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EXISTENCE OF SOLUTIONS FOR A CLASS OF CAPUTO
FRACTIONAL ¢-DIFFERENCE INCLUSION ON
MULTIFUNCTIONS BY COMPUTATIONAL RESULTS

MOHAMMAD ESMAEL SAMEI!, GHORBAN KHALILZADEH RANJBAR/!,
AND VAHID HEDAYATI?

ABSTRACT. In this paper, we study a class of fractional g-differential inclusion of
order 0 < ¢ < 1 under L'-Caratheodory with convex-compact valued properties on
multifunctions. By the use of existence of fixed point for closed valued contractive
multifunction on a complete metric space which has been proved by Covitz and
Nadler, we provide the existence of solutions for the inclusion problem via some
conditions. Also, we give a couple of examples to elaborate our results and to present
the obtained results by some numerical computations.

1. INTRODUCTION

Fractional calculus is an important branch in mathematical analysis. However,
after Leibniz and Newton invented differential calculus, it has numerous applications
in different sciences such as mechanics, electricity, biology, control theory, signal and
image processing (for example, see [4,6,40]). In recent years the fractional differential
equations and the fractional differential inclusions were developed intensively (for
more information, see [8,10,19,22,38]). Also, it has been appeared many work on
fractional differential inclusions [11,14-16,23, 25,27, 28]

In 1910, the subject of ¢-difference equations introduce by Jackson [33]. Later,
at the beginning of the last century, studies on ¢-difference equation, appeared in
so many works especially in Carmichael [26], Mason [39], Adams [3], Trjitzinsky
[45]. It has been proven that these cases of equations have numerous applications in
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diverse domains and thus have evolved into multidisciplinary subjects (for example,
see [1,2,7,18,30,32,47] and references therein).

In this paper, motivated by [9,44] and among these achievements, we wish to discuss
the existence of solutions for a problem of fractional g-derivative inclusions via the
integral boundary value conditions given by

“Dex(t) € F (t,x(t), 2'(t), °Dix(t))
(1.1) z(0) + 2'(0) + <DPx(0) = [ (s) ds,
2(1) +2/(1) +°DPz(1) = [ a(s) ds,

for real number ¢ in [0,1], where F' maps [0,1] x R? into 2% is a compact valued
multifunction, “Dg is the fractional Caputo type g-derivative operator of order o €
(1,2] with ¢ belongs to (0,1), and

Ly(2=B) v —v*n—n> +v° +4n— 2w — 2) + 2(1 — ) # 0,

for n,v, B € (0,1), such that o — 8 > 1.
In 2012, Ahmad, Ntouyas and Purnaras investigated the g-difference equation:

{ (CDE“?J) (z) = f(z,y(z)),
a1y(0) — B1Dgy(0) = myler), aoy(l) + B2Dgy(1) = yy(ez),

where 0 <z < 1,1 <a <2and oy, 5;,7%,6 € R for all i (see [17]). In 2013, Zhao,
Chen and Zhang reviewed the nonlinear fractional ¢-difference equation:

{ (Dgy)(x) = flz,y(x)),
y(0) =0, y(1)=pullyle),

where 0 <z <1, 1 <a<2,0<p<2and u> 0 [46]. In 2015, Etemad, Ettefagh,
and Rezapour investigated the ¢-differential equation:

{ <CD3y) () = f(z,y(x), Dyy(x)),
My(0) 4+ 1 Dgy(0) = exlPy(x1),  Aay(1) + p2Dgy(1) = e2ly(x2),

where 0 <z < 1,1 <a <2 ¢ge (0,1), € (0,2], 21,29 € (0,1), with 27 < 29,
i, lti, €, € R for i = 1,2, and real value map f from [0,1] x R? is continuous [13].
Also, in the same year, Agarwal, Baleanu, Hedayati, and Rezapour founded results
for the inclusion Caputo fractional differential:

{ “Def(t) € T (1, J(1),“DP (1))
FO) =0, F(1)+ F(1) = J§ f(s)ds,

suchthat 0 <e< 1,1 <a <2 0< <1, witha— > 1, and multifunction T
define on [0, 1] x R? has a compact valued in 2% [9]. Also, they investigate the existence
of solutions for the Caputo fractional differential inclusion *D%z(t) € F(t,z(t)) such
that 2(0) = a [y x(s)ds and z(1) = b [ x(s)ds, where 0 < v, < 1,1 < a < 2 and
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a,b € R [9]. In 2016, Abdeljawad, Alzabut, and Baleanu stated and proved a new
discrete g-fractional version of Gronwall inequality:

{ Coft) =T (¢, f(1)),
fla) =7,

such that a € (0,1], a € T, = {¢" | n € Z}, t belongs to T, = [0,00), = {q "a |
i=0,1,2,...}, ,C% means the Caputo fractional difference of order «, and T'(t, )
fulfills a Lipschitz condition for all ¢ and x [2]. Later, in 2017, Zhou, Alzabut, and
Yang provide existence criteria for the solutions of p-Laplacian fractional Langevin
differential equations with ansi-periodic boundary conditions:

{D@@[(Dgﬁ Na(t)] = f(t,z(t), Dgx(t)),
z(0) = —z(1), D§x(0) =—-Dg x(1),

and
{ (Do $pl(Dg + N (t)] = g(t, (t), (D (1)),
2(0) = —z(1),  (D§rx(0) = =D (1),
forall 0 <t <1, where 0 < a, f < 1, A is more than or equal to zero, 1 < a+ 3 < 2,
q € (0,1) and ¢,(s) = |s[P~?s, with p € (1,2] [47]. In this manuscript, by using idea of
the works, we study the existence of solutions for the fractional g-derivative inclusions
via the integral and g¢-derivative boundary value conditions.

