KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 45(5) (2021), PAGES 797-813.

HARDY-TYPE INEQUALITIES FOR AN EXTENSION OF THE
RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS

SAJID IQBAL', GHULAM FARID?, JOSIP PECARIC?, AND ARTION KASHURI*

ABSTRACT. In this paper we present variety of Hardy-type inequalities and their
refinements for an extension of Riemann-Liouville fractional derivative operators.
Moreover, we use an extension of extended Riemann-Liouville fractional derivative
and modified extension of Riemann-Liouville fractional derivative using convex and
monotone convex functions. Furthermore, mean value theorems and n-exponential
convexity of the related functionals is discussed.

1. INTRODUCTION

The Hardy integral inequality is one of the most significant inequality in analysis
with respect to its applications. In the recent years many researchers discover the
new generalizations and refinements by involving fractional calculus operators (see
[1,4,16]). Recently Igbal et al. [8,9] study applications of Hardy-type and refined
Hardy-type inequalities involving different kinds of fractional integral operators. Here
we give such type of inequalities for more general forms of Riemann-Liouville fractional
integral operators using convex and monotone convex functions.

Let (31,4, 1) and (Xa, Qs, o) be measure spaces with positive o-finite measures.
Let U(f, k) denote the class of functions g : € — R with the representation

9(@) = [ k(w0 (Odus(t),
Qo
and Ay be an integral operator defined by
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(1.1) Af(x) = 9““ / ke, ) (D da(t),

where k£ : €2 X Q3 — R is measurable and non-negative kernel, f : €y — R is
measurable function and

(1.2) 0< K(x /kxtdpg() v €.

Qo
The following definition is presented in [13].
Definition 1.1. Let I be an interval in R. A function ® : I — R is called convex if
(1.3) DAz + (1= Ny) < A(z) + (1 = N)D(y),

for all points x,y € I and all A € [0, 1]. The function ® is strictly convex if inequality
(1.3) holds strictly for all distinct points in I and A € (0,1).

The upcoming theorem is given in [11].

Theorem 1.1. Let (21, %, 1) and (Qq, 39, 12) be measure spaces with positive o-
finite measures, u be a weight function on )y, k be a non-negative measurable function
on 0y X Qy and K be defined on Qy by (1.2). Suppose K(x) > 0 for all x € Qy, that
the function x +— u(:v)i?(c;)) is integrable on €y for each fired t € Q9 and that v is
defined on Qg by

(1.4) u(t) = / u(x)"}(;i;)) dpn (z) < oo,

Q

If ® is a convex function on the interval I C R, then the inequality

(1.5) [ ) @At (@) dp (@) < / 1) dpa?)

931

holds for all measurable functions f : 2y — R such that Im f C I, where Ay, is defined
by (1.1).

Substitute k(z,t) by k(x,t)f2(t) and f by %, where f; : Qy — R, ¢ = 1,2, are
measurable functions in Theorem 1.1, we obtain [6, Theorem 2.1].

Definition 1.2. Let ® : I — R be a convex function, then the sub-differential of ®
in z is denoted by 0®(x) and is defined as

0®(x) = {y € R : y is the slope of a support line at z}.

Next result is given in [4].
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Theorem 1.2. Let the assumptions of Theorem 1.1 be satisfied. Moreover, if ® is
a convex function on an interval I C R and ¢ : I — R is any function, such that
o(x) € 00(x) for all x € Int I, then the inequality

/ vOP(S(1) dpa(t) ~ [ ul@)®(Aef () dpr ()

1971

_/K /k /(1) — B(A ()]

- |90(Akf( D) = Arf (@) | dpa(t) dpn ()

holds for all measurable functions f : Qs — R such that f(t) € I for allt € Q5.
If ® is a monotone convex function on an interval I C R, then the inequality

/ VO (1) dria(t) = [ u(@)® (Acf (@) dyn ()

971

L K(z /39” F(t) = Apf(2))k(z,t) [(f(t) — ©(Axf(2))

- Iw(Akf( DI (f(E) = Arf(@))] dpa(t) dpa ()]
holds for all measurable functions f : Qo — R such that f(t) € I for all fized t € Qy,
where Ay f is defined by (1.1).

Next mean value theorem is given in [5].

