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INTEGRAL BOUNDARY VALUE PROBLEMS FOR IMPLICIT
FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING
HADAMARD AND CAPUTO-HADAMARD FRACTIONAL

DERIVATIVES

P. KARTHIKEYAN1 AND R. ARUL1

Abstract. In this paper, we examine the existence and uniqueness of integral
boundary value problem for implicit fractional differential equations (IFDE’s) in-
volving Hadamard and Caputo-Hadamard fractional derivative. We prove the exis-
tence and uniqueness results by utilizing Banach and Schauder’s fixed point theorem.
Finally, examples are introduced of our results.

1. Introduction
FDE’s are considered to be a different model to integer differential equations. It

has been proved by applying importance in the modeling of various fields of physical
sciences, medicine, electronics and wave transformation [8, 16, 21, 23, 26]. The dom-
inant techniques are the method of introducing a parameter for solving an implicit
differential equations. In past three years, the most of research paper to devel-
oped existence and uniqueness of implicit FDE’s involving various derivatives like
the Caputo,Riemann-Liouville, Caputo-Hadamard, Hadamard, Hilfer-Hadamard frac-
tional derivatives etc., (see [4–7,9, 14,15,19,20,24]).

Caputo Hadamard fractional derivatives were studied in [12] by the authors F. Jarad,
T. Abdeljawad and D. Baleanu, where a Caputo-type modification for Hadamard
derivatives was introduced and studied. Later, more properties of Hadamard fractional
derivatives were investigated in [1, 2, 10, 13].
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The applications of Hadamard fractional differential equations in mathematical
physics cuold be found in [11, 17, 18, 22, 25]. In [3] the authors have studied Hilfer-
Hadamard FDE’s with variable-order fractional integral and fractional derivative.
Motivated by the above cited work, we studies the solutions of existence and uniqueness
results to the following implicit fractional differential equations with integral boundary
conditions of the form

HDϑx(t) = g(t, x(t),H Dϑx(t)), t ∈ J := (b,T),(1.1)

x(b) = 0, x(T) = λ
∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(1.2)

where HDϑ is the Hadamard fractional derivative of order 1 < ϑ ≤ 2,
CHDϑx(t) = g(t, x(t),CH Dϑx(t)), t ∈ J := [b,T],(1.3)

x(b) = 0, x(T) = λ
∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(1.4)

where CHDϑ is the Caputo-Hadamard fractional derivative of order 1 < ϑ ≤ 2 and
g : J× R× R→ R is a continuous function.

In this paper, Section 2, has definitions and some of the most important basic
concepts of the fractional calculus. In Section 3, existence and uniqueness of solutions
for integral boundary conditions of implicit fractional differential equations involv-
ing Hadamard fractional derivative and Caputo-Hadamard fractional derivatives are
proved by utilizing Banach and Schauder’s fixed point theorems. In Section 4, an
illustrative examples are provided to explain of the results of the problem (1.1)–(1.4).

2. Basic Results
In this section, the some most important basic concepts, definitions and some

supporting results are used in this paper. By C(J,R) we denote the Banach space of
all continuous functions form J into R with the norm ||x||∞ = sup{|x(t)| : t ∈ J}.
Definition 2.1 ([15]). The derivative of fractional order ϑ > 0 of a function g :
(0,∞)→ R is given by

Dϑ
0+x(t) = 1

Γ(n− ϑ)

(
d

dt

)n ∫ t

0

g(s)
(t− s)ϑ−n+1ds,

where n = [ϑ] + 1, provided the right side is pointwise defined on (0,∞).
Definition 2.2 ([15]). The Hadamard fractional integral of g is defined by

HJ
ϑx(t) = 1

Γ(ϑ)

∫ t

b

(
log t

s

)ϑ−1 g(s)
s
ds, ϑ > 0.

Definition 2.3 ([15]). The Hadamard fractional derivative of g is continuous
function and further, log(·) = loge(·) is defined as

HD
ϑx(t) = 1

Γ(n− ϑ)

(
t
d

dt

)n ∫ t

b

(
log t

s

)n−ϑ−1 g(s)
s
ds,
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where n− 1 < ϑ < n, n = [ϑ] + 1 and [ϑ] denotes the integer part of the real number
ϑ.

