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ON n-ABSORBING IDEALS IN A LATTICE

ALI AKBAR ESTAJI1 AND TOKTAM HAGHDADI2

Abstract. Let L be a lattice, and let n be a positive integer. In this article, we
introduce n-absorbing ideals in L. We give some properties of such ideals. We
show that every n-absorbing ideal I of L has at most n minimal prime ideals. Also,
we give some properties of 2-absorbing and weakly 2-absorbing ideals in L. In
particular we show that in every non-zero distributive lattice L, 2-absorbing and
weakly 2-absorbing ideals are equivalent.

1. Introduction

The concept of a 2-absorbing ideal in a commutative ring with identity, which is a
generalization of prime ideals, was defined in [2] by Badawi. Anderson and Badawi
[1] generalized the concept of a 2-absorbing ideal to an n-absorbing ideal. According
to their definition, a proper ideal I of commutative ring R is called an n-absorbing
ideal whenever a1a2 · · · an+1 ∈ I, then there are n of the ai’s whose product is in
I for every a1, . . . , an+1 ∈ R. Badawi and Darani [3] studied weakly 2-absorbing
ideals which are generalizations of weakly prime ideals. The concepts of 2-absorbing,
weakly 2-absorbing, 2-absorbing primary and weakly 2-absorbing primary elements in
multiplicative lattices are studied in [10] and [5] as generalizations of prime and weakly
prime elements. The concepts of ϕ-prime, ϕ-primary ideals are recently introduced
in [4, 7], and generalizations of these are studied in [12]. Celikel et al. in [6] extended
the concepts of 2-absorbing elements to ϕ-2-absorbing elements and investigated some
characterizations in some special lattices. In [16], Wasadikar and Gaikwad introduced
2-absorbing and weakly 2-absorbing ideals in lattices and studied their properties.

This article is organized as follows. In Section 2, we review some basic notions
and properties from lattice theory. In Section 3, we study some basic properties of
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2-absorbing and weakly 2-absorbing ideal in a lattice. For example in Proposition 3.4,
we show that 2-absorbing and weakly 2-absorbing ideals are equivalent in a distributive
lattice. Also, we show that in a distributive lattice, an ideal I is a 2-absorbing ideal
if and only if Ii ∧ Ij ⊆ I for some ideals I1, I2, I3 of I where I1 ∧ I2 ∧ I3 ⊆ I. In
Section 4, we introduce the concept of an n-absorbing ideal in a lattice and give some
basic properties of these ideals. For example, we show that an n-absorbing ideal is
m-absorbing for every m ≥ n. In a major result of this section (Proposition 4.5) we
show that a n-absorbing ideal has at most n minimal prime ideals.

2. Preliminaries

In this section, we recall some concepts from lattice theory, see [8]. A partially
ordered set (L;≤) is a lattice if sup{a, b} and inf{a, b} exist for all a, b ∈ L. A
nonempty subset I of a lattice L is called an ideal if it is a sublattice of L and x ∈ I
and a ∈ L imply that x ∧ a ∈ I. An ideal I of L is proper if I 6= L. A proper ideal
I of L is prime if a ∧ b ∈ I implies that a ∈ I or b ∈ I, and it is weakly prime if
0 6= a ∧ b ∈ I implies that either a ∈ I or b ∈ I. A prime ideal P of L is said to be a
minimal prime ideal if there is no prime ideal which is properly contained in P . Also,
a prime ideal P of L is said to be a minimal prime ideal belonging to an ideal I, if
I ⊆ P and there are no prime ideals strictly contained in P that contain I. If an
ideal I of a lattice L is contained in a prime ideal P of a lattice L, then P contains a
minimal prime ideal belonginig to I. Note that a minimal prime ideal belonging to
the zero ideal of L is a minimal prime ideal of L. The set of minimal prime ideals
belonging to the ideal I of L denoted by Min(I). Let I be an ideal of a distributive
lattice L with 0, and let P be a prime ideal such that P ⊇ I. The prime ideal P is a
element of Min(I) if and only if for each x ∈ P there is a y 6∈ P such that x ∧ y ∈ I.
All these results can be found in [15].

