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ON DISTANCE SIGNLESS LAPLACIAN ESTRADA INDEX AND

ENERGY OF GRAPHS

ABDOLLAH ALHEVAZ1, MARYAM BAGHIPUR1, AND SHARIEFUDDIN PIRZADA2

Abstract. For a connected graph G, the distance signless Laplacian matrix is de-
Ąned as DQ(G) = Tr(G)+D(G), where D(G) is the distance matrix of G and Tr(G)
is the diagonal matrix of vertex transmissions of G. The eigenvalues ρ1, ρ2, . . . , ρn

of DQ(G) are the distance signless Laplacian eigenvalues of the graph G. In this
paper, we deĄne the distance signless Laplacian Estrada index of the graph G as

D
Q
E E(G) =

∑n

i=1
e

(

ρi−

2σ(G)
n

)

, where σ(G) is the transmission of a graph G. We

obtain upper and lower bounds for D
Q
E E(G) and the distance signless Laplacian en-

ergy in terms of other graph invariants. Moreover, we derive some relations between

D
Q
E E(G) and the distance signless Laplacian energy of G.

1. Introduction and preliminaries

All graphs throughout this paper are finite, undirected, simple and connected. Let
G be such a graph with vertex set V (G) = ¶v1, v2, . . . , vn♢ and edge set E(G). The
order of G is the number n = ♣V (G)♣ and its size is the number m = ♣E(G)♣. The set
of vertices adjacent to v ∈ V (G), denoted by N(v), refers to the neighborhood of v.
The degree of vertex v, denoted by dG(v) (we simply write dv if it is clear from the
context) means the cardinality of N(v). A graph is called regular if each of its vertex
has the same degree. We write G ∼= H, where the graphs G and H are isomorphic.
The distance between two vertices u, v ∈ V (G), denoted by duv, is defined as the
length of a shortest path between u and v in G. The diameter of G is the maximum
distance between any two vertices of G. The distance matrix of G is denoted by
D(G) and is defined as D(G) = (duv)u,v∈V (G). The transmission TrG(v) of a vertex

Key words and phrases. Distance signless Laplacian matrix, distance signless Laplacian Estrada
index, distance Estrada index, transmission regular graph, distance signless Laplacian energy.
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838 A. ALHEVAZ, M. BAGHIPUR, AND S. PIRZADA

v is defined to be the sum of the distances from v to all other vertices in G, that is,
TrG(v) =

∑

u∈V (G)
duv. A graph G is said to be k-transmission regular if TrG(v) = k,

for each v ∈ V (G). The transmission of a graph G, denoted by σ(G), is the sum of
distances between all unordered pairs of vertices in G. For other undefined notations
and terminology, the readers are referred to [33].

For a graph G with V (G) = ¶v1, v2, . . . , vn♢, TrG(vi) has been referred to as the
transmission degree Tri [26] and hence the transmission degree sequence is given by
¶Tr1,Tr2, . . . ,Trn♢. Let Tr(G) = diag(Tr1,Tr2, . . . ,Trn) be the diagonal matrix of
vertex transmissions of G. Aouchiche and Hansen [2, 3] introduced the Laplacian
and the signless Laplacian for the distance matrix of a connected graph. The matrix
DL(G) = Tr(G)−D(G) is called the distance Laplacian matrix of G, while the matrix
DQ(G) = Tr(G) + D(G) is called the distance signless Laplacian matrix of G. If G
is connected, then DQ(G) is symmetric, nonnegative and irreducible. Hence, all the
eigenvalues of DQ(G) can be arranged as ρ1 ≥ ρ2 ≥ · · · ≥ ρn, where ρ1 is called the
distance signless Laplacian spectral radius of G. (From now onwards, we will denote
ρ1(G) by ρ(G)).

Based on investigations on geometric properties of biomolecules, Ernesto Estrada
[13,14] considered an expression of the form

EE(G) =
n
∑

i=1

eλi ,

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of a molecular graph
G. The mathematical significance of this quantity was recognized short time later [22]
and soon it became known under the name “Estrada index” [10]. The mathematical
properties of the Estrada index have been intensively studied, see for example, [5,10,23].
There exists a vast literature related to Estrada index and its bounds and we refer
the reader to the nice surveys [11,21].

This graph-spectrum-based invariant has also an important role in chemistry,
physics, and complex networks. For example, it has been used to measure the degree
of folding of long chain polymeric molecules, including proteins [12, 13, 16]. It has
found a number of applications in complex networks and characterizes the centrality
[14], also serves as an insightful measure for investigating robustness of complex net-
works [39], for which EE has an acute discrimination on connectivity and changes
monotonically with respect to the removal or addition of edges. For the application
of the Estrada index in network theory see the book [15] and the papers [38,39].

The pioneering papers [13,14] further proposes the study of graphs with an analogue
of the Estrada index defined with respect to other (than adjacency) matrices. Because
of the evident success of the graph Estrada index, this proposal has been put into effect
and Estrada index based of the eigenvalues of other graph matrices have, one-by-one,
been introduced: Estrada index based invariant with respect to distance matrix, as
well as Estrada index based invariant with respect to Laplacian matrix, have been
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introduced and studied, see for example [6,7,24,25,27,35–37,40,41]. Recently, in full
analogy with the Estrada index, the signless Laplacian Estrada index of a connected
graph G has been introduced and studied [4]. Further, in full analogy with the Estrada
index, the distance Estrada index of a connected graph G has been introduced in [19]

DEE(G) =
n
∑

i=1

eµi ,

where µ1, µ2, . . . , µn are the eigenvalues of the distance matrix of a graph G. Now,
we define the distance signless Laplacian Estrada index DQ

EE(G), based on distance
signless Laplacian matrix of the graph G as

D
Q
EE(G) =

n
∑

i=1

e(ρi−
2σ(G)

n ),(1.1)

where ρ1, ρ2, . . . , ρn are the distance signlees Laplacian eigenvalues of a graph G. Let

Mk =
n
∑

i=1

(

ρi − 2σ(G)

n

)k

.

Then

M0 = n,

M1 = 0,

M2 = 2
∑

1≤i<j≤n

(dij)
2 +

n
∑

i=1

Tr2
i −4σ2(G)

n
.(1.2)

Recalling the power series expansion of ex, we can write the distance signless Laplacian
Estrada index as

D
Q
EE(G) =

∑

k≥0

Mk

k!
.(1.3)

The rest of the paper is organized as follows. In Section 2, we obtain some upper
and lower bounds for the distance signless Laplacian Estrada index DQ

EE(G) involving
different graph invariants, and also characterize the extremal graphs. In Section 3,
we compute the distance signless Laplacian Estrada index of some classes of graphs,
as well as giving some relations with the earlier distance Estrada index. Finally, in
Section 4, we derive some relations between the distance signless Laplacian Estrada
index and the distance signless Laplacian energy of G.

2. Bounds for the Distance Signless Laplacian Estrada Index

We start by giving some previously known results that will be needed in the proofs
of our results in the sequel.
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Lemma 2.1. ([1, Theorem 2.2]). If the transmission degree sequence of G is

¶Tr1,Tr2, . . . ,Trn♢, then

ρ(G) ≥ 2

√

∑n
i=1 Tr2

i

n
,

with equality if and only if G is transmission regular.

Lemma 2.2. ([42, Lemma 2.2]). If G is a connected graph of order n, then

ρ(G) ≥ 4σ(G)

n
,

with equality if and only if G is transmission regular.

The following lemma will be helpful in the sequel. Its proof is similar to [28,
Lemma 2], and hence is excluded.

Lemma 2.3. A connected graph G has two distinct distance signless Laplacian eigen-

values if and only if G is a complete graph.

For non-increasing real sequences (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn)
of length n, we say that (x) is majorized by (y) or (y) majorizes (x), denoted by
(x) ⪯ (y) if

n
∑

i=1

xi =
n
∑

i=1

yi and
k
∑

i=1

xi ≤
k
∑

i=1

yi, for all k = 1, 2, . . . , n− 1.

The following observation can be found in [32].

Lemma 2.4 ([32]). Let (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn) be nonin-

creasing sequences of real numbers of length n. If (x) ⪯ (y), then for any convex

function ψ, we have
∑n

i=1 ψ(xi) ≤ ∑n
i=1 ψ(yi). Furthermore, if (x) ≺ (y) and ψ is

strictly convex, then
∑n

i=1 ψ(xi) <
∑n

i=1 ψ(yi).

Lemma 2.5 ([34]). Let G be a connected graph of order n having distance signless

Laplacian eigenvalues ρ1, ρ2, . . . , ρn and transmission degrees Tr1,Tr2, . . . ,Trn. Then

(Tr1,Tr2, . . . ,Trn) ⪯ (ρ1, ρ2, . . . , ρn).

Now, we present some upper bounds for the distance signless Laplacian Estrada
index involving different graph invariants.

Theorem 2.1. Let G be a connected graph of order n. Then, for any integer k0 ≥ 2,

D
Q
EE(G) ≤n− 1 −

√

√

√

√2
∑

1≤i<j≤n

(dij)2 +
n
∑

i=1

Tr2
i −4σ2(G)

n

+
k0
∑

k=2

Mk(G) −
(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

)k

k!
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+ e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n ,(2.1)

with equality if and only if G = K1.

Proof. We have

D
Q
EE(G) =

k0
∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

1

k!

n
∑

i=1

(

ρi − 2σ(G)

n

)k

≤
k0
∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

1

k!

n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

k

≤
k0
∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

1

k!





n
∑

i=1

(

ρi − 2σ(G)

n

)2




k
2

=
k0
∑

k=0

Mk(G)

k!
+

∑

k≥k0+1

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

)k

k!

=
k0
∑

k=0

Mk(G)

k!
+ e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n

−
k0
∑

k=0

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

)k

k!
,

and (2.1) follows. From the derivation of (2.1), it is evident that equality will be
attained in (2.1) if and only if G has no non-zero eigenvalues, i.e., G = K1. □

Remark 2.1. Since

Mk(G) =
n
∑

i=1

(

ρi − 2σ(G)

n

)k

≤
n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

k

≤




n
∑

i=1

(

ρi − 2σ(G)

n

)2




k
2

= (M2(G))
k
2 .

In the second inequality above, we use the following inequality: For nonnegative
a1, a2, . . . , an and integer k ≥ 2

n
∑

i=1

ak
i ≤

(

n
∑

i=1

a2
i

)
k
2

.(2.2)

Hence, Mk(G) −
(√

M2(G)
)k

≤ 0. Then

k0
∑

k=2

Mk(G) −
(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

)k

k!
≤ 0.
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Therefore, we have the following observation from Theorem 2.1,

D
Q
EE(G) ≤n− 1 −

√

√

√

√2
∑

1≤i<j≤n

(dij)2 +
n
∑

i=1

Tr2
i −4σ2(G)

n

+ e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n .

Theorem 2.2. Let G be a connected graph of order n. Then for any integer k0 ≥ 2

D
Q
EE(G) ≤n− 2 − ρ1 +

2σ(G)

n
−
√

ξ

+
k0
∑

k=2

Mk(G) −
(

ρ1 − 2σ(G)
n

)k −
(√

ξ
)k

k!
+ eρ1−

2σ(G)
n + e

√
ξ,(2.3)

where ξ = 2
∑

1≤i<j≤n(dij)
2 +

∑n
i=1 Tr2

i −4σ2(G)
n

−
(

ρ1 − 2σ(G)
n

)2
, with equality if and

only if G = K1.

Proof. We have

D
Q
EE(G) − eρ1−

2σ(G)
n

=
k0
∑

k=0

Mk(G) −
(

ρ1 − 2σ(G)
n

)k

k!
+

∑

k≥k0+1

1

k!

n
∑

i=2

(

ρi − 2σ(G)

n

)k

≤
k0
∑

k=0

Mk(G) −
(

ρ1 − 2σ(G)
n

)k

k!
+

∑

k≥k0+1

1

k!

n
∑

i=2

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

k

≤
k0
∑

k=0

Mk(G) −
(

ρ1 − 2σ(G)
n

)k

k!
+

∑

k≥k0+1

1

k!





n
∑

i=2

(

ρi − 2σ(G)

n

)2




k
2

=
k0
∑

k=0

Mk(G) −
(

ρ1 − 2σ(G)
n

)k

k!

+
∑

k≥k0+1

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n
−
(

ρ1 − 2σ(G)
n

)2
)k

k!

=
k0
∑

k=0

Mk(G) −
(

ρ1 − 2σ(G)
n

)k

k!

+ e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n
−(ρ1−

2σ(G)
n )

2
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−
k0
∑

k=0

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n
−
(

ρ1 − 2σ(G)
n

)2
)k

k!
,

where the first inequality follows from inequality:

n
∑

i=2

(

ρi − 2σ(G)

n

)k

≤
n
∑

i=2

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

k

.

Also, in the second inequality, we use the inequality (2.2). Further, bearing in mind

the power-series expansion of ex =
∑

k≥0
xk

k!
, we have

e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n
−(ρ1−

2σ(G)
n )

2

=
k0
∑

k=0

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n
−
(

ρ1 − 2σ(G)
n

)2
)k

k!

+
∑

k≥k0+1

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n
−
(

ρ1 − 2σ(G)
n

)2
)k

k!
.

Hence, the last equality holds. Then the result follows. □

Theorem 2.3. Let G be a connected graph of order n and diameter d. Then

1

2

√

2n(n2 + 4n− 3) ≤ D
Q
EE(G) ≤ n− 1 + e

√

n(n−1)

(

d2+
n2(n−1)

4
−n+1

)

.(2.4)

Equality holds on both sides of (2.4) if and only if G ∼= K1.

