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SERIES EXPANSION OF A COTANGENT SUM RELATED TO
THE ESTERMANN ZETA FUNCTION

MOULOUD GOUBI1

Abstract. In this paper, we study the cotangent sum c0

(
q
p

)
related to the Ester-

mann zeta function for the special case when the numerator is equal to 1 and get
two useful series expansions of c0

(
1
p

)
.

1. Introduction

For a positive integer p and q = 1, 2, . . . , p−1, such that (p, q) = 1, let the cotangent
sum (see [10])

c0

(
q

p

)
= −

p−1∑
k=1

k

p
cot πkq

p
.

c0
(

q
p

)
is the value at s = 0,

E0

(
0, q
p

)
= 1

4 + i

2c0

(
q

p

)
of the Estermann zeta function

E0

(
s,
q

p

)
=
∑
k≥1

d(k)
ks

exp
(

2πikq
p

)
.

It is well-known that the sum c0
(

q
p

)
satisfies the reciprocity formula (see [2])

c0

(
q

p

)
+ p

q
c0

(
p

q

)
− 1
πq

= i

2ψ0

(
q

p

)
.
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The Vasyunin cotangent sum (see [11])

V

(
q

p

)
=

p−1∑
r=1

{
rq

p

}
cot

(
πr

p

)
= −c0

(
q

p

)

arises in the study of the Riemann zeta function by virtue of the formula (see [2, 9])

1
2π√pq

∫ +∞

−∞

∣∣∣∣ζ (1
2 + it

)∣∣∣∣2
(
q

p

)it
dt

1
4 + t2

=log 2π − γ
2

(
1
p

+ 1
q

)
+ p− q

2pq log q
p
− π

2pq

(
V

(
p

q

)
+ V

(
q

p

))
.

This formula is connected to the approach of Nyman, Beurling and Báez-Duarte to
the Riemann hypothesis (see [8]), which states that the Riemann hypothesis is true if
and only if lim

n→∞
dN = 0, where

d2
N = inf

AN

1
2π

∫ +∞

−∞

∣∣∣∣1− ζA(1
2 + it

)∣∣∣∣2 dt
1
4 + t2

,

and the infimum is taken over all Dirichlet polynomials

AN(s) =
N∑

n=1

an

ns
.

In a recent work with A. Bayad [7], we have proved that the sum V
(

q
p

)
satisfies the

reciprocity formula

(1.1) V

(
q

p

)
+ V

(
p

q

)
= 1
π

(
G (p, p) +G (q, q) +G (p, q) + (q − p) log q

p

)
,

where

G (p, q) =
∑
k≥1

pq

k (k + 1)

{
k

p

}{
k

q

}
.

Thereafter the restriction of the relationship (1.1) to q = 1 gives

c0

(
1
p

)
= − 1

π
G (p, p)− (p− 1) log p.

Exactly our interest in this work is the case q = 1 in order to get two series
expansions of c0

(
1
p

)
. First we recall the different asymptotical writings of c0

(
1
p

)
in

the literature. In [10, Theorem 1.2, Theorrem 1.3] M. Th. Rassias proved that

c0

(
1
p

)
= 1
π
p log p− p

π
(log 2π − γ) + {O (log p) or O (1 )} .

In [9, Theorem 1.7] H. Maier and M. Th. Rassias provide the following improvement.
Let b, n ∈ N, b ≥ 6N , with N =

⌊
n
2

⌋
+1. There exist absolute real constants A1, A2 ≥ 1
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and absolute real constants El, l, with |El| ≤ (A1l)2l, such that for each n ∈ N we
have

c0

(
1
p

)
= 1
π
p log p− p

π
(log 2π − γ)− 1

π
+

n∑
l=1

Elp
−l +R?

n (p) ,

where |R?
n (p) | ≤ (A2n)4n p−(n+1).

Only in [9, Theorem 1.9] H. Maier and M. Th. Rassias provide another improvement,

c0

(
1
p

)
= 1
π
p log p− p

π
(log 2π − γ) + C1p+ O (1) .

