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their warped products in Sasakian manifolds. We
submanifolds and obtain several fundamental re

invariant) submanifolds. the geometry of slant submanifolds became an
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this study for almos etric manifolds. J. L. Cabrerizo et al. investigated
slant submanifold N. Papaghiuc introduced in [22] a
class of subma serni-slant submanifolds of almost Hermitian manifolds,
which are theagene of slant and CR-submanifolds. Later on, Cabrerizo et
al. [5] or semi-slant submanifolds of contact metric manifolds and

Etayo [16] intrO@iced the notion of pointwise slant submanifolds of almost Hermitian
manifolds. B.-Y. Chen and O. J. Garay [14] studied pointwise slant submanifolds
of almost Hermitian manifolds. They have obtained several fundamental results, in
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722 1. MIHAI, S. UDDIN, AND A. MIHAI

particular, a characterization of these submanifolds. K. S. Park [23] has extended
this study. B. Sahin studied pointwise semi-slant submanifolds and warped product
pointwise semi-slant submanifolds by using the notion of pointwise slant submanifolds
[26]. In [31], the authors considered pointwise slant submanifolds of an almost contact
metric manifold such that the structure vector field ¢ is tangent to the submanifold.
They have obtained a simple characterization for such submanifolds and studied
warped product pointwise pseudo-slant submanifolds of Sasakian manifolds.

In 1969, R. L. Bishop and B. O’Neill [3] introduced and studied warped product
manifolds. 30 years later, around the beginning of this century, B.-Y. Chen initiated

product pointwise semi-slant submanifolds and
warped product pointwise semi-slant submanifo My xy My in a Kaehler
manifold M , where M7 and My are invariant an intwise slant submanifolds
of M, respectively [26]. For almost contal i olds, we have seen in [19] and
[1] that there are no proper warped prod #nt submanifolds in cosymplectic
and Sasakian manifolds. Then,
submanifolds (warped producg Pmanifolds [25], in the same sense of
: 28] and Sasakian manifolds [29].

pduct pointwise semi-slant submanifolds. He

K. S. Park [23]
proved that there do

@ ¥ this idea in [31] to warped product pointwise pseudo-slant

submanifol8 J9kian manifolds.

In this papSge study warped product pointwise semi-slant submanifolds of the
form Mp x My®f Sasakian manifolds.

The present paper is organized as follows: in Section 2, we give basic definitions and
formulas needed for this paper. Section 3 is devoted to the study of pointwise semi-
slant submanifolds of Sasakian manifolds; we define pointwise semi-slant submanifolds
and in the definition of pointwise semi-slant submanifolds we assume that the structure
vector field ¢ is always tangent to the submanifold. We give two non-trivial examples
of such submanifolds for the justification of our definition and a result which is useful
to the next section. In Section 4, we study warped product pointwise semi-slant
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submanifolds of Sasakian manifolds. In [1], we have seen that there are no warped
product semi-slant submanifolds of the form My x ¢ My in a Sasakian manifold other
than contact CR-warped products, but if we assume that My is a proper pointwise
slant submanifold then there exists a non-trivial class of such warped products. In
this section, we obtain several new results which are generalizations of warped product
semi-slant submanifolds and contact CR-warped product submanifolds. In Section 5,
we provide nontrivial examples of Riemannian product and warped product pointwise
semi-slant submanifolds in Euclidean spaces.

2. PRELIMINARIES

An almost contact structure (¢, &,m) on a (2n+1)-dimensional ma

and a 1-form 7 satisfying the following conditions

(2.1) p=-I+n®& =1 no&=y

where I : TM — TM is the identity map [4]. Th a Riemannian
metric ¢ on an almost contact manifold M satisfR wing compatibility
condition

(2.2) 9(pX,9Y) = g(X,Y)

for any X,Y € I'(TM), the Lie algebra o on M. This metric g is called a
compatible metric and the manifold M tog! W’ the structure (p, &, 7, g) is called
an almost contact metric manifg nmediate consequence of (2.2), one has
n(X) =g(X,¢) and g(pX,Y) ¢ is a Killing vector field with respect

@called a K-contact structure. A normal

contact metric manifold j@ai s basakian manifold. In terms of the covariant
derivative of ¢, the Sad@ki iti®h can be expressed by