For basic facts concerning the fractions of a lattice we refer to [9]. Let L be a
non-empty distributive lattice with 0, and let S be a non-empty subset of L which is
a complete sublattice. Define a binary relation ∼S on L× S by

(a, b) ∼S (c, d)⇔ (∃t ∈ S)(a ∧ d) ∧ t = (b ∧ c) ∧ t.

The relation ∼S on L×S is an equivalence relation. The set of all equivalence classes
of ∼S is denoted by L/ ∼S. In other words, L/ ∼S= {[(a, b)]∼S

: a ∈ L, b ∈ S}. Let
m = ∧

x∈S x, then (a,m) ∼S (b,m)⇔ (a,m) ∼{m} (b,m) and L/ ∼S= L/ ∼{m}
From now on, L/ ∼S will be denoted by S−1L and it is called the fractions of L

with respect to S. Any element [(a, b)]∼S
∈ S−1L is shown by a

b
. We can consider

every S as a singleton {m}, where m = ∧
x∈S x. Therefore, from now on we assume S

to be the singleton {m}. So, we can write a
m

for a
b
. For a1

m
and a2

m
∈ S−1L, we have

a1
m

= a2
m

if and only if a1 ∧m = a2 ∧m. (S−1L,≤) is a partially ordered set, where ≤
is defined as follows:

a

m
≤ b

m
⇔ a ∧m ≤ b ∧m.
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Figure 1.

The well-defined binary operations ∨,∧ : S−1L× S−1L→ S−1L are given by
a1

m
∧ a2

m
= (a1 ∧ a2)

m
and

a1

m
∨ a2

m
= (a1 ∨ a2)

m
.

3. 2-Absorbing Ideals

In this section, we give some properties of 2-absorbing and weakly 2-absorbing ideals.
We recall that from [16], a proper ideal I of lattice L is said to be a 2-absorbing ideal
if for any a1, a2, a3 ∈ L, a1 ∧ a2 ∧ a3 ∈ I implies ai ∧ aj ∈ I for some i, j ∈ {1, 2, 3}
and weakly 2-absorbing ideal if for any a1, a2, a3 ∈ L, 0 6= a1 ∧ a2 ∧ a3 ∈ I implies
ai ∧ aj ∈ I for some i, j ∈ {1, 2, 3}. Let I be a weakly 2-absorbing ideal of a lattice L
and a1, a2, a3 ∈ L. We say that (a1, a2, a3) is a triple-zero of I if a1 ∧ a2 ∧ a3 = 0 and
for every i, j ∈ {1, 2, 3}, ai ∧ aj 6∈ I.

Example 3.1. Let L = {0, a, b, c, d, e, f, 1} be a lattice, whose Hasse diagram is given
in the Figure 1.

Consider the ideal I =↓ a. It is clear that I is a 2-absorbing ideal of L, but I is not
a prime ideal of L.

Definition 3.1. Let I be an ideal of a lattice L. The radical of I, denoted by Rad I,
is the intersection all prime ideals P which contain I. If the set of prime ideals
containing I is empty, then Rad I is defined to be L.

Proposition 3.1. Every ideal I of a distributive lattice with 0 is the intersection of
all prime ideals containing it, i.e., Rad I = I.