Definition 2.4 ([12]). For at least n-times differentiable function g, the Caputo-
Hadamard fractional derivative of order ϑ is defined as

CHDϑx(t) = 1
Γ(n− ϑ)

∫ t

a

(
ln t

s

)n−ϑ−1
δn
g(s)
s
ds.

Lemma 2.1 (Hadamard fractional derivative). Let v ∈ C([b,T],R) and x ∈
C2
δ([b,T],R). Then

HDϑx(t) = v(t), t ∈ J := [b,T],

x(b) = 0, x(T) = λ
∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(2.1)

is equivalent to the integral equation given by

x(t) = 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 v(s)
s
ds+

(
ln t

s

)ϑ−1

Γ(ϑ)
[(

ln T
s

)ϑ−1
− λ

[∫ σ
b

(
ln s

b

)ϑ−1
ds
]]

×

λ ∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 v(r)
r
drds−

∫ T

b

(
ln T

s

)ϑ−1
v(s)
s
ds

(2.2)

Lemma 2.2 (Caputo-Hadamard fractional derivative). Let v ∈ C([b,T],R) and x ∈
C2
δ([b,T],R).

CHDϑx(t) = v(t), t ∈ J := [b,T],

x(b) = 0, x(T) = λ
∫ σ

0
x(s)ds, b < σ < T, λ ∈ R,(2.3)

is equivalent to the integral equation given by

x(t) = 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 v(s)
s
ds+

(
ln t

s

)
Γ(ϑ)

[(
ln T

s

)
− λ

[
σ
(
ln σ

b
− 1

)
+ b

]]
×

λ ∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 v(r)
r
drds−

∫ T

b

(
ln T

s

)ϑ−1
v(s)
s
ds

 .(2.4)

Lemma 2.3 (Nonlinear alternative of Lerary-Schauder type, [7]). Let B be a Banach
space, C a closed, convex subset of B, U an open subset of C and 0 ∈ U. Suppose that
F : U → C is a continuous, compact map. Then either (i) F has a fixed point in U,
or (ii) there is a u ∈ ∂U and λ ∈ (0, 1), with u = λF (u).

3. Main Results
To prove the existence and uniqueness results we need the following assumptions.

Assumption 3.1. The function g : J× R× R→ R is a continuous function.
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Assumption 3.2. There exists constants Kg > 0 and 0 < Lg < 1 such that

|g(t, u, v)− g(t, u1, v1)| ≤ Kg|u− u1|+ Lg|v − v1|, for any u, v, u1, v1 ∈ R.

Assumption 3.3. There exist a continuous nondecreasing function ϕ on [0,∞)→ (0,∞)
and a function p(t) ∈ C1([b,T],R+) such that

||g(t, u, v)|| ≤ p(t)ϕ(||u||+ ||v||).

The integral boundary conditions for implicit fractional differential equations with
Hadamard fractional derivative (1.1)–(1.2) is equivalent to the integral equation

x(t) = 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 g(s, x(s),H Dϑx(s))
s

ds+

(
ln t

b

)ϑ−1

Γ(ϑ)
[(

ln T
b

)ϑ−1
− λN1

]
×
[
λ
∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 g(r, x(r),H Dϑx(r))
r

drds

−
∫ T

b

(
ln T

s

)ϑ−1
g(s, x(s)),H Dϑx(s))

s
ds
]
,

where N1 =
∫ σ
b

(
ln s

b

)ϑ−1
ds.

The integral boundary conditions for implicit fractional differential equations with
Caputo-Hadamard fractional derivative (1.3)–(1.4) is equivalent to the integral equa-
tion

x(t) = 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 g(s, x(s)),CH Dϑx(s))
s

ds+

(
ln t

b

)
Γ(ϑ)

[(
ln T

b

)
− λN2

]
×
[
λ
∫ σ

b

∫ s

r

(
ln s
r

)ϑ−1 g(r, x(r),CH Dϑx(r))
r

drds

−
∫ T

b

(
ln T

s

)ϑ−1
g(s, x(s)),CH Dϑx(s))

s
ds
]

or

x(t) = Iϑf(s) +
 (ln t

s
)

Γ(ϑ)
[(

ln T
s

)
− λN2

]
 [λ ∫ σ

b
Iϑf1(r)ds− Iϑf2(s)

]
,

where N2 = σ
(
ln σ

b
− 1

)
+ b and f, f1, f2 ∈ C(J,R) satisfies the functional equations

f(s) = g(s, Iϑf(s), f(s)),
f1(r) = g(r, Iϑf1(r), f1(r)),
f2(s) = g(s, Iϑf2(s), f2(r)),

Iϑf(s) = 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 g(s, x(s)),CH Dϑx(s))
s

ds,
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Iϑf1(r) =
∫ s

b

(
ln s
r

)ϑ−1 g(r, x(r),CH Dϑx(r))
r

dr,

Iϑf2(s) =
∫ T

b

(
ln T

s

)ϑ−1
g(s, x(s)),CH Dϑx(s))

s
ds.

