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FRACTIONAL ORDER OPERATIONAL MATRIX METHOD FOR
SOLVING TWO-DIMENSIONAL NONLINEAR FRACTIONAL

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

AMIRAHMAD KHAJEHNASIRI1, M. AFSHAR KERMANI1, AND REZZA EZZATI2∗

Abstract. This article presents a numerical method for solving nonlinear two-
dimensional fractional Volterra integral equation. We derive the Hat basis func-
tions operational matrix of the fractional order integration and use it to solve the
two-dimensional fractional Volterra integro-differential equations. The method is
described and illustrated with numerical examples. Also, we give the error analysis.

1. Introduction

Fractional differential and integral equations involving the Caputo fractional opera-
tor or the Riemann-Liouville fractional operator has been paid more and more atten-
tion. There are several numerical methods for solving fractional integro-differential
equations. Such as Haar wavelet method [24], CAS wavelets [25], Bernstein polyno-
mials [1], collocation method [23], fractional differential transform method [3], Block
pulse operational matrix [20,28].

Integro-differential equation of fractional order has been proved to be valuable tools
to model the dynamics of many processes in various fields of science and engineering
through strongly anomalous media. Indeed, we can find numerous applications in
electro-chemistry, viscoelasticity, signal processing, economies, electromagnetic, etc.
[9, 10, 18,22].

Hat functions (HFs) are a powerful mathematical tool for solving various kinds
of equations. The solution of stochastic Ito-Volterra integral equations based on
stochastic operational matrix [11], E. Babolian et al. have applied this method for
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solving systems of nonlinear integral equations [5], M. H. Heydari et al. have applied
Hat functions for solving nonlinear stochastic Ito integral equations [11,13]. F. Mirzaee
and E. Hadadiyan have used two-dimensional Hat functions for solving space-time
integral equations [17]. M. P. Tripathi et al. have applied HFs for solving fractional
differential equations [27].

The operational matrix of integration has been determined for several types of
orthogonal polynomials, such as Legendre polynomials [21], Laguerre series [12], and
Block-pulse functions [4, 7], Triangular functions [15]. The operational matrix of
fractional derivatives has been determined for some types of orthogonal polynomials,
such as Legendre polynomials [26], Chebyshev polynomials [6], Triangular functions
[8, 14].

In this paper, two dimensional Hat functions (2DHFs) will be used to solve the
following nonlinear two-dimensional fractional integral equation

Dα
xu(x, y) = f(x, y)+ 1

Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)(β−1)G(x, y, s, t, u(s, t))dsdt,

(1.1)
with the initial conditions

(1.2) ∂i

∂xi
u(0, y) = δi, i = 0, 1, . . . , ρ− 1, ρ− 1 < α ≤ ρ, ρ ∈ N,

where (α, β) ∈ (0,∞)×(0,∞), u ∈ L1(Ω), Ω := [0, a]×[0, b], are known functions, (1.1)
is the Caputo fractional differentiation operator and the unknown function u(x, y)
to be determined. In this work, we consider that, the nonlinear function has the
following form G(x, y, s, t, u) = k(x, y, s, t, )[u(s, t)]P , where p is positive integer. In
this paper, we introduce a new operational method to solve nonlinear two dimensional
fractional Volterra integro-differential equations. The method is based on reducing
the equation to the system of algebraic equation by expanding the solution as Hat
functions.

2. Riemann-Liouville and Caputo Fractional Derivatives

There are various types of definition for the fractional derivative. The most
commonly used definitions are Riemann-Liouville and Caputo formulas. Riemann-
Liouville fractional integration of order α is defined as

(2.1) Iαx0f(x) = 1
Γ(α)

∫ x

x0
(x− t)α−1f(t)dt, α > 0, x > 0.

The following equations define Riemann-Liouville and Caputo fractional derivatives
of order α, respectively,

Dα
x0f(x) = dm

dxm
[Im−αx0 f(x)],(2.2)

Dα
∗x0f(x) =Im−αx0

[
dm

dxm
f(x)

]
,
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where m− 1 ≤ α < m and n ∈ N. From (2.1) and (2.2), we have

Dα
x0f(x) = 1

Γ(m− α)
dm

dxm

∫ x

x0
(x− t)m−α−1f(t)dt, x > x0.