We draw attention that S. Bettin finds other reformulations of c0
(

1
p

)
inspired from

continued fraction theory (see [3]).
Finally from another point of view we show in [5] with A. Bayad and M. O. Hernane

that

c0

(
1
p

)
=− 1

π

(
log 2π

p
− γ

)
p+ 1

π
+ π

36p

− 1
2

bN
2 c∑

k=2
(−1)k 4kπ2k−1B2

2k

k (2k)!

(
1
p

)2k−1

+ O

(
1
pN

)
.

There is a misprint in the formula (1.22) Corollary 1.2 in [5] the correct one is in the
formula (1.21) Corollary 1.2.

Otherwise in the same paper [5], an integral representation of c0(1
p
) is given by

(1.2) c0

(
1
p

)
= 1
π

∫ 1

0

(p− 2)xp − pxp−1 + px− p+ 2
(x− 1)2 (xp − 1)

dx.

In this work we prove that

(p− 2)xp − pxp−1 + px− p+ 2 = (x− 1)3
p−1∑
r=1

(p− r − 1) rxr−1

and we get another formulation that is

c0

(
1
p

)
= 1
π

∫ 1

0

∑p−1
r=1 (p− r − 1) rxr−1

1 + x+ · · ·+ xp−1 dx.

Applying some techniques from the generating function theory [4] to previous integrals;
we find two series expansions of c0

(
1
p

)
, as they are well explained in the next section.

2. Series Expansion of c0
(

1
p

)
Let bk be the integer sequence defined by b0 = 1, b1 = 2 and the recursive formulae:

bk − 2bk−1 + bk−2 = 0, 2 ≤ k ≤ p− 1, k = p+ 1,
bp − 2bp−1 + bp−2 = 1
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and
bk − 2bk−1 + bk−2 − bk−p + 2bk−p−1 − bk−p−2 = 0, k ≥ p+ 2.

According to the terms bk we get the first series expansion in the following theorem.

Theorem 2.1.

(2.1) c0

(
1
p

)
= 1
π
p (p− 1) (p− 2)

∑
k≥0

bk

(k + 1) (k + p+ 1) (k + 2) (k + p) .

For p ≥ 1 we define the arithmetic function ap in the form

ap(k) =


1, if p | k,
−1, if k ≡ 1 (mod p),
0, otherwise.

This function is not multiplicative. In general the arithmetical functions are defined
from the set of natural integers N into C. We can extend this definition to F (C,C); set
of functions from C to C. In that case the corresponding function is A : N→ F (C,C)
with A(p) = ap. Furthermore, A (pq) = ±A(p)A(q) and |A| is multiplicative.

Let the function M (p, k) defined by

M (p, 0) = 1
2p

2 − 3
2p+ 1

and

M (p, k) = (p− 1)
(1

2p+ k − 1
)
− k (p+ k − 1) (Hp+k−1 −Hk) , k ≥ 1,

where Hk is the Harmonic number

Hk =
k∑

j=1

1
j
.

Following this function a second series expansion of c0
(

1
p

)
is given in the following

theorem.

Theorem 2.2.

(2.2) c0

(
1
p

)
= 1
π

∑
k≥0

ap(k)M (p, k) .

2.1. Proof of Theorem 2.1. We take inspiration from the theory of generating
functions [4,6], and prove that the sequence (bk) is generated by the rational function:

f (x) = 1
1− 2x+ x2 − xp + 2xp+1 − xp+2 .

More precisely we get the following lemma.

Lemma 2.1.

(2.3) 1
1− 2x+ x2 − xp + 2xp+1 − xp+2 =

∑
k≥0

bkx
k, |x| < 1.
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Proof. It is well known that

(2.4) 1
1− x =

∑
k≥0

xk, |x| < 1.

Since for 0 ≤ x < 1
0 < (x− 1)2 (1− xp) < 1

and
(x− 1)2 (1− xp) = 1−

(
2x− x2 + xp − 2xp+1 + xp+2

)
,

then we have
0 < 2x− x2 + xp − 2xp+1 + xp+2 < 1.

Furthermore, f (x) is developable on entire series to get the result we have to take
the quantity 2x− x2 + xp − 2xp+1 + xp+2 instead of x in the last formula (2.4). Now,
writing

1
1− 2x+ x2 − xp + 2xp+1 − xp+2 =

∑
k≥0

dkx
k

and then (
1− 2x+ x2 − xp + 2xp+1 − xp+2

)∑
k≥0

dkx
k

 = 1.