2. PRELIMINARIES

Here, we recall some discovered facts on fractional g-calculus and their derivatives
and integral. For more details on this, we refer the reader to the references [20,34].
Let ¢ € (0,1), @ € R, and « # 0 be a real number. Define [a], = =L (see [33]). The

g-analogue of the power function (a — b)", with n € Ny, is (a — b) "o(a — bg*)
and (a — b)Y =1, where @ and b in R and Ny := {0} UN (see [43]). Also, for « € R
and a # 0, we have

. > a—bgk
(a— b - H La— a— bgotk
If b = 0, then it is clear that a!® = a* (Algorithm 1). The g-Gamma function is
given by I'y(z) = %, where belongs to R\{0,—1,—2,...} (see [33]). Note
that, I'y(z + 1) = [z],[,(z). A simplified analysis can be performed to estimate the

value of ¢-Gamma function, I';(z), for input values ¢ and x by counting the number
of sentences n in summation. To this aim, we consider a pseudo-code description of
the method for calculated ¢-Gamma function of order n which show in Algorithm 2.
For function f, the g-derivative is defined by (D,f)(x) = % and (D, f)(0) =
lim,,o(D,f)(x) (see [3]). Also, the higher order g-derivative of a function f is defined
by (D7 f)(x) = Dy(Dy~' f)(x) for all n > 1, where (D) f)(z) = f(z) (see [3]). The
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g-integral of a function f define on [0, b] by

Lf@) = [ f(s)dys =21~ ) S (o),

k=0
for z € [0,b], provided that the sum converges absolutly [3]. If a € [0, b], then

[ Fdy = L5 0) = 1,5(@) = (1= ) 3 [0 0) = af (o).

whenever the series exists. The operator I} is given by IJ f(x) = f(x) and I} f(z) =
I,(I771 f)(x) for all n > 1 (see [3]). It has been proved that (Dgl,f)(x) = f(z) and
(I,D,f)(x) = f(z) — f(0) whenever f is continuous at = 0 (see [3]). The fractional
Riemann-Liouville type g-integral of the function f on [0, 1] is given by

I5(0) = gy [ @ = a9 F (e,

whenever o > 0 and I{ f(x) = f(x) whenever v = 0, where 2 < 1 is a real number
[13]. Also, the fractional Caputo type g-derivative of the function f is given by

(°Dg f) (@) = (LDl ) ()
= Fq(ml]_&) /Ox(l" — gs){lIm7Y (Déa]f) (s)dys,

for x € [0,1] and o > 0 (see [13]). It has been proved that (Igl;f) () = (Ig*ﬁf) (x),
and (Dg‘]qo‘f) (x) = f(x), where a, 5 > 0 (see [29]). By using Algorithm 2, we can
calculate (I f)(x) which is shown in Algorithm 3.

It is well recognized that the Pompeiu-Hausdorff metric Hy; maps 2% x 2% into R=Y
on metric space (X, d) is defined by

Hy(A, B) = max {sup d(a, B),sup d(A, b)} ,
acA beB

where d(A,b) = inf,cad(a,b) (also, see [12,31]). Denote the set of bounded and
closed subsets of X, the set of closed subsets of X and the set of compact and convex
subsets of X by CB(X), C(X) and P.,.,(X), respectively. Thus, (CB(X), H;) and
(C(X), Hy) are a metric space and a generalized metric space, respectively (for more
details, see [35]). An element x belongs to X is called an fixed point of multifunction
T maps X into 2% whenever x in T(z) (for more information, see [31]). If v € (0,1)
exists somehow that Hy(N(x), N(y)) is less than or equal to vd(x,y) for all x and y
in X, then a multifunction 7" maps X to C(X) is called a contraction.

In 1970, Covitz and Nadler prove that there is a fixed point for each closed valued
contractive multifunction on a complete metric space has a fixed point [27]. Let
J =[0,1]. A multifunction G : J — Py4(R) is said to be measurable whenever the
function ¢t — d(y,G(t)) is measurable for all y belongs to R [28]. We say that F
maps J x R? into 2% is a Caratheodory multifunction whenever t — F(t,x,y, 2) is
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measurable for all z,y, and z in R and (x,y, z) — F(t,x,y, z) is upper semi-continuous
for all t belongs to J [21,28,35]. Also, a Caratheodory multifunction F' defines on
J x R? to 2% is called L!-Caratheodory whenever for each p more than zero, there
exists ¢, € L'(J,RT) such that

IF(zy,2)[l = sup  [o] < (1),
vEF (t,2,y,2)
for all |zl, |y|, |z] < p and for t € J (for more details, see [21,28]). Denote by AC|0, 1]
the space of all the absolutely continuous functions defined on J. By using main idea
of [15,16,41], we define the set of selections of F' by

Spa = {v € AC(J,R) |v(t) € F (t,2(t),° Djx(t), 2’ (1)) for allt € J },

for all x belongs to C(J,R). Let E be a nonempty closed subset of a Banach space X
and G maps FE into 2% a multifunction with nonempty closed values. We say that the
multifunction G is lower semi-continuous whenever the set {y € E | G(y) N B # 0}
is open for all open set B C X [31]. Furthermore, It has been proved that each
completely continuous multifunction is lower semi-continuous [31]. Let AC?[0,1] =
{we C'0,1] | w' € L[0,1]}. The following lemmas will be used in the sequel.

Lemma 2.1 ([37]). For Banach space X, consider multifunction F' maps J x X into
Pepeo(X) and function © maps L'(J, X) into C(J, X) such that are L*-Caratheodory
and linear continuous, respectively. The operator

{ ©0Sp : C(J,X) = Pup e (C(J x X)),
(©0SF) (x) = O (Sp.),

is a closed graph operator in C(J,X) x C(J, X).

Lemma 2.2 ([31]). Suppose that C' a closed convex subset of Banach space E, U C C
is an open such that 0 € U. Also, let F : U — P, . (C) is a upper semi-continuous
compact map, where P, .,(C) denotes the family of nonempty, compact convex subsets
of C. Then either F has a fived point in U or there exist u € OU and X € (0,1) such
that v € A\F(u).