Proof. Lower bound. From (1.1), we get

D
Q
EE

2(G) =
n
∑

i=1

e2(ρi−
2σ(G)

n ) + 2
∑

i<j

e(ρi−
2σ(G)

n )e(ρj−
2σ(G)

n ).(2.5)

By the arithmetic-geometric mean inequality, we get

2
∑

i<j

e(ρi−
2σ(G)

n )e(ρj−
2σ(G)

n ) ≥n(n− 1)





∏

i<j

e(ρi−
2σ(G)

n )e(ρj−
2σ(G)

n )





2
n(n−1)

(2.6)

=n(n− 1)





(

n
∏

i=1

e(ρi−
2σ(G)

n )
)n−1





2
n(n−1)

=n(n− 1)(eM1)
2
n

=n(n− 1).(2.7)
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By means of a power-series expansion and M0 = n,M1 = 0 and

M2 = 2
∑

1≤i<j≤n

(dij)
2 +

n
∑

i=1

Tr2
i −4σ2(G)

n
,

we get

n
∑

i=1

e2(ρi−
2σ(G)

n ) =
n
∑

i=1

∑

k≥0

[

2
(

ρi − 2σ(G)
n

)]k

k!

=n+ 4
∑

1≤i<j≤n

(dij)
2 + 2

n
∑

i=1

Tr2
i −8σ2(G)

n
+

n
∑

i=1

∑

k≥3

[

2
(

ρi − 2σ(G)
n

)]k

k!
.

We use a multiplier r ∈ [0, 4] to arrive at

n
∑

i=1

e2(ρi−
2σ(G)

n ) ≥n+ 4
∑

1≤i<j≤n

(dij)
2 + 2

n
∑

i=1

Tr2
i −8σ2(G)

n
+ r

n
∑

i=1

∑

k≥3

(

ρi − 2σ(G)
n

)k

k!

=n+ 4
∑

1≤i<j≤n

(dij)
2 + 2

n
∑

i=1

Tr2
i −8σ2(G)

n
− rn− r

∑

1≤i<j≤n

(dij)
2

− r

2

n
∑

i=1

Tr2
i +

2σ2(G)

n
+ rD

Q
EE(G)

=(1 − r)n− 6σ2(G)

n
+ (4 − r)

∑

1≤i<j≤n

(dij)
2 + (2 − r

2
)

n
∑

i=1

Tr2
i

+ rD
Q
EE(G),

where from (1.3), we get

rD
Q
EE(G) =r

n
∑

i=1

∑

k≥0

(

ρi − 2σ(G)
n

)k

k!
= rn+ r

∑

1≤i<j≤n

(dij)
2 +

r

2

n
∑

i=1

Tr2
i

− 2σ2(G)

n
+ r

n
∑

i=1

∑

k≥3

(

ρi − 2σ(G)
n

)k

k!
,

and hence the last but one equality follows.
Since

∑

1≤i<j≤n(dij)
2 ≥ n(n−1)

2
and

∑n
i=1 Tr2

i ≥ n(n− 1)2, also by Cauchy-Schwartz

inequality we have (2σ(G))2 = (
∑n

i=1 Tri)
2 ≤ n

∑n
i=1 Tr2

i , and then, for r ≤ 1, we
obtain

n
∑

i=1

e2(ρi−
2σ(G)

n ) ≥ (1 − r)n+ (4 − r)
n(n− 1)

2
+

1 − r

2

(

n(n− 1)2
)

+ rD
Q
EE(G).

(2.8)
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By substituting (2.7) and (2.8) in (2.5), and solving for DQ
EE(G), we get

D
Q
EE(G) ≥ 1

2

(

r +
√

r2 − 2n(2r + 3) + 2n2(r + 4) + 2n3(1 − r)
)

.

It is easy to see that for n ≥ 2 the function

f(x) :=
1

2

(

x+
√

x2 − 2n(2x+ 3) + 2n2(x+ 4) + 2n3(1 − x)
)

monotonically decreases in the interval [0, 1]. As a result, the best bound for DQ
EE(G)

is attained for r = 0. This gives us the first part of the proof.
Upper bound. We have

D
Q
EE(G) =n+

n
∑

i=1

∑

k≥1

(

ρi − 2σ(G)
n

)k

k!

≤n+
n
∑

i=1

∑

k≥1

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

k

k!

=n+
∑

k≥1

1

k!

n
∑

i=1





(

ρi − 2σ(G)

n

)2




k
2

≤n+
∑

k≥1

1

k!





n
∑

i=1

(

ρi − 2σ(G)

n

)2




k
2

(2.9)

=n+
∑

k≥1

1

k!



2
∑

1≤i<j≤n

(dij)
2 +

n
∑

i=1

Tr2
i −4σ2(G)

n





k
2

=n− 1 +
∑

k≥0

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

)k

k!

=n− 1 + e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n .

Since dij ≤ d for i ≠ j and there are n(n−1)
2

pairs of vertices in G, we have

2
∑

1≤i<j≤n(dij)
2 +

∑n
i=1 Tr2

i −4σ2(G)
n

≤ 2n(n−1)
2

d2 + n3(n−1)2

4
− n(n− 1)2, so that

D
Q
EE(G) ≤ n− 1 + e

√

n(n−1)

(

d2+
n2(n−1)

4
−n+1

)

.

Hence, we get the right-hand side of the (2.4).
Now, suppose that the equality in (2.4) holds, then all the inequalities in the above

argument must hold as equalities. In particular, from (2.6), we get ρ1 = ρ2 = · · · =

ρn = 2σ(G)
n

(see [17]). Since, by Lemma 2.2, ρ1 ≥ 4σ(G)
n
, a contradiction. Thus, the

left- hand side equality in (2.4) holds if and only if G is an empty graph. Since G is a
connected graph, this only happens in the case of G ∼= K1, then the graph G has all
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zero DQ-eigenvalues. Again, let the right-hand side equality in (2.4) holds, then from

(2.9), we get ρ1 = ρ2 = · · · = ρn = 2σ(G)
n
. Similarly, we get G ∼= K1 and the proof is

complete. □

Now, we turn our attention to giving some lower bounds for the distance signless
Laplacian Estrada index in terms of other graph invariants.

Theorem 2.4. Let G be a connected graph of order n. Then

D
Q
EE(G) ≥ e

2σ(G)
n + (n− 1)e

−2σ(G)
n(n−1) ,(2.10)

with equality if and only if G = Kn.

Proof. Starting with (1.1) and using the arithmetic-geometric mean inequality, we get

D
Q
EE(G) =eρ1−

2σ(G)
n + eρ2−

2σ(G)
n + · · · + eρn−

2σ(G)
n

≥eρ1−
2σ(G)

n + (n− 1)

(

n
∏

i=2

eρi−
2σ(G)

n

)
1

n−1

(2.11)

=eρ1−
2σ(G)

n + (n− 1)
(

e
2σ(G)

n
−ρ1

)
1

n−1

.(2.12)

Consider the following function

f(x) = ex + (n− 1)e
−x

n−1 ,(2.13)

for x ≥ 0. We have

f ′(x) = ex − e
−x

n−1 ≥ 0,

for x ≥ 0. It is easy to see that f(x) is an increasing function for x ≥ 0. From (2.12)
and Lemma 2.2, we obtain

D
Q
EE(G) ≥ e

2σ(G)
n + (n− 1)e

−2σ(G)
n(n−1) .(2.14)

This completes the first part of the proof. Now, we suppose that the equality holds in
(2.10). Then all inequalities in the above argument must be equalities. From (2.14),

we have ρ1 = 4σ(G)
n
, which implies that G is a transmission regular graph. From (2.11)

and the arithmetic-geometric mean inequality, we get ρ2 = ρ3 = · · · = ρn. Therefore,
G has exactly two distinct distance signless Laplacian eigenvalues, and then by Lemma
2.3, G is the complete graph Kn.

Conversely, one can easily see that the equality holds in (2.10) for the complete
graph Kn. This completes the proof. □

Remark 2.2. For a graph G of order n ≥ 2 and size m, it was shown in [43] that

EE(G) ≥ e
2m
n + (n− 1)e− 2m

n(n−1) ,(2.15)

with equality if and only if G is the empty graph or the complete graph. Since

σ(G) ≥
(

n

2

)

≥ m and the function f(x) defined in (2.13) is increasing function, hence

our given lower bound for distance signless Laplacian Estrada index in (2.10) is larger
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than the above lower bound in (2.15) for usual Estrada index. If G is the complete

graph Kn, then σ(G) =
(

n

2

)

= m and therefore the bounds coincide.

Let M(G) = (
∏n

i=1 Tri)
1
n be the geometric mean of the transmission degrees se-

quence. Then 2σ(G)
n

≥ M(G) holds, and equality is attained if and only if Tr1 = · · · =
Trn (i.e., the graph G is transmission regular).

Lemma 2.6 ([44]). Let a1, a2, . . . , an be non-negative numbers. Then

n





1

n

n
∑

i=1

ai −
(

n
∏

i=1

ai

)
1
n



 ≤ n
n
∑

i=1

ai −
(

n
∑

i=1

a
1
2
i

)2

.

Theorem 2.5. Let G be a connected graph of order n ≥ 2. Then

D
Q
EE(G) ≥ e

2

√

4σ2(G)−M2(G)n

n(n−1)
−

2σ(G)
n + (n− 1)





e

2σ(G)
n

−

(

2

√

4σ2(G)−M2(G)n

n(n−1)

)







1
n−1

,(2.16)

with equality if and only if G = Kn.

Proof. Using the arithmetic-geometric mean inequality, we obtain

D
Q
EE(G) =eρ1−

2σ(G)
n + eρ2−

2σ(G)
n + · · · + eρn−

2σ(G)
n

≥eρ1−
2σ(G)

n + (n− 1)

(

n
∏

i=2

eρi−
2σ(G)

n

)
1

n−1

(2.17)

=eρ1−
2σ(G)

n + (n− 1)
(

e
2σ(G)

n
−ρ1

)
1

n−1

.

By Lemma 2.1, ρ1 ≥ 2

√

∑n

i=1
Tr2

i

n
. Setting

√
ai = Tri in Lemma 2.6, we get

n2





∑n
i=1 Tr2

i

n
−
(

2σ(G)

n

)2


 ≥
n
∑

i=1

Tr2
i −n

(

n
∏

i=1

Tr2
i

)
1
n

.

Combining this with Lemma 2.1, yields

ρ1 ≥ 2

√

√

√

√

4σ2(G) −M2(G)n

n(n− 1)
.(2.18)

It is easy to see that 2
√

4σ2(G)−M2(G)n
n(n−1)

≥ 4σ(G)
n
, and so,

2

√

√

√

√

4σ2(G) −M2(G)n

n(n− 1)
− 2σ(G)

n
≥ 2σ(G)

n
≥ 0.

Similarly to Theorem 3.4, we get the result. When G = Kn, we have ρ1 = 2n−2, ρ2 =
· · · = ρn = n−2, σ(G) = n(n−1)

2
andM(G) = n−1. Hence, DQ

EE(G) = en−1+(n−1)e−1

and the equality holds.
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Conversely, suppose that the equality holds. Then from (2.17), we have ρ2 = · · · =
ρn. Clearly 4σ2(G) = M2(G)n if and only if n = 1. From (2.18), it follows that ρ1 > 0
for n ≥ 2. Thus G has exactly two distinct distance signless Laplacian eigenvalues,
and so Lemma 2.3 implies that G is the complete graph Kn. □

Let G be a k-transmission regular graph. Then σ(G) = nk
2

and M(G) = k and
hence we get the following observation.

Corollary 2.1. Let G be a k-transmission regular graph. Then

D
Q
EE(G) ≥ ek + (n− 1)e

−k
n−1 ,

with equality if and only if G = Kn.

We recall Holder inequality. Let a1, . . . , an, b1, . . . , bn be non-negative real numbers,
p, q > 1 and 1

p
+ 1

q
= 1. Then

n
∑

i=1

aibi ≤
(

n
∑

i=1

a
p
i

)
1
p
(

n
∑

i=1

b
q
i

)
1
q

.

Here, we give the lower bound for DQ
EE(G) in terms of n and σ(G).

Theorem 2.6. Let G be a connected graph of order n. Then

D
Q
EE(G) > n+ 2

(

σ(G)

n

)2

.

Proof. By Holder inequality for p = q = 2, we have

2σ(G) =
n
∑

i=1

Tri ≤
√
n

(

n
∑

i=1

Tr2
i

)
1
2

.

Hence,
n
∑

i=1

Tr2
i ≥ 4σ2(G)

n
.(2.19)

Now, by Cauchy-Schwartz inequality, we have

Tr2
i =





n
∑

j=1

dij





2

≤ n
n
∑

j=1

d2
ij.

Hence,
n
∑

i=1

Tr2
i ≤ n

n
∑

i=1

n
∑

j=1

d2
ij,

and then by (2.19) we get

∑

1≤i<j≤n

d2
ij ≥ 1

2n

n
∑

i=1

Tr2
i ≥ 1

2n
.
4σ2(G)

n
=

2σ2(G)

n2
.
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Thus, we have

D
Q
EE(G) >n+

∑

1≤i<j≤n

(dij)
2 +

1

2

n
∑

i=1

Tr2
i −2σ2(G)

n

≥n+
2σ2(G)

n2
+

2σ2(G)

n
− 2σ2(G)

n

=n+ 2

(

σ(G)

n

)2

. □

Corollary 2.2. Let G be a connected graph of order n. Then

D
Q
EE(G) >

n2 + 1

2
.

Proof. Since dij ≥ 1 for i ̸= j and there are n(n−1)
2

pairs of vertices in G, from the
lower bound of Theorem 2.6, we get

D
Q
EE(G) > n+ 2

(

σ(G)

n

)2

≥ n+ 2





n(n−1)
2

n





2

=
n2 + 1

2
. □

Hence, the result.

3. Distance Signless Laplacian Estrada Index of some Classes of
Graphs

In this section we obtain the distance signless Laplacian Estrada index of some
classes of graphs.