Lemma 2.1. If n− 1 < α ≤ n, n ∈ N, then Dα
xI

αu(x, t) = u(x, t), and

IαDα
xu(x, t) = u(x, t)−

n−1∑
k=0

∂ku(0+, t)
∂xk

xk

k! , x > 0.

Definition 2.1 ([2]). Let (α, β) ∈ (0,∞) × (0,∞), θ = (0, 0), Ω := [0, a] × [0, b],
and u ∈ L1(Ω). The left-sided mixed Riemann-Liouille integral of order (α, β) of u is
defined by

(I(α,β)
θ u)(x, y) = 1

Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)(α−1)(x− t)(β−1)u(s, t)dsdt.

In particular
1. (I(α,β)

θ u)(x, y) = u(x, y);
2. (I(α,β)

θ u)(x, y) =
∫ x

0
∫ y

0 u(s, t)dtds, (x, y) ∈ Ω, σ = (1, 1);
3. (I(α,β)

θ u)(x, 0) = (I(α,β)
θ )(0, y) = 0, x ∈ [0, a], y ∈ [0, b];

4. Iα,βθ xλyω = Γ(1+λ)×Γ(1+ω)
Γ(1+λ+α)×Γ(1+ω+β)x

λ+αyω+β, (x, y) ∈ Ω, λ, ω ∈ (−1,∞).

3. Review of Hat Functions and Their Properties

A set of HFs is usually defined on [0, 1] as:

φ0(t) =


h− t
h

, 0 ≤ t < h,

0, otherwise,

φi(t) =



t− (i− 1)h
h

, (i− 1)h ≤ t < ih,

(i+ 1)h− t
h

, ih ≤ t < (i+ 1)h, i = 1, 2, . . . , n− 1,
0, otherwise,

φn(t) =


t− (1− h)

h
, T − h ≤ t < T,

0, otherwise,

where h = 1
n
and n is an arbitrary positive integer. Indeed, the unit interval [0,1] is

divided into n equidistant subintervals. According to the definition of HFs, we have

φi(jh) = δij,(3.1)

where δ denotes the Kronecker delta function. By generalizing the definition of one-
dimensional HFs, 2DHFs can be defined as follows

(3.2) Φi,j(x, y) = Φi(x)Φj(x), i, j = 0, 1, . . . , n.
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By substituting (3.1) and (3.2), we have Φi,j(kh, lh) = δjlδik. Now, for the 2DHFs,
we have

(3.3) φi,j(x, y)φk,l(x, y) = 0, |i− j| ≥ 2 or |j − l| ≥ 2

and
n∑
i=0

n∑
j=0

φi,j(x, y) = 1.

An arbitrary function U(x, y) can be expanded in vector form as:

(3.4) U(x, y) ' UTΦ(x, y) = ΦT (x, y)U,

where U = [u0, u1, . . . , un]T ,

Φ(x, y) = [φ0,0(x, y), . . . , φ0,m(x, y), φ1,0(x, y), . . . , φ1,0(x, y)]T

and ui,j = u(ih, jh), i, j = 0, 1, . . . , n. The positive integer powers of u(x, y) may be
approximated by HFs as [u(x, y)]P ' CT

P ·Φ(x, y). Now, let k(x, y, s, t) be an arbitrary
function of two variables defined on L2([0, 1] × [0, 1]). It can be expanded by HFs
as: k(x, y, s, t) ' ΦT (x, y)KΦ(s, t), where Φ(x, y) and Φ(s, t) are 2DHFs vectors of
dimention (n+1)2, and K is 2DHFs coefficients matrix of dimention (n1+1)2×(n+1)2

with entries aij, i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, as aij = k(ih, jh). In this paper, for
convenience, we put n1 = n2 = n. Moreover, from (3.3) follows:

Φ(x, y)ΦT (x, y)

=



φ2
0(x) φ0(x)φ1(x)

φ0(x)φ1(x) φ2
1(x) φ1(x)φ2(x)
. . . . . . . . .
. . . . . . . . .

. . . . . . φn−1(x)φn(x)
φn−1(x)φn(x) φ2

n(x)



⊗



φ2
0(x) φ0(x)φ1(x)

φ0(x)φ1(x) φ2
1(x) φ1(x)φ2(x)
. . . . . . . . .
. . . . . . . . .

. . . . . . φn−1(x)φn(x)
φn−1(x)φn(x) φ2

n(x)


and

P1 =
∫ 1

0

∫ 1

0
Φ(x, y)ΦT (x, y)dxdy = Υ1 ⊗Υ1,
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where P1 is the following (n+ 1)× (n+ 1) matrix

P1 = h

6



2 1
1 4 1

. . . . . . . . .
. . . . . . . . .
1 4 1

1 2


.