(2.3) = g(X,Y)§ —n(Y)X,

for all X,Y e I'( whe® V is the Levi-Civita connection of g. From the formula
(2.3), it fo

for any X € .
Let M be a Riemannian manifold isometrically immersed in M and denote by the

same symbol g the Riemannian metric induced on M. Let T'(T'M) be the Lie algebra

of vector fields in M and T'(T*M) the set of all vector fields normal to M. The Gauss

and Weingarten formulas are respectively given by

(2.5) VxY =VxY +h(X,Y)

and

(2.6) VxN = —AxX + VN,
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for any X,Y € I'(TM) and N € I'(T+M), where V is the Levi-Civita connection on
M, V+ is the normal connection in the normal bundle 7+ M and Ay is the shape
operator of M with respect to the normal vector N. Moreover, h : TM XTM — T+M
is the second fundamental form of M in M. Furthermore, Ay and h are related by
32]
(2.7) g(h(X,Y),N) = g(AnX,Y),
for any X,Y € I'(T'M) and N € T'(T+M).

For any X tangent to M, we write

(2.8) X = PX + FX,

where PX and FX are the tangential and normal components
Then P is an endomorphism of the tangent bundle TM and
valued 1-form on 7T'M. Similarly, for any vector field NV nor

(2.9) @N =tN + fN,

where tN and fN are the tangential and normal ts of @ N, respectively.

Moreover, from (2.2) and (2.8), we have
(2.10) 9(PX,Y) = —g(

for any X,Y € I'(T'M).

Throughout this paper, we assume the ¢ is tangent to M; otherwise
M is a C-totally real submanifold [20]. lemannian manifold isometrically
immersed in an almost contact 1d (M, p,&,n, g). A submanifold M of
an almost contact metric manj id #8 be slant [6], if for each non-zero vector
X tangent to M at p € not proportional to §,, the angle 6(X)
between X and T,M j it does not depend on the choice of p € M
and X € T,M — (&)

PY),

that on a slant if 0= 0, then it is an invariant submanifold and if 6 = 7,
then it is an apti-in manifold. A slant submanifold is said to be proper slant
if it is nei i anti-invariant.

As a On of slant submanifolds, F. Etayo [16] introduced pointwise
slant subm an almost Hermitian manifold under the name of quasi-slant
submanifolds. er on, B.-Y. Chen and O. J. Garay studied pointwise slant sub-
manifolds of almost Hermitian manifolds and obtained many interesting results [14].
In [31], the authors studied pointwise slant submanifolds of almost contact metric
manifolds tangent to the structure vector field &.

A submanifold M of an almost contact metric manifold M is said to be pointwise
slant if for any nonzero vector X tangent to M at p € M, such that X is not
propotional to &, the angle 0(X) between pX and Ty M = T,M — {0} is independent
of the choice of nonzero vector X € Ty M. In this case, # can be regarded as a function
on M, which is called the slant function of the pointwise slant submanifold.
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We note that every slant submanifold is a pointwise slant submanifold, but the
converse is not true. We also note that a pointwise slant submanifold is invariant
(respectively, anti-invariant) if for each point p € M, the slant function § = 0
(respectively, § = 7). A pointwise slant submanifold is slant if and only if the slant
function @ is constant on M. Moreover, a pointwise slant submanifold is proper if
neither 6 = 0, § nor 6 is constant.

In [31], we have obtained the following characterization theorem.

Theorem 2.1 ([31]). Let M be a submanifold of an almost contact metric manifold
M such that £ € T'(T'M). Then, M is pointwise slant if and only if

(2.11) P?=cos’ (-1 +n®¢),

for some real valued function 6 defined on the tangent bundle

The following relations are immediate consequences of .
Let M be a pointwise slant submanifold of an almos igfmanifold M.
Then, we have

(2.12) g(PX,PY) =cos’0[g(X,Y
(2.13) g(FX,FY) =sin?0 [g(X,

for any X, Y € I'(TM).

The next useful relations for a point anifold of an almost contact
metric manifold was obtained in [31]
(2.14) tFX =sin?6 fFX = -FPX,

for any X € I'(T'M).

d pointwise semi-slant submanifolds of Kaehler
fine and study pointwise semi-slant submanifolds of

(i) the tangent bundle TM admits the orthogonal direct decomposition T'M =
D oD P (E);

(ii) the distribution ® is invariant under ¢, i.e., ¢ (D) = D;

(iii) the distribution DY is pointwise slant with slant function 6.