Theorem 1.3. Let (1,31, 1), (Q2, X9, 12) be measure spaces with o-finite measures
and u : Q1 — R be a weight function. Let I be a compact interval of R, h € C?(I)
and [ : Qs — R a measurable function such that Im f C I. Then there exists n € 1
such that

[ o@h(r0) dpat) = [ w(@)h( A (@) dyua(2)

QQ Q1

:h"én) / v(t) f2(t) dpa(t) — / w(z) (A f(2))? dpa (z) |

QQ Ql
where A f and v are defined by (1.1) and (1.4), respectively.

The definition of exponentially convex function is given in [3] by Bernstein.

Definition 1.3. A function ®: (a,b) — R is ezponentially convez if it is continuous
and .

ij=1
for all n € N and all sequences (t,)nen and (x,)nen of real numbers, such that
ri+x; € (a,b), 1 <ij<n.
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Lemma 1.1. Let s € R and let the function ¢s: (0,00) — R be defined by

s

- s#0,,
s(s—1)

(1.6) ps(x) =1¢ — log x, s =0,
x log x, s=1.

Then @ (x) = 2572, that is, s is a conver function.
The upcoming theorem is presented in [5].

Theorem 1.4. Let the conditions of Theorem 1.1 be satisfied and ¢, be defined by
(1.6). Let f be a positive function. Then the function £ : R — [0,00) defined by

&) = [ o (F@) dalt) = [ ul@)en(Anf (@) dyun(a)

is exponentially conver.

Theorem 1.5. Let the conditions of Theorem 1.3 be satisfied. Moreover, k, h e C(I)
such that h'(x) # 0 for every x € I and

[oOR@) dua(t) = [ ul@) h(ALS (@) dyus(2) £ 0.
Qo Q1
Then there exists n € I such that it holds

k() Qf2 (t) k(f (1)) dpa(t) —Qf1 u(@) k(A f () dpn ()
h'(n) J v(t) h(f(t)) dpa(t) - Ju@) h(Axf(2)) dp (z)

By Theorem 1.1, and bearing in mind (1.5), we define the following positive linear
functional:

(1.7) A@) = [v()® (F(0) dpa(t) = [ u(@)® (A4S (@) dyur(),
QQ Q1
Let I C R be an interval and f : I — R be a function. Then for distinct points
zi€l,i1=0,1,2, the divided differences of first and second order are defined by
[2i, zig1; f] :f(ZiH) — f(ZZ), 1=0,1,
Ri+l — %
21, 225 f] — [20, 213 f]

Z9 — 20

(1.8) [20, 21, 225 f] =

The values of the divided differences are independent of the order of points zg, 21,
2o and may be extended to include the cases when some or all points are equal, that
is (20, 20; f] = lim,, ., [20, 215 f] = f'(20), provided that f’ exists.

Now, passing through the limit z; — zo and replacing z; by z in (1.8), we have

f(z) = f(20) = (2 — 20) f'(20) 24 2%,

(z — zo)2 7

[Z07 205 25 f] = Z}LH;O[Zm 21, 2, f] =
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provided that f” exists. Also, passing to the limit z; — 2z, ¢ =0, 1,2, in (1.8), we have

B f”(Z)
=5

[2,2,2; f] = ZI}LHZ[Z(),ZlaZQ;f]

provided that f” exists.

One can observe that if for all zg,z; € I, [z0, 21, f] > 0, then f is increasing on [
and if for all zg, 21, 20 € I, |20, 21, 29; f] > 0, then f is convex on I.

Next, we recall the notion of n-exponential convexity given in [15].

Definition 1.4. For any open interval I of R, the function ® : I — R is n-
exponentially convex in the Jensen sense on [ if

Z tit;® <M> >0
— 2
[2¥}

holds for all choices of t; e R, (; €I, i=1,...,n.

A function @ : I — R is n-exponentially convex on [ if it is n-exponentially convex
in the Jensen sense and continuous on I.

The following theorem is given in [7].

Theorem 1.6. Let I' ={®, : p € J} be a family of functions defined on I, such that
the function p — |z, 21, 22; @, is n-exponentially convex in the Jensen sense on J for
every three distinct points zo, 21,29 € I. Let A be linear functionals defined by (1.7).
Then the function p — A(®,) is n-exponentially convex in the Jensen sense on J, if
it is continuous on J.

