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SERIES EXPANSION OF A COTANGENT SUM RELATED TO
THE ESTERMANN ZETA FUNCTION

MOULOUD GOUBI*

ABSTRACT. In this paper, we study the cotangent sum cg (%) related to the Ester-

mann zeta function for the special case when the numerator is equal to 1 and get

two useful series expansions of c¢gy (%)

1. INTRODUCTION

For a positive integer pand ¢ = 1,2, ..., p—1, such that (p, q) = 1, let the cotangent
sum (see [10])
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Co (p) is the value at s = 0,
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It is well-known that the sum ¢ ) satisfies the reciprocity formula (see [2])

aq
p

o) i () 2= (5):
P q \¢ Tq 2 P

Key words and phrases. Estermann zeta function, Vasyunin cotangent sum, generating function.
2010 Mathematics Subject Classification. Primary: 11F20, 11E45. Secondary: 11M26.

DOIT 10.46793/KgJMat2103.343G

Received: October 06, 2018.

Accepted: January 08, 2019.

343



344 M. GOUBI

The Vasyunin cotangent sum (see [11])

(-5 G) ()

arises in the study of the Riemann zeta function by virtue of the formula (see [2,9])
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This formula is connected to the approach of Nyman, Beurling and Béez-Duarte to
the Riemann hypothesis (see [8]), which states that the Riemann hypothesis is true if
and only if 7}1_)120 dy = 0, where

1 [too 1
Bo=inf o | ’1— A( 't)
AR+ r I L G
and the infimum is taken over all Dirichlet polynomials

An(s) =

n=1
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1T, 490
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In a recent work with A. Bayad [7], we have proved that the sum V' (%) satisfies the
reciprocity formula

ERRIE

where
G (p.q) ng(ﬁn {l;} {S}

Thereafter the restriction of the relationship (1.1) to ¢ = 1 gives

N

(G(p,p) +G(q,9) +G (p,q) + (q—p)10g1q9> ,

Co (;) = —iG(p,p) —(p—1)logp.

Exactly our interest in this work is the case ¢ = 1 in order to get two series
expansions of ¢ (%) First we recall the different asymptotical writings of ¢ (11;) in
the literature. In [10, Theorem 1.2, Theorrem 1.3] M. Th. Rassias proved that

1 1 P
o . = ;plogp - (log2m — ) + {0 (logp) or O(1)}.

In [9, Theorem 1.7] H. Maier and M. Th. Rassias provide the following improvement.
Let byn € N, b > 6N, with N = [%J +1. There exist absolute real constants Ay, As > 1
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and absolute real constants FEy, [, with |E;| < (A;1)*, such that for each n € N we
have
1\ 1 p (A
2) = Zplogp— Llog2n—~) - ~+ S E R
o (p) —plogp — — (log 2m —7) 7T+z§ -+ R (),
where |R* (p) | < (Agn)™" p= (1),

Only in [9, Theorem 1.9] H. Maier and M. Th. Rassias provide another improvement,

1 1
Co () = —plogp — p (log2m —~v)+ Cip+ O (1).
P m T

We draw attention that S. Bettin finds other reformulations of ¢ (%) inspired from

continued fraction theory (see [3]).
Finally from another point of view we show in [5] with A. Bayad and M. O. Hernane

that
1 1 | 27 + 1 n
C — e 0o — —
0 P - g Y|P 36

1 |3 ] 41<; 2k-1B2 1 2k—1 1
5 0 YERN
= k(2Kk)! \p pY
There is a misprint in the formula (1.22) Corollary 1.2 in [5] the correct one is in the

formula (1.21) Corollary 1.2.
Otherwise in the same paper [5], an integral representation of co(%) is given by

N 1 t(p—2)aP —pa ' +pr—p+2
(1.2) c <> - ;/0 ) dz.

In this work we prove that

p—1
(p—2)x —pxp1+p:1:—p+2_q:—13z —r—1)r
r=1

1
and we get another formulation that is

W)L ey
"\p 7o 1+xz+--+ap! ‘

Applying some techniques from the generating function theory [4] to previous integrals;

we find two series expansions of ¢ (%) , as they are well explained in the next section.