By considering (3.1), and expanding entries of Φ(x, y)ΦT (x, y) by 2DHFs, we have
Φ(x, y)ΦT (x, y) ' diag(Φ(x, y)). Now, suppose that Λ is a vector (n+ 1)2. We obtain

(3.5) Φ(x, y)ΦT (x, y)Λ ' Λ̃Φ(x, y),

where Λ̃ = diag(Λ) is an (n+ 1)2 × (n+ 1)2-diagonal matrix. Furthermore, if A is an
(n+ 1)2 × (n+ 1)2-matrix, we have

(3.6) ΦT (x, y)AΦ(x, y) ' ΦT (x, y)Â,

where Â is an (n + 1)2-vector with elements equal to diagonal entries of matrix A.
Now, we have∫ y

0

∫ x

0
Φ(s, t)dydt =

∫ y

0

∫ x

0
Φ(s)⊗ Φ(t)dsdt =

(∫ y

0
Φ(s)ds

)
⊗
(∫ x

0
Φ(t)dt

)
' (Υ1Φ(x))⊗ (Υ2Φ(y)) = (Υ1 ⊗Υ2)Φ(x, y) = P2Φ(x, y),

where P2 is the following (n+ 1)× (n+ 1) matrix

P2 = h

2


0 1 1 1 · · · 1
0 1 2 2 · · · 2
0 0 1 2 · · · 2
... ... ... ... . . . ...
0 0 0 0 · · · 1

 .

3.1. Operational matrix of the fractional order integration (OMFI). Our
goal is to get, to derive the Hat OMFI. For this purpose, Block pulse fractional matrix
for the one-dimensional case is presented as follows:

(Iαf)(t) = 1
Γ(α)

∫ t

0
(t− τ)α−1b(τ)dτ = Fαb(t),

where α ∈ R is the order of the integration and Γ(α) is the Gamma function. Also,
we define an m-set of Block Pulse Functions (BPFs) as

bi(x) =

 1, i

m
≤ x <

(i+ 1)
m

,

0, otherwise,
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where i = 0, 1, 2, . . . ,m− 1. The function bi(x) is disjoint and orthogonal, that is

bj(x)bi(x) =
{
bj, j = i,
0, j 6= i,

where Fα is the m×m fractional operational matrix of integration of order α for the
BPFs (see [16]) where

(IαBm)(x) 'FαBm(x),

Fα = 1
mα

1
Γ(α + 2)



1 ξ1 ξ2 ξ3 . . . ξm−1
0 1 ξ1 ξ2 . . . ξm−1
0 0 1 ξ1 . . . ξm−3
... ... . . . . . . ...
0 0 . . . 0 1 ξ1
0 0 0 . . . 0 1


,

and ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1. Our aim is to derive the Hat OMFI. For
this purpose, we used the Riemann-Liouville fractional order integration, as following:

(Iαu)(x, y) = 1
Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)β−1u(s, t)dsdt

= 1
Γ(α)Γ(β)y

α−1xβ−1 ∗ u(x, y),

where α, β ∈ R are the order of the integration, Γ(α) and Γ(β) are the Gamma
functions and yα−1 ∗ u(x, y), xβ−1 ∗ u(x, y) denote the convolution products of yα−1,
xβ−1 and u(x, y). Now if u(x, y) is expanded in HFs, as shown in (3.4), the Riemann-
Liouville fractional integration becomes

(Iαu)(x, y) = 1
Γ(α)Γ(β)y

α−1xβ−1 ∗ u(x, y) ≈ CT 1
Γ(α)Γ(β)y

α−1xβ−1 ∗ Φ(x, y).

Thus, if yα−1 ∗ u(x, y) and xβ−1 ∗ u(x, y) can be integrated, then by expanding the
Hat functions, the Riemann-Liouville fractional order integration solve the HFs. Also,
we define an m-set of BPF as

bi1,i2(x, y) =
{

1, (i1 − 1)h1 6 x < i1h1 and (i2 − 1)h2 6 y < i2h2,
0, otherwise,

where i = 0, 1, 2, . . . ,m− 1. The function bi,j(t) is disjoint and orthogonal, that is

bi1,i2(x, y)bj1,j2(x, y) =
{
bi1,i2(x, y), i1 = j1 and i2 = j2,
0, otherwise.