2. HARDY-TYPE INEQUALITIES FOR FRACTIONAL DERIVATIVE

We begin with the well known definition of Riemann-Liouville fractional derivative
od order p is defined ([10,19]) by

1
I(—p)
For the case m — 1 < Re(p) < m, Re(u) > 0, where m = 1,2,... it follows

(2.2) Di{f(z)} = ;Zn@g‘—m{f(x)} _ di"; {F(—u1+ - /f(t)(x_t)_wm_ldt}

(2.1) DU f(x)} = [ 1)@=, Re(u) > 0.

and I D
o+
{2} = ———
The extended Riemann-Liouville fractional derivative of order p is defined in [14]
by

x77*, Re(o) > —1.

2

1 / T =0+ exp (—t<p”“"

[(—p)

(23)  DE{f(x);p) = )a, Re(i) > 0.

xr —t)
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For the case m — 1 < Re(u) < m, where m = 1,2, ..., it follows

m

(24) DL ()i} = o D f(a)i)

dm —p+m—1 pr
- {F(—/L+m) O/f(t)(x — )7 exp <_t(x — t)) dt} . Re(u) > 0.

An extension of fractional derivative operator established in [2] is given by

(2.5)
0{f(@);p,qt = F(iﬂ)/f(t)(ac —t) " Lexp (—m - ) dt, Re(u) > 0.

t  (x—1t)

For example

Bpg(v+1, 1)

DL{f(2);p, ¢}amr = p’qr(_u) ,

where B, ,(v + 1, 1) is the extended beta functions (see [12]) defined by

By 4(z,y) /tm 1 le=t-12 tdt x,y,p,q € C,Re(p) > 0,Re(q) > 0.

For p = q we denote B, , by B, and for p = ¢ = 0 we get the classical beta function
defined by

(x,y) /tx (1 —t)tdt, Re(z) > 0,Re(y) > 0.

Theorem 2.1. Let Re(p) > 0, Re(q) > 0 and Re(p) > 0. Let D4{f(z);p,q} denotes
the extension of Riemann-Liouville fractional derivative of order p and let u be a
weight function defined on (0,b). For each fized t € (0,b), define a function v by

b px x
x—t lexp (—B% — 22
(2.6) 3(t) = /u(x)< " il t))d.r < o0
) T By (1, _N)
If ® is a convex function on the interval I € R, then the inequality
b b
INEAY 10 .
(2.7) /u(w)@( (=)Dt (2):p, ‘-’}> dr < /@(t)@(f(t))dt
0 BP,Q(L _:u) 0

holds true for all measurable functions f € L(a,b).

Proof. Applying Theorem 1.1 with Q; = Qy = (0,0), dui(x) = dz, dus(t) = dt,

1 1 px qz
(2.8) l;:(x,t) = { F(—,u) (x — t)_“_ exp (—7 — (z—t)) , 0<t<ux,
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K(z) = ! /(il? —t) " Lexp (_px _ ) dt = =~ Bpq(1, —p)
x

D(=p) ] t (z—1) [(=p)
and
Aufte) = SRR,
we get inequality (2.7). : O

Substitute k(z,t) by k(z,t)f2(t) and f by %, where f; : Oy — R, i = 1,2, are
measurable functions in Theorem 2.1 we obtain the following result.

Theorem 2.2. Let Re(p) > 0, Re(q) > 0 and Re(p) > 0. Let D4{f(x);p,q} denotes
the extension of Riemann-Liouville fractional derivative of order p and let u be a
weight function defined on (0,b). For each fixed t € (0,b), define a function

qr

fz /b (v = )" T exp (=5 — 25
t

u(z dr < 00.

Dz{ fo(7);p, q}

p(t) ==

If ®: I — R is a convex function and g“g;( ;gg% gg; € I, then the inequality

o e (G )or< fron ()

holds true.

New refined weighted Hardy-type inequality for extension of Riemann-Liouville
fractional derivative (2.5) is given in the next theorem.

