 ≤ x < 1
0 < (x− 1)2 (1 − xp) < 1

and
(x− 1)2 (1 − xp) = 1 −

(

2x− x2 + xp − 2xp+1 + xp+2
)

,

then we have
0 < 2x− x2 + xp − 2xp+1 + xp+2 < 1.

Furthermore, f (x) is developable on entire series to get the result we have to take
the quantity 2x− x2 + xp − 2xp+1 + xp+2 instead of x in the last formula (2.4). Now,
writing

1

1 − 2x+ x2 − xp + 2xp+1 − xp+2
=
∑

k≥0

dkx
k

and then
(

1 − 2x+ x2 − xp + 2xp+1 − xp+2
)





∑

k≥0

dkx
k



 = 1.

To compute this we use the well known Cauchy product of two entire series




∑

k≥0

akx
k









∑

j≥0

djx
j



 =
∑

k≥0





k
∑

j=0

ajdk−j



xk,

which generates the product of a polynomial of degree n with an entire series that
also gives an entire series as follows

(

n
∑

k=0

akx
k

)





∑

j≥0

djx
j



 =
∑

k≥0





min{n,k}
∑

j=0

ajdk−j



xk.

We return to f(x) in writing

1 − 2x+ x2 − xp + 2xp+1 − xp+2 =
p+2
∑

k=0

akx
k,

with a0 = 1, a1 = −2, a2 = 1, ap = −1, ap+1 = 2, ap+2 = −1, and the others are
zero. We conclude that d0 = 1, d1 = 2. The formula

min{p+2,k}
∑

j=0

ajdk−j = 0

states that
dk − 2dk−1 + dk−2 = 0, 2 ≤ k ≤ p− 1, k = p+ 1,

dp − 2dp−1 + dp−2 = 1

and
dk − 2dk−1 + dk−2 − dk−p + 2dk−p−1 − dk−p−2 = 0, k ≥ p+ 2.
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Finally, we see that dk and bk are identical for every integer k ≥ 0. For more
information on this approach we refer to [6]. �

To get the result (2.1) of Theorem 2.1 we must substitute the expression (2.3) in
the identity (1.2) and one obtains

c0

(

1

p

)

= − 1

π

∑

k≥0

bk

∫ 1

0

(

(p− 2)xk+p − pxk+p−1 + pxk+1 + (2 − p)xk
)

dx.

Furthermore,

c0

(

1

p

)

= − 1

π

∑

k≥0

bk

(

p− 2

k + p+ 1
− p

k + p
+

p

k + 2
− p− 2

k + 1

)

.

Finally,

c0

(

1

p

)

=
1

π
p (p− 1) (p− 2)

∑

k≥0

bk

(k + 1) (k + p+ 1) (k + 2) (k + p)

and c0 (1) = c0

(

1
2

)

= 0 is compatible with the definition of c0.

Regarding the identity (2.3) Lemma 2.1 we remark that

1

(1 − x)2 (1 − xp)
=
∑

k≥0

bkx
k, |x| < 1.

Furthermore, for x = 1
2

we deduce that the coefficients bk satisfy the following
statements

∑

k≥0

bk

2k
=

2p+2

2p − 1
and lim

k→∞

bk

2k
= 0.

2.2. Proof of Theorem 2.2. First we began by proving another integral representa-

tion of c0

(

1
p

)

.

Lemma 2.2.

(2.5) c0

(

1

p

)

=
1

π

∫ 1

0

∑p−1
r=1 (p− r − 1) rxr−1

1 + x+ · · · + xp−1
dx.

Proof.

(x− 1)3
q−1
∑

r=1

(q − r − 1) rxr−1 =
q
∑

r=3

(q − r + 1) (r − 2)xr − 3
q−1
∑

r=2

(q − r) (r − 1)xr

+ 3
q−2
∑

r=1

(q − r − 1) rxr −
q−3
∑

r=0

(q − r − 2) (r + 1)xr.

It’s obvious to remark that

(q − r + 1) (r − 2) − 3 (q − r) (r − 1) + 3 (q − r − 1) r − (q − r − 2) (r + 1) = 0
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and the quantity

(t− 1)3
q−1
∑

r=1

(q − r − 1) rxr−1

is reduced to

(q − 2)xq + 2 (q − 3)xq−1 + 3(q − 4)xq−2 − 3(q − 2)xq−1 − 6(q − 3)xq−2 − 3(q − 2)x2

+ 3(q − 2)xq−2 + 3(q − 2)x+ 6(q − 3)x2 − q + 2 − 2(q − 3)x− 3(q − 4)x2.

After simplification we obtain

(t− 1)3
q−1
∑

r=1

(q − r − 1) rxr−1 = (q − 2)xq − qxq−1 + qx− q + 2. �

The Theorem 2.2 is immediate from the Lemma 2.2 in the following way. Since

1

1 + x+ · · · + xp−1
=

1 − x

1 − xp

and |x| < 1, then

1

1 + x+ · · · + xp−1
=

1 − x

1 − xp
=
∑

k≥0

(1 − x)xpk.

Furthermore,

1

1 + x+ · · · + xp−1
=
∑

k≥0

ap (k)xk

and we have

∑p−1
r=1 (p− r − 1) rxr−1

1 + x+ · · · + xp−1
=
∑

k≥0

p−1
∑

r=1

ap (k) (p− r − 1) rxk+r−1.

The passage to the integral inducts

c0

(

1

p

)

=
∑

k≥0

p−1
∑

r=1

ap (k)
(p− r − 1) r

k + r
.

But
p−1
∑

r=1

(p− r − 1) r

k + r
= (p− 1)

(

1

2
p+ k − 1

)

− k (p+ k − 1)
p+k−1
∑

r=k+1

1

r

and the result (2.2) is deduced.
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3. Connection to Digamma Function

We finish this work by revisiting the proof of the expression of c0

(

1
p

)

according to

the function digamma and Bernoulli polynomials in the work [1] of L. Báez Duarte
et al.

c0

(

1

p

)

=
2

π

p−1
∑

r=1

B1

(

r

p

)

ψ

(

r

p

)

,

where B1 is the reduced Bernoulli polynomial

B1(x) =







0, if x ∈ Z,

{x} − 1

2
, otherwise,

and ψ the digamma function defined by

ψ (z) = −γ − 1

z
+
∑

k≥1

(

1

k
− 1

k + z

)

.

Starting with the demonstration of a property of ψ that will be used later.

Proposition 3.1.

(3.1) ψ

(

r + 1

p

)

− ψ

(

r

p

)

= p

∫ 1

0

xr−1

1 + x+ · · · + xp−1
dx.

Proof. We quote from [5] the formula

ψ

(

r + 1

p

)

− ψ

(

r

p

)

= p
∑

k≥0

1

(pk + r + 1) (pk + r)
.

The general term 1
(pk+r+1)(pk+r)

can be written as following

1

(pk + r + 1) (pk + r)
=

1

pk + r
− 1

pk + r + 1
=
∫ 1

0

(

xpk+r−1 − xpk+r
)

dx

and the passage to the sum states that

∑

k≥0

1

(pk + r + 1) (pk + r)
=
∫ 1

0

xr−1 − xr

1 − xp
dx.

Finally,
∑

k≥0

1

(pk + r + 1) (pk + r)
=
∫ 1

0

xr−1

1 + x+ · · · + xp−1
dx

and we have (3.1). Proposition 3.1 follows. �

In [5], it is shown that

log p =
1

p

p−1
∑

r=1

r

(

ψ

(

r + 1

p

)

− ψ

(

r

p

))

.

This identity conducts to the following interesting lemma.



A COTANGENT SUM RELATED TO THE ESTERMANN ZETA FUNCTION 351

Lemma 3.1.

(3.2)
p
∑

r=1

ψ

(

r

p

)

= −γp− p log p.

Proof. Since

p−1
∑

r=1

r

(

ψ

(

r + 1

p

)

− ψ

(

r

p

))

= p log p,

then

−
p
∑

r=1

ψ

(

r

p

)

+ ψ (1) p = p log p.

Furthermore,
p
∑

r=1

ψ

(

r

p

)

= −γp− p log p. �

According to the identity (3.1) Proposition 3.1 and the integral representation (2.5)
we conclude that

c0

(

1

p

)

=
1

πp

p−1
∑

r=1

(p− r − 1) r

(

ψ

(

r + 1

p

)

− ψ

(

r

p

))

.

Furthermore combining this result with the identity (3.2) Lemma 3.1 we get

c0

(

1

p

)

= − 1

π
log p+

1

πp

p−1
∑

r=1

(p− r) r

(

ψ

(

r + 1

p

)

− ψ

(

r

p

))

and

c0

(

1

p

)

= − 1

π
log p− γ

p− 1

πp
+

1

πp

p−1
∑

r=1

(2r − p− 1)ψ

(

r

p

)

,

then

c0

(

1

p

)

=
1

πp

p−1
∑

r=1

(2r − p)ψ

(

r

p

)

.

But

2r − p = 2p

(

r

p
− 1

2

)

= 2pB1

(

r

p

)

,

which means that

c0

(

1

p

)

=
2

π

p
∑

r=1

B1

(

r

p

)

ψ

(

r

p

)

.
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FIXED POINT THEOREMS VIA WF -CONTRACTIONS

R. GUBRAN1, W. M. ALFAQIH2,3, AND M. IMDAD3

Abstract. In this paper, we introduce a new class of contractions which remains
a mixed type of weak and F -contractions but not any of them.

1. Introduction and Preliminaries

Investigating fixed point of a mapping continues to be an active topic of research in
nonlinear analysis wherein Banach contraction principle remains the main tool as it
offers an efficient and plain technique to compute such points. This vital principle has
undergone considerable extensions and generalizations in various ways concerning two
or three terms in the contraction inequality. One of the noteworthy generalization of
this principle involving three terms was due to Alber and Guerre-Delabriere [1] which
was refined later by Rhoades [17] and then generalized by Dutta and Choudhury [7].

Let Ψ be the set of all continuous and monotonically nondecreasing functions
ψ : [0,∞) → [0,∞) such that ψ(t) = 0 if and only if t = 0.

Theorem 1.1 ([7]). Let (X, d) be a complete metric space and f : X → X a weak

contractive mapping, i.e.,

ψ(d(fx, fy)) ≤ ψ(d(x, y)) − ϕ(d(x, y)),

for all x, y ∈ X, where ψ, ϕ ∈ Ψ. Then f has a unique fixed point.

Nowadays, there is a tradition of proving unified fixed point results employing
an auxiliary function general enough yielding several contractions and henceforth
several fixed point results in one go. In 1997, Popa [15] introduced the idea of implicit
function which was well followed by [2,3,9,10,16]. Khojasteh et al. [12] introduced the
idea of simulation function which is also designed to unify several contractions. For
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further work on simulation functions, one can consult [4,6,8,11,13,18] and some other
ones. One of the recent widely discussed generalizations of Banach principle (utilizing
auxiliary function) is due to Wardowski [19] wherein the author generalized Banach
contraction principle by introducing a new type of contractions called F -contraction
and proved that every such contraction defined on a complete metric space possesses
a unique fixed point.

Definition 1.1 ([19]). A self-mapping f on a metric space (X, d) is said to be an
F -contraction if there exists τ > 0 such that

(1.1) d(fx, fy) > 0 ⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)), for all x, y ∈ X,

where F : R+ → R is a mapping satisfying the following conditions:

F1: F is strictly increasing;
F2: for every sequence {sn} of positive real numbers,

lim
n→∞

sn = 0 ⇔ lim
n→∞

F (sn) = −∞;

F3: there exists k ∈ (0, 1) such that lim
s→0+

skF (s) = 0.

We denote by F the family of all functions F satisfying conditions (F1)-(F3). Some
natural and known members of F are F (s) = ln s, F (s) = s+ ln s and F (s) = −1√

s
.

2. WF -Contractions

Definition 2.1. A self-mapping f on a metric space (X, d) is said to be WF -

contraction if there exist two functions G, δ : [0,∞) → [0,∞) such that, for all
x, y ∈ X with d(fx, fy) > 0, we have

(2.1) δ(d(x, y)) +G(d(fx, fy)) ≤ G(d(x, y)),

where G and δ satisfy the following conditions:

G1: G is strictly increasing;
G2: δ(t) > 0 for all t > 0 and for every strictly decreasing sequence {sn} of

positive real numbers,

lim
n→∞

δ(sn) = 0 ⇒ lim
n→∞

sn = 0;

G3: there exists k ∈ (0, 1) such that lim
s→0+

skG(s) = 0.

In the sequel, G denotes the family of all functions G meeting the requirements
of Definition 2.1 while ∆ stands for the set of all functions δ enjoying (G2). Some
members of G are G(s) = ln(s+ 1), G(s) = s, G(s) = (s+ 1) + 1

(s+1)
and G(s) = n

√
s,

n ∈ N.

Example 2.1. Let X = [0,∞) and f a self-mapping on X given by

f(x) =











x+ 2

2
, for x ≤ 2,

2, for x ≥ 2.
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Then f satisfies (2.1) for G(s) = s+ 1
2(s+1)

and δ(t) = t
8
. Indeed, the following three

cases arise.
Case 1. If 2 ≤ x ≤ y, then d(fx, fy) = 0. However, inequality (2.1) becomes:

y − x

8
+

1

2
≤ (y − x) +

1

2(y − x+ 1)
,

which can be written as
1

2
≤ 7

8
z +

1

2(z + 1)
,(2.2)

where z = y − x ≥ 0. Observe that, the R.H.S of (2.2) is increasing mapping in z for
z ≥ 0 having the value 1

2
at z = 0.

Case 2. If 2 ≥ y ≥ x, then (2.1) becomes:

y − x

8
+
y − x

2
+

1

(y − x) + 2
≤ (y − x) +

1

2(y − x) + 2
,

which can be written as

0 ≤ 3

8
z +

1

2z + 2
− 1

z + 2
,(2.3)

where z = y − x ≥ 0. Here, also, the R.H.S of (2.3) is increasing mapping in z for
z ≥ 0 with the value 0 at z = 0.

Case 3. If x ≤ 2 ≤ y, then (2.1) becomes:

y − x

8
+

(

1 − x

2

)

+
1

2
(

(1 − x
2
) + 1

) ≤ (y − x) +
1

2((y − x) + 1)

or
(

1 − x

2

)

+
1

4 − x
≤ 7

8
(y − x) +

1

2(y − x) + 2

Let 2 − x = a and y − 2 = b. Then,

a

2
+

1

2 + a
≤ 7

8
(a+ b) +

1

2(a+ b) + 2
,

which is equivalent to
2b+ a

(2 + a)(1 + a+ b)
≤ 3a+ 7b

4
,

which is true if we expand it and remember that a, b ≥ 0.

The following two remarks highlight the relation between WF -contractions and the
weak and F -contractions.

Remark 2.1. Observe that ψ in Theorem 1.1 may not belong to G as it is not required
to be strictly increasing. On the other hand, f in Example 2.1 is a WF -contraction
for G(s) = s+ 1

2(s+1)
but not weak contraction as G(0) 6= 0. Consequently, the class

of WF -contractions and the class of weak contractions are independent.
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Remark 2.2. Notice that, G(s) = s, s ∈ [0,∞), is a member of G which is not in F.
On the other hand, F ∈ F given by F (s) = ln s is not in G (for δ ≡ τ).

Remark 2.3. Every WF -contraction mapping is a contractive mapping and hence
continuous. This fact follows from (G1) and (2.1), i.e.,

d(fx, fy) < d(x, y), for all x, y ∈ X, x 6= y.

Lemma 2.1. Every WF -contraction mapping has at most one fixed point.

Proof. If x, y ∈ X are two distinct fixed points of f , then (2.1) gives rise δ(d(x, y)) ≤ 0,
which is a contradiction as δ(t) > 0 for all t > 0. �

Lemma 2.2. Let (X, d) be a metric space space and {tn} a sequences of positive real

numbers such that

(2.4) δ(tn) +G(tn+1) ≤ G(tn),

for all n, where G ∈ G and δ ∈ ∆. Then the sequence {tn} is decreasing and
∑∞

i=0 δ(ti) < ∞.

Proof. As δ(t) > 0 for all t > 0, we have G(tn+1) < G(tn) for all n ∈ N. Since G is
strictly increasing, we get tn+1 < tn, for all n ∈ N. Suppose that lim

n→∞
tn = r for some

r ≥ 0. Then G(r) ≤ G(tn+1) for all n ≥ 0. In view of (2.4), we have

G(tn+1) ≤G(tn) − δ(tn)

≤G(tn−1) − [δ(tn) + δ(tn−1)]

...

≤G(t0) −
n

∑

i=0

δ(ti).(2.5)

Therefore,
∑n

i=0 δ(ti) ≤ G(t0) for all n ≥ 0. �

Now, we are equipped to state and prove our main result.

Theorem 2.1. Let (X, d) be a complete metric space and f : X → X a WF -

contraction for some G ∈ G and δ ∈ ∆. Then f has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary and define a sequence {xn} in X by xn+1 := fxn for
all n ∈ N0 := N ∪ {0}. Notice that, if xn = xn+1 for some n ∈ N0, then xn is the
required fixed point and we are done. Henceforth, we assume that such equality does
not occur for all n ∈ N0. Denote tn = d(xn, xn+1). On setting x = xn and y = xn+1

in (2.1), we have

(2.6) δ(tn) +G(tn+1) ≤ G(tn).

In view of Lemma 2.2,
∑∞

i=0 δ(ti) < ∞ so that lim
n→∞

δ(tn) = 0 and hence, in view

of (G2),

(2.7) lim
n→∞

tn = 0.
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We assert that {xn} is a Cauchy sequence. From (G3), there is k ∈ (0, 1) such that

(2.8) lim
n→∞

tknG(tn) = 0.

Let M = min δ(ti), 0 ≤ i ≤ n. In view of (2.5), we have

tkn+1

(

G(tn+1) −G(t0)
)

≤ tkn+1

([

G(t0) −
n

∑

i=0

δ(ti)
]

−G(t0)
)

= −tkn+1

n
∑

i=0

δ(ti)

≤ −ntkn+1M

≤ 0.

Letting n → ∞ (in view of (2.7) and (2.8)) gives rise

lim
n→∞

ntkn = 0.

Therefore, there exists n ∈ N such that ntkn ≤ 1 for all n ≥ N so that

(2.9) tn ≤ 1

n1/k
, for all n ≥ N.

Hence, for m,n ∈ N with m > n ≥ N , we have

d(xm, xn) ≤
m

∑

i=n

ti <
∞

∑

i=n

ti ≤
∞

∑

i=n

1

i1/k
< ∞.

Therefore, {xn} is a Cauchy sequence. In view of Remark 2.3 and the completeness
of X, we have

x = lim
n→∞

xn+1 = f( lim
n→∞

xn) = fx.

Now, Lemma 2.1 concludes the proof. �

Remark 2.4. f in Example 2.1 is a WF -contraction. As X is complete, f has a unique
fixed point (namely x = 2).

3. Consequences

Corollary 3.1 (Banach Contraction Principle). Every self-mapping f on a complete

metric space (X, d) has a unique fixed point if it satisfies the following:

(3.1) d(fx, fy) ≤ βd(x, y), for all x, y ∈ X, where β ∈ (0, 1).

Proof. The result is a direct consequence of Theorem 2.1 by taking G(s) = s and
δ(s) = λs where λ = 1 − β. �

Corollary 3.2. Every self-mapping f on a complete metric space (X, d) has a unique

fixed point if it satisfies the following: for all x, y ∈ X with d(fx, fy) > 0, we have

(3.2) d(fx, fy) ≤ e−τ [d(x, y) + 1] − 1, where τ > 0.

Proof. Follows from Theorem 2.1 by taking G(s) = ln(s+ 1) and δ(s) ≡ τ . �
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One can list further consequences by varying the functions G and δ suitably such
as in above two corollaries.

4. Application

Finally, we discuss the application of fixed point methods to the following two-point
boundary value problem of second order differential equation:

(4.1)







x′′(t) = u(t, x(t)), t ∈ J = [0, 1],

x(0) = x(1) = 0,

where u : J×R → R is a continuous function and the Green function G(t, s) associated
to (4.1) is given by

G(t, s) =







t(1 − s), 0 ≤ t < s ≤ 1,

s(1 − t), 0 ≤ s < t ≤ 1.

Let C(J) denotes the space of all continuous functions defined on J . We know that
(C(J), d) is a complete metric space (see [5, 14]) where

(4.2) d(x, y) = ‖u− v‖∞= max
t∈J

{

|x(t) − y(t)|e−τt
}

, τ > 0.

Now, we prove the following result on the existence and uniqueness solution of the
problem described by (4.1).

Theorem 4.1. Problem (4.1) has at least one solution x∗ ∈ C
2 provided the following

condition hold:

∣

∣

∣G(t, s)u(s, x(s)) −G(t, s)u(s, y(s))
∣

∣

∣ ≤ τe−2τ |x(s) − y(s)| − 1,

for all t, s ∈ J and x, y ∈ C(J) where τ is a given positive number.

Proof. Observe that x ∈ C
2 is a solution of the problem described by (4.1) if and only

if x ∈ C is a solution of the integral equation

(4.3) x(t) =
∫ 1

0
G(t, s)u(s, x(s))ds, for all t ∈ J.

Define a function f : C(J) → C(J) by

(4.4) fx(t) =
∫ 1

0
G(t, s)u(s, x(s))ds, for all t ∈ J.
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Clearly, if x ∈ C(J) is a fixed point of f , then x ∈ C(J) is a solution of (4.3) and
hence of (4.1). Let x, y ∈ C(J) then, by the hypothesis, we have

|fx(t) − fy(t)| =
∣

∣

∣

∣

∫ 1

0
G(t, s)u(s, x(s))ds−

∫ 1

0
G(t, s)u(s, y(s))ds

∣

∣

∣

∣

≤
∫ 1

0

∣

∣

∣G(t, s)u(s, x(s)) −G(t, s)u(s, y(s))
∣

∣

∣ds

≤
∫ 1

0

[

τe−2τ |y(s) − x(s)|e−τseτs − 1
]

ds

=
∫ 1

0
τe−2τeτs|y(s) − x(s)|e−τsds− 1

≤τe−2τd(x, y)
∫ 1

0
eτsds− 1

≤e−τd(x, y) − 1

≤e−τd(x, y) + e−τ − 1,

so that

|fx(t) − fy(t)|e−τt ≤ e−τd(x, y) + e−τ − 1.

Thus, d(fx, fy) ≤ e−τd(x, y) + e−τ − 1 so that condition (3.2) is satisfied. Now,
Corollary 3.2 ensures the existence of a unique solution of 4.1. �
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A CATEGORICAL CONNECTION BETWEEN CATEGORIES

(m,n)-HYPERRINGS AND (m,n)-RING VIA THE FUNDAMENTAL

RELATION Γ∗

AMENEH ASADI1, REZA AMERI2, AND MORTEZA NOROUZI3

Abstract. Let R be an (m, n)-hyperring. The Γ∗-relation on R in the sense of
Mirvakili and Davvaz [34] is the smallest strong compatible relation such that the
quotient R/Γ∗ is an (m, n)-ring. We use Γ∗-relation to define a fundamental functor,
F from the category of (m, n)-hyperrings to the category of (m, n)-rings. Also, the
concept of a fundamental (m, n)-ring is introduced and it is shown that every (m, n)-
ring is isomorphic to R/Γ∗ for a nontrivial (m, n)-hyperring R. Moreover, the notions
of partitionable and quotientable are introduced and their mutual relationship is
investigated. A functor G from the category of classical (m, n)-rings to the category
of (m, n)-hyperrings is defined and a natural transformation between the functors
F and G is given.

1. Introduction

The notion of n-ary groups (also called n-group or multiary group) is a generalization
of that of groups. An n-ary group (G, f) is a pair of a setG and a map f : G×· · ·×G →
G, which is called an n-ary operation. The earliest work on these structures was done
in 1904 by Krasner [24] and in 1928 by Dörnte [22]. Such n-ary groups have many
applications to computer science, coding theory, topology, combinatorics and quantum
physic (see [18–21,36] and [38]). One of the applications is the entering into algebraic
hyperstructures theory defined by Marty in [30]. This work is initiated by Davvaz
and Vougiouklis [16] by defining n-ary hypergroups. By its generalization, (m,n)-
hyperrings and (m,n)-hypermodules were introduced and studied in different contexts.
Some of the studies can be seen in [2, 5, 11, 27–29,32,33] and [34].

Key words and phrases. (m, n)-rings, (m, n)-hyperrings, Γ∗-relation, category.
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On the other hand, fundamental relations are one of important concepts in alge-
braic hyperstructures theory which classical algebraic structures will be obtained from
algebraic hyperstructures by them. The relations have been studied and investigated
on hypergroups in [23] and [25], on hyperrings in [1, 13, 15] and [42], and on hyper-
modules in [3] and [4]. After defining n-ary hyperstructures, fundamental relations
were extended on them. This extension done on n-ary hypergroups in [12] and [16],
on (m,n)-hyperrings in [34] and (m,n)-hypermodules in [5]. The Γ∗-relation in the
sense of Mirvakili and Davvaz [34] is one of relations on an (m,n)-hyperring by which
an (m,n)-ring is induced via the quotient.

In this paper, in Section 2, we give some basic preliminaries about (m,n)-rings and
(m,n)-hyperrings. In Section 3, we define the concept of a fundamental (m,n)-ring and
prove that every (m,n)-ring is isomorphic to R/Γ∗ for a nontrivial (m,n)-hyperring R.
In Section 4, we define the notion of quotiontable and partitionable (m,n)-hyperrings
and study a relationship between them. Finally, in Section 5, we introduce the category
of (m,n)-hyperrings, denoted by (m,n) − Hr and investigate functorial connections
between the categories of (m,n)-hyperrings and (m,n)-rings via Γ∗-relation. Moreover,
a natural transformation between these functors is characterized.

2. (m,n)-Rings and (m,n)-Hyperrings

In this section we recall some definitions about (m,n)-rings and (m,n)-hyperrings
based on [9,16] and [34] for development of our paper.

Let H be a nonempty set. A mapping f : H × · · · ×H
︸ ︷︷ ︸

n

−→ H (P∗(H)), where

P∗(H) is the set of all nonempty subsets of H, is called an n-ary operation (hyperop-
eration). A pair (H, f) consisting of a set H and an n-ary operation (hyperoperation)
f on H is called an n-ary groupoid (hypergroupoid). Note that for abbreviation, the
sequence xi, xi+1, . . . , xj will be denoted by xji and for j < i, xji is the empty set. Also,

f(x1, . . . , xi, yi+1, . . . , yj, zj+1, . . . , zn) will be written as f(xi1, y
j
i+1, z

n
j+1). In the case

when yi+1 = · · · = yj = y the last expression will be written as f(xi1, y
(j−i), znj+1). If

f is an n-ary operation (hyperoperation) and t = l(n − 1) + 1 for some l ≥ 1, then
t-ary operation (hyperoperation) f

(l)
is defined by

f
(l)

(x
l(n−1)+1
1 ) = f(f(. . . , f(f

︸ ︷︷ ︸

l

(xn1 ), x2n−1
n+1 ), . . .), x

l(n−1)+1
(l−1)(n−1)+2).

An n-ary operation (hyperoperation) f is called associative, if

f
(

xi−1
1 , f

(

xn+i−1
i

)

, x2n−1
n+i

)

= f
(

xj−1
1 , f

(

xn+j−1
j

)

, x2n−1
n+j

)

,

holds, for every 1 ≤ i < j ≤ n and all x2n−1
1 ∈ H. An n-ary groupoid (hyper-

groupoid) with the associative n-ary operation (hyperoperation) is called an n-ary
semigroup (semihypergroup). An n-ary groupoid (hypergroupoid) (H, f) in which the
equation b = f(ai−1

1 , xi, a
n
i+1) (b ∈ f(ai−1

1 , xi, a
n
i+1)) has a solution xi ∈ H, for every

ai−1
1 , ani+1, b ∈ H and 1 ≤ i ≤ n, is called an n-ary quasigroup (quasihypergroup).
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If (H, f) is an n-ary semigroup (semihypergroup) and an n-ary quasigroup (quasi-
hypergroup), then (H, f) is called an n-ary group (hypergroup). An n-ary groupoid
(hypergroupoid) (H, f) is commutative, if for all σ ∈ Sn and for every an1 ∈ H, we
have f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)). If an1 ∈ H, then we denote (aσ(1), . . . , aσ(n))

by a
σ(n)
σ(1) .

Definition 2.1. Let (H, f) be an n-ary group (hypergroup). A non-empty subset B
of H is called an n-ary subgroup (subhypergroup) of (H, f), if f(xn1 ) ∈ B (f(xn1 ) ⊆ B)
for all xn1 ∈ B, and the equation b = f(bi−1

1 , xi, b
n
i+1) (b ∈ f(bi−1

1 , xi, b
n
i+1)) has a

solution xi ∈ B, for all bi−1
1 , bni+1, b ∈ B and 1 ≤ i ≤ n.

Definition 2.2. An (m,n)-ring (hyperring) is an algebraic structure (R, f, g), which
satisfies the following axioms:

(1) (R, f) is an m-ary group (hypergroup);
(2) (R, g) is an n-ary semigroup (semihypergroup);
(3) the n-ary operation (hyperoperation) g is distributive with respect to the m-ary

operation (hyperoperation) f , i.e., for all ai−1
1 , ani+1, x

m
1 ∈ R, and 1 ≤ i ≤ n

g(ai−1
1 , f(xm1 ), ani+1) = f(g(ai−1

1 , x1, a
n
i+1), . . . , g(a

i−1
1 , xm, a

n
i+1)).

We say that an (m,n)-ring (hyperring) (R, f, g) has an identity element if there exists
1 ∈ R such that x = g(1(i), x, 1(n−i−1)) ({x} = g(1(i), x, 1(n−i−1))) for all 0 ≤ i ≤ n− 1.

Example 2.1. Consider the ring (Z,+, ·) where “+” and “ ·” are ordinary addition and
multiplication on the set of all integers. It is easy to see that Z with f(x, y, z) = x+y+z
and g(x, y, z) = x·y ·z for all x, y, z ∈ Z will give rise to a (3, 3)-ring. Now, consider the
following 3-ary hyperoperations on Z h(x, y, z) = {x, y, z, x+ y, x+ z, y+ z, x+ y+ z}
and k(x, y, z) = {x · y · z}. Then, it can be seen that (Z, h, k) is a (3, 3)-hyperring.

Let (R1, f1, g1) and (R2, f2, g2) be two (m,n)-hyperrings. The mapping ϕ : R1 → R2

is called a homomorphism from R1 to R2, if for all xm1 , y
n
1 ∈ R1 we have

ϕ(f1(x
m
1 )) = f2(ϕ(x1), . . . , ϕ(xm)) and ϕ(g1(y

n
1 )) = g2(ϕ(y1), . . . , ϕ(yn)).

3. Fundamental (m,n)-Rings

Let (R, f, g) be an (m,n)-hyperring and ρ be an equivalence relation on R. If A
and B are non-empty subsets of R, then Aρ̄B means that for every a ∈ A, there exists
b ∈ B such that aρb and for every ν ∈ B, there exists u ∈ A that uρν. We write
A ¯̄ρB if aρb for any a ∈ A and b ∈ B. The equivalence relation ρ is called compatible
on (R, f), if aiρbi for all 1 ≤ i ≤ m implies that f(am1 )ρ̄f(bm1 ). Moreover, it is called
strongly compatible if f(am1 )¯̄ρf(bm1 ) when aiρbi for 1 ≤ i ≤ m.

Now assume that R
ρ

= {ρ(r) | r ∈ R}, be the set of all equivalence classes of R with

respect to ρ. Define m-ary and n-ary hyperoperations f/ρ and g/ρ on R
ρ

as follow:

f/ρ(ρ(a)m1 ) = {ρ(c) | c ∈ f(ρ(a)m1 )} and g/ρ(ρ(a)n1 ) = {ρ(c) | c ∈ g(ρ(a)n1 )}.
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Based on [16], in [34], it was shown that (R/ρ, f/ρ, g/ρ) is an (m,n)-hyperring (ring)
if and only if ρ is (strongly) compatible relation on R. Mirvakili and Davvaz in [34]
introduced the strongly compatible relation Γ∗ on (m,n)-hyperrings as follows.

Let (R, f, g) be an (m,n)-hyperring. For every k ∈ N and ls1 ∈ N, where s =
k(m− 1) + 1, the relation Γk;ls1

is defined by

xΓk;ls1
y ⇔ {x, y} ⊆ f(k)(u1, . . . , us),

where ui = g(li)(x
iti
i1 ) for some xitii1 ∈ R with ti = li(n − 1) + 1 such that 1 ≤ i ≤ s.

Now, set Γk =
⋃

ls1∈N

Γk;ls1
and Γ =

⋃

k∈N∗

Γk. The results [34, Theorem 5.5 and 5.6] yield

that the transitive closure of Γ, Γ∗, is a strongly compatible relation on R that is the
smallest equivalence relation such that (R/Γ∗, f/Γ∗, g/Γ∗) is an (m,n)-ring. Hence,
Γ∗ is said to be a fundamental relation on R.

Lemma 3.1. Let (R, f, g), (S, f ′, g′) be (m,n)-hyperrings and h : R → S be a homo-

morphism. Then, for all x, y ∈ R,

(i) xΓ∗y implies h(x)Γ∗h(y);
(ii) if h is an injection, then h(x)Γ∗h(y) implies that xΓ∗y;

(iii) if h is a bijection, then xΓ∗y if and only if h(x)Γ∗h(y);
(iv) if h is a bijection, then h(Γ∗(x)) = Γ∗(h(x)).

Proof. (i) Let xΓ∗y. Then there exist k, ls1 ∈ N and xitii1 ∈ R, where ti = li(n− 1) + 1
and 1 ≤ i ≤ s such that {x, y} ⊆ f(k)(u1, . . . , us), where ui = g(li)(x

iti
i1 ). Since h is

homomorphism, we have

{h(x), h(y)} = h{x, y} ⊆ h
(

f(k)(u1, . . . , us)
)

= f ′
(k)

(

h(u1, . . . , us)
)

= f ′
(k)

(

h
(

g(l1)(x
1t1
11 ), . . . , g(ls)(x

sts
s1 )

))

= f ′
(k)

(

g′
(l1)

(

h(x)1t1
11

)

, . . . , g′
(ls)

(

h(x)stss1
))

.

So, h(x)Γ∗h(y).
(ii) For x, y ∈ R, since h(x)Γ∗h(y), there exist k, ls1 ∈ N and zitii1 ∈ S, where

ti = li(n − 1) + 1 and 1 ≤ i ≤ s such that {h(x), h(y)} ⊆ f ′
(k)(u1, . . . , us) for

ui = g′
(li)

(zitii1 ). Now, for an injection h : (R, f, g) → (S, f ′, g′) we have

{x, y} =
{

h−1(h(x)), h−1(h(y))
}

= h−1
(

{h(x), h(y)}
)

⊆ h−1
(

f ′
(k)(u1, . . . , us)

)

= f(k)

(

g(l1)

(

h−1(z)1t1
11

)

, . . . , g(ls)

(

h−1(z)stss1
))

.
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So, xΓ∗y.
(iii) It is clear by (i) and (ii).
(iv) Let x ∈ R. By (iii), we have

h(Γ∗(x)) =
⋃

y∈Γ∗(x)

h(y) =
⋃

xΓ∗y

h(y) =
⋃

h(x)Γ∗h(y)

h(y) = Γ∗(h(x)). �

Corollary 3.1. Let (R1, f1, g1) and (R2, f2, g2) be isomorphic (m,n)-hyperrings. Then

R1/Γ
∗ ∼= R2/Γ

∗.

Proof. Let h : (R1, f1, g1) → (R2, f2, g2) be an isomorphism. Define η : R1/Γ
∗ →

R2/Γ
∗ by η

(

Γ∗(x)
)

= Γ∗
(

h(x)
)

. By Lemma 3.1, η is well-defined, one to one and

onto. Hence, η is an isomorphism, since h is a homomorphism. �

Definition 3.1. An (m,n)-ring (R, f, g) is called a fundamental (m,n)-ring if there
exists a non-trivial (m,n)-hyperring, say (S, f ′, g′), such that (S/Γ∗, f ′/Γ∗, g′/Γ∗) ∼=
(R, f, g).

Remark 3.1. It is needed to explain what a non-trivial (m,n)-hyperring is. An (m,n)-
hyperring (S, f ′, g′) is said to be trivial if |f ′(xm1 )| = |g′(yn1 )| = 1 for all xm1 , y

n
1 ∈ S.

For example, let (R, f, g) be an (m,n)-ring. Define m-ary and n-ary hyperoperations
f ′(xm1 ) = {f(xm1 )} and g′(yn1 ) = {g(yn1 )} for all xm1 , y

n
1 ∈ R. Then (R, f ′, g′) is a trivial

(m,n)-hyperring.

Lemma 3.2. Let (R, f, g) be an (m,n)-ring with identity, then for any (m,n)-ring

S with identity, there exist m-ary and n-ary hyperoperations “f ′” and “g′” on R × S
such that (R × S, f ′, g′) is an (m,n)-hyperring.

