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ON BERNSTEIN-TYPE INEQUALITIES FOR RATIONAL
FUNCTIONS WITH PRESCRIBED POLES

ABDULLAH MIR1

Abstract. In this paper, we shall use a parameter β and obtain some Bernstein-
type inequalities for rational functions with prescribed poles which generalize
the results of Qasim and Liman and Li, Mohapatra and Rodriguez and others.

1. Introduction

Let Pn denote the class of all complex polynomials of degree at most n. If
P ∈ Pn, then concerning the estimate of |P ′(z)| on |z| = 1, we have

|P ′(z)| ≤ n sup
|z|=1
|P (z)|.(1.1)

Inequality (1.1) is a famous result due to Bernstein [2], who proved it in 1912.
Later, in 1969 (see [10]), Malik improved the above inequality (1.1) and established
that if P ∈ Pn, then for |z| = 1, we have

|P ′(z)|+ |Q′(z)| ≤ n sup
|z|=1
|P (z)|,(1.2)

where Q(z) = znP (1
z
).

It is worth mentioning that equality holds in (1.1) if and only if P (z) has all
its zeros at the origin, so it is natural to seek improvements under appropriate
assumption on the zeros of P (z). If we restrict ourselves to the class of polynomials
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P (z) having no zeros in |z| < 1, then (1.1) can be replaced by

sup
|z|=1
|P ′(z)| ≤ n

2 sup
|z|=1
|P (z)|,(1.3)

whereas if P (z) has no zeros in |z| > 1, then

sup
|z|=1
|P ′(z)| ≥ n

2 sup
|z|=1
|P (z)|.(1.4)

Inequality (1.3) was conjectured by Erdös and later verified by Lax [9], whereas
inequality (1.4) is due to Turán [12]. Li, Mohapatra and Rodriguez [14] gave a
new perspective to the above inequalities and extended them to rational functions
with prescribed poles. Essentially, in the inequalities referred to, they replaced the
polynomial P (z) by a rational function r(z) with prescribed poles a1, a2, . . . , an

and zn by a Blaschke product B(z). Before proceeding towards their results, let
us introduce the set of rational functions involved.

For aj ∈ C with j = 1, 2, . . . , n, let

W (z) :=
n∏

j=1
(z − aj)

and let

B(z) :=
n∏

j=1

(
1− ajz

z − aj

)
, Rn := Rn(a1, a2, . . . , an) =

{
P (z)
W (z) : P ∈ Pn

}
.

Then Rn is the set of rational functions with poles a1, a2, . . . , an at most and
with finite limit at ∞. Note that B(z) ∈ Rn and |B(z)| = 1 for |z| = 1. For
r(z) = P (z)

W (z) ∈ Rn, the conjugate transpose r∗ of r is defined by r∗(z) = B(z)r(1
z
).

The rational function r ∈ Rn is called self-inversive if r∗(z) = λr(z) for some λ
with |λ| = 1.

As an extension of (1.2) to rational functions, Li, Mohapatra and Rodriguez [14,
Theorem 2] showed that if r ∈ Rn, then

|r′(z)|+ |(r∗(z))′| ≤ |B′(z)| sup
|z|=1
|r(z)|, for |z| = 1.(1.5)

Equality holds in (1.5) for r(z) = αB(z) with |α| = 1.
For r ∈ Rn to be self-inversive, Li, Mohapatra and Rodriguez [14, Corollary 4]

proved that

|r′(z)| ≤ |B
′(z)|
2 sup

|z|=1
|r(z)|.(1.6)

In the same paper, Li, Mohapatra and Rodriguez [14] showed that inequality (1.6)
also holds for rational functions r ∈ Rn having no zeros in |z| < 1 with prescribed
poles. The latest development of further results along this line can be found in the
monographs and papers [3–5,7, 8, 11].
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More recently, Qasim and Liman [6] proved several results by considering a
specialized class of rational functions r(t(z)), defined by

(r ◦ t)(z) = r(t(z)) := P (t(z))
W (t(z)) ,

where t(z) is a polynomial of degree m and r ∈ Rn, so that r(t(z)) ∈ Rmn, and

W (t(z)) =
mn∏
j=1

(
z − aj

)
.

Also the Blaschke product is given by

B(z) =

(
W (t(z))

)∗
W (t(z)) =

zmnW (t(1
z
))

W (t(z)) =
mn∏
j=1

(1− ajz

z − aj

)
.