3. MAIN RESULTS

Now, we would be ready to give theorems for the solution of the g-derivative
inclusion problem (1.1). Define x,(t) = I7v(t) — co, — c10t, where

Cry = 1_1;)// s — qm) @ Vo(m)d,mds
(vrq(a))t /01“ ¢s) Vv (s)dys

- ?r:é))t /0 /OS<S — qm)*Vo(m)d,mds
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B (1 - ?7)t /01(1 B qs)(a_ﬁ_l)U(S)qu

o = )
_ m /01(1 — 45 Du(s)d,s
and
Cow = 1_n / / @Dy(m)d,mds

+( mzﬁ_l I8 / Dum)dymds
e ‘2;72((2)‘ UL gs) e s)dys
S
# B [ g Dl
# Co I [ g 2uls)ds

Clearly, =, € AC?0,1] is well-define and /, Dz, and [ z,(s) ds exist whenever v
belongs to AC|[0, 1] (for more details, see [36]).

Lemma 3.1. Let v belongs to AC[0,1], ¢,5,n and v in (0,1), 1 < o < 2, with
a—p>1, and

(3.1) 2= B)n°v —v*n—n*+v° +4n—2v —2) +2(1 —n) # 0.

Then, w,(t) is the unique solution for the problem °Dgx(t) = v(t) with the integral
boundary value conditions
n
2(0) + 2/(0) + <DP(0) = / 2(s)ds,
(3.2) 0,
(1) + 2/(1) + <DPx(1) :/ (s)ds.
0

Proof. 1t is observed that the general solution of the equation v(t) = “Dgx(t) is

1
z(t) = I?U(t) —ap—al = Fq(oz)/o (t — qs)(a b v(s)dys — ag — aqt,
where ag and a; are arbitrary constants and ¢ in J (see [42]). Thus,
tl_ﬁal
Dix(t) = I°Po(t) - —————
O )

I S L PR PR ey
“Taop b e s 5 e
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and

d(t) = I3~ o(t) —a = Fq(al—l) /Ot(t — q5)° Du(s)dys — a;.

Hence, by using an easy calculation, we get 2(0) 4+ “D2xz(0) 4 2/(0) = —ap — a; and
1
a)

1

(
+ <Fq(a—ﬁ) /01(1 - qS)(“ﬁl)v(S)dﬁ)

« (Fq(al—l) | a —qs)(a2)v(s)dqs>

_M_le_ao‘

[q(2—-5)
By using the boundary conditions (3.2), we obtain

7’ 1 e a—1
ag(n —1) —ay (2 - 1) = T () /0 /0 (s — gm) @~ Vu(m)d,mds

x(1) + CDgx(l) +2'(1) = T /01(1 — )@ Dy(s)d,s

q

and
ao(v —1) + ax (”22 _o- %) __ F,ja) /01(1 ) o(s)dys
~ a0 s
Fq(al_ 3 /01(1 _ g5)@Dp(s)d, s
S = am) e o) mas
Thus,
L s
L2 _2;7;1((2)_ 2 /01(1 —¢5) " Vu(s)dys
L2 —2 ;712“1((24)_ n) /0” /OS(S — gm) @ Dy(m)d,mds
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4 (QQ;FZ?L(T])” /0 (1 - g5)©@Du(s)ds
and
e (ir_q(?)t /On /08(5 — qm)“~Yo(m)d,mds
ey b s
- (;E(B)t | [ s = am)eDuim)dmas
- 7&; 71);) /01(1 — 5) 7 Vu(s)dys
- WIEq(;n—)tl) /01<1 05)"* o (s)dys
where
e eoff )
Hence

Fg(c)
iy a)(ll —7) On/o (5 — gm)\*Do(m)dymds
+ U 2_7?;(];)_ : /077 /08(3 gm) " Vo(m)dgmds
+ 0 2_712“1((7;)_ : /01(1 —¢5)* Vo(s)dys
Ry 2_712):1((1&)_ : /0 /05(3 — qm) @™ Vv(m)dgmds
Rl [t
(n* =2)(n—1)

29T (e — 1)

(L—=wv)t [m s
V>/ s—qma1 dmds
Ly(a) Jo Jo

(1_77)t ! a-1
+ AT (a) /0 (1—qs)( )v(s)dqs
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77—1 //s—qmo‘l v(m)d,mds

i
(1—mn)t

1
’yF(a—l)/o (1 —gqs) @ Du(s)d,s = I3(t) — cop — c1ot.
q

Conversely, it is clear that
T (t) = Ig_lv(t) + Ci,
2(t) = (I~ o(t)) = D2 (1),
for almost all ¢ € J. Because, 2 — « belongs to (0, 1], we get
CD?SE’U( ) _ ]2 a //( ) _ 12 a (RD2 a ( )) :U(t).
Similar to last part, we obtain

1
z,(0) + 2, (0) + ch:pv(O) = —Cop — C1p = / x(s)ds
0

and
C 1 (03
%m+%m+pﬁmyﬁwl/u—m<%@ms
+ ( 1 —gs)@ ’B_l)v(s)dqs>
Fq
( -1 1 — qs)(a2)v(s)dqs>
Ty(2)ar /”
-2 v — Cov — d

q(2 3 Cro — Co ; x(s)ds

This finishes the proof. [l

A solution of the inclusion problem (1.1) is an element x € AC?([0,1],R) such that
it satisfies the integral boundary conditions and there exists a function v € Sg, such
that z(t) = I7v(t) — co, — ¢t for all £ € J. Suppose that

(3.4) X = {a: |z, 2',“Dx € C(J,R)for all 8 € (0, 1)} :
endowed with the norm

(3:5) |l ]| = sup [ (t)] + sup |2"(£)] + sup
teJ teJ teJ

“Dija(t)|.

Then, (X, ||.||) is a Banach space [24].

For investigation of the inclusion problem (1.1), we provide two different methods.
In the first method which is used in Theorem 3.1, we showed a compact map F' is
upper semi-continuous and so by using fixed point theorem in Lemma 2.2, and in the
second method which is presented in Theorem 3.2, by using fixed point theorem of
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Covitz and Nadler, and consider three conditions, respectively, we found a solution
for the inclusion problem (1.1).