Note that the normal bundle 7+M of a pointwise semi-slant submanifold M is
decomposed as

T M =F9°®v, FOY Ly,
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where v is an invariant normal subbundle of T*M under ¢.
If we denote the dimensions of ® and ®Y by m; and ms, respectively, then we have
the following.

(i) If my; = 0, then M is a pointwise slant submanifold.

(ii) If my = 0, then M is an invariant submanifold.
(iii) If m; = 0 and 6 = 7, then M is an anti-invariant submanifold.
(iv) If m; # 0 and 6 = 7, then M is a contact CR-submanifold.

(v) If 6 is constant on M, then M is a semi-slant submanifold with slant angle 6.
We also note that a pointwise semi-slant submanifold is proper if neit 2=20
nor ¢ = 0, 7 and 6 should not be a constant.

Now, we provide the following non-trivial examples of pointwi
ifolds of an almost contact metric manifold.

Ezample 3.1. Let (R, ¢,£,1m,g) be an almost contact m h cartesian
coordinates (z1, Y1, T2, Yo, T3, Y3, 2) and the almost

0 0 0 0

ric on R7. Then (¢, &, 7, 9)
nsider a submanifold M of R7

where £ = %, 17 = dz and g is the stand
is an almost contact metric structure
defined by ¥(u,v,w,t,z) = (
that w,t (w # t) are non-zero r . en the tangent space T'M is spanned
by the following vector fields

0
SW— + cost—— +sint—

Y2 Oz dys’
sinwi —wsinlti —i—wcosti X5 = 2
0o Oxs Oys’ ° T o
Thus, we t ® = Span{X;, X5} is an invariant distribution and DY =

pointwise slant distribution with pointwise slant function 6 =

R’ such that ¢ = % is tangent to M.

Ezample 3.2. Consider a submanifold of R” with almost contact structure ¢ given in
Example 3.1. If the immersion ¢ : R®> — R is given by

u3 + u? ui —uj .
5 , COS Uy, —Ug, ——— sinuy, t |, ug #0,

¢(U1>U2,U3,U4>t) = (ub 9
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then the tangent space T'M is spanned by X, X5, X3, X4 and X5, where

0 0 ] 0
0 2 . %) ) )
X4:U487x2 —U467y2 —SIHU467:E3—|—COSU467y3, X5 = %

Therefore, M is a pointwise semi-slant submanifold such that ® = Span{X;, Xs} is
an invariant distribution and D% = Span{X3, X,} is a pointwise slant distribution

with pointwise slant function § = cos™! <\/§ ug/\/1+ 2ui>.

Now, we obtain the following useful results for semi-slant submanifgl
manifold.

Lemma 3.1. Let M be a pointwise semi-slant submanifold,
M. Then, we have

(i) sin*0 g(VxY, Z) = g(h(X,Y), FZ) — g(h(X, PZ),
(i) sin0 g(V,W, X) = g(h(X, Z), FPW) — g(h s, EW),
for any XY € T(D @ (£)) and Z,W € T'(DY).
Proof. The first and second parts of the lemmd#@an be @ved in a similar way. For
any X,Y € T(D @ (€)) and Z € T(D?), we have
9(VxY,Z) = g(Vx V
From the covariant derivative forgama of ¢

o(OV Y, 07).

9(VxY,2) = g(VxP?Z,Y) + g(VxFPZ,Y) + g(h(X,pY), FZ).
Then, from (2.11) and (2.6), we have
g(VxY,Z) = —cos’0g(VxZ,Y) +sin20 X(0) g(Y, Z) — g(h(X,Y), FPZ)
+g(h(X, oY), FZ).
From the orthogonality of the two distributions the above equation takes the form

9(VxY,Z) = cos’ 0 g(VxY, Z) — g(h(X,Y), FPZ) + g(h(X, ¢Y), F Z).
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Hence, (i) follows from the above relation. In a similar way we can prove (ii). O

4. WARPED PRODUCT POINTWISE SEMI-SLANT SUBMANIFOLDS

In this section, we study warped product submanifolds of Sasakian manifolds, by
considering that one factor is a pointwise slant submanifold. In the following, first we
give a brief introduction on warped product manifolds.