Theorem 3.1. Assume that assumptions 3.1 and 3.2 hold. If 1
Γ(ϑ+ 1)

(
ln T

b

)ϑ
+

(
ln T

b

)2ϑ−1

Γ(ϑ+ 1)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣ (|λ|(σ − b)− 1)

 Kg

(1− Lg)
< 1,

then there exists a unique solution for (1.1)–(1.2) on J := [b,T].

Proof. Let Br = {x ∈ C([b,T],R) : ‖x‖ ≤ r}. Consider the operatorH : C([b,T],R)→
C([b,T],R) defined by

(3.1) H(x)(t) = Iϑf(s) +


(
ln t

b

)ϑ−1

Γ(ϑ)
[(

ln T
b

)ϑ−1
− λN1

]
(λ ∫ σ

b
Iϑf1(r)ds− Iϑf2(s)

)
,

where f, f1, f2 ∈ C(J,R) satisfies the functional equations
f(s) = f(s, Iϑf(s), f(s)),
f1(r) = f(r, Iϑf1(r), f1(r)),
f2(s) = f(s, Iϑf2(s), f2(s)),

where N1 =
∫ σ
b

(
ln s

b

)ϑ−1
ds and

Iϑf(s) = 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 g(s, x(s)),H Dϑx(s))
s

ds,

Iϑf1(r) =
∫ s

b

(
ln s
r

)ϑ−1 g(r, x(r),H Dϑx(r))
r

dr,

Iϑf2(s) =
∫ T

b

(
ln T

s

)ϑ−1
g(s, x(s)),H Dϑx(s))

s
ds.

Clearly, the fixed point of operator H is solution of problem (1.1)–(1.2). Let
x1, x2 ∈ C([b,T],R). Then

(Hx1)(t)− (Hx2)(t) = 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 f(s)− h(s)
s

ds

+


(
ln t

s

)ϑ−1

Γ(ϑ)
[(

ln T
s

)ϑ−1
− λN1

]


×
[
λ
∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 f(r)− h(r)
r

drds
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−
∫ T

b

(
ln T

b

)ϑ−1
f(s)− h(s)

s
ds
]
,

where f(s), h(s), f(r), h(r) ∈ C([b,T],R) are such that

f(s) = f(s, x1(s), f(s)), f(r) = f(r, x2(r), f(r)),
h(s) = h(s, x1(s), h(s)), h(r) = h(r, x2(r), h(r)).

Now,

|(Hx1)(t)− (Hx2)(t)| ≤ 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 |f(s)− h(s)|
s

ds

+


(
ln t

s

)ϑ−1

Γ(ϑ)
∣∣∣∣(ln T

s

)ϑ−1
− λN1

∣∣∣∣


×
[
|λ|
∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 |f(r)− h(r)|
r

drds

−
∫ T

b

(
ln T

b

)ϑ−1 |f(s)− h(s)|
s

ds
]
,(3.2)

and, by Assumption 3.2, we have

|(f(s)− h(s))| = |g(s, x1(s), f(s))− g(s, x2(s), h(s))|,

|(f(s)− h(s))| ≤ Kg|x1(s)− x2(s)|+ Lg|x1(s)− x2(s)| ≤ Kg

1− Lg
|x1(s)− x2(s)|,

|(f(s)− h(s))| ≤ Kg

1− Lg
|x1(s)− x2(s)|.

Similary,

|(f(r)− h(r))| ≤ Kg

1− Lg
|x1(r)− x2(r)|.

The equation (3.2) implies

|(Hx1)(t)− (Hx2)(t)| ≤ 1
Γ(ϑ+ 1)

(
Kg

1− Lg

)
||x1 − x2||

(
ln T

b

)ϑ

+

(
ln T

b

)2ϑ−1

Γ(ϑ+ 1)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣
×
(

(|λ|(σ − b)− 1)
(

Kg

1− Lg

))
||x1 − x2||
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≤
( 1

Γ(ϑ+ 1)

(
ln T

b

)ϑ
+

(
ln T

b

)2ϑ−1

Γ(ϑ+ 1)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣
× (|λ|(σ − b)− 1)

)(
Kg

1− Lg

)
||x1 − x2||∞.