Assume that the mn poles of r(t(z)) are denoted by aj, j = 1, 2, . . . ,mn, and
|aj| > 1. They proved the following Bernstein-type inequality for rational functions
r(t(z)) ∈ Rmn with restricted zeros.

Theorem 1.1. If r(t(z)) ∈ Rmn and all the mn zeros of r(t(z)) lie in |z| ≥ 1, then
for |z| = 1

|r′(t(z))| ≤ |B
′(z)|

2mµ sup
|z|=1
|r(t(z))|,(1.7)

where t(z) has all its zeros in |z| ≤ 1 and µ = inf |z|=1 |t(z)|.

2. Lemmas

For the proofs of our theorems we need the following lemmas.

Lemma 2.1. If r ∈ Rn has n zeros all lie in |z| ≤ 1, then

|r′(z)| ≥ 1
2 |B

′(z)||r(z)|, for |z| = 1.

The above lemma is due to Li, Mohapatra and Rodriguez [14].

Lemma 2.2. Let A and B be any two complex numbers, then
(i) if |A| ≥ |B| and B 6= 0, then A 6= δB for all complex numbers δ satisfying
|δ| < 1;

(ii) conversely, if A 6= δB for all complex numbers δ satisfying |δ| < 1, then
|A| ≥ |B|.

The above lemma is due to Li [13].
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Lemma 2.3. If r(t(z)), s(t(z)) ∈ Rmn and all the mn zeros of s(t(z)) lie in
|z| ≤ 1 and |r(t(z))| ≤ |s(t(z))| for |z| = 1. Then for every β ∈ C, with |β| ≤ 1
and |z| = 1, we have∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ ≤
∣∣∣∣∣B(z)s′(t(z))t′(z) + β

2B
′(z)s(t(z))

∣∣∣∣∣.(2.1)

The result is sharp and equality holds in (2.1) for r(t(z)) = αs(t(z)), with
|α| = 1.

Proof. The proof of this lemma is identical to the proof of Theorem 3.2 of Li
[13], but for the sake of completeness we give the brief outlines of its proof. First
assume that no zero of s(t(z)) are on the unit circle |z| = 1 and therefore, all the
mn zeros of s(t(z)) are in |z| < 1. By Rouche’s theorem, the rational function
λr(t(z)) + s(t(z)) has all its zeros in |z| < 1 for |λ| < 1 and has no poles in |z| ≤ 1.
On applying Lemma 2.1 to λr(t(z)) + s(t(z)), we get on |z| = 1

2|B(z)|
∣∣∣λ(r(t(z)))′ + (s(t(z)))′

∣∣∣ ≥ |B′(z)|∣∣∣λr(t(z)) + s(t(z))
∣∣∣.(2.2)

Now, note that B′(z) 6= 0 (e.g. see formula (14) in [14]). So, the right hand side
of (2.2) is non zero. Thus, by using (i) of Lemma 2.2, we have for all β ∈ C, with
|β| < 1,

2B(z)
(
λr′(t(z))t′(z) + s′(t(z))t′(z)

)
6= −βB′(z)

(
λr(t(z)) + s(t(z))

)
,

for |z| = 1. Equivalently, for |z| = 1,

λ

(
2B(z)r′(t(z))t′(z) + βB′(z)r(t(z))

)
6= −

(
2B(z)s′(t(z))t′(z) + βB′(z)s(t(z))

)
,

for |λ| < 1 and |β| < 1. Using (ii) of Lemma 2.2, we have
|2B(z)r′(t(z))t′(z) + βB′(z)r(t(z))| ≤ |2B(z)s′(t(z))t′(z) + βB′(z)s(t(z))|(2.3)

for |z| = 1 and |β| < 1. Now, using the continuity in zeros and β, we can obtain
the (2.3), when some zeros of s(t(z)) lie on the unit circle |z| = 1 and |β| ≤ 1. �

Applying Lemma 2.3 to the rational function r(t(z)) and B(z) sup|z|=1 |r(t(z))|,
we get the following.

Lemma 2.4. If r(t(z)) ∈ Rmn, then for all β ∈ C, with |β| ≤ 1 and |z| = 1, we
have ∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ ≤ |B(z)|
∣∣∣∣∣1 + β

2

∣∣∣∣∣ sup
|z|=1
|r(t(z))|.