In [3], R. L. Bishop and B. O’Neill introduced the notion of warped product man-
ifolds as follows: Let M; and M, be two Riemannian manifolds with Riemannian
metrics g; and gs, respectively, and a positive differentiable function
sider the product manifold M; x Ms with its projections m : M,
my : My X My — M. Then their warped product manifold M

Let X be a vector field tangent to M; and Z
from Lemma 7.3 of [3], we have

(4.1) VyZ =Yy

where V is the Levi-Civita conne = M, x; M, is a warped product

manifold then the base mani i geodesic in M and the fiber Ms is
totally umbilical in M [3,9

By analogy to CR-war ich are introduced by B.-Y. Chen in [9], one
defines the warped pr emi-slant submanifolds as follows.
Definition 4.1. of an invariant and a pointwise slant submanifolds,
say My and M, manifold M is called a warped product pointwise semi-
slant subm

A w ointwise semi-slant submanifold is called proper it My is a
proper poin t submanifold and M7 is an invariant submanifold of M.

The non-ex1S§@fce of warped product pointwise semi-slant submanifolds of the form
My x s My in Kaehler manifolds is proved in [26]. A similar result holds in Sasakian
manifolds. On the other hand, there exist non-trivial warped product pointwise semi-
slant submanifolds of the form My x M, of Kaehler manifolds [26] and contact metric
manifolds.

Note that a warped product pointwise semi-slant submanifold M = Mz X My is a
warped product contact CR-submanifold if the slant function ¢ = 7. Similarly, the
warped product pointwise semi-slant submanifold M = My x ; Mjy is a warped product
semi-slant submanifold if 8 is constant on M, i.e., My is a proper slant submanifold.
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In this section, we study the warped product pointwise semi-slant submanifold of
the form M = My xy My of a Sasakian manifold M. To fill the gap in the earlier
study, we obtain some results as a generalization.

On a warped product pointwise semi-slant submanifold M = My x; My, if we
consider the structure vector field ¢ tangent to M, then either ¢ € T'(T'My) or
¢ € I'(T'My). When £ is tangent to My, then it is easy to check that warped product
is trivial (see [27]); therefore we always consider & € I'(T'Mr).

First, we prove the following useful results.

Lemma 4.1. Let M = My xy My be a warped product pointwise semi-slgnt subman-
ifold of a Sasakian manifold M such that & € T'(TMr), where Mr
submanifold and My is a proper pointwise slant submanifold of M :

(4.2) g(h( X, W), FPZ)— g(h(X,PZ),FW) =sin20 X Z,

for any X € T'(TMy) and Z,W € I'(T' My).

Proof. For any X € I'(TMy) and Z,W € I'(T' My), w

(4.3) 9(VxZ, W)= X(In f)

On the other hand, we can obtain g(VxZ, W)

derivative formula of ¢, we get
g(VxZ, W) =g(Vxep ) Z, oW).

The second term in the right han ation is identically zero by using
(2.3) and the orthogonality of eld@ Then, from (2.5), (2.8), (4.1) and the

9(VxZ 05’0 X (In f) g(Z, W) + g(h(X,PZ), FW) +sin’0 g(Vx Z, W)
(4.4) +5in20 X(0) g(Z,W) + g(V2FPX,Y).
Hence, the result follows from (4.3) and (4.4) by using (2.6)—(2.7) and (4.1). O
Lemma 4.2. Let M = My x5 My be a warped product pointwise semi-slant sub-

manifold of a Sasakian manifold M such that § € D(TMr), where My and My are
invariant and pointwise slant submanifolds of M, respectively. Then

(i) 9<PZ’ W) = —f(lnf) g(Z’ W):
(ii) g(M(X,Y),FZ)=0;
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(iii) g(h(X, Z), FW) = X(In f) g(PZ,W) — X (In f) g(Z, W) — n(X) g(Z, W),
for any X,Y € I'(T'My) and Z,W € I'(T' My).

Proof. From (2.4), (2.5) and (2.8), we have Vz¢{ = —PZ, for any Z € I'(T'My). Using
(4.1) and taking the inner product with W € I'(T'My), we get (i). For the other parts
of the lemma, considering any X,Y € I'(T'My) and Z € I'(T'My), we have

g(WX,Y), FZ)=g(VxY,FZ)=g(VxY,0Z) — g(VxY,PZ).
From (2.2) and (4.1), we get
gW(X,Y),FZ) = —g(¢VxY,Z)+ X(In f) g(Y, PZ).