Lemma 3.1. Let G be a k-transmission regular graph of order n. Then

D
Q
EE(G) = DEE(G).

Proof. Note that the distance signless Laplacian spectrum of the graph G consists of
k + µ1 ≥ k + µ2 ≥ · · · ≥ k + µn, where µ1 ≥ · · · ≥ µn is the distance spectrum of G.
Also it is easy to see that σ(G) = nk

2
. Then DQ

EE(G) =
∑n

i=1 e
k+µi−k = DEE(G). □

The Cartesian product of two graphs G and H, denoted by G × H, is the graph
with vertex set V (G) ×V (H) and two vertices (u1, u2) and (v1, v2) are adjacent if and
only if u1 = v1 and u2v2 ∈ E(H) or u2 = v2 and u1v1 ∈ E(G).

Corollary 3.1. Let G be an r-regular graph of diameter at most 2 with an adja-

cency matrix A and Spec(G) = ¶r, λ2, . . . , λn♢. Then, the distance signless Laplacian

Estrada index of H = G×K2 is

D
Q
EE(H) = e5n−2r−4 + e−n + n− 1 +

n
∑

i=2

e−2λi−4.
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Proof. Let V (G) = ¶v1, v2, . . . , vn♢, V (K2) = ¶w1, w2♢. From the fact

dH((vi, wj), (vs, wt)) = dG(vi, vs) + dK2(wj, wt) = dG(vi, vs) + 1,

we see that all vertices of H have the same transmission and TrH(vi, wj) = 5n−2r−4.

So Tr(H) = (5n − 2r − 4)I. Then σ(H) = n(5n−2r−4)
2

. Note that H = G × K2 has
distance spectrum (see [30])

Spec(H) =







5n− 2(r + 2) −2(λi + 2) −n 0

1 1 1 n− 1







for i = 2, . . . , n. Then

D
Q
EE(H) = e5n−2r−4 + e−n + n− 1 +

n
∑

i=2

e−2λi−4. □

Given a graph G, the graph G∇G is obtained by joining every vertex of G to every
vertex of another copy of G.

Corollary 3.2. Let G be an r−regular graph with an adjacency matrix A and

Spec(G) = ¶r, λ2, . . . , λn♢. Then, the distance signless Laplacian Estrada index of

G∇G is

D
Q
EE(G∇G) = e3n−r−2 + en−r−2 + 2

n
∑

i=2

e−2λi−4.

Proof. For v ∈ G∇G, it is easy to see that Tr(v) = d(v) + 2(n − d(v) − 1) + n =
3n−d(v)−2 = 3n−r−2. Then G∇G is a transmission regular graph and Tr(G∇G) =
(3n− r − 2)I. Note that the G∇G has distance spectrum (see [30])

Spec(G∇G) =







3n− r − 2 n− r − 2 −2(λi + 2)

1 1 2





 ,

for i = 2, . . . , n. Then

D
Q
EE(G∇G) = e3n−r−2 + en−r−2 + 2

n
∑

i=2

e−2λi−4. □

Next, we obtain the distance signless Laplacian Estrada index of the lexicographic
product G[H] of two graphs G and H. The following definition of the lexicographic
product of G and H is from [9].

Definition 3.1. Let G and H be two graphs on vertex sets V (G) = ¶u1, u2, . . . , up♢
and V (H) = ¶v1, v2, . . . , vn♢, respectively. Then their lexicographic product G[H] is
a graph defined by V (G[H]) = V (G) × V (H), the Cartesian product of V (G) and
V (H) in which u = (u1, v1) is adjacent to v = (u2, v2) if and only if either

(a) u1 is adjacent to v1 in G, or
(b) u1 = v1 and u2 is adjacent to v2 in G.
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Corollary 3.3. Let G be a k-transmission regular graph of order p. Let H be an

r-regular graph of order n with adjacency eigenvalues ¶r, λ2, . . . , λn♢. Let ¶µ1, . . . , µp♢
be the eigenvalues of the distance matrix D(G) of G. Then

D
Q
EE(G[H]) = e2n−r−2

p
∑

i=1

enµi + ne−4
n
∑

j=2

e−2λj .

Proof. For v ∈ G[H], it is easy to see that Tr(v) = r+2(n−r−1)+kn = kn+2n−r−2.
Then G[H] is a transmission regular graph and Tr(G[H]) = (kn+ 2n− r − 2)I. Note
that G[H] has distance spectrum (see [29])

Spec(G[H]) =







nµi + 2n− r − 2 −2(λj + 2)

1 n





 ,

for i = 1, . . . , p and j = 2, . . . , n. Then

D
Q
EE(G[H]) = e2n−r−2

p
∑

i=1

enµi + ne−4
n
∑

j=2

e−2λj . □

Theorem 3.1. Let G be an r-regular graph of order n, size m and diameter at most

2. If ¶2r, q2, . . . , qn♢ are the eigenvalues of the signless Laplacian matrix Q(G) of G,

then

D
Q
EE(G) = e2(n2−n−m) +

n
∑

i=2

e2m−2n−nqi .

Proof. We know that the transmission of each vertex v ∈ V (G) is Tr(v) = d(v) +
2(n− d(v) − 1) = 2n− d(v) − 1 and so transmission σ(G) of G is σ(G) = n2 − n−m.

Also

DQ(G) = Tr(G) +D(G) =(2n− 2)I − rI + 2J − 2I − A(G)

=(2n− 4)I + 2J −Q(G),

where J is the all ones matrix. Then

D
Q
EE(G) =

n
∑

i=1

eρi−
2σ(G)

n = e(4n−2r−4)−
2(n2−n−m)

n +
n
∑

i=2

e(2n−4−qi)−
2(n2−n−m)

n

=e2(n2−n−m) +
n
∑

i=2

e2m−2n−nqi . □

As an immediate consequence of the above theorem, we get the following.

Corollary 3.4. Let G be an r-regular graph of order n, size m and diameter at most

2. If ¶r, λ2, . . . , λn♢ are the eigenvalues of the adjacency matrix A(G) of G, then

D
Q
EE(G) = e2(n2−n−m) +

n
∑

i=2

e−n(λi+2).
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4. Relations Between Distance Signless Laplacian Estrada Index and
Distance Signless Laplacian Energy

The energy E(G) of a graph G is equal to the sum of the absolute values of the
eigenvalues of the adjacency matrix of G. This quantity, introduced first time in [20]
and having a clear connection to chemical problems, has now attracted much attention
of mathematicians and mathematical chemists. We observe that several interesting
results have been obtained for the energy of different graph structures. The pioneering
paper [20] further proposes the study of energy in graphs with an analogue of the
energy defined with respect to other (than adjacency) matrices assigned to the graphs.
This proposal has been put into effect and extended: the energy of a graph with
respect to Laplacian matrix as well as the energy of a graph with respect to distance
matrix, have been studied (see [25, 30] for more details in this subject). Recently,
Alhevaz et al. [1] have considered a new kind of energy with respect to the distance
signless Laplacian matrix, the concept of distance signless Laplacian energy, denoted
by EDQ(G), and defined as

EDQ(G) =
n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

.

In this section, we obtain some relations between EDQ(G) and DQ
EE(G) for a simple

connected graph G.

Theorem 4.1. Let G be a connected graph of order n with diameter d. Then

D
Q
EE(G) − EDQ(G) ≤n− 1 −

√

√

√

√n(n− 1)

(

d2 +
n2(n− 1)

4
− n+ 1

)

+ e

√

n(n−1)

(

d2+
n2(n−1)

4
−n+1

)

(4.1)

or

D
Q
EE(G) ≤ n− 1 + eE

DQ (G).(4.2)

Equality holds in (4.1) or (4.2) if and only if G ∼= K1.

Proof. From the proof of Theorem 2.3, we have

D
Q
EE(G) = n+

n
∑

i=1

∑

k≥1

(

ρi − 2σ(G)
n

)k

k!
≤ n+

n
∑

i=1

∑

k≥1

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

k

k!
.

Taking into account the definition of the distance signless Laplacian energy, we get

D
Q
EE(G) ≤ n+ EDQ(G) +

n
∑

i=1

∑

k≥2

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

k

k!
,
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which, as in Theorem 2.3, leads to

D
Q
EE(G) − EDQ(G) ≤n+

n
∑

i=1

∑

k≥2

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

k

k!

≤n− 1 −
√

√

√

√2
∑

1≤i<j≤n

(dij)2 +
n
∑

i=1

Tr2
i −4σ2(G)

n

+ e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n .

One can easily see that the function f(x) = ex − x monotonically increases for

x ≥ 0. Therefore, the best upper bound for DQ
EE(G) − EDQ(G) is obtained for

2
∑

1≤i<j≤n(dij)
2 +

∑n
i=1 Tr2

i −4σ2(G)
n

≤ 2n(n−1)
2

d2 + n3(n−1)2

4
− n(n− 1)2, and we get

D
Q
EE(G) − EDQ(G) ≤n− 1 −

√

√

√

√n(n− 1)

(

d2 +
n2(n− 1)

4
− n+ 1

)

+ e

√

n(n−1)

(

d2+
n2(n−1)

4
−n+1

)

.

Another way to obtain the relation between D
Q
EE(G) and EDQ(G) is as follows:

D
Q
EE(G) ≤n+

n
∑

i=1

∑

k≥1

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

k

k!

≤n+
∑

k≥1

1

k!

(

n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

)k

=n+
∑

k≥1

(EDQ(G))k

k!

=n− 1 +
∑

k≥0

(EDQ(G))k

k!
,

implying

D
Q
EE(G) ≤ n− 1 + eE

DQ (G).

Also, equality holds in (4.1) or (4.2) if and only G ∼= K1. □

Lemma 4.1 ([31]). Let x1, . . . , xn be positive numbers. Then

n
1

x1
+ . . .+ 1

xn

≤ n
√
x1x2 . . . xn.

Lemma 4.2 ([8]). Let a1, . . . , an and b1, . . . , bn be real numbers. Then
(

n
∑

i=1

ai

)

·
(

n
∑

i=1

bi

)

≤ n
n
∑

i=1

aibi.
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Equality occurs if and only if a1 = · · · = an or b1 = · · · = bn.

Theorem 4.2. Let G be a connected graph of order n. Then

e
−

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n ≤ EDQ(G) ≤ e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n .

Proof. First we prove the given lower bound. By definition of the energy and by the
arithmetic-geometric mean inequality, we have

EDQ(G) =
n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

=n

(

1

n

n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

)

≥n




n

√

√

√

√

∣

∣

∣

∣

∣

ρ1 − 2σ(G)

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ2 − 2σ(G)

n

∣

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∣

ρn − 2σ(G)

n

∣

∣

∣

∣

∣



 .

By Lemma 4.1, we have

n





n

√

√

√

√

∣

∣

∣

∣

∣

ρ1 − 2σ(G)

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ2 − 2σ(G)

n

∣

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∣

ρn − 2σ(G)

n

∣

∣

∣

∣

∣



 ≥ n







n
∑n

i=1
1

♣ρi−
2σ(G)

n ♣







≥n









n
∑n

i=1
1

♣ρi−
2σ(G)

n ♣
∑n

i=1

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣









≥n









n

n
∑n

i=1
1

♣ρi−
2σ(G)

n ♣
∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣









(by Lemma 4.2)

≥n




n

n2
∑n

i=1

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣



 > n





n

n2
∑n

i=1 e
♣ρi−

2σ(G)
n ♣





=
1

∑n
i=1

∑

k≥0
(♣ρi−

2σ(G)
n ♣)k

k!

=
1

∑

k≥0
1
k!

(

∑n
i=1

(∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

)k
)

≥ 1

∑

k≥0
1
k!

(

∑n
i=1

(∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

)2
)

k
2

(by (2.2))

=
1

∑

k≥0
1
k!

(

√

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

)k
(by (1.2)).

Therefore, we have EDQ(G) ≥ e
−

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n .

Now, we prove the given upper bound. We have,

EDQ(G) =
n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

<
n
∑

i=1

e♣ρi−
2σ(G)

n ♣
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=
n
∑

i=1

∑

k≥0

(∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

)k

k!
=
∑

k≥0

1

k!

n
∑

i=1

(∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

)k

≤
∑

k≥0

1

k!





n
∑

i=1

(∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

)2




k
2

( by inequality (2.2))

=
∑

k≥0

1

k!



2
∑

1≤i<j≤n

(dij)
2 +

n
∑

i=1

Tr2
i −4σ2(G)

n





k
2

(by Eq. (1.2))

=
∑

k≥0

1

k!





√

√

√

√2
∑

1≤i<j≤n

(dij)2 +
n
∑

i=1

Tr2
i −4σ2(G)

n





k

=e

√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1
Tr2

i −
4σ2(G)

n ,

and the proof is complete. □

Theorem 4.3. Let G be a connected graph of order n. Then

EDQ(G) ≥ 1

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

.(4.3)

Proof. By definition of the energy and by the arithmetic-geometric mean inequality,
we have

EDQ(G) =
n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

=n

(

1

n

n
∑

i=1

∣

∣

∣

∣

∣

ρi − 2σ(G)

n

∣

∣

∣

∣

∣

)

≥n




n

√

√

√

√

∣

∣

∣

∣

∣

ρ1 − 2σ(G)

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ2 − 2σ(G)

n

∣

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∣

ρn − 2σ(G)

n

∣

∣

∣

∣

∣



 .