Proof. Let S be a non-zero (m,n)-ring with identity 1. Define m-ary and n-ary
hyperoperations “f ′” and “g′” on R × S as follows:

f ′

(

(r1, s1), . . . , (rm, sm)
)

=
{

(f(rm1 ), s1), . . . , (f(rm1 ), sm)
}

,

g′

(

(r1, s1), . . . , (rn, sn)
)

=
{

(g(rn1 ), s1), . . . , (g(r
n
1 ), sn)

}

.

(For abbreviation, f ′
(

(r1, s1), . . . , (rm, sm)
)

denoted by f ′
(

(r, s)m1
)

, similarly this is

for g′). Clearly “f ′” and “g′” are associative and “g′” is distributive with respect to
“f ′”. Also, we have

f ′
(

(r, s)i−1
1 , R × S, (r, s)mi+1

)

=
⋃

(r′,s′)∈R×S

f ′
(

(r, s)i−1
1 , (r′, s′), (r, s)mi+1

)

=
⋃

(r′,s′)∈R×S

{(
f(ri−1

1 , r′, rmi+1), s1
)
, . . . ,

(
f(ri−1

1 , r′, rmi+1), si−1
)
,

(
f(ri−1

1 , r′, rmi+1), s′
)
,
(
f(ri−1

1 , r′, rmi+1), si+1
)
,

. . . ,
(
f(ri−1

1 , r′, rmi+1), sm
)}

=R × S.



366 A. ASADI, R. AMERI, AND M. NOROUZI

Thus, (R × S, f ′, g′) is an (m,n)-hyperring. �

The (m,n)-hyperring (R × S, f ′, g′) is called an associated (m,n)-hyperring to R
(via S) and denoted by RS.

Theorem 3.1. Let (R, f, g) and (T, f, g) be isomorphic (m,n)-rings with identity.

Then, for any (m,n)-ring S with identity, RS and TS are isomorphic (m,n)-hyperrings.

Proof. Let h : R → T be an homomorphism. Define ω : (R×S, f ′, g′) → (T ×S, f ′, g′)
by ω(r, s) = (h(r), s) for all (r, s) ∈ R × S. Since h is an isomorphism, it is easy to
see that ω is well-defined and a bijection. Now we verify that ω is a homomorphism.

ω
(

f ′
(

(r, s)m1
))

= ω
({

(f(rm1 ), s1), . . . , (f(rm1 ), sm)
})

=
{

ω
(

f(rm1 ), s1

)

, . . . , ω
(

f(rm1 ), sm
)}

=
{(

h(f(rm1 )), s1

)

, . . . ,
(

h(f(rm1 )), sm
)}

=
{(

f(h(r)m1 ), s1

)

, . . . ,
(

f(h(r)m1 ), sm
)}

= f ′

(

(h(r), s)m1

)

= f ′

(

ω
(

(r, s)m1
))

.

Similarly, ω
(

g′
(

(r, s)n1
))

= g′

(

ω
(

(r, s)n1
))

. Thus, (R× S, f ′, g′) ∼= (T × S, f ′, g′). �

Theorem 3.2. Every (m,n)-ring is a fundamental (m,n)-ring.

Proof. Let (R, f, g) be an (m,n)-ring. By Lemma 3.2, for any (m,n)-ring S, (R ×
S, f ′, g′) is an (m,n)-hyperring. For any r ∈ R and (s, s′) ∈ S × S we have
{(r, s), (r, s′)} = g′((r, s), (1, s′)n−1

1 ), so (r, s)Γ∗(r, s′). Hence, (r, s′) ∈ Γ∗(r, s). Thus,
Γ∗(r, s) = {(r, x) | x ∈ S}. Define the mapping θ : (R×S/Γ∗, f ′/Γ∗, g′/Γ∗) → (R, f, g)
by θ(Γ∗(r, s)) = r. It is clear that θ is well-defined and one to one, since for any
(r, s), (r′, s′) ∈ R × S, Γ∗(r, s) = Γ∗(r′, s′) if and only if (r′, s′) ∈ Γ∗(r, s) if and
only if r = r′ if and only if θ(Γ∗(r, s)) = θ(Γ∗(r′, s′)). θ is a homomorphism. Let
(r, s)m1 , (r, s)n1 ∈ R × S. We have

θ
(

f ′/Γ∗(Γ∗(r, s)m1 )
)

=θ
(

Γ∗(f(rm1 ), s1)
)

= · · · = θ
(

Γ∗(f(rm1 ), sm)
)

= f(rm1 )

=f
(

θ(Γ∗(r, s))m1

)

θ
(

g′/Γ∗(Γ∗(r, s)n1 )
)

= θ
(

Γ∗(g(rn1 ), s1)
)

= · · · = θ
(

Γ∗(g(rn1 ), sn)
)

= g(rn1 ) = g
(

θ(Γ∗(r, s))n1

)

.

Since for any r ∈ R, θ(Γ∗(r, 0)) = r, then θ is onto. Thus, θ is an isomorphism. �
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Theorem 3.3. Let (R, f, g) be an (m,n)-hyperring. Then there exist an (m,n)-ring

S, m-ary and n-ary hyperoperations f ′ and g′ on R × S such that (R, f, g) can be

embedded in (R × S, f ′, g′).

Proof. Let (R, f, g) be an (m,n)-hyperring and set S = (R/Γ∗, f/Γ∗, g/Γ∗). Define
m-ary and n-ary hyperoperations f ′ and g′ on R ×R/Γ∗, as following:

f ′

(

(r,Γ∗(v))m1

)

=
(

f(rm1 ),Γ∗(f(vm1 ))
)

,

g′

(

(r,Γ∗(v))n1

)

=
(

g(rn1 ),Γ∗(g(vn1 ))
)

.

Let (r,Γ∗(v))m1 = (r′,Γ∗(v′))m1 , then rj = r′
j and Γ∗(vj) = Γ∗(v′

j) for all 1 ≤ j ≤ m.

Since Γ∗(vj) = Γ∗(v′
j) for all j = 1, . . . ,m, there exist kj, l

sj

1j
∈ N and x

ijtij

ij1 ∈ R,

where tij = lij (n− 1) + 1 and ij = 1j, . . . , sj, such that {vj, v
′
j} ⊆ f(kj)(u1j

, . . . , usj
),

where uij = g(lj)(x
ijtij

ij1 ). Hence,

{f(vm1 ), f(v′m
1 )} ⊆

{

f(vm1 ), f(v1, v
′m
2 ), f(v′

1, v2, v
′m
3 ), . . . , f(v′m

1 )
}

⊆ f
(

f(k1)(u11 , . . . , us1), . . . , f(km)(u1m
, . . . , usm

)
)

and

{g(vn1 ), g(v′n
1 )} ⊆

{

g(vn1 ), g(v1, v
′n
2 ), g(v′

1, v2, v
′n
3 ), . . . , g(v′n

1 )
}

⊆ g
(

f(k1)(u11 , . . . , us1), . . . , f(kn)(u1n
, . . . , usn

)
)

.

Thus, Γ∗(f(vm1 )) = Γ∗(f(v′m
1 )) and Γ∗(g(vn1 )) = Γ∗(g(v′n

1 )). So, (f(rm1 ),Γ∗(f(vm1 ) =
f(r′m

1 ),Γ∗(f(v′m
1 )) and (g(rn1 ),Γ∗(g(vn1 )) = (g(r′n

1 ),Γ∗(g(v′n
1 ))). Therefore, the m-ary

and n-ary hyperoperations f ′ and g′ are well-defined. Now, we show that (R×S, f ′, g′)
is an (m,n)-hyperring. Let (r,Γ∗(v))m1 ∈ R×S. Then for any i, j ∈ {1, · · · ,m}, since
“f” is associative, it follows that:

f ′

(

(r,Γ∗(v))i−1
1 , f ′((r,Γ∗(v))m+i−1

i ), (r,Γ∗(v))2m−1
m+i

)

=
(

f(ri−1
1 , f(rm+i−1

i ), r2m−1
m+i ),Γ∗(f(vi−1

1 , f(vm+i−1
i ), v2m−1

m+i )
)

=
(

f(rj−1
1 , f(rm+j−1

j ), r2m−1
m+j ),Γ∗(f(vj−1

1 , f(vm+j−1
j ), v2m−1

m+j )
)

=f ′

(

(r,Γ∗(v))j−1
1 , f ′((r,Γ∗(v))m+j−1

j ), (r,Γ∗(v))2m−1
m+j

)

.

So, f ′ is associative. Similarly, it can be shown that g′ is associative on R×S. Now, we
verify the reproduction property. Since f(ri−1

1 , R, rmi+1) = R and R/Γ∗ =
⋃

t∈R Γ∗(t),
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so

f ′

(

(r,Γ∗(v))i1, R × S, (r,Γ∗(v))mi+1

)

=
⋃

(r′,Γ∗(v′))∈R×S

f ′

(

(r,Γ∗(v))i1, (r
′,Γ∗(v′)), (r,Γ∗(v))mi+1

)

=
⋃

(r′,Γ∗(v′))∈R×S

(

f(ri1, r
′, rmi+1),Γ

∗(f(vi1, s
′, vmi+1))

)

= R × Γ∗(R) = R × S.

To investigate distributivity law, let (r′,Γ∗(v′))m1 ∈ R× S, (r,Γ∗(v))n1 ∈ R× S. Since
g is distributive with respect to f , then

g′

(

(r,Γ∗(v))i−1
1 , f ′((r′,Γ∗(v′))m1 ), (r,Γ∗(v))ni+1

)

=
(

g(ri−1
1 , f(r′m

1 ), rni+1),Γ
∗(g(vi−1

1 , f(v′m
1 ), vni+1))

)

=
(

f(g(ri−1
1 , r′

1, r
n
i+1), . . . , g(r

i−1
1 , r′

m, r
n
i+1)),

Γ∗(f(g(vi−1
1 , v′

1, v
n
i+1), · · · , g(vi−1

1 , v′
m, v

n
i+1)))

)

=f ′

(

g′((r,Γ∗(v))i−1
1 , (r′,Γ∗(v′))1, (r,Γ

∗(v))ni+1), . . . ,

g′((r,Γ∗(v))i−1
1 , (r′,Γ∗(v′))m, (r,Γ

∗(v))ni+1)
)

.

So, (R × S, f ′, g′) is an (m,n)-hyperring. Now, define the mapping θ : (R, f, g) →
(R × S, f ′, g′), by θ(r) = (r,Γ∗(r)). Let r, r′ ∈ R. Then r = r′ if and only if
(r,Γ∗(r)) = (r′,Γ∗(r′)) if and only if θ(r) = θ(r′). Let rm1 , r

n
1 ∈ R. Then

θ(f(rm1 )) = (f(rm1 ),Γ∗(f(rm1 )) = f ′((r,Γ∗(r))m1 ) = f ′(θ(r)m1 )

and
θ(g(rn1 )) = (g(rn1 ),Γ∗(g(rn1 )) = g′((r,Γ∗(r))n1 ) = g′(θ(r)n1 ),

where θ(r)k1 means θ(r1), . . . , θ(rk) for k = m or k = n. Thus, (R, f, g) can be
embedded in (R × S, f ′, g′). �

Theorem 3.4. Let R and S be two sets such that |R| = |S|. If (R, f, g) is an (m,n)-
hyperring, then there exist m-ary and n-ary hyperoperations “f ′” and “g′” on “S”,

such that (R, f, g) and (S, f ′, g′) are isomorphic (m,n)-hyperrings

Proof. Since |R| = |S|, then there exists a bijection φ : R → S. For any sm1 , s
n
1 ∈ S,

define the m-ary and n-ary hyperoperations “f ′” and “g′” as follows:

f ′(sm1 ) = φ(f(rm1 )), g′(sn1 ) = φ(g(rn1 )).

First we prove that f ′ and g′ are well-defined. Let si = s′
i, where si = φ(ri), s

′
i = φ(r′

i)
and ri, r

′
i ∈ R for i = 1, . . . ,m. So, si = s′

i implies that φ(ri) = φ(r′
i). Since φ is
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bijection, then ri = r′
i for i = 1, . . . ,m and so f ′(sm1 ) = φ(f(rm1 )) = φ(f(r′m

1 )) =
f ′(s′m

1 ), similarly g′(sn1 ) = g′(s′n
1 ). Moreover, since

φ(f(rm1 )) = f ′(φ(r)m1 ),(3.1)

φ(g(rn1 )) = g′(φ(r)n1 ),

φ is a homomorphism. Now, it is enough to show that (S, f ′, g′) is an (m,n)-hyperring.
Define the map θ : (R, f, g) → (S, f ′, g′) by θ(x) = φ(x). Since φ is bijection then θ
is a bijection. Now we show that θ is a homomorphism. Let rm1 ∈ R. Then, by (3.1),
θ(f(rm1 )) = φ(f(rm1 )) = f ′(φ(r)m1 ) = f ′(θ(r)m1 ) and θ(g(rn1 )) = φ(g(rn1 )) = g′(φ(r)n1 ) =
g′(θ(r)n1 ). Thus, θ is an isomorphism and so (S, f ′, g′) is an (m,n)-hyperring. �

Corollary 3.2. Let (R, f, g) be an (m,n)-ring of infinite order. Then there exist m-

ary and n-ary hyperoperations “f ′” and “g′” on R such that (R, f, g) is a fundamental

(m,n)-ring of itself, i.e., (R/Γ∗, f ′/Γ∗, g′/Γ∗) ∼= (R, f, g).

Proof. For a given (m,n)-ring (R, f, g), consider the smallest associated (m,n)-

hyperring (R × Z2, f
′, g′). By Theorem 3.2,

(
(R×Z2,f

′,g′)
Γ∗

, f ′/Γ∗, g′/Γ∗
)

∼= (R, f, g).

Since R is infinite set, then |R| = |R × Z2| and, by Theorem 3.4, there exist m-
ary and n-ary hyperoperations “f ′′” and “g′′” on (R, f, g), such that (R, f ′′, g′′) and
(R × Z2, f

′, g′), are isomorphic (m,n)-hyperrings. Now, we have

(R, f, g) ∼=

(

(R × Z2, f
′, g′)

Γ∗
, f ′/Γ∗, g′/Γ∗

)

∼=

(

(R, f ′′, g′′)

Γ∗
, f ′/Γ∗, g′/Γ∗

)

.

Hence, (R, f, g) is a fundamental (m,n)-ring of itself. �

We recall the relation βf =
⋃

k≥1 βk on an n-ary semihypergroup (R, f) defined by
Davvaz and Vougiouklis in [16], where xβky if and only if there exist t = k(m− 1) + 1
and zt1 ∈ R such that {x, y} ⊆ f(k)(z

t
1). It is well known that βf is the smallest

strongly compatible equivalence relation on n-ary semihypergroup (R, f) such that
(R/βf , f/βf ) is an n-ary semigroup. Clearly, βf ⊆ Γ and so β∗

f ⊆ Γ∗.

Theorem 3.5. Every finite (m,n)-ring is not its fundamental (m,n)-ring.

Proof. Let (R, f, g) be a finite (m,n)-ring, |R| = n. If “f ′” and “g′”, are m-ary and
n-ary hyperoperations on R, such that (R, f, g) is an (m,n)-hyperring, then there
exist xm1 ∈ R such that |f ′(xm1 )| ≥ 2. Hence, there are a, b ∈ f(xm1 ). So aβfb and
then aΓb. Therefore, aΓ∗b and Γ∗(a) = Γ∗(b). Since R/Γ∗ = {Γ∗(t) | t ∈ R}, then
|R/Γ∗| < n. Thus, (R, f, g) ≇ (R/Γ∗, f ′/Γ∗, g′/Γ∗). �

4. Embeddable (m,n)-Hyperring

In this section we introduce the concepts of partitionable and quotientable (m,n)-
hyperrings and investigate the relation between them. Also, we give some results
concerning about these concepts.
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Definition 4.1. An (m,n)-hyperring (R, f1, g1) is said to be a partitionable (m,n)-
hyperring if there exists an (m,n)-ring (S, f, g), an equivalence relation ρ on (S, f, g),
non-trivial m-ary and n-ary hyperoperations f ′ and g′ such that (S/ρ, f ′, g′) ∼=
(R, f1, g1).

Theorem 4.1. Every (m,n)-hyperring is a partitionable (m,n)-hyperring.

Proof. Let (R, f, g) be an (m,n)-hyperring. Then we consider three cases.
Case 1. Let R be finite and |R| = n. Define on Z the equivalence relation ρ by

xρy ⇔ x ≡ y (mod n).

Clearly |R| = |Z/ρ|. So, by Theorem 3.4, there exist m-ary and n-ary hyperopera-
tions f ′ and g′ on Z/ρ, such that (Z/ρ, f ′, g′) is an (m,n)-hyperring and (R, f, g) ∼=
(Z/ρ, f ′, g′).

Case 2. Let R be infinite countable. Then |R| = |Z|. Let A = {Ai}i∈Z be a
partition of Z such that there exists an index j ∈ Z such that |Aj| = 2 and for any
j 6= i ∈ Z, |Ai| = 1. Clearly, the binary relation ρ on Z, by

rρs ⇔ (∃k ∈ Z) s.t {r, s} ⊆ Ak

is an equivalence relation on Z and clearly |Z| = |A| =
∣
∣
∣
Z

ρ

∣
∣
∣. Thus, by Theorem

3.4, there exist m-ary and n-ary hyperoperations “f ′” and “g′” on Z/ρ, such that
(Z/ρ, f ′, g′) is an (m,n)-hyperring and (R, f1, g1) ∼= (Z/ρ, f ′, g′).

Case 3. Let R be uncountable. Then |R| = |R| and similarly as in case 2 it can be
concluded that R is a partitionable (m,n)-hyperring. �

Let (R, f, g) be an (m,n)-ring. We say that (N, g) is a normal subgroup of n-

semigroup (R, g), if g(ai−1
1 , N, ani+1) = g(a

σ(i−1)
σ(1) , N, a

σ(n)
σ(i+1)), for all an1 ∈ R, σ ∈ Sn and

1 ≤ i ≤ n. Also, for a normal subgroup N of (S, g), we set

S/N = {g(xi−1
1 , N, xni+1) | xi ∈ S, 1 ≤ i ≤ n}.

Definition 4.2. An (m,n)-hyperring (R, f, g) is called a quotientable (m,n)-hype-
rring if there exist an (m,n)-ring (S, h, k), non-trivialm-ary and n-ary hyperoperations
f ′ and g′ such that (S/N, f ′, g′) ∼= (R, f, g), where N is a normal subgroup of the
n-semigroup of (S, k).

Theorem 4.2. Every (m,n)-hyperring is a quotientable (m,n)-hyperring.

Proof. Let (R, f, g) be an (m,n)-hyperring and consider the following cases.
Case 1. Let R be finite and |R| = n. Consider (Z∗

n = Zn \ {0̄},⊙) and set g(xn1 ) =
n⊙

i=1

xi for xn1 ∈ Zn. Clearly, N = {1̄} is a normal subgroup of (Z∗
n, g) and |R| = |Zn/N |.

Thus, by Theorem 3.4, there exist m-ary and n-ary hyperoperations f ′ and g′ on Zn/N
such that (Zn/N, f

′, g′) is an (m,n)-hyperring and (R, f, g) ∼= (Zn/N, f
′, g′).

Case 2. Let R be infinite countable and |R| = |Z × Z|. Note that (Z × Z, f, g) is
an (m,n)-ring such that f((a, b)m1 ) = (a1 + · · · + am, b1 + · · · + bm) and g((a, b)n1 ) =
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(a1 · a2 · · · an, b1 · b2 · · · bn) for any am1 , a
n
1 , b

m
1 , b

n
1 ∈ Z, where “ + ” and “ · ” are ordinary

binary operations on Z. Now, let N = {(−1, 1), (1, 1)}. Then N is a normal in
((Z × Z)∗, g). Clearly |Z × Z| = |(Z × Z)/N |. Hence, by Theorem 3.4, there exist
m-ary and n-ary hyperoperations f ′ and g′ on (Z×Z)/N such that ((Z×Z)/N, f ′, g′)
is an (m,n)-hyperring and (R, f, g) ∼= ((Z × Z)/N, f ′, g′).

Case 3. Let R be uncountable. Then |R| = |R × R| and similarly as in case 2 we
conclude that R is a quotientable (m,n)-hyperring. �

Theorem 4.3. Every quotientable (m,n)-hyperring is a partitionable (m,n)-hyperring.

Proof. Let (R, f1, g1) be a quotientable (m,n)-hyperring. Then, there exist an (m,n)-
ring (S, f, g), non-trivial m-ary and n-ary hyperoperations f ′ and g′ such that
(S/N, f ′, g′) ∼= (R, f1, g1), where N is a normal subgroup the n-semigroup (S, g).
Define, the binary relation ρ on S as follows:

xρy ⇔ g(x, xi−1
2 , N, xni+1) = g(y, xi−1

2 , N, xni+1).

Clearly ρ is an equivalence relation on S and for any s ∈ S, ρ(s) = g(s, xi−1
2 , N, xni+1).

Hence, (R, f1, g1) is a partitionable (m,n)-hyperring. �

Remark 4.1. Consider the (m,n)-hyperring (Z3, f, g) with the m-ary and n-ary hyper-
operations f(xm1 ) = Z3 and g(yn1 ) = Z3 for all xm1 , y

n
1 ∈ Z3. Define on Z the relation

ρ by ρ = {(0, 0), (2k, 2k′), (2k + 1, 2k′ + 1)} Clearly ρ is an equivalence relation and
|Z3| = |Z

ρ
|. Hence, by Theorem 4.1, (Z3, f, g) is a partitionable (m,n)-hyperring. But

ρ is not a multiplicative normal n-subgroup of Z. Thus, the converse of Theorem 4.3,
is not valid.

Let (R, f1, g1) be an (m,n)-hyperring. Consider the canonical projection
ϕ : (R, f1, g1) → (R/Γ∗, f1/Γ

∗, g1/Γ
∗) by ϕ(r) = Γ∗(r). Also, by Theorem 4.2,

there exist an (m,n)-ring (S, f, g), normal n-subgroup N such that θ : (R, f1, g1) →
(S/N, f ′, g′) is an isomorphism. Hence, we have the following theorem.

Theorem 4.4. Let (R, f1, g1) be a quotientable (m,n)-hyperring via an (m,n)-ring

(S, f, g). Then there exists a unique homomorphism ψ, such that ψθ = ϕ.

Proof. Since (R, f1, g1) is a quotientable (m,n)-hyperring via an (m,n)-ring (S, f, g),
there exists a normal subgroup of the n-semigroup (S, g) such that (S/N, f ′, g′) ∼=
(R, f1, g1). Define ψ : S/N → R/Γ∗ by ψ(g(si−1

1 , N, sni+1)) = Γ∗(r) such that θ(r) =

g(si−1
1 , N, sni+1) for any sn1 ∈ S. Therefore ψ = ϕ◦ θ−1, so ψ is a homomorphism. Also,

ψθ(r) = (ϕ ◦ θ−1)(θ(r)) = ϕ(r). Thus, the following diagram is commutative.

R

ϕ
!!

θ
// S/N

ψ

��

R/Γ∗

Moreover, it is easy to see that ψ is unique. �
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Corollary 4.1. Let (R, f1, g1) be a quotientable (m,n)-hyperring via an (m,n)-ring

(S, f, g). Then the following diagram is commutative.

R
θ

//

ϕ

��

S/N

ϕ̄

��

R/Γ∗ θ̄
// (S/N)/Γ∗

Proof. Define the maps θ̄ : R/Γ∗ → (S/N)/Γ∗ by θ̄(Γ∗(r)) = Γ∗(θ(r)) and ϕ̄ : S/N →
(S/N)/Γ∗ by ϕ̄(g(si−1

1 , N, sni+1)) = Γ∗(g(si−1
1 , N, sni+1)). Since θ and ϕ are homomor-

phism, θ̄ and ϕ̄ are so. Hence, for any r ∈ R

ϕ̄θ(r) = ϕ̄
(

g(si−1
1 , N, sni+1)

)

= Γ∗

(

g(si−1
1 , N, sni+1)

)

= Γ∗(θ(r)) = θ̄(Γ∗(r)) = θ̄ϕ(r).

�

5. Categorical Relations on (m,n)-Hyperrings and (m,n)-Rings

Now we introduce the category of (m,n)-hyperrings, denoted by (m,n) − Hr. This
category is defined as follows:

(i) the objects of (m,n) − Hr are (m,n)-hyperrings;
(ii) for the objects R and R′ of (m,n) − Hr, the set of all homomorphisms from R

to R′ are arrows and denoted by h : R → R′.

In this section, we try to investigate the relation between two categories (m,n) − Hr

and (m,n) − Rg (category of (m,n)-rings) and work on natural transformations
between them. At first, we define an arrow F : (m,n) − Hr → (m,n) − Rg by
F (R) = R/Γ∗, where (R, f, g) is an object of (m,n) − Hr and for any arrow ν :
(R1, f1, g1) → (R2, f2, g2), we define:

F (ν) : R1/Γ
∗ → R2/Γ

∗ by F (ν)(Γ∗(x)) = Γ∗(ν(x)), for every x ∈ R1.

By Corollary 3.1, F is well-defined. Hence, we have the following.

Theorem 5.1. F is a covariant functor from (m,n) − Hr to (m,n) − Rg.

Proof. For any object (R, f, g) of (m,n)−Hr, F (R) = R/Γ∗ is an (m,n)-ring and then
F (R) is an object in (m,n) − Rg. Now, we show that F (ν) is an arrow in (m,n) − Rg,
for any arrow ν : (R1, f1, g1) → (R2, f2, g2). Let Γ∗(x)m1 , Γ∗(x)n1 ∈ R1/Γ

∗. Thus,

F (ν)
(

f1/Γ
∗
(

Γ∗(x)m1
))

= F (ν)
(

Γ∗
(

f1(x
m
1 )
))

= Γ∗

(

ν
(

f1(x
m
1 )
))

= Γ∗

(

f2

(

ν(x1), . . . , ν(xm)
))

= f2/Γ
∗

(

Γ∗
(

ν(x1)
)

, . . . ,Γ∗
(

ν(xm)
))

= f2/Γ
∗

(

F (ν)
(

Γ∗(x1)
)

, . . . , F (ν)
(

Γ∗(xm)
))

.
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Similarly, we have

F (ν)
(

g1/Γ
∗
(

Γ∗(x)n1
))

= g2/Γ
∗

(

F (ν)
(

Γ∗(x1)
)

, . . . , F (ν)
(

Γ∗(xn)
))

.

Also for the composition of two arrows F (ν) and F (ω) in (m,n) − Rg, where ν :
(R1, f1, g1) → (R2, f2, g2) and ω : (R2, f2, g2) → (R3, f3, g3), we have

F (ω) ◦ F (ν) = F (ω)(F (ν)) = F (ω)(Γ∗(ν)) = Γ∗(ω ◦ ν) = F (ω ◦ ν).

Moreover, for 1R : R → R and 1F (R) : R/Γ∗ → R/Γ∗, we have

F (1R)
(

Γ∗(x)
)

= Γ∗(1R(x)) = Γ∗(x) = 1F (R)(x).

Therefore, F is a covariant functor of (m,n) − Hr to (m,n) − Rg. �

Now, for (m,n) − Hr, (m,n) − Rg, any (m,n)-ring (R, f, g) and S = Z2, define
a categorical arrow U : (m,n) − Rg → (m,n) − Hr by U(R) = RS, which for any
(m,n)-ring homomorphism ν : (R1, f1, g1) → (R2, f2, g2) defined by

U(ν)(x, y) = (ν, 1S)(x, y) = (ν(x), 1S(y)) = (ν(x), y).

By Theorem 3.1, U is well-defined. Hence, we have the following theorem.

Theorem 5.2. U is a covariant functor from (m,n) − Rg to (m,n) − Hr.

Proof. For any object (R, f, g) of (m,n) − Rg by Lemma 3.2, U(R) = R × S = RS

is an (m,n)-hyperring and so U(R) is an object in (m,n) − Hr. Consider any arrow
ν : (R1, f1, g1) → (R2, f2, g2) in (m,n) − Rg. We show that U(ν) is an arrow in
(m,n) − Hr. Let (r, s)m1 , (r, s)n1 ∈ R1 × S. Now, by Lemma 3.2,

U(ν)
(

f ′
1

(

(r, s)m1
))

= U(ν)
(

{(f1(r
m
1 ), s1), . . . , (f1(r

m
1 ), sm)}

)

=
{

U(ν)
(

f1(r
m
1 ), s1)

)

, . . . , U(ν)
(

f1(r
m
1 ), sm)

)}

=
{(

ν(f1(r
m
1 )), s1

)

, . . . ,
(

ν(f1(r
m
1 )), sm

)}

=
{(

f2

(

ν(r1), . . . , ν(rm)
)

, s1

)

, . . . ,
(

f2

(

ν(r1), . . . , ν(rm)
)

, sm

)}

= f ′
2

((

ν(r1), s1

)

, . . . ,
(

ν(rm), sm
))

= f ′
2

(

U(ν)(r1, s1), . . . , U(ν)(rm, sm)
)

.

Similarly, we have U(ν)(g′
1

(

(r, s)n1
)

) = g′
2(U(ν)(r1, s1), . . . , U(ν)(rn, sn)). Thus, U(ν) :

R1 × S → R2 × S is an (m,n)-hyperring homomorphism and so is an arrow in
(m,n) − Hr. Now, we investigate the composition property. Let ν and ω be arrows
in (m,n) − Rg. So,

U(ν)◦U(ω)(r, s) = U(ν)
(

U(ω)(r, s)
)

= U(ν)
(

ω(r), s
)

=
(

ν◦ω(r), s
)

= U(ν◦ω)(r, s).
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Moreover, consider 1R : R → R and 1U(R) : U(R) → U(R). For any (r, s) ∈ RS

U(1R)(r, s) = (1R(r), s) = (r, s) = 1U(R)(r, s).

Hence, U is a covariant functor of (m,n) − Rg to (m,n) − Hr. �

Theorem 5.3. The functor U : (m,n) − Rg → (m,n) − Hr is a faithful functor.

Proof. Let (R1, f1, g1) and (R2, f2, g2) be objects in (m,n) − Rg, ν1, ν2 : R1 → R2

be parallel arrows of (m,n) − Rg and U(ν1) = U(ν2). So, for any (r, s) ∈ R1S,
U(ν1)(r, s) = U(ν2)(r, s) and so ν1 = ν2. Thus, U is a faithful functor. �

Theorem 5.4. On objects of (m,n) − Rg, F ◦ U = 1.

Proof. For any object (R, f, g) in (m,n) − Rg, we have

(F ◦ U)(R, f, g) = F (RS, f
′, g′) = (RS/Γ

∗, f ′/Γ∗, g′/Γ∗) ∼= (R, f, g),

by Theorem 3.2. �

Theorem 5.5. For functors 1, F ◦ U : (m,n) − Rg → (m,n) − Rg there exists a

natural transformation µ : 1 → F ◦ U .

Proof. For two functors 1 and F ◦ U of (m,n) − Rg to (m,n) − Rg, define a map
µ : 1 → F ◦ U as follows:

µ : 1(R) → (F ◦ U)(R) by µ(r) = Γ∗(r, 0).

Now, for any (m,n)-ring homomorphism ν : (R, f, g) → (R′, f ′, g′), consider the
following diagram.

1(R)
µR

//

1(ν)
��

(F ◦ U)(R)

F◦U(ν)
��

1(R′)
µR′

// (F ◦ U)(R′)

For any r ∈ R, we have
(

(F ◦ U)(ν) ◦ µR
)

(r) = F ◦ U(ν)
(

µR(r)
)

= F ◦ U(ν)
(

Γ∗(r, 0)
)

= Γ∗
(

ν(r), 0
)

= µR′

(

ν(r)
)

= µR′

(

1(ν)(r)
)

=
(

µR′ ◦ 1(ν)
)

(r).

So, µ is a natural transformation. �

Theorem 5.6. For functors 1 and U ◦ F from (m,n) − Hr to (m,n) − Hr, there

exists a transformation θ : 1 → U ◦ F such that is natural.
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Proof. For two functors 1, U◦F : (m,n)−Hr → (m,n)−Hr, define a map θ : 1 → U◦F

as θ : 1(R) → (U ◦ F )(R) by θ(r) =
(

Γ∗(r), 0
)

. Now, for any (m,n)-hyperring

homomorphism ν : (R, f, g) → (R′, f ′, g′), consider the following diagram.

1(R)
θR

//

1(ν)
��

(U ◦ F )(R)

U◦F (ν)
��

1(R′)
θR′

// (U ◦ F )(R′)

For any r ∈ R, we have
(

(U ◦ F )(ν) ◦ θR

)

(r) = U ◦ F (ν)
(

θR(r)
)

= U ◦ F (ν)
(

Γ∗(r), 0
)

=
(

Γ∗
(

ν(r)
)

, 0
)

= θR′

(

ν(r)
)

= θR′

(

1(ν)(r)
)

=
(

θR′ ◦ 1(ν)
)

(r).

Therefore, θ is a natural transformation. �
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APPLICATIONS OF FRACTIONAL DERIVATIVE ON A

DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATORS

FOR ANALYTIC FUNCTIONS ASSOCIATED WITH

DIFFERENTIAL OPERATOR

ABBAS KAREEM WANAS1 AND MASLINA DARUS2

Abstract. The purpose of this paper is to derive subordination and superordi-
nation results involving fractional derivative of differential operator for analytic
functions in the open unit disk. These results are applied to obtain sandwich results.
Our results extend corresponding previously known results.

1. Introduction and Preliminaries

Let H = H(U) denote the class of analytic functions in the open unit disk U =
{z ∈ C : |z| < 1}. For a ∈ C and n ∈ N, let H [a, n] be the subclass of H consisting
of functions of the form:

f(z) = a+ anz
n + an+1z

n+1 + · · · , a ∈ C.

Also, let A be the subclass of H consisting of functions of the form:

(1.1) f(z) = z +
∞
∑

k=2

akz
k.

Let f, g ∈ H. The function f is said to be subordinate to g, or g is said to be
superordinate to f , if there exists a Schwarz function w analytic in U with w (0) = 0
and |w (z) | < 1, z ∈ U , such that f(z) = g(w(z)). This subordination is denoted by
f ≺ g or f(z) ≺ g(z), z ∈ U . It is well known that, if the function g is univalent
in U , then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U). Let p, h ∈ H and

Key words and phrases. Analytic functions, differential subordination, differential superordination,
fractional derivative, differential operator.
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ψ(r, s, t; z) : C3 × U → C. If p and ψ(p(z), zp′(z), z2p′′(z); z) are univalent functions
in U and if p satisfies the second-order differential superordination

(1.2) h(z) ≺ ψ(p(z), zp′(z), z2p′′(z); z),

then p is called a solution of the differential superordination (1.2). An analytic function
q is called a subordinate of (1.2), if q ≺ p for all p satisfying (1.2). An univalent
subordinat q̃ that satisfies q ≺ q̃ for all the subordinants q of (1.2) is called the best
subordinant.

Miller and Mocanu [6] obtained conditions on the functions h, q and ψ for which
the following implication holds:

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z).

Ali et al. [1] have used the results of Bulboacǎ [3] to obtain sufficient conditions for
certain normalized analytic functions to satisfy

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1.
Also, Tuneski [16] obtain sufficient condition for starlikeness of f ∈ A in terms of

the quantity f ′′(z)f(z)
(f ′(z))2 . Shanmugam et al. [14], Goyal et al. [4], Wanas [17, 18] and

Attiya and Yassen [2] have obtained sandwich results for certain classes of analytic
functions.

Definition 1.1 ([9]). For f ∈ A the operator In,m
λ1,λ2,ℓ,d is defined by In,m

λ1,λ2,ℓ,d : A → A,

I
n,m
λ1,λ2,ℓ,df(z) = M

m
λ1,λ2,ℓ,d(z) ∗Rnf(z), z ∈ U,

where

M
m
λ1,λ2,ℓ,d(z) = z +

∞
∑

k=2

[

ℓ(1 + (λ1 + λ2)(k − 1)) + d

ℓ(1 + λ2(k − 1)) + d

]m

zk,

and Rnf(z) denotes the Ruscheweyh derivative operator [10] given by

Rnf(z) = z +
∞
∑

k=2

C(n, k)akz
k,

where C(n, k) = Γ(k+n)
Γ(n+1)Γ(k)

, n,m ∈ N0 = N ∪ {0} , λ2 ≥ λ1 ≥ 0, ℓ ≥ 0 and ℓ+ d > 0.

If f given by (1.1), then we easily find that

I
n,m
λ1,λ2,ℓ,df(z) = z +

∞
∑

k=2

Γ(k + n)

Γ(n+ 1)Γ(k)

[

ℓ(1 + (λ1 + λ2)(k − 1)) + d

ℓ(1 + λ2(k − 1)) + d

]m

akz
k.

Definition 1.2 ([15]). The fractional derivative of order δ, 0 ≤ δ < 1, of a function
f is defined by

Dδ
zf(z) =

1

Γ(1 − δ)

d

dz

∫ z

0

f(t)

(z − t)δ
dt,
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where the function f is analytic in a simply-connected region of the z-plane containing
the origin and the multiplicity of (z − t)−δ is removed by requiring log(z − t) to be
real, when Re(z − t) > 0.