Theorem 2.3. Let the assumptions of Theorem 2.1 be satisfied. Moreover, if ® is
a convex function on an interval I C R and ¢ : I — R is any function, such that
o(x) € 00(x) for all x € Int I, then the inequality

ul ( Pzt DL f(z )p,q}>d$

\@
Gz

b
0/ BP:(I(L _ILL)
b T
/ o J e (B )
x_ [ —
0 pq 0 t (:r—t)

X

B(f (1)) — @(W M);H@(i{i( )) p,q}>|
_|@<( p) D4 f ( ;jjq})l; —p) " Dh{ f(x) p,q}Hdtd

By (1, —p) By (1, —p)
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holds for all measurable functions f : Qs — R. If ® is a monotone convex function on
an interval I C R, then the inequality

[uwo (f)de - / () (”—M);“@z{f(x);p,q}) .

0 pa(l, — 1)
[ ul) L(=p)a*Di{f («);p.q}
- O/x_“Bnq(lv —H) O/SQ;H (f(t) - By q(1, —p) )
e px qr I(—p)2"DE{ f(z); p. ¢}
(a0 (5 - 25 ) Je o (FETREUERRAT)
D(=p)a*DE{f(x); p, 4} P(=p)a*DE{f(x); p, ¢}

- ‘4’0 ( Bpg(1, —p) )‘ <f<t) - Bpg(1, —p1) ) ] e
holds for all measurable functions f : (0,0) — R.
Proof. Similar to Theorem 2.1 by applying Theorem 1.2. 0

Next we give the mean value theorems for extension of Riemann-Liouville fractional
derivative of order pu.

Theorem 2.4. Let the assumptions of Theorem 2.1 be satisfied. Let I be a compact
interval of R, h € C*(I) and f : (0,b) — R a measurable function such that Im f C I.
Then there exists n € I such that

/b@(t)h(f(t))dt—/bu(x)h (F(_“);:if’{f%);p’ Q}> dx

0

() [ /"w) 0 dt - /bum (F(—u)w“i)é‘{f(x);p,q}>2 dm] |

2 By q(1,—p)
where ¥ is defined by (2.6).
Proof. Similar to proof of Theorem 2.1, by applying Theorem 1.3. U
Theorem 2.5. Let the assumptions of Theorem 2.4 be satisfied. Moreover, k,h e
C*(I) such that h'(z) # 0 for every x € I and

/bﬁ(t) R(F(b)) di — /bu(x) 3 (F(‘“)g:i?{f%);p’%> dz £ 0.

0 0
Then there exists n € I such that it holds

() k(f(t))dt — fbu(x) k (F(—N)ﬂ?“%{f(x);p,q}> dr

Bp,q(1,—p)

K'(n) _
W' (n)

b
!
F o) R (£(1)) db — o) (FERZREUGaYY g,
0 0

Bp,q(1,—p)
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Proof. Similar to proof of Theorem 2.1, by applying Theorem 1.5. U
Theorem 2.6. Let the conditions of Theorem 2.1 be satisfied and p, be defined by
(1.6). Let f be a positive function. Then the function £ : R — [0, 00) defined by

b

(2.10) f(s):/f;(t)%(f(t))dt_/u(x)% (P(—u)é:ié;:{if));p,q}> i

is exponentially convex.

Proof. Applying Theorem 1.4, with Q; = Qy = (a,b), dui(v) = dx, dus(t) = dt and
k(x,t) given in (2.8), we get the exponential convexity of linear functional (2.10). O

3. HARDY-TYPE INEQUALITIES FOR EXTENSION OF EXTENDED
RIEMMAN-LIOUVILL FRACTIONAL DERIVATIVE

Recently Rehaman et al. [17] define an extension of extended Riemman-Liouvill
fractional derivative of order u as

BY DS e} =g [ FOE =0 ]

x
x 1 l)\;p; _(xq— t)] dt, Re(u)>0.

For the case m — 1 < Re(u) < m, where m = 1,2, ..., it follows
-
Op{f(@)ipy A p} = 207" {f (@) i@ As p}

dm 1 7 P
-— {F(—/Hm) O/f(t)(x—t) :

T x
X 1Fy [)\;ﬁ _pt} 1F1 l/\;ﬂ; _(:):q—t)] dt} )

where Re(p) > 0, Re(p) > 0, Re(q) > 0. It is clear that A = p, then (3.1) reduces
to (2.5).