By Lemma 4.1 and Lemma 4.2, we have

n





n

√

√

√

√

∣

∣

∣

∣

∣

ρ1 − 2σ(G)

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ2 − 2σ(G)

n

∣

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∣

ρn − 2σ(G)

n

∣

∣

∣

∣

∣



 ≥ n







n
∑n

i=1
1

♣ρi−
2σ(G)

n ♣







≥n









n
∑n

i=1
1

♣ρi−
2σ(G)

n ♣
∑n

i=1

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣









≥ n









n

n
∑n

i=1
1

♣ρi−
2σ(G)

n ♣
∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣









≥n




n

n2
∑n

i=1

∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣



 ≥ 1
∑n

i=1

(∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

)k

≥ 1
(

∑n
i=1

(∣

∣

∣ρi − 2σ(G)
n

∣

∣

∣

)2
)

k
2

=
1

(

2
∑

1≤i<j≤n(dij)2 +
∑n

i=1 Tr2
i −4σ2(G)

n

)
k
2

,

Hence, for k = 2, we arrive at (4.3). □
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5. Conclusions

In this paper, we have defined the distance signless Laplacian Estrada index, where
we have given some upper and lower bounds for DQ

EE(G) in terms of other graph
invariants. Also, we have obtained the distance signless Laplacian Estrada index
for some classes of graphs. Moreover, we derive some relations between D

Q
EE(G)

and the distance signless Laplacian energy of G. It would be interesting to give an
expression for DQ

EE(G) in terms of the ordinary Estrada index in certain classes of

graphs. Alternatively, one could possibly consider the range of values for DQ
EE(G)

over some family of graphs of fixed order, for example, trees on n vertices.

Acknowledgements. We are very grateful to the editor and the anonymous referee
for the valuable comments that have greatly improved the presentation of the paper.
The research of A. Alhevaz was in part supported by a grant from Shahrood University
of Technology, and the research of S. Pirzada is supported by SERB-DST, New Delhi
under the research project number MTR/2017/000084.

References

[1] A. Alhevaz, M. Baghipur and S. Paul, On the distance signlees Laplacian spectral radius and

the distance signless Laplacian energy of graphs, Discrete Math. Algorithms Appl. 10(3) (2018),
Article ID 1850035, 19 pages.

[2] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra
Appl. 439 (2013), 21Ű33.

[3] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl. 458

(2014), 301Ű386.
[4] S. K. Ayyaswamy, S. Balachandran, Y. B. Venkatakrishnan and I. Gutman, Signless Laplacian

Estrada index, MATCH Commun. Math. Comput. Chem. 66 (2011), 785Ű794.
[5] Ş. B. Bozkurt, C. Adiga and D. Bozkurt, On the energy and Estrada index of strongly quotient

graphs, Indian J. Pure Appl. Math. 43 (2012), 25Ű36.
[6] Ş. B. Bozkurt, C. Adiga and D. Bozkurt, Bounds on the distance energy and the distance Estrada

index of strongly quotient graphs, J. Appl. Math. (2013), Article ID 681019, 6 pages.
[7] Ş. B. Bozkurt and D. Bozkurt, Bounds for the distance Estrada index of graphs, in: Proc. Int.

Conf. Numer. Anal. Appl. Math. ICNAAM-2014, (2014), Article ID 1648.
[8] Z. Cvetkovski, Inequalities, Theorems, Techniques and Selected Problems, Springer, Berlin, 2012.
[9] D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs. Theory and application, Pure and

Applied Mathematics 87, Academic Press Inc., New York, 1980.
[10] J. A. de la Peĳa, I. Gutman and J. Rada, Estimating the Estrada index, Linear Algebra Appl.

427 (2007), 70Ű76.
[11] H. Deng, S. Radenković and I. Gutman, The Estrada index, in: D. Cvetković, I. Gutman (Eds.),

Applications of Graph Spectra, Mathematical Institute, Belgrade, 2009, 123Ű140.
[12] E. Estrada, Characterization of 3-D molecular structure, Chemical Physics Letters 319 (2000),

713Ű718.
[13] E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18 (2002), 697Ű704.
[14] E. Estrada, Characterization of the amino acid contribution to the folding degree of proteins,

Proteins 54 (2004), 727Ű737.



DISTANCE SIGNLESS LAPLACIAN ESTRADA INDEX 857

[15] E. Estrada, The Structure of Complex Networks-Theory and Applications, Oxford University
Press, New York, 2012.

[16] E. Estrada, J. A. Rodriguez-Velázguez and M. Randić, Atomic branching in molecules, Interna-
tional Journal of Quantum Chemistry 106 (2006), 823Ű832.

[17] G. H. Fath-Tabar and A. R. ŚAshraĄ, Some remarks on Laplacian eigenvalues and Laplacian

energy of graphs, Math. Commun. 15(2) (2010), 443Ű451.
[18] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[19] A. D. Güngör and Ş. B. Bozkurt, On the distance Estrada index of graphs, Hacet. J. Math. Stat.

38 (2009), 277Ű283.
[20] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103 (1978),

1Ű22.
[21] I. Gutman, H. Deng and S. Radenković, The Estrada index: an updated survey, in: D. M.

Cvetković, I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra, Matematički
Institut SANU, Beograd, Serbia, 2011, 155Ű174.

[22] I. Gutman, E. Estrada and J. A. Rodriguez-Velázquez, On a graph-spectrum-based structure

descriptor, Croat. Chem. Acta 80 (2007), 151Ű154.
[23] I. Gutman, B. Furtula, X. Chen and J. Qian, Resolvent Estrada index-computational and

mathematical studies, MATCH Commun. Math. Comput. Chem. 74 (2015), 431Ű440.
[24] I. Gutman, C. L. Medina, P. Pizarro and M. Robbiano, Graphs with maximum Laplacian and

signless Laplacian Estrada index, Discrete Math. 339 (2016), 2664Ű2671.
[25] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006), 29Ű37.
[26] C. X. He, Y. Liu and Z. H. Zhao, Some new sharp bounds on the distance spectral radius of

graph, MATCH Commun. Math. Comput. Chem. 63 (2010), 783Ű788.
[27] A. Ilić and B. Zhou, Laplacian Estrada index of trees, MATCH Commun. Math. Comput. Chem.

63 (2010), 769Ű776.
[28] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs,

Linear Algebra Appl. 430 (2009), 106Ű113.
[29] G. Indulal, The distance spectrum of graph compositions, Ars Math. Contemp. 2 (2009), 93Ű100.
[30] G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCH Commun.

Math. Comput. Chem. 60 (2008), 461Ű472.
[31] N. Jafari Rad, A. Jahanbani and I. Gutman, Zagreb energy and Zagreb Estrada index of graphs,

MATCH Commun. Math. Comput. Chem. 79 (2018), 371Ű386.
[32] J. Liu and B. Liu, A Laplacian-energy-like invariant of a graph, MATCH Commun. Math.

Comput. Chem. 59 (2008), 355Ű372.
[33] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Blackswan, Hyderabad,

2012.
[34] S. Pirzada, H. A. Ganie, A. Alhevaz and M. Baghipur, On the sum of the powers of distance

signless Laplacian eigenvalues of graphs, Indian J. Pure Appl. Math. (to appear).
[35] Y. Shang, More on the normalized Laplacian Estrada index, Appl. Anal. Discrete Math. 8 (2014),

346Ű357.
[36] Y. Shang, Distance Estrada index of random graphs, Linear Multilinear Algebra 63 (2015),

466Ű471.
[37] Y. Shang, Bounds of distance Estrada index of graphs, Ars Combin. 128 (2016), 287Ű294.
[38] Y. Shang, Perturbation results for the Estrada index in weighted networks, J. Phys. A: Math.

Theor. 44 (2011), Article ID: 075003, 8 pages.
[39] Y. Shang, Local natural connectivity in complex networks, Chinese Physics Letters 28(6) (2011),

Article ID: 068903, 4 pages.
[40] Y. Shang, Estimating the distance Estrada index, Kuwait J. Sci. 43(3) (2016), 14Ű19.
[41] Y. Shang, Further results on distance Estrada index of random graphs, Bull. Malays. Math. Sci.

Soc. 41(2) (2018), 537Ű544.



858 A. ALHEVAZ, M. BAGHIPUR, AND S. PIRZADA

[42] R. Xing, B. Zhou and J. Li, On the distance signless Laplacian spectral radius of graphs, Linear
Multilinear Algebra 62 (2014), 1377Ű1387.

[43] B. Zhou, On Estrada index, MATCH Commun. Math. Comput. Chem. 60 (2008), 485Ű492.
[44] B. Zhou, I. Gutman and T. Aleksić, A note on Laplacian energy of graphs, MATCH Commun.

Math. Comput. Chem. 60 (2008), 441Ű446.

1Faculty of Mathematical Sciences,
Shahrood University of Technology,
P.O. Box: 316-3619995161, Shahrood, Iran
Email address: a.alhevaz@gmail.com, a.alhevaz@shahroodut.ac.ir

Email address: maryamb8989@gmail.com

2Department of Mathematics,
University of Kashmir,
Hazratbal, Srinagar, Kashmir, India
Email address: pirzadasd@kashmiruniversity.ac.in



Kragujevac Journal of Mathematics

Volume 45(6) (2021), Pages 859–872.

CERTAIN PROPERTIES OF APOSTOL-TYPE

HERMITE-BASED-FROBENIUS-GENOCCHI POLYNOMIALS

WASEEM A. KHAN1 AND DIVESH SRIVASTAVA1

Abstract. This paper is well designed to set-up some new identities related to
generalized Apostol-type Hermite-based-Frobenius-Genocchi polynomials and by
applying the generating functions, we derive some implicit summation formulae
and symmetric identities. Further a relationship between Array-type polynomi-
als, Apostol-type Bernoulli polynomials and generalized Apostol-type Frobenius-
Genocchi polynomials is also established.

1. Introduction

Let a, b, c ∈ R
+, a ≠ b and x ∈ R. The generalized Apostol-Bernoulli, Euler

and Genocchi polynomials with the parameters are given by means of the following
generating function as follows (see [1Ű17]):

(1.1)


t

λbt − at

α

cxt =
∞
∑

n=0

B(α)
n (x; λ; a, b, c)

tn

n!
,

where ♣λ♣ = 1,
∣

∣

∣t ln b
a

∣

∣

∣ < 2π,

(1.2)


2

λbt + at

α

cxt =
∞
∑

n=0

E(α)
n (x; λ; a, b, c)

tn

n!
,

where ♣λ♣ = 1,
∣

∣

∣t ln b
a

∣

∣

∣ < π, and

(1.3)


2t

λbt + at

α

cxt =
∞
∑

n=0

G(α)
n (x; λ; a, b, c)

tn

n!
,

Key words and phrases. Hermite polynomials, Frobenius-Genocchi polynomials, Apostol-type
Hermite-based Genocchi polynomials.
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where ♣λ♣ = 1,
∣

∣

∣t ln b
a

∣

∣

∣ < π.

It is clear from (1.1), (1.2) and (1.3) that B(α)
n (x; λ; 1, e, e) = Bn(x; λ),

E(α)
n (x; λ; 1, e, e) = En(x; λ) and G(α)

n (x; λ; 1, e, e) = Gn(x; λ).
Recently, Kurt et al. [3] and Simsek (see [13, 14]) introduced the Apostol type

Frobenius-Euler polynomials deĄned as follows.
Let a, b, c ∈ R

+, a ≠ b, x ∈ R. The generalized Apostol type Frobenius-Euler
polynomials are deĄned by means of the following generating function:

(1.4)

(

at − u

λbt − u

)α

cxt =
∞
∑

n=0

H(α)
n (x; u, a, b, c, λ)

tn

n!
.

For x = 0 and α = 1 in (1.4), we get

at − u

λbt − u
=

∞
∑

n=0

Hn(u, a, b; λ)
tn

n!
,

where Hn(u, a, b; λ) denotes the generalized Apostol type Frobenius-Euler numbers
(see [14,16,17]).

On setting a = 1, b = e, λ = 1 in (1.4), the result reduces to


1 − u

et − u

α

ext =
∞
∑

n=0

H(α)
n (x; u)

tn

n!
, α ∈ Z,

where H(α)
n (x; u) is called classical Frobenius-Euler polynomial of order α.

Observe that H(1)
n (x, u) = Hn(x, u) which denotes the Frobenius-Euler polynomials

and H(α)
n (0; u) = H(α)

n (u), which denotes the Frobenius-Euler numbers of order α.
Hn(x; −1) = En(x), which denotes the Euler polynomials, (see [7, 11, 15]).

Very recently, Yaşar and Özarslan [17] introduced Frobenius-Genocchi polynomials
deĄned by means of the following generating relation:

(1.5)
(1 − λ)t

et − λ
ext =

∞
∑

n=0

GF
n (x; λ)

tn

n!
.

Taking λ = −1 in (1.5), we get Genocchi polynomials

2t

et + 1
ext =

∞
∑

n=0

Gn(x)
tn

n!
, ♣t♣ < π.

Pathan and Khan [10] introduced the generalized Hermite-based Bernoulli polyno-
mials HB(α)

n (x, y) of two variables deĄned by


t

et − 1

α

ext+yt2

=
∞
∑

n=0

HB(α)
n (x, y)

tn

n!
,

which is essentially a generalization of Bernoulli numbers, Bernoulli polynomials,
Hermite polynomials and Hermite-Bernoulli polynomials HBn(x, y) introduced by
Dattoli et al. [2, page 386, (1.6)] in the form



t

et − 1



ext+yt2

=
∞
∑

n=0

HBn(x, y)
tn

n!
.
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Definition 1.1. Let c > 0. The generalized 2-variable 1-parameter Hermite KampŠe
de Feriet polynomials Hn(x, y; c) polynomials for nonnegative integer n are deĄned by

(1.6) cxt+yt2

=
∞
∑

n=0

Hn(x, y; c)
tn

n!
.

This is an extended 2-variable Hermite Kampé de Fériet polynomials Hn(x, y) deĄned
by (see [5Ű7,10])

ext+yt2

=
∞
∑

n=0

Hn(x, y)
tn

n!
.

Note that Hn(x, y; e) = Hn(x, y). In order to collect the powers of t we expand the
left hand side of (1.6) to the representation

(1.7) Hn(x, y; c) = n!
[ n

2
]

∑

j=0

(ln c)n−2jxn−2jyj

j!(n − 2j)!
.