To compute this we use the well known Cauchy product of two entire series∑
k≥0

akx
k

∑
j≥0

djx
j

 =
∑
k≥0

 k∑
j=0

ajdk−j

xk,

which generates the product of a polynomial of degree n with an entire series that
also gives an entire series as follows(

n∑
k=0

akx
k

)∑
j≥0

djx
j

 =
∑
k≥0

min{n,k}∑
j=0

ajdk−j

xk.

We return to f(x) in writing

1− 2x+ x2 − xp + 2xp+1 − xp+2 =
p+2∑
k=0

akx
k,

with a0 = 1, a1 = −2, a2 = 1, ap = −1, ap+1 = 2, ap+2 = −1, and the others are
zero. We conclude that d0 = 1, d1 = 2. The formula

min{p+2,k}∑
j=0

ajdk−j = 0

states that
dk − 2dk−1 + dk−2 = 0, 2 ≤ k ≤ p− 1, k = p+ 1,

dp − 2dp−1 + dp−2 = 1
and

dk − 2dk−1 + dk−2 − dk−p + 2dk−p−1 − dk−p−2 = 0, k ≥ p+ 2.
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Finally, we see that dk and bk are identical for every integer k ≥ 0. For more
information on this approach we refer to [6]. �

To get the result (2.1) of Theorem 2.1 we must substitute the expression (2.3) in
the identity (1.2) and one obtains

c0

(
1
p

)
= − 1

π

∑
k≥0

bk

∫ 1

0

(
(p− 2)xk+p − pxk+p−1 + pxk+1 + (2− p)xk

)
dx.

Furthermore,

c0

(
1
p

)
= − 1

π

∑
k≥0

bk

(
p− 2

k + p+ 1 −
p

k + p
+ p

k + 2 −
p− 2
k + 1

)
.

Finally,

c0

(
1
p

)
= 1
π
p (p− 1) (p− 2)

∑
k≥0

bk

(k + 1) (k + p+ 1) (k + 2) (k + p)

and c0 (1) = c0
(

1
2

)
= 0 is compatible with the definition of c0.

Regarding the identity (2.3) Lemma 2.1 we remark that
1

(1− x)2 (1− xp)
=
∑
k≥0

bkx
k, |x| < 1.

Furthermore, for x = 1
2 we deduce that the coefficients bk satisfy the following

statements ∑
k≥0

bk

2k
= 2p+2

2p − 1 and lim
k→∞

bk

2k
= 0.

2.2. Proof of Theorem 2.2. First we began by proving another integral representa-
tion of c0

(
1
p

)
.

Lemma 2.2.

(2.5) c0

(
1
p

)
= 1
π

∫ 1

0

∑p−1
r=1 (p− r − 1) rxr−1

1 + x+ · · ·+ xp−1 dx.

Proof.

(x− 1)3
q−1∑
r=1

(q − r − 1) rxr−1 =
q∑

r=3
(q − r + 1) (r − 2)xr − 3

q−1∑
r=2

(q − r) (r − 1)xr

+ 3
q−2∑
r=1

(q − r − 1) rxr −
q−3∑
r=0

(q − r − 2) (r + 1)xr.

It’s obvious to remark that

(q − r + 1) (r − 2)− 3 (q − r) (r − 1) + 3 (q − r − 1) r − (q − r − 2) (r + 1) = 0
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and the quantity

(t− 1)3
q−1∑
r=1

(q − r − 1) rxr−1

is reduced to

(q − 2)xq + 2 (q − 3)xq−1 + 3(q − 4)xq−2 − 3(q − 2)xq−1 − 6(q − 3)xq−2 − 3(q − 2)x2

+ 3(q − 2)xq−2 + 3(q − 2)x+ 6(q − 3)x2 − q + 2− 2(q − 3)x− 3(q − 4)x2.

After simplification we obtain

(t− 1)3
q−1∑
r=1

(q − r − 1) rxr−1 = (q − 2)xq − qxq−1 + qx− q + 2. �

The Theorem 2.2 is immediate from the Lemma 2.2 in the following way. Since

1
1 + x+ · · ·+ xp−1 = 1− x

1− xp

and |x| < 1, then

1
1 + x+ · · ·+ xp−1 = 1− x

1− xp
=
∑
k≥0

(1− x)xpk.