Proof. See Page 64, Corollary 18 of [8]. �

Proposition 3.2. Let I be a 2-absorbing ideal of distributive lattice L. Then there
are at most 2 prime ideals of L minimal over I.
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Proof. Suppose that Min(I) has at least there elements. Let P1, P2 be two distinct
prime ideals of L that are minimal over I. Hence, there is a x1 ∈ P1 \ P2 and a
x2 ∈ P2 \ P1. First we show that x1 ∧ x2 ∈ I. By Lemma 3.1 of [11], there is
c1 ∈ L\P2 and c2 ∈ L\P1 such that x1∧ c2 ∈ I and x2∧ c1 ∈ I. Then x1∧ c2∧x2 ∈ I
and x2∧ c1∧x1 ∈ I, which implies that (c1∨ c2)∧x1∧x2 ∈ I. Since I is a 2-absorbing
ideal of L, we conclude that (c1 ∨ c2) ∧ x1 ∈ I or (c1 ∨ c2) ∧ x2 ∈ I or x1 ∧ x2 ∈ I. If
(c1∨ c2)∧x1 ∈ I, since I ⊆ P2 and P2 is a prime ideal, we have x1 ∈ P2 or c1∨ c2 ∈ P2,
which is a contradiction. Therefore, (c1 ∨ c2) ∧ x1 6∈ I. Similarity, (c1 ∨ c2) ∧ x2 6∈ I
and so, x1 ∧ x2 ∈ I.

Now, suppose that there is a P3 ∈ Min(I) such that P3 is neither P1 nor P2. Then
we can chose y1 ∈ P1 \ (P2 ∪ P3), y2 ∈ P2 \ (P1 ∪ P3), and y3 ∈ P3 \ (P1 ∪ P2). By the
previous argument y1 ∧ y2 ∈ I. Since I ⊆ P1 ∩ P2 ∩ P3 and y1 ∧ y2 ∈ I, we conclude
that either y1 ∈ P3 or y2 ∈ P3, which is a contradiction. Hence, Min(I) contains at
most two elements. �

Corollary 3.1. Let I be a 2-absorbing ideal of a distributive lattice L. If I is not a
prime ideal of L, then |Min(I)| = 2.

Proof. Let |Min(I)| 6= 2. Then by Proposition 3.2, |Min(I)| = 1. Let P be a minimal
prime ideal of L such that I ⊆ P . Therefore by Proposition 3.1, P = Rad I = I and
so I is a prime ideal which is a contradiction. Thus |Min(I)| = 2. �

Proposition 3.3. Suppose that I is a proper ideal of a distributive lattice L. Then
the following statements are equivalent:

(1) I is a 2-absorbing ideal of L;
(2) If I1 ∧ I2 ∧ I3 ⊆ I for some ideals I1, I2, I3 of L, then Ii ∧ Ij ⊆ I for some

i, j ∈ {1, 2, 3}.

Proof. (1) ⇒ (2). If I is a prime ideal, it is clear. Now, let I be not a prime ideal,
by Corollary 3.1, we conclude that Min(I) = {P1, P2}. Then by Proposition 3.1,
I = P1 ∩ P2. Now, let I1 ∧ I2 ∧ I3 ⊆ I for some ideals I1, I2, I3 of L. Then,
I1 ∧ I2 ∧ I3 ⊆ Pi for i = 1, 2 and so, there exists 1 ≤ i1, i2 ≤ 3 such that Ii1 ⊆ P1 and
Ii2 ⊆ P2. Therefore, Ii1 ∩ Ii2 ⊆ P1 ∩ P2 = I.

(2)⇒ (1). It is obvious. �

Proposition 3.4. For every proper ideal I 6= {0} in distributive lattice L, the follow-
ing statements are equivalent:

(1) I is a 2-absorbing ideal;
(2) I is a weakly 2-absorbing ideal.

Proof. (1)⇒ (2). It is evident.
(2)⇒ (1). Let I be a weakly 2-absorbing ideal of L that is not a 2-absorbing ideal.