Theorem 3.1. Let F : J x R — P, (R) is a L*-Caratheodory multifunction
and there exist a bounded continuous increasing self map 1 define on [0,00) and a
continuous function p maps J into (0,00) such that

|F (t.2(t),2/(t),°Dix(t)) || = sup {|v] | v € F (t,2(t),2'(t), “Dfj(t)) }
< p()¢(ll=),
forallt € J and x € X. Then the inclusion problem (1.1) has at least one solution.
Proof. First, define the operator N : X — 2% by
N(x) = {h € X | exists v € S, : h(t) = [Jv(t) — co, — cit, t € T}

In the following, prove that the operator N has a fixed point.

Step I. We show that N maps bounded sets of X into bounded sets. Let r > 0
and B, = {z € X | ||z|| < r}. Suppose that x € B, and h € N(z). We can choose
v € Sp, such that h(t) = [§v(t) — cop — c1ot for almost all ¢ € J. Thus,

MO <5 /0 (t = 5) lu(s)ld,s

_ al
+F @)= // (s — qm)@~V]v(m)|d,mds

q

o[ ;?f&; 2 [0 s

i | Q_V?q((zz) DV [t = am)1utm) s
| T [ o ol
e 0 ol

N fr:é)f /”/s<8_qm a=D|y(m)|d,mds
S [ s

N (:F:(L))t // (s — qm) @ D|v(m)|d,mds
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1-— _g—
] [ e
(1
n)t
| o= a2l
q

<Al @/)(lell)

CDﬂh ‘_ 041— 3 /Ot(t—qs)(a_ﬂ_l)|v(s)|dqs
— v 1-8 n s
- VF(EOZ)Fq)(tQ—ﬂ) /0 /O(s—qm)(a’l)\v(mﬂdqmds

(1—m)t'” " s (s
@] b 0 el

—1p
+ (n—1) // (s — qm) @ V|v(m)|d,mds

(o )F (2—-5)
1-8

+7F t ‘/ o(s)|dys
(1—?7)t1 B

_|_

(o — 1)y (2 - B) /0 (1- qs) |U( s)|dys

<A [[pllo ¢ ([l1])

and

WO S = 99 P h(s)ldys

S 1 L e
| 0 e

* (ynrq_(;; /0 /08(8 — qm)*~Vu(m)|dymds
+ m /01(1 —q5) 7P VNu(s)ldys
| [ 0= a9 el

<As [[pllee ¥ (D)
for all t € J, where ||p|loc = sup,c; p()],

[t ! (n* = 2)(v = ™
A= T,(a+1) + T,(a+2)(1—n) ‘ 29T, (v + 2)

(3.6)
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(n”—=2)(n—1) ‘(n2 —2)(1 —n)rot!

29T (e +1) 29T (e + 2)
(n*=2)(n—1) ’(1 — vt
2'qu(Oz) 'YFQ(O‘ + 2)

(n — Dot (1-n)
’qu(Oz + 2) ”Yrq(o‘ - B+ 1)

l 1 N (1 —v)y*t!
Fq(a - B+ 1) 'VFq(O‘ + 2>Fq(2 - 5)
‘ (1-n) ‘ (n — vt

‘ (7" =2)(n—1) ’
29T (o — B +1)
| (1-mn) |
Wy(a+1)

|

| (1-n)
q(a)

g

T AT+ D02 = 3)| AT (a + 2T, 2 -
(I—mn) (I—mn)
JT,(2— 5)

(o =B+ 1)y (2 - B) " "qu(a

|

(1-mn) ‘Jr‘(n—l)va“
Wy (a+1) Iy (a+2)

|

[ aY /
DJh(t)] + max ) (1)

and

(3.8) A, 1 | (1 —v)pett

Ty(0) | Ty(a+2)
1—n) (1—-mn)
qua—ﬁ+1)‘+‘ )

+

Hence,

|h]| = max |h(t)| + max
ted ted

is less than equal to (A + Ax + Ag) [[pll . ¥ (|z]])-
Step II. We demonstrate that N maps bounded sets into equicontinuous subsets
of X. Let x € B, and tq,ty € J, with t; < to. After that, for all h € N(x), we have

1

(1) = h(t)] = |7 [ (02— 43)" Do (s)dys

Ty(a) Jo
- qua) /otl (tr — g5)!* Vo(s)dys
(1 —v)ts / / @Dy (m)dymds

1_Vt1/ / s — qm)*Yu(m)d,mds
+ m/o (1= gs5)“ Vo(s)dys

(I—n)ty ! a-1
(S [ 0w o)
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( _”2// (5 — gm)©@Du(m )dqmds>

_1t1// (al)( )dqmds
(1 —n)ts ! a—B—1
e —5) /0 (1= s 05}
L C /)L W RN ) SR
(1 —n)ts ! a—2
+ ’qu(a—l)/o (1 —gs) @ Du(s)d,s
(1—nt ! a—2
_qu(oz—l)/o (1—g8)*2v(s)dys
< Il (ol || 4 (L= 210
‘(1 —n)(t2 —t1) i(n — Dottt — 1)
Wela+1) Wqla+2)
(L= —t)|  |A=n)(t2—t) ]
'Yrq(a —B+1) 'qu(a) ’
W(t2) = ()] < Il (lef) i) ana
ya=B _ 4B
D) = D) < ol (el | [T
. (7 =1") (1= vt
Yl (a+2)T(2 = B)
LB -aT)a-m) (B -8 (- hee

Ylg(a+2)T(2 = B)
(7 =07")(1-n)

Y(a+ 1) (2 = B)
(7 -n")(1-n)

} |

_l_
gla =B+ 1)T(2 - B) Y (@)T4(2 — B)
Hence,
A |h(t2) = h(t1)] = Jim |1 (t2) — h'(t1)] = Jim Dl h(ty) — Cth(tl)\ =0,

and so by using the Arzela-Ascoli theorem, N is completely continuous.