Lemma 2.5. If P (z) is a polynomial of degree n having all zeros in |z| ≤ 1, then
inf
|z|=1
|P ′(z)| ≥ n inf

|z|=1
|P (z)|.(2.4)
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The result is best possible and equality in (2.4) holds for polynomials, having
all zeros at the origin.

The above lemma is due to Aziz and Dawood [1].

3. Main Results

In this note, we shall use a parameter β and obtain generalizations of (1.5), (1.6)
and (1.7). We shall always assume that all the poles of r(t(z)) ∈ Rmn lie in |z| > 1.

Theorem 3.1. If r(t(z)) ∈ Rmn and |z| = 1, then for every β, with |β| ≤ 1,∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣+
∣∣∣∣∣B(z)

[
(r(t(z)))∗

]′

+ β

2B
′(z)(r(t(z)))∗

∣∣∣∣∣
≤|B′(z)|

{∣∣∣∣∣1 + β

2

∣∣∣∣∣+
∣∣∣∣∣β2
∣∣∣∣∣
}

sup
|z|=1
|r(t(z))|.

(3.1)

Proof. Let M := sup|z|=1 |r(t(z))|. Therefore, for every λ ∈ C, with |λ| > 1,
|r(t(z))| < |λMB(z)| for |z| = 1.

By Rouche’s theorem, all the mn zeros of G(z) = r(t(z))+λMB(z) lie in |z| < 1.
If H(z) = B(z)G(1

z
), then |H(z)| = |G(z)| for |z| = 1 and hence, for any γ, with

|γ| < 1, the rational function γH(z)+G(z) has allmn zeros in |z| < 1. By applying
Lemma 2.1 to γH(z) +G(z), we have

2
∣∣∣B(z)

(
γH ′(z) +G′(z)

)∣∣∣ ≥ |B′(z)|∣∣∣γH(z) +G(z)
∣∣∣, for |z| = 1.(3.2)

Since B′(z) 6= 0 therefore, the right hand side of (3.2) is non zero. Thus, by using
(i) of Lemma 2.2, we have for all β ∈ C, with |β| < 1,

2B(z)
(
γH ′(z) +G′(z)

)
6= −βB′(z)

(
γH(z) +G(z)

)
, for |z| = 1.

Equivalently, for |z| = 1,

−γ
(
2B(z)H ′(z) + βB′(z)H(z)

)
6= −

(
2B(z)G′(z) + βB′(z)G(z)

)
,(3.3)

for |γ| < 1, |β| < 1. Using (ii) of Lemma 2.2 in (3.3), we have∣∣∣2B(z)G′(z) + βB′(z)G(z)
∣∣∣ ≤ ∣∣∣2B(z)H ′(z) + βB′(z)H(z)

∣∣∣,(3.4)

for |z| = 1, |β| < 1. Now, using G(z) = r(t(z)) + λMB(z) and since

H(z) = B(z)G
(1
z

)
= B(z)

(
r
(
t
(1
z

))
+ λMB

(1
z

))
= (r(t(z)))∗ + λM,

for |z| = 1 in (3.4), we get, for |β| < 1 and |z| = 1,∣∣∣2B(z)
[
(r(t(z)))∗

]′

+ βB′(z)(r(t(z)))∗ + λβMB′(z)
∣∣∣

≤
∣∣∣2B(z)r′(t(z))t′(z) + βB′(z)r(t(z)) + λB(z)B′(z)

(
2 + β

)
M
∣∣∣.(3.5)
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By choosing a suitable argument of λ and applying Lemma 2.4 on the right hand
side of (3.5), we get, for |z| = 1 and |β| < 1,∣∣∣2B(z)

[
(r(t(z)))∗

]′

+ βB′(z)(r(t(z)))∗
∣∣∣− |λ|∣∣∣βB′(z)∣∣∣M

≤|λ|
∣∣∣B(z)B′(z)

(
2 + β

)∣∣∣M − ∣∣∣2B(z)r′(t(z))t′(z) + βB′(z)r(t(z))
∣∣∣.(3.6)

Note that |B(z)| = 1 for |z| = 1. Making |λ| → 1 and using continuity for |β| = 1
in (3.6), we get (3.1) and this proves the desired result. �

For t(z) = z, Theorem 3.1 reduces to the following result.