Then there exist a1, a2, a3 ∈ L such that a1 ∧ a2 ∧ a3 ∈ I and ai ∧ aj 6∈ I for all
i 6= j ∈ {1, 2, 3}. Consider 0 6= a ∈ I. Since 0 6= (a1 ∨ a) ∧ (a2 ∨ a) ∧ (a3 ∨ a) ∈ I, we
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conclude that there exist i, j ∈ {1, 2, 3} such that (ai∨a)∧ (aj ∨a) ∈ I. So ai∧aj ∈ I,
for some i, j ∈ {1, 2, 3}, which is a contradiction. �

For an ideal I of a lattice L and a, b ∈ L, we define a ∧ b ∧ I = {a ∧ b ∧ i : i ∈ I}.
Proposition 3.5. Let I be a weakly 2-absorbing ideal of distributive lattice L, and let
(a1, a2, a3) be a triple-zero of I for some a1, a2, a3 ∈ L. Then the following statements
hold:

(1) a1 ∧ a2 ∧ I = a2 ∧ a3 ∧ I = a1 ∧ a3 ∧ I = {0};
(2) a1 ∧ I = a2 ∧ I = a3 ∧ I = {0}.

Proof. (1) See Theorem 3.1 of [16].
(2) Suppose that a1 ∧ a 6= 0 for some a ∈ I. Then, by (1), we have

a1 ∧ (a2 ∨ a) ∧ (a3 ∨ a) =a1 ∧
(
(a2 ∧ a3) ∨ a)

)
=(a1 ∧ a2 ∧ a3) ∨ (a1 ∧ a)
=0 ∨ (a1 ∧ a)
=a1 ∧ a
6=0.

Then, by Proposition 3.4, we have a1 ∧ a2 ∈ I or a1 ∧ a3 ∈ I or a2 ∧ a3 ∈ I, which is
a contradiction. Thus a1 ∧ I = {0}. Similarly, a2 ∧ I = a3 ∧ I = {0}. �

4. n-Absorbing Ideals

In this section, we introduce the concept of an n-absorbing ideal in a lattice and
give some basic properties of them.
Definition 4.1. Let n be a positive integer. A proper ideal I of a lattice L is an
n-absorbing ideal of L whenever a1 ∧ a2 ∧ · · · ∧ an+1 ∈ I, then there are n of the ai’s
whose meet is in I for every a1, a2, . . . , an+1 ∈ L.

It is easy to see that if I is an n-absorbing ideal of L, then I is an m-absorbing
ideal of L for all m ≥ n. Also, a proper ideal I of L is n-absorbing if and only if
whenever a1 ∧ a2 ∧ · · · ∧ am ∈ I for a1, . . . , am ∈ I with m ≥ n then there are n of ai’s
whose meet is in I.
Proposition 4.1. If Ij is an nj-absorbing ideal of L for each 1 ≤ j ≤ m, then ⋂mi=1 Ij
is an n-absorbing ideal, where n = ∑m

i=1 nj.

Proof. Let I1, . . . , Im be proper ideals of L such that Ij is an nj-absorbing and k >
n1 + · · ·+ nm. Suppose that ∧ki=1 xi ∈

⋂m
j=1 Ij. Since for all j, Ij is nj-absorbing ideal,

a meet of nj of these k elements belongs to Ij. Let the collection of those elements
be denoted Aj and A = ⋃m

j=1Aj. Thus A has at most n1 + · · · + nm elements. Now
since Ij is an ideal, the meet of all element of A must be in Ij for every 1 ≤ j ≤ m.
So ⋂mj=1 Ij contains a meet of at most n1 + · · ·+ nm elements. Thus, the intersections
of the Ij’s is an (n1 + · · ·+ nm)-absorbing ideal. �
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Proposition 4.2. If {Iλ}λ∈Λ is a non-empty chain of n-absorbing ideals of L, then⋂
λ∈Λ Iλ is an n-absorbing ideal.