Simsek [13] constructed the λ-Stirling type number of second kind S(n, ν; a, b; λ)
by mean of the following generating function:

(1.8)
∞
∑

n=0

S(n, ν; a, b; λ)
tn

n!
=

(λbt − at)ν

ν!
,

and the generalized array type polynomials is deĄned by Simsek (see [13, page 6,
(3.1)])

∞
∑

n=0

Sn
ν (x; a, b; λ)

tn

n!
=

(λbt − at)ν

ν!
bxt.

Kurt and Simsek [3] introduced the polynomial Yn(x; λ; a), which is given by the
following generating function:

(1.9)
t

λat − 1
axt =

∞
∑

n=0

Yn(x; λ; a)
tn

n!
, a ≥ 1.

We also note that for x = 0, above equation gives a relation as Yn(0; λ; a) = Yn(λ; a)
(see [13, 14]). Again if we set x = 0 and a = 1 in (1.9), we get

t

λ − 1
=

∞
∑

n=0

Yn(0, λ; 1)
tn

n!
.

The paper is organized as follows. In Section 2, we introduce generalized Apostol-
type Hermite-based Frobenius-Genocchi polynomials HG(α)

n (x, y; u, a, b, c; λ) and their
properties. In Section 3, we derive some implicit summation formulae for general-
ized Apostol-type Hermite-based Frobenius-Genocchi polynomials. In Section 4, we
give general symmetry identities by using different analytical means and applying
generating functions and last Section 5, we Ąnd relation between λ-type Stirling poly-
nomials, Apostol-Bernoulli polynomials and generalized Apostol-type Hermite-based
Frobenius-Genocchi polynomials.
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2. Generalized Apostol-Type Hermite-Based-Frobenius-Genocchi
Polynomials HG(α)

n (x, y; u; a, b, c; λ)

The intent of this section is to deĄne the generalized Apostol-type Hermite-based-
Frobenius-Genocchi polynomials HG(α)

n (x, y; u; a, b, c; λ) with suitable properties.

Definition 2.1. For a, b, c ∈ R
+, a ≠ b, x, y ∈ R, the generalized Apostol-type

Hermite-based Frobenius-Genocchi polynomials HG(α)
n (x, y; u; a.b.c; λ) of order α are

deĄned by means of the following generating function:

(2.1)

(

(at − u)t

λbt − u

)α

cxt+yt2

=
∞
∑

n=0

HG(α)
n (x, y; u; a, b, c; λ)

tn

n!
.

Remark 2.1. For y = 0 (2.1) reduces to
(

(at − u)t

λbt − u

)α

cxt =
∞
∑

n=0

G(α)
n (x; u; a, b, c; λ)

tn

n!
,

where G(α)
n (x; u; a, b, c; λ) is known as Apostol-type Frobenius Genocchi polynomials

of order α (see [8]).

Remark 2.2. On setting x = y = 0 and α = 1 in (2.1), we have
(

(at − u)t

λbt − u

)

=
∞
∑

n=0

Gn(u; a, b; λ)
tn

n!
,

where Gα
n(u; a.b.c; λ) denotes the generalized Apostol-type Frobenius-Genocchi num-

bers.

Remark 2.3. If we set a = 1, b = c = e, u = −1, then (2.1) immediately reduces to
Hermite-based Genocchi polynomials (see [6, 7])



2t

λet + 1

α

ext =
∞
∑

n=0

HG(α)
n (x, y; λ), ♣t♣ < π.

Now we give some properties of the generalized Apostol-type Hermite-based- Frobe-
nius Genocchi polynomials HG(α)

n (x, y; u; a, b, c; λ), which are stated in terms of theo-
rems as follows.

Theorem 2.1. For a, b, c ∈ R
+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the following

result holds true

(2u − 1)
n
∑

r=0

(

n

r

)

HGr(x, y; u; a, b, c; λ)Gn−r(z; 1 − u; a, b, c; λ)(2.2)

=n(u − 1)HGn−1(x + z, y; u; a, b, c; λ) + nu HGn−1(x + z, y; 1 − u, a, b, c; λ)

+
n
∑

r=0

(

n

r

)

(ln a)n−r
HGr(x + z, y; u; a, b, c; λ)

−
n
∑

r=0

(

n

r

)

(ln a)n−r
HGr(x + z, y; 1 − u, a, b, c; λ).
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Proof. In order to prove (2.2), for α = 1, we get

(2u − 1)

(

(at − u)t

λbt − u

)

cxt+yt2

(

(at − (1 − u))t

λbt − (1 − u)

)

czt(2.3)

=t2(at − u)(at − (1 − u))c(x+z)t+yt2

[

1

λbt − u
−

1

λbt − (1 − u)

]

.

Employing the result of (2.1), (2.3) reduces as

(2u − 1)
∞
∑

r=0

HGr(x, y; u; a, b, c; λ)
tr

r!

∞
∑

n=0

Gn(z; 1 − u; a, b, c; λ)
tn

n!
(2.4)

=(at − (1 − u)t)
∞
∑

r=0

HGr(x + z, y; u, a, b, c; λ)
tr

r!
− (at − u)t

×
∞
∑

r=0

HGr(x + z, y; 1 − u; a, b, c; λ)
tr

r!
.

Using [15, page 100, (1)] (2.4) reduces to

(2u − 1)
∞
∑

n=0

n
∑

r=0



n

r



HGr(x, y; u; a, b, c; λ) HGn−r(z, y; 1 − u; a, b, c; λ)
tn

n!

(2.5)

=(at − (1 − u)t)
∞
∑

r=0

HGr(x + z, y; u, a, b, c; λ)
tr

r!
− (at − u)t

×
∞
∑

r=0

HGr(x + z, y; 1 − u; a, b, c; λ)
tr

r!

=(u − 1)
∞
∑

r=0

HGr(x + z, y; u, a, b, c; λ)
tr+1

r!
+ u

∞
∑

r=0

HGr(x + z, y; 1 − u, a, b, c; λ)
tr+1

r!

+
∞
∑

n=0

n
∑

r=0

(

n

r

)

(ln a)n−r
HGr(x + z, y; u; a, b, c; λ)

tn

n!

−
∞
∑

n=0

n
∑

r=0

(

n

r

)

(ln a)n−r
HGr(x + z, y; 1 − u; a, b, c; λ)

tn

n!
.

On comparing the coefficient of tn from the above equation, we arrive at our desired
result. □

Theorem 2.2. For a, b, c ∈ R
+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the following

relationship holds true

(2.6)
n
∑

k=0

HG
(−α)
k (−x, −y; u; a, b, c; λ) HG

(α−m)
(n−k) (x, y; u; a.b.c; λ) = G(−m)

n (u; a, b; λ).
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Proof. In order to prove (2.6), replacing x with −x, y with −y and α with −α in
(2.1), we get get

(2.7)
∞
∑

n=0

HG(−α)
n (−x, −y; u; a, b, c; λ)

tn

n!
=

(

(at − u)t

λbt − u

)(−α)

c−(xt+yt2).

Making use of the above equation in the left-hand side of (2.6), we can write

∞
∑

k=0

HG
(−α)
k (−x, −y; u; a, b, c; λ)

tk

k!

∞
∑

n=0

HG(α−m)
n (x, y; u; a, b, c; λ)

tn

n!
=

(

(at − u)t

λbt − u

)

−m

.

We can write the above equation as
∞
∑

k=0

HG
(−α)
k (−x, −y; u; a, b, c; λ)

tk

k!

∞
∑

n=0

HG(α−m)
n (x, y; u; a, b, c; λ)

tn

n!

=
∞
∑

n=0

G(−m)
n (u; a, b; λ)

tn

n!
.

Using [15, page 100, (1)] in the above equation and then comparing the coefficients
of tn, we immediately come to our desired result (2.6). □

Theorem 2.3. For n ≥ 0, p, q ∈ R, the following formula for generalized Apostol

type Frobenius-Genocchi-Hermite polynomials holds true

HG(α)
n (px, qy; u, a, b, c; λ) =

n
∑

k=0

n!

(n − k)!HG
(α)
n−k(x, y; u, a, b, c; λ)

×

[ k

2
]

∑

j=0

((p − 1)x ln c)k−2j((q − 1)y ln c)j

(k − 2j)!j!
.

Proof. Rewrite the generating function (2.1), we have
∞
∑

n=0

HG(α)
n (px, qy; u, a, b, c; λ)

tn

n!

=

(

(at − u)t

λbt − u

)α

cxt+yt2

c(p−1)xtc(q−1)yt2

=

(

∞
∑

n=0

HG(α)
n (x, y; u, a, b, c; λ)

tn

n!

)(

∞
∑

k=0

((p − 1)x ln c)k tk

k!

)

×





∞
∑

j=0

((q − 1)y ln c)j t2j

j!





=

(

∞
∑

n=0

HG(α)
n (x, y; u, a, b, c; λ)

tn

n!

)





∞
∑

k=0

∞
∑

j=0

((p − 1)x ln c)k((q − 1)y ln c)j tk+2j

k!j!



 .

Replacing k by k − 2j in above equation, we have
∞
∑

n=0

HG(α)
n (px, qy; u, a, b, c; λ)

tn

n!
=

(

∞
∑

n=0

HG(α)
n (x, y; u, a, b, c; λ)

tn

n!

)
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×







∞
∑

k=0

[ k

2
]

∑

j=0

((p − 1)x ln c)k−2j((q − 1)y ln c)j tk

(k − 2j)!j!







=
∞
∑

n=0

∞
∑

k=0

[ k

2
]

∑

j=0

HG(α)
n (x, y; u, a, b, c; λ)((p − 1)x ln c)k−2j((q − 1)y ln c)j tn+k

(k − 2j)!j!n!
.

Again replacing n by n − k in above equation, we have
∞
∑

n=0

HG(α)
n (px, qy; u, a, b, c; λ)

tn

n!

=
∞
∑

n=0

n
∑

k=0

[ k

2
]

∑

j=0

HG
(α)
n−k(x, y; u, a, b, c; λ)((p − 1)x ln c)k−2j((q − 1)y ln c)j

×
tn

(k − 2j)!j!(n − k)!
.

Finally, equating the coefficients of tn on both sides, we acquire the result. □

Remark 2.4. By taking c = e in Theorem 2.3, we get the following corollary.

Corollary 2.1. For p, q ∈ R, x, y ∈ C and n ≥ 0, we have

HG(α)
n (px, qy; u, a, b; λ)

=
n
∑

k=0

n!

(n − k)!HG
(α)
n−k(x, y; u, a, b; λ)

[ k

2
]

∑

j=0

((p − 1)x)k−2j((q − 1)y)j

(k − 2j)!j!
.

Theorem 2.4. For n ≥ 0, p, q ∈ R and x, y ∈ C, we have

HG(α)
n (px, qy; u, a, b, c; λ)(2.8)

=
n
∑

k=0

(

n

k

)

HG
(α)
n−k(x, y; u, a, b, c; λ)Hk((p − 1)x, (q − 1)y; c).

Proof. In order to proof above result, we set x as px and y as qy in (2.1),
∞
∑

n=0

HG(α)
n (px, qy; u, a, b, c; λ)

tn

n!
=

(

(at − u)t

λbt − u

)α

cxt+yt2

c(p−1)xtc(q−1)yt2

=
∞
∑

n=0

HG(α)
n (x, y; u, a, b, c; λ)

tn

n!

∞
∑

k=0

Hk((p − 1)x, (q − 1)y; c)
tk

k!
.

By assistance of [15] and then on comparing the coefficients of tn, we have arrive at
our result. □

Theorem 2.5. For n ≥ 0, p, q ∈ R and x, y ∈ C, we have

HG(α+β)
n (x + z, y + z; u, a, b, c; λ) =

n
∑

k=0

(

n

k

)

HG
(α)
k (x, z; u; a, b, c; λ)
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× HG
(β)
n−k(z, y; u; a, b, c; λ),

HG(−α)
n (2x, 2y; u2; a2, b2, c2; λ2) =

n
∑

k=0

(

n

k

)

HG
(−α)
k (x, y; u; a, b, c; λ)

× HH
(−α)
n−k (x, y; −u; a, b, c; λ).

Proof. Proof of these identities can be solved by making use of (2.1) and (1.5) with
some required calculations. □

3. Summation Formulae for Generalized Apostol-Type
Hermite-Based-Frobenius-Genocchi Polynomials

Here in this section, we provide the implicit formulae for generalized Apostol-type
Hermite-based-Frobinis-Genocchi polynomials.

Theorem 3.1. For a, b, c ∈ R
+, a ≠ b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the following

relation holds true

HG
(α)
k+l(z, y; u; a, b, c; λ) =

k,l
∑

n,m=0

(

l

m

)(

k

n

)

(z − x)m+n(ln c)m+n(3.1)

× HG
(α)
k−n+l−m(x, y; u; a, b, c; λ).

Proof. Replacing t by t + w in (2.1) and then using ([15], page 52, (2)), in the above
equation, we get

(3.2)

(

(a(t+w) − u)(t + w)

λbt+w − u

)α

cy(t + w)2 = c−x(t+w)
∞
∑

k,l=0

HG
(α)
k+l(x, y; u; a, b, c; λ)

tk

k!

wl

l!
.

Replacing x by z and then equating the obtained equation from the above equation
(3.2), we get

c(z−x)(t+w)
∞
∑

k,l=0

HG
(α)
k+l(x; u; a, b, c; λ))

tk

k!

wl

l!
=

∞
∑

k,l=0

HG
(α)
k+l(z, y; u; a, b, c; λ))

tk

k!

wl

l!
.

Expanding the exponent part of left-hand side, the above equation converts as
∞
∑

N=0

(ln c)[(z − x)(t + w)]N

N !