From Definition 1.1 and Definition 1.2, we have

Dδ
zI

n,m
λ1,λ2,ℓ,df(z) =

1

Γ(2 − δ)
z1−δ +

∞
∑

k=2

kΓ(n+ k)

Γ(k − δ + 1)Γ(n+ 1)
(1.3)

×

[

ℓ(1 + (λ1 + λ2)(k − 1)) + d

ℓ(1 + λ2(k − 1)) + d

]m

akz
k−δ.

It follows from (1.3) that

ℓλ1z
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)

′

= [ℓ(1 + (λ2(k − 1)) + d]Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

(1.4)

− [ℓ(1 + (λ2(k − 1) − (1 − δ)λ1) + d]Dδ
zI

n,m
λ1,λ2,ℓ,df(z).

In order to prove our results, we make use of the following known results.

Definition 1.3 ([5]). Denote by Q the set of all functions f that are analytic and
injective on Ū\E(f), where

E(f) =
{

ζ ∈ ∂U : lim
z→ζ

f(z) = ∞
}

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U\E(f).

Lemma 1.1 ([5]). Let q be univalent in the unit disk U and let θ and φ be analytic in
a domain D containing q(U), with φ(w) 6= 0 when w ∈ q(U). Set Q(z) = zq′(z)φ(q(z))
and h(z) = θ(q(z)) +Q(z). Suppose that

(1) Q(z) is starlike univalent in U ;

(2) Re
{

zh′(z)
Q(z)

}

> 0 for z ∈ U .

If p is analytic in U , with p(0) = q(0), p(U) ⊂ D and

(1.5) θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)),

then p ≺ q and q is the best dominant of (1.5).

Lemma 1.2 ([6]). Let q be a convex univalent function in U and let α ∈ C, β ∈ C\{0},
with

Re

{

1 +
zq′′(z)

q′(z)

}

> max

{

0,−Re

(

α

β

)}

.

If p is analytic in U and

(1.6) αp(z) + βzp′(z) ≺ αq(z) + βzq′(z),

then p ≺ q and q is the best dominant of (1.6).
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Lemma 1.3 ([6]). Let q be a convex univalent function in U and let β ∈ C. Further
assume that Re(β) > 0. If p ∈ H[q(0), 1] ∩ Q and p(z) + βzp′(z) is univalent in U ,
then

(1.7) q(z) + βzq′(z) ≺ p(z) + βzp′(z),

which implies that q ≺ p and q is the best subordinant of (1.7).

Lemma 1.4 ([3]). Let q be convex univalent in the unit disk U and let θ and φ be
analytic in a domain D containing q(U). Suppose that

(1) Re
{

θ′(q(z))
φ(q(z))

}

> 0 for z ∈ U ;

(2) Q(z) = zq′(z)φ(q(z)) is starlike univalent in U .

If p ∈ H[q(0), 1] ∩Q, with p(U) ⊂ D, θ(p(z)) + zp′(z)φ(p(z)) is univalent in U , and

(1.8) θ(q(z)) + zq′(z)φ(q(z)) ≺ θ(p(z)) + zp′(z)φ(p(z)),

then q ≺ p and q is the best subordinant of (1.8).

2. Subordination Results

Theorem 2.1. Let q be convex univalent in U with q(0) = 1, σ ∈ C \ {0}, γ > 0 and
suppose that q satisfies

(2.1) Re

{

1 +
zq′′(z)

q′(z)

}

> max

{

0,−Re

(

(1 − δ)γ

σ

)}

.

If f ∈ A satisfies the subordination
(

1 −
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

)(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

(2.2)

+
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





≺q(z) +
σ

(1 − δ)γ
zq′(z),

then

(2.3)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

≺ q(z)

and q is the best dominant of (2.2).

Proof. Define the function p by

(2.4) p(z) =

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

, z ∈ U.
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Then the function p is analytic in U and p(0) = 1. Differentiating (2.4) logarithmically
with respect to z, we have

zp′(z)

p(z)
= γ







z
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)

′

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

− (1 − δ)





 .

Now, in view of (1.4), we obtain

zp′(z)

p(z)
=
γ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

− 1



 .

Therefore,

zp′(z)

(1 − δ)γ
=
ℓ(1 + (λ2(k − 1)) + d

ℓλ1(1 − δ)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

×





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

− 1



 .

It follows from (2.2) that

p(z) +
σ

(1 − δ)γ
zp′(z) ≺ q(z) +

σ

(1 − δ)γ
zq′(z).

Thus, an application of Lemma 1.2, with α = 1 and β = σ
(1−δ)γ

, we obtain (2.3). �

Theorem 2.2. Let ηi ∈ C, i = 1, 2, 3, 4, γ > 0, t ∈ C \ {0} and q be convex univalent
in U with q(0) = 1, q(z) 6= 0, z ∈ U , and assume that q satisfies

(2.5) Re

{

1 +
η2

t
q(z) +

2η3

t
q2(z) +

3η4

t
q3(z) +

zq′′(z)

q′(z)
−
zq′(z)

q(z)

}

> 0.

Suppose that zq′(z)
q(z)

is starlike univalent in U . If f ∈ A satisfies

(2.6)

Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) ≺ η1 + η2q(z) + η3q
2(z) + η4q

3(z) + t
zq′(z)

q(z)
,

where

Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z)

(2.7)

=η1 + η2





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

+ η3





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





2γ

+ η4





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





3γ

+
γt [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1





Dδ
zI

n,m+2
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

−
Dδ

zI
n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)



 ,
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then




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

≺ q(z)

and q is the best dominant of (2.6).

Proof. Define the function p by

(2.8) p(z) =





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

, z ∈ U.

Then the function p is analytic in U and p(0) = 1.
By a straightforward computation and using (1.4), we have

(2.9)

η1 + η2p(z) + η3p
2(z) + η4p

3(z) + t
zp′(z)

p(z)
= Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) ,

where Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.7). From (2.6) and (2.9),
we obtain

η1 + η2p(z) + η3p
2(z) + η4p

3(z) + t
zp′(z)

p(z)
≺ η1 + η2q(z) + η3q

2(z) + η4q
3(z) + t

zq′(z)

q(z)
.

By setting

θ(w) = η1 + η2w + η3w
2 + η4w

3 and φ(w) =
t

w
, w 6= 0,

we see that θ(w) is analytic in C, φ(w) is analytic in C \ {0} and that φ(w) 6= 0,
w ∈ C \ {0}. Also, we get

Q(z) = zq′(z)φ(q(z)) = t
zq′(z)

q(z)

and

h(z) = θ(q(z)) +Q(z) = η1 + η2q(z) + η3q
2(z) + η4q

3(z) + t
zq′(z)

q(z)
.

It is clear that Q(z) is starlike univalent in U ,

Re

{

zh′(z)

Q(z)

}

= Re

{

1 +
η2

t
q(z) +

2η3

t
q2(z) +

3η4

t
q3(z) +

zq′′(z)

q′(z)
−
zq′(z)

q(z)

}

> 0.

Thus, by Lemma 1.1, we get p(z) ≺ q(z). By using (2.8), we obtain the desired
result. �

Theorem 2.3. Let ηi ∈ C, i = 1, 2, 3, 4, t ∈ V \ {0} and q be convex univalent in U

with q(0) = 1, q(z) 6= 0, z ∈ U , and assume that q satisfies (2.5). Suppose that zq′(z)
q(z)

is starlike univalent in U . If f ∈ A satisfies
(2.10)

Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) ≺ η1 + η2q(z) + η3q
2(z) + η4q

3(z) + t
zq′(z)

q(z)
,
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where

Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z)

(2.11)

=η1 + η2

z1−δDδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2 + η3

(

1

Γ(2 − δ)

)2 z2(1−δ)
(

Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

)2

(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)4

+ η4

(

1

Γ(2 − δ)

)3 z3(1−δ)
(

Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

)3

(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)6 +
t [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1

×

×



1 +
Dδ

zI
n,m+2
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

−
2Dδ

zI
n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)



 ,

then
z1−δDδ

zI
n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2 ≺ q(z)

and q is the best dominant of (2.10).

Proof. Define the function p by

(2.12) p(z) =
z1−δDδ

zI
n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2 , z ∈ U.

Then the function p is analytic in U and p(0) = 1.
We note that

(2.13)

η1 + η2p(z) + η3p
2(z) + η4p

3(z) + t
zp′(z)

p(z)
= Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) ,

where Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.11). From (2.10) and (2.13),
we obtain

η1 + η2p(z) + η3p
2(z) + η4p

3(z) + t
zp′(z)

p(z)
≺ η1 + η2q(z) + η3q

2(z) + η4q
3(z) + t

zq′(z)

q(z)
.

The remaining part of the proof Theorem 2.3 is similar to that of Theorem 2.2 and
hence we omit it. �

3. Superordination Results

Theorem 3.1. Let q be convex univalent in U with q(0) = 1, γ > 0 and Re {σ} > 0.
Let f ∈ A satisfies

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

∈ H [q(0), 1] ∩Q
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and
(

1 −
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

)(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

+
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





be univalent in U . If

q(z) +
σ

(1 − δ)γ
zq′(z)(3.1)

≺

(

1 −
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

)(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

+
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)



 ,

then

(3.2) q(z) ≺

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

and q is the best subordinant of (3.1).

Proof. Define the function p by

(3.3) p(z) =

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

, z ∈ U.

Then the function p is analytic in U and p(0) = 1. Differentiating (3.3) logarithmically
with respect to z, we get

zp′(z)

p(z)
= γ







z
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)

′

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

− (1 − δ)





 .

After some computations and using (1.4), we find that
(

1 −
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

)(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

(3.4)

+
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





=p(z) +
σ

(1 − δ)γ
zp′(z).

From (3.1) and (3.4), we have

q(z) +
σ

(1 − δ)γ
zq′(z) ≺ p(z) +

σ

(1 − δ)γ
zp′(z).
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Thus, an application of Lemma 1.3, with α = 1 and β = σ
(1−δ)γ

, we obtain the

results. �

Theorem 3.2. Let ηi ∈ C, i = 1, 2, 3, 4, γ > 0, t ∈ C \ {0} and q be convex univalent
in U with q(0) = 1, q(z) 6= 0, z ∈ U , and assume that q satisfies

(3.5) Re
{

η2

t
q(z) +

2η3

t
q2(z) +

3η4

t
q3(z)

}

> 0.

Suppose that zq′(z)
q(z)

is starlike univalent in U . Let f ∈ A satisfies




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

∈ H [q(0), 1] ∩Q

and Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) is univalent in U , where
Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.7). If
(3.6)

η1 + η2q(z) + η3q
2(z) + η4q

3(z) + t
zq′(z)

q(z)
≺ Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) ,

then

q(z) ≺





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

and q is the best subordinant of (3.6).

Proof. Define the function p by

(3.7) p(z) =





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

, z ∈ U.

Then the function p is analytic in U and p(0) = 1.
By some computation, we have

(3.8)

Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) = η1 + η2p(z) + η3p
2(z) + η4p

3(z) + t
zp′(z)

p(z)
,

where Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.7). From (3.6) and (3.8),
we obtain

η1 + η2q(z) + η3q
2(z) + η4q

3(z) + t
zq′(z)

q(z)
≺ η1 + η2p(z) + η3p

2(z) + η4p
3(z) + t

zp′(z)

p(z)
.

By setting θ(w) = η1 + η2w + η3w
2 + η4w

3 and φ(w) = t
w

, w 6= 0, we see that θ(w) is
analytic in C, φ(w) is analytic in C \ {0} and that φ(w) 6= 0, w ∈ C \ {0}. Also, we
get

Q(z) = zq′(z)φ(q(z)) = t
zq′(z)

q(z)
.
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It is clear that Q(z) is starlike univalent in U ,

Re

{

θ′(q(z))

φ(q(z))

}

= Re
{

η2

t
q(z) +

2η3

t
q2(z) +

3η4

t
q3(z)

}

> 0.

Thus, by Lemma 1.4, we get q(z) ≺ p(z). By using (3.7), we obtain the desired
result. �

Theorem 3.3. Let ηi ∈ C, i = 1, 2, 3, 4, t ∈ C \ {0} and q be convex univalent in U

with q(0) = 1, q(z) 6= 0, z ∈ U , and assume that q satisfies (3.5). Suppose that zq′(z)
q(z)

is starlike univalent in U . Let f ∈ A satisfies

z1−δDδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2 ∈ H [q(0), 1] ∩Q

and Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) is univalent in U , where
Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.11). If
(3.9)

η1 + η2q(z) + η3q
2(z) + η4q

3(z) + t
zq′(z)

q(z)
≺ Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) ,

then

q(z) ≺
z1−δDδ

zI
n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2

and q is the best subordinant of (3.9).

Proof. Define the function p by

(3.10) p(z) =
z1−δDδ

zI
n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2 , z ∈ U.

Then the function p is analytic in U and p(0) = 1.
We note that

(3.11)

Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) = η1 + η2p(z) + η3p
2(z) + η4p

3(z) + t
zp′(z)

p(z)
,

where Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.11). From (3.9) and (3.11),
we obtain

η1 + η2q(z) + η3q
2(z) + η4q

3(z) + t
zq′(z)

q(z)
≺ η1 + η2p(z) + η3p

2(z) + η4p
3(z) + t

zp′(z)

p(z)
.

The remaining part of the proof Theorem 3.3 is similar to that of Theorem 3.2 and
hence we omit it. �
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4. Sandwich Results

Combining results of differential subordinations and superordinations, we state the
following “sandwich results”.

Theorem 4.1. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1. Suppose
q2 satisfies (2.1), γ > 0 and Re {σ} > 0. Let f ∈ A satisfies

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

∈ H [1, 1] ∩Q

and

(

1 −
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

)(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

+
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





be univalent in U . If

q1(z) +
σ

(1 − δ)γ
zq′

1(z)

≺

(

1 −
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

)(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

+
σ [ℓ(1 + (λ2(k − 1)) + d]

ℓλ1(1 − δ)

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ




Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





≺q2(z) +
σ

(1 − δ)γ
zq′

2(z),

then

q1(z) ≺

(

Γ(2 − δ)Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

z1−δ

)γ

≺ q2(z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

Theorem 4.2. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1. Suppose
q1 satisfies (3.5) and q2 satisfies (2.5). Let f ∈ A satisfies





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

∈ H [1, 1] ∩Q
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and Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) is univalent in U , where
Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.7). If

η1 + η2q1(z) + η3q
2
1(z) + η4q

3
1(z) + t

zq′

1(z)

q1(z)
≺Ψ (η1, η2, η3, η4, γ, t, δ, n,m, λ1, λ2, ℓ, d; z)

≺η1 + η2q2(z) + η3q
2
2(z) + η4q

3
2(z)

+ t
zq′

2(z)

q2(z)
,

then

q1(z) ≺





Dδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)





γ

≺ q2(z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

Theorem 4.3. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1. Suppose
q1 satisfies (3.5) and q2 satisfies (2.5). Let f ∈ A satisfies

z1−δDδ
zI

n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2 ∈ H [1, 1] ∩Q

and Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) is univalent in U , where
Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z) is given by (2.11). If

η1 + η2q1(z) + η3q
2
1(z) + η4q

3
1(z) + t

zq′

1(z)

q1(z)
≺Ω (η1, η2, η3, η4, t, δ, n,m, λ1, λ2, ℓ, d; z)

≺η1 + η2q2(z) + η3q
2
2(z) + η4q

3
2(z)

+ t
zq′

2(z)

q2(z)
,

then

q1(z) ≺
z1−δDδ

zI
n,m+1
λ1,λ2,ℓ,df(z)

Γ(2 − δ)
(

Dδ
zI

n,m
λ1,λ2,ℓ,df(z)

)2 ≺ q2(z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

Remark 4.1. By specifying the function φ and selecting the particular values of
η1, η2, η3, η4, γ, δ, n,m, λ1, λ2, ℓ and d, we can derive a number of known results. Some
of them are given below.

(1) Taking δ = n = λ2 = d = 0 and ℓ = 1 in Theorems 2.1, 3.1, 4.1, we get the
results obtained by Rǎducanu and Nechita [10, Theorem 3.1, Theorem 3.6,
Theorem 3.9].

(2) Putting δ = n = λ2 = η1 = η3 = η4 = d = 0, η2 = ℓ = 1 and φ(w) = t in
Theorems 2.3, 3.3, 4.3, we obtain the results obtained by Nechita [8, Theorem
14, Theorem 19, Corollary 21].
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(3) For δ = n = λ2 = η1 = η3 = η4 = d = 0, λ1 = η2 = ℓ = 1 and φ(w) = t in
Theorems 2.3, 3.3, 4.3, we have the results obtained by Shanmugam et al. [13,
Theorem 5.4, Theorem 5.5, Theorem 5.6].

(4) By taking δ = n = m = λ2 = η1 = η3 = η4 = d = 0, λ1 = η2 = ℓ = 1 and
φ(w) = t in Theorems 2.3, 3.3, 4.3, we get the results obtained by Shanmugam
et al. [13, Theorem 3.4, Theorem 3.5, Theorem 3.6].

(5) Putting δ = n = λ2 = η1 = η3 = η4 = 0, η2 = ℓ = 1 and φ(w) = t in Theorems
2.3, 3.3, 4.3, we have the results obtained by Shammaky [12, Theorem 3.4,
Theorem 3.5, Theorem 3.6].

(6) Taking δ = n = m = λ2 = d = 0 and λ1 = ℓ = 1 in Theorem 2.1, we obtain the
results obtained by Murugusundaramoorthy and Magesh [7, Corollary 3.3].

(7) Putting δ = n = m = λ2 = d = 0 and λ1 = ℓ = 1 in Theorems 3.1, 4.1,
we obtain the results obtained by Răducanu and Nechita [10, Corollary 3.7,
Corollary 3.10].

Acknowledgements. The authors would like to thank the referee(s) for their helpful
comments and suggestions.
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NEW GENERALIZED APOSTOL-FROBENIUS-EULER

POLYNOMIALS AND THEIR MATRIX APPROACH

MARÍA JOSÉ ORTEGA1, WILLIAM RAMÍREZ1, AND ALEJANDRO URIELES2

Abstract. In this paper, we introduce a new extension of the generalized Apostol-
Frobenius-Euler polynomials H

[m−1,α]
n (x; c, a; λ; u). We give some algebraic and

differential properties, as well as, relationships between this polynomials class
with other polynomials and numbers. We also, introduce the generalized Apostol-
Frobenius-Euler polynomials matrix U

[m−1,α](x; c, a; λ; u) and the new generalized
Apostol-Frobenius-Euler matrix U

[m−1,α](c, a; λ; u), we deduce a product formula for
U

[m−1,α](x; c, a; λ; u) and provide some factorizations of the Apostol-Frobenius-Euler
polynomial matrix U

[m−1,α](x; c, a; λ; u), which involving the generalized Pascal
matrix.

1. Introduction

It is well-known that generalized Frobenius-Euler polynomial H(α)
n (x; u) of order α

is defined by means of the following generating function

(1.1)
(

1 − u

ez − u

)α

exz =
∞
∑

n=0

H(α)
n (x; u)

zn

n!
,

where u ∈ C and α ∈ Z. Observe that H(1)
n (x; u) = Hn(x; u) denotes the classical

Frobenius-Euler polynomials and H(α)
n (0; u) = H(α)

n (u) denotes the Frobenius-Euler
numbers of order α. Hn(x; −1) = En(x) denotes the Euler polynomials (see [2, 7]).

For parameters λ, u ∈ C and a, b, c ∈ R
+, the Apostol type Frobenius-Euler polyno-

mials Hn(x; λ; u) and the generalized Apostol-type Frobenius-Euler polynomials are

Key words and phrases. Generalized Apostol-type polynomials, Apostol-Frobennius-Euler polyno-
mials, Apostol-Bernoulli polynomials of higher order, Apostol-Genocchi polynomials of higher order,
Stirling numbers of second kind, generalized Pascal matrix.
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defined by means of the following generating functions (see [8]):
(

1 − u

λez − u

)

exz =
∞
∑

n=0

Hn(x; λ; u)
zn

n!
,(1.2)

(

az − u

λbz − u

)α

cxz =
∞
∑

n=0

H(α)
n (x; a, b, c; λ; u)

zn

n!
.(1.3)

If we set x = 0 and α = 1 in (1.3), we get

az − u

λbz − u
=

∞
∑

n=0

Hn(a, b, c; λ; u)
zn

n!
,

Hn(a, b, c; u; λ) denotes the generalized Apostol-type Frobenius-Euler numbers (see
[8]).

In the present paper, we introduce a new class of Frobenius-Euler polynomials
considering the work of [8], we give relationships between this polynomials whit
other polynomials and numbers, as well as the generalized Apostol-Frobenius-euler
polynomials matrix.

The paper is organized as follows. Section 2 contains the definitions of Apostol-
type Frobenius-Euler and generalized Apostol-Frobenius-Euler polynomials and some
auxiliary results. In Section 3, we define the generalized Apostol-type Frobenius-Euler
polynomials and prove some algebraic and differential properties of them, as well
as their relation with the Stirling numbers of second kind. Finally, in Section 4 we
introduce the generalized Apostol-type Frobenius-Euler polynomial matrix, derive
a product formula for it and give some factorizations for such a matrix, which in-
volve summation matrices and the generalized Pascal matrix of first kind in base c,
respectively.

2. Previous Definitions and Notations

Throughout this paper, we use the following standard notions: N = {1, 2, . . .},

N0 = {0, 1, 2, . . .}, Z denotes the set of integers, R denotes the set of real numbers
and C denotes the set of complex numbers. Furthermore, (λ0) = 1 and

(λ)k = λ(λ + 1)(λ + 2) · · · (λ + k − 1),

where k ∈ N, λ ∈ C. For the complex logarithm, we consider the principal branch.
All matrices are in Mn+1(K), the set of all (n + 1) × (n + 1) matrices over the field
K, with K = R or C. Also, for i, j any nonnegative integers we adopt the following
convention

(

i

j

)

= 0, whenever j > i.

Now, let us givel some properties of the generalized Apostol-type Frobenius-Euler
polynomials and generalized Apostol-type Frobenius-Euler polynomials with parame-
ters λ, a, c, order α (see [4, 8, 11]).
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Proposition 2.1. For a m ∈ N, let {H(α)
n (x; u)}n≥0 and {Hn(x; λ; u)}n≥0 be the se-

quences of generalized Apostol-type Frobenius-Euler polynomials, generalized Frobenius-

Euler polynomials respectively. Then the following statements hold.

(a) Special values: for n ∈ N0,

H(0)
n (x; u) = xn.

(b) Summation formulas:

H(α)
n (x; u; a, b, c; λ) =

n
∑

k=0

(

n

k

)

H
(α)
k (x; u; a, b, c; λ)(x ln c)n−k,

H(α+β)
n (x + y; u; a, b, c; λ) =

n
∑

k=0

(

n

k

)

H
(α)
k (x; u; a, b, c; λ)H

(β)
n−k(y; u; a, b, c; λ),

((x + y) ln c)n = H
(α)
n−k(y; u; a, b, c; λ)H

(−α)
k (x; u; a, b, c; λ),

H(−α)
n (x; u2; a2, b2, c2; λ2) =

n
∑

k=0

(

n

k

)

H
(−α)
k (x; u; a, b, c; λ)H

(−α)
n−k (x; −u; a, b, c; λ).

Definition 2.1. ([5, p. 207]). For n ∈ N0 and x ∈ C, the Stirling numbers of second
kind S(n, k) are defined by means of the following expansion

xn =
n
∑

k=0

(

x

k

)

k!S(n, k).

The Jacobi polynomials of the degree n y orde (α, β), with α, β > −1, the n-th
Jacobi polynomial P (α,β)

n (x) may be defined through Rodrigues’ formula

P (α,β)
n (x) = (1 − x)−α(1 + x)−β (−1)n

2nn!

dn

dxn

{

(1 − x)n+α(1 + x)n+α
}

and the values in the end points of the interval [−1, 1] is given by

P (α,β)
n (1) =

(

n + α

n

)

, P (α,β)
n (−1) = (−1)n

(

n + β

n

)

.

The relationship between the n-th monomial xn and the n-th Jacobi polynomial
P (α,β)

n (x) may be written as

(2.1) xn = n!
n
∑

k=0

(

n + α

n − k

)

(−1)k (1 + α + β + 2k)

(1 + α + β + k)n+1

P
(α,β)
k (1 − 2x).

Proposition 2.2. For λ ∈ C and m ∈ N, let {B[m−1]
n (x)}n≥0, {Gn(x)}n≥0 and

{En(x; λ)}n≥0 be the sequences of generalized Bernoulli polynomials of level m, Genoc-

chi polynomials and Apostol-Euler polynomials, respectively, we have the relationships:

(a) [12, Equation (4)]

xn =
n
∑

k=0

(

n

k

)

k!

(k + m)!
B

[m−1]
n−k (x);(2.2)
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(b) [9, Remark 7]

xn =
1

2(n + 1)

[

n+1
∑

k=0

(

n + 1

k

)

Gk(x) + Gn+1(x)

]

;(2.3)

(c) [10, Equation (32)]

xn =
1

2

[

λ
n
∑

k=0

(

n

k

)

Ek(x; λ) + En(x; λ)

]

.(2.4)

Definition 2.2. Let x be any nonzero real number. For c ∈ R
+, the generalized

Pascal matrix of first kind in base c Pc[x] is an (n + 1) × (n + 1) matrix whose entries
are given by (see [13,14])

pi,j,c(x) :=











(

i

j

)

(x ln c)i−j, i ≥ j,

0, otherwise.

When c = e, the matrix Pc[x] coincides with the generalized Pascal matrix of first
kind P [x]. Furthermore, if we adopt the convention 00 = 1, then Pc[0] = In+1, with
In+1 = diag(1, 1, . . . , 1).

An immediate consequence of the remarks above is the following proposition.

Proposition 2.3 (Addition Theorem of the argument). For x, y ∈ R is fulfilled

Pc[x + y] = Pc[x]Pc[y].

Proposition 2.4. For c ∈ R
+, let Pc[x] be the generalized Pascal matrix of first kind

in base c and order n + 1. Then the following statements hold.

(a) Pc[x] is an invertible matrix and its inverse is given by

P −1
c [x] := (Pc[x])−1 = Pc[−x].

(e) The matrix Pc[x] can be factorized as follows

(2.5) Pc[x] = Gn,c[x]Gn−1,c[x] · · · G1,c[x],

where Gk,c[x] is the (n + 1) × (n + 1) summation matrix given by

Gk,c[x] =



















[

In−k 0
0 Sk,c[x]

]

, k = 1, . . . , n − 1,

Sn,c[x], k = n,

being Sk,c[x] the (k + 1) × (k + 1) matrix whose entries Sk,c(x; i, j) are given by

Sk,c(x; i, j, c) =











(x ln c)i−j, i ≥ j,

0, j > i,
0 ≤ i, j ≤ k.
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3. Generalized Apostol-Frobenius-Euler Polynomials
H

[m−1,α]
n (x; c, a; λ; u)

Definition 3.1. For m ∈ N, α, λ, u ∈ C and a, c ∈ R
+, the generalized Apostol-type

Frobenius-Euler polynomials in the variable x, parameters c, a, λ, order α and level
m, are defined through the following generating function

(3.1)















m−1
∑

h=0

(z ln a)h

h!
− um

λcz − um















α

cxz =
∞
∑

n=0

H
[m−1,α]
n (x; c; a; λ; u)

zn

n!
,

where |z| <
∣

∣

∣

ln(um)
ln(c)

− ln(λ)
ln(c)

∣

∣

∣.

For x = 0 we obtain, the generalized Apostol-Frobennius-Euler numbers of param-
eters λ ∈ C, a, c ∈ R

+, order α ∈ C and level m ∈ N

H
[m−1,α]
n (c, a; λ; u) := H

[m−1,α]
n (0; c, a; λ; u).

According to the Definition 3.1, with e = exp(1), we have (1.1) and (1.2)

H
[0,α]
n (x; e, 1; 1; u) = H(α)

n (x; λ; u),

H
[0,1]
n (x; e, 1; λ; u) = H(1)

n (x; λ; u).

Example 3.1. For any λ ∈ C, m = 2, c = 2, a = 3, α = 1
2

and u = 2 the first the
generalized Apostol-type Frobenius-Euler polynomials in the variable x, parameters
c, a, λ, order α and level m are:

H
[1,( 1

2
)]

0 (x; 2, 3; λ; 2) =

√

3

λ − 4
,

H
[1,( 1

2
)]

1 (x; 2, 3; λ; 2) =

√

−3

λ − 4
x

[

1

2

(

ln 3

λ − 4
+

3λ ln 2

(λ − 4)2

)

+ x ln 4

]

,

H
[1,( 1

2
)]

2 (x; 2, 3; λ; 2) =
1

2
x2





(

−3

4

√

−3

λ − 4

(

ln 3

λ − 4
+

3λ ln 2

(λ − 4)2

)2

+
1

2

√

−3

λ − 4

−2 ln 3 ln 2

(λ − 4)2
−

6λ2 ln 4

(λ − 4)3
+

3λ ln 4

(λ − 4)2





+x ln 2

√

−3

λ − 4

(

ln 3

λ − 4
+

3 ln 2

(λ − 4)4

)

+ x2 ln 4

√

−3

λ − 4



 .

Example 3.2. For any λ ∈ C, m = 4, c = 2, a = 3, α = 1 and u = 2 the first the
generalized Apostol-type Frobenius-Euler polynomials in the variable x, parameters
c, a, λ, order α and level m are:

H
[3,1]
0 (x; 2, 3; λ; 2) =

−15

λ − 16
,
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H
[3,1]
1 (x; 2, 3; λ; 2) = x

[

ln 3

λ − 16
+

λ15 ln 2

(λ − 16)2
− x

15 ln 2

λ − 16

]

,

H
[3,1]
2 (x; 2, 3; λ; 2) =

1

2
x2

[

ln 9

λ − 16
− λ

2 ln 3 ln 2

(λ − 16)2
+ x

2 ln 3 ln 2

λ − 16
− λ2 30 ln 4

(λ − 16)3

+x
30λ ln 4

(λ − 16)2
+ λ

15 ln 4

(λ − 16)2
− x2 15 ln 4

λ − 16

]

.

Example 3.3. For any λ ∈ C, m = 2, c = 3, a = e, α = 1
3
, and u = 5 the first the

generalized Apostol-type Frobenius-Euler polynomials in the variable x, parameters
c, a, λ, order α and level m are:

H
[1,( 1

3
)]

0 (x; 3, e; λ; 5) = 3

√

−24

λ − 25
,

H
[1,( 1

3
)]

1 (x; 3, e; λ; 5) = x







1

3
3

√

√

√

√

(

λ − 25

−24

)2 (
ω

λ − 25
+ λ

24 ln 3

(λ − 25)2

)

+x ln 3 3

√

−24

λ − 25



 ,

H
[1,( 1

3
)]

2 (x; 3, e; λ; 5) =
1

2
x2













2

9
3

√

√

√

√

(

λ − 25

−24

)5
ω

λ − 25
+ λ

24 ln 3

(λ − 25)2







2

+
2

3
x

3

√

√

√

√

(

λ − 25

−24

)2

ln 3

(

ω

λ − 25
+ λ

24 ln 3

(λ − 25)2

)

+
1

3
3

√

√

√

√

(

λ − 25

−24

)2 (

−2 ln 3
ω

(λ − 25)
− λ2 −48 ln 9

(λ − 25)3

+λ
24 ln 9

(λ − 25)2

)

+ x2 ln 9 3

√

−24

λ − 25



 ,

where ω = ln
(

3060513257434037
1125899906842624

)

.

Theorem 3.1. For m ∈ N, let {H[m−1,α]
n (x; c, a; λ; u)}n≥0 be the sequence of general-

ized Apostol-type Frobenius-Euler polynomials, whit parameters λ, u ∈ C and a, c ∈ R
+,

order α ∈ C and level m. Then the following statements hold.

(a) For every α = 0 and n ∈ N0

H
[m−1,0]
n (x; c; a; λ; u) = (x ln c)n.

(b) For α, λ ∈ C and n, k ∈ N0, we have the relationship

H
[m−1,α]
n (x; c; a; λ; u) =

n
∑

k=0

(

n

k

)

H
[m−1,α]
n−k (c; a; λ; u)(x ln c)k
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=
n
∑

k=0

(

n

k

)

H
[m−1,α−1]
n−k (c; a; λ; u)H

[m−1,1]
k (x; c; a; λ; u).

(c) Differential relations. For m ∈ N and n, j ∈ N0 with 0 ≤ j ≤ n, we have

[H[m−1,α]
n (x; c; a; λ; u)](j) =

n!

(n − j)!
(ln c)j

H
[m−1,α]
n−j (x; c, a; λ; u).

(d) Integral formulas. For m ∈ N, is fulfilled
∫ x1

x0

H
[m−1,α]
n (x; c, a; λ; u) dx =

ln c

n + 1

[

H
[m−1,α]
n+1 (x1; c, a; λ; u) − H

[m−1,α]
n+1 (x0; c, a; λ; u)

]

.

(e) Addition theorem of the argument.

(3.2) H
[m−1,α+β]
n (x + y; c, a; λ; u) =

n
∑

k=0

(

n

k

)

H
[m−1,α]
k (x; c, a; λ; u)H[m−1,β]

n−k (y; c, a; λ; u),

(3.3) H
[m−1,α]
n (x + y; c, a; λ; u) =

n
∑

k=0

(

n

k

)

H
[m−1,α]
n−k (y; c, a; λ; u)(x ln c)k,

(3.4) ((x + y) log c)n =
n
∑

k=0

(

n

k

)

H
[m−1,α]
n−k (y; c; a; λ; u)H[m−1,−α]

k (x; c; a; λ; u).

Proof. (3.2) From Definition 3.1, we have
∞
∑

n=0

H
[m−1,α+β]
n (x + y, c, a; λ; u)

tn

n!

=















m−1
∑

h=0

(z ln a)h

h!
− um

λcz − um















(α+β)

c(x+y)z

=















m−1
∑

h=0

(z ln a)h

h!
− um

λcz − um















α

cxz















m−1
∑

h=0

(z ln a)h

h!
− um

λcz − um















β

cyz

=
∞
∑

n=0

H
[m−1,α]
n (x; c; a; λ; u)

zn

n!

∞
∑

n=0

H
[m−1,β]
n (y; c; a; λ; u)

zn

n!

=
∞
∑

n=0

n
∑

k=0

(

n

k

)

H
[m−1,α]
k (x, c, a; λ; u)H

[m−1,β]
n−k (y, c, a; λ; u)

zn

n!
. �

Proof. (3.4) Making an adequate modification β = −α and aplply (3.2)
∞
∑

n=0

H
[m−1,α+β]
n (x + y; c; a; λ; u)

zn

n!



400 MJ. ORTEGA, W. RAMÍREZ, AND A. URIELES

=















m−1
∑

h=0

(z ln a)h

h!
− um

λcz − um















(α+β)

c(x+y)z

=















m−1
∑

h=0

(z ln a)h

h!
− um

λcz − um















α

cxz















m−1
∑

h=0

(z ln a)h

h!
− um

λcz − um















β

cyz

=
∞
∑

n=0

H
[m−1,α]
n (x; c; a; λ; u)

zn

n!

∞
∑

n=0

H
[m−1,−α]
n (y; c; a; λ; u)

zn

n!

=c(x+y)z

=
∞
∑

n=0

((x + y) log c)n zn

n!
.

Therefore, (3.4) holds. �

From (2.1) and Proposition 2.2 we deduce some algebraic relations connecting the
polynomials H

[m−1,α]
n (x; c, a; λ; u) with other families of polynomials.

Theorem 3.2. For m ∈ N, the generalized Apostol-type Frobenius-Euler polynomials

of level m H
[m−1,α]
n (x; c, a; λ; u), are related with the Jacobi polynomials P (α,β)

n (x), by

means of the identity.

H
[m−1,α]
n (x + y; c, a; λ; u)

(3.5)

=
n
∑

k=0

(−1)k

n
∑

j=k

j!(ln c)j

(

j + α

j − k

)(

n

j

)

(1 + α + β + 2k)
(1 + α + β + k)j+1

H
[m−1,α]
n−j (y; c, a; λ; µ; ν))P (α,β)

k (1 − 2x).

Proof. By substituting (2.1) into the right-hand side of (3.3) and using appropriate
binomial coefficient identities (see, for instance [1, 5, 6]), we see that

H
[m−1,α]
n (x + y; c, a; λ; u)

=
n
∑

j=0

(

n

j

)

H
[m−1,α]
j (y; c, a; λ; u)(n − j)!(ln c)n−j

n−j
∑

k=0

(−1)k

(

n − j + α

n − j − k

)

×
(1 + α + β + 2k)

(1 + α + β + k)n−j+1

P
(α,β)
k (1 − 2x)

=
n
∑

j=0

n−j
∑

k=0

(

n

j

)

H
[m−1,α]
j (y; c, a; λ; u)(n − j)!(ln c)n−j(−1)k

(

n − j + α

n − j − k

)
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×
(1 + α + β + 2k)

(1 + α + β + k)n−j+1

P
(α,β)
k (1 − 2x)

=
n
∑

k=0

(−1)k
n−k
∑

j=0

(

n

j

)(

n − j + α

n − j − k

)

H
[m−1,µ]
j (y; c, a; λ; u)(n − j)!(ln c)n−j

×
(1 + α + β + 2k)

(1 + α + β + k)n−j+1

P
(α,β)
k (1 − 2x)

=
n
∑

k=0

(−1)k
n
∑

j=k

j!(ln c)j

(

j + α

j − k

)(

n

j

)

(1 + α + β + 2k)

(1 + α + β + k)j+1

× H
[m−1,α]
n−j (y; c, a; λ; u)P

(α,β)
k (1 − 2x).