By covariant derivative formula of ¢ and the orthogonality of vect® b find
g(h(X.Y), FZ) = g(Vx¢)Y.Z) — g(Vxy

Using (2.3) and the fact that £ € T'(T'Mr), the first ter and side of

vector fields, we find (ii). Now, for any X € T'(T' My
9(W(X,Z), FW) = g(Vz X, FW) = (¥

Again, using the covariant derivative formula of iengannain connection and (4.1),
we get

g(h(X, Z)’ FW) = g((@Z(p)X7 W)
Then from (2.3), (2.5) and (4.1), i
g(h(X, Z)7FW) =1

—~

which is the third part o Hence, the proof is complete. 0
Lemma 4.3. Let M, a warped product pointwise semi-slant subman-
ifold of a Sasaki ) uch that § € I'(T'Mr), where Mr is an invariant

In f)g(Z,W) —n(X) g(Z, PW) — oX(In f) g(Z, PW),
nd Z,W € T(T Mp).

g X by X, for any X € I'(T'Mr) in Lemma 4.2 (iii) and using
emma 4.2, we get the required result. [l

Proof. Interch
the first part o

Lemma 4.4. Let M = My Xy Mg be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M such that § € (T Mr), where My and My are
invariant and pointwise slant submanifolds of M, respectively. Then, we have

(4.6)

9(MX, PZ), FW) = oX(In f) g(Z, PW) — 1(X) g(PZ, W) — cos* 0 X (In f) g(Z, W),

for any X € T(T'Mr) and Z,W € I'(T'My).
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Proof. Interchange Z by PZ, for any Z € I'(T'My) in Lemma 4.2 (iii) and after using
(2.12), we get (4.6). O

Similarly, if we interchange W by PW, for any W € I'(T'Mp) in Lemma 4.2 (iii),
then we can obtain the following result.

Lemma 4.5. Let M = My Xy My be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M such that § € L(TMr), where My and My are
invariant and pointwise slant submanifolds of M, respectively. Then

(4.7)

g(h(X, Z), FPW) = cos 0 X(In f) g(Z, W) — ¢ X (In f) g(Z, PW) —

for any X € T'(TMy) and Z,W € I'(T' My).

Lemma 4.6. Let M = My x; My be a warped product ) @5lant sub-

(4.8) 9(Arwe X, Z) — g(Arpw X, Z) = i
for any X € T(T'Mr) and Z,W € T'(T'Mj).
Proof. Subtracting (4.7) from (4.5), we g

Proof. Fro ixed totally geodesic condition, we have
sin? 0 X (In f) g(Z,W) = 0.

Since g is a annian metric, then either sin?f = 0 or X(In f) = 0. Therefore,
either M is waPed product of invariant submanifolds or f is constant on M, thus,
the proof is complete. O

Lemma 4.7. Let M = My Xy Mg be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M such that § € (T Mr), where My and My are
invariant and pointwise slant submanifolds of M, respectively. Then, we have

(4.9) 9(App W, X) — g(ApwPZ,X) = 2cos? 0 X(In f) g(Z, W),
for any X € T(T'Mr) and Z,W € I'(T'My).
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Proof. Interchanging Z and W in (4.7) and using (2.10), we get

(4.10)

g(WMX,W),FPZ) = cos*0 X (In f) g(Z, W) + ¢ X (In f) g(Z, PW) +1(X) g(Z, PW),

for any X € I'(T'Mr) and Z,W € I'(TMy). Subtracting (4.6) from (4.10), we

find (4.9). O
Also, with the help of Lemma 4.7, we find the following result.

Theorem 4.2. Let M = Mg Xy My be a warped product pointwise semi-slant sub-
manifold of a Sasakian manifold M. If M is mized totally geodesic, ither M
is a contact CR-warped product of the form My X ¢ M, or the war; n fis
constant on M.

Proof. From (4.9) and the mixed totally geodesic condition héye
cos?0 X (In f) g(Z,W) =0,

X(In = 0. Therefore,
on M, which ends the

Since g is a Riemannian metric, then either cos?6

proof. O
From Theorem 4.1 and Theorem 4.2,
Corollary 4.1. There does not exist any tally geodesic proper warped product

pointwise semi-slant submanifold of a Sasakian manifold.

Since g is a flannian metric, therefore, we conclude that either cos?# = 0 or
X(In f) — tan "X (0) = 0. Consequently, either § = 7 or X (In f) = tan 6 X (¢), which
proves the theorem completely. ([l

As an application of Theorem 4.3, we have the following consequence.