Corollary 3.1. If r ∈ Rn and |z| = 1, then for every β, with |β| ≤ 1,∣∣∣∣∣B(z)r′(z) + β

2B
′(z)r(z)

∣∣∣∣∣+
∣∣∣∣∣B(z)(r∗(z))′ + β

2B
′(z)r∗(z)

∣∣∣∣∣
≤|B′(z)|

{∣∣∣∣∣1 + β

2

∣∣∣∣∣+
∣∣∣∣∣β2
∣∣∣∣∣
}

sup
|z|=1
|r(z)|.(3.7)

Remark 3.1. For β = 0, (3.7) reduces to (1.5).

Theorem 3.2. If r(t(z)) ∈ Rmn is self-inversive and |z| = 1, then for every β with
|β| ≤ 1, we have∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ ≤ |B′(z)|2

{∣∣∣∣∣1 + β

2

∣∣∣∣∣+
∣∣∣∣∣β2
∣∣∣∣∣
}

sup
|z|=1
|r(t(z))|.(3.8)

Proof. Since r(t(z)) is self-inversive, therefore, we have (r(t(z)))∗ = λr(t(z)) with
|λ| = 1. Hence, for all β ∈ C,

∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ =
∣∣∣∣∣B(z)

[
(r(t(z)))∗

]′

+ β

2B
′(z)(r(t(z)))∗

∣∣∣∣∣.
(3.9)

Combining Theorem 3.1 and (3.9), we have for every β, with |β| ≤ 1 and |z| = 1,

2
∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ =
∣∣∣B′(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣
+
∣∣∣∣∣B(z)

[
(r(t(z)))∗

]′

+ β

2B
′(z)(r(t(z)))∗

∣∣∣∣∣
≤|B′(z)|

{∣∣∣∣∣1 + β

2

∣∣∣∣∣+
∣∣∣∣∣β2
∣∣∣∣∣
}

sup
|z|=1
|r(t(z))|,

which proves Theorem 3.2 completely. �

Remark 3.2. If we take β = 0 in inequality (3.8) and make use of the Lemma 2.5,
after supposing that t(z) has all its zeros in |z| ≤ 1, we get the following result.
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Corollary 3.2. If r(t(z)) ∈ Rmn is self-inversive, where t(z) has all its zeros in
|z| ≤ 1, then for |z| = 1,

|r′(t(z))| ≤ |B
′(z)|

2mµ sup
|z|=1
|r(t(z))|,(3.10)

where µ = inf |z|=1 |t(z)|.

Remark 3.3. For t(z) = z, (3.10) reduces to (1.6).

We end this section by proving the following interesting generalization of (1.7).

Theorem 3.3. Suppose r(t(z)) ∈ Rmn and all the mn zeros of r(t(z)) lie in |z| ≥ 1.
Then for every β, with |β| ≤ 1 and |z| = 1, we have

∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ ≤ |B′(z)|2

{∣∣∣∣∣1 + β

2

∣∣∣∣∣+
∣∣∣∣∣β2
∣∣∣∣∣
}

sup
|z|=1
|r(t(z))|.

(3.11)

Proof. Since r(t(z)) ∈ Rmn has all its mn zeros in |z| ≥ 1 and (r(t(z)))∗ =
B(z)r(t(1

z
)), therefore, all the zeros of (r(t(z)))∗ lie in |z| ≤ 1. Also, |r(t(z))| =

|(r(t(z)))∗| for |z| = 1. Hence, by Lemma 2.3, it follows for every β, with |β| ≤ 1
and |z| = 1,

∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ ≤
∣∣∣∣∣B(z)

[
(r(t(z)))∗

]′

+ β

2B
′(z)(r(t(z)))∗

∣∣∣∣∣.
(3.12)

Combining Theorem 3.1 and (3.12), we have for every β, with |β| ≤ 1 and |z| = 1,

2
∣∣∣∣∣B(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣ ≤
∣∣∣∣∣B′(z)r′(t(z))t′(z) + β

2B
′(z)r(t(z))

∣∣∣∣∣
+
∣∣∣∣∣B(z)

[
(r(t(z)))∗

]′

+ β

2B
′(z)(r(t(z)))∗

∣∣∣∣∣
≤|B′(z)|

{∣∣∣∣∣1 + β

2

∣∣∣∣∣+
∣∣∣∣∣β2
∣∣∣∣∣
}

sup
|z|=1
|r(t(z))|,

which is equivalent to (3.11) and this completes the proof of Theorem 3.3. �

Remark 3.4. If we take β = 0 in (3.11) and assume that t(z) has all its zeros in
|z| ≤ 1, we get (1.7) by virtue of Lemma 2.5.
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