Therefore, (3.5) holds. �

Theorem 3.3. For m ∈ N, the generalized Apostol-type Frobenius-Euler polynomials

of level m H
[m−1,α]
n (x; c, a; λ; u), are related with the generalized Bernoulli polynomials

of level m B[m−1]
n (x), by means of the following identity

H
[m−1,α]
n (x + y; c, a; λ; u) =

n
∑

k=0

n
∑

j=k

k!(ln c)j

(k + m)!

(

n

j

)(

j

k

)

H
[m−1,α]
n−j (y; c, a; λ; µ; ν)B

[m−1]
j−k (x).

Proof. By substituting (2.2) into the right-hand side of (3.3), it suffices to follow the
proof given in Theorem 3.2, making the corresponding modifications. �

Theorem 3.4. For m ∈ N, the generalized Apostol-type Frobenius-Euler polynomials
of level m H

[m−1,α]
n (x; c, a; λ; u), are related with the Genocchi polynomials Gn(x), by

means of

H
[m−1,α]
n (x; c, a; λ; u)

=
1
2

n
∑

k=0

(ln c)k

k + 1





(

n

k

)

H
[m−1,α]
n−k (y; c, a; λ; u) +

n
∑

j=k

(

n

j

)(

j

k

)

H
[m−1,α]
n−j (y; c, a; λ; u)(ln c)j−k



Gk+1(x).

(3.6)

Proof. By substituting (2.3) into the right-hand side of (3.3), we see that

H
[m−1,α]
n (x; c, a; λ; u)

=
n
∑

j=0

(

n

j

)

H
[m−1,α]
j (y; c, a; λ; u)

(ln c)n−j

2(n − j + 1)

[

n−j
∑

k=0

(

n − j + 1
k + 1

)

Gk+1(x) + Gn−j+1(x)

]

=
n
∑

j=0

(

n

j

)

H
[m−1,α]
j (y; c, a; λ; u)

(ln c)n−j

2(n − j + 1)

n−j
∑

k=0

(

n − j + 1
k + 1

)

Gk+1(x)

+
n
∑

j=0

(

n

j

)

H
[m−1,α]
j (y; c, a; λ; u)

(ln c)n−j

2(n − j + 1)
Gn−j+1(x).

Then, using appropriate combinational identities and summations (see, for instance
[1, 5, 6]), we obtain

H
[m−1,α]
n (x + y; c, a; λ; u)
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=
1
2

n
∑

k=0

(ln c)k

k + 1





n
∑

j=k

(

n

j

)(

j

k

)

H
[m−1,α]
n−j (y; c, a; λ; u)(ln c)j−k +

(

n

k

)

H
[m−1,α]
n−k (y; c, a; λ; u)



Gk+1(x).

Therefore, (3.6) holds. �

Theorem 3.5. For m ∈ N, the generalized Apostol-type Frobeniu-Euler polynomials of

level m H
[m−1,α]
n (x; c, a; λ; u), are related with the Apostol-Euler polynomials En(x; λ),

by means of the following identity

H
[m−1,α]
n (x + y; c, a; λ; u)(3.7)

=
1

2

n
∑

j=0

(

n

j

)

[

λH[m−1,α]
n (y + 1; c, a; λ; u) + (ln c)j

H
[m−1,α]
n (y; c, a; λ; u)

]

En−j(x; λ).

Proof. By substituting (2.4) into the right-hand side of (3.3), we can see that

H
[m−1,α]
n (x + y; c, a; λ; u)

(3.8)

=
n
∑

k=0

(

n

k

)

H
[m−1,α]
k (y; c, a; λ; u)(ln c)n−k

(

1

2

)



λ
n−k
∑

j=0

(

n − k

j

)

Ej(x; λ) + En−k(x; λ)





=
n
∑

k=0

(

n

k

)

H
[m−1,α]
k (y; c, a; λ; u)(ln c)n−k

(

λ

2

)

n−k
∑

j=0

(

n − k

j

)

Ej(x; λ)

+
n
∑

k=0

(

n

k

)

H
[m−1,α]
k (y; c, a; λ; u)(ln c)n−k

(

1

2

)

En−k(x; λ).

The first sum in (3.8) becomes

n
∑

k=0

(

n

k

)

H
[m−1,α]
k (y; c, a; λ; u)(ln c)n−k

(

λ

2

)

n−k
∑

j=0

(

n − k

j

)

Ej(x; λ)(3.9)

=
n
∑

k=0

n−k
∑

j=0

(

n

k

)

(ln c)n−k

(

λ

2

)(

n − k

j

)

H
[m−1,α]
k (y; c, a; λ; u)Ej(x; λ)

=
n
∑

j=0

(

λ

2

)(

n

j

)

Ej(x; λ)
n−j
∑

k=0

(

n − j

k

)

H
[m−1,α]
k (y; c, a; λ; u)(ln c)n−k

=
n
∑

j=0

(

λ

2

)(

n

j

)

Ej(x; λ)H
[m−1,α]
n−j (y + 1; c, a; λ; u).

For the second sum in (3.8), we obtain
n
∑

k=0

(

n

k

)

H
[m−1,α]
k (y; c, a; λ; u)(ln c)n−k

(

1

2

)

En−k(x; λ)(3.10)

=
1

2

n
∑

k=0

(

n

k

)

H
[m−1,α]
n−k (y; c, a; λ; u)(ln c)k

Ek(x; λ).
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Combining (3.9) and (3.10) we get

H
[m−1,α]
n (x + y; c, a; λ; u)

=

(

λ

2

)

n
∑

j=0

(

n

j

)

Ej(x; λ)H
[m−1,α]
n−j (y + 1; c, a; λ; u)

+
1

2

n
∑

j=0

(

n

j

)

H
[m−1,α]
n−j (y; c, a; λ; u)(ln c)j

Ej(x; λ)

=
1

2

n
∑

j=0

(

n

j

)

[

λH[m−1,α]
n (y + 1; c, a; λ; u) + (ln c)j

H
[m−1,α]
n (y; c, a; λ; u)

]

En−j(x; λ).

Therefore, (3.7) holds. �

Proposition 3.1. For m ∈ N, α, λ, u, ∈ C, a, c ∈ R
+ and n ∈ N0, we have

H
[m−1,α]
n (x + y; c, a; λ; u) =

n
∑

k=0

k!

(

x

k

)

n−k
∑

j=0

(

n

j

)

H
[m−1,α]
j (y; c, a; λ; u)(ln c)n−jS(n − j, k)

=
n
∑

k=0

k!

(

x

k

)

n
∑

j=k

(

n

n − j

)

H
[m−1,α]
n−j (y; c, a; λ; u)(ln c)jS(j, k).

4. The Generalized Apostol-Frobenius-Euler Polynomials Matrix

Definition 4.1. The generalized (n+1)×(n+1) Apostol-Frobenius-Euler polynomials
matrix U

[m−1,α](x; c, a; λ; u) with m ∈ N, α, λ, u ∈ C and a, c positive real numbers is
defined by

U
[m−1,α]
i,j (x; c, a; λ; u) =











(

i

j

)

H
[m−1,α]
i−j (x; c, a; λ; u), i ≥ j,

0, otherwise.

While, the matrices

U
[m−1](x; c, a; λ; u) := U

[m−1,1](x; c, a; λ; u),

U
[m−1](c, a; λ; u) := U

[m−1](0; c, a; λ; u)

are called the Apostol-Frobenius-Euler polynomial matrix and the Apostol-Frobenius-
Euler matrix, respectively.

Since H
[m−1,0]
n (x; c, a; λ; u) = (x ln(c))n, we have U

[m−1,0](x; c, a; λ; u) = Pc[x]. It is
clear that (3.3) yields the following matrix identity:

U
[m−1,α](x + y; c, a; λ; u) = U

[m−1,α](y; c, a; λ; u)Pc[x].

Theorem 4.1. For a fixed m ∈ N, let {H[m−1,α]
n (x; c, a; λ; u)}n≥0 and

{H[m−1,β]
n (x; c, a; λ; u)}n≥0 be the sequences of generalized Apostol-type Frobenius-Euler
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polynomials in the variable x, parameters λ, u ∈ C, a, c ∈ R
+, order α ∈ C and level

m. Then satisfies the following product formula:

U
[m−1,α+β](x + y; c, a; λ; u) = U

[m−1,α](x; c, a; λ; u)U[m−1,β](y; c, a; λ; u)(4.1)

= U
[m−1,β](x; c, a; λ; u)U[m−1,α](y; c, a; λ; u)

= U
[m−1,α](y; c, a; λ; u)U[m−1,β](x; c, a; λ; u).

Proof. Let B
[m−1,α,β]
i,j,c (a; λ; u)(x, y) be the (i, j)-th entry of the matrix product

U
[m−1,α](x; c, a; λ; u)U[m−1,β](y; c, a; λ; u), then by the addition formula (3.2) we have

B
[m−1,α,β]
i,j,c (a; λ; u)(x, y) =

n
∑

k=0

(

i

k

)

H
[m−1,α]
i−k (x; c, a; λ; u)

(

k

j

)

H
[m−1,β]
k−j (y; c, a; λ; u)

=
i
∑

k=j

(

i

k

)

H
[m−1,α]
i−k (x; c, a; λ; u)

(

k

j

)

H
[m−1,β]
k−j (y; c, a; λ; u)

=
i
∑

k=j

(

i

j

)(

i − j

i − k

)

H
[m−1,α]
i−k (x; c, a; λ; u)H[m−1,β]

k−j (y; c, a; λ; u)

=

(

i

j

)

i−j
∑

k=0

(

i − j

k

)

H
[m−1,α]
i−j−k (x; c, a; λ; u)H[m−1,β]

k (y; c, a; λ; u)

=

(

i

j

)

H
[m−1,α+β]
i−j (x + y; c, a; λ; u),

which implies the first equality of the theorem. The second and third equalities of
can be derived in a similar way. �

Corollary 4.1. For a fixed m ∈ N, let {H[m−1,α]
n (x; c, a; λ; u)}n≥0 and

{H[m−1,β]
n (x; c, a; λ; u)}n≥0 be the sequences of generalized Apostol-type Frobenius-Euler

polynomials in the variable x, parameters λ, u ∈ C, a, c ∈ R
+, order α ∈ C and level

m and Pc[x] the generalized Pascal matrix of first kind in base c. Then

U
[m−1,α](x + y; c, a; λ; u) = U

[m−1,α](x; c, a; λ; u)Pc[y]

= Pc[x]U[m−1,α](y; c, a; λ; u)

= U
[m−1,α](y; c, a; λ; u)Pc[x].

In particular,

U
[m−1](x + y; c, a; λ; u) = Pc[x]U[m−1](y; c, a; λ; u)

= Pc[y]U[m−1](x; c, a; λ; u).

Proof. The substitution β = 0 into (4.1) yields

U
[m−1,α](x + y; c, a; λ; u) = U

[m−1,α](x; c, a; λ; u)U[m−1,0](y; c, a; λ; u).

Since U
[m−1,0](y; c, a; λ; u) = Pc[y], we obtain

(4.2) U
[m−1,α](x + y; c, a; λ; u) = U

[m−1,α](x; c, a; λ; u)Pc[y].
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A similar argument allows to show that

U
[m−1,α](x + y; c, a; λ; u) = Pc[x]U[m−1,α](y; c, a; λ; u)

= U
[m−1,α](y; c, a; λ; u)Pc[x].

Finally, the substitution α = 1 into (4.2) and its combination with the previous
equations completes the proof. �

Using the relation (2.5) and Corollary 4.1 we obtain the following factorization for
U

[m−1,α](x + y; c, a; λ; u) in terms of summation matrices.

U
[m−1,α](x + y; c, a; λ; u) = U

[m−1,α](x; c, a; λ; u)Gn,c[y]Gn−1,c[y] · · · G1,c[y].

Under the appropriate choice on the parameters, level and order, it is possible
to provide some illustrative examples of the generalized Apostol-Frobenius-Euler
polynomials matrices.

Example 4.1. For m = 1, c = a = e = exp(1), α = 1, λ = −1, The first four

polynomials H
[1−1,1]
k (x; e, e; 1; u), k = 0, 1, 2, 3 are

H
[1−1,1]
0 (x; e, e; 1; u) = 1,

H
[1−1,1]
1 (x; e, e; 1; u) = x −

1

1 − u
,

H
[1−1,1]
2 (x; e, e; 1; u) = x2 −

2

1 − u
x +

1 + u

(1 − u)2
,

H
[1−1,1]
3 (x; e, e; 1; u) = x3 −

3

1 − u
x2 +

3(1 + u)

(1 − u)2
x −

u2 + 4u + 1

(1 − u)3
.

Hence, for n = 3, we have

U
[m−1,1](x; e, e; 1; u) =











1 0 0 0
u10 1 0 0
u20 u21 1 0
u30 u31 u32 1











,

where

u10 = u21 = u32 = H
[1−1,1]
1 (x; e, e; 1; u),

u20 = u31 = H
[1−1,1]
2 (x; e, e; 1; u),

u30 = H
[1−1,1]
3 (x; e, e; 1; u).
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Example 4.2. For m = 1, c = a = e = exp(1), λ = 1 and u = −1, The first four

polynomials H
[1−1,α]
k (x; e, e; 1; −1), k = 0, 1, 2, 3, are

H
[1−1,α]
0 (x; e, e; 1; −1) = 1,

H
[1−1,α]
1 (x; e, e; 1; −1) = x −

α

2
,

H
[1−1,α]
2 (x; e, e; 1; −1) = x2 − αx +

α(α − 1)

4
,

H
[1−1,α]
3 (x; e, e; 1; −1) = x3 −

3α

2
x2 +

3α(α − 1)

4
x −

3α2(α − 1)

8
.

Then, for n = 3, we have

U
[m−1,α](x; e, e; 1; −1) =











1 0 0 0
u10 1 0 0
u20 2u21 1 0
u30 3u31 3u32 1











,

where

u10 = u21 = u32 = H
[1−1,α]
1 (x; e, e; 1; −1),

u20 = u31 = H
[1−1,α]
2 (x; e, e; 1; −1),

u30 = H
[1−1,α]
3 (x; e, e; 1; −1).

Example 4.3. For λ ∈ C, m = c = 2, a = 3, α = 1
2
, u = 2, we have the Example 3.1.

Therefore,

U
[1, 1

2
](x; 2, 3; λ; 2) =



















√

3
λ−4

0 0

H
[1,( 1

2
)]

1 (x; 2, 3; λ; 2)
√

3
λ−4

0
32√
1+λ

0 0

H
[1,( 1

2
)]

2 (x; 2, 3; λ; 2) 2H
[1,( 1

2
)]

1 (x; 2, 3; λ; 2)
√

3
λ−4



















.
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ON A FAMILY OF (p, q)-HYBRID POLYNOMIALS

GHAZALA YASMIN1 AND ABDULGHANI MUHYI1

Abstract. In this paper, the class of (p, q)-Bessel-Appell polynomials is introduced.
The generating function, series definition and determinant definition of this class
are established. Certain members of (p, q)-Bessel-Appell polynomials are considered
and some properties of these members are also derived. Further, the class of 2D
(p, q)-Bessel-Appell polynomials is introduced by means of the generating function
and series definition. In addition, the graphical representations of some members of
(p, q)-Bessel-Appell polynomials and 2D (p, q)-Bessel-Appell polynomials are plotted
with the help of Matlab.

1. Introduction

The quantum calculus (or called q-calculus) has been extensively studied and has
applications in various fields of mathematics, physics and engineering. Further, mo-
tivated and inspired by these applications, many mathematicians and physicist have
developed the theory of post quantum calculus (based on (p, q) numbers), an exten-
sion of the q-calculus and is denoted by (p, q)-calculus. The recent interest in the
subject is due to the fact that the (p, q)-calculus has popped in such diverse areas
as quantum algebra, number theory etc. [3–5,12]. Recently, Duran et al. [5] defined
(p, q)-analogues of Bernoulli, Euler and Genocchi polynomials and derived the (p, q)-
analogues of some known earlier formulae. We now review briefly some definitions
and notations of (p, q)-calculus taken from [3,4, 12].

The (p, q)-numbers are defined as follows:

[α]p,q = pα−1 + pα−2q + pα−3q2 + · · · + pqα−2 + qα−1 =
pα − qα

p − q
, q < p ≤ 1, α ∈ N.

Key words and phrases. (p, q)-Bessel polynomials, generating relations, determinant definition,
(p, q)-Appell polynomials.
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We note that [α]p,q = pα−1[α]q/p, where [α]q/p is the q-number given by [α]q/p =
(q/p)α−1
(q/p)−1

. By appropriately using the relation [α]p,q = pα−1[α]q/p, most (if not all) of

the (p, q)-results can be derived from the corresponding known q-results by merely
changing the parameters and variables involved. In case of p = 1, (p, q)-numbers
reduce to q-numbers [8, 9].

The (p, q)-factorial [m]p,q! is defined by

[m]p,q! =
m
∏

s=1

[s]p,q = [1]p,q[2]p,q[3]p,q · · · [m]p,q, m ∈ N, [0]p,q! = 1.

The (p, q)-binomial coefficient
[

m
s

]

p,q
is defined by

[

m

s

]

p,q

=
[m]p,q!

[s]p,q! [m − s]p,q!
, s = 0, 1, 2, . . . , m.

The (p, q)-analogue of (x + y)n is given by

(x + y)m
p,q =

m
∑

s=0

[

m

s

]

p,q

p(m−s

2 )q(s

2)xsym−s, (p, q)-Gauss Binomial Formula.

The (p, q)-analogue of the classical derivative Df of a function f with respect to t

is defined by

Dp,qf(t) =
f(pt) − f(qt)

pt − qt
, t 6= 0.

Also, we note that

(i) (Dp,qf)(0) = f
′

(0), provided that f is differentiable at 0;
(ii) Dp,q(a1f(t) + a2 g(t)) = a1Dp,qf(t) + a2Dp,qg(t);
(iii)

Dp,q(fg)(t) = f(pt)Dp,qg(t) + g(qt)Dp,qf(t) = g(pt)Dp,qf(t) + f(qt)Dp,qg(t);

(iv)

Dp,q

(

f(t)

g(t)

)

=
g(pt)Dp,qf(t) − f(pt)Dp,qg(t)

g(pt)g(qt)
=

g(qt)Dp,qf(t) − f(qt)Dp,qg(qt)

g(pt)g(qt)
.

The (p, q)-exponential functions are given as:

ep,q(t) =
∞
∑

m=0

p(m

2 ) tm

[m]p,q!
,(1.1)

Ep,q(t) =
∞
∑

m=0

q(m

2 ) tm

[m]p,q!
,(1.2)

which satisfy the following properties:

Dp,qep,q(t) =ep,q(pt), Dp,qEp,q(t) = Ep,q(qt),(1.3)

ep,q(t)Ep,q(−t) =Ep,q(t)ep,q(−t) = 1.(1.4)
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The class of Appell polynomials was introduced and characterized completely by
Appell [2]. Further, Throne [16], Sheffer [15] and Varma [17] studied this class of
polynomials from different points of views. Sharma and Chak [14] introduced a q-
analogue for the class of Appell polynomials and called this sequence of polynomials
as q-Harmonic. Later, Al-Salam [1] introduced the class of q-Appell polynomials
{Am,q(x)}∞

m=0 and studied some of its properties. These polynomials arise in numerous
problems of applied mathematics, theoretical physics, approximation theory and many
other branches of mathematics. Recently, many researchers introduced and studied
some hybrid special polynomials related to q-Appell polynomials (see for example
[19]). The polynomials Am,q(x) (of degree m) are called q-Appell provided that they
satisfy the q-differential equation given by:

(1.5) Dq,x{Am,q(x)} = [m]qAm−1,q(x), m = 0, 1, 2, 3, . . . , q ∈ C, 0 < |q| < 1.

The (p, q)-Appell polynomials (pqAP) {Am,p,q(x)}∞
m=0 (see [11]) are defined by

means of the followin generating functions

(1.6) Ap,q(t) ep,q(xt) =
∞
∑

m=0

Am,p,q(x)
tm

[m]p,q!
,

where

(1.7) Ap,q(t) =
∞
∑

m=0

Am,p,q
tm

[m]p,q!
, Ap,q(t) 6= 0,A0,p,q = 1

and Am,p,q := Am,p,q(0) denotes the (p, q)-Appell numbers.

The explicit form of the pqAP Am,p,q(x) given as (see [11]):

(1.8) Am,p,q(x) =
m
∑

s=0

[

m

s

]

p,q

p(m−s

2 )As,p,qx
m−s.

The function Ap,q(t) may be called the determining function for the set Am,p,q(x).
Based on suitable selections for the function Ap,q(t), different members belonging to
the family of (p, q)-Appell polynomial Am,p,q(x) can be obtained. These members are
mentioned in Table 1.

Table 1. Some known (p, q)-Appell polynomials

S. No. Ap,q(t) Generating Functions Polynomials

I. Ap,q(t) = t
(ep,q(t)−1)

t
(ep,q(t)−1)

ep,q(xt) =
∑∞

m=0 Bm,p,q(x) tm

[m]p,q !
The (p, q)-Bernoulli

polynomials [6] (see also [11])

II. Ap,q(t) = [2]p,q

(ep,q(t)+1)
[2]p,q

(ep,q(t)+1)
ep,q(xt) =

∑∞
m=0 Em,p,q(x) tm

[m]p,q !
The (p, q)-Euler polynomials [6]

III. Ap,q(t) = [2]p,qt
(ep,q(t)+1)

[2]p,qt
(ep,q(t)+1)

ep,q(xt) =
∑∞

m=0 Gm,p,q(x) tm

[m]p,q !
, The (p, q)-Genocchi polynomials [6]

The Bessel polynomials form a set of orthogonal polynomials on the unit circle in
the complex plane. They are important in certain problems of mathematical physics,
for example, they arise in the study of electrical networks and when the wave equation
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is considered in spherical coordinates. Several important properties and applications
of these polynomials can be found in [7].

The Bessel polynomials ρm(x) [18] are defined by means of the following generating
function

∞
∑

m=0

ρm(x)
tm

m!
= ex(1−

√
1−2t).

This paper is organized as follows. In Section 2, the (p, q)-Bessel-Appell polynomials
are introduced by means of the generating function and series definition. Also, the
determinant definition and some properties for the (p, q)-Bessel-Appell polynomials are
established. Further, some members of (p, q)-Bessel-Appell polynomials are considered.
In Section 3, the 2D (p, q)-Bessel-Appell polynomials are introduced by means of the
generating function and series definition. In Section 4, the graphical representations of
some members belonging to (p, q)-Bessel-Appell and 2D (p, q)-Bessel-Appell families
are plotted for suitable values of the indices.

2. (p, q)-Bessel-Appell Polynomials

In this section, we introduce the (p, q)-Bessel-Appell polynomials (pqBeAP) by
means of generating function, series definition and determinant definition. First,
we introduce the (p, q)-analogue of the Bessel polynomials denoted as (p, q)-Bessel
polynomials ρm,p,q(x).

Definition 2.1. The (p, q)-analogue of the Bessel polynomials pn(x) are defined by
the following generating function:

(2.1)
∞
∑

m=0

ρm,p,q(x)
tm

[m]p,q!
= ep,q(x(1 −

√
1 − 2t))

and posses the following series expansion:

ρm,p,q(x) =
m−1
∑

s=0

[m − 1 + s]p,q! xm−s

[m − 1 − s]p,q![s]p,q! 2s
.

In order to establish the generating function for the pqBeAP, the following result
is proved.

Theorem 2.1. The following generating function for the (p, q)-Bessel-Appell polyno-

mials ρAm,p,q(x) holds true:

(2.2) Ap,q(t)ep,q(x(1 −
√

1 − 2t)) =
∞
∑

m=0

ρAm,p,q(x)
tm

[m]p,q!
.

Proof. By expanding the (p, q)-exponential function ep,q(xt) in the left hand side of
the equation (1.6) and then replacing the powers of x, i.e., x0, x, x2, . . . , xm by the
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corresponding polynomials ρ0,p,q(x), ρ1,p,q(x), ρ2,p,q(x), . . . , ρm,p,q(x) in the left hand
side and x by ρ1,p,q(x) in the right hand side of the resultant equation, we have

Ap,q(t)

(

1 + ρ1,p,q(x)
t

[1]p,q!
+ ρ2,p,q(x)

t2

[2]p,q!
+ · · · + ρm,p,q(x)

tm

[m]p,q!
+ · · ·

)

=
∞
∑

m=0

Am,p,q(ρ1,p,q(x))
tm

[m]p,q!
.(2.3)

Further, summing up the series in left hand side and then using equation (2.1) in
the resultant equation, we get

Ap,q(t)ep,q(x(1 −
√

1 − 2t)) =
∞
∑

m=0

Am,p,q(ρ1,p,q(x))
tm

[m]p,q!
.

Finally, denoting the resultant pqBeAP in the right hand side of the above equation
by ρAm,p,q(x), that is

Am,p,q(ρ1,p,q(x)) = ρAm,p,q(x),

the assertion (2.2) is proved. �

Remark 2.1. It is remarked that for p = 1, the pqBeAP ρAm,p,q(x) reduce to the
q-Bessel-Appell polynomials (qBeAP) ρAm,q(x) such that

ρAm,q(x) := ρAm,1,q(x).

Thus, taking p = 1 in equation (2.2), we get

Aq(t)eq(x(1 −
√

1 − 2t)) =
∞
∑

m=0

ρAm,q(x)
tm

[m]q!
,

which is the generating function for the q-Bessel-Appell polynomials.

Next, the series definition for the pqBeAP ρAm,p,q(x) is derived by proving the
following result.

Theorem 2.2. The (p, q)-Bessel-Appell polynomials ρAm,p,q(x) are defined by the

following series definition:

(2.4) ρAm,p,q(x) =
m
∑

s=0

[

m

s

]

p,q

As,p,q ρm−s,p,q(x).

Proof. In view of equations (1.7) and (2.1), equation (2.2) can be written as:
∞
∑

s=0

As,p,q
ts

[s]p,q!

∞
∑

m=0

ρm,p,q(x)
tm

[m]p,q!
=

∞
∑

m=0

ρAm,p,q(x)
tm

[m]p,q!
,

which on using the Cauchy product rule gives
∞
∑

m=0

m
∑

s=0

[

m

s

]

p,q

As,p,q ρm−s,p,q(x)
tm

[m]p,q!
=

∞
∑

m=0

ρAm,p,q(x)
tm

[m]p,q!
.

Equating the coefficients of like powers of t in both sides of the above equation, we
arrive at our assertion (2.4). �
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Remark 2.2. For p = 1, series definition (2.4) becomes

ρAm,q(x) =
m
∑

s=0

[

m

s

]

q

As,q ρm−s,q(x),

which is the series definition for the q-Bessel-Appell polynomials.

Next, we establish the determinant definition for the pqBeAP ρAm,p,q(x).

Theorem 2.3. The (p, q)-Bessel-Appell polynomials ρAm,p,q(x) of degree m are defined
by

ρA0,p,q(x) =
1

B0,p,q

,(2.5)

ρAm,p,q(x) =
(−1)m

(B0,p,q)m+1
(2.6)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

B0,p,q B1,p,q B2,p,q . . . Bm−1,p,q Bm,p,q

0 B0,p,q

[

2
1

]

p,q
B1,p,q . . .

[

m−1
1

]

p,q
Bm−2,p,q

[

m

1

]

p,q
Bm−1,p,q

0 0 B0,p,q . . .
[

m−1
2

]

p,q
Bm−3,p,q

[

m

2

]

p,q
Bm−2,p,q

...
...

...
. . .

...
...

0 0 0 . . . B0,p,q

[

m

m−1

]

p,q
B1,p,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

Bm,p,q = − 1
A0,p,q

( m
∑

s=1

[

m

s

]

p,q

As,p,qBm−s,p,q

)

, m = 1, 2, 3, . . . ,

where B0,p,q 6= 0, B0,p,q = 1
A0,p,q

and ρm,p,q(x), m = 0, 1, 2, . . . , are the (p, q)-Bessel

polynomials of degree m.

Proof. Consider ρAm,p,q(x) to be a sequence of the pqBeAP defined by equation (2.2)
and Am,p,q, Bm,p,q be two numerical sequences (the coefficients of q-Taylor’s series
expansions of functions) such that

Ap,q(t) =A0,p,q + A1,p,q
t

[1]p,q!
+ A2,p,q

t2

[2]p,q!
+ · · · + Am,p,q

tm

[m]p,q!
+ · · · ,

m = 0, 1, 2, 3, . . . , A0,p,q 6= 0,(2.7)

Âp,q(t) =B0,p,q + B1,p,q
t

[1]p,q!
+ B2,p,q

t2

[2]p,q!
+ · · · + Bm,p,q

tm

[m]p,q!
+ · · · ,

m = 0, 1, 2, 3, . . . , B0,p,q 6= 0,(2.8)

satisfying

(2.9) Ap,q(t)Âp,q(t) = 1.
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On using Cauchy product rule for the two series production Ap,q(t)Âp,q(t), we get

Ap,q(t)Âp,q(t) =
∞
∑

m=0

Am,p,q
tm

[m]p,q!

∞
∑

m=0

Bm,p,q
tm

[m]p,q!

=
∞
∑

m=0

m
∑

s=0

[

m

s

]

p,q

As,p,qBm−s,p,q
tm

[m]p,q!
.

Consequently,

(2.10)
m
∑

s=0

[

m

s

]

p,q

As,p,qBm−s,p,q =







1, if m = 0,

0, if m > 0.

That is

(2.11)























B0,p,q =
1

A0,p,q

,

Bm,p,q = − 1

A0,p,q





m
∑

s=1

[

m

s

]

p,q

As,p,qBm−s,p,q



 , m = 1, 2, . . .

Next, multiplying both sides of equation (2.2) by Âp,q(t), we get

Ap,q(t)Âp,q(t)ep,q(x(1 −
√

1 − 2t)) = Âp,q(t)
∞
∑

m=0

ρAm,p,q(x)
tm

[m]p,q!
.

Further, in view of equations (2.1), (2.8) and (2.9), the above equation becomes

(2.12)
∞
∑

m=0

ρm,p,q(x)
tm

[m]p,q!
=

∞
∑

m=0

Bm,p,q
tm

[m]p,q!

∞
∑

m=0

ρAm,p,q(x)
tm

[m]p,q!
.

Now, on using Cauchy product rule for the two series in the r.h.s of equation (2.12),
we obtain the following infinite system for the unknowns ρAm,p,q(x):

(2.13)


















































































B0,p,q ρA0,p,q(x) = 1,

B1,p,q ρA0,p,q(x) + B0,p,q ρA1,p,q(x) = ρ1,p,q(x),

B2,p,q ρA0,p,q(x) +
[

2
1

]

p,q
B1,p,q ρA1,p,q(x) + B0,p,q ρA2,p,q(x) = ρ2,p,q(x),

...

Bm−1,p,q ρA0,p,q(x) +
[

m−1
1

]

p,q
Bm−2,p,q ρA1,p,q(x) + · · · + B0,p,q ρAm−1,p,q(x)

= ρm−1,p,q(x),

Bm,p,q ρA0,p,q(x) +
[

m
1

]

p,q
Bm−1,p,q ρA1,p,q(x) + · · · + B0,p,q ρAm,p,q(x) = ρm,p,q(x),

...

Obviously the first equation of system (2.13) leads to our first assertion (2.5). The
coefficient matrix of system (2.13) is lower triangular, so, this helps us to obtain
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the unknowns ρAm,p,q(x) by applying Cramer rule to the first m + 1 equations of
system (2.13). According to this, we can obtain
(2.14)

ρAm,p,q(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

B0,p,q 0 0 . . . 0 1

B1,p,q B0,p,q 0 . . . 0 ρ1,p,q(x)

B2,p,q

[

2
1

]

p,q
B1,p,q B0,p,q . . . 0 ρ2,p,q(x)

...
...

...
. . .

...
...

Bm−1,p,q

[

m−1
1

]

p,q
Bm−2,p,q

[

m−1
2

]

p,q
Bm−3,p,q . . . B0,p,q ρm−1,p,q(x)

Bm,p,q

[

m

1

]

p,q
Bm−1,p,q

[

m

2

]

p,q
Bm−2,p,q ...

[

m

m−1

]

p,q
B1,p,q ρm,p,q(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

B0,p,q 0 0 . . . 0 1

B1,p,q B0,p,q 0 . . . 0 0

B2,p,q

[

2
1

]

p,q
B1,p,q B0,p,q . . . 0 0

...
...

...
. . .

...
...

Bm−1,p,q

[

m−1
1

]

p,q
Bm−2,p,q

[

m−1
2

]

p,q
Bm−3,p,q . . . B0,p,q 0

Bm,p,q

[

m

1

]

p,q
Bm−1,p,q

[

m

2

]

p,q
Bm−2,p,q . . .

[

m

m−1

]

p,q
B1,p,q B0,p,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where m = 1, 2, 3, . . . , which on expanding the determinant in the denominator and
taking the transpose of the determinant in the numerator, yields to

(2.15)

ρAm,p,q(x) =
1

(B0,p,q)m+1

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

B0,p,q B1,p,q B2,p,q . . . Bm−1,p,q Bm,p,q

0 B0,p,q

[

2
1

]

p,q
B1,p,q . . .

[

m−1
1

]

p,q
Bm−2,p,q

[

m

1

]

p,q
Bm−1,p,q

0 0 B0,p,q . . .
[

m−1
2

]

p,q
Bm−3,p,q

[

m

2

]

p,q
Bm−2,p,q

...
...

...
. . .

...
...

0 0 0 . . . B0,p,q

[

m

m−1

]

p,q
B1,p,q

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Finally, after m circular row exchanges, that is after moving the jth row to the
(j + 1)th position for j = 1, 2, 3, . . . , m − 1, we arrive at our assertion (2.6). �

On taking p = 1 in Theorem 2.3, we get the determinant definition for the q-Bessel-
Appell polynomials ρAm,q(x).

Corollary 2.1. The q-Bessel-Appell polynomials ρAm,q(x) of degree m are defined by

ρA0,q(x) =
1

B0,q

,(2.16)
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ρAm,q(x) =
(−1)m

(B0,q)m+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1,q(x) ρ2,q(x) . . . ρm−1,q(x) ρm,q(x)

B0,q B1,q B2,q . . . Bm−1,q Bm,q

0 B0,q

[

2
1

]

q
B1,q . . .

[

m−1
1

]

q
Bm−2,q

[

m

1

]

q
Bm−1,q

0 0 B0,q . . .
[

m−1
2

]

q
Bm−3,q

[

m

2

]

q
Bm−2,q

...
...

...
. . .

...
...

0 0 0 . . . B0,q

[

m

m−1

]

q
B1,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(2.17)

Bm,q = − 1
A0,q

( m
∑

s=1

[

m

s

]

q

As,qBm−s,q

)

, m = 1, 2, 3, . . .

Theorem 2.4. The following identity for the pqBeAP ρAm,p,q(x) holds true:

ρAm,p,q(x) =
1

B0,p,q

(

ρm,p,q(x) −
m−1
∑

s=0

[

m

s

]

p,q

Bm−s,p,q ρAs,p,q(x)

)

, m = 1, 2, . . .

Proof. Expanding the determinant in equation (2.6) with respect to the (m + 1)th row
and using the same technique used in [10], we get the required result. �

On taking p = 1 in Theorem 2.4, we get the following result for the q-Bessel-Appell
polynomials ρAm,q(x).

Corollary 2.2. The following identity for the qBeAP ρAm,q(x) holds true:

ρAm,q(x) =
1

B0,q

(

ρm,q(x) −
m−1
∑

s=0

[

m

s

]

q

Bm−s,q ρAs,q(x)

)

, m = 1, 2, . . .

2.1. Certain Members of the (p, q)-Bessel-Appell Polynomials. Recently, dif-
ferent members of the family of (p, q)-Appell polynomials are studied by many re-
searchers (see for example [4, 5]). By making suitable selections for the function
Ap,q(t), the members belonging to the family of the (p, q)-Bessel-Appell polynomials

ρAm,p,q(x) can be obtained. The (p, q)-Bernoulli polynomials (pqBP) Bm,p,q(x), (p, q)-
Euler polynomials (pqEP) Em,p,q(x) and (p, q)-Genocchi polynomials (pqGP) Gm,p,q(x)
are important members of the (p, q)-Appell family. In this subsection, we introduce the
(p, q)-Bessel-Bernoulli polynomials (pqBeBP) ρBm,p,q(x), (p, q)-Bessel-Euler polynomi-
als (pqBeEP) ρEm,p,q(x) and (p, q)-Bessel-Genocchi polynomials (pqBeGP) ρGm,p,q(x)
by means of the generating functions, series definitions and determinant definitions.