Theorem 3.1. Let Re(p) > 0, Re(q) > 0, Reu) > 0, Re(\) > 0 and Re(p) > 0. Let
D f(z);p,q, A, p} be the extension of extended Riemman-Liouvill fractional derivative
of order p. Let u be a weight function defined on (0,b), then v is defined by

(3.2) dr < oo.

o0 = [y & P L g
t

e o]

t
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If ® is a convex function on the interval I, then the inequality

b

(3.3) [ut)e (95“(2}%‘” A;p}> dr < /bv (1) D (£(1)) dt

holds true.
Proof. Applying Theorem 1.1, with 2y = Qs = (0,b), duy(x) = dz, dus(t) = dt,

. I N .. q
k(z,t)={ TG (x =)k [A,p, " ] 1Fy [,\,p, =ik 0<t<u,
0, r<t<b

(x —t) “11F1[>\07 p] 1A s — 4 )
(x—1)

and v as in (3.2), we get inequality (3.3). O
Substitute k(x,t) by k(x,t)f2(t) and f by 4 fl where f; : Q3 = R, i = 1,2, are
measurable functions in Theorem 3.1 we obtam “the following result.

0

Theorem 3.2. Let D{f(x);p,q, A, p} be the fractional derivative operator of order
w. Let u be a weight function defined on (0,b) and for each fized t € (0,b) define p on
(0,0) as

b T
/u (x—t) 1 F P\ p;— 7} 1F1 {NP%‘@qt}d .
/ Di{ fa(2);p, ¢; \; p}H ()
If ® : I — R is a convex function, then the inequality
b b
Dh{fi(2)ip g A;p}) _ (fl(t)>
3.4 u(z)® | — dr < t)P dt
(3:4) 0/ (@) <@g{f2($);p, ¢ p} - 0/p( ) fa(t)

holds true for all f; € L'[a,b].

Theorem 3.3. Let Re(p) > 0, Re(q) > 0, Re(u) > 0, Re(A) > 0 and Re(p) >
0. Let DE{f(x);p,q, A, p} be the extension of extended Riemman-Liouvill fractional
derivative of order u. Let u be a weight function defined on (0,b). Moreover, if ® is
a convex function on an interval I C R and ¢ : I — R is any function, such that
o(x) € 0P(z) for all x € Intl and v as in (3.2), then the inequality

[ () dr - /bu(@ (@u{f( }i(};,)q,)\ p}>

Zr(iu)o/ %)) / (@ =07k X =EE] A [“;quft)]

a
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B (/1) — (95{f(fv);p,q; A;M)’

X

_ ‘s@ (’i)“{J‘([?(f;)q,A p}[S(x)f(t) (9“{f([3(z;)q,k p}> H dtda

holds for all measurable functions f : (0,0) — R, such that f(t) € I for allt € (a,b).
If ® is a monotone convex function on an interval I C R, then the inequality

o (%U(I_z(p,)q,k P}>

| O/bu(x) /Sgn <f(t) @“{f([;é,)q,k p}>

X T
x(z—t) "R [A;p;—pt] 1y lk;p; -~ ]

(z—1)
(9”{10(}% A‘p}>

. (@“{f D, @A /ﬁ)‘ < @“{f(;(iv)q’A p}>] dt dx

holds for all measurable functions f: (0,b) — R.
Proof. Similar to proof of Theorem 3.1, by applying Theorem 1.2. 0

Theorem 3.4. Let Re(p) > 0, Re(q) > 0, Re(u) > 0, Re(A) > 0 and Re(p) >
0. Let DE{f(x);p,q, A, p} be the extension of extended Riemman-Liouvill fractional
derivative of order pu, and I a compact interval of R, h € C?(I) and let f : (0,b) — R
be a measurable function such that Im f C I. Then for the weight function u defined
on (0,b) there exists n € I such that

Joma s (3)
_ W

[/ OO b~ [t )(9““(%3%“}) dx],

where v is defined by (3.2).