2. SERIES EXPANSION OF ¢ (%)
Let by be the integer sequence defined by by = 1,b; = 2 and the recursive formulae:
by —2bp 1 +bp2=0, 2<k<p-1 k=p+1,
by —2bp—1 +bp_2 =1
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and
b — 201 +bp—o —bp_p+205_p1 —bp_p2=0, E>p+2.
According to the terms by we get the first series expansion in the following theorem.

Theorem 2.1.

1y 1 by
(2.1) %Q)Vywlm’”§@+mmw+mmm%+m

For p > 1 we define the arithmetic function a, in the form

1, if p |k,
a,(k) =< —1, ifk=1 (mod p),
0, otherwise.

This function is not multiplicative. In general the arithmetical functions are defined
from the set of natural integers N into C. We can extend this definition to F (C, C); set
of functions from C to C. In that case the corresponding function is A : N — F(C, C)
with A(p) = a,. Furthermore, A (pq) = £A(p)A(q) and |A| is multiplicative.
Let the function M (p, k) defined by
1, 3
M (p,0) = 5p" = gp+1
and

M) = (= 1) (o4 k1) =kt k= 1) (s = Hi), k21,

where Hj, is the Harmonic number

M1
Hk — Z .
j=1J
Following this function a second series expansion of ¢ (%) is given in the following
theorem.
Theorem 2.2.
1 1
(2.2) Co () ==Y a,(k)M (p,k).
p T k>0

2.1. Proof of Theorem 2.1. We take inspiration from the theory of generating
functions [4,6], and prove that the sequence (by) is generated by the rational function:

f () = !

1—2x + 22 — oP + 2P+l — gpt2’
More precisely we get the following lemma.

Lemma 2.1.
1
(2.3)

_ k
1 — 2% + 22 — aP + 2Pt — gpt2 _kg%)bkx ’

lz] < 1.
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Proof. Tt is well known that
(2.4) =y 2zl <l

Since for 0 <z < 1

0<(z—172(1-2P) <1
and
(z—1°1—2aP)=1- (295 — 2% + 2P — 2P —i—xp”) ,
then we have
0 < 2x—ax? 4+ 2P — 227 4 2P < 1.
Furthermore, f (z) is developable on entire series to get the result we have to take
the quantity 2x — 2% + 2P — 22T + 2772 instead of z in the last formula (2.4). Now,
writing .

_ k
1 — 2z + 22 — P + 2op+! — gp+2 ,;)dkx

and then
(1 — 2% + 22 — 2P 4 2P — x”+2) S dpat | = 1.
k>0
To compute this we use the well known Cauchy product of two entire series

k
Z agpx” Z djxj = Z a;dy_; z*,
k>0 §>0 k>0 \j=0

which generates the product of a polynomial of degree n with an entire series that
also gives an entire series as follows

(kit) am) (Z dj33j> =3 (mi%k} ajdk_j) o

Jj=0 k>0 j=0
We return to f(z) in writing

p+2
1 — 2z + a2 — P + 2P — P2 = Z apx”,
k=0

with ap =1, a1 = =2, ap = 1, a, = —1, ap41 = 2, ap42 = —1, and the others are
zero. We conclude that dy = 1, d; = 2. The formula
min{p+2,k}
Z ajdk_j =0
j=0

states that
dip —2dk—1 +dp—2=0, 2<k<p—-1,k=p+1,
dy —2dp1 +dp_o =1
and
di — 2dp_1 + dp_9 — dk_p + Qdk_p_1 — dk_p_g =0, k>p+2.
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Finally, we see that dj and b, are identical for every integer £ > 0. For more
information on this approach we refer to [6]. O

To get the result (2.1) of Theorem 2.1 we must substitute the expression (2.3) in
the identity (1.2) and one obtains

Co <> == Z bk/ ( p — 2) 2P — PPl o it 4 (2 — p) a:k) dz.

p T k>0
Furthermore,
} _ 1 Z —2 L N
p TS k:—l—p+1 Ck+p  k+2 k+1)
Finally,
1 by
_ p— 2
(p) I )g)(k+1)(k+p+1)(k+2)(k+p)
and ¢y (1) = ¢ ( ) = 0 is compatible with the definition of ¢y.

Regardlng the identity (2.3) Lemma 2.1 we remark that

1
= bt |z < 1.
(1 —2)* (1~ ar) 1;)

Furthermore, for z = % we deduce that the coefficients by satisfy the following
statements
b 2p+2 b
Z —]Z = and  lim —IZ = 0.
S 2 w1 ho0 2

2.2. Proof of Theorem 2.2. First we began by proving another integral representa-
tion of ¢q (%) )

Lemma 2.2.