Furthermore,
1

1 + x+ · · ·+ xp−1 =
∑
k≥0

ap (k)xk

and we have ∑p−1
r=1 (p− r − 1) rxr−1

1 + x+ · · ·+ xp−1 =
∑
k≥0

p−1∑
r=1

ap (k) (p− r − 1) rxk+r−1.

The passage to the integral inducts

c0

(
1
p

)
=
∑
k≥0

p−1∑
r=1

ap (k) (p− r − 1) r
k + r

.

But
p−1∑
r=1

(p− r − 1) r
k + r

= (p− 1)
(1

2p+ k − 1
)
− k (p+ k − 1)

p+k−1∑
r=k+1

1
r

and the result (2.2) is deduced.
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3. Connection to Digamma Function

We finish this work by revisiting the proof of the expression of c0
(

1
p

)
according to

the function digamma and Bernoulli polynomials in the work [1] of L. Báez Duarte
et al.

c0

(
1
p

)
= 2
π

p−1∑
r=1

B1

(
r

p

)
ψ

(
r

p

)
,

where B1 is the reduced Bernoulli polynomial

B1(x) =

 0, if x ∈ Z,
{x} − 1

2 , otherwise,

and ψ the digamma function defined by

ψ (z) = −γ − 1
z

+
∑
k≥1

(1
k
− 1
k + z

)
.

Starting with the demonstration of a property of ψ that will be used later.

Proposition 3.1.

(3.1) ψ

(
r + 1
p

)
− ψ

(
r

p

)
= p

∫ 1

0

xr−1

1 + x+ · · ·+ xp−1dx.

Proof. We quote from [5] the formula

ψ

(
r + 1
p

)
− ψ

(
r

p

)
= p

∑
k≥0

1
(pk + r + 1) (pk + r) .

The general term 1
(pk+r+1)(pk+r) can be written as following

1
(pk + r + 1) (pk + r) = 1

pk + r
− 1
pk + r + 1 =

∫ 1

0

(
xpk+r−1 − xpk+r

)
dx

and the passage to the sum states that∑
k≥0

1
(pk + r + 1) (pk + r) =

∫ 1

0

xr−1 − xr

1− xp
dx.

Finally, ∑
k≥0

1
(pk + r + 1) (pk + r) =

∫ 1

0

xr−1

1 + x+ · · ·+ xp−1dx

and we have (3.1). Proposition 3.1 follows. �

In [5], it is shown that

log p = 1
p

p−1∑
r=1

r

(
ψ

(
r + 1
p

)
− ψ

(
r

p

))
.

This identity conducts to the following interesting lemma.
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Lemma 3.1.

(3.2)
p∑

r=1
ψ

(
r

p

)
= −γp− p log p.

Proof. Since
p−1∑
r=1

r

(
ψ

(
r + 1
p

)
− ψ

(
r

p

))
= p log p,

then

−
p∑

r=1
ψ

(
r

p

)
+ ψ (1) p = p log p.

Furthermore,
p∑

r=1
ψ

(
r

p

)
= −γp− p log p. �

According to the identity (3.1) Proposition 3.1 and the integral representation (2.5)
we conclude that

c0

(
1
p

)
= 1
πp

p−1∑
r=1

(p− r − 1) r
(
ψ

(
r + 1
p

)
− ψ

(
r

p

))
.

Furthermore combining this result with the identity (3.2) Lemma 3.1 we get

c0

(
1
p

)
= − 1

π
log p+ 1

πp

p−1∑
r=1

(p− r) r
(
ψ

(
r + 1
p

)
− ψ

(
r

p

))

and

c0

(
1
p

)
= − 1

π
log p− γ p− 1

πp
+ 1
πp

p−1∑
r=1

(2r − p− 1)ψ
(
r

p

)
,

then

c0

(
1
p

)
= 1
πp

p−1∑
r=1

(2r − p)ψ
(
r

p

)
.

But

2r − p = 2p
(
r

p
− 1

2

)
= 2pB1

(
r

p

)
,

which means that

c0

(
1
p

)
= 2
π

p∑
r=1

B1

(
r

p

)
ψ

(
r

p

)
.
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