2.1.1. (p, q)-Bessel-Bernoulli polynomials. Since, for Ap,q(t) = t
ep,q(t)−1

, the pqAP

Am,p,q(x) reduce to the pqBP Bm,p,q(x) (Table 1 (I)). Therefore, for the same choice
of Ap,q(t), the pqBeAP ρAm,p,q(x) reduce to pqBeBP ρBm,p,q(x), which are defined by
means of following generating function:

(2.18)
t

ep,q(t) − 1
ep,q(x(1 −

√
1 − 2t)) =

∞
∑

m=0

ρBm,p,q(x)
tm

[m]p,q!
.
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The pqBeBP ρBm,p,q(x) of degree m are defined by the series

ρBm,p,q(x) =
m
∑

s=0

[

m

s

]

p,q

Bs,p,qρm−s,p,q(x).

The following identity for the pqBeBP ρBm,p,q(x) holds true:

(2.19) ρBm,p,q(x) =
1

B0,p,q

(

ρm,p,q(x)−
m−1
∑

s=0

[

m

s

]

p,q

Bm−s,p,q ρBs,p,q(x)

)

, m = 1, 2, . . .

Further, by taking B0,p,q = 1 and Bj,p,q = 1
[j+1]p,q

, j = 1, 2, 3, . . . , in equations (2.5)

and (2.6), we obtain the determinant definition of the pqBeBP ρBm,p,q(x).

Definition 2.2. The (p, q)-Bessel-Bernoulli polynomials ρBm,p,q(x) of degree m are
defined by

ρB0,p,q(x) =1,(2.20)

ρBm,p,q(x) =(−1)m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

1 1
[2]p,q

1
[3]p,q

. . .
1

[m]p,q

1
[m+1]p,q

0 1
[

2
1

]

p,q

1
[2]p,q

. . .
[

m−1
1

]

p,q

1
[m−1]p,q

[

m

1

]

p,q

1
[m]p,q

0 0 1 . . .
[

m−1
2

]

p,q

1
[m−2]p,q

[

m

2

]

p,q

1
[m−1]p,q

...
...

...
. . .

...
...

0 0 0 . . . 1
[

m

m−1

]

p,q

1
[2]p,q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(2.21)

m = 1, 2, 3, . . . ,

where ρm,p,q(x), m = 0, 1, 2, 3, . . . , are the (p, q)-Bessel polynomials of degree m.

2.1.2. (p, q)-Bessel-Euler polynomials. Since, for Ap,q(t) = [2]p,q

ep,q(t)+1
, the pqAP

Am,p,q(x) reduce to the pqEP Em,p,q(x) (Table 1 (II)). Therefore, for the same choice
of Ap,q(t), the pqBeAP ρAm,p,q(x) reduce to pqBeEP ρEm,p,q(x) which are defined by
means of following generating function:

(2.22)
[2]p,q

ep,q(t) + 1
ep,q(x(1 −

√
1 − 2t)) =

∞
∑

m=0

ρEm,p,q(x)
tm

[m]p,q!
.

The pqBeEP ρEm,p,q(x) of degree m are defined by the series:

ρEm,p,q(x) =
m
∑

s=0

[

m

s

]

p,q

Es,p,qρm−s,p,q(x).

The following identity for the pqBeEP ρEm,p,q(x) holds true:

ρEm,p,q(x) =
1

B0,p,q

(

ρm,p,q(x) −
m−1
∑

s=0

[

m

s

]

p,q

Bm−s,p,q ρEs,p,q(x)

)

, m = 1, 2, . . .

Further, by taking B0,p,q = 1 and Bj,p,q = 1
2
, j = 1, 2, 3, . . . , in equations (2.5) and

(2.6), we obtain the determinant definition of the pqBeEP ρEm,p,q(x).
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Definition 2.3. The (p, q)-Bessel-Euler polynomials ρEm,p,q(x) of degree m are defined
by

ρE0,p,q(x) =1,(2.23)

ρEm,p,q(x) =(−1)m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ1,p,q(x) ρ2,p,q(x) . . . ρm−1,p,q(x) ρm,p,q(x)

1 1
2

1
2 . . .

1
2

1
2

0 1
[

2
1

]

p,q

1
2 . . .

[

m−1
1

]

p,q

1
2

[

m

1

]

p,q

1
2

0 0 1 . . .
[

m−1
2

]

p,q

1
2

[

m

2

]

p,q

1
2

...
...

...
. . .

...
...

0 0 0 . . . 1
[

m

m−1

]

p,q

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(2.24)

m = 1, 2, 3, . . . ,

where ρm,p,q(x), m = 0, 1, 2, 3, . . . , are the (p, q)-Bessel polynomials of degree m.

2.1.3. (p, q)-Bessel-Genocchi polynomials. Since, for Ap,q(t) = [2]p,qt
ep,q(t)+1

, the pqAP

Am,p,q(x) reduce to the pqGP Gm,p,q(x) (Table 1 (III)). Therefore, for the same choice
of Ap,q(t), the pqBeAP ρAm,p,q(x) reduce to pqBeGP ρGm,p,q(x) which are defined by
means of following generating functions:

(2.25)
[2]p,qt

ep,q(t) + 1
ep,q(x(1 −

√
1 − 2t)) =

∞
∑

m=0

ρGm,p,q(x)
tm

[m]p,q!
.

The pqBeGP ρGm,p,q(x) of degree m are defined by the series:

ρGm,p,q(x) =
m
∑

s=0

[

m

s

]

p,q

Gs,p,qρm−s,p,q(x).

The following identity for the pqBeGP ρGm,p,q(x) holds true:

ρGm,p,q(x) =
1

B0,p,q

(

ρm,p,q(x) −
m−1
∑

s=0

[

m

s

]

p,q

Bm−s,p,q ρGs,p,q(x)

)

, m = 1, 2, . . .

3. 2D (p, q)-Bessel-Appell Polynomials

First, we introduce the (p, q)-analogue of the 2D Appell polynomials which are the
2-variable generalization of the (p, q)-Appell polynomials denoted as 2D (p, q)-Appell
polynomials Am,p,q(x, y).

Definition 3.1. The (p, q)-analogue of the 2D Appell polynomials Am,p,q(x, y) are
defined by the following generating function:

(3.1) Ap,q(t) ep,q(xt)Ep,q(yt) =
∞
∑

m=0

Am,p,q(x, y)
tm

[m]p,q!
, Am,p,q = Am,p,q(0, 0).
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Table 2. Some members of 2D (p, q)-Appell polynomials

S. No. Ap,q(t) Generating Functions Polynomials

I. Ap,q(t) = t

(ep,q(t)−1)
t

(ep,q(t)−1)
ep,q(xt)Ep,q(yt) The 2D (p, q)-Bernoulli

=
∑

∞

m=0
Bm,p,q(x, y) tm

[m]p,q !
polynomials

II. Ap,q(t) =
[2]p,q

(ep,q(t)+1)

[2]p,q

(ep,q(t)+1)
ep,q(xt)Ep,q(yt) The 2D (p, q)-Euler

=
∑

∞

m=0
Em,p,q(x, y) tm

[m]p,q !
polynomials

III. Ap,q(t) =
[2]p,qt

(ep,q(t)+1)

[2]p,qt

(ep,q(t)+1)
ep,q(xt)Ep,q(yt) The 2D (p, q)-Genocchi

=
∑

∞

m=0
Gm,p,q(x, y) tm

[m]p,q !
polynomials

Some members of the 2D (p, q)-Appell polynomials are listed in Table 2.
The approach used in previous section is further exploited to introduce the 2D

(p, q)-Bessel-Appell polynomials (2DpqBeAP) and focus on deriving its generating
functions and series definitions.

In order to establish the generating function for the 2DpqBeAP, the following result
is proved.

Theorem 3.1. The following generating function for the 2D (p, q)-Bessel-Appell

polynomials ρAm,p,q(x, y) holds true:

(3.2) Ap,q(t)ep,q(x(1 −
√

1 − 2t))Ep,q(yt) =
∞
∑

m=0

ρAm,p,q(x, y)
tm

[m]p,q!
.

Proof. By expanding the first (p, q)-exponential function ep,q(xt) in the left hand side
of the equation (3.1) and then replacing the powers of x, i.e., x0, x, x2, . . . , xm by the
corresponding polynomials ρ0,p,q(x), ρ1,p,q(x), ρ2,p,q(x), . . . , ρm,p,q(x) in the left hand
side and x by ρ1,p,q(x) in the right hand side of the resultant equation, we have

Ap,q(t)

(

1 + ρ1,p,q(x)
t

[1]p,q!
+ ρ2,p,q(x)

t2

[2]p,q!
+ · · · + ρm,p,q(x)

tm

[m]p,q!
+ · · ·

)

Ep,q(yt)

=
∞
∑

m=0

Am,p,q(ρ1,p,q(x), y)
tm

[m]p,q!
.

Further, summing up the series in left hand side and then using equation (2.1) in
the resultant equation, we get

Ap,q(t)ep,q(x(1 −
√

1 − 2t))Ep,q(yt) =
∞
∑

m=0

Am,p,q(ρ1,p,q(x), y)
tm

[m]p,q!
.

Finally, denoting the resultant 2DpqBeAP in the right hand side of the above
equation by ρAm,p,q(x, y), that is

Am,p,q(ρ1,p,q(x), y) = ρAm,p,q(x, y),

the assertion (3.2) is proved. �
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Remark 3.1. It is remarked that for p = 1, the 2DpqBeAP ρAm,p,q(x, y) reduce to the
2D q-Bessel-Appell polynomials (2DqBeAP) ρAm,q(x, y) such that

ρAm,q(x, y) := ρAm,1,q(x, y).

Thus, taking p = 1 in equation (3.2), we get

Aq(t)eq(x(1 −
√

1 − 2t))Eq(yt) =
∞
∑

m=0

ρAm,q(x, y)
tm

[m]q!
,

which is the generating function for the 2D q-Bessel-Appell polynomials.

Next, we give the series definition for the 2DpqBeAP ρAm,p,q(x, y), by proving the
following result.

Theorem 3.2. The 2D (p, q)-Bessel-Appell polynomials ρAm,p,q(x, y) are defined by

the following series definition:

(3.3) ρAm,p,q(x, y) =
m
∑

s=0

[

m

s

]

p,q

q(s

2)ys
ρAm−s,p,q(x).

Proof. In view of equations (1.2) and (2.2), equation (3.2) can be written as:

∞
∑

m=0

ρAm,p,q(x)
tm

[m]p,q!

∞
∑

s=0

q(s

2) ys ts

[s]p,q!
=

∞
∑

m=0

ρAm,p,q(x, y)
tm

[m]p,q!
,

which on using the Cauchy product rule gives

(3.4)
∞
∑

m=0

m
∑

s=0

[

m

s

]

p,q

q(s

2)ys
ρAm−s,p,q(x)

tm

[m]p,q!
=

∞
∑

m=0

ρAm,p,q(x, y)
tm

[m]p,q!
.

Equating the coefficients of like powers of t in both sides of the above equation, we
arrive at our assertion (3.3). �

Remark 3.2. For p = 1, series definition (3.3) becomes

ρAm,q(x, y) =
m
∑

s=0

[

m

s

]

q

q(s

2)ys
ρAm−s,q(x),

which is the series definition for the 2D q-Bessel-Appell polynomials.

Certain members belonging to the 2D (p, q)-Appell family are given in Table 2.
Since, corresponding to each member belonging to the 2D (p, q)-Appell family, there
exists a new special polynomial belonging to the 2D (p, q)-Bessel-Appell family. Thus,
by making suitable choices for the functions Ap,q(t) in equations (3.2) and (3.3), the
generating functions and series definitions for the corresponding members belonging
to the 2D (p, q)-Bessel-Appell family can be obtained. The resultant members of
the 2D (p, q)-Bessel-Appell family along with their generating functions and series
definitions are given in Table 3.
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Table 3. Certain members belonging to the 2D (p, q)-Bessel-Appell polynomials

S. No. Ap,q(t) Generating Functions Series Definition Polynomials

I. t
(ep,q(t)−1)

t
(ep,q(t)−1)

ep,q(x(1 −
√

1 − 2t))Ep,q(yt) ρBm,p,q(x, y) The 2D (p, q)-Bessel-Bernoulli

=
∑∞

m=0 ρBm,p,q(x, y) tm

[m]p,q !
=
∑m

s=0

[

m
s

]

p,q
q(s

2)ys
ρBm−s,p,q(x) polynomials

II. [2]p,q

(ep,q(t)+1)
[2]p,q

(ep,q(t)+1)
ep,q(x(1 −

√
1 − 2t))Ep,q(yt) ρEm,p,q(x, y) The 2D (p, q)-Bessel-Euler

=
∑∞

m=0 ρEm,p,q(x, y) tm

[m]p,q !
=
∑m

s=0

[

m
s

]

p,q
q(s

2)ys
ρEm−s,p,q(x) polynomials

III. [2]p,qt
(ep,q(t)+1)

[2]p,qt
(ep,q(t)+1)

ep,q(x(1 −
√

1 − 2t))Ep,q(yt) ρGm,p,q(x, y) The 2D (p, q)-Bessel-Genocchi

=
∑∞

m=0 ρGm,p,q(x, y) tm

[m]p,q !
, =

∑m
s=0

[

m
s

]

p,q
q(s

2)ys
ρGm−s,p,q(x) polynomials

4. Graphical Representation

In this section with the help of Matlab, we plot the graphs of (p, q)-Bessel-Bernoulli
polynomials ρBm,p,q(x), (p, q)-Bessel-Euler polynomials ρEm,p,q(x). To draw the graphs
of these polynomials, we consider the values of the first four (p, q)-Bessel polynomials
ρm,p,q(x), the expressions of these polynomials are given in Table 4.

Table 4. Expressions of the first four ρm,p,q(x).

m 0 1 2 3

ρm,p,q(x) 1 x x2 + [2]p,q

2
x x3 + [3]p,q [2]p,q

2
x2 + [4]p,q [3]p,q

4
x

Next, taking p = 1
2
, q = 1

4
in the determinant definitions (2.21), (2.24) and using

the expressions of the ρm,p,q(x) from Table 4, we get the results mentioned in Table 5
for m = 0, 1, 2, 3.

Table 5. The first four expressions of ρBm,
1

2
,

1

4

(x) and ρEm,
1

2
,

1

4

(x).

m 0 1 2 3

ρBm, 1
2

, 1
4
(x) 1 −4

3
+ x x2 − 5

8
x − 20

21
x3 − 161

384
x2 − 7493

12288
x − 107

45

ρEm, 1
2

, 1
4
(x) 1 −1

2
+ x x2 − 5

16
x3 − 7

128
x2 − 791

4096
x − 165

512

Now, with the help of Matlab and using equations (2.20), (2.23) and the expressions
of ρBm,p,q(x) and ρEm,p,q(x) from Table 5, we get the graphs at Figure 1 and 2.
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Figure 1. Graph of ρBm,p,q(x)
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Figure 2. Graph of ρEm,p,q(x)

Further, setting m = 3, p = 1
2
, q = 1

4
in the series definitions of ρBm,p,q(x, y),

ρEm,p,q(x, y) given in Table 3 and using the expressions of ρBm,p,q(x), ρEm,p,q(x) from
Table 5, we have

ρB3,
1

2
,

1

4

(x, y) =x
3 − 161

384
x

2 − 7493
12288

x − 107
45

+
7
16

x
2
y − 35

128
xy − 5

12
y − 7

48
y

2 +
7
64

xy
2 +

1
64

y
3
,

(4.1)

ρE3,
1

2
,

1

4

(x, y) =x
3 − 7

128
x

2 − 791
4096

x − 165
512

+
7
16

x
2
y − 35

256
y − 7

128
y

2 +
7
64

xy
2 +

1
64

y
3
,

(4.2)

In view of equations (4.1)–(4.2), we get the surface plots at Figure 3 and 4.
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5. Concluding Remarks

The Bernoulli, Euler and Genocchi numbers are among the most interesting and
important number sequences in mathematics. These numbers are particularly impor-
tant in number theory, they have deep connections with calculus of finite differences,
combinatorics and other fields. Here, let us recall (p, q)-Bernoulli, (p, q)-Euler and
(p, q)-Genocchi numbers.



ON A FAMILY OF (p, q)-HYBRID POLYNOMIALS 425

We note that (see [6])

Bm,p,q := Bm,p,q(0), (p, q)-Bernoulli numbers,

Em,p,q := Em,p,q(0), (p, q)-Euler numbers,

Gm,p,q := Gm,p,q(0), (p, q)-Genocchi numbers.

Further, we note that

ρm,p,q := ρm,p,q(0), (p, q)-Bessel numbers.

In this section, we introduce the numbers related to the polynomial families estab-
lished in Sections 2 and 3.

Taking x = 0 in the generating functions of the ρBm,p,q(x), ρEm,p,q(x) and ρGm,p,q(x)
given by equations (2.18), (2.22) and (2.25), the (p, q)-Bernoulli, (p, q)-Euler and
(p, q)-Genocchi numbers are obtained. These numbers are listed in Table 6.

Table 6. Certain members belonging to (p, q)-Bessel-Appell numbers

S. No. Notations Generating Functions Numbers

I. ρBm,p,q := ρBm,p,q(0) t

ep,q(t)−1
=

∞
∑

m=0

ρBm,p,q
tm

[m]p,q !
The (p, q)-Bessel-Bernoulli numbers

II. ρEm,p,q := ρEm,p,q(0)
[2]p,q

(ep,q(t)+1)
=

∞
∑

m=0

ρEm,p,q
tm

[m]p,q !
The (p, q)-Bessel-Euler numbers

III. ρGm,p,q := ρGm,p,q(0)
[2]p,qt

(ep,q(t)+1)
=

∞
∑

m=0

ρGm,p,q
tm

[m]p,q !
, The (p, q)-Bessel-Genocchi numbers

Similarly, on taking x = y = 0 in the generating functions of the ρBm,p,q(x, y),

ρEm,p,q(x, y) and ρGm,p,q(x, y) given in Table 3 (I-III), we get the same numbers given
in Table 6 (I-III).

We note that the class of numbers introduced in this section are actually the
(p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi numbers, respectively.

In this article, the (p, q)-analogue of Bessel polynomials and its hybrid form are
introduced by means of series expansion and generating function. The determinant
form related to these polynomials are derived, which can be helpful for computation
purposes and can also be used in finding the solutions of general linear interpolation
problems.

Some properties including addition theorem, difference equations and recurrence
relations for the (p, q)-Appell family have been analyzed and established in [13] (see
also [11]). This provides motivation to establish (p, q)-difference equations and other
properties for (p, q)-Bessel-Appell polynomials and their generalized 2D form in future
investigation.

Acknowledgements. The authors are thankful to the technical editor for his useful
comments and suggestions towards the improvement of this paper.
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TWO-DIMENSIONAL DYNAMICS OF CUBIC MAPS

I. DJELLIT1 AND W. SELMANI2

Abstract. We investigate the global properties of two cubic maps on the plane,
we try to explain the basic mechanisms of global bifurcations leading to the creation
of nonconnected basins of attraction. It is shown that in some certain conditions
the global structure of such systems can be simple. The main results here can be
seen as an improvement of the results of stability and bifurcation analysis.

1. Introduction

Polynomial diffeomorphisms have been widely studied and they are fundamental
to our understanding of dynamical systems. They are of great interest as approxima-
tions of more complicated maps with constant Jacobian, and some of them exhibit
some of the familiar properties of the quadratic Hénon map.The single Hénon map:
(x′, y′) = (y + x2 + a, cx) is the simplest polynomial map, and the simplest nontrivial
diffeomorphism of the plane containing a single quadratic term as nonlinearity. This
map is also known to display chaos for certain parameter values and initial conditions.
Due to its simplicity, it has become a benchmark system and has received considerable
attention because of its genericity, the complexity and richness of its dynamics, fre-
quently used as an example for demonstrating schemes for analyzing and controlling
chaotic behavior.

The set of polynomial maps with polynomial inverse is called the “affine Cremona
group”, very dynamically interesting maps. The structure of this group is well-known
and understood for two-dimensional case; as remarked in Friedland-Milnor’s classical
work [2], they proved that any map in this group is conjugate to a composite of basic
polynomial maps called generalized Hénon maps: (x′, y′) = (y + f(x), cx), maps with
constant and nonzero Jacobian and where f(x) is a polynomial of degree d ≥ 2. It
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follows that any composition of Hénon maps has an inverse which is a polynomial.
Recently, different types of generalization of the standard Hénon map have been
studied. Dullin and Meiss in [1] considered polynomial cubic maps. In a recent
paper, Sarmah and Paul [7] examined a period doubling route to chaos for a similar
model with constant Jacobian. For more details, see the survey of Sibony [8] and the
references therein [10,11], where more light was shed. Silverman [9] studied arithmetic
properties of quadratic Hénon maps.

Many of complex behaviors that are observed in dynamical systems are intimately
associated with the presence of homoclinic or heteroclinic points of maps [2,3]. The
global bifurcations involving invariant curves have been less investigated, and several
open problems are still present. Homoclinic tangencies between stable and unstable
invariant manifolds of the same saddle point play a very important role. The existence
of transversal homoclinic intersections is considered as the universal criterium of the
complexity for maps. At the same time, the presence of non-transversal homoclinic
orbits (homoclinic tangencies) indicates an extraordinary richness of bifurcations of
such systems and, what is very important, the principal impossibility of providing of
a complete description of bifurcations. Therefore, when studying homoclinic bifur-
cations, the main problems are related to the analysis of their principal bifurcations
and characteristic properties of dynamics as a whole.

This work presents a research in the study of cubic polynomial invertible and
noninvertible maps of the plane carried out some techniques and numerical simulations.
The motivation for studying such maps is, in part, due to the form of these maps
which is a generalized version of Hénon map. This set is of fundamental importance
in dynamical systems and yields a great deal of interesting characteristics. Our main
concerns are the global dynamics characterizing the topological structure of initial
conditions which generate interesting path in cubic maps. In addition to the analytical
considerations, we also display certain numerical results by using computers to perform
rigorous mathematical proofs.

This paper intends to give such a study, particularly to consider two cases of
cubic diffeomorphisms. Therefore, it is structured in the following way. In Section 2,
division of the parameter plane for the two-dimensional maps into domains of regular
and chaotic attractors is studied numerically and analytically. Regularities in the
occurrence of different behaviors and transitions are analyzed. The dynamics involves
various transitions by bifurcations. In Section 3, we introduce the language mentioned
in [5,6], to analyze these maps, and give some useful definitions. Section 4 focuses on
the global dynamics. The impact of invariant manifolds on the structure of basins is
investigated. Section 5 gives some results on basin structures of noninvertible maps and
their bifurcations, and illustrates properties of homoclinic-heteroclinic bifurcations.
We end the paper with a conclusion.
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2. Division of Parameter Plane

Consider the one-dimensional endomorphism of the (p + q − 2) model

(2.1) T0(x) = axp−1(1 − x)q−1.

Here, the trivial fixed point x = 0 is unstable for 1 < p < 2 and it is stable for p > 2,
both cases for any a > 0 and q > 1. We have a special case for p = 2, where x = 0 is
an unstable fixed point if r > 1 and a stable fixed point if 0 < a < 1, both cases for
any q > 1. Consequently the set defined by S = {(q, a) ∈ R

2 : q > 1, a > 0 for p = 2}
is a bifurcation plane that characterizes the stability of the fixed point x = 0 at the
parameter space (p, q, a). We consider an imbedding of the model (2.1), which is a one-
dimensional noninvertible map into a two-dimensional diffeomorphism rediscovered
afresh each time and with a variety of results. We study this diffeomorphism in
dependance of at least three parameters and uncover many fascinating dynamical
characteristics, using both analytic perturbation theory and numerical methods.

The planar diffeomorphism associated with T0 is the following:

(2.2) T1 :

{

x′ = T0(x) + y,

y′ = cx,

where x, y are real variables, a, p, q and c are real parameters. T1 has a constant
Jacobian determinant detJ = −c. We distinguish two types of cubic diffeomorphisms
(p + q − 2 = 3), and each type gives different bifurcation diagrams. We only study
the most interesting and principal peculiarities of the cubic maps (p = 3, q = 2 and
p = 2, q = 3).

For c = 0, the planar diffeomorphism (2.2) becomes the one-dimensional endomor-
phism (2.1). The model (2.2) possesses at most three fixed points depending upon the
parameter values. To gain preliminary insight into the properties of the dynamical
system (2.2) we conducted two-dimensional bifurcation analysis, which provides infor-
mation on the dependance of the dynamics on parameters. This analysis is expected
to reveal the type of attractor to which the dynamics will ultimately settle down after
passing an initial transcient phase and within which the trajectory will remain forever.
The parameters (c, a) are varied simultaneously to track bifurcations.

We indicate different attractors in different colors in the (c, a)-plane for which the
mappings were expected to have simple dynamics in the case p = 3 and q = 2. The
Figure 1 give the parameter value for which at least one fixed point is attractive
(parameters located in the blue domain will be stabilized at a fixed point). More
generally, the Figure 1(a, b) gives the regions of the (c, a)-plane for which at least a
cycle of order k exists (k = 1, 2, . . . , 14). The black region (k = 15) corresponds to
the existence of bounded iterated sequences. Clearly, these figures exhibit the typical
period doubling route to chaos obtained by increasing a for fixed c. We can recognize,
in particular, two typical and well-known structures of the bifurcation diagrams in
two-dimensional parameter plane, the so-called “saddle area” in the case p = 3 and
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q = 2, and saddle area with “cross-road area” in the case p = 2 and q = 3. The saddle
area is special because associated with a “degenerate” bifurcation curve for c = 1.

(a) Bifurcation structure for p = 2 and
q = 3

(b) Bifurcation structure for p = 3 and q = 2

Figure 1. two-dimensional bifurcation diagrams with colors obtained
numerically according to the different orders observed in the plane (c, a).

3. Definitions and Fundamental Properties

In this section, we give precise notions in report with invertible polynomial maps,
contact and homoclinic bifurcations, and some properties of increasing complexity
that try to highlight the important concepts of nonlinear maps (refer to Mira et al.
in [6]).

The polynomial map T of the plane has the form

(x′, y′) = T (x, y) = (f(x, y; λ), g(x, y; λ)),

where f et g are polynomials in x, y and λ is a real parameter-vector.The Jacobian
determinant is defined as

det J(f, g) = det T (x, y) =
∂f

∂x

∂g

∂y
−

∂f

∂y

∂g

∂x
.

3.1. General properties. We assume that a closed and invariant set A is called
an attracting set if some neighborhood U of A may exist such that T (U) ⊂ U and
T n(x, y) → A as n → ∞, for all (x, y) ∈ U . An attracting set A may contain one or
several attractors (regular attractors are stable fixed points or cycles) coexisting with
sets of repulsive points. The set D = ∪n≥0T

−n(U) is called the total basin of A,it is
invariant under backward iteration T −1 of T , but not necessarily invariant by T

T −1(D) = D, T (D) ⊆ D.

An attracting set is called of order k if it is made up of k disjoint sets , A = ∪k
i=1Ai,

where each Ai is an attracting set of the map T k.
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When A is an attracting set of order k = 1, then its total basin is given by D = D0

if it is connected, by D = ∪n≥0T
−n(D0) if it is nonconnected. When A is an attracting

set of order k > 1, the immediate basin D0 of A is the open set D0 = ∪n
i=1D0,i, the

D0,i being open disjoints basins of Ai. If A is connected attractor, the immediate basin
D0 of A is defined as the widest connected component of D containing A. When A

is the widest attracting set of a map T , its basin D is the total basin of bounded
iterates. That is, the open set D contains A such that D is the locus of points of the
plane having bounded trajectories.

We assume that the existence of an attracting set A is observed through numerical
methods.

Definition 3.1. Let S be a saddle fixed point of T , W s(S) and W u(S) denoting its
stable and unstable sets. A point q is called homoclinic to S, if q ∈ W s(S) ∩ W u(S)
and q 6= S. q is a transversal homoclinic point, so W s(S) intersects transversely
W u(S).

Definition 3.2. One calls homoclinic orbit Oo(q) associated with q, q belonging to
a U(S) of S, a set constituting of successive iterates of q, and its infinite sequence
of preimages obtained by application of the local inverse map T −1

l of T in U(S),

i.e., Oo(q) =
{

T −n
l (q), q, T n(q) : n > 0

}

= {. . . , q−n, . . . , q−2, q−1, q, q1, q2, . . . , qn, . . . },

where qn = T n(q) → S and q−n = T −n
l (q) → S.

Definition 3.3. One calls heteroclinic orbit ε(q) connecting S to S
′

associated
with q, the one given by q together with its finite orbit and its infinite sequence
of preimages obtained by application of the local inverse map T −1

l of T in U(S),

i.e., ε(q) =
{

T −n
l (q), q, T n(q) : n > 0

}

= {. . . , q−n, . . . , q−2, q−1, q, q1, q2, . . . , qn, . . . },

where qn = T n(q) → S ′ and q−n = T −n
l (q) → S.

3.2. Generalized Hénon map properties. First we recall the dynamics of the
cubic diffeomorphism T1

T1(x, y) = (T0(x) + y, cx).

T0(x) is a polynomial of degree-3 then T1 is conjugate to Hénon map. We know
some results which enable us to detect, predict, determine cycles and fixed points,
and locate bifurcation curves in parameter plane. T0(x) can be equal to x(1 − x)2 or
to x2(1 − x).

Fixed point (x∗, y∗) of T1 satisfies y∗ = cx∗, and (1 − c)x∗ = T0(x∗), so that x∗ is a
root of the polynomial q(x∗) = (c − 1)x∗ + T0(x∗), thus all fixed points are located on
the line y − cx = 0 in the plane.

The stability of these fixed points is determined by the Jacobian matrix

J∗ =

(

T ′
0(x∗) 1

c 0

)

,

which has trace TrJ∗ = T ′
0(x∗) and determinant det J∗ = −c. The fixed point is stable

when the eigenvalues of J∗ are less than 1 in magnitude. This is true only when
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J∗ satisfies the three Jury conditions [4]: 1 − TrJ∗ + det J∗ > 0, 1 + TrJ∗ + det J∗ >

0, 1 − det J∗ > 0.
It is easy to verify that T1 can have bounded orbits only when there are fixed points

of T n
1 .

It is sufficient to consider the case |c| ≤ 1, since the inverse of a generalized Hénon
map with |c| > 1 is conjugate to a generalized Hénon map with |c| < 1 under the
reflection r(x, y) = (y, x), and r ◦ T −1

1 ◦ r = (y − T0(x
c
), x

c
), T −1

1 (x, y) = (y

c
, x − T0(y

c
)).

Remark 3.1. For c = 1, the fixed points of T1 are the roots of T0. If p = 3 and q = 2,
the determinant is equal to −1 and T ′

0(0) = 0 with two eigenvalues −1,1. There is a
fold-flip bifurcation for O(0, 0). For p = 2 and q = 3, T ′

0(1) = T1(1) = 0. These two
cases are two nondegenerate codimension-2 bifurcations.

Theorem 3.1. Suppose T1 has no fixed points, then every orbits is unbounded.

Proof. Suppose that T1 has no fixed points, then the fixed point polynomial q(x) =
T0(x) + cx − x is either positive or negative for all x. In the first case q(x) is positive,
consider d(x, y) = x+y, then d(x′, y′) = d(x, y)+q(x) creases monotonically and must
be unbounded. In the other case q(x) is negative, d(x′, y′) decreases monotonically
and then either case there are no bounded orbits.

When there are fixed points, we can find a box that contains all these bounded
orbits. �

Theorem 3.2. Every bounded orbit of T1 map is contained in the box

{(x, y) : |x| ≤ M, |y| ≤ |c|M},

where M is the largest of the absolute values of the roots of T0(x) − (1 + |c|)|x|.

Proof. See [1], more generally the polynomial determining M is the same as that for
the fixed points, up to the absolute value signs. �

Proposition 3.1. Concerning the existence of cycles of order 2, the following holds:

- cycles of order 2 occur for T1(x, y) = T −1
1 (x, y);

- they have to satisfy T0(x)+y = y

c
, x−T0

(

y

c

)

= cx and (1−c)x−T0

(

T0(x)
1−c)

)

= 0.

Proof. Cycles of order-2 are given by the equation T 2
1 (x, y) = (x, y) = T −1

1 ◦ T1(x, y)
and then it is easy to verify that T0(x) + y = y

c
, x − T0(

y

c
) = cx, which is equivalent

to (1 − c)x − T0(
T0(x)
1−c

) = 0. This equation is divisible by q(x) because fixed points
are roots of both equations. Since T1 is cubic then the equation giving 2-cycles is a
polynomial of degree-6, there are at most three 2-cycles. �

Remark 3.2. By a way analogous to that in the proof of Proposition 3.1, we can
determine without any difficulty the equations of cycles of higher order by using
T n

1 (x, y) = (x, y) = T −1
1 ◦ T1(x, y) which can be reduced to T n−1

1 (x, y) = T −1
1 (x, y).

Similarly, 3-cycles are solutions of : T 2
1 (x, y) = (T0(T0(x) + y) + cx, cy + cT0(x)) =

T −1
1 (x, y) = (y

c
, x − T0(y

c
)). They are determined by the system x1 − c2x0 = T0(x0) −

cT0(x1) and x0 − cx1 = T0(T0(x1) + cx0), if we assume that y = cx0.



TWO-DIMENSIONAL DYNAMICS OF CUBIC MAPS 433

4. Basins and Attractors for the Cubic Diffeomorphism

Now, we examine the behavior of T1 on basin structure and its bifurcations. These
bifurcations are characterized by the creation of heteroclinic and homoclinic connec-
tions or homoclinic tangles. Especially, we explain basin bifurcations which result
from the contact between basin boundaries delimited by stable manifolds of the 2-cycle
of saddle type and the nontrivial saddle fixed point (possibly a flip saddle).

Figures 2 (a), (b), (c), (d), (e), (f) represent the existing attractors (fixed points
and 2-cycles), invariant manifolds of saddle points and their basins. The evolution of
attractors and their basins is given directly in figures, the parameters p, q have been
chosen constant.

We start a qualitative description of bifurcations that are expected to occur as one
parameter a or c is varied following a bifurcation path such c close of 1.0, we identify
a very fascinating scenario in (a), (b), (c): two nontrivial fixed points are created by a
saddle-node bifurcation and one of them (S1) undergoes a period-doubling bifurcation
and becomes a flip saddle. A further increase of the parameter a causes a contact
between these two boundaries which marks changes in the basins of attraction from
connected to nonconnected basins.

Here, if we consider T1 ◦ T1, instead of T1, points of 2-cycle correspond to fixed
points of T 2

1 and then a flip bifurcation of T1 corresponds to a pitchfork bifurcation
of T 2

1 . This implies that the same bifurcations are to be expected in the two cases.
The map generates many 2-cycles, we have three 2-cycles of which two are stable.

We can see that the bifurcation which is put in evidence can be classified as a global
bifurcation, only fixed points and 2-cycles exist and communicate through saddles.
This kind of bifurcation involves attracting and repelling invariant curves issuing from
saddles. Also, saddles on the boundary of basins play a major role because if they
become outside the basins, thus transitions from “connected basin ↔ nonconnected
basin” occur. In particular, we remark that the sequence of bifurcations described
in this work, cause the transition of a pair of 2-cycles from inside to outside a stable
manifold associated with the saddle S2. This invariant curve, involved in this global
structure, exhibits different dynamic behaviors before and after the transition.

We can also see that in (e), (f) the basin associated with the 2 -cycle P2 is destroyed
and the trivial fixed point is outside, still exists and is unstable. In Figure 3 (a), (b),
(c), (d), (e) all the fixed points are aligned but the single fixed point that always exists
is stable, the other two fixed points are located on the boundary of the big basin and
on the boundary of trivial fixed point basin. When the saddle point S2 is outside then
the basin becomes nonconnected, each point of 2-cycle has now its own basin. The
stable manifold of the saddle point S1 located on the boundary of the trivial fixed
point O(0, 0) performs two loops and delimits after the basin of the unique attractor.
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Figure 2. The three fixed points are unstable. The basin of the 2-
cycle inside the big basin has a contact with the frontier of the big one,
becomes outside and disappears.

5. Bifurcations Basins for the Cubic Endomorphism

Let us consider now the noninvertible map T2 defined by

T2 :

{

x′ = T0(x) + y,

y′ = cx + dy,

where c, d are real parameters.
For d 6= 0, the system T2 becomes again an endomorphism. We foresee that new

phenomena are likely to occur for T2. Figure 4 shows that the dynamics, influenced
by the parameter d, revolves around fixed points and cycles of order-2 which exist



TWO-DIMENSIONAL DYNAMICS OF CUBIC MAPS 435

2
1P

1
1P

2S

1S
O

2
1C

1
1C

2
1( )s

W C

2
1( )u

W C

(a) a = 1.50, c = 0.9, p = 3, q = 2

O

1
S

2
S

2

1
P

1

1
P

2

1
C

1

1
C

(b) a = 1.96, c = 0.9, p = 3, q = 2

2S

2( )
s

W S

2( )
u

W S

1( )
u

W S
1S

O

2
1P

1
1P

2
1C

1
1C

(c) a = 15, c = 0.95, p = 3, q = 2

O

1
S

(d) a = 15, c = 0.98, p = 3, q = 2

1
S

(e) a = 15, c = 0.98, p = 3, q = 2

Figure 3. The red basin is associated with the trivial fixed point. The
big attraction basin of a 2-cycle breaks after homoclinic-heteroclinic
bifurcations.

respectively in blue and green domains for p = 2 and q = 3. Close enough to c = 1
(in this case c = 0.952) only 2-cycles are stable for a = 1, here fixed points exist but
are unstable after a flip bifurcation.