∞
∑

k,l=0

HG
(α)
k+l(x, y; u; a, b, c; λ))

tk

k!

wl

l!
(3.3)

=
∞
∑

k,l=0

HG
(α)
k+l(z, y; u; a, b, c; λ))

tk

k!

wl

l!
.

On comparing the coefficients of equal powers of t and w after taking the reference
of [15, page 52, (2) and page 100, (1)] to the above equation, we attain our required
result. □

Corollary 3.1. For l = 0, the above result reduces to

HG
(α)
k (z, y; u; a, b, c; λ) =

k
∑

n=0

(

k

n

)

(z − x)n(ln c)n
HG

(α)
k−n(x, y; u; a, b, c; λ).
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Theorem 3.2. For a, b, c ∈ R
+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, n ≥ 0, the

following relation holds true

HG(α)
n (x, y; u; a, b, c; λ) =

n
∑

m=0

(

n

m

)

G
(α)
n−m(u; a, b; λ) Hm(x, y; c).

Proof. From equation (2.1) and (1.7), we have
∞
∑

n=0

HG(α)
n (x, y; u; a, b, c; λ)

tn

n!
=

(

(at − u)t

λbt − u

)α

cxt+yt2

=
∞
∑

n=0

G(α)
n (u; a, b)

tn

n!

∞
∑

m=0

Hm(x, y; c)
tm

m!
.

On using [15, page 100, (1)], and then comparing the coefficient of equal powers, we
have the required result. □

Theorem 3.3. For a, b, c ∈ R
+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the relation

holds true

HG(α)
n (x + 1, y; u; a, b, c; λ) =

n
∑

m=0

(

n

m

)

(ln c)n−m
HG(α)

m (x, y; u; a, b, c; λ).

Proof. Replacing x by x + 1, (2.1) reduces to
∞
∑

n=0

HG(α)
n (x + 1, y; u; a, b, c; λ)

tn

n!
=

(

(at − u)t

λbt − u

)α

c(x+1)t+yt2

=

(

(at − u)t

λbt − u

)α

c(xt+yt2)ct

=
∞
∑

m=0

HG(α)
m (x, y; u; a, b, c; λ)

tm

m!

∞
∑

n=0

(ln c)n tn

n!
.

Using [15, page 100, (1)] and on comparing coefficient of tn, we have the required
result. □

Theorem 3.4. For a, b, c ∈ R
+, a ≠ b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the relation

holds true

HG(α+1)
n (x, y; u; a, b, c; λ) =

n
∑

m=0

(

n

m

)

Gn−m(u; a, b; λ)HG(α)
m (x, y; u; a, b; λ).

Proof. Replacing α by α + 1 in (2.1), we have
(

(at − u)t

λbt − u

)α+1

cxt+yt2

=

(

(at − u)t

λbt − u

) (

(at − u)t

λbt − u

)α

cxt+yt2

=
∞
∑

n=0

Gn(u; a, b; λ)
tn

n!

∞
∑

m=0

HG(α)
m (x, y; u; a, b, c; λ)

tm

m!
.

Making use of [15, page 100, (1)] and then on comparing coefficient of tn, we lead to
our required result. □
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Theorem 3.5. For a, b, c ∈ R
+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the relation

holds true

HG(α)
n (y, x; u; a, b, c; λ) =

[ n

2
]

∑

k=0

n!

k! (n − 2k)!
G

(α)
n−2k(y, u; a, b, c; λ)(x ln c)k.

Proof. Interchanging x and y in (2.1), we have
(

(at − u)t

λbt − u

)α

cyt+xt2

=
∞
∑

n=0

HG(α)
n (y, x; u; a, b, c; λ)

tn

n!

=
∞
∑

n=0

G(α)
n (y; u; a, b, c; λ)

tn

n!

∞
∑

k=0

(x ln c)k t2k

k!
.

Making use of [15, page 100, (3))] and then on comparing coefficient of tn, we lead to
our required result. □

4. Symmetric Identities

In this section, we establish symmetric identities for generalized Apostol type
Hermite-based Frobenius-Genocchi polynomials by applying the generating function
(2.1). Such type of identities have been introduced by many authors namely Khan
[6], Khan et al. [5, 7] and Pathan and Khan [10Ű12].

Theorem 4.1. Let a, b, c > 0, a ≠ b, x, y ∈ R and n ≥ 0, the following relation holds

true

n
∑

k=0

(

n

k

)

bkan−k
HG

(α)
n−k(bx, b2y; u; A, B, c; λ)HG

(α)
k (ax, a2y; u; A, B, c; λ)(4.1)

=
n
∑

k=0

(

n

k

)

akbn−kG
(α)
n−k(ax, a2y; u; A, B, c; λ)HG

(α)
k (bx, b2y; u; A, B, c; λ).

Proof. In order to proof (4.1), we suppose a function H(t) as

H(t) =

[(

(Aat − u)at

λBat − u

)(

(Abt − u)bt

λBbt − u

)]α

c2(abxt+a2b2yt2).

The above expression is symmetric in a and b hence we can write above equation into
two ways as follows:

H(t) =
∞
∑

n=0

HG(α)
n (bx, b2y; u; A, B, c; λ)

(at)n

n!

∞
∑

k=0

HG
(α)
k (ax, a2y; u; A, B, c; λ)

(bt)k

k!

(4.2)

=
∞
∑

n=0

n
∑

k=0

(

n

k

)

bkan−k
HG

(α)
n−k(bx, b2y; u; A, B, c; λ)HG

(α)
k (ax, a2y; u; A, B, c; λ)

tn

n!
.
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Again we can write

H(t) =
∞
∑

n=0

HG(α)
n (ax, a2y; u; A, B, c; λ)

(bt)n

n!

∞
∑

k=0

HG
(α)
k (bx, b2y; u; A, B, c; λ)

(at)k

k!

(4.3)

=
∞
∑

n=0

n
∑

k=0

(

n

k

)

akbn−k
HG

(α)
n−k(ax, a2y; u; A, B, c; λ)HG

(α)
k (bx, b2y; u; A, B, c; λ)

tn

n!
.

Comparing (4.2) and (4.3), we arrive at our desired result. □

Corollary 4.1. For α = 1 in Theorem 4.1, we have the following symmetric identity:

n
∑

k=0

(

n

k

)

bkan−k
HGn−k(bx, b2y; u; A, B, c; λ)HGk(ax, a2y; u; A, B, c; λ)

=
n
∑

k=0

(

n

k

)

akbn−k
HGn−k(ax, a2y; u; A, B, c; λ)HGk(bx, b2y; u; A, B, c; λ).

Theorem 4.2. Let a, b, c > 0, a ̸= b, x, y ∈ R and n ≥ 0, the following relation holds

true:
n
∑

k=0

(

n

k

)

a−1
∑

i=0

b−1
∑

j=0

(−λ)(i+j)bkan−k
HG

(α)
n−k

(

bx +
b

a
i + j, b2y; u; A, B, c; λ

)

× G
(α)
k (az, 0; u; A, B, c; λ)

=
n
∑

k=0

b−1
∑

i=0

a−1
∑

j=0

(−λ)(i+j)

(

n

k

)

akbn−k
HG

(α)
n−k



ax +
a

b
i + j, a2y; u; A, B, c; λ



× G
(α)
k (bz, 0; u; A, B, c; λ).

Proof. In order to prove above result, we suppose I(t) is

I(t) =

[(

(Aat − u)at

λBat − u

)(

(Abt − u)bt

λBbt − u

)]α
(1 + λ(−1)a+1cabt)2

(λcat + 1)(λcbt + 1)
cab(x+z)t+a2b2yt2

=

(

(Aat − u)at

λBat − u

)α

cabxt+a2b2yt2

a−1
∑

i=0

(−λ)icibt

(

(Abt − u)bt

λBbt − u

)α

cabzt
b−1
∑

j=0

(−λ)jcjat.

Using [15, page 100, (1)] we have

I(t) =
∞
∑

n=0

n
∑

k=0

(

n

k

)

a−1
∑

i=0

b−1
∑

j=0

(−λ)i+jan−kbk
HG

(α)
n−k(bx +

b

a
i + j, b2y; u; A, B, c; λ)

× G
(α)
k (az; u; A, B, c; λ)

tn

n!
.

On the other hand, we have

I(t) =
∞
∑

n=0

n
∑

k=0

(

n

k

)

b−1
∑

i=0

a−1
∑

j=0

(−λ)i+jbn−kak
HG

(α)
n−k



ax +
a

b
i + j, a2y; u; A, B, c; λ


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× G
(α)
k (bz; u; A, B, c; λ)

tn

n!
.

On comparing both the results, we have the required relation. □

5. Relation Between λ-Type Striling Numbers of Second Kind,
Apostol-Bernoulli Polynomial and Generalized Apostol-Type

Hermite-Based-Frobenius-Genocchi Polynomial

This section deals with some relationships in between Array-type polynomials,
Apostol-Bernoulli polynomial and generalized Apostol-type Hermite-based Frobenius-
Genocchi polynomial.

Theorem 5.1. For a, b, c ∈ R
+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z and ν be an

integer, then we have

HG
(−ν)
n−2ν(x, y; u; a, b, b; λ) =

(ν)!

(−n)2ν

n
∑

k=0

l
∑

m=0



m

k



(

n

m

)

S

(

k, v, 1, b;
λ

u

)

(5.1)

× Y
(ν)

m−k



1

u
; a



Hl−m(x, y).

Proof. In order to proof above result, we replace of c with b and α with −ν in equation
(2.1), we get

∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn

n!
=

(

(at − u)t

λbt − u

)(−ν)

bxt+yt2

.

On arranging the above equation, we arrive at

∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn

n!
= (ν!)

(

λ
u
bt − 1

ν
bxt+yt2

(ν!)
(

at

u
− 1

ν
tν

tν

tν
.

By assistance of (1.8) and (1.9), above equation reduces to
∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn+2ν

n!
=(ν!)

∞
∑

k=0

S

(

n, v, 1, b;
λ

u

)

tk

k!
(5.2)

×
∞
∑

m=0

Y (ν)
m



1

u
, 1; a



tm

m!

∞
∑

l=0

Hl(x, y; b)
tl

l!
.

Using Lemma [15, page 100, (1)] we get

∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn+2ν

n!
=ν!

∞
∑

l=0

m
∑

k=0

l
∑

m=0



m

k



(

l

m

)

S

(

k, v, 1, b;
λ

u

)

× Y
(ν)

m−k



1

u
, 1; a



Hl−m(x, y; b)
tl

l!
.

Using [15, page 23, (22) and (23)] and replacing l by n, and then by comparing the
coefficients of tn we arrive at our required result. □
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Theorem 5.2. For a, b, c ∈ R
+, a ̸= b, x ∈ R, λ ∈ C, k ∈ N, α ∈ Z and ν be an

integer, we have

HG
(−ν)
n−2ν(x, y; u; a, b, b; λ) =

(ν)!

(−n)2ν

n
∑

k=0

(

n

k

)

S

(

k, ν, 1, b,
λ

u

)

× HB
(ν)
n−k



x, y,
1

u
, 1, a, b



.

Proof. Making replacement of c with b and α with −ν in (2.1), we get

∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn

n!
=

(

(at − u)t

λbt − u

)(−ν)

bxt+yt2

.

On arranging the above equation, we arrive at

∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn

n!
= (ν!)

(

λ
u
bt − 1

ν
bxt+yt2

(ν!)
(

at

u
− 1

ν
tν

tν

tν
.

Using (1.8) and (1.1), the above equation converts into
∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn+2ν

n!
=(ν!)

∞
∑

k=0

S

(

k, ν, 1, b;
λ

u

)

tk

k!

×
∞
∑

n=0

HB(ν)
n



x, y,
1

u
, 1, a, b



tn

n!
.

Using [15, page 100, (1)] right-hand side, it converts as follows
∞
∑

n=0

HG(−ν)
n (x, y; u; a, b, b; λ)

tn+2ν

n!
=ν!

∞
∑

n=0

n
∑

k=0

(

n

k

)

S

(

k, ν, 1, b,
λ

u

)

× HB
(ν)
n−k



x, y,
1

u
, 1, a, b



tn

n!!
.

Using [15, page 23, (22) and (23)] and replacing l with n, then by comparing the
coefficients of tn, we arrive at our required result. □
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CONSTRUCTION OF L-BORDERENERGETIC GRAPHS

SAMIR K. VAIDYA1 AND KALPESH M. POPAT2

Abstract. If a graph G of order n has the Laplacian energy same as that of
complete graph Kn then G is said to be L-borderenergeic graph. It is interesting
and challenging as well to identify the graphs which are L-borderenergetic as only few
graphs are known to be L-borderenergetic. In the present work we have investigated
a sequence of L-borderenergetic graphs and also devise a procedure to Ąnd sequence
of L-borderenergetic graphs from the known L-borderenergetic graph.

1. Introduction

Throughout this paper, we begin with finite, undirected and simple graph G. For
a standard terminology and notations in graph theory we follow Balakrishnan and
Ranganathan [1], while the terms related to algebra are used in the sense of Lang [8].
Throughout this paper G, Kp and Kp, respectively, denote complement of G, complete
graph on p vertices and null graph with p vertices. The average vertex degree of G is

denoted by d and defined as d =
∑

di

n
, where di is degree of vertex vi.

Let G be an undirected simple graph with vertices v1, v2, . . . , vn. The adjacency

matrix denoted by A(G) of G is defined to be A(G) = [aij], such that, aij = 1 if vi is
adjacent, with vj and 0 otherwise. The eigenvalues λ1, λ2, . . . , λn of A(G) are known
as eigenvalues of graph G. The energy E(G) of graph G is defined by

E(G) =
n
∑

i=1

♣λi♣ .