Remark 4.1. 1f we consider that the slant function 6 is constant, i.e., My is a proper
slant submanifold in Theorem 4.3, then Z(In f) = 0, i.e., there are no warped product
semi-slant submanifolds of the form My X § My in Sasakian manifolds. Hence, Theorem
3.3 of [1] is a special case of Theorem 4.3.
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In order to give a characterization result for pointwise semi-slant submanifolds of a
Sasakian manifold, we need the following well-known result of Hiepko [18].

Theorem 4.4 (Hiepko’s Theorem). Let ©, and ©y be two orthogonal distribution on
a Riemannian manifold M. Suppose that both D1 and D5 are involutive such that
D, is a totally geodesic foliation and Dy is a spherical foliation. Then M is locally
isometric to a non-trivial warped product My x ¢ My, where My and My are integral
manifolds of ©1 and D4, respectively.

Theorem 4.5. Let M be a pointwise semi-slant submanifold of a Sasakiag manifold
M. Then M is locally a non-trivial warped product submanifold of the [P
where My is an invariant submanifold and My is a proper pointwise

of M if and only if
(4.11) ApwopX — Appw X = sin® 0 X ()W,  for all X € T,

ant submanifold

of a Sasakian manifold M. Then for any X € € I'(T'My), from

Lemma 4.2 (ii) we have
(4.12)

Interchanging X by ¢X in (4.12), we 2
ApwpX has no component in T Ade. if we interchange W by PW in

@ X also has no component in T'Mr.

find (4.11).
Conversely, if M is agp yise sen®8lant submanifold such that (4.11) holds, then
from Lemma 3.1 (i)

g(vXY7 W) = Y(M)Q(X’ W) =0,

the leaves of the distribution © @ (£) are totally geodesic in M.
a 3.1 (ii), we have

which mean
Also, from Le

(4.13) g(V W, X) =csc? 0 g(Appw X — ApwX, Z),
for any Z,W € T'(D?) and X € T'(D @ (£)). By polarization, we derive
(4.14) 9(VwZ,X) = csc?0 g(Appz X — ApzoX, W).

Substracting (4.14) from (4.13), we get
Sil’l2 0g([Z, W], X) = g(Apz(pX - AszX, W) — g(pr(pX - AprX, Z)
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Using (4.11), we get
Sin299([Za W, X) = X(u) g(Z,W) = X(n) g(W, Z) = 0.

Since M is proper pointwise semi-slant, then sin? # 0, thus we conclude that the
pointwise slant distribution ©? is integrable. Let us consider My to be a leaf of D°
and hY is the second fundamental form of My in M. Then from (4.14), we have

g(h*(Z,W), X) = g(VzW, X) = —csc® 0 g(Apw X — Appw X, Z).
Using (4.11), we find that
g(h* (2, W), X) = =X (1) g(Z, ).
Then from the definition of the gradient of a function, we arrive at
W(Z,W) = =(Vu) g(Z,W).

Hence, My is a totally umbilical submanifold of M with ure vector
HY% = —Vpu, where Vi is the gradient of the functio i = 0, for any
7 € T(D?), then we can show that H’ = —Vy is p resp€ct to the normal

submanifold of M with a non vanishing parall re vector HY = —ﬁpJ,
i.e., My is an extrinsic sphere in M. Then from\@ei heorem [18], we conclude
ere Mt and My are integral
manifolds of ® @ (¢) and D7, respectivel proof is complete. O

As an application of Theore
interchanging X by ¢X in (4

7 in Theorem 4.5, then by
condition (74) of Theorem 3.2 in [21];
arped product submanifolds of the form

M7 xy M, . Hence, The ) is a special case of Theorem 4.5 as follows.
Corollary 4.2 (T f [21]). A strictly proper CR-submanifold M of a
Sasakian manifo he structure vector field & is locally a contact CR-

warped product
(415) (W) 7, X eT®a ()2 @),
for som’ M satisfying W = 0, for all W € T(D1).

5. EXAMPLES

In this section, we provide the following non-trivial examples of Riemannian prod-
ucts and warped product pointwise semi-slant submanifolds in Euclidean spaces.