Step III. Now, we show that N has a closed graph. Let z, — xo, h, € N(z,)
for all n and h, — ho. We prove that hg € N(zg). For each n, choose v,, € Sp,,
such that h,(t) = IJ'v,(t) — oy, — C14,t for all t € J. Consider the continuous linear
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operator

{9 LY(J,R) = X,
0(v)(t) = I3v(t) — cov — c1ot

It can be seen, by Lemma 2.1, 6oSF is a closed graph operator. Since x,, — xo and
hn € 0(SEa,) for all n, there exists vy € Sk, such that ho(t) = ITvo(t) — cop — Cropt-
Thus, N has a closed graph.

Step IV. In this level, we show that N(z) is convex for all z € X. Let hy, hy € N(x)
and 0 < w < 1. Choose vy, vy € Sp, such that h(t) = I8v;(t) — cou, — C1o,t, for almost
all t € J and i = 1,2. Then,

[why +(1 — w)hs) (t)

29T, (o — )
. %2;;5@1)” /:u om0+ - el
(1 - Z))t /O“ /0 D [wuy (m) + (1 — w)va(m)] dymds
N ( (Z))t /01(1 ¢5) @D [wor(s) + (1 — w)va(s)] dys
N (7 A (;))t / /0 (s — qm)©@ D [woi (m) + (1 — w)vs(m)] dymds
N m [ 1= 09D fwwn(5) 4 (1= when(s)] dys
N m /01(1 — 45)@ [wor () + (1 — w)va(s)] dys,

for t € J. Since F' has convex values, Sg, is convex and so wh; + (1 — w)hy belongs
to N(z). If there exists A € (0,1) such that x € AN(z), then there exists v € Sp,
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such that x(t) = Ifv(t) — co, — c1ot, for all ¢ € J. Choose L > 0 such that
L

(A1 + Az + Ag)|[pllocto(ll2]])

for all x € X. Thus, ||z|| < L. Now, put U = {z € X | ||z|| < L + 1}. Note

that, there are no x € OU and 0 < A < 1 such that z € AN(z) and the operator

N :U — P.,.(U) is upper semi-continuous, because it is completely continuous.

Therefore, by using Lemma 2.2, N has a fixed point in U which is a solution of the
inclusion problem (1.1). This completes the proof. O

> 1,

Here, by changing values of multifunction in the assumption Theorem 3.1, we
provide another result about the existence of solutions for the problem (1.1).

Theorem 3.2. Let m € C(J,R") be such that ||m|loo(A1+ Az + A3) < 1 and consider
an integrable bounded multifunction F : J x R* — P.,,(R) such that the map t —
F(t,z,y,z) is measurable and

(3.9) Ha(F(t, w1, 22,23), F(t,y1,92,y3)) < m(t) (|o1 — pa] + [w2 — yol + |23 — y3]) ,
fort € J and x1,x9,x3,Y1,Y2,ys € R. Then the problem (1.1) has a solution.
Proof. Note that, the multivalued map ¢ — F (t,x(t),x’(t),CDfx(t)), for x € X, is
measurable and closed valued. Hence, it has a measurable selection and so the set
Sr.. is nonempty. Now, consider the operator N : X — 2% defined by

N(x) = {h € X | exists v € Spg @ h(t) = IJv(t) — cop — ch,t} ,

for all t € J.

Step I. We show that N(x) is a closed subset of X for all z € X. Let z € X and
{ty}n>1 be a sequence in N(z) with u, — u. For each n, choose v,, € Sg, such that
U (t) = I8vn(t) — ov, — C1o,t for t € J. From being compacted values F, {v,, },>1 has
a subsequence which converges to some v € L'(J,R). Again the subsequence denote
by {vn}n>1. It is easy to check that v € Sp, and u,(t) — u(t) = I7v(t) — co, — c1ot for
all t € J. This implies that v € N(z). Thus, the multifunction N has closed values.

Step II. In this level, we show that N is a contractive multifunction with constant
l:=|m|leo(A1 + A2+ A3) < 1. Let 2,y € X and hy € N(y). Choose v; € Sg, such
that hy(t) = I®v1(t) — cop, — C10,t for almost all ¢ € J. Put

Ay = F (t,x(t),2/(t),°Da(1)) ,
Ay = F (Ly(t). ' (1), Dy (1))
By assumption, if
Hy(Ay, Ay) <m(t) (lo(t) — y(0)] + 2/() — v/ (5)] +
for all ¢t € J, then there exists w € F (t, x(t), ' (t), CDgx(t)) such that

(3.10)  [or(t) — w| < m(t) (Ja(t) — y(O)] + |2/ (£) — o/ ()] +

“Dla(t) ~Dy(1)]).

“Dix(t) - *Diy(t)|)
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for almost all ¢ € J. For the multifunction U : J — 2%, define U(t) by the set of all
w € R where satisfies in (3.10) for ¢ € J. It is easy to check that the multifunction

U() ar3 (" ZL’(), lj(')? CDgx()) )
is measurable. Therefore, we can choose vy € Sp, such that
[1(£) = va(8)] < mlt) (Jo(t) — y(O)] + |2/ (t) — ¥/ (8)] + |“Di(t) — “Dly(t)|)

for almost all £ € J. Now, define hy € N(x) by ha(t) = I7v(t) — cou, — Cro,t. Hence,
we get

a(t) = ha(t)] < =7 /0 (0= 09) " fur(s) — v2(9)] dys

T,
+an - // (s — gm) D |y (m) — va(m)| dymds
[ESEE L oo
+| o [ ) () = (s s

| D] [ g ) s

S [ s = am) e o) = o) s

N SF;(Z); /01(1 — g8) @D Juy () — va(s)| dys

[ B [ = am) ) ontm) — (o) s

- | ‘/ @D [uy(s) = va(5)] dys

N m 01(1—qs)<a—2> o (s) — va(s)| dys

< Al[mlfoollz =y,

4 8) = 00 € gy (= a5 o) = )] dys
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S L s = am) e o) = vt s
(1—?7) ! -
+ m (1 —QS)( )|1;1(S) — va(s)| dys
_ 1 ot
i ’yF m) "V oy (m) — va(m)| dgmds
+ M / (1 — qs)(a*ﬁfl) |Ul<8) N UQ<S)| ds
(e = B)| Jo q
1=n) | o
+ m 0 (1—gs) [v1(s) — va(s)| dys
< Aslmlollz =yl
and
“DPha(t) — *DPha(t)
11(1(061_ . /Ot(t — q5) PV i (5) — va(s)] dys
(1—V)t1_’3 n s ol
AT (@)T,2 - ) 1 s = am) @™ s (m) = va(m)] dymds
(1=’ L @D 0 (8) — ()] d.s
AT (@)T,2 - B) /<1 gs)' " ui(s) — va(s)l dg
(77—1)251—5 (a 1) vy — vy(m mdas
- AL ()T (2 — ) // jv1(m) — va(m)| dymd
(1- tl b o
" y(a = 5) |/ )P Juy () — va(s)| dys
— 1 ﬁ
o 173); S| [ 0= a9 2 000 - e
<Asflm|lollz — -
So,