Proof. Similar to proof of Theorem 3.1, by applying Theorem 1.3. U

Theorem 3.5. Let Re(p) > 0, Re(q) > 0, Re(u) > 0, Re(\) > 0 and Re(p) > 0. Let
the extension of ertended Riemman-Liouvill fractional derivative DI{ f(z);p,q, A, p}
of order u and I a compact interval of R, k,h € C*(I) such that h"(x) # 0 for every
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x € I. Moreover, f : (0,b) = R a measurable function with Imf C I, u a weight
function, v as in (3.2) and
b b

[ h (@) di~ [ute) (QN{H;(Z’)Q’A p}) dz 4 0.

Then there exists n € I such that the following equality holds true

py L ORUO) = [ula) b (g gy
h'(n)

o(t) b (f(t)) dt — fbu(x)ﬁ(w) .
0

K(z)

O%@ o

Proof. Similar to proof of Theorem 3.1. O

Theorem 3.6. Let Re(p) > 0, Re(q) > 0, Re(u) > 0, Re(A\) > 0 and Re(p) > 0.
Let the fractional derivative operator DH{ f(x);p,q, \, p} of order p and f a positive
function and let u be a weight function defined on (a,b), v be as in (4.4). Then the
function & : R — [0,00) defined by
b b
£(6) = [ o000, (1) at ~ [t (
0

0

DS ();p, ¢ A p}>
K (x)

is exponentially convew.

Proof. Similar to proof of Theorem 3.1, by applying Theorem 1.4. OJ

4. INEQUALITIES FOR MODIFIED EXTENSION OF RIEMMAN-LIOUVILL
FRACTIONAL DERIVATIVE

The following definition is given in [18].
Definition 4.1.

(4.1)  DEHS(2)} =

2

)z — 1) 1E, (- bz ) dt, Re(u) >0,

t(z—t)
where
[o¢] Zn
4.2 E,(z)= -
(42) (2) nz;; ['(an+1)
For the case m — 1 < Re(u) < m, where m = 1,2, ..., it follows

m

(43) DL} = D))

e e (o))

where Re(u) > 0, Re(p) > 0, Re(q) > 0.
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Remark 4.1. Obviously if o = 1, then (4.1) and (4.3) reduces to the extended fractional
derivative (2.3) and (2.4), respectively. Similarly, if we set @« = 1 and p = 0, we get
(2.1) and (2.2), respectively.

Very recently Shadab et al. [20] introduce new and modified extension of beta

function as:
p
7 tol 1 o 0'2 1E ’
p (01,92) / ( t(1—t)>

where Re(aq) > 0, Re(o2) > 0 and E,(-) is defined by (4.2).

Theorem 4.1. Let DEo{f(2)} denotes the new and modified extension of Riemann-
Liouville fractional derivative of order p and let u be a weight function defined on
(0,b), then v is defined by

b (x —1t) r=1p 2>
(4.4) /u ; uBa(1(_ )( >d < 0.

If ® is a convex function on the interval I, then the inequality
b

(4.5) Ju@e (F(x_#);l(l - )d </ “

0

holds true.
Proof. Applying Theorem 1.1, with ; = Qs = (0,b), du;(x) = dz, dus(t) = dt,

2
(w—t)”lEa<— - ) 0<t<u,

X 1
k(z,t) { I(—p)
0,
1

K@) =g [ =07 e (i) = o

and 0 as in (4.4), we get inequality (4.5). O
Substitute k(z,t) by k(x,t)f2(t) and f by %, where f; : Q — R, i = 1,2, are

measurable functions in Theorem 4.1 we obtain the following result.

Theorem 4.2. Let D0{f(z)} denotes the new and modified extension of Riemann-

Liouville fractional derivative of order p and let u be a weight function defined on

(0,b) and for each fixed t € (0,b) define p on (0,b) as

R) [ (@ =) E (— )
t | " o)

If & : I — R is a convex function then the inequality
b

(46) O/U(x)q) (%) dr < a/bﬁ(t)cb (ﬁg) dt

dr < 0.

) =
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holds true for all f; € L'[a,b].
Refinement of Theorem 4.1 is given in the upcoming theorem.