-1 S r—1
(2.5) co <1> — 71T/01 Yroilp—r—1) Tf dr.

P l+x+--+ar?
Proof.
q—1 q q—1
(x—1)3 (q—r—l)m’”’l:Z(q—r+1)(r—2)x”—BZ(Q—T)(T—1):!;7"
r=1 r=3 r=2
q—2 q—3
+3> (g—r—1ra"=> (g—r—2)(r+1)a".
r=1 r=0

It’s obvious to remark that

(q—r+1)(r—-2)—-3(@-r)(r—1)+3(@—r—-1)r—(¢g—r—2)(r+1)=0
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and the quantity

is reduced to

(¢ —=2)a"+2(q—3) 2" +3(q — 4)277% = 3(g — 2)2*! — 6(¢ — 3)2"* — 3(¢ — 2)a?
+3(qg—2)272 +3(q—2)x +6(q —3)2? —q+2—2(q — 3)x — 3(q — 4)2*.

After simplification we obtain

1
=1 (g—r—1Dra" = (q—2)29 — gz + qr — ¢+ 2. O
1

<
I

ﬁ
Il

The Theorem 2.2 is immediate from the Lemma 2.2 in the following way. Since

1 l1—=x

L4+ 4arl 1 —gr

and |z| < 1, then

1 l1—=x

= :Z(l—x)xpk.

l+x+---Fzr~t 1—ar =

Furthermore,

! = Sy (k) 2"

l+z+-+zrt

and we have

Zp;% (p—r—1)rz"? p—1 o
T = k — _1 +r .
14+x 4. 4 gp-1 kg%;%()(p r—1)rx

The passage to the integral inducts

1 L, (p—r—1)r
co | = :E Ea k) ~———
0 (p) Pt p( ) k?+7"
But
pfl( _ _1) 1 p+k711
p—r r
Worm ) o= +k—1>—k thk-1) Y -
2y (p )(219 (p )T:le

and the result (2.2) is deduced.
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3. CONNECTION TO DIGAMMA FUNCTION

1
P
the function digamma and Bernoulli polynomials in the work [1] of L. Baez Duarte

et al. 1
1 2 Pz T T
& <p) —R b @%)’

where B is the reduced Bernoulli polynomial

07 lf x € Zv
_ 1
By (x) {2} — 5 otherwise,

We finish this work by revisiting the proof of the expression of ¢ ( ) according to

and 1 the digamma function defined by
1 1 1
¢(z)__7_z+z<k:_ k+z)'

k>1

Starting with the demonstration of a property of ¥ that will be used later.
Proposition 3.1.

r+1 r 1 !
1 —p (-] = .
3 Q/J( p ) ¢<P> Py 1~|—.75+---~|—33P*1dx

Proof. We quote from [5] the formula

w(:;l) _w@) :pé(pk+r+11)(pk+r)'

can be written as following

1
The general term [ s

1 1 1
— - — pk+r—1 _ _pk+4r d
(pk+r+1)(pk+r) pk+r pk4+r+1 /0 (x ’ ) v

and the passage to the sum states that

Z 1 /1 lﬂ“*l _ Ird
- ———ax.
iso Pk +r+1)(pk+r) Jo 1—aP
Finally,
1 1 21
Z = / ldx
iso (Pk+7+1) (pk +7) o 1+x+---+aP
and we have (3.1). Proposition 3.1 follows. 0

In [5], it is shown that

a5 )

This identity conducts to the following interesting lemma.
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Lemma 3.1.

(3.2) Ep: (0 (;) = —p —plogp.

Proof. Since

then

Furthermore,
P r
DU <> = —yp —plogp. O
r=1 p
According to the identity (3.1) Proposition 3.1 and the integral representation (2.5)

we conclude that
r+1 r
o(p)=mEo-r-or(o(5) ()

Furthermore combining this result with the identity (3.2) Lemma 3.1 we get

ofj) e 0 (o (57) -+ )

and
1 D 1 2t r
c|—|=——logp— + — 2r—p—1 2/1<>,
0<p> Yt ngl( )
then
1 12
col—)=— 2r—p @D()
(3) =L er-n)
But

which means that

o) =5 G 6)
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