Proof. Let a1, . . . , an+1 ∈ L such that ∧n+1
i=1 ai ∈ J and J = ⋂

λ∈Λ Iλ. Let âi = ∧
j 6=i aj

and âi 6∈ J for all 1 ≤ i ≤ n. Then for each 1 ≤ i ≤ n, there exists an n-absorbing
ideal Iλi

such that âi 6∈ Iλi
. We may assume that Iλ1 ⊆ · · · ⊆ Iλn . Consider µ ∈ Λ. If

Iµ ⊆ Iλ1 ⊆ · · · ⊆ Iλn , then âi 6∈ Iµ for each 1 ≤ i ≤ n. Now since ∧n+1
i=1 ai ∈ J and Iµ

is an n-absorbing ideal of L, we have ân+1 ∈ Iµ. If there exists 1 ≤ j ≤ n such that
Iλ1 ⊆ · · · ⊆ Iλj−1 ⊆ Iµ ⊆ Iλj

⊆ · · · ⊆ Iλn , then âi ∈ Iλ1 for each 1 ≤ i ≤ n. Now since∧n+1
i=1 ai ∈ Iλ1 and Iλ1 is an n-absorbing ideal of L, we conclude that ân+1 ∈ Iλ1 and

so ân+1 ∈ Iµ for every µ ∈ Λ. Therefore, ân+1 ∈ J . �

Proposition 4.3. If I is an ideal of distributive lattice L such that L \ I is closed
under meet of n+ 1 elements, then I is an n-absorbing ideal.

Proof. Let a1, . . . , an+1 ∈ L such that ∧n+1
i=1 ai ∈ I and âi = ∧

j 6=i aj for each 1 ≤ i ≤
n + 1. Assume that âi 6∈ I for each 1 ≤ i ≤ n + 1. Since L \ I is closed under the
meet of n + 1 elements, we have ∧n+1

i=1 ai = ∧n+1
i=1 âi ∈ L \ I which is a contradiction.

Which implies that I is an n-absorbing ideal. �

Let S be a non-empty subset of a lattice L. We say that S is a multiplicatively
closed subset of L if x ∧ y ∈ S for all x and y of S.

Proposition 4.4. If S is a multiplicatively closed subset of L which does not meet
the ideal I, then I is contained in an ideal M which is maximal with respect to the
property of not meeting S and M is an n-absorbing ideal.

Proof. Let F = {J | J is an ideal of L which does not meet S and I ⊆ J}. Since
I ∈ F, F 6= ∅. Hence, by Zorn’s Lemma, (F,⊆) has a maximal element say M . We
show thatM is an n-absorbing ideal. Let a1, . . . , an+1 ∈ L and for every 1 ≤ i ≤ n+1,
âi = ∧

j 6=i aj 6∈ M . Then (M∨ ↓ âi) ∩ S 6= ∅. Let xi ∈ (M∨ ↓ âi) ∩ S for each
1 ≤ i ≤ n + 1. Since S is a multiplicatively closed subset of L, ∧n+1

i=1 xi ∈ S and∧n+1
i=1 xi ∈

⋃n+1
i=1 (M∨ ↓ âi). If

∧n+1
i=1 ai ∈M , then ∧n+1

i=1 xi ∈M ∩ S which is not true as
M ∈ F. Therefore, ∧n+1

i=1 ai 6∈M and so M is an n-absorbing ideal. �

Proposition 4.5. Let I be an n-absorbing ideal of L. Then there are at most n prime
ideals of L minimal over I.

Proof. We may assume that n ≥ 2, since an 1-absorbing ideal is a prime ideal. Suppose
that P1, P2, . . . , Pn, Pn+1 are distinct prime ideals of L minimal over I. Thus for each
1 ≤ i ≤ n, there is an element xi of Pi \

⋃
1≤k≤n+1

k 6=i
Pk. For each 1 ≤ i ≤ n, there

is an element ci ∈ L \ Pi such that xi ∧ ci ∈ I and hence x1 ∧ · · · ∧ xn ∧ ci ∈ I.
Therefore, x1 ∧ x2 ∧ · · · ∧ xn ∧ (c1 ∨ c2 ∨ · · · ∨ cn) ∈ I. Since xi ∈ Pi \