Thus,

|(Hx1)(t)− (Hx2)(t)| ≤
( 1

Γ(ϑ+ 1)

(
ln T

b

)ϑ
+

(
ln T

b

)2ϑ−1

Γ(ϑ+ 1)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣
× (|λ|(σ − b)− 1)

(
Kg

1− Lg

)
||x1 − x2||∞.

By (3.1), the operator H is continuous. Hence, by Banach’s contraction principle,
H has a unique fixed point which is a unique solution of the problem (1.1)–(1.2) on
J := [b,T]. �

Theorem 3.2. Assume that assumptions 3.1 and 3.2 hold. If 1
Γ(ϑ+ 1)

(
ln T

b

)ϑ
+

(
ln T

b

)ϑ+1

Γ(ϑ+ 1)
∣∣∣(ln T

b

)
− λN2

∣∣∣ (|λ|(σ − b)− 1)

( Kg

1− Lg

)
< 1,

then there exists a unique solution for (1.3)–(1.4) on J := [b,T].

The proof of Theorem 3.2 is similar to the Theorem 3.1.

Theorem 3.3. Assume that assumptions 3.1 and 3.3 hold. Then there is at least one
solution for the problem (1.1)–(1.2) on J =: [b,T].

Proof. Step 1. Show that H maps bounded sets (balls) into bounded sets in
C([b,T],R).

For a positive number r1, let Br1 = {x ∈ C([b,T],R) : ||Z∗|| ≤ r1} be a bounded
ball in C([b,T],R), where

||Z∗|| = sup
t∈[b,T]

(||x||+ ||g||).

Then

|H(x)(t)| ≤ 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 |g(s, x(s)),cDϑx(s))|
s

ds+

(
ln t

b

)ϑ−1

Γ(ϑ)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣
×
[
|λ|
∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 |g(r, x(r),cDϑx(r))|
r

drds

−
∫ T

b

(
ln T

s

)ϑ−1 |g(s, x(s)),cDϑx(s))|
s

ds
]
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≤ 1
Γ(ϑ)

∫ t

b

(
ln t

s

)ϑ−1 ϕ(||Z∗||)||p||
s

ds+

(
ln t

b

)ϑ−1

Γ(ϑ)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣
×
[
|λ|
∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 ϕ(||Z∗||)||p||
r

drds

−
∫ T

b

(
ln T

s

)ϑ−1
ϕ(||Z∗||)||p||

s
ds

 ,
i.e.,

|H(x)(t)| ≤
( 1

Γ(ϑ+ 1)

(
ln T

s

)ϑ
+

(
ln T

b

)2ϑ−1

Γ(ϑ+ 1)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣
× (|λ|(σ − b)− 1)

)
ϕ(r)||p||.

Step 2. Show thatHmaps bounded sets (balls) into equicontinuous sets in C([b,T],R).
Let µ1, µ2 ∈ [b,T], µ1 < µ2. Then, we have

||H(x)(µ1)−H(x)(µ2)|| ≤ 1
Γ(ϑ)

[ ∫ µ1

b

[(
ln µ2

r

)ϑ−1
−
(

ln µ1

r

)ϑ−1
]
ϕ(||Z∗||)||p||

s
ds

+
∫ µ2

µ1

(
ln µ2

s

)ϑ−1 ϕ(||Z∗||)||p||
s

ds
]

+

(
ln µ2

b

)ϑ−1
−
(
ln µ1

b

)ϑ−1

Γ(ϑ)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣
×
[
|λ|
∫ σ

b

∫ s

b

(
ln s
r

)ϑ−1 ϕ(||Z∗||)||p||
r

drds

−
∫ T

b

(
ln T

s

)ϑ−1
ϕ(||Z∗||)||p||

s
ds
]
.