Ry —

hall < (A1 + Az + Ag) [[m]oo|2

=yl =z =yl

This implies that the multifunction /N is a contraction with closed values. Thus by
using the result of Covitz and Nadler, N has a fixed point which is a solution for the
inclusion problem (1.1).

O

Here, we provide two examples for the results.

Ezample 3.1. Put ¢ = 5, « = 2, 8 =3, 1= 3, v

g-derivative inclusion

(3.11) ‘D

(LN

o(t) € F (t,x(t),x/(t), ‘D

consider the fractional

W=

()

).

Wl o=
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with the boundary value conditions

z(0) + 2/(0) + D
(3.12)

z(1)+2'(1)+ <D

WIENI= W=

and consider the multifunction F : J x R? — 2% defined by

.2
e~ sin? 1 t+1
F (t,x1,19,73) = |cost + ————— +sinxy, 4 +1* +
1+ ! 2+ 6|13|

Note that, [|F(t, 21,22, 23)| = sup{ly| | v € F(t,z1,22,23)} < 6. If p(t) = 1 and
¥ (t) = 6, then one can check that the assumptions of Theorem 3.1 hold and so the
inclusion problem (3.11) has at least one solution.

Next example illustrates last result.

Ezxample 3.2. Put q = %, % and %, a= %, b= %, n= %, v = %, consider the inclusion
problem

z 1
(3.13) °Dig(t) € F (t,x(t),x’(t),cD?x(t)> ,

2 2

with the boundary value conditions

2(0) + 2'(0) + D
(3.14)

N—=wl—=  N= ol

2(1) + /(1) + D

and consider the multifunction F' : J x R?® — 2F defined by

tsin? (t+ 1)|zo] | 3|
"12(4+ 362) T 1002+ |z2]) | 100(1 + |zs]) |

F(t7'r17'r27x3) - [O

It is easy to understand that

t t+1 1\
Hy(F (t Ft < AL -
a (B (t, w1, 29, 23) , F (t,91,92,93)) < (12(4 32) 100 100);‘3: Yil

for all t € J =[0,1] and x1, xo, 3, Y1, Y2, y3 € R. Thus, if
) t n t+1 n 1

m = _—

124+ 32) 100 ' 100"

for all t € J, then

3
Hd (F (t,xl,l'g,l'{g) 7F(t7y17y2)y3)) S m<t> Z |x’t - yl|
=1

On the other side, we have three cases for g¢:
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1
q:=3:
L = ||[m|lso(A1 + Az + Az) < 0.0508(3.0182 + 2.0213 + 2.1289) ~ 0.3643 < 1,
q = %:
L = ||[m|lso(A1 + Ag + Az) < 0.0508(2.6576 + 1.8297 + 1.9831) ~ 0.3289 < 1,
2
q:=3:

L = ||m|lso(A1 + Ay + Ag) < 0.0508(2.3812 4 1.6771 + 1.1.8681) ~ 0.3012 < 1.

These values calculate by Algorithm 4, 5 and 6 which present in Table 5, 6 and 7.
Consequently, the assumptions of Theorem 3.2 hold and then the inclusion problem
(3.13) have at least one solution.

4. COMPUTATIONAL RESULTS

A simplified analysis can be performed to estimate the value of ¢-Gamma function,
I',(z), for input values ¢ and x by counting the number of sentences n in summation.
To this aim, we consider a pseudo-code description of the method for calulated g¢-
Gamma functiuon of order n in Algorithm 2.

Algorithm 1 The proposed method for calculated (a — b))

Input: a, b, a, n, q
1: s+ 1
2: if n = 0 then
3 p+1
else
for k=0ton dko
5 4 sk e
end for
pa®xs
end if
Output: (a — b)@

Algorithm 2 The proposed method for calculated I',(z)

Input: n, ¢ € (0,1), x € R\{0,—-1,2,---}
1 p+1
2: for k =0 ton do
3 pep(l— ¢ gt
4: end for
5: Tyg(x) < p/(1—q)*
Output: I')(x)
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Algorithm 3 The proposed method for calculated (I f)(z)

IHPUt: qc <O7 1)7 o, n, f(.’13>7 Zz
1: s+ 0
: for i =0 ton do
pf (1 — g+t
s« s+pf*qg* flxxqg)
end for
9 R
Output: (I7f)(x)

BNl

Table 1 shows that when ¢ is constant, the g-Gamma function is an increasing
function. Also, for smaller values of x, an approximate result is obtained with less
values of n. It has been shown by underlined rows. Table 2 shows that the ¢-Gamma
function for values ¢ near to one is obtained with more values of n in comparison with
other columns. They have been underlined in line 8 of the first column, line 17 of the
second column and line 29 of third column of Table 2. Also, Table 3 is the same as
Table 2, but = values increase in 3. Similarly, the g-Gamma function for values ¢ near
to one is obtained with more values of n in comparison with other columns.

Now, we investigate the computational complexity of Example 3.2 of Algorithm 4,
5 and 6. First, Table 4 shows the values of v for ¢ € (0, 1), an approximate result
is obtained with less than four decimal places indicated by underline. Furthermore,
Tables 5, 6, 7 show valued calculations of A;, Ay and Az for g =1, ¢ = % and g = %,

3
respectively.