⋃
1≤k≤n+1

k 6=i
Pk and

xi∧ci ∈ I ⊆ P1∩P2∩· · ·∩Pn for each 1 ≤ i ≤ n, we conclude that ci ∈ (⋂1≤k≤n
k 6=i

Pk)\Pi
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for each 1 ≤ i ≤ n, and thus c1 ∨ c2 ∨ · · · ∨ cn 6∈ Pi for each 1 ≤ i ≤ n. Hence,
(c1 ∨ c2 ∨ · · · ∨ cn) ∧

∧
1≤k≤n
k 6=i

xk 6∈ Pi,

and so, (c1 ∨ c2 ∨ · · · ∨ cn) ∧ ∧1≤k≤n
k 6=i

xk 6∈ I for each 1 ≤ i ≤ n. Since I is an n-
absorbing ideal of L, we conclude that x1 ∧ · · · ∧ xn ∈ I ⊆ Pn+1. Then xi ∈ Pn+1 for
some 1 ≤ i ≤ n, which is a contradiction. Hence there are at most n prime ideals of
L minimal over I. �

Let L be a distributive lattice and S := {m} ⊆ L. We recall from [9] that if I is
an ideal of L, then S−1I is an ideal of S−1L. Moreover, every ideal of S−1L can be
represented as S−1I, where I is an ideal of L.

Proposition 4.6. Let I be an ideal of distributive lattice L and S := {m} ⊆ L. Then
I is an n-absorbing ideal of L if and only if S−1I is an n-absorbing ideal of S−1L.

Proof. Let a1
m
, . . . , an+1

m
∈ S−1L such that ∧n+1

i=1
ai

m
∈ S−1I. Then

∧n+1
i=1 ai

m
∈ S−1I and

so ∧n+1
i=1 ai ∈ I. Since I is a 2-absorbing ideal, we conclude that there exists an element

i in {1, 2, . . . , n + 1} such that âi ∈ I, which implies that
∧
aj

m
= âi

m
∈ S−1I, where

âi = ∧
j 6=i aj. Hence S−1I is an 2-absorbing ideal of S−1L.

Conversely, let a1, . . . , an+1 ∈ L such that ∧n+1
i=1 ai ∈ I. Then, ∧n+1

i=1
ai

m
=
∧n+1

i=1 ai

m
∈

S−1I. Since S−1I is an n-absorbing ideal of S−1L, we infer that
∧n

i=1 ai

m
∈ S−1I, and

so ∧ni=1 ai ∈ I. �

Let I be an n-absorbing ideal of a lattice L. Then I is a m-absorbing ideal for
all integers m ≥ n. Now, we put ωL(L) = 0 and if I is an n-absorbing ideal for
some n ∈ N, then we define ωL(I) = min{n ∈ N | I is an n-absorbing ideal of L},
otherwise, set ωL(I) =∞. Thus for any ideal I of L, we have ω(I) ∈ N∪{0,∞} with
ω(I) = 1 if and only if I is a prime ideal of L, and ω(I) = 0 if and only if I = L.

Proposition 4.7. Let f : L→M be a homomorphism of lattices. Then the following
statements hold.

(1) If f : L → M is an epimorphism, and J is an n-absorbing ideal of M , then
f−1(J) is an n-absorbing ideal of L. Moreover, ωL(f−1(J)) < ωM(J).

(2) If f is an isomorphism, and I is an n-absorbing ideal of L, then f(I) is an
n-absorbing ideal of M .

Proof. (1). Let x1, x2, . . . , xn+1 ∈ L such that x1 ∧ · · · ∧ xn+1 ∈ f−1(J), then
f(x1) ∧ · · · ∧ f(xn+1) = f(x1 ∧ · · · ∧ xn+1) ∈ J.