The HFs can be expanded in to m-set of BPs functions as
(3.7) Φ(x, y) = Ψm×mBm(x, y),
where Bm(x) = (b0(x), b1(x), . . . , bi(x), . . . , bm−1(x))T (see [24,25]) and Ψ is an MN ×
MN product operational matrix. Next, we derive the Hat OMFI. We have the two
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dimensional BPFs operational matrix of fractional integration as:
1

Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)β−1U(s, t)dsdt = Fα,βU(x, y),

where

Fα,β = 1
mαmβ

1
Γ(α + 2)Γ(β + 2)

×



1 ξ1 ξ2 ξ3 . . . ξm−1
0 1 ξ1 ξ2 . . . ξm−1
0 0 1 ξ1 . . . ξm−3
... ... . . . . . . ...
0 0 . . . 0 1 ξ1
0 0 0 . . . 0 1


⊗



1 η1 η2 η3 . . . ηm−1
0 1 η1 η2 . . . ηm−1
0 0 1 η1 . . . ηm−3
... ... . . . . . . ...
0 0 . . . 0 1 η1
0 0 0 . . . 0 1


,

ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1 and ηk = (k + 1)β+1 − 2kβ+1 + (k − 1)β+1.
Fractional integration of the BPFs is given as the following

(3.8) (Iα,βBm)(x, y) ≈ Fα,βBm(x, y).
Now, we derive the HFs operational matrix of the fractional order integration. Let
(3.9) (Iα,βΦ)(x, y) ≈ Pα,β

m×mΦ(x, y),
where matrix Pα,β

m×m is called the Hat functions OMFI. Using (3.7) and (3.8), we have
(3.10)

(Iα,βΦ)(x, y) ≈ (Iα,βΨm×mBm)(x, y) = Ψm×m(IαBm)(x, y) ≈ Ψm×mF
α,βBm(x, y).

By (3.9) and (3.10) we get
Pα,β
m×mΦ(x, t) = Ψm×mF

α,βBm(x, y) = Ψm×mF
α,βΦm×mΨ−1

m×m.

Then, the Hat functions OMFI Pα,β
m×m is given by

(3.11) Pα,β
m×m = Ψm×mF

α,βΨ−1
m×m.

4. Applying the Method

In this section, 2DHFs fractional operational matrix are applied to solving (1.1).
Now, let

Dα
∗ u(x, y) ' CTΦ(x, y).(4.1)

By using (4.1) and (3.9) and Lemma 2.1, we have

u(x, y) = CTPα
m×mΦ(x, y) +

m−1∑
k=0

∂ku(0+, y)
∂xk

xk

k! , x > 0.

So, by replacing the supplementary initial conditions (1.2), in the above summation
in the above equations and approximating it by Hat functions, we have

u(x, y) ∼= (CTPα
m×m + CT

p )Φ(x, y),
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where Cp is a column m-vector. Define e = [e0, e1, . . . , em−1] = (CTPα
m×m + CT

p ), so,
u(x, y) ∼= eΦ(x, y). We could easily check out the correctness of the expression with in-
duction [u(x, y)]q ∼= [eq0, eq1, . . . , eqm−1]Φ(x, y) = eqΦm×m, where ẽq = [eq0, eq1, . . . , eqm−1].
The function u(x, y), k(x, y, s, t) and f(x, y) can be approximated by

u(x, y) =UTΦ(x, y) = UΦT (x, y),
F (x, y) =F TΦ(x, y) = FΦT (x, y),

[u(x, y)]p =ΦT (x, y)Cp ,
k(x, y, s, t) =ΦT (x, y) ·K · Φ(s, t).(4.2)

Now, with substituting (4.2) in (1.1), we have

Dα
xu(x, y) = 1

Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)(β−1)G(x, y, s, t, u(s, t))dsdt+ f(x, y).

Using (3.5), (3.6), (3.9), and (3.11), we have
CΦT (x, y)

= 1
Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)(β−1)k(x, y, s, t)[u(s, t)]pdsdt+ FΦT (x, y)

= 1
Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)(β−1)ΦT (x, t)KΦ(s, t)ΦT (x, y)Cpdsdt+ FΦT (x, y)

=ΦT (x, y)KC̃p
1

Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)(β−1)Φ(s, t)dsdt+ FΦT (x, y)

=ΦT (x, y)KC̃pPα,β
m×mΦ(x, y) =

(
̂Kc̃pPα,β

m×m

)T
· Φ(x, y) + FΦT (x, y)

=
(

̂Kc̃pPα,β
m×m

)
· ΦT (x, y) + FΦT (x, y).