Algorithm 4 The proposed method for calculated A,

Input: n, ¢ € (0,1), a,n, v
1: for k=0ton do
22 (W =D/2=1) 4+ (n—1)(1n*/2 =2 =Ty(2)/(T4(2) - B))

30 Ay, 1Ty(a+1)+ 0/ (Ty(a+2)(1—n))

4 Ay, < [((17 = 2)(v = 1)) /(29T (a + 2)))|

51 Ay [((1* = 2)(n— 1))/ (2T g(a + 1))

6:  Ag, < [((1* = 2)(1 = n)v*th) /(29T + 2))|

7 A= (P =2)(n—1))/(2Tg(a = B+ 1))

8 Ay (07 = 2)(n — 1)/ (29Tg(@))] + [((1 = »)n°t) /(4T (a + 2))]
9 Ay, I(l —10)/(7Tqla+ 1)+ [((n = Dt /(AT (e + 2))|

10: Ay [(T=n)/(/Ty(a =B+ 1)+ (1 =n)/(7T(a))]
1 A=Ay, + A, A A, AL+ A+ AL+ A
12: end for

Output: A,
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Algorithm 5 The proposed method for calculated Ay

Input: n, ¢ € (0,1), a,n, v
1: for k=0 ton do

2y (= DP/2— 1)+ (= D(2/2 = 2= T,(2)/(T,(2) - )
3. Ay, 1/Ty(a—B+1)

b Ao [0 = V)T D2 9)

5 Mg, |(1—n)/(1Ty(a + T,(2 - B))]

6 Aoy |(n— L) (0T, (a + 20T, 2 - )|

7 Ay, ¢ |(L—0)/(Tyla =+ DI,(2 - B))

S gy |(1=n)/ (AT, (@)T,(2 - B)|

9: A2 == AQl + A22 + AQS + A24 + A25 + A26

10: end for

Output: A,

Algorithm 6 The proposed method for calculated Aj

Input: n, ¢ € (0,1), a,n,v
1: for k=0 ton do

2:

3
4:
5:
6
7
8

Ve =121+ (n—1)n*/2—-2-T,(2)/(T4(2) - B))
As, < 1/Tg(a) + (1 = v)n**h) /(4T (a + 2))]

Az,  [(1=n)/(7T4(a+ 1))

Agy < |((n — Dot /(9T (e +2))]|

Ag,  [(1=n)/("Tgla =B+ 1)+ (1 —n)/(7T4(e))|

As = As, + As, + Ag, + A,

. end for

Output: Aj

All routines are written in “Matalab” software with the “Digits” 16 (Digits envi-

ronment variable controls the number of digits in Matlab) and run on a PC with 2.90
GHz of Core 2 CPU and 4 GB of RAM.

TABLE 1. Some numerical results for calculation of I'y(z), with ¢ = % that

is constant, x = 4.5,8.4,12.7 and n = 1,2, ..., 15, of Algorithm 2.

r=4.5 r = 8.4 r=12.7 n x=4.5 T =84 xr=12.7

2.472950 11.909360 68.080769 9 2.340263 11.257158 64.351366
2.383247 11.468397 65.559266 10 2.340250 11.257095 64.351003
2.354446 11.326853 64.749894 11 2.340245 11.257074 64.350881
2.344963 11.280255 64.483434 12 2.340244 11.257066 64.350841
2.341815 11.264786 64.394980 13 2.340243 11.257064 64.350828
2.340767 11.259636 64.365536 14 2.340243 11.257063 64.350823
2.340418 11.257921 64.355725 15 2.340243 11.257063 64.350822
2.340301 11.257349 64.352456

0~ O U W RS
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TABLE 2. Some numerical results for calculation of I'y(x), with ¢ = %, %, %,
r=5andn=1,2,...,35, of Algorithm 2.

n  q=% q=3 =% n  q=3 q=3 q=3
1 3.016535 6.201859 18.937427 18 2.853224 4.921884 8.476643
9 2.906140 5.548726 14.154784 19 2.853224 4.921879 8.474597
3 2.870699 5.222330 11.819974 20 2.853224 4.921877 8.473234
4 2.859031 5.069033 10.537540 21 2.853224 4.921876 8.472325
5 2.855157 4.994707 9.782069 22 2.853224 4.921876 8.471719
6 2.853868 4.958107 9.317265 23 2.853224 4.921875 8.471315
7 2.853438 4.939945 9.023265 24 2.853224 4.921875 8.471046
8 2.853205 4.930899 8.833940 25 2.853224 4.921875 8.470866
9 2.853247 4.926384 8.710584 26 2.853224 4.921875 8.470747
10 2.853232 4.924129 8.620588 27 2.853224 4.921875 8.470667
11 2.853226 4.923002 8.576133 28 2.853224 4.921875 8.470614
12 2.853224 4.922438  8.540736 29 2.853224 4.921875 8.470578
13 2.853224 4.922157 8.517243 30 2.853224 4.921875 8.470555
14 2.853224 4.922016 8.501627 31 2.853224 4.921875 8.470539
15 2.853224 4.921945 8.491237 32 2.853224 4.921875 8.470529
16 2.853224 4.921910 8.484320 33 2.853224 4.921875 8.470522