5.1. Study of the phase plane. Our numerical evidence includes the following:
for fixed parameter values, we plot attraction basins of attractors. Two types of
basins are illustrated in this section. We first choose the parameters so that two
attractors coexist. The two attractors do not undergo identical sets of bifurcations in
the parameter plane. While one attractor can experience flip bifurcation, the second
one undergoes fold bifurcation and we do this by having c = 0.952, and negative
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Figure 4. Bifurcation diagram in (d, a) parameter plane.

values of d = −0.07 which is instructive, with the occurrence of a change of type of
bifurcations inside the same basin after heteroclinic bifurcations.

For the value a = 1, one has the following situation: two 2-cycles (P 1
1 , P 2

1 ) and
(P 1

2 , P 2
2 ) which interact dynamically with a flip saddle point S1 in the phase plane

and their basins are delimited by stable manifolds of the two points of the 2-cycle of
saddle type (C1

2 , C2
2) and the unstable manifold of the flip saddle point S1.
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Figure 5. For the case p = 2, q = 3.

We decrease d, one has the following situation: the phase portrait of the recurrence T2

at d = −0.1 is presented in Figure 6, the two stable 2-cycles exchange their associated
saddles. It is in accordance with the bifurcation diagram in Figure 1 (a), the presence
of cross-road area allows this change between attractors. For the case p = 3 and
q = 2, we choose c = 0.9, d = −0.32, and a = 1.5, here also we have two 2-cycles
which coexist with two flip saddle points and a regular saddle point located on their
common frontier.
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Figure 6. For the case c = 0.952, d = −0.1.
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Figure 7. For the case p = 3, q = 2.
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Figure 8. For the case d = −0.355, p = 3 and q = 2.

Here a, c are constant but d = −0.355, the two basins are now nonconnected and
bounded, and a Hopf bifurcation takes place for the 2-cycle (P 1

2 ,P 2
2 ). We have a

structural stable heteroclinic contour around basins.
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6. Conclusion

Numerical explorations of cubic maps give interesting results, however, they reveal
many intricate phenomena, that can only be understood by means of further specific
investigation. A particularly rich bifurcation structure is detected near the limit value
c = 1. Global bifurcations have important consequences as appearance of saddle
connections and basins bifurcations. Heteroclinic bifurcations of saddle points, taking
place on and inside the basins of attraction, this phenomenon provides a route for the
appearance of nonconnected basins with saddles points located outside.
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MULTIVARIABLE ALEPH-FUNCTION IN HEAT CONDUCTION
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Abstract. The present paper deals with an application of Jacobi polynomial and
multivariable Aleph-function to solve the differential equation of heat conduction in
non-homogeneous moving rectangular parallelepiped. The temperature distribution
in the parallelepiped, moving in a direction of the length (x-axis) between the limits
x = −1 and x = 1 has been considered. The conductivity and the velocity have been
assumed to be variables. We shall see two particular cases and the cases concerning
Aleph-function of two variables and the I-function of two variables.

1. Introduction and Preliminaries

We suppose the parallelepiped has heat conductivity K, density ρ, diffusivity k
and specific heat σ. The partial differential equation satisfied by the temperature
v(x, y, z, t) at any time t in a homogeneous parallelepiped bounded by the planes
y = 0 and y = b, z = 0 and z = c, moves with a constant velocity U in the direction
of its length (x-axis) between the limits x = −1 and x = 1, on the lines of Carslaw
and Jaeger [4, page 155, (1)] is

(1.1) k

[

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

]

− U
∂v

∂x
− ∂v

∂t
= 0,

where k = K
ρσ

. If we consider a non-homogeneous parallelepiped of variable conduc-

tivity k′ (1 − x2) and the velocity k0 [(α− β) + (α+ β)x] , where k′, k0, α and β are

Key words and phrases. Jacobi polynomial, heat conduction, Aleph-function of several variables,
aleph-function of two variables, I-function of two variables.
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constants, the partial differential equation (1.1) reduces to

(1.2)
∂v

∂t
= k0

[

(

1 − x2
) ∂2v

∂x2
+ ((β − α) − (α+ β + 2)x)

∂v

∂x

]

+ k

[

∂2v

∂y2
+
∂2v

∂z2

]

= 0,

where k0 = k′

ρσ
, Re (α) > −1, Re (β) > −1.

As physical example we can consider the temperature distribution of the moving
mercury parallelepiped between the planes x = −1, x = 1, y = 0 and y = b, z = 0
and z = c connected by two reservoirs of the mercury at the two ends. The variable
flow in the mercury at the end x = −1 with a certain speed. The initial temperature
distribution in the parallelepiped of mercury can be taken to be f (x, y, z). The
surfaces y = 0 and y = b, z = 0 and z = c of the parallelepiped are supposed to be
insulated. The ends x = −1 and x = 1 of the mercury parallelepiped should also be
insulated as the conductivity vanishes there.

2. Solution of the Problem

By assuming the solution of the partial differential equation (1.2) as v (x, y, z, t) =
X (x)Y (y)Z (z)T (t), the solution of the partial differential equation (1.2) reduces
to

1

T

dT

dt
=
k0

X

[

(

1 − x2
) d2X

dx2
+ (−α+ β − (α+ β + 2)x)

dX

dx

]

+
k

Y

d2Y

dy2
+
k

Z

d2Z

dz2
.

Now, taking

k0

X

[

(1 − x2)
d2X

dx2
+ (−α+ β − (α+ β + 2)x)

dX

dx

]

= − k0n (n+ α+ β + 1) ,

k

Y

d2Y

dy2
= − kλ2,

and k
Z

d2Z
dz2 = −kυ2, λ, υ being constants, n being positive integer, we obtain the

following equations

(

1 − x2
) d2X

dx2
+ (−α+ β − (α+ β + 2)x)

dX

dx
+ n (n+ α+ β + 1)X =0,(2.1)

d2Y

dy2
+ λ2y =0,(2.2)

d2Z

dz2
+ υ2z =0,(2.3)

and

(2.4)
dT

dt
=
[

−n (n+ α+ β + 1) − k
(

λ2 + υ2
)]

T.

The (2.1) is the differential equation of Jacobi polynomials and its solution is

X = P (α,β)
n (x).
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The solution of (2.2), (2.3) and (2.4) are

Y =A cosλy +B sin λy,

Z =C cos υz +D sin υz

and

T = E exp
[

−
(

k0 n (n+ α+ β + 1) + k
(

λ2 + υ2
))

t
]

,

where A, B, C, D, E are constants.
Hence, the general solution of (1.2), the temperature distribution at any point

M (x, y, z) of the parallelepiped at time t is given by

v (x, y, z, t) = exp
[

−
(

k0 n (n+ α+ β + 1) + k
(

λ2 + υ2
))

t
]

P (α,β)
n (x)

× [A cosλy +B sin λy] [C cos υz +D sin υz] ,(2.5)

if no heats flows from the surfaces y = 0 and y = b, z = 0 and z = c,
(

∂v
∂y

)

y=b=0
= 0,

(

∂v
∂z

)

z=c=0
= 0 for all x and t. These demand B = 0, D = 0, λ = mπ

b
, υ = lπ

c
, where

m, l = 0, 1, 2, . . . .
Therefore, the solution (2.5) reduces to

v (x, y, z, t) =
∞
∑

n,m,l=0

Anml exp
[

−
(

k0 n (n+ α+ β + 1) + k
(

λ2 + υ2
))

t
]

× P (α,β)
n (x) cos

mπ

b
y cos

lπ

c
z.

Here, Re (α) > −1, Re (β) > −1 and Anml are constants. If the initial temperature
distribution in parallelepiped is given by

(2.6)
∞
∑

n,m,l=0

AnmlP
(α,β)
n (x) cos

mπ

b
y cos

lπ

c
z.

Now, multiplying both sides of (2.6) by (1 − x)α (1 + x)β P (α,β)
n (x) cos mπ

b
y cos lπ

c
z,

integrating both sides between x = −1 and x = 1, y = 0 and y = b, z = 0 and z = c,
and applying the result [5, Vol. II. Page 285, (5)]

∫ 1

−1
(1 − x)α (1 + x)β

[

P (α,β)
n (x)

]2
dx =

2α+β+1Γ (α+ n+ 1) Γ (β + n+ 1)

n! (α+ β + 2n+ 1) Γ (α+ β + n+ 1)
,

with Re (α) > −1, Re (β) > −1, we obtain

Amnl =
n! (α+ β + 2n+ 1) Γ (α+ β + n+ 1)

2α+β+1Γ (α+ n+ 1) Γ (β + n+ 1)

×
∫ c

0

∫ b

0

∫ 1

−1
(1 − x)α (1 + x)β P (α,β)

n (x) cos
mπ

b
y cos

lπ

c
z f (x, y, z) dx dy dz.
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Hence, the temperature distribution in the non-homogeneous moving rectangular
parallelepiped is given by

v (x, y, z, t)

(2.7)

=
1

2α+β−1bc

∞
∑

n,m,l=0

n! (α+ β + 2n+ 1) Γ (α+ β + n+ 1)

2α+β+1Γ (α+ n+ 1) Γ (β + n+ 1)

× exp

[

−
(

k0 n (n+ α+ β + 1) + kπ2

(

m2

b2
+
l2

c2

))

t

]

P (α,β)
n (x) cos

mπ

b
y cos

lπ

c
z

×
∫ c

0

∫ b

0

∫ 1

−1
(1 − x)α (1 + x)β P (α,β)

n (x) cos
mπ

b
y cos

lπ

c
z f (x, y, z) dx dy dz,

with Re (α) > −1, Re (β) > −1.

Remark 2.1. Prasad and Maurya [10] have given application of Jacobi polynomial and
multivariable H-function in heat conduction in non-homogeneous moving rectangular
parallelepiped; Simões et al. [9] have studied Green’s functions for heat conduction
for unbounded and bounded rectangular spaces.

3. Multivariable Aleph-Function

For an illustration, if we take f (x, y, z) = f1 (x) f2 (y) f3 (z), f2 (y) = e−µy, f3 (z) =
e−δz and f1 (x) to be the most general special function in the form of multivariable
Aleph-function.

The multivariable Aleph-function is a generalization of the multivariable H-function
defined by Srivastava and Panda [14,15]. The multivariable Aleph-function is defined
by means of the multiple contour integral [3, 7]:

ℵ (z1, . . . , zr)

=ℵ0, n:m1,n1,...,mr,nr

pi,qi,τi;R:p
i
(1) , q

i
(1) ,τ

i
(1) ;R(1);...;p

i
(r) ,q

i
(r) ;τ

i
(r) ;R(r)









z1
...
zr

∣

∣

∣

∣

∣

∣

[

(

aj;α
(1)
j , . . . , α

(r)
j

)

1,n

]

,

. . . ,
[

τi

(

aji;α
(1)
ji , . . . , α

(r)
ji

)

n+1,pi

]

:
[

(

c
(1)
j

)

,
(

γ
(1)
j

)

1,n1

]

,
[

τi(1)

(

c
(1)

ji(1) , γ
(1)

ji(1)

)

n1+1,p
(1)
i

]

;
[

τi

(

bji; β
(1)
ji , · · · , β(r)

ji

)

m+1,qi

]

:
[

(

d
(1)
j

)

,
(

δ
(1)
j

)

1,m1

]

,
[

τi(1)

(

d
(1)

ji(1) , δ
(1)

ji(1)

)

m1+1,q
(1)
i

]

;

. . . ;
[

(

c
(r)
j

)

,
(

γ
(r)
j

)

1,nr

]

,
[

τi(r)

(

c
(r)

ji(r) , γ
(r)

ji(r)

)

nr+1,p
(r)
i

]

. . . ;
[

(

d
(r)
j

)

,
(

δ
(r)
j

)

1,mr

]

,
[

τi(r)

(

d
(r)

ji(r) , δ
(r)

ji(r)

)

mr+1,q
(r)
i

]









=
1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (s1, . . . , sr)
r
∏

k=1

θk (sk) zsk

k ds1 · · · dsr,

(3.1)
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with ω =
√

−1,

ψ (s1, . . . , sr) =

∏

n

j=1 Γ
(

1 − aj +
∑r

k=1 α
(k)
j sk

)

∑R
i=1

[

τi

∏pi

j=n+1 Γ
(

aji −∑r
k=1 α

(k)
ji sk

)

∏qi

j=1 Γ
(

1 − bji +
∑r

k=1 β
(k)
ji sk

)]

and

θk (sk) =

∏mk

j=1 Γ
(

d
(k)
j − δ

(k)
j sk

)

∏nk

j=1 Γ
(

1 − c
(k)
j + γ

(k)
j sk

)

∑R(k)

i(k)=1

[

τi(k)

∏q
i
(k)

j=mk+1 Γ
(

1 − d
(k)

ji(k) + δ
(k)

ji(k)sk

)

∏p
i
(k)

j=nk+1 Γ
(

c
(k)

ji(k) − γ
(k)

ji(k)sk

)] .

For more details, see Ayant [1]. The condition for absolute convergence of multi-
ple Mellin-Barnes type contour can be obtained by extension of the corresponding
conditions for multivariable H-function given by

| arg zk| < 1

2
A

(k)
i π,

where

A
(k)
i =

n
∑

j=1

α
(k)
j − τi

pi
∑

j=n+1

α
(k)
ji − τi

qi
∑

j=1

β
(k)
ji +

nk
∑

j=1

γ
(k)
j − τi(k)

p
i
(k)
∑

j=nk+1

γ
(k)

ji(k)

+
mk
∑

j=1

δ
(k)
j − τi(k)

q
i
(k)
∑

j=mk+1

δ
(k)

ji(k) > 0,(3.2)

with k = 1, . . . , r, i = 1, . . . , R, i(k) = 1, . . . , R(k).
The complex numbers zi are not zero. Throughout this document, we assume the

existence and absolute convergence conditions of the multivariable Aleph-function.
For convenience, we shall use the following notations in this paper.

V =m1, n1; . . . ; mr, nr

W =pi(1) , qi(1) , τi(1) ; R(1); . . . ; pi(r) , qi(r) , τi(r) ; R(r),

A =
{

(

aj;α
(1)
j , . . . , α

(r)
j

)

1,n

}

,
{

τi

(

aji;α
(1)
ji , . . . , α

(r)
ji

)

n+1,pi

}

:
{

(

c
(1)
j ; γ

(1)
j

)

1,n1

}

,
{

τi(1)

(

c
(1)

ji(1) ; γ
(1)

ji(1)

)

n1+1,p
i
(1)

}

; . . . ;
{

(

c
(r)
j ; γ

(r)
j

)

1,nr

}

,

{

τi(r)

(

c
(r)

ji(r) ; γ
(r)

ji(r)

)

nr+1,p
i
(r)

}

,

B =
{

τi(bji; β
(1)
ji , . . . , β

(r)
ji )m+1,qi

}

:
{

(

d
(1)
j ; δ

(1)
j

)

1,m1

}

,

{

τi(1)

(

d
(1)

ji(1) ; δ
(1)

ji(1)

)

m1+1,q
i
(1)

}

;

. . . ;
{

(d
(r)
j ; δ

(r)
j )1,mr

}

,

{

τi(r)

(

d
(r)

ji(r) ; δ
(r)

ji(r)

)

mr+1,q
i
(r)

}

.

Let

f1(x) = ℵ0,n:V
pi,qi,τi;R:W









p1 (1 − x)m′

1 (1 + x)m′′

1

...

pr (1 − x)m′

r (1 + x)m′′

r

∣

∣

∣

∣

∣

∣

∣

∣

A
...
B









.
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Substituting for f1(x), f2(y) and f3(z) in equation (2.7), which is justifiable under the
given conditions, we evaluate the y and z-integrals, first and the write the multivariable
Aleph-function into the Mellin-Barnes contour integral with the help of (3.1), apply
the result [5, Vol. II, page 284, (3)],

∫ 1

−1
(1 − x)l (1 + x)σ P (α,β)

n (x)dx(3.3)

=
2l+σ+1Γ (l + 1) Γ (σ + 1)

Γ (l + σ + 2)
× 3F2 (−n, α+ β + n+ 1, l + 1;α+ 1, l + σ + 2; 1) ,

with Re (α) > −1, Re (β) > −1, and finally interpret the resulting Γ-functions with
the definition of multivariable Aleph-function. The temperature distribution in a
non-homogeneous moving rectangular parallelepiped is then

v (x, y, z, t) =
µδe−(µb+δc)Γ (α+ 1)

bc2α+β−1

∞
∑

n,m,l,N=0

(1 − (−)m)
(

1 − (−)l
)

(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (α+ β + 2n+ 1) Γ (α+ β + n+N + 1) Γ (−n+N)

N !Γ (α+N + 1) Γ (α+ n+ 1) Γ (β + n+ 1) Γ (−n)

× exp

[

−
{

k0 n (n+ α+ β + 1) + kπ2

(

m2

b2
+
l2

c2

)}

t

]

× P (α,β)
n (x) cos

mπ

b
y cos

lπ

c
z ℵ0, n+2:V

pi+2,qi+1,τi;R:W









p12
m′

1+m′′

1

...
pr2

m′

r+m′′

r

∣

∣

∣

∣

∣

∣

∣

∣

(−α−N : m′

1, . . . ,m
′

r) , (−β : m′′

1, . . . ,m
′′

r) , A
...

(−α− β −N − 1 : m′

1 +m′′

1, . . . ,m
′

r +m′′

r) , B









.(3.4)

Provide that Re (α) > −1, Re (β) > −1, m′

i, m
′′

i > 0 for i = 1, . . . , r, and

Re (α+ 1) +
r
∑

i=1

m′

i min
16j6mi

Re









d
(i)
j

δ
(i)
j







 >0,

Re (β + 1) +
r
∑

i=1

m′′

i min
16j6mi

Re









d
(i)
j

δ
(i)
j







 >0,

| arg pk| <
1
2
A

(k)
i π, where A

(k)
i is defined by (3.2).

Remark 3.1. For detail and applications of Aleph-function, the reader can refer recent
work [2, 8, 16].
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4. Particular Cases

(a) When the rectangular parallelepiped moves with uniform velocity, the partial
differential equation (1.2) reduces to the unsteady case of the partial differential equa-
tion (1) of Carslaw and Jaeger [4] with no radiation but with variable conductibility.
We have α+ β = 0 and

∂v

∂t
= k0

(

(

1 − x2
) ∂2v

∂x2
+ (β − α− 2x)

∂v

∂x

)

+ k

(

∂2v

∂y2
+
∂2v

∂z2

)

= 0,

and the temperature distribution in the parallelepiped between x = −1 and x =
1, y = 0 and y = b, z = 0 and z = c is given by

v (x, y, z, t)

=
2µδe−(µb+δc)Γ (α+ 1)

bc

∞
∑

n,m,l,N=0

(1 − (−)m)
(

1 − (−)l
)

(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (2n+ 1) Γ (n+N + 1) Γ (−n+N)

N ! Γ (α+N + 1) Γ (α+ n+ 1) Γ (β + n+ 1) Γ (−n)

× exp

[

−
(

k0 n (n+ 1) + kπ2

(

m2

b2
+
l2

c2

))

t

]

P (α,β)
n (x) cos

mπ

b
y cos

lπ

c
z

× ℵ0,n+2:V
pi+2,qi+1,τi;R:W









p12
m′

1+m′′

1

...
pr2

m′

r+m′′

r

∣

∣

∣

∣

∣

∣

∣

∣

(−α−N : m′

1, . . . ,m
′

r) , (−β : m′′

1, . . . ,m
′′

r) , A
...

(−N − 1 : m′

1 +m′′

1, . . . ,m
′

r +m′′

r) , B









,

under the same condition that (3.4) with α+ β = 0.
(b) When the parallelepiped is stationary between x = −1 and x = 1, we have

α = β = 0 and the partial differential equation (1.2) reduces to

∂v

∂t
= k0

(

(

1 − x2
) ∂2v

∂x2
− 2x

∂v

∂x

)

+ k

(

∂2v

∂y2
+
∂2v

∂z2

)

= 0,

and the temperature distribution in the parallelepiped between x = −1 and x =
1, y = 0 and y = b, z = 0 and z = c is given by

v (x, y, z, t)

=
2µδe−(µb+δc)

bc

∞
∑

n,m,l,N=0

(

1 − (−)m)(1 − (−)l
)

(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (2n+ 1) Γ (n+N + 1) Γ (−n+N)

N ! Γ (N + 1) (Γ(n+ 1))2 Γ (−n)
exp

[

−
(

k0 n (n+ 1) + kπ2

(

m2

b2
+
l2

c2

))

t

]

× Pn(x) cos
mπ

b
y cos

lπ

c
z
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× ℵ0, n+2:V
pi+2,qi+1,τi;R:W









p12
m′

1+m′′

1

...
pr2

m′

r+m′′

r

∣

∣

∣

∣

∣

∣

∣

∣

(−N : m′

1, · · · ,m′

r) , (0 : m′′

1, . . . ,m
′′

r) , A
...

(−N − 1 : m′

1 +m′′

1, . . . ,m
′

r +m′′

r) , B









,

where Pn(x) is a Legendre’s polynomial, under the same condition that (3.4) with
α = β = 0.

5. Aleph-Function of Two Variables

If r = 2, the multivariable Aleph-function reduces to Aleph-function of two variables
defined by Sharma [13](see also, [6]) and the general solution is

v (x, y, z, t)

=
µδe−(µb+δc)Γ (α+ 1)

bc2α+β−1

∞
∑

n,m,l,N=0

(1 − (−)m)
(

1 − (−)l
)

(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n ! (α+ β + 2n+ 1) Γ (α+ β + n+N + 1) Γ (−n+N)

N ! Γ (α+N + 1) Γ (α+ n+ 1) Γ (β + n+ 1) Γ (−n)

× exp

[

−
(

k0 n (n+ α+ β + 1) + kπ2

(

m2

b2
+
l2

c2

))

t

]

P (α,β)
n (x) cos

mπ

b
y cos

lπ

c
z

× ℵ0, n+2:V
pi+2,qi+1,τi;R:W









p12
m′

1+m′′

1

...
p22

m′

2+m′′

2

∣

∣

∣

∣

∣

∣

∣

∣

(−α−N : m′

1,m
′

2) , (−β : m′′

1,m
′′

2) , A
...

(−α− β −N − 1 : m′

1 +m′′

1,m
′

2 +m′′

2) , B









,

under the same condition that (3.4) with r = 2.

6. I-Function of Two Variables

If r = 2 and τi, τi′ , τi′′ → 1 the multivariable Aleph-function reduces to I-function
of two variables defined by Sharma and Mishra [12] (see also, [11]) and the general
solution is

v (x, y, z, t)

=
µδe−(µb+δc)Γ (α+ 1)

bc2α+β−1

∞
∑

n,m,l,N=0

(1 − (−)m)
(

1 − (−)l
)

(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (α+ β + 2n+ 1) Γ (α+ β + n+N + 1) Γ (−n+N)

N ! Γ (α+N + 1) Γ (α+ n+ 1) Γ (β + n+ 1) Γ (−n)

× exp

[

−
(

k0 n (n+ α+ β + 1) + kπ2

(

m2

b2
+
l2

c2

))

t

]

P (α,β)
n (x) cos

mπ

b
y cos

lπ

c
z

× I0, n+2:V
pi+2,qi+1,R:W









p12
m′

1+m′′

1

...
p22

m′

2+m′′

2

∣

∣

∣

∣

∣

∣

∣

∣

(−α−N : m′

1,m
′

2) , (−β : m′′

1,m
′′

2) , A
...

(−α− β −N − 1 : m′

1 +m′′

1,m
′

2 +m′′

2) , B









,
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under the same condition that (3.4) with r = 2 and τi, τi′ , τi′′ → 1.

7. Concluding Remarks

Specializing the parameters of the multivariable Aleph-function, we can obtain a
large number of results involving various special functions of one and several variables
useful in Mathematics analysis, Applied Mathematics, Physics and Mechanics. The
result derived in this paper is of general character and may prove to be useful in
several interesting situations appearing in the literature of sciences.

References

[1] F. Ayant, An integral associated with the Aleph-functions of several variables, International
Journal of Mathematics Trends and Technology 31 (2016), 142–154.

[2] F. Ayant and D. Kumar, A unified study of fourier series involving the Aleph-function and the

Kampé de Fériet’s function, International Journal of Mathematics Trends and Technology 35
(2016), 40–48.

[3] F. Ayant and D. Kumar, Generating relations and multivariable Aleph-function, Analysis 38
(2018), 137–143.

[4] H. Carslaw and J. Jaeger, Conduction of Heat Solids, Clarendon Press Oxford, Oxford, 1974.
[5] A. Erdélyi, Tables of Integrals Transforms, Vol. II, McGraw-Hill, New York, 1954.
[6] D. Kumar, Generalized fractional differintegral operators of the Aleph-function of two variables,

Journal of Chemical, Biological and Physical Sciences, Section C 6 (2016), 1116–1131.
[7] D. Kumar, F. Ayant and D. Kumar, A new class of integrals involving generalized hypergeometric

function and multivariable Aleph-function, Kragujevac J. Math. 44 (2020), 539–550.
[8] D. Kumar, J. Ram and J. Choi, Certain generalized integral formulas involving Chebyshev

Hermite polynomials, generalized M -series and Aleph-function, and their application in heat

conduction, Int. J. Math. Anal. 9 (2015), 1795–1803.
[9] I. Simões, A. Tadeu and N. Simões, Green’s functions for heat conduction for unbounded and

bounded rectangular spaces: time and frequency domain solutions, J. Appl. Math. 2016 (2016),
1–22.

[10] Y. Prasad and R. Maurya, Application of Jacobi polynomial and multivariable H-function in

heat conduction in non-homogeneous moving rectangular parallelepiped, Bulletin Mathematiques
de la Societé des Sciences 24 (1980), 393–400.

[11] C. Sharma and S. Ahmad, On the multivariable I-function, Acta Ciencia Indica: Mathematics
20 (1994), 113–116.

[12] C. Sharma and P. Mishra, On the I-function of two variables and its properties, Acta Ciencia
Indica: Mathematics 17 (1991), 667–672.

[13] K. Sharma, On the integral representation and applications of the generalized function of two

variables, International Journal of Mathematical Engineering and Science 3 (2014), 1–13.
[14] H. Srivastava and R. Panda, Some expansion theorems and generating relations for the H-

function of several complex variables, Comment. Math. Univ. St. Pauli 24 (1975), 119–137.
[15] H. Srivastava and R. Panda, Some bilateral generating function for a class of generalized

hypergeometric polynomials, J. Reine Angew. Math. 283/284 (1976), 265–274.
[16] N. Südland, J. Volkmann and D. Kumar, Applications to give an analytical solution to the Black

Scholes equation, Integral Transforms Spec. Funct. 30 (2019), 205–230.



448 D. KUMAR AND F. Y. AYANT

1Department of Applied Sciences,
College of Agriculture, Sumerpur- Pali,
Agriculture University of Jodhpur, Jodhpur 342304, India
Email address: dinesh_dino03@yahoo.com

2Collége Jean L’herminier,
Allée des Nymphéas, 83500 La Seyne-sur-Mer, France
3Six-Fours-les-Plages-83140, Department of Var, France
Email address: fredericayant@gmail.com



Kragujevac Journal of Mathematics

Volume 45(3) (2021), Pages 449–463.

OPTIMIZATIONS ON STATISTICAL HYPERSURFACES WITH

CASORATI CURVATURES

ALIYA NAAZ SIDDIQUI1 AND MOHAMMAD HASAN SHAHID1

Abstract. In the present paper, we study Casorati curvatures for statistical hy-
persurfaces. We show that the normalized scalar curvature for any real hypersurface
(i.e., statistical hypersurface) of a holomorphic statistical manifold of constant holo-
morphic sectional curvature k is bounded above by the generalized normalized
δ−Casorati curvatures and also consider the equality case of the inequality. Some
immediate applications are discussed.

1. Introduction

In 1985, a notion of statistical manifold has been studied by Amari [1]. The abstract
generalizations of statistical models are considered as the statistical manifolds. The
geometry of statistical manifolds lies at a junction of several branches of geometry (in-
formation geometry, affine differential geometry and Hessian geometry). A statistical
structure can be considered as a generalization of a Riemannian structure (a pair of
a Riemannian metric and its Levi-Civita connection). It includes the notion of dual
connection, also called conjugate connection. The theory of statistical manifold and
its statistical submanifold plays a role of central importance in many research fields
of differential geometry.

Recently, H. Furuhata investigated the existence of complex structures on statistical
manifolds and introduced the concept of holomorphic statistical manifold, as the
statistical counterpart of the notion of complex manifold (see [11,12]). Similarly, by
putting a natural affine connection to a Sasakian manifold and a Kenmotsu manifold,
Furuhata defined a Sasakian statistical manifold [13] and a Kenmotsu statistical

Key words and phrases. δ−Casorati curvatures, holomorphic statistical manifold, statistical hy-
persurfaces, normalized scalar curvature, dual connections.
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manifold [14]. The theory of statistical manifolds and their statistical submanifolds
is a very recent geometry. Therefore, it attracts the geometers and several interesting
results have been obtained by many of them (for example [3–5,21,22,26,28]).

The Casorati curvature has been defined by F. Casorati [6] as the normalized square
of the length of the second fundamental form of a submanifold of a Riemannian man-
ifold. This notion extends the concept of the principal direction of a hypersurface of
a Riemannian manifold. This curvature, which is of interest in computer vision, was
preferred by Casorati over the traditional curvatures because it seems to correspond
better with the common intuition of curvature. Several geometers have found geomet-
rical interpretation and significance of the (extrinsic) Casorati curvatures. Therefore,
it follows that it is of great interest to establish a family of optimal Casorati inequali-
ties for different submanifolds with any codimension of different ambient space forms
(for example [9, 10,15,16,18,19,24,25,27])

In this paper, we obtain a family of optimal inequalities which relate the normalized
scalar curvature with the Casorati curvature for statistical hypersurfaces of holomor-
phic statistical manifolds of constant holomorphic sectional curvature. Equality cases
are also verified. Such inequalities were recently obtained for a statistical submanifold,
which is obviously a particular class of statistical hypersurfaces. See, for instance
[2, 8, 17, 20]. We mention that the ambient spaces in the above mentioned articles
are different as compared to the ambient space (that is, a holomorphic statistical
manifold of constant holomorphic sectional curvature) in our work, namely a quater-
nion Kahler-like statistical space form, a Kenmotsu statistical manifold, a statistical
manifold, and a Sasakian statistical manifold, respectively.

2. Statistical Manifold and its Submanifolds

This section is fully devoted to a brief review of several fundamental formulae and
some definitions which are required later.

Definition 2.1 ([12]). Let ∇ be an affine connection of Riemannian manifold (M, g)
with Riemannian metric g on M.

(a) The affine connection ∇
∗

of M defined by

Zg(X,Y) = g(∇ZX,Y) + g(X, ∇
∗

ZY),

for any X,Y,Z ∈ Γ(TM) is known as the dual connection of ∇ with respect
to g.

(b) The triplet (M, ∇, g) is known as a statistical manifold if the torsion tensor

field of ∇ vanishes and ∇g ∈ Γ(TM
(0,3)

) is symmetric.

Remark 2.1. If (M, ∇, g) is a statistical manifold, so is (M, ∇
∗
, g). The dual connec-

tions ∇ and ∇
∗

of M satisfy (see [12]) (∇
∗
)∗ = ∇ and 2∇

0
= ∇ + ∇

∗
, where ∇

0
is

Levi-Civita connection for M of g.
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Example 2.1. Let (M, g) be a family of exponential distributions of mean 0

M := {p(u, Φ) | p(u, Φ) = Φe−Φu, u ∈ [0, ∞), Φ ∈ (0, ∞)},

a Riemannian metric is given by g := Φ−2(dΦ)2, and an α−connection (α ∈ R) on M

is defined by

∇
α

∂

∂Φ

∂

∂Φ
= (α − 1)Φ−1 ∂

∂Φ
.

Then, (M, ∇
α
, g) is a 1-dimensional statistical manifold.

We remark that one can also construct examples for higher dimension by defining
Fisher information metric and α−connection on a family of statistical distribution
(for example [12]).

Definition 2.2 ([12]). Let
(
M, ∇, g

)
be a statistical manifold and M be a submanifold

of M. Then
(
M, ∇, g

)
is also a statistical manifold with the induced statistical

structure (∇, g) on M from (∇, g) and we call
(
M, ∇, g

)
as a statistical submanifold

in
(
M, ∇, g

)
.

Definition 2.3 ([12]). Let
(
M, g, J

)
be a Kaehler manifold and ∇ be an affine

connection on M. Then
(
M, ∇, g, J

)
is said to be a holomorphic statistical manifold

if

(a)
(
M, ∇, g

)
is a statistical manifold, and

(b) a 2−form ̟ on M, given by ̟(X,Y) = g(X, JY) for any X,Y ∈ Γ(TM), is
∇−parallel, that is, ∇̟ = 0.

For a holomorphic statistical manifold
(
M, g, J

)
, we have the following relation (see

[12]) ∇X(JY) = J∇
∗

XY for any X,Y ∈ Γ(TM).

Lemma 2.1 ([11]). Let (M, g, J) be a Kaehler manifold and a connection ∇ is defined

as ∇ := ∇g + K, where K is a (1, 2)−tensor field satisfying the following conditions:

K(X,Y) =K(Y,X),(2.1)

g(K(X,Y),Z) =g(Y, K(X,Z)),

and K(X, JY) + JK(X,Y) = 0 for any X,Y,Z ∈ Γ(TM). Then, (M, ∇, g, J) is a

holomorphic statistical manifold.

By following [26] and Lemma 2.1, we have the following examples.

Example 2.2 ([26]). Let (g, J) be a Kaehler structure on M. We take a vector field

U ∈ Γ(TM) and set a tensor field K1 ∈ Γ(TM
(1,2)

) as follows:

K1(X,Y) =
[
g(JU,X)g(JU,Y) − g(U,X)g(U,Y)

]
U

+
[
g(JU,X)g(U,Y) + g(U,X)g(JU,Y)

]
JU,
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for any X,Y ∈ Γ(TM). Then, by simple computation, we see that K1 satisfies three
conditions of Lemma 2.1, and hence a holomorphic statistical manifold
(M, ∇ := ∇g + K1, g, J) is obtained.

Example 2.3 ([26]). For a Kaehler manifold (M, g, J), we take a vector field U ∈ Γ(TM)
and set K2 as follows:

K2(X,Y) =
[
g(U, JX)g(U, JY) − g(U,X)g(U,Y)

− g(U, JX)g(U,Y) − g(U,X)g(U, JY)
]
U

+
[
g(U,X)g(U,Y) − g(U, JX)g(U, JY)

− g(U, JX)g(U,Y) − g(U,X)g(U, JY)
]
JU,

for any X,Y ∈ Γ(TM). Then K2 ∈ Γ(TM
(1,2)

) satisfies three conditions of Lemma
2.1 as in Example 2.2, and hence (M, ∇ := ∇g + K2, g, J) becomes a holomorphic
statistical manifold.

Example 2.4 ([26]). Let us consider a Kaehler manifold

(M = {(u1, u2)′ ∈ R
2 | u1 > 0}, g, J),

where a Riemanian metric g and the standard complex structure J on M are defined
by g = u1{(du1)2 + (du2)2} and J∂1 = ∂2, J∂2 = −∂1, where ∂i = ∂

∂ui for i = 1, 2.
Now, for any κ ∈ R, we define a (1, 2)-tensor field K3 on R

2 as follows:

K3 =
2∑

i,j,l=1

kl
ij∂l ⊗ dui ⊗ duj,

where −k1
11 = k2

12 = k2
21 = k1

22 = κ and k2
11 = k1

12 = k1
21 = k2

22 = 0. Then K3 satisfies
all three conditions of Lemma 2.1, and hence we get a holomorphic statistical manifold
(M, ∇ := ∇g + K3, g, J), where an affine connection ∇ on M is given by

∇∂1
∂1 =

(
1

2
(u1)−1 − κ

)
∂1,

∇∂1
∂2 =∇∂2

∂1 =

(
1

2
(u1)−1 + κ

)
∂2,

∇∂2
∂2 = −

(
1

2
(u1)−1 − κ

)
∂1.

Now, we pay attention to the concept of statistical hypersurface. Let (M, g) be
a statistical hypersurface of a holomorphic statistical manifold (M, g, J). By the
Kaehler structure J, one can transfer any tangent vector field X on M in M as follows:
JX = PX + u(X)N, where PX = tan(JX) and N is a unit normal vector field on M

in M.
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Then, it naturally satisfies the following relations (see [12]):




P2X = −X + u(X)ξ,
u(ξ) = 1,
Pξ = 0.