Set
B =

(
̂Kc̃pPα,β

m×m

)
,

so,
CΦT (x, y) = BΦT (x, y) + FΦT (x, y),

hence, we have
(4.3) C = B + F,

which is a system of algebraic equations. By solving this system, we can obtain the
approximate solution of (1.1) according to (4.3).

5. Convergence and Error Analysis

In this section, we obtain an error bound for the approximate solution, then from
which we conclude convergence of the method. We define the error function as

en(x, y) = u(x, y)− û(x, y),
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where u(x, y) and û(x, y) denote the exact and approximate solutions, respectively.

Theorem 5.1. Suppose u(x, y) ∈ I and en(x, y) = u(x, y) − un(x, y), (x, y) ∈ I =
[0, T )× [0, T ), where un(x, y) = ∑n

i=0 u(ih, jh)φi,j(x, y) is the generalized hat function
expansion of u(x, y). Then, we have

(5.1) ‖en(x, y)‖ ≤ T 2

2n2‖u
′′(x, y)‖,

and so the convergence is of order two, that is ‖en(x, y)‖ = O
(

1
n2

)
.

Proof. See [17]. �

Theorem 5.2. Suppose u(x, y) as an exact solution of fractional integral (1.1) and
û(x, y) show the approximate solution by Hat functions. If
|(x−s)α−1(y− t)β−1k(x, y, s, t)| < N , u(x, y) and k(x, y, s, t) are continuous functions
and also, G(u) = (u(x, t))p satisfies Lipschitz condition |G(u) − G(û)| ≤ L|u − û|,
then

‖u− û‖ = sup
0≤x,y≤1

|u(x, y)− û(x, y)| = O
( 1
n2

)
.

Proof. We have
|u(x, y)− û(x, y)|

=
∣∣∣∣∣ 1
Γ(α)Γ(β)

∫ y

0

∫ x

0
(y − s)α−1(x− t)β−1k(x, y, s, t)(u(s, t)− û(s, t))dtds

∣∣∣∣∣
≤ 1

Γ(α)Γ(β)

∫ x

0

∫ y

0
|(x− s)α−1(y − t)β−1k(x, y, s, t)(u(s, t)− û(s, t))|dsdt

≤ 1
Γ(α)Γ(β)

∫ y

0

∫ x

0
|(y − s)α−1(x− t)β−1k(x, y, s, t)||(u(s, t)− û(s, t))|dsdt

≤ N

Γ(α)Γ(β)

∫ y

0

∫ x

0
|(u(s, t)− û(s, t))|dsdt.

From (5.1), we conclude that

|u(x, y)− û(x, y)| ≤ NLT 2xy

2n2Γ(α)Γ(β) ≤
NLT 2

2n2Γ(α)Γ(β) .

This completes the proof. �

Theorem 5.3. The solving systems of partial 2DFVIE by using 2D-HFs converge if
0 < θ < 1, where θ = NLT 2

2n2Γ(α)Γ(β) .

Proof. If we assume G(u) = Dα
xu(x, y), we have ‖G(u) − G(um)‖∞ ≤ ‖u − um‖∞.

From Theorem 5.2, we have

(5.2) ‖G(u)−G(um)‖∞ ≤
NLT 2

2n2Γ(α)Γ(β)‖u− um‖∞.
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Inequality (5.2) implies that if 0 < θ < 1, then we have limm→∞ ‖G(u)−G(um)‖∞ = 0
and limm→∞ ‖u− um‖∞ = 0. �

6. Numerical Examples

To illustrate the effectiveness of the proposed method in the present paper, some
test examples are carried out in this section.

Example 6.1. Consider the fractional partial volterra integro-differential equation [19]

D0.75
x u(x, y) =

∫ y

0

∫ x

0
(y + t)u(s, t)dsdt = 6.4

Γ(0.25)yx
5/4 − 5

18x
3y3,

where the exact solution is known and it is given by u(x, y) = x2y, for x, y ∈ [0, 1] and
with supplementary condition u(0, y) = 0. Numerical results are presented in Table 1.