Then there is a meet of n of the f(xi)’s that is in J , which implies that there is a
meet of n of the xi’s that is in f−1(J). Then f−1(J) is an n-absorbing ideal of L.
(2). It is straightforward. �
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Proposition 4.8. Let I1 be an m-absorbing ideal of a distributive bounded lattice L1,
and let I2 be an n-absorbing ideal of a distributive bounded lattice L2. Then I1 × I2
is an (m + n)-absorbing ideal of the lattice L1 × L2. Moreover ωL1×L2(I1 × I2) =
ωL1(I1) + ωL2(I2).

Proof. Let L = L1 × L2. First we show that I1 × I2 is an (m + n)-absorbing ideal.
Let ∧n+m+1

i=1 (xi, yi) ∈ I1 × I2 for some (x1, y1), . . . , (xn+m+1, yn+m+1) ∈ I1 × I2. Since∧n+m+1
i=1 xi ∈ I1 and ∧n+m+1

i=1 yi ∈ I2, we conclude that there exist

{i1, . . . , im}, {j1, . . . , jn} ⊆ {1, . . . , n+m+ 1},

such that ∧mk=1 xik ∈ I1 and ∧nl=1 yjl ∈ I2, which implies that

(xi1 , 1) ∧ · · · ∧ (xim , 1) ∧ (1, yj1) ∧ · · · ∧ (1, yjn) =
(

m∧
k=1

xik ,
n∧
l=1

yjl

)
∈ I1 × I2.

Now, we show that ωL(I1 × I2) = ωL1(I1) +L2 (I2). Let ωL1(I1) = m < ∞ and
ωL2(I2) = n < ∞. Then, there are x1, . . . , xm ∈ L1 and y1, . . . , yn ∈ L2 such that
satisfies the following statements:

• x1 ∧ · · · ∧ xm ∈ I1 and y1 ∧ · · · ∧ yn ∈ I2;
• for every X ( {x1, . . . , xm},

∧
X 6∈ I1;

• for every Y ( {y1, . . . , yn},
∧
Y 6∈ I2.

Thus,

(x1, 1) ∧ · · · ∧ (xm, 1) ∧ (1, y1) ∧ · · · ∧ (1, yn) = (x1 ∧ · · · ∧ xm, y1 ∧ · · · ∧ yn)

is an element of I1 × I2, and also for proper subset S of

{(x1, 1), . . . , (xm, 1), (1, y1), . . . , (1, yn)},∧
S 6∈ I1 × I2, which implies that ωL(I1 × I2) ≥ m+ n = ωL1(I1) + ωL2(I2).
Consider N = m + n + 1 and suppose that (x1, y1), . . . , (xN , yN) ∈ L such that

(x1, y1)∧· · ·∧ (xN , yN) ∈ I1× I2. Then x1∧· · ·∧xN ∈ I1 and y1∧· · ·∧yN ∈ I2, which
implies that there are {i1, . . . , im}, {j1, . . . , jn} ⊆ {1, . . . , N} such that xi1∧· · ·∧xim ∈
I1 and yji ∧ · · · ∧ yjm ∈ I2. Let K = {i1, . . . , im} ∪ {j1, . . . , jn}, then |K| ≤ m + n
and ∧k∈K(xk, yk) ∈ I1 × I2, where xk = 1 for every k 6∈ {i1, . . . , im} and yk = 1 for
every k 6∈ {j1, . . . , jn}. Hence, ωL(I1 × I2) ≤ m + n = ωL1(I1) + ωL2(I2). Therefore,
ωL(I1 × I2) = ωL1(I1) +L2 (I2). �

Corollary 4.1. Let Ik be an ideal of a lattice Lk for each integer 1 ≤ k ≤ n, and let
L = L1 × · · · × Ln. Then ωL(I1 × · · · × Ln) = ωL1(I1) + · · ·+ ωLn(In).

Proof. By induction on n and Proposition 4.8, it is clear. �
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