The fundamental equations in the geometry of Riemannian submanifolds are the
Gauss and Weingarten formulae and the equations of Gauss, Codazzi and Ricci (see
[29]). In the statistical setting, Gauss and Weingarten formulae are, respectively,
defined by [12]





∇XY = ∇XY + ς(X,Y)N, ∇
∗

XY = ∇∗
XY + ς∗(X,Y)N,

∇XN = −Λ(X) + ν(X)N, ∇
∗

XN = −Λ∗(X) + ν∗(X)N,

for any X,Y ∈ Γ(TM) and N ∈ Γ(T ⊥M), where ∇ and ∇
∗

(resp. ∇ and ∇∗) are the
dual connections on M (resp. on M). Define ν and ν∗ by ν(X) = g(DXN,N) and
ν∗(X) = g(D∗

XN,N), respectively. The symmetric and bilinear imbedding curvature
tensors of M in M for ∇ and ∇

∗
are denoted by ς and ς∗, respectively. The relation

between ς (resp., ς∗) and Λ (resp. Λ∗) is defined by [12]
{

g(ς(X,Y),N) = g(Λ∗X,Y),

g(ς∗(X,Y),N) = g(ΛX,Y),

for any X,Y ∈ Γ(TM) and N ∈ Γ(T ⊥M).

Definition 2.4 ([5]). Let (M, ∇, g) be a submanifold with any codimension of a
statistical manifold (M, ∇, g). Then M is said to be

(a) totally geodesic with respect to ∇ if ς = 0;
(a)∗ totally geodesic with respect to ∇

∗
if ς∗ = 0;

(b) tangentially totally umbilical with respect to ∇ if ς(X,Y) = g(X,Y)H for any
X,Y ∈ Γ(TM), (here H is the mean curvature vector of M in M for ∇);

(b)∗ tangentially totally umbilical with respect to ∇
∗

if ς∗(X,Y) = g(X,Y)H∗ for
any X,Y ∈ Γ(TM), (here H∗ is the mean curvature vector of M in M for ∇

∗
);

(c) normally totally umbilical with respect to ∇ if ΛNX = g(H,N)X for any
X ∈ Γ(TM) and N ∈ Γ(T ⊥M);

(c)∗ normally totally umbilical with respect to ∇
∗

if Λ∗
NX = g(H∗,N)X for any

X ∈ Γ(TM) and N ∈ Γ(T ⊥M).

The curvature tensors with respect to ∇ and ∇
∗

are denoted by R and R
∗
, respec-

tively. Also, R and R∗ are the curvature tensors with respect to ∇ and ∇∗, respectively.
Then the curvature tensor fields of M and M are respectively defined as (see [12])
S = 1

2
(R + R

∗
) and S = 1

2
(R + R∗).

The sectional curvature K on M of M is given by (see [21,22])

K(X ∧ Y) = g(S(X,Y)Y,X) =
1

2
(g(R(X,Y)Y,X) + g(R∗(X,Y)Y,X)),

for any orthonormal vectors X,Y ∈ T℘M, ℘ ∈ M.
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Definition 2.5 ([12]). A holomorphic statistical manifold (M, ∇, g, J) is said to be
of constant holomorphic curvature k ∈ R if the following curvature equation holds

S(X,Y)Z =
k

4

{
g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX − g(JX,Z)JY + 2g(X, JY)JZ

}
,

for any X,Y,Z ∈ Γ(TM). It is denoted by M(k).

The corresponding Gauss equation is given by (see [12])

k

2

{
g(Y,Z)X − g(X,Z)Y + g(PY,Z)PX − g(PX,Z)PY + 2g(X,PY)PZ

}
(2.2)

=2S(X,Y)Z

=2S(X,Y)Z − g(Λ∗Y,Z)ΛX + g(Λ∗X,Z)ΛY − g(ΛY,Z)Λ∗X + g(ΛX,Z)Λ∗Y,

for any X,Y,Z ∈ Γ(TM).

3. Casorati Curvatures for Statistical Hypersurfaces

In this section, we study Casorati curvatures for a statistical hypersurface M of a
holomorphic statistical manifold M.

We put dim(M) = m = 2n − 1 and dim(M) = 2n. Now, we consider a local
orthonormal tangent frame {E1, . . . ,Em} of TMm and a local orthonormal normal

frame {E} of T ⊥Mm in M
2n

. The scalar curvature σ(℘) of M, ℘ ∈ M, is given by

σ(℘) =
∑

1≤i<j≤m

g(S(Ei,Ej)Ej,Ei)

=
1

2

{
∑

1≤i<j≤m

g(R(Ei,Ej)Ej,Ei) +
∑

1≤i<j≤m

g(R∗(Ei,Ej)Ej,Ei)

}
,

and the normalized scalar curvature ̺ of M is defined as

̺ =
2σ(℘)

m(m − 1)
.

The mean curvature vectors H and H∗ of M in M are given by

H =
1

m

m∑

i=1

ς(Ei,Ei),

(
resp. H∗ =

1

m

m∑

i=1

ς∗(Ei,Ei)

)
.

Conveniently, let us put

ςij = g(ς(Ei,Ej),E),
(
resp. ς∗

ij = g(ς∗(Ei,Ej),E)
)

,

for i, j = 1, . . . , m.
Then, the squared norm of mean curvature vectors of M is defined as

‖H‖2 =

(
1

m

m∑

i=1

ςii

)2

,


resp. ‖H∗‖2 =

(
1

m

m∑

i=1

ς∗
ii

)2

 .
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The squared norm of second fundamental forms ς and ς∗ are denoted by C and C∗,
respectively, called the Casorati curvatures of M in M. Therefore, we have

C =
1

m
‖ς‖2,

(
resp. C∗ =

1

m
‖ς∗‖2

)
,

where

‖ς‖2 =
m∑

i,j=1

(
ςij

)2
,


resp. ‖ς∗‖2 =

m∑

i,j=1

(
ς∗
ij

)2


 .

If we consider a r-dimensional subspace W of TM, r ≥ 2, and an orthonormal basis
{E1, . . . ,Er} of W. Then the scalar curvature of the r-plane section W is defined as

σ(W) =
∑

1≤i<j≤r

S(Ei,Ej,Ej,Ei)

=
1

2

{
∑

1≤i<j≤r

R(Ei,Ej,Ej,Ei) +
∑

1≤i<j≤r

R∗(Ei,Ej,Ej,Ei)

}
,

and the Casorati curvatures of the subspace W are the following:

C(W) =
1

r

r∑

i,j=1

(
ςij

)2
,


resp. C∗(W) =

1

r

r∑

i,j=1

(
ς∗
ij

)2


 .

The normalized Casorati curvatures δC(m − 1) and δ̂C(m − 1) are defined as
(a)

[δC(m − 1)]℘ =
1

2
C℘ +

(
m + 1

2m

)
inf{C(W) | W : a hyperplane of T℘M}


resp. [δ∗

C(m − 1)]℘ =
1

2
C∗

℘ +

(
m + 1

2m

)
inf{C∗(W) | W : a hyperplane of T℘M}


;

(b)

[δ̂C(m − 1)]℘ =2C℘ −

(
2m − 1

2m

)
sup{C(W) | W : a hyperplane of T℘M}


resp. [δ̂∗

C(m − 1)]℘ =2C∗
℘ −

(
2m − 1

2m

)
sup{C∗(W) | W : a hyperplane of T℘M}


.

Further, we define the generalized normalized Casorati curvatures δC(s; m − 1) and

δ̂C(s; m − 1) as follows

(a) for 0 < s < m2 − m

[δC(s; m − 1)]℘ =sC℘ + ζ(s) inf{C(W) | W : a hyperplane of T℘M}

(resp. [δ∗
C(s; m − 1)]℘ =sC∗

℘ + ζ(s) inf{C∗(W) | W : a hyperplane of T℘M});
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(b) for s > m2 − m

[δ̂C(s; m − 1)]℘ =sC℘ + ζ(s) sup{C(W) | W : a hyperplane of T℘M}

(resp. [δ̂∗
C(s; m − 1)]℘ =sC∗

℘ + ζ(s) sup{C∗(W) | W : a hyperplane of T℘M}),

where ζ(s) = 1
sm

(m − 1)(m + s)(m2 − m − s), s 6= m(m − 1).
Throughout this paper, we work with the above mentioned notations only.

4. Bounds of Normalized Scalar Curvature

The most fascinating problem in the theory of Riemannian submanifolds is to
find simple relationships between various invariants (intrinsic and extrinsic) of the
submanifolds and Riemannian manifolds. Initially, B.-Y. Chen [7] obtained sharp
optimal inequalities involving the intrinsic δ-curvatures of Chen and the extrinsic
squared mean curvature of submanifolds in a real space form. On the other hand, the
study of δ−Casorati [9] curvatures proposed new solutions to the above problem. In
this section, we prove such inequalities for a statistical hypersurface (Mm, ∇, g) of a

holomorphic statistical manifold (M
2n

, ∇, g, J) with constant holomorphic sectional

curvature k, M
2n

(k).

Theorem 4.1. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n-dimesnional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). Then

̺ ≥
k(m + 3)

4m
+

m

m − 1
‖H‖‖H∗‖ −

1

m(m − 1)
‖ς‖‖ς∗‖.(4.1)

Proof. Let an orthonormal frame of M be {E1, . . . ,Em} and a unit normal vector to
M be {E}. From equation (2.2), we get

2σ =
k(m + 3)(m − 1)

4m
+ m2‖H‖‖H∗‖ −

m∑

i,j=1

ςijς
∗
ij.

Applying Cauchy-Buniakowski-Schwarz, we have

2σ ≥
k(m + 3)(m − 1)

4m
+ m2‖H‖‖H∗‖ − ‖ς‖‖ς∗‖.

From last inequality, we can easily obtain (4.1). This is the required inequality. �

Theorem 4.1 shows that the normalized scalar curvature is bounded below. Now,
we switch to our next theorem, which shows that the normalized scalar curvature is
bounded above in terms of Casorati curvature. The result is as follows.

Theorem 4.2. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). Then
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(a) the generalized normalized Casorati curvatures δC(s; m − 1) and δ∗
C(s; m − 1)

satisfy

(4.2) ̺ ≤
2δ0

C(s; m − 1)

m(m − 1)
+

[
k(m + 3)

4m
+

C0

m − 1
−

2m

m − 1
‖H0‖2 +

m

m − 1
g(H,H∗)

]
,

for any s ∈ R with 0 < s < m(m − 1), where 2C0 = C + C∗ and 2δ0
C(s; m − 1) =

δC(s; m − 1) + δ∗
C(s; m − 1);

(b) the generalized normalized Casorati curvatures δ̂C(s; m − 1) and δ̂∗
C(s; m − 1)

satisfy

̺ ≤
2δ̂0

C(s; m − 1)

m(m − 1)
+

[
k(m + 3)

4m
+

C0

m − 1
−

2m

m − 1
‖H0‖2 +

m

m − 1
g(H,H∗)

]
,(4.3)

for any s ∈ R, with s > m(m − 1), where 2C0 = C + C∗ and 2δ̂0
C(s; m − 1) =

δ̂C(s; m − 1) + δ̂∗
C(s; m − 1).

Proof. Let an orthonormal frame of M be {E1, . . . ,Em} and a unit normal vector to
M be {E}. From equation (2.2), we get

2σ(℘) =
k

4

[
(m − 1)(m + 3)

]
+ 2m2‖H0‖2 −

m2

2

(
‖H‖2 + ‖H∗‖2

)

− 2m C0 +
m

2

(
C + C∗

)
.

Let us take a quadratic polynomial K in the components of the second fundamental
form

K =sC0 + ζ(s)C0(W) − 2σ(℘) +
k

4

[
(m − 1)(m + 3)

]

−
m2

2

(
‖H‖2 + ‖H∗‖2

)
+

m

2

(
C + C∗

)
.(4.4)

Without loss of generality, we assume that W is spanned by E1, . . . ,Em and together
with (4.4), we find that

K =
m + s

m

m∑

i,j=1

(ς0
ij)

2 +
ζ(s)

m − 1

m−1∑

i,j=1

(ς0
ij)

2 −

(
m∑

i=1

ς0
ii

)2

or

K =
m−1∑

i=1

[
q(ς0

ii)
2 +

2(m + s)

m
(ς0

im)2

]

+

[
2q

∑

1≤i6=j≤m−1

(ς0
ij)

2 − 2
∑

1≤i6=j≤m

(ς0
iiς

0
jj) +

s

m
(ς0

mm)2

]
,(4.5)

where

q =

(
m + s

m
+

ζ(s)

m − 1

)
.
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From (4.5), we observe that the solutions of the following system of linear homogenous
equations:





∂K

∂ς0
ii

= 2q(ς0
ii) − 2

∑m
l=1 ς0

ll = 0,

∂K

∂ς0
mm

=
2s

m
ς0
mm − 2

∑m−1
l=1 ς0

ll = 0,

∂K

∂ς0
ij

= 4qς0
ij = 0,

∂K

∂ς0
im

= 4(m+s
m

)ς0
im = 0,

(4.6)

are the critical points

ς0c =
(
ς0
11, ς0

12, . . . , ς0
mm

)
(4.7)

of K, where i, j = 1, . . . , m − 1, i 6= j.
Hence, every solution ς0c has ς0

ij = 0 for i 6= j and the determinant which corresponds
to the first two equations of the above system is zero. Furthermore, the Hessian matrix
Hess

K
of K is given by

Hess
K

=




I O O

O II O

O O III


 ,(4.8)

where O are the null matrices and the matrices I, II and III are, respectively, given
below:

I = − 2




1 − q 1 . . . 1 1
1 1 − q . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 − q 1
1 1 . . . 1 −s

m




,

II =4q




1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1




,

III =
4(m + s)

m




1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1




.
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Therefore, the eigenvalues of Hessian matrix Hess
K

are given below:

µ11 =0, µ22 = 2

(
2s

m
+

ζ(s)

m − 1

)
, µ33 = · · · = µmm = 2q,

µij =4q, µim =
4(m + s)

m
, for all i, j = 1, 2, . . . , m − 1, i 6= j.

Thus, we know that K is parabolic and reaches a minimum K(ς0c) for each solution
ς0c of the system (4.6). From the equations (4.5) and (4.6), we arrive at K(ς0c) = 0.
Hence K ≥ 0, and this further gives following inequality:

2σ(℘) ≤sC0 + ζ(s)C0(W) +
k(m − 1)(m + 3)

4

−
m2

2

(
‖H‖2 + ‖H∗‖2

)
+

m

2

(
C + C∗

)
.

Hence, we find that

̺ ≤
s

m(m − 1)
C0 +

ζ(s)

m(m − 1)
C0(W) +

k(m + 3)

4m

−
2m

m − 1
‖H0‖2 +

m

m − 1
g(H,H∗) +

1

2(m − 1)

(
C + C∗

)
,

for every tangent hyperplane W of M. If we take the infimum over all tangent
hyperplanes W, our assertion (4.2) follows.

In the same manner, we can establish an inequality (4.3) in the second part of the
theorem. �

Remark 4.1. The proof of Theorem 4.2 is mainly based on a classical optimization
procedure by showing that a quadratic polynomial in the components of the second
fundamental form ς0 with respect to Levi-Civita connection is parabolic (see [15,16,
18, 24, 27]). Since, we have proved that the Hessian matrix (4.8) is positive semi-
definite for all points and admits precisely one eigenvalue equal to zero. Therefore,
it is easy to say that K is parabolic and reaches a minimum K(ς0c) for each solution
ς0c of the system (4.6). In fact, because of the convexity, the critical point is a global
minimum. We note that an alternative proof of Theorem 4.2 can be done by making
use of T. Oprea’s optimization technique [23], namely analyzing a suitable constrained
extremum problem (see also [8, 19, 25]).

The characterisation of equality cases in Theorem 4.2.

Theorem 4.3. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). Equalities hold in the relations (4.2) and (4.3) if and only if

ςij = −ς∗
ij, for all i, j = 1, . . . , m, i 6= j,
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and

ς0
mm =

m(m − 1)

s
ς0
11 = · · · =

m(m − 1)

s
ς0
m−1 m−1.

5. Some Geometric Applications

In this section, we discuss some immediate applications of the results proved in the
previous section. Some immediate consequences of Theorem 4.2 are the following.

Corollary 5.1. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). Then

(a) the normalized Casorati curvatures δC(m − 1) and δ∗
C(m − 1) satisfies

̺ ≤2δ0
C(m − 1) +

[
k(m + 3)

4m
+

C0

m − 1
−

2m

m − 1
‖H0‖2 +

m

m − 1
g(H,H∗)

]
,

where 2C0 = C + C∗ and 2δ0
C(m − 1) = δC(m − 1) + δ∗

C(m − 1);

(b) the normalized Casorati curvatures δ̂C(m − 1) and δ̂∗
C(m − 1) satisfies

̺ ≤2δ̂0
C(m − 1) +

[
k(m + 3)

4m
+

C0

m − 1
−

2m

m − 1
‖H0‖2 +

m

m − 1
g(H,H∗)

]
,

where 2C0 = C + C∗ and 2δ̂0
C(m − 1) = δ̂C(m − 1) + δ̂∗

C(m − 1).

Remark 5.1. We remark that one can prove Corollary 5.1 by considering s = m(m−1)
2

in δC(s; m − 1) (resp. δ∗
C(s; m − 1)) and we have the following relation (see [16])

[
δC

(
m(m − 1)

2
; m − 1

)]

℘

=m(m − 1) [δC(m − 1)]℘


resp.

[
δ∗
C

(
m(m − 1)

2
; m − 1

)]

℘

=m(m − 1) [δ∗
C(m − 1)]℘




at any point ℘ ∈ M.

Corollary 5.2. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). If M is minimal, i.e., H0 = 0, then

(a) the generalized normalized Casorati curvatures δC(s; m − 1) and δ∗
C(s; m − 1)

satisfy

̺ ≤ 2
δ0
C(s; m − 1)

m(m − 1)
+

k(m + 3)

4m
+

C0

m − 1
+

m

m − 1
g(H,H∗),

for any s ∈ R, with 0 < s < m(m − 1), where 2C0 = C + C∗ and 2δ0
C(s; m − 1) =

δC(s; m − 1) + δ∗
C(s; m − 1);
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(b) the generalized normalized Casorati curvatures δ̂C(s; m − 1) and δ̂∗
C(s; m − 1)

satisfy

̺ ≤ 2
δ̂0
C(s; m − 1)

m(m − 1)
+

k(m + 3)

4m
+

C0

m − 1
+

m

m − 1
g(H,H∗),

for any s ∈ R, with s > m(m − 1), where 2C0 = C + C∗ and 2δ̂0
C(s; m − 1) =

δ̂C(s; m − 1) + δ̂∗
C(s; m − 1).

The following result follows directly from Corollary 5.1.

Corollary 5.3. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). If M is minimal, i.e., H0 = 0, then

(a) the normalized Casorati curvature δC(m − 1) and δ∗
C(m − 1) satisfy

̺ ≤ 2δ0
C(m − 1) +

k(m + 3)

4m
+

C0

m − 1
+

m

m − 1
g(H,H∗),

where 2C0 = C + C∗ and 2δ0
C(m − 1) = δC(m − 1) + δ∗

C(m − 1);

(b) the normalized Casorati curvature δ̂C(m − 1) and δ̂∗
C(m − 1) satisfy

̺ ≤ 2δ̂0
C(m − 1) +

k(m + 3)

4m
+

C0

m − 1
+

m

m − 1
g(H,H∗),

where 2C0 = C + C∗ and 2δ̂0
C(m − 1) = δ̂C(m − 1) + δ̂∗

C(m − 1).

Now, we have the following statistical significance of Theorem 4.1.

Corollary 5.4. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). If M is totally umbilical and totally geodesic with respect to ∇ and ∇
∗
.

Then

̺ ≥
k(m + 3)

4m
.(5.1)

Remark 5.2. In the above Corollary 5.4, we have M is totally umbilical and totally
geodesic with respect to ∇ and ∇

∗
, that is, for any X,Y ∈ TpM, 0 = ς(X,Y) =

g(X,Y)H, which gives H = 0. Similarly, 0 = ς∗(X,Y) = g(X,Y)H∗ implies H∗ = 0.
Hence, an inequality (4.1) reduces to (5.1).

Further, we observe the following.

Corollary 5.5. Let Mm (m = 2n−1) be a statistical hypersurface of a 2n−dimensional

holomorphic statistical manifold with constant holomorphic sectional curvature k,

M
2n

(k). Suppose that ̺ = k(m+3)
4m

. Then M is not totally geodesic with respect

to ∇ and ∇
∗
.
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QUANTITATIVE UNCERTAINTY PRINCIPLE FOR

STURM-LIOUVILLE TRANSFORM

AHMED ABOUELAZ1, AZZEDINE ACHAK1∗, RADOUAN DAHER1,
AND NAJAT SAFOUANE1

Abstract. In this paper we consider the Sturm-Liouville transform F(f) on R+.
We analyze the concentration of this transform on sets of finite measure. In partic-
ular, Donoho-Stark and Benedicks-type uncertainty principles are given.

1. Introduction

The uncertainty principle says that a function and its transform cannot concentrate
both on small sets. Depending on the precise way to measure “concentration” and
“smallness” this principle can assume different forms. This paper focuses on studying
different uncertainty principles for the Sturm-Liouville transform, by following the
procedures for similar transforms, such as the Fourier transform (the classical setting)
we refer to the book [10] and the surveys [4, 7] for further references. The concept of
concentration has taken different interpretations in different contexts. For example:
Benedicks [2], Slepian and Pollak [18], Landau and Pollak [13], and Donoho and Stark
[6] paid attention to the supports of functions and gave quantitative uncertainty princi-
ples for the Fourier transforms. Qualitative uncertainty principles are not inequalities,
but are theorems that tell us how a function (and its Fourier transform) behave under
certain circumstances. For example: Hardy [11], Cowling and Price [5], Beurling [3],
Miyachi [15] theorems enter within the framework of the quantitative uncertainty
principles. The quantitative and qualitative uncertainty principles have been studied
by many authors for various Fourier transforms, for examples (cf. [1, 11,14,16]).

Key words and phrases. Sturm-Liouville transform, Benedicks theorem, Donoho-Stark’s uncer-
tainty principle.
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Our aim here is to consider uncertainty principles in which concentration is measured
in sense of smallness of the support and when the transform under consideration is
the Sturm-Liouville transform.

The first principle that is studied is a Donoho-Stark-type inequality. One can write
the classical uncertainty principle in the following way: If a function f(t) is essentially
zero outside an interval of length ∆t and its Fourier transform f(w) is essentially zero
outside an interval of length ∆w, then ∆t∆w ≥ 1. In [6], Donoho and Stark show
that it is not necessary to assume that the support and the spectrum are concentrated
on intervals and one can replace intervals by measurable sets, and then the length of
the interval is naturally replaced by the measure of the set. In Section 2, a version of
this inequality for the Sturm-Liouville transform is given, and, as it appears in [6] it
is explained how to reconstruct a signal f from a noisy measurement, knowing that
the signal is supported on a set S.

The second principle, studied in Section 3, is a Benedicks-type result which shows
that two measurable sets (S, Σ) with finite measure form a strong annihilating pair.
This means that a function supported in S cannot have an spectrum in Σ giving a
quantitative information of the mass of a function whose spectrum is contained in Σ.
The approach is based on the corresponding version of this type of principle for the
integral operators transform, studied in [8]. A version of Benedicks type-inequality for
integral operators transform with bounded and homogeneous kernel has been proved
in [8]. In this paper, we consider a transform of a different nature where in particular
the kernel is not homogeneous.

We recall that, Soltani in [19] study what is the relation between the measure
and the spectrum of a function f that is ε-concentrated in measurable sets giving.
Concentration in support means that the part of the function that is not supported
on a set is at least an ε part of the total mass. The analogous version for spectrum
states that the part of the spectrum not supported on a set is an ε part of the total
spectrum. It is shown that if a function is ε-concentrated in space and frequency,
then the product of the measures of the support and spectrum is lower bounded by a
number close to one.

In order to describe our results, we first need to introduce some facts about harmonic
analysis related to Sturm-Liouville transform. We cite here, as briefly as possible,
some properties. For more details we refer to [19].

The Sturm-Liouville operator ∆ defined on R+ by

∆ =
∂2

∂x2
+

A
′(x)

A(x)

∂

∂x
+ ρ2,

where ρ is a nonnegative real number and A(x) = x2α+1B(x), α > −1
2
, where B is a

positive, even, infinitely differentiable function on R such that B(0) = 1. Moreover,
we assume that A and B satisfy the following conditions:

• A is increasing and lim
x→∞

A(x) = ∞;
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•
A

′

A
is decreasing and lim

x→∞

A′(x)
A(x)

= 2ρ;

• there exists a constant δ > 0 such that

A
′(x)

A(x)
=





2ρ + D(x) exp(−δx), if ρ > 0,

2α + 1

x
+ D(x) exp(−δx), if ρ = 0,

where D is an infinitely differentiable function on ]0, ∞[, bounded and with bounded
derivatives on all intervals [x0, ∞[ for x0 > 0. For all λ ∈ C the equation

{
∆u = −λ2u,

u(0) = 1, u′(0) = 0,

admits a unique solution denoted ϕλ, with the following properties:

• for x ≥ 0 the function λ 7→ ϕλ(x) is analytic on C;
• for λ ∈ C the function λ 7→ ϕλ(x) is even and infinitely differentiable on R;
• |ϕλ(x)| ≤ 1 for all λ, x ∈ R.

For nonzero λ ∈ C the equation ∆u = −λ2u has a solution Φλ satisfying

Φλ(x) =
1√
A(x)

exp(iλx)V (x, λ),

with lim
x→∞

V (x, λ) = 1. Consequently, there exists a function λ 7→ c(λ), such that

ϕλ = c(λ)Φλ + c(−λ)Φ−λ, for nonzero λ ∈ C.

Moreover, there exist positive constants k1, k2 and k such that

k1|λ|2α+1 ≤ |c(λ)|−2 ≤ k2|λ|2α+1,

for all λ such that Imλ ≤ 0 and |λ| ≥ k.
Let us introduce the dilation operator Dρ, ρ > 0, defined by

Dρf(x) =
1

ρα+1
f

(
x

ρ

)
.

We denote by Lp(R+, µ), 1 ≤ p ≤ ∞, the space of measurable functions f on R+

such that

‖f‖Lp(R+,µ) =

(∫

R+

|f(x)|pdµ(x)

) 1

p

< +∞, if 1 ≤ p < +∞,

‖f‖∞ =esssupx∈R+
|f(x)| < +∞, if p = ∞,

where dµ(x) = A(x)dx.

The Sturm-Liouville transform F is defined on L1(R+, µ) by

F(f)(λ) =
∫

R+

f(x)ϕλ(x)dµ(x), for all λ ∈ R.

Let ν the measure defined on [0, ∞[ by dν(λ) = dλ
2π|c(λ)|2

and by Lp(ν), 1 ≤ p ≤ ∞,

the space of measurable functions f on [0, ∞[, such that ‖f‖Lp(R+,ν) < ∞.
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For all f ∈ L1(R+, µ), the function F(f) is continuous on R and we have

(1.1) ‖F(f)‖L∞(R+,ν) ≤ ‖f‖L1(R+,µ).

Theorem 1.1 (Plancherel theorem). The Sturm-Liouville transform F extends

uniquely to an isometric isomorphism of L2(R+, µ) onto L2(R+, ν)

(1.2)
∫

R+

|f(x)|2dµ(x) =
∫

R+

|F(f)(λ)|2dν(λ).

Theorem 1.2 (Inversion theorem). Let f ∈ L1(R+, µ) such that F(f) ∈ L1(R+, ν).
Then

f(x) =
∫

R+

F(f)(λ)ϕλ(x)dν(λ) a.e. x ∈ R
+.

Theorem 1.3 (Riesz’s interpolation theorem). Let f ∈ Lp(R+ > µ). Then we get

the Hausdorff-Young inequality (see [20]) ‖F(f)‖Lq(R+,ν) ≤ ‖f‖Lp(R+,µ).

Definition 1.1. Let S, Σ be two measurable subsets of Rd
+. Then (S, Σ) is called a

weak annihilating pair for the Sturm-Liouville transform if suppf ⊂ S and
suppFk,α(f) ⊂ Σ, implies that f = 0, where suppf = {x : f(x) 6= 0}.

Definition 1.2. Let S, Σ be two measurable subsets of R+. Then (S, Σ) is called a
strong annihilating pair for the Sturm-Liouville transform if there exists a constant
C(S, Σ) such that for all function f ∈ L2(R+, µ), with suppF(f) ⊂ Σ,

(1.3) ‖f‖L2(R+,µ) ≤ C(S, Σ)‖f‖L2(Sc,µ),

where Sc = R+\S and suppf = {x : f(x) 6= 0}.

2. The Donoho-Strak’s Uncertainty Principle

The classical uncertainty principle says that if a function f(t) is essentially zero

outside an interval of light ∆t and its Fourier transform f̂(w) is essentially zero
outside an interval of length ∆w, then ∆t∆w ≥ 1. In this section we will prove a
quantitative uncertainty inequality about the essential supports of a nonzero function
f ∈ L2(R+, µ) and its Sturm-Liouville transform.

The first such inequality for the usual Fourier transform was obtained by Donoho-
Stark [6].

We consider a pair of orthogonal projections on L2(R+, µ) defined by PSf = χSf ,
QΣf = F

−1 [χΣF(f)] , where S and Σ are measurable subsets of R+, and χS denote
the characteristic function of S.

Let 0 < εS, εΣ < 1 and let f ∈ L2(R+, µ) be a nonzero function. We say that
f is εS-time-limited on S if ‖PScf‖L2(R+,µ) ≤ εS‖f‖L2(R+,µ). Similarly, we say that
f is εΣ-band-limited on Σ for the Sturm-Liouville transform if ‖QΣcf‖L2(R+,µ) ≤
εΣ‖f‖L2(R+,µ).

We denote by PS ∩ QΣ for the orthogonal projection onto the intersection of the
ranges of PS and QΣ, we will write ImT for the range of a linear operator T . We
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denote by ‖T‖HS the Hilbert-Schmidt norm of the linear operator T . The definition
of this norm [21, page 262] implies that for any pair of projections E, F one has

(2.1) dim(ImPS ∩ ImQΣ) = ‖PS ∩ QΣ‖2
HS ≤ ‖PSQΣ‖2

HS.

Theorem 2.1. Let Σ, S ⊂ R+ be a pair of measurable subsets and let εS, εΣ > 0 such

that ε2
S + ε2

Σ < 1. Let f ∈ L2(R+, µ) be a non function. If f is εS-time-limited on S

and εΣ-band-limited on Σ for the Sturm-Liouville transform, then

µ(S)ν(Σ) ≥
(

1 −
√

ε2
S + ε2

Σ

)2

.

We will need the following well-known lemma.

Lemma 2.1. Let (S, Σ) be two measurable subsets of R+. Then the following asser-

tions are equivalent.

i) ‖PSQΣ‖ = ‖PSQΣ‖L2(R+,µ) < 1.

ii) (S, Σ) is strongly annihilating pair for the Sturm-Liouville transform. Moreover,

we have ‖f‖2
L2(R+,µ) ≤ (1 − ‖PSQΣ‖)−2

(
‖PScf‖2

L2(R+,µ) + ‖QΣcf‖2
L2(R+,µ)

)
.

Proof. Firstly we show the following implication i)⇒ii). The identity operator I

satisfies I = PS + PSc = PSQΣ + PSQΣc + PSc , we have from the orthogonality of PS

and PSc

‖f − PSQΣf‖2
L2(R+,µ) =‖PSQΣcf + PScf‖2

L2(R+,µ)

=‖PSQΣcf‖2
L2(R+,µ) + ‖PScf‖2

L2(R+,µ).

It follows, by ‖PS‖ = 1, that

‖f − PSQΣf‖L2(R+,µ) ≤
(
‖QΣcf‖2

L2(R+,µ) + ‖PScf‖2
L2(R+,µ)

) 1

2
.(2.2)

On the other hand, we have

‖f − PSQΣf‖L2(R+,µ) ≥‖f‖L2(R+,µ) − ‖PSQΣf‖L2(R+,µ)

≥‖f‖L2(R+,µ) − ‖PSQΣ‖ ‖f‖L2(R+,µ).

It follows, from inequality (2.2),

(1 − ‖PSQΣ‖)‖f‖L2(R+,µ) ≤
(
‖PScf‖2

L2(R+,µ) + ‖QΣcf‖2
L2(R+,µ)

) 1

2
.(2.3)

As ‖PSQΣ‖ < 1, then we obtain the desired result.
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Let us now show the second implication ii)⇒i). Recall that

‖PSQΣ‖ = ‖QΣPS‖ = sup
f∈L2(R+,µ)

‖QΣPSf‖L2(R+,µ)

‖f‖L2(R+,µ)

= sup
f :f=PSf

‖QΣf‖L2(R+,µ)

‖f‖L2(R+,µ)

= sup
f :f=QΣf

‖PSf‖L2(R+,µ)

‖f‖L2(R+,µ)

<1.

We suppose that ‖PSQΣ‖ = 1. Then we can find a bandlimited sequence fn ∈
L2(R+, µ) on Σ of norm 1 (in particular fn = QΣfn) such that

‖PSfn‖L2(R+,µ) → 1 as n → ∞.

By the orthogonality of S, we have

‖PScfn‖2
L2(R+,µ) = ‖fn‖2

L2(R+,µ) − ‖PSfn‖L2(R+,µ) → 0 as n → ∞,

which contradicts (1.3). �

Lemma 2.2. If 0 < µ(S)ν(Σ) < 1, then for all function f ∈ L2(R+, µ) such that

suppF(f) ⊂ Σ we have

‖f‖L2(R+,µ) ≤
(

1 −
√

µ(S)ν(Σ)
)−1

‖f‖L2(Sc,µ).

Proof. A straightforward computation shows that PSQΣ is an integral operator with
kernel N(t, x) = χS(t)F−1(χΣϕλ(t))(x). Indeed, we have

PSQΣf(t) =χS(t)
∫

R+

χΣ(ξ)F(f)(ξ)ϕλ(t)dν(ξ)

=χS(t)
∫

R+

χΣ(ξ)ϕλ(t)

(∫

R+

f(x)ϕλ(x)dµ(x)

)
dν(ξ)

=
∫

R+

f(x)N(t, x)dµ(x),

where

N(t, x) = χS(t)
∫

R+

χΣ(ξ)ϕλ(t)ϕλ(x)dν(ξ).

Since, ν(Σ) < ∞ and ϕλ is bounded, then for all t ∈ R+, χΣϕλ(t) ∈ L2(R+, ν).
Then PSQΣ is an integral operator with kernel N(t, x) = χS(t)F−1(χΣϕλ(t))(x). As
‖PSQΣ‖HS = ‖N‖L2(R+×R+,µ⊗µ), it follows from Plancherel’s theorem 1.2 that

‖PSQΣ‖2
HS =

∫

R+

|χS(t)|2
(∫

R+

|F−1(χΣϕλ(t))(x)|2dµ(ξ)

)
dµ(t)

=
∫

R+

χS(t)
∫

R+

χΣ(ξ)|ϕλ(t)|2dν(ξ)dµ(t).
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We can deduce from |ϕλ(t)| < 1 that

(2.4) ‖PSQΣ‖ ≤ ‖PSQΣ‖HS ≤
√

µ(S)ν(Σ).

Since µ(S)ν(Σ) < 1, then we have from inequality (2.4) and Lemma 2.1

‖f‖2
L2(R+,µ) ≤

(
1 −

√
µ(S) ν(Σ)

)−2 (
‖PScf‖2

L2(R+,µ) + ‖QΣcf‖2
L2(R+,µ)

)
.

Since suppF(f) ⊂ Σ, it follows from Plancherel’s theorem 1.2 that

‖QΣcf‖2
L2(R+,µ) =

∫

Σc
|F(ξ)|2dν(ξ) = ‖F(f)‖2

L2(Σc,ν) = 0,

which shows the desired result. �

Proof of Theorem 2.1. The result follows from inequalities (2.3) and (2.4). Indeed, f

is εS-time-limited on S, then ‖PScf‖L2(R2,µ) ≤ εS‖f‖L2(R2,µ). f is εΣ-band-limited on
Σ for the Sturm-Liouville transform, then ‖QΣcf‖L2(R2,µ) ≤ εΣ‖f‖L2(R2,µ). It follows
that

(2.5) ‖PScf‖2
L2(R2,µ) + ‖QΣcf‖2

L2(R2,µ) ≤ (ε2
S + ε2

Σ)‖f‖2
L2(R2,µ),

from (2.3) we deduce that (1 − ‖PSQΣ‖)2 ≤ ε2
S + ε2

Σ. It follows, from (2.4), that

1 −
√

ε2
S + ε2

Σ ≤ ‖PSQΣ‖ ≤
√

|S||Σ|, which proves the desired result. �

Remark 2.1. From inequalities (2.1) and (2.4) it follows that

(2.6) dim(ImPS ∩ ImQΣ) ≤ ‖PSQΣ‖2
HS < ∞.

The following example is prototypical. A signal f is transmitted to a receiver who
know that f is bandlimited on S for the Sturm-Liouville transform, meaning that f

is synthesized using only frequency on S; equivalently f = QΣf. Suppose that the
observation of f is corrupted by a noise n ∈ L2(R+, µ) (which is nonetheless assumed
to be small) and an unregistered values on S. Thus, the observable function r satisfies

r(x) =

{
f(x) + n(x), x ∈ Sc,
0, x ∈ S.