Table 1. The absolute errors for Example 1.

m = n = 4 m = n = 4 m = n = 5 m = n = 5
(x, y) u2DLWs [19] u2DHFs u2DLWs [19] u2DHFs
(0.0, 0.7) 0.1404× 10−2 0.1404× 10−2 0.3508× 10−3 0.2327× 10−3

(0.1, 0.3) 0.1636× 10−3 0.2584× 10−2 0.1342× 10−3 0.4158× 10−3

(0.3, 0.8) 0.1456× 10−2 0.3651× 10−3 0.8962× 10−3 0.1001× 10−4

(0.4, 0.2) 0.1087× 10−3 0.6521× 10−3 0.2700× 10−4 0.5057× 10−4

(0.6, 0.6) 0.3248× 10−3 0.1421× 10−3 0.6759× 10−3 0.5884× 10−4

(0.7, 0.5) 0.8878× 10−3 0.6250× 10−3 0.5285× 10−4 0.1019× 10−4

(0.8, 0.4) 0.7061× 10−3 0.7247× 10−3 0.4090× 10−4 0.1018× 10−4

(0.9, 0.9) 0.5898× 10−3 0.1997× 10−3 0.1974× 10−3 0.4108× 10−4

Example 6.2. Consider the linear two-dimensional fractional integro-differential equa-
tion [19]

D0.5
x u(x, y) =

∫ y

0

∫ x

0
(x2y + s)u(s, t)dsdt = 4y

√
x

π
− 1

2x
4y3 − 1

3x
3y2,

where the exact solution is known and given by u(x, y) = 2xy, for x, y ∈ [0, 1] and
with supplementary condition u(0, y) = 0. Numerical results are presented in the
Table 2.

Example 6.3. Consider the linear two-dimensional fractional integro-differential equa-
tion [19]

D0.5
x u(x, y) =

∫ y

0

∫ x

0
(x cos(s) + yt)u(s, t)dsdt = f(x, y),
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Table 2. The absolute errors for Example 2.

m = n = 4 m = n = 4 m = n = 5 m = n = 5
(x, y) u2DLWs [19] u2DHFs u2DLWs [19] u2DHFs
(0.1, 0.8) 0.1173× 10−3 0.1853× 10−3 0.1250× 10−3 0.4141× 10−3

(0.2, 0.6) 0.1805× 10−3 0.9461× 10−3 0.2751× 10−4 0.4258× 10−3

(0.3, 0.8) 0.9276× 10−4 0.9276× 10−4 0.1189× 10−4 0.1104× 10−4

(0.4, 0.6) 0.2710× 10−4 0.3621× 10−4 0.1395× 10−5 0.1245× 10−5

(0.5, 0.5) 0.7309× 10−5 0.1001× 10−4 0.4065× 10−5 0.7412× 10−5

(0.6, 0.5) 0.3884× 10−4 0.3621× 10−4 0.1174× 10−4 0.3241× 10−5

(0.7, 0.3) 0.3548× 10−4 0.5200× 10−3 0.9798× 10−5 0.4142× 10−4

(0.8, 0.4) 0.9069× 10−4 0.3247× 10−4 0.2406× 10−4 0.3258× 10−4

(0.9, 0.9) 0.6179× 10−3 0.1657× 10−3 0.1607× 10−3 0.4741× 10−4

where

f(x, y) =2 sin(y)
√
x√

0.5
+ x cos(x)− x2 sin(x)− x cos(y) + x cos(x) cos(y)

+ x2 sin(x) cos(y)− 1
2x

2y sin(y) + 1
2x

2y2 cos(y),

where the exact solution is known and given by u(x, y) = x sin(y), for x, y ∈ [0, 1]
and with supplementary condition u(0, y) = 0. Numerical results are presented in the
Table 3.

Table 3. The absolute errors for Example 3.

m = n = 3 m = n = 3 m = n = 4 m = n = 4
(x, y) u2DLWs [19] u2DHFs u2DLWs [19] u2DHFs
(0.1, 0.1) 0.1599× 10−3 0.2514× 10−2 0.5398× 10−4 0.9841× 10−3