The concept of graph energy was introduced by Gutman [6] in 1978. It is well
known that the energy of complete graph is 2(n − 1). In 1978 Gutman [6] conjectured
that among all the graph with n vertices, the complete graph Kn has the maximum

Key words and phrases. Borderenergetic, L-borderenergetic, energy.
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DOI 10.46793/KgJMat2106.873V
Received: March 12, 2019.
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energy. This conjecture was disproved by Walikar et al. [12] by showing existence
of graphs whose energy is greater than that of complete graphs. The graphs whose
energy is 2(n − 1) are termed as Borderenergetic according to Gong et al. [5].

Let D(G) be the diagonal matrix of whose (i, i)th entry is the degree of a vertex vi.
The matrix L(G) = D(G)−A(G) is called the Laplacian matrix of G. The eigenvalues
of L(G) are denoted by µ1, µ2, . . . , µn−1, µn. It is well known that L(G) is a positive
semi definite and singular matrix. So, for i = 1, 2, . . . , n − 1, µi ≥ 0 and µn = 0. The
collection of all Laplacian eigenvalues together with their multiplicities is known as
Laplacian spectra (L-spectra). Hence,

specL(G) =

(

µ1 µ2 · · · µn−1 µn = 0
m(µ1) m(µ2) · · · m(µn−1) m(µn)



.

The concept of Laplacian energy of G was introduced by Gutman and Zhou [7], is

defined by LE(G) =
∣

∣

∣µi − d̄
∣

∣

∣, where µi are the Laplacian eigenvalues of G and d̄ is

the average vertex degree of G.
Recently, a concept analogous to borderenergetic graphs in the context of Laplacian

energy has been introduced by Tura [10] which is teremed as L-borderenergetic graphs.
According to him, a graph G of order n is said to be L-borderenergetic if LE(G) =
LE(Kn) = 2(n − 1). Let S1

n be the graph obtained from an n-order star Sn by
adding an edge between any two pendant vertices. Obviously, S1

n is an unicyclic and
threshold graph. Deng et al. [3] have shown that S1

n is L-borderenergetic graph. Same
authors [3] have established several characterizations on L-borderenergetic graphs
with maximum degree at most 4.

Obviously there does not exist L-borderenergetic graph on two vertices. Hou and
Tao [9] have proved that a L-borderenergetic graph on n vertices has at least n edges.
As the only graph with three vertices are the paths P3 or K3, there does not exist a
borderenergetic graphs on three vertices. By applying computer search, Hou and Tou
[9] have obtained total 185 non isomorphic, non complete L-borderenergetic graphs of
order upto 10. Elumalai and Rostami [4] corrected this number to 307 (see Table 1).

Table 1.

order 4 5 6 7 8 9 10
number 2 1 11 5 33 23 232

It is very interesting to investigate a graph or graph families which are L-border-
energetic because very few graphs are known to be L-borderenergetic. Here we have
devised a procedure to construct a sequence of L borderenergetic graphs. We begin
the next section with a definition and some existing results for the advancement of
the discussion.
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2. Main Result

Definition 2.1. The join of G1 and G2 is a graph G = G1 ∨ G2 with vertex set
V (G1) ∪ V (G2) and an edge set consisting of all the edges of G1 and G2 together with
the edges joining each vertex of G1 with every vertex of G2.

Proposition 2.1 ([2]). Let G1 and G2 be graphs of n1 and n2 vertices, respectively.

If α1, α2, . . . , αn1−1, αn1 = 0 and β1, β2, . . . , βn2−1, βn2 = 0 be L-spectra of G1 and G2,

respectively. Then the L-spectra of G1 ∨ G2 are

n2 + α1, n2 + α2, . . . , n2 + αn1−1, n1 + β1, n1 + β2, . . . , n1 + βn2−1, n1 + n2, 0.

Theorem 2.1. Let G be a L-borderenergetic graph of order n with average vertex

degree d̄ ∈ Z. Then for p ̸= 0, G ∨ Kp is L-borderenergetic if p = n − d̄.

Proof. Let µ1, µ2, . . . , µn−1, µn = 0 be L-spectra of G. As G is L-borderenergetic of
order n, LE(G) = 2n − 2, which implies that

n
∑

i=1

∣

∣

∣µi − d̄
∣

∣

∣ = 2n − 2.

Hence,

(2.1)
n−1
∑

i=1

∣

∣

∣µi − d̄
∣

∣

∣ = 2n − 2 − d̄.

By Proposition 2.1, L-spectra of G ∨ Kp is

specL(G) =

(

µ1 + p µ2 + p · · · µn−1 + p n n + p 0
1 1 · · · 1 p − 1 1 1



.

If d̄′ is average vertex degree of newly constructed graph G ∨ Kp, then

d̄′ =
nd̄ + 2np

n + p
.

Note that for each 1 ≤ i ≤ n − 1

µi + p − d̄′ = µi + p −
nd̄ + 2np

p + n

= µi − d̄ +

(

p + d̄ −
nd̄ + 2np

p + n



= µi − d̄ −
p(n − p − d̄)

p + n
.

Now,

LE(G ∨ Kp) =
n−1
∑

i=1

∣

∣

∣µi + p − d̄′

∣

∣

∣+ (p − 1)
∣

∣

∣n − d̄′

∣

∣

∣+
∣

∣

∣n + p − d̄′

∣

∣

∣+
∣

∣

∣d̄′

∣

∣

∣
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=
n−1
∑

i=1

∣

∣

∣

∣

∣

µi − d̄ −
p(n − p − d̄)

p + n

∣

∣

∣

∣

∣

+ (p − 1)

∣

∣

∣

∣

∣

n −
nd̄ + 2np

n + p

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n + p −
nd̄ + 2np

n + p

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

nd̄ + 2np

n + p

∣

∣

∣

∣

∣

=
n−1
∑

i=1

∣

∣

∣

∣

∣

µi − d̄ −
p(n − p − d̄)

p + n

∣

∣

∣

∣

∣

+ (p − 1)

∣

∣

∣

∣

∣

n(n − p − d̄)

n + p

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

p +
n(n − p − d̄)

n + p

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n −
n(n − p − d̄)

n + p

∣

∣

∣

∣

∣

.

If p = n − d̄, then

LE(G ∨ Kp) =
n−1
∑

i=1

∣

∣

∣µi − d̄
∣

∣

∣+ ♣p♣ + ♣n♣ .

Therefore, by (2.1), LE(G ∨ Kp) = 2n − 2 − d̄ + p + n = 2n + 2p − 2 = 2(n + p − 1).
Hence, G ∨ Kp is L-borderenergetic. □

3. Sequence of L-Borderenergetic Graphs

In this section we construct an infinite sequence of L-borderenergetic graphs. We
term the graph under consideration as underlying graph. To construct the sequence
we take any L-borderenergetic graphs of order n with average vertex degree d̄ ∈ Z as
underlying graph and then the sequence is obtained by joining n − d̄ vertices at each
iteration.

Let G(0) is any L-borderenergetic graph of order n with average vertex degree d̄ ∈ Z.
Consider an infinite sequence of graphs H = ¶G(0), G(1), . . . , G(k), . . . ♢ such that

G(1) = G(0) ∨ Kn−d̄, G(2) = G(1) ∨ Kn−d̄, . . . , G(k) = G(k−1) ∨ Kn−d̄, . . .

Note that each G(k) is of order n+k(n−d̄) with average vertex degree dk = d̄+k(n−d̄).

Lemma 3.1. Let G(0) be a graph of order n with average vertex degree d̄ ∈ Z with

Laplacian eigenvalues µ1, µ2, . . . , µn−1, µn = 0. Then for any G(k) ∈ H, k ≥ 1, the

Laplacian spectrum of G(k) is

specL(G(k))

=





µ1 + k(n − d̄) · · · µn−1 + k(n − d̄) n + (k − 1)(n − d̄) n + k(n − d̄) 0

1 · · · 1 k(n − d̄ − 1) k 1



 .

Proof. We prove this result by taking induction on k. From Theorem 2.1, it is clear
that result is true for k = 1. Assume that the result is true for k = s − 1. Then by
induction hypothesis

spec
L

(G(s−1))

=

(

µ1 + (s − 1)(n − d̄) · · · µn−1 + (s − 1)(n − d̄) n + (s − 2)(n − d̄) n + (s − 1)(n − d̄) 0

1 · · · 1 (s − 1)(n − d̄ − 1) (s − 1) 1



.
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For k = s, G(s) = G(s−1) ∨ Kn−d̄, from Proposition 2.1,

specL(G(s))

=





µ1 + s(n − d̄) · · · µn−1 + s(n − d̄) n + (s − 1)(n − d̄) n + s(n − d̄) 0

1 · · · 1 s(n − d̄ − 1) s 1



 .

Thus, the result is true for all s ∈ N. Hence, by induction the result follows. □

Theorem 3.1. For each r ≥ 1, G(k) ∈ H is L-borderenergetic with Kn+k(n−d̄) for each

k ≥ 1.

Proof. We have already shown that the order and average vertex degree of G(k) are
n + k(n − d̄) and dk = d̄ + k(n − d̄), respectively, for each k ≥ 1.

LE(G(k)) =
n−1
∑

i=1

∣

∣

∣µi + k(n − d̄) − d̄ − k(n − d̄)
∣

∣

∣

+ k(n − d̄ − 1)
∣

∣

∣n + (k − 1)(n − d̄) − d̄ − k(n − d̄)
∣

∣

∣

+ k
∣

∣

∣n + k(n − d̄) − d̄ − k(n − d̄)
∣

∣

∣+
∣

∣

∣d̄ + k(n − d̄)
∣

∣

∣

=
n−1
∑

i=1

∣

∣

∣µi − d̄
∣

∣

∣+ k
(

n − d̄


+ d̄ + k(n − d̄)

=2n − 2 − d̄ + 2k(n − d̄) + d̄

=2(n + k(n − d̄) − 1) = LE(Kn+k(n−d̄)).

Hence, G(k) is L-borderenergetic with Kn+k(n−d̄) for each k ≥ 1. □

4. Some More Sequences From Known L-Borderenergetic Graphs

In this section we construct two infinite sequences of L-borderenergetic graphs

Gi = ¶G
(0)
i , G

(1)
i , . . . , G

(k)
i , . . . ♢ ⊆ H for i = 1, 2, by taking some known

L-borderenergetic graphs as underlying graph.

4.1. The sequence of S1
n. Let G

(0)
1 = S1

n be the graph obtained form n-order star
Sn by adding a single edge. Note that S1

n is a graph of order n with average degree 2,

specL(S1
n) =

(

0 1 3 n

1 n − 3 1 1



, LE(G
(0)
1 ) = 2(n − 1),

and thus it is L-borderenergetic with Kn. Consider an infinite sequence or borderen-

ergetic graphs G1 = ¶G
(0)
1 , G

(1)
1 , G

(2)
1 , . . . , G

(k)
1 , . . . ♢ such that

G
(1)
1 = G

(0)
1 ∨ Kn−2, G

(2)
1 = G

(1)
1 ∨ Kn−2, G

(3)
1 = G

(2)
1 ∨ Kn−2, . . .

The parameters n, d̄, LE of the sequence of S1
n are depicted in following Table 2.
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Figure 1. The graph S1
n

Table 2.

G n d L-spectra LE(G) L-Borderenergetic With

G
(0)
1 n 2 01, 1(n−3), 31, n1 2(n − 1) Kn

G
(1)
1 = G

(0)
1 ∨ Kn−2 2n − 2 n 01, n(n−3), (n − 1)(n−3), (n + 1)1, (2n − 2)2 2(2n − 3) K2n−2

G
(2)
1 = G

(1)
1 ∨ Kn−2 3n − 4 2n − 2 01, (2n − 2)(2n−6), (2n − 3)(n−3), (2n − 1)1, (3n − 4)3 2(3n − 5) K3n−3

G
(3)
1 = G

(2)
1 ∨ Kn−2 4n − 6 3n − 4 01, (3n − 4)(3n−9), (3n − 5)(n−3), (3n − 3)1, (4n − 6)4 2(4n − 7) K4n−4

G
(4)
1 = G

(3)
1 ∨ Kn−2 5n − 8 4n − 6 01, (4n − 6)(4n−12), (4n − 7)(n−3), (4n − 5)1, (5n − 8)5 2(5n − 9) K5n−5

G
(5)
1 = G

(4)
1 ∨ Kn−2 6n − 10 5n − 8 01, (4n − 6)(5n−15), (4n − 7)(n−3), (4n − 5)1, (5n − 8)6 2(6n − 11) K6n−6
...

...
...

...
...

...

4.2. The sequence of Kn−1 ⊙ Kn. For each integer n ≥ 3, the graph Kn−1 ⊙ Kn is
defined by

G = (Kn−1 ∪ Kn−2) ∨ K2.

Figure 2. The graph K5 ⊙ K6

Tura [11] has proved that the Kn−1 ⊙ Kn is a graph with avrgare vertex degree n − 1
and it is borderenergetic with K2n−2,

specL(Kn−1 ⊙ Kn) =

(

0 1 n − 1 n 2n − 2
1 1 n − 3 n − 2 1



, LE(Kn−1 ⊙ Kn) = 2(2n − 3).

Consider an infinite sequence or borderenergetic graphs

G2 = ¶G
(0)
2 , G

(1)
2 , G

(2)
2 , . . . , G

(k)
2 , . . . ♢,
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such that

G
(1)
2 = G

(0)
2 ∨ Kn−1, G

(2)
2 = G

(1)
2 ∨ Kn−1, G

(3)
2 = G

(2)
2 ∨ Kn−1, . . .

The parameters n, d̄, LE of the sequence of borderenergetic graphs are depicted in
following Table 3.

Table 3.