Here, we have assumed without loss of generality that n = 0 on S. Equivalently,
r = (I − PS)f + n. We say that f can be stably reconstructed from r, if there exists
a linear operator K and a constant C such that

(2.7) ‖f − Kr‖L2(R+,µ) ≤ C‖n‖L2(R+,µ).

The estimate (2.7) shows that the noise n is at most amplified by a factor C.

Corollary 2.1. If S and Σ are arbitrary measurable sets of R+ with 0 < µ(S)ν(Σ) <

1, then f can be stably reconstructed from r. The constant C in equation (2.7) is not

larger than
(
1 −

√
µ(S)ν(Σ)

)−1
.

471



Proof. If µ(S)ν(Σ) < 1, using (2.4), ‖PSQΣ‖ < 1. Hence, I − PSQΣ is invertible. Let
K = (I − PSQΣ)−1. Since f is bandlimited on Σ, then (I − PS)f = (I − PSQΣ)f .
Therefore,

f − Kr =f − K((I − PS)f + n)

=f − K(I − PSQΣ)f − Kn

=f − (I − PSQΣ)(I − PSQΣ)−1f − Kn

=0 − Kn.

So, that

‖f − Kr‖L2(R+,µ) =‖Kn‖L2(R+,µ)

≤‖(I − PSQΣ)−1‖‖n‖L2(R+,µ)

≤
∞∑

k=0

‖PSQΣ‖k‖n‖L2(R+,µ)

≤
∞∑

k=0

(µ(S)ν(Σ))
k
2 ‖n‖L2(R+,µ)

=
(

1 −
√

µ(S)ν(Σ)
)−1

‖n‖L2(R+,µ).

The constant C in equation (2.7) is therefore not larger than
(
1 −

√
µ(S)ν(Σ)

)−1
. �

The identity K = (I − PSQΣ)−1 =
∑∞

k=0(PSQΣ)k suggests an algorithm for com-
puting Kr. Put f (n) =

∑n
k=0(PSQΣ)kr, then

f (0) = r, f (n+1) = r + PSQΣf (n) and f (n) → Kr as n → ∞.

As f is bandlimited on Σ we deduce that

(2.8) f (n+1) − f = PSQΣ(f (n) − f).

Algorithms of this type have applied to a host of problems in signal recovery (see for
examples [12, 17]).

3. Uncertainty Principles

In this section we will give some remarks about annihilating sets.

Proposition 3.1. Let f ∈ L2(R+, µ) has non empty support, then

ν(suppF)µ(suppf) ≥ 1.

In particular, if µ(suppf)ν(suppF) < 1, then f = 0.
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Proof. If the function f ∈ L2(R+, µ) has non empty support, by the Cauchy-Schwartz
inequality and (1.1), we have

‖F‖2
L2(R+,ν) ≤ν(supp F(f))‖F(f)‖2

∞

≤ν(supp F(f))‖f‖2
L1(R+,µ)

≤ν(supp F(f))µ(supp f)‖f‖2
L2(R+,µ).

Using Plancherel’s theorem 1.2 we have the following quantitative uncertainty inequal-
ity connecting the support of f and the support of its Sturm-Liouville transform F

(3.1) ν(suppF)µ(suppf) ≥ 1.

It follows that if µ(suppf)ν(suppF) < 1, then f = 0. �

Proposition 3.2. Let f ∈ L1(R+, µ) ∩ Lp(R+, µ), 1 < p ≤ 2, then

‖F‖Lq(R+,ν) ≤ ν(suppF(f))1/qµ(suppf)1/q‖f‖Lp(R+,µ),

where q = p
p−1

.

Proof. Let f ∈ L1(R+, µ) ∩ Lp(R+, µ), 1 < p ≤ 2, then by Hölder’s inequality and
(1.1), we get

‖F(f)‖Lq(R+,ν) ≤ν(suppF(f))1/q‖F(f)‖∞

≤ν(suppF(f))1/q‖f‖L1(R+,µ)

≤ν(suppF(f))1/qµ(suppf)1/q‖f‖Lp(R+,µ). �

Proposition 3.3. Let f ∈ L2(R+, µ) ∩ Lp(R+, µ), 1 < p ≤ 2, then

1 < ν(suppF(f))
q−2

2q µ(suppf)
2−p

2p ,

where q = p
p−1

.

Proof. Let f ∈ L2(R+, µ) ∩ Lp(R+, µ), 1 < p ≤ 2, then by (1.1), Hölder’s inequality
and Riez’s interpolation, we get

‖F(f)‖L2(R+,ν) ≤ν(suppF(f))
q−2

2q ‖F(f)‖Lq(R+,ν)

≤ν(suppF(f))
q−2

2q ‖f‖Lp(R+,µ)

≤ν(suppF(f))
q−2

2q µ(suppf)
2−p

2p ‖f‖L2(R+,µ),

by Plancherel’s formula we get the desired result. �

Lemma 3.1. Any nonzero function in C0(R
d
+) has linearly independent dilates.

Proof. In the case d = 1 this Lemma was proved in [8]. The case d > 1 we reduce to the
case d = 1. Let f ∈ C0(R

d
+) such that f 6= 0, if x = (x1, . . . , xd−1, 0) = r(x′, 0) ∈ R

d
+,∑d−1

i=1 |x′
i|

2 = 1, r ∈ R+, we get g(r) = f(r(x′, 0)).
If xd > 0, x = r(θx′, 1), where

∑d−1
i=1 |x′

i|
2 = 1, and r, θ ∈ R

+, we get g(r) =
f(r(θx′, 1)). In both cases g(r) ∈ C0(R+). �
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Lemma 3.2. Let S0 and Σ0 be a pair of measurable subsets of R+ with 0 < µ(S0), ν(Σ0)
< ∞, then exist an infinite sequence of distinct numbers (ρj)

∞
j=0 ⊂ (0, ∞) such that

µ(∪∞
j=0ρjS0) < 2µ(S0) and ν

(
∪∞

j=0

1

ρj

Σ0

)
< 2ν(Σ0).

Proof. Let S1 be a measurable subset of R+ of finite Lebesgue measure such that
S0 ⊂ S1. Define h : R+ → R+ by h(ρ) = µ(S1 ∪ ρS0). Since χρS0

and χS1
are in

L2(R+, µ), we may express h in terms of scalar product in L2(R+, µ)

h(ρ) = ‖χρS0
− χS1

‖2
L2(R+,µ) + 〈χρS0

, χS1
〉L2(R+,µ).

The function ρ 7→ h(ρ) is a continuous function on (0, ∞). We deduce that there
exist an infinite sequence of distinct numbers (ρ)∞

j=0 ⊂ (0, ∞), with ρ0 = 1 such that
µ(∪∞

j=0ρjS0) < 2µ(S0). We can follow the same techniques to prove that

ν




∞⋃

j=0

1

ρj

Σ0


 < 2ν(Σ0). �

We are now in position to prove Benedicks-type theorem for the Sturm-Liouville
transform.

Theorem 3.1. Let S and Σ be a pair of measurable subsets of R+, with 0 < µ(S),
ν(Σ) < ∞, then the pair (S, Σ) is weakly annihilating pair.

Proof. Suppose that there exist f0 6= 0 such that S0 = suppf0 and Σ0 = suppF(f0)
have both finite measure 0 < µ(suppf0), ν(suppF(f0)) < ∞. From Lemma 3.2 we can
find an infinite sequence of distinct numbers (ρ)∞

j=0 ⊂ (0, ∞), with ρ0 = 1, such that,

if we denote by S = ∪∞
j=0ρjsuppf0 and Σ = ∪∞

j=0
1
ρj

suppF(f0) we have µ(S) < 2µ(S0),

ν(Σ) < 2ν(Σ0).
Put fi = Dρi

f0, so that supp fi = ρisuppf0. As F(fi) = D 1

ρi

F(f0) we have

suppF(fi) = 1
ρi

suppF(f0). Since suppF(f0) has finite measure, f0 ∈ C0(R+). It

follows from Lemma 3.1 that (fi)
∞
i=0 are linearly independent vectors belonging to

ImPS ∩ ImQΣ which contradicts (2.6). Then, (S, Σ) is weakly annihilating. �

Theorem 3.2 (Benedicks-type theorem). Let S and Σ be a pair of measurable subsets

of R+ with 0 < µ(S), ν(Σ) < ∞, then the pair (S, Σ) is strong annihilating pair.

Proof. Assume there is no such constant C(S, Σ). We can find a sequence fn ∈
L2(R+, µ) of norm 1 weakly convergent in L2(R+, µ) with some limit f such that

suppfn ⊂ S and ‖χΣcF(fn)‖L2(R+,ν) → 0 as n → ∞.

Since F(fn) is the scalar product of fn and χSϕλ(·), it follows that F(fn) converge to

F(f). Since |F(fn)| as bounded by
√

µ(S), it follows from Lebesgue’s theorem that

F(fn)χΣ converges to F(f) in L2(R+, ν) and the limit f has norm 1. But the function
f has support in S and spectrum in Σ, since (S, Σ) is a weak annihilating pair, it
follows that f = 0, which gives a contradiction. �
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A STUDY OF CONFORMALLY FLAT QUASI-EINSTEIN

SPACETIMES WITH APPLICATIONS IN GENERAL RELATIVITY

VENKATESHA1 AND ARUNA KUMARA H1

Abstract. In this paper we consider conformally flat (QE)4 spacetime and ob-
tained several important results. We study application of conformally flat (QE)4

spacetime in general relativity and Ricci soliton structure in a conformally flat
(QE)4 perfect fluid spacetime.

1. Introduction

An Einstein manifold is a Riemannian or pseudo-Riemannian manifold whose Ricci
tensor S of type (0, 2) is non-zero and propotional to the metric tensor. Einstein man-
ifolds form a natural subclass of various classes of Riemannian or pseudo-Riemannian
manifolds by a curvature condition imposed on their Ricci tensor [4]. Also in Rie-
mannian geometry as well as in general relativity theory, the Einstein manifold play
an very important role.

The quasi-Einstein manifolds are generalization of Einstein manifolds. The notion
of quasi-Einstein manifolds was introduced by Chaki and Maity [6] in 2000. According
to them, a Riemannian manifold or pseudo-Riemannian manifold is said to be a quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is non-zero and satisfies the
condition

S(X, Y ) = αg(X, Y ) + βA(X)A(Y ),(1.1)

where α and β are real valued non-zero scalar functions and A is a non-zero 1-
form equivalent to the vector field ω, i.e., g(X,ω) = A(X), g(ω, ω) = 1. Here
A is called an associated 1-form and ω is called a generator. If β = 0, then the

Key words and phrases. Quasi-Einstein spacetime, perfect fluid spacetime, Einstein field equation,
energy momentum tensor, Ricci solitons, conformal curvature tensor.
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manifold reduces to an Einstein manifold. This kind of n-dimensional manifold
is denoted by (QE)n. Quasi-Einstein manifolds arose during the study of exact
solutions of the Einstein field equations as well as during the considerations of quasi-
umbilical hypersurfaces of semi-Euclidean spaces. For instance, the Robertson-Walker
spacetimes and conformally flat almost pseudo-Ricci symmetric spacetimes are quasi-
Einstein manifolds. Also, quasi-Einstein manifolds can be taken as a model of perfect
fluid spacetime in general relativity. The importance of quasi-Einstein spacetimes
lies in the fact that 4-dimensional pseudo-Riemannian manifolds are related to study
of general relativistic fluid spacetime, where the generator vector field ω is taken as
timelike velocity vector field, that is, g(ω, ω) = −1.

In the paper [5], Chaki and Ray studied spacetimes with covariant constant energy
momentum tensor. In recent paper [11,17], they studied the quasi-Einstein spacetime
and generalized quasi-Einstein spacetime in general relativity. Additionally, there are
many works related with spacetime in general relativity [1, 13,14,16,19].

The authors De, Özgür and De showed that conformally flat almost pseudo-Ricci
symmetric spacetime can be considered as a model of the perfect fluid spacetime in
general relativity and also obeying Einstein equation without cosmological constant
and having the vector as velocity vector is infinitesimally spatially isotropic relative
to the unit timelike vector field [8]. In [9], they proved that conformally flat perfect
fluid spacetime with semisymmetric energy momentum tensor is a spacetime of quasi
constant curvature and such spacetime determines an equation of state in quintessence
era, where the universe is in an accelerating phase. Therefore it is meaningful to study
a conformally flat (QE)4 spacetime in general relativity.

The present paper organized as follows. After preliminaries, in Section 3, we
study conformally flat (QE)4 spacetime. In Section 4, we prove that conformally flat
Ricci pseudosymmetric (QE)4 spacetime is an N

(

2α−5β

6

)

quasi-Einstien spacetime,
provided g(Y, Z)A(X) 6= g(X,Z)A(Y ). In Section 5, we study conformally flat (QE)4

perfect fluid spacetime and obtained some interesting results on conformally flat (QE)4

spacetime in general reltivity. Finally, we study Ricci soliton structure of conformally
flat (QE)4 sapcetime in general relativity.

2. Preliminaries

Consider (QE)4 spacetime with associated scalars α, β and associated 1-form A.
Then by (1.1), we have

r = 4α− β,(2.1)

where r is a scalar curvature of the spacetime. If ω is orthogonal unit vector field,
then g(ω, ω) = −1. Again from (1.1), we have

S(X,ω) =(α− β)A(X),

S(ω, ω) =β − α.(2.2)
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Let Q be the symmetric endomorphism of the tangent space at each point of the
manifold corresponding to the Ricci tensor S. Then g(QX, Y ) = S(X, Y ) for all
X, Y .

3. Conformally Flat (QE)4 Spacetime

A quasi-Einstein spacetime is said to be conformally flat, if the Weyl conformal
curvature tensor C vanishes and is defined by [8,22]

C(X, Y )Z =R(X, Y )Z − 1

2
{S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY }

+
r

6
{g(Y, Z)X − g(X,Z)Y } ,(3.1)

where Q is the Ricci operator defined by g(QX, Y ) = S(X, Y ) and r is the scalar
curvature.

Now, suppose that (QE)4 spacetime is conformally flat. Then by (3.1), we get

R(X, Y )Z =
1

2
{S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY }

− r

6
{g(Y, Z)X − g(X,Z)Y } .(3.2)

From (1.1), we have

QX = αX + βA(X)ω.(3.3)

Substituting (1.1) and (3.3) in (3.2), we obtain

R(X, Y, Z,W ) =

(

2α+ β

6

)

{g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )}

+
β

2
{g(X,W )A(Y )A(Z) − g(Y,W )A(X)A(Z)

+ g(Y, Z)A(X)A(W ) − g(X,Z)A(Y )A(W )} ,(3.4)

which leads to

R(X, Y, Z,W ) = B(Y, Z)B(X,W ) −B(X,Z)B(Y,W ),(3.5)

where

B(X, Y ) =

√

2α+ β

6
g(X, Y ) +

β
√

3√
4α+ 2β

A(X)A(Y ).(3.6)

It is known that an n-dimensional Riemannian or pseudo-Riemannian manifold whose
curvature tensor R of type (0, 4) satisfies the condition (3.5), where B is a symmetric
tensor field of type (0, 2), is called a special manifold with the associated symmetric
tensor B and is denoted by the symbol ψ(B)n. Recently, these type of manifolds are
studied in [15,18].

By virtue of (3.5) and (3.6), we have the following theorem.
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Theorem 3.1. A conformally flat (QE)4 spacetime is ψ(B)4 with associated symmet-

ric tensor B given by (3.6).

Chen and Yano [7] introduced the concept of manifold of a quasi-constant curvature.
A spacetime is said to be of quasi-constant curvature if the curvature tensor R of type
(0, 4) satisfies

R(X, Y, Z,W ) =a{g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )}
+ b {g(X,W )̟(Y )̟(Z) − g(Y,W )̟(X)̟(Z)

+ g(Y, Z)̟(X)̟(W ) − g(X,Z)̟(Y )̟(W )} ,(3.7)

where a and b are scalars and there exists a unit vector field ν such that g(X, ν) =
̟(X). If b = 0, then the spacetime is of constant curvature a. Comparing the
equation (3.4) and (3.7), we have the following.

Theorem 3.2. A conformally flat (QE)4 spacetime is a spacetime of quasi-constant

curvature.

Let (M4, g) be a conformally flat (QE)4 spacetime. As C = 0, we have divC = 0,
where div denotes the divergence. Hence, from (3.2) we have

(∇XS)(Y, Z) − (∇Y S)(X,Z) =
1

6
{g(Y, Z)dr(X) − g(X,Z)dr(Y )}.

In view of (1.1), above relation takes the form

dα(X)g(Y, Z) − dα(Y )g(X,Z) + dβ(X)A(Y )A(Z) − dβ(Y )A(X)A(Z)

+ β[(∇XA)(Y )A(Z) + A(Y )(∇XA)(Z) − (∇YA)(X)A(Z)

− A(X)(∇YA)(Z)]

=
1

6
[g(Y, Z)dr(X) − g(X,Z)dr(Y )] .(3.8)

Suppose the scalar curvature r is constant, then from (2.1) we have

4dα(X) = dβ(X).(3.9)

Using above equation in (3.8), we get

dα(X)[g(Y, Z) + 4A(Y )A(Z)] − dα(Y )[g(X,Z) + 4A(X)A(Z)]
(3.10)

+ β[(∇XA)(Y )A(Z) + A(Y )(∇XA)(Z) − (∇YA)(X)A(Z) − A(X)(∇YA)(Z)] = 0.

Taking a frame field after contraction over Y and Z, we obtain from (3.10) that

dα(X) + 4dα(ω)A(X) + β[(∇ωA)(X) + A(X)
4
∑

i=1

ǫi(∇ei
A)(ei)] = 0,(3.11)

where ǫi = g(ei, ei) = ±1. Plugging ω in place of Y and Z in (3.10), we get

3[dα(X) + dα(ω)A(X)] + β(∇ωA)(X) = 0.(3.12)
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In view of (3.12) and (3.11), we obtain

−2dα(X) + dα(ω)A(X) + βA(X)
4
∑

i=1

ǫi(∇ei
A)(ei) = 0.(3.13)

Now, putting X = ω in the above equation, we get

β
4
∑

i=1

ǫi(∇ei
A)(ei) = −3dα(ω).(3.14)

From (3.13) and (3.14), it follows that

dα(X) = −dα(ω)A(X).(3.15)

Setting Z = ω in (3.10) and then using (3.13) and β 6= 0, we get

(∇XA)(Y ) = (∇YA)(X).(3.16)

Above equation shows that 1-form A is of Codazzi type, this means that generator ω
is irrotational. By virtue of (3.15), (3.12) and β 6= 0, it follows that

(∇ωA)(X) = 0,(3.17)

for all X, which implies that ∇ωω = 0 and hence intergral curves of ω are geodesic.
Again, setting Y = ω in (3.10) and then using (3.15) and (3.17), we get

(∇XA)(Z) = −dα(ω)

4α
[A(X)A(Z) + g(X,Z)].(3.18)

Now, we consider non-vanishing scalar function f = −dα(ω)
4α

. Then, we have

∇Xf =
dα(ω)

4α2
dα(X) − d2α(ω,X)

4α
.(3.19)

By virtue of (3.15), we get d2α(X, Y ) = −d2α(ω, Y )A(X) − dα(ω)(∇YA)(X). In a
Lorentzian manifold, the scalar function η satisfies the relation d2η(X, Y ) = d2η(Y,X),
for all X, Y . In view of (3.16), the above relation becomes

d2α(ω,X)A(Y ) = d2α(ω, Y )A(X).

Taking Y = ω in the above equation, we get

d2α(ω,X) = −d2α(ω, ω)A(X) = −ψA(X),(3.20)

where ψ = d2α(ω, ω) is a scalar function. Now in the consequence of (3.20) and (3.15),
equation (3.19) takes the form

∇Xf = − 1

4α2
[{dα(ω)}2 − αψ]A(X).(3.21)

Now consider a 1-form h given by

h(X) = −dα(ω)

4α
A(X) = fA(X).(3.22)

From (3.16), (3.21) and (3.22) we have dh(X, Y ) = 0, i.e., the 1-form h is closed.
Therefore (3.18) can be written as (∇XA)(Z) = h(X)A(Z) + fg(X,Z). This means
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that the generator ω corresponding to the 1-form A is a unit proper concircular vector
field [20]. This leads to the following theorem.

Theorem 3.3. In a conformally flat (QE)4 spacetime with constant scalar curvature,

the following properties hold:

i. the generator vector field ω is irrotational;

ii. the integral curves of ω are geodesic;

iii. the vector field ω corresponding to the 1-form A is a unit proper concircular

vector field.

Lemma 3.1. In a conformally flat (QE)4 spacetime, the curvature tensor R of type

(1, 3) satisfies the following properties:

(i) R(X, Y )Z =
(

2α+β

6

)

{g(Y, Z)X − g(X,Z)Y };

(ii) R(X,ω)Y =
(

β−α

3

)

g(X, Y )ω;

(iii) R(X,ω)ω =
(

β−α

3

)

X,

for all X, Y, Z ∈ ω⊥, the 3-dimensional distribution orthogonal to the generator ω.

Proof. In a conformally flat (QE)4 spacetime, we have the relation (3.4). Since ω⊥ is
a 3-dimensional distribution orthogonal to the generator ω, we have g(X,ω) = 0 if
and only if X ∈ ω⊥. Hence (3.4) yields the relation (i)-(iii) for all X, Y, Z ∈ ω⊥. This
proves the lemma. �

Let X, Y, Z ∈ ω⊥. Let K1 be the sectional curvature of the plane determined by X
and Y and K2 be the sectional curvature of the plane determined by X and ω. Then

K1 =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y ) − g(X, Y )2
, K2 =

g(R(X,ω)ω,X)

g(X,X)g(ω, ω) − g(X,ω)2
.

By virtue of (i) and (iii) in Lemma 3.1 , we have K1 = 2α+β

6
and K2 = α−β

3
. Hence,

we state the following.

Lemma 3.2. In a conformally flat (QE)4 spacetime, the sectional curvature of all

planes determined by X, Y ∈ ω⊥ is 2α+β

6
and the sectional curvature of all planes

determined by X and ω, where X ∈ ω⊥ is α−β

3
.

We note that K1 and K2 are constants if and only if α and β are constant. So the
following corollary arises.

Corollary 3.1. In a conformally flat (QE)4 spacetime, the sectional curvature K1 of

all planes determined by X and Y as well as the sectional curvature K2 of all planes

determined by X and ω are constants if and only if α and β are constant.

Remark 3.1. We know that, a pseudo-Riemannian manifold of constant sectional
curvature is locally symmetric. Suppose α and β are constant, then from Corollary
3.1, we say that conformally flat (QE)4 spacetime is locally symmetric if and only if
2α+β

6
is constant, provided that the vectors are orthogonal to the generator ω.
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By virtue of (3.4), we obtain

R(X, Y )ω =
α− β

3
{A(Y )X − A(X)Y } ,

R(X,ω)Y =
α− β

3
{A(Y )X − g(X, Y )ω} .(3.23)

From the Theorem 3.2, we know that conformally flat (QE)4 spacetime is of quasi-
constant curvature and is said to be regular if α− β 6= 0.

Bejan and Crasmareanu [3] proved that a parallel second order symmetric covariant
tensor in a regular manifold of quasi-constant curvature is a constant multiple of the
metric tensor. Hence we have the following.

Theorem 3.4. A parallel and symmetric second order covariant tensor field in a

conformally flat (QE)4 spacetime with α 6= β, is a constant multiple of the metric

tensor, that is h(X, Y ) = h(ω, ω)g(X, Y ), where h is a symmetric tensor field of type

(0, 2).

Let us consider a second order symmetric tensor h = Lωg + 2S, where Lω is the
Lie derivative with respect to ω. Then

h(ω, ω) = (Lωg)(ω, ω) + 2S(ω, ω).(3.24)

Since g(ω, ω) = −1, it follows that

(∇XA)(ω) = g(∇Xω, ω) = 0.

Therefore, (Lωg)(ω, ω) = 2g(∇ωω, ω) = 0 (because ∇ωω ⊥ ω). In view of (2.2) and
(3.24), we obtain

h(ω, ω) = 2(β − α).(3.25)

By virtue of Theorem 3.4 and (3.25), we have

h(X, Y ) = 2(β − α)g(X, Y ).(3.26)

Thus, we have (Lωg)(X, Y )+2S(X, Y )+2(α−β)g(X, Y ) = 0. This expression defines
Ricci soliton on confomally flat (QE)4 spacetime if (α − β) is constant. Hence, we
conclude the following.

Theorem 3.5. In a conformally flat (QE)4 spacetime, the symmetric tensor field

h = Lωg + 2S of type (0, 2) is parallel with respect to Levi-Civita connection ∇ of g,
then the relation (3.26) defines a Ricci soliton, provided that α − β is constant. In

this case, Ricci soliton is called expanding or steady or shrinking according as α− β
is positive or zero or negative, respectively.
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4. Conformally Flat Ricci pseudosymmetric (QE)4 Spacetime

An n-dimensional pseudo-Riemannian manifold is said to be Ricci pseudosymmetric
if the tensor R · S and Tachibana tensor Q(g, S) are lineraly dependent, i.e.,

(R(X, Y ) · S(Z,W )) = LSQ(g, S)(Z,W ;X, Y )(4.1)

holds on US, where US =
{

x ∈ M : S 6= r
n
g at x

}

, LS is a certain function on US and

(R(X, Y ) · S(Z,W )) = −S(R(X, Y )Z,W ) − S(Z,R(X, Y )W ),(4.2)

LSQ(g, S)(Z,W ;X, Y ) = −S((XΛgY )Z,W ) − S(Z, (XΛgY )W ),(4.3)

(XΛgY )Z = g(Y, Z)X − g(X,Z)Y.(4.4)

Suppose a conformally flat (QE)4 spacetime is Ricci pseudosymmetric. Then making
use of (4.2)–(4.4) in (4.1), we obtain

S(R(X, Y )Z,W ) + S(Z,R(X, Y )W ) =LS[g(Y, Z)S(X,W ) − g(X,Z)S(Y,W )

+ g(Y,W )S(Z,X) − g(X,W )S(Y, Z)].(4.5)

Substituting (1.1) in (4.5), we have

A(R(X, Y )Z)A(W ) + A(Z)A(R(X, Y )W )

=LS[g(Y, Z)A(X)A(W ) − g(X,Z)A(Y )A(W ) + g(Y,W )A(Z)A(X)

− g(X,W )A(Y )A(Z)].

Plugging W by ω in previous equation and making use of the property g(R(X, Y )ω, ω)
= g(R(ω, ω)X, Y ) = 0, we get

A(R(X, Y )Z) = LS[g(Y, Z)A(X) − g(X,Z)A(Y )].(4.6)

In view of (2.1) and (3.4), (4.6) yields
[

LS −
(

2α− 5β

6

)]

{g(Y, Z)A(X) − g(X,Z)A(Y )} = 0,

which yields either g(Y, Z)A(X) = g(X,Z)A(Y ) or
[

LS −
(

2α−5β

6

)]

= 0.
Suppose g(Y, Z)A(X) 6= g(X,Z)A(Y ), then we have

LS =
2α− 5β

6
.(4.7)

In view of (4.6) and (4.7), we have

R(X, Y )Z =
2α− 5β

6
{g(Y, Z)X − g(X,Z)Y } ,

which means that the generator vector field ω belongs to 2α−5β

6
-nullity distrbution.

This leads to the following.

Theorem 4.1. Every conformally flat Ricci pseudosymmetric (QE)4 spacetime with

g(Y, Z)A(X) 6= g(X,Z)A(Y ) is an N
(

2α−5β

6

)

-quasi-Einstein spacetime.
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5. Conformally Flat (QE)4 Spacetimes with Applications in General
Relativity

Ricci tensor is a part of curvature of spacetime that determines the degree to which
matter will tend to converge or diverge in time. It is related to the matter content of
universe by means of the Einstein field equation

S(X, Y ) +
(

Λ − r

2

)

g(X, Y ) = κT (X, Y ), for all X, Y,(5.1)

where S is the Ricci tensor, r is the scalar curvature, Λ is the cosmological constant
and κ is the gravitational constant. Einstein’s field equation shows that the energy
momentum tensor is symmetric of type (0, 2) with divergence zero.

For the perfect fluid matter distribution, the energy momentum tensor is given by

T (X, Y ) = ρg(X, Y ) + (σ + ρ)A(X)A(Y ),(5.2)

where σ is energy density and ρ is the isotropic pressure of the fluid.
Here we consider a conformally flat (QE)4 spacetime obeying Einstein’s field equa-

tion with cosmological constant whose matter content is perfect fluid. Then, in view
of (5.1) and (5.2), Ricci tensor takes the form

S(X, Y ) =
(

κρ− Λ +
r

2

)

g(X, Y ) + κ(σ + ρ)A(X)A(Y ).(5.3)

Compare (5.3) with (1.1), we have

α = κρ− Λ +
r

2
, β = κ(σ + ρ).

Contracting (5.3) and taking into account that g(ω, ω) = −1, we have

r = 4Λ + κ(σ − 3ρ).(5.4)

By virtue of (5.4) and (5.3), it follows that

S(X, Y ) =

(

Λ +
κ(σ − ρ)

2

)

g(X, Y ) + κ(σ + ρ)A(X)A(Y ).(5.5)

Now differentiating (5.5) covariantly, we get

(∇XS)(Y, Z) =
κ

2
X(σ − ρ)g(Y, Z) + κX(σ + ρ)A(Y )A(Z)

+ κ(σ + ρ)[(∇XA)(Y )A(Z) + A(Y )(∇XA)(Z)].(5.6)

Let us suppose that conformally flat (QE)4 perfect fluid spacetime is Ricci symmetric,
i.e., ∇S = 0, then in view of (3.18) and (5.6), it follows that

0 =
κ

2
X(σ − ρ)g(Y, Z) + κX(σ + ρ)A(Y )A(Z)

+ fκ(σ + ρ)[2A(X)A(Y )A(Z) + g(X, Y )A(Z) + g(X,Z)A(Y )].(5.7)

Taking contraction on (5.7) over Y and Z, we get

X(σ − 3ρ) = 0.(5.8)
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This shows that σ − 3ρ is constant. Hence, we state the following.

Theorem 5.1. If a conformally flat (QE)4 perfect fluid spacetime obeying Einstein

field equation with cosmological constant is Ricci symmetric, then σ − 3ρ is constant.

Remark 5.1. Let us take constant as zero in the equation (5.8). Then the isotropic
pressure ρ is σ/3 which means that it characterizes radiation era. Therefore radiation
has the equation of state υ = 1/3 and it predicts that the resulting universe is isotropic
and homogenous [10].

Let us consider the energy momentum tensor which is η-recurrent, i.e., (∇XT )(Y, Z)
= η(X)T (Y, Z), where η is a nonzero 1-form. By Einstein field equation, this condition
becomes

(∇XS)(Y, Z) − dr(X)

2
g(Y, Z) = η(X)S(Y, Z) + η(X)

(

Λ − r

2

)

g(Y, Z).

Recall that the scalar curvature r is constant. Replacing r from (5.4), S from (5.5)
and ∇S from (5.6), we get

κρη(X)g(Y, Z) =
κ

2
X(σ − ρ)g(Y, Z) + κX(σ + ρ)A(Y )A(Z)

+ κ(σ + ρ)[(∇XA)(Y )A(Z) + A(Y )(∇XA)(Z) − η(X)A(Y )A(Z)].

Plugging Y = Z = ω in the above equation, we have

X(σ + 3ρ) = 2η(X)(2σ + ρ).(5.9)

Hence, we conclude the following.

Theorem 5.2. If the energy momentum tensor T of conformally flat (QE)4 perfect

fluid spacetime is η-recurrent, then energy density and isotropic pressure satisfies the

relation (5.9).

Remark 5.2. For an η-recurrent energy-momentum tensor, if energy density and
isotropic pressure are constants, then σ = −1/2ρ. For a perfect fluid, T is given in
(5.2) which takes the form T (X, Y ) = ρ

[

g(X, Y ) + 1
2
A(X)A(Y )

]

.

In this case we observe that the equation of state υ is -2 which is less than -1,
showimg that the existence of phantom energy. We know that phantom energy is a
hypothetical form of dark energy with υ < −1 [2]. The existence of phantom energy
could cause the expansion of the universe to accelerate so quickly that a scenario
known as the Big Rip, a possible end to the universe occurs and violates weak energy
condition.

6. Ricci Soliton Structure in a Conformally Flat (QE)4 Perfect
Fluid Spacetime

The present authors recently studied the Ricci soliton structure in perfect fluid
spacetime with torse-forming vector field in [19]. In this section, we consder a Ricci
soliton structure in a conformally flat (QE)4 perfect fluid spacetime.
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The idea of Ricci solitons was introduced by Hamilton[12]. Ricci solitons also
correspond to selfsimilar solutions of Hamilton’s Ricci flow. They are natural general-
izations of Einstein metrics and is defined by

(LV g)(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0,(6.1)

for some constant λ and a vector field V . The Ricci soliton is said to be shrinking,
steady, and expanding according as λ is negative, zero, and positive respectively.

In view of (5.5), Ricci soliton equation (6.1) takes the form

(LV g)(Y, Z) = −2

(

Λ + λ+
κ(σ − ρ)

2

)

g(Y, Z) − 2κ(σ + ρ)A(Y )A(Z).(6.2)

In this case we assume that the energy density σ and isotropic pressure ρ are constants.
Now differentiating (6.2) covariantly along an arbitrary vector field X provides

(∇XLV g)(Y, Z) = −2κ(σ + ρ) [(∇XA)(Y )A(Z) + A(Y )(∇XA)(Z)] .(6.3)

Suppose the vector field ω is concurrent, i.e., ∇Xω = ξX, where ξ is a nonzero
constant, then (∇XA)(Y ) = ξg(X, Y ). Therefore, (6.3) becomes

(∇XLV g)(Y, Z) = −2ξκ(σ + ρ) [g(X, Y )A(Z) + g(X,Z)A(Y )] .(6.4)

The identity

(∇XLV g)(Y, Z) = g((LV ∇)(X, Y ), Z) + g((LV ∇)(X,Z), Y ),(6.5)

can be found from the commutation formula [21]
(

LV ∇Xg − ∇XLV g − ∇[V, X]g
)

(Y, Z) = −g((LV ∇)(X, Y ), Z) − g((LV ∇)(X,Z), Y ).

Using (6.4) in (6.5) and a straightforward combinatorial computation shows that

(LV ∇)(Y, Z) = −2ξκ(σ + ρ)A(Z)Y.(6.6)

Now, substituting Y = Z = ω in the well known formula [21], we have

(LV ∇)(X, Y ) = ∇X∇Y V − ∇∇XY V +R(V,X)Y,

and then making use of (6.6) we obtain ∇ω∇ωV +R(V, ω)ω = 2ξκ(σ + ρ)ω.
If σ + ρ = 0, then ∇ω∇ωV +R(V, ω)ω = 0, i.e., V is Jacobi along ω.

Next, differentiating the (6.6) along an arbitrary vector field X we have

(∇XLV ∇)(Y, Z) = −2ξ2κ(σ + ρ)g(X,Z)Y.(6.7)

According to Yano [21], we have the following commutation formula:

(LVR)(X, Y )Z = (∇XLV ∇)(Y, Z) − (∇YLV ∇)(X,Z).

In view of (6.7), we obtain

(LVR)(X, Y )Z = 2ξ2κ(σ + ρ)[g(Y, Z)X − g(X,Z)Y ].(6.8)

Substituting Y = Z = ω in (6.8), we obtain

(LVR)(X,ω)ω = 2ξ2κ(σ + ρ)[−X − A(X)ω].(6.9)



488 VENKATESHA AND ARUNA KUMARA H

Taking Y = ω in (3.23), then Lie differentiate along V and making use of (6.2) and
(6.9), we find that

2ξ2κ(σ + ρ)[−X − A(X)ω] +R(X,LV ω)ω +R(X,ω)LV ω

=
α− β

3

[

−A(X)LV ω + 2

(

Λ + λ− κ(σ + 3ρ)

2

)

A(X)ω − g(X,LV ω)ω

]

.(6.10)

Plugging Y = Z = ω in (6.2), we get

g(LV ω, ω) =

[

κ(σ + 3ρ)

2
− Λ − λ

]

.(6.11)

Contracting (6.10) over X, then making use of (5.5) and (6.11) gives
[

Λ − κ(σ + 3ρ)

2

]

·
[

κ(σ + 3ρ)

2
− Λ − λ

]

= 3ξ2(σ + ρ).(6.12)

If σ + ρ = 0, then (6.12) gives a relation

λ = κρ− Λ.

This shows that Ricci soliton is expanding if κρ > Λ, steady if κρ = Λ and shrinking
if κρ < Λ. Hence, we can state the following theorem.

Theorem 6.1. Let M4 be a conformally flat (QE)4 perfect fluid spacetime whose

energy density and isotropic pressure are constants. If M4 admits a non-trivial (non-

Einstein) Ricci soliton with velocity vector of the fluid is concurrent and σ + ρ = 0,

i.e., the spacetime represents inflation, then

(i) V is Jacobi along the geodesic determined by ω;

(ii) the Ricci soliton is expanding, steady and shrinking according as κρ > Λ,

κρ = Λ and κρ < Λ, respectively.
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