(0.2, 0.2) 0.2155× 10−3 0.6251× 10−3 0.5185× 10−4 0.4625× 10−4

(0.3, 0.3) 0.1566× 10−3 0.5210× 10−3 0.6503× 10−4 0.1984× 10−4

(0.4, 0.4) 0.2122× 10−3 0.9654× 10−3 0.7688× 10−4 0.1962× 10−4

(0.5, 0.5) 0.2477× 10−3 0.2014× 10−3 0.8809× 10−4 0.7620× 10−4

(0.6, 0.6) 0.2971× 10−3 0.6521× 10−3 0.9899× 10−4 0.3021× 10−4

(0.7, 0.7) 0.3662× 10−3 0.6214× 10−3 0.1226× 10−3 0.4142× 10−4

(0.8, 0.8) 0.4738× 10−3 0.2147× 10−3 0.1599× 10−3 0.3108× 10−4

(0.9, 0.9) 0.6344× 10−3 0.9651× 10−3 0.2246× 10−3 0.4748× 10−3

Example 6.4. Consider the two-dimensional fractional Volterra integral equation [1]

u(x, y)− 1
Γ(7

2)Γ(5
2)

∫ y

0

∫ x

0
(y − s) 5

2 (x− t) 3
2 (y2 + s)e−tu(s, t)dsdt = f(x, y),

where
f(x, y) = x2ey − 1024x 11

2 y
5
2 (6x+ 13y2)

2027025π ,
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where the exact solution is known and it is given by u(x, y) = x2ey. To solve this
equation, we implement the HFs method for α = 7

2 and β = 5
2 . Numerical results are

presented in Table 4 and Figure 1.

Table 4. The absolute errors for Example 4.

m = n = 2 m = n = 2 m = n = 4 m = n = 4
x = y u2DBPOM [1] u2DHFs u2DBPOM [1] u2DHFs
0.0 2.090× 10−4 2.125× 10−4 4.086× 10−4 5.237× 10−5

0.1 2.532× 10−4 2.635× 10−4 4.181× 10−4 4.258× 10−5

0.2 6.967× 10−5 5.689× 10−4 4.471× 10−4 4.125× 10−4

0.3 2.602× 10−4 3.070× 10−4 4.970× 10−4 4.157× 10−4

0.4 3.346× 10−4 4.325× 10−4 5.656× 10−4 4.984× 10−4

0.5 2.778× 10−4 3.215× 10−3 6.474× 10−4 6.259× 10−4

0.6 1.701× 10−3 2.587× 10−3 7.316× 10−4 7.147× 10−4

0.7 2.090× 10−3 2.090× 10−3 7.817× 10−4 7.548× 10−4

0.8 3.542× 10−3 3.985× 10−3 6.788× 10−4 7.214× 10−4

0.9 1.137× 10−3 2.087× 10−3 1.004× 10−4 2.587× 10−4

Figure 1. Exact and approximation solutions of Example 4.

Example 6.5. Consider the two-dimensional nonlinear fractional Volterra equation [20]

u(x, y)− 1
Γ(3

2)Γ(5
2)

∫ y

0

∫ x

0
(y − s) 1

2 (x− t) 3
2
√
xyt[u(s, t)]2dsdt = f(x, y),
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where
f(x, y) = √y

(−1
180x

3y
7
2 +

√
x

3

)
.

The exact solution is known and it is given by u(x, y) =
√

3xy
3 . This example has been

solved, for α = 3
2 and β = 5

2 . Numerical results for this a solution are presented in
Table 5 and Figure 2.

Table 5. The numerical results for Example 5.

Exact solution m = 32 m = 32
x = y u2DBPFs [20] u2DHFs
0.0 0 0.009386 0.002541
0.1 0.05773 0.042121 0.042541
0.2 0.11547 0.124282 0.138744
0.3 0.17323 0.156905 0.144871
0.4 0.23094 0.239179 0.235487
0.5 0.28867 0.274574 0.275487
0.6 0.34641 0.354075 0.344872
0.7 0.40414 0.389848 0.404151
0.8 0.46188 0.468971 0.469874
0.9 0.50702 0.507021 0.507210

Figure 2. Comparison the exact solution and the presented method
for Example 5.
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7. Conclusion

In this paper, a Hat operational matrix of fractional order integration is obtained and
it is used to solve the two-dimensional nonlinear fractional Volterra integro-differential
equations. By properties of 2DHFs and using of operational matrices the possibility of
reducing these equations to a system of algebraic equations are provided. Moreover, a
general procedure of forming this matrix Pα,β

m×m is summarized. For more investigation,
some examples are presented. As the numerical results showed, the proposed method
is an accurate and effective method for solving a fractional two-dimensional integral
equation.
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