Example 5.1. Let M be a submanifold of Euclidean 7-space R” with its cartesian
coordinates (z1,...,%3,Y1,...,ys, t) and the almost contact structure

oy_ 0 9\ _ 9 9 —0 1<ii<3
\ow ) ™ "oy oy, ) " ox, o) ==
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If M is given by the equations

2
u
3 .
T, =Uq, T = U3 COS Uy, T3 — 72 s Y1 = U, Y2 = U3 SN Uy,

Y3 =Uy, t= t)

for any non-zero function ug on M, then tangent space T'M of M is spanned by
le XQ, X3, X4 and X5, where

0 9, 0
Xi=—, Xo=—, X3= — 4 sinus—
1 oz, 2 oyr’ 3 COS'U/4am2 +u38x3 —l—smu46
X——usinu——l—usinu——i——a X——a
4= —us Dy 3 oy o 57 5

Then, M is a pointwise semi-slant submanifold with invagj

Span{Xy, Xy} and the pointwise slant distribution ®? = S early, the
slant function is 6 = cos™(2u3/4/1 + u3). Moreover, D rable. If My

and M, are integral manifolds of ® and DY, respec
Riemannian product of My and Mj in R®.

9

witl@its Cartesian coordinates

tur

Example 5.2. Consider the Euclidean 9-spac
(T1,...,%4,Y1,-..,Ys,t) and the almost contact

AV

Let M be a submanifold of R mmersion ¢ as follows:

1
Y(u,v,w,s,t) = (u—i— ssinw, —u + v, 532, —wsms,wcoss,t) ,

for any non-zero re d s. The tangent space of M is spanned by the

following vectors

0 0 0
e RCET
X3 wi—l—scoswi—sinsi—l—cosvi
Oxs Oy Oy Oys’
X4 = cos ——l—smw——i—si—wcoss——wsms— 5:9.
Oxs Ory Oy Oy oy’ ot

Then, M is a pointwise semi-slant submanifold such that the structure vector field
¢ = 2 is tangent to M and © = Span{X;, Xo} is an invariant distribution and D% =
Span{ X3, X4} is a pointwise slant distribution with slant function

0 = cos™! <(1_w51) jigl_ﬁ;)_ws). It is easy to observe that both the distributions are inte-

grable. If we denote the integral manifolds of ® and ©? by M7 and My, respectively,
then M is a Riemannian product of invariant and pointwise slant submanifolds in R?.
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Example 5.3. Let M be a submanifold of R'® given by the immersion ¢ : R — R!3
as follows:

U(ur, vr, uz,v2,t) =(ur — v1, ug cos(uz + va), wg sin(uz + v2), v2, ug cos(uz — vs),
uyg sin(ug — v2), ug + vy, vy cos(ug + va), vy sin(ug + va), ug,
vy cos(ug — v2), v sin(uy — va), t),

for non-zero functions u; and v;. We use the almost contact structure from Example
5.2. Then, we have

0 0 0
X =— + cos(ug + ve) =— + sin(ug + v9) =— + cos(ug — vs)

61’1 61‘2 8$3
. 0 0
+ sin(ug — 1)2)8766 + R
Xy =— 8(3:1 + 883/1 + cos(ug + UQ)aayz + sin(ug + v
+ sin(ug — v )i
2 — Uy s
X3 = — uy sin(ug + v9) =— + uy cos(ug + vg) — ugfin(uy — vg)i
81'2 8275
0 ) 0
+ uq cos(ug — vy) pr vy sin . 1 cos(ug + vg) a—yg
. 0
+a—y4—vlsm(u2— g—vg)a—yﬁ,
X4 = — uy sin( 9 + Ug) o + ) + uy sin(ug — 1}2)883:5
. 0
— Uy CO 1 8in(ug + vg) 8TJ2’ +uvy cos(ug + vg) 87343

0
— vy cos(ug — vy) @,
6

By easy and d#fect computations we find that ® = Span{Xj, X3} is an invariant

distribution and ®? = Span{X3, X,} is a pointwise slant distribution with slant

1
1+2uf+207

R!3. It is easy to observe that both the distributions are integrable. If we denote the
integral manifolds of ® and ©? by My and My, respectively, then the product metric
structure of M is given by

function 6 = cos™! ( ) Hence, M is a pointwise semi-slant submanifold of

g = 4(du? + dv?) + (14 2u] + 20%)(dus + dv3) = gry + f2gM9.
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Hence, M = My X ; My is a warped product submanifold in R'® with warping function

f=/1+2u? + 202,
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