Obviously, the right-hand side of the above inequality tends to zero independently
of u, v ∈ Br1 as µ2 − µ1 → 0. As H satisfies the above assumptions, therefore, by
the Arzela-Ascoli theorem, it follows that H : C([b,T],R)→ C([b,T],R) is completely
continuous. Let x be a solution. Then, for t ∈ [b,T] and following the similar
computations as in the first step, we have

|x(t)| =λ|H(x)(t)|

≤
( 1

Γ(ϑ+ 1)

(
ln T

s

)ϑ
+

(
lnT

b

)2ϑ−1

Γ(ϑ+ 1)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣ (|λ|(σ − b)− 1)
)
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× ϕ(||x||)||p||.

Consequently, we have

||x(t)||(
1

Γ(ϑ+1)

(
ln T

s

)ϑ
+ (ln T

b )2ϑ−1

Γ(ϑ+1)
∣∣∣(ln T

b )ϑ−1
−λN1

∣∣∣ (|λ|(σ − b)− 1)
)
ϕ(||x||)||p||

≤ 1.

There exists M∗ such that ||x|| 6= M∗. Let us set

U = {x ∈ C([b,T],R) : ||x|| <M∗}.

Note that the operatorH : U→ C([b,T],R) is continuous and completely continuous.
From the choice of U, there is no x ∈ ∂U such that x = λHx for some 0 ≤ λ ≤ 1.
Consequently, by the nonlinear alternative of Lerary-Schauder type (Lemma 2.3), we
deduce thatH has fixed point x ∈ U which is a solution of the problem (1.1)–(1.2). �

Theorem 3.4. Assume that assumptions 3.1 and 3.3 hold and there exists a constant
M∗ > 0, such that

M∗ >
( 1

Γ(ϑ+ 1)

(
ln T

s

)ϑ
+

(
ln T

b

)ϑ+1

Γ(ϑ+ 1)
∣∣∣(ln T

b

)
− λN1

∣∣∣ (|λ|(σ − b)− 1)
)
||p||ϕ(||x||).

Then, there is at least one solution for the problem (1.3)–(1.4) on J =: [b,T].

The proof of Theorem 3.4 is similar to the Theorem 3.3.

4. Examples

In this section, some examples are introduced for Hadamard and Caputo-Hadamard
fractional derivatives of implicit fractional differential equations with integral boundary
conditions.

Example 4.1. Consider the implicit Hadamard FDE’s with three point integral bound-
ary conditions of the form

HD
10
7 x(t) = |x|

(t+ 6)2(|1 + |x|+ |HD 10
7 x(t)|)

, 1 < ϑ ≤ 2,(4.1)

x(1) = 0, x(b) = λ
∫ σ

b
x(s)ds.(4.2)

Here ϑ = 10
7 ,

g(t, x(t),H Dϑx(t)) = |x|
(t+ 6)2(|1 + |x|+ |HD 10

7 x(t)|)
,
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σ = 3, λ = 5. Hence, the Assumption 3.2 holds, with Kg = Lg = 1
49 and we will check

that 1
Γ(ϑ+ 1)

(
ln T

b

)ϑ
+

(
ln T

b

)2ϑ−1

Γ(ϑ+ 1)
∣∣∣∣(ln T

b

)ϑ−1
− λN1

∣∣∣∣ (|λ|(σ − b)− 1)

 Kg

(1− Lg)
< 1.

Thus, the Theorem 3.1 is satisfied and shows that the problem (4.1)–(4.2) has a unique
solution on J =: [b,T].

Example 4.2. Consider the implicit Caputo-Hadamard FDE’s with three point integral
boundary conditions of the form

CHD
10
7 x(t) = |x|

(t+ 6)2(|1 + |x|+ |CHD 10
7 x(t)|)

, 1 < ϑ ≤ 2,(4.3)

x(1) = 0, x(b) = λ
∫ σ

b
x(s)ds.(4.4)

Here ϑ = 10
7 ,

g(t, x(t),CH Dϑx(t)) = |x|
(t+ 6)2(|1 + |x|+ |CHD 10

7 x(t)|)
,

σ = 3, λ = 5. Hence, the Assumption 3.2 holds, with Kg = Lg = 1
49 and we will check

that 1
Γ(ϑ+ 1)

(
ln T

b

)ϑ
+

(
ln T

b

)ϑ+1

Γ(ϑ+ 1)
∣∣∣(ln T

b

)
− λN2

∣∣∣ (|λ|(σ − b)− 1)

 Kg

(1− Lg)
< 1.

Thus, the Theorem 3.2 is satisfied and shows that the problem (4.3)–(4.4) has a unique
solution on J =: [b,T].
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