—
N |

2.853224 4.921893  8.479713 34 2.853224 4.921875 8.470517
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TABLE 3. Some numerical results for calculation of I'y(z), with z = 8.4,

q= %, %,% and n=1,2,...,40, of Algorithm 2.
n q=3 q=3 =% n q=3 q=73 q=3
1 11.909360 63.618604 664.767669 21 11.257063 49.065390 260.033372
2 11.468397 55.707508 474.800503 22 11.257063 49.065384 260.011354
3 11.326853 52.245122 384.795341 23 11.257063 49.065381 259.996678
4 11.280255 50.621828 336.326796 24 11.257063 49.065380 259.986893
5 11.264786 49.835472 308.146441 25 11.257063 49.065379 259.980371
6 11.259636 49.448420 290.958806 26 11.257063 49.065379 259.976023
7 11.257921 49.256401 280.150029 27 11.257063 49.065379 259.973124
8 11.257349 49.160766 273.216364 28 11.257063 49.065378 259.971192
9 11.257158 49.113041 268.710272 29 11.257063 49.065378 259.969903
10 11.257095 49.089202 265.756606 30 11.257063 49.065378 259.969044
11 11.257074 49.077288 263.809514 31 11.257063 49.065378 259.968472
12 11.257066 49.071333 262.521127 32 11.257063 49.065378 259.968090
13 11.257064 49.068355 261.666471 33 11.257063 49.065378 259.967836
14 11.257063 49.066867 261.098587 34 11.257063 49.065378 259.967666
15 11.257063 49.066123 260.720833 35 11.257063 49.065378 259.967553
16 11.257063 49.065751 260.469369 36 11.257063 49.065378 259.967478
17 11.257063 49.065564 260.301890 37 11.257063 49.065378 259.967427
18 11.257063 49.065471 260.190310 38 11.257063 49.065378 259.967394
19 11.257063 49.065425 260.115957 39 11.257063 49.065378 259.967371
20 11.257063 49.065402 260.066402 40 11.257063 49.065378 259.967357
TABLE 4. Some numerical results for calculation of ~, with ¢ = %, %, % and
n=12,...,20, of Example 3.2.
n q=: q=% q=3 n gq=: q=% q=3
1 2257197 2.226716 2.174059 11 2.270833 2.270788 2.268911
2 2.266232 2.248106 2.203418 12 2.270833 2.270810 2.269551
3 2.269293 2.259295 2.224501 13 2.270833 2.270822 2.269978
4 2.270319 2.265019 2.239296 14 2.270833 2.270828 2.270263
5 2.270662 2.267915 2.249509 15 2.270833 2.270830 2.270453
6 2.270776 2.269371 2.256481 16 2.270833 2.270832 2.270580
7 2.270814 2.270102 2.261204 17 2.270833 2.270833 2.270664
8 2.270827 2.270467 2.264386 18 2.270833 2.270833 2.270721
9 2.270831 2.270650 2.266523 19 2.270833 2.270833 2.270758
10 2.270833 2.270742 2.267954 20 2.270833 2.270833 2.270783
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TABLE 5. Some numerical results for calculattion of A1, As, A3, with ¢ = %
and n=1,2,...,20, of Example 3.2.

Ay As A3 S A
2.793328 1.846027 1.990304 6.629659
2.942153 1.961611 2.082118 6.985882
2.992794 2.001290 2.113262 7.107345
3.009790 2.014645 2.123703 7.148138
3.015468 2.019112 2.127190 7.161770
3.017362 2.020602 2.128353 7.166318
3.017993 2.021099 2.128741 7.167834
3.018204 2.021265 2.128870 7.168339
3.018274 2.021320 2.128913 7.168508
10 3.018298 2.021339 2.128928 7.168564
11 3.018305 2.021345 2.128933 7.168583
12 3.018308 2.021347 2.128934 7.168589

© 00O U WS

TABLE 6. Some numerical results for calculation of Ay, Ag, A3, with ¢ = %
and n=1,2,...,20, of Example 3.2.

A Ag As A
1.980443 1.311532 1.552811 4.844787
2.303542 1.554800 1.759966 5.618308
2.476635 1.688162 1.869507 6.034304
2.566137 1.757911 1.925802 6.249851
2.611636 1.793570 1.954335 6.359541
2.634573 1.811598 1.968699 6.414870
2.646088 1.820662 1.975905 6.442655
2.651858 1.825206 1.979514 6.456578
2.654746 1.827482 1.981320 6.463547
10 2.656191 1.828620 1.982223 6.467034
11 2.656913 1.829190 1.982675 6.468778
12 2.657274 1.829474 1.982901 6.469650
13 2.657455 1.829617 1.983014 6.470086
14 2.657545 1.829688 1.983070 6.470304
15 2.657591 1.829724 1.983098 6.470413
16 2.657613 1.829741 1.983113 6.470467
17 2.657624 1.829750 1.983120 6.470494
18 2.657630 1.829755 1.983123 6.470508
19 2.657633 1.829757 1.983125 6.470515
20 2.657634 1.829758 1.983126 6.470518

© 00O U WS
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TABLE 7. Some numerical results for calculation of A, Ag, Ag, with ¢ = 2

3
and n=1,2,...,30, of Example 3.2.

Ay As A3 S A
1.051016 0.687483 0.979592 2.718091
1.419580 0.948096 1.237258 3.604934
1.705375 1.157875 1.429740 4.292990
1.914775 1.315447 1.567753 4.797976
2.063077 1.428895 1.664216 5.156188
2.165905 1.508420 1.730549 5.404873
2.236244 1.563214 1.775683 5.575140
2.283940 1.600547 1.806181 5.690669
2.316097 1.625798 1.826697 5.768592
10 2.337695 1.642794 1.840456 5.820945
11 2.352165 1.654198 1.849665 5.856027
12 2.361843 1.661832 1.855820 5.879496
13 2.368310 1.666936 1.859931 5.895177
14 2.372627 1.670345 1.862675 5.905648
15 2.375508 1.672621 1.864506 5.912635
16 2.377430 1.674139 1.865727 5.917296
17 2.378712 1.675152 1.866541 5.920405
18 2.379567 1.675827 1.867084 5.922478
19 2.380137 1.676277 1.867446 5.923861
20 2.380517 1.676578 1.867688 5.924783
21 2.380770 1.676778 1.867849 5.925397
22 2.380939 1.676911 1.867956 5.925807
23 2.381052 1.677000 1.868028 5.926080
24 2.381127 1.677060 1.868075 5.926262
25 2.381177 1.677099 1.868107 5.926384
26 2.381211 1.677126 1.868128 5.926464
27 2.381233 1.677143 1.868142 5.926518
28 2.381248 1.677155 1.868152 5.926554
29 2.381258 1.677163 1.868158 5.926578
30 2.381264 1.677168 1.868162 5.926594
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