Theorem 4.3. Let D2o{f(2)} denotes the new and modified extension of Riemann-
Liouville fractional derivative of order u and let u be a weight function defined on
(a,b). Moreover, if ® is a convexr function on an interval I C R and ¢ : I — R is
any function, such that o(x) € 0®(x) for all x € Intl and 0 as in (4.4), then the
inequality

@(t)@(f(t))dt—/u(m)tb( (x “);:{i())}> dz
>

u(z) i —u—1
—y Byl —p) [0 E( )

@ (f(1) - @E i )

(S - ()

/
J

X

holds for all measurable functions f : (0,b) — R. If ® is a monotone convex function
on an interval I C R, then the inequality

/b oD (F(1)) dt — /b u<x>q>< (x #g;i{f L)>}> dz

0

u(z [ (—p)D5{f(2)}
/B(u)—m/g o )

(f(t) - <I>< (x uﬁ?f,{ffi))})

- o (% >B®(1{i - (0 - ?u{i )>}>] .

holds for all measurable functions f: (0,b) — R.

Proof. Same as proof of Theorem 4.1, by applying Theorem 1.2. 0
Next we give the mean value theorems.

Theorem 4.4. Let Do{f(2)} denotes the new and modified extension of Riemann-

Liouwille fractional derivative of order u, I be a compact interval of R, he C?(I) and
let f:(0,b) — R be a measurable function such that Im f C I. Then for the weight
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function u defined on (0,b) there exists n € I such that

/b@(t)ﬁ(f(t)) dt—/bu(x)h (”;iﬁ%fgg”) dz

0 0

_m) [ [swrwa- fue (Pt ““’)})2 dx] ,

2 0 0 $_“Bg(17 _N’)
where O is defined by (4.4).

Proof. Similar to proof of Theorem 4.1, by applying Theorem 1.3. U

Theorem 4.5. Let DE0{f(2)} denotes the new and modified extension of Riemann-
Liouville fractional derivative of order u, I be a compact interval of R, k, he C3(I)
such that h"(x) # 0 for every x € I. Moreover [ : (a,b) — R a measurable function

with Im f C I, u be a weight function, ® as in (4.4) and
b ) e
Jowhirw)a- [ u(m)h( (zf:ga?i{i‘g)}

0 0
Then there exists n € I such that the following equality holds true

b b w2 {f(=
iy 4 PORUO) = Jute) k(LRI o
W' (n)

)d:):%().

0
[ o) b (F() dt — [u(x)h (F(—u)@{f()}) i
0 0

137”35‘(17—#)

Theorem 4.6. Let ©,0{f(z)} denotes the new and modified extension of Riemann-
Liouville fractional derivative of order p and let u be a weight function defined on

(a,b), 0 be as in (4.4). Then the function  : R — [0, 00) defined by

b b o .,
o1 o o (SIZD)

0 0
is exponentially convex.

Proof. Similar to proof of Theorem 4.1, by applying Theorem 1.4. OJ

Now we shall discuss the exponentially convexity of the liner functional. Under the
assumptions of the Theorem 2.1, Theorem 3.1 and Theorem 4.1 we define a linear
functionals by taking the positive difference of the inequalities stated in (2.7), (3.3)
and (4.5), respectively as:

U(—p)x"DE{f();p, ¢}
prq(L _M)

48 &) = [s0e(o)a- [o(ZELEELIRL) ) g,

@n  a®) = [ el - / 2 ( )u<x> dr,
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and

b e

(4.9) &(®) = / B(t)® (F()) dt — /b o (”‘“mgb{f (@}) u(z) de.

0 x_MBg(lu _:U’)

We also define a linear functionals by taking the positive difference of the left-hand
side and right-hand side of the inequalities (2.9), (3.4) and (4.6), respectively as:

(@) = O/bm)@ (ﬁ(t)) " o/bu(m (@5{f1<x>;p, q}> i

fa(t) D{ fo(); p, q}

o= o (G5 - [ (G )

and

(4.10) £6(®) = O/bp(t)op (;;Eg) dt — O/bu(x)q) @Zigggi Z{) du.

Theorem 4.7. Let I' ={®, : p € J} be a family of functions defined on I, such that
the function p — |z, 21, 22; @, is n-exponentially convex in the Jensen sense on J for
every three distinct points zg, z1, 20 € I. Let &, i =1,2,...,6, be linear functionals
defined by (4.7)-(4.10), respectively. Then the function p — &(®,), i = 1,2,...,6,
is m-exponentially convex in the Jensen sense on J. If the function p — &(®,) is
continuous on J, then it is n-exponentially convex on J.
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