G n d L-spectra LE(G) L-Borderenergetic With

G
(0)
2 2n − 2 n − 1 01, 11, (n − 1)(n−3), n(n−2), (2n − 2)1 2(2n − 3) K2n−2

G
(1)
2 = G

(0)
2 ∨ Kn−1 3n − 3 2n − 2 01, n1, (2n − 2)(2n−5), (2n − 1)(n−2), (3n − 3)2 2(3n − 4) K3n−3

G
(2)
2 = G

(1)
2 ∨ Kn−1 4n − 4 3n − 3 01, (2n − 1)1, (3n − 3)(3n−7), (3n − 2)(n−2), (4n − 4)3 2(4n − 5) K4n−4

G
(3)
2 = G

(2)
2 ∨ Kn−1 5n − 5 4n − 4 01, (3n − 2)1, (4n − 4)(4n−9), (4n − 3)(n−2), (5n − 5)4 2(5n − 6) K5n−5

G
(4)
2 = G

(3)
2 ∨ Kn−1 6n − 6 5n − 5 01, (4n − 3)1, (5n − 5)(5n−11), (5n − 4)(n−2), (6n − 6)5 2(6n − 7) K6n−6

G
(5)
2 = G

(4)
2 ∨ Kn−1 7n − 7 6n − 6 01, (5n − 4)1, (6n − 6)(6n−13), (6n − 5)(n−2), (7n − 7)6 2(7n − 8) K7n−7

...
...

...
...

...
...

5. Concluding Remarks

Here we have explored the concept of L-borderenergetic graphs which is analogous
to the concept of borderenergetic graphs. We have investigated a sequence of L-
borderenergetic graphs in the scenario when only handful graphs are known to be
L-borderenergetic. The derived result is used for the construction of two sequences
of L-borderenergetic graphs from the known L-borderenergetic graphs.
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ON THE APPLICATIONS OF

BOCHNER-KODAIRA-MORREY-KOHN IDENTITY

SAYED SABER1,2

Abstract. This paper is devoted to studying some applications of the Bochner-
Kodaira-Morrey-Kohn identity. For this study, we define a condition which is called
(Hq) condition which is related to the Levi form on the complex manifold. Under
the (Hq) condition and combining with the basic Bochner-Kodaira-Morrey-Kohn

identity, we study the L2 ∂ Cauchy problems on domains in C
n, Kähler manifold

and in projective space. Also, we study this problem on a piecewise smooth strongly
pseudoconvex domain in a complex manifold. Furthermore, the weighted L2 ∂

Cauchy problem is studied under the same condition in a Kähler manifold with
semi-positive holomorphic bisectional curvature. On the other hand, we study
the global regularity and the L2 theory for the ∂-operator with mixed boundary
conditions on an annulus domain in a Stein manifold between an inner domain which
satisfy (Hn−q−1) and an outer domain which satisfy (Hq).

1. Introduction

∂-equation has been a powerful method in complex geometry and complex algebraic
geometry. The pioneer works of ∂-equation are due to Kohn and Hörmander on the
existence and boundary regularity of ∂-equation on pseudoconvex domain. The L2

estimate is a powerful method when solving ∂-equation. In order to establish the
L2 estimate for ∂ operator, a crucial step is to obtain a basic identity which is due
to Bochner, Kodaira, Morrey, Kohn and Hörmander. Then after imposing some
conditions such as the curvature of the complex vector bundle and the Levi form of
the complex manifold, one can get a priori estimate which we call L2 estimate for the
∂ operator.

Key words and phrases. ∂, ∂-Neumann operator, weakly q-convex domains.
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In 1940, Bochner introduced his technique for getting topological information from
the behavior of harmonic forms. In the late of 1950 and early of 1960, the approaches of
Bochner-Kodaira and Oka is very deep approach based in partial differential equations.
In 1966, Spencer defined the ∂-Neumann problem and Kohn who finally formulated
and solved the ∂-Neumann problem on strictly pseudoconvex domains. Shortly after
Kohn’s work, Hörmander and Andreotti-Vesentini, independently and almost simul-
taneously, obtained weighted L2 estimates for the inhomogeneous Cauchy-Riemann
equations.

The paper consists of two parts. In the first part, we study the Cauchy-Riemann
equations with compact support (L2 Cauchy problem) on a domain in C

n which
satisfy property (Hq). Moreover, we extend this result to the same domain in Kähler
manifold for vector-valued forms of type (r, q), q ⩾ 1. Also, we study this problem on a
piecewise smooth strongly pseudoconvex domain in a complex manifold. Furthermore,
the weighted L2 ∂ Cauchy problem is studied on the same domains in an n-dimensional
Kähler manifold with semi-positive holomorphic bisectional curvature. In the papers
of Kohn-Rossi [13], Cao-Shaw-Wang [2], Abdelkader-Saber [1] and Saber [18]-[21] such
equations are studying for various domains.

In the second part of this paper, we study the ∂ equation on domains with mixed
boundary conditions which was studied by Li and Shaw [16]. We generalize Li-Shaw’s
result to annulus in Stein manifolds under the conditions (Hq) defined here. Namely,
we study the global boundary regularity and the L2 theory for ∂mix-operator on
an annulus domain in a Stein manifold between an internal domain which satisfies
condition (Hn−q−1) and an external domain which satisfies condition (Hq). Making
use of the method developed by Catlin, we study the L2-estimate for the ∂mix-equation
with mixed boundary conditions. This equation with various boundary conditions are
the basic tools to work on analytic problems in several complex variables and complex
geometry or many geometric. In the papers of Catlin [3], Cho [6] and Catlin-Cho
[4], such equations played a crucial role for studying various extension problems for
CR structures. In a paper of Catlin [3], Catlin proved that there is no cohomology
obstruction for solving the ∂mix-equations. Other related studies for the ∂-Dirichlet
problem can be found in the work of Li-Shaw [16] and Huang-Li [11].

2. L2 ∂ Cauchy Problem in C
n

Let 0 ⩽ r, q ⩽ n, we can write an arbitrary (r, q)-form f as f =
∑
I,J

′fI,J dz
I ∧ dzJ ,

where I = (i1, . . . , ir) and J = (j1, . . . , jq) are multiindices and dzI = dzi1
∧ · · · ∧ dzir

,
dz̄J = dz̄j1

∧ · · · ∧dz̄jq
. The notation

∑′ means the summation over strictly increasing
multiindices. Let Ω be a relatively compact domain in C

n and let C∞
r,q(C

n) be the
complex vector space of complex-valued differential (r, q)-forms of class C∞ on C

n.

Let C∞
r,q(Ω) =

{
f ♣Ω : f ∈ C∞

r,q(C
n)
}

be the subspace of C∞
r,q(Ω) whose elements can be

extended smoothly up to the boundary bΩ. Let ϕ : Cn → R
+ be a plurisubharmonic
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C2-weight function and define the space

L2(Ω, ϕ) =

f : Ω −→ C :

∫

Ω
♣f ♣2e−ϕdV < ∞

}
,

where dV denotes the Lebesgue measure. Denote the inner product and the norm in
L2(Ω, ϕ) by

⟨f, g⟩ϕ =
∫

Ω
f g e−ϕdV and ∥f∥ϕ =

∫

Ω
♣f ♣2e−ϕdV.

Recall that L2
r,q(Ω, ϕ) the space of (r, q)-forms with coefficients in L2(Ω, ϕ). If f, g ∈

L2
r,q(Ω, ϕ), the L2-inner product and norms are defined by

⟨f, g⟩ϕ =
∫

Ω
f ∧ ⋆ g e−ϕ and ∥f∥2

ϕ = ⟨f, f⟩ϕ,

where ⋆ is the Hodge star operator (for detailed discussions of the Hodge star operator
in the L2-space see [5]).

Let ∂ : L2
r,q−1(Ω, ϕ) → L2

r,q(Ω, ϕ) be the closed operator which is the maximal

extension of the differential operator and ∂
∗

be its L2-adjoint. Here the ∂ and ∂
∗
-

operators are defined as

∂f =
∑

I,J

′
n∑

β=1

∂fI,J

∂zβ
dzβ ∧ dzI ∧ dzJ ,

∂
∗
f = (−1)r−1

∑

I,K

′
n∑

α=1

∂fI,αK

∂zα
dzI ∧ dzK .

If w ∈ dom ∂ and u ∈ dom ∂
∗
, then

⟨∂w, u⟩ϕ = ⟨∂w, e−ϕu⟩ = ⟨w, ∂
∗
(e−ϕu)⟩ = ⟨w, eϕ∂

∗
(e−ϕu)⟩ϕ.

Thus, ∂
∗

ϕ = eϕ∂
∗
(e−ϕ). The complex Laplacian on (r, q)-forms is defined as □r,q =

∂ ∂
∗

+ ∂
∗
∂, for q ⩾ 1 and the ∂-Neumann operator Nr,q is - if it exists-the bounded

inverse of □r,q. Following ([12, I, page 127]), we set Br,q(Ω) = C∞
r,q(Ω) ∩ dom ∂

∗
. Let

Br,q(U) denote the subset of Br,q(Ω) consisting of those forms whose support lies in
U ∩ Ω. We define the following norms on Br,q(U):

E(u) =
∑

I,J

′
n∑

k=1

∫

Ω

∣∣∣∣∣
∂uI,J

∂zk

∣∣∣∣∣

2

dV + ∥u∥2,(2.1)

D(u) = ∥∂u∥2 + ∥∂
∗
u∥2 + ∥u∥2.

Definition 2.1. A bounded domain Ω with C2-smooth boundary is said to be satisfy
condition (Hq) if there exists a defining function δ for Ω such that the sum sq of any

q eigenvalues of the matrix
(

∂2δ
∂zα∂zβ


of the Levi form ∂∂δ(z) is semi-positive on Ω.

Proposition 2.1 (Bochner-Hörmander-Kohn-Morrey formula). Let Ω be a bounded

domain in C
n with defining function δ and let ψ, ϕ be two real functions that are twice
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continuously differentiable on Ω, with ψ ⩾ 0. Then, for u ∈ Br,q(Ω) with 1 ⩽ q ⩽ n−1,

we have

∥
√
ψ ∂u∥2

ϕ + ∥
√
ψ ∂

∗

ϕu∥2
ϕ(2.2)

=
∑

I,K

′
n∑

α, β=1

∫

bΩ
ψ

∂2δ

∂zα∂zβ
uI,αK uI,βK e−ϕ dS

+
∑

I,J

′
n∑

k=1

∫

Ω
ψ

∣∣∣∣∣
∂uI,J

∂zk

∣∣∣∣∣

2

e−ϕdV + 2Re


∑

I,K

′
n∑

α=1

∂ψ

∂zα
uI,αK dzI ∧ dzK , ∂

∗

ϕu




ϕ

+
∑

I,K

′
n∑

α, β=1

∫

Ω

(
ψ

∂2ϕ

∂zα∂zβ
−

∂2ψ

∂zα∂zβ

)
uI,αK uI,βK e−ϕ dV.

Remark 2.1. When ψ ≡ 1 and ϕ ≡ 0, one obtains the classical Kohn-Morrey formula
([12] and [9]).

Proposition 2.2. Let Ω ⋐ C
n be a bounded domain with C2-smooth boundary satis-

fying condition (Hq). Then, for u ∈ Br,q(Ω), one obtains

(2.3) E(u) ⩽ CD(u).

Moreover, there exists a uniquely determined bounded linear operator Nr,q : L2
r,q(Ω) →

L2
r,q(Ω), such that □r,q ◦Nr,qu = u for any u ∈ L2

r,q(Ω).

Proof. Let µ1 ⩽ µ2 ⩽ · · · ⩽ µn denote the eigenvalues of the matrix
(

∂2δ
∂zα∂zβ


and

suppose that
(

∂2δ
∂zα∂zβ


is diagonalized. Then, in a suitable basis,

∑

I,K

′
n−1∑

α,β=1

∂2δ

∂zα∂zβ
uI,αKuI,βK =

∑

I,K

′
n∑

α=1

µα♣uI,αK ♣2

=
∑

♣I♣=r

′

J=(j1,j2,...,jq)

(µ1 + µ2 + · · · + µq)♣uI,J ♣2 ⩾ sq♣u♣2.

The second equality follows as. For J = (j1, j2, . . . , jq) fixed, ♣uI,J ♣2 occurs precisely q
times in the second sum, once as ♣uI,j1K ♣2, once as ♣uI,j2K ♣2, etc. At each occurrence,
it is multiplied by µjl . By fixing (j1, j2, . . . , jq) and set u = dzj1

∧· · ·∧dzjq
, we obtain

∑

I,K

′
n−1∑

α,β=1

∂2δ

∂zα∂zβ
uI,αKuI,βK ⩾ 0.

Thus, the boundary integral in (2.2) is semi-positive. Also, by taking ϕ ≡ 0 and
replace ψ by 1 − eλ, where λ is an arbitrary twice continuously differentiable non-
positive function, and after applying the Cauchy-Schwarz inequality to the term in
(2.2) involving first derivatives of ψ, we find

∥
√

1 − eλ ∂u∥2+∥
√

1 − eλ ∂
∗
u∥2

⩾
∑

I,K

′
n∑

α, β=1

∫

Ω
eλ ∂2λ

∂zα∂zβ
uI,αK uI,βK dV−∥eλ/2 ∂

∗
u∥2.
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Since ψ + eλ = 1 and ψ ⩽ 1, it follows that

∥∂u∥2 + ∥∂
∗
u∥2

⩾
∑

I,K

′
n∑

α, β=1

∫

Ω
eλ ∂2λ

∂zα∂zβ
uI,αK uI,βK dV,

for every twice continuously differentiable non-positive function λ. Let z0 be a point
of Ω, and set λ(z) = −1 + ♣z − z0♣

2/d2, where d = sup
z,z′∈ Ω

♣z − z′♣ is the diameter of the

bounded domain Ω. The preceding inequality then implies the fundamental estimate
(2.3) which implies the following estimate

∥u∥2
⩽
d2e

q

(
∥∂u∥2 + ∥∂

∗
u∥2


.

Then, a bounded linear operator Nr,q : L2
r,q(Ω) → L2

r,q(Ω) exists, such that □r,q ◦

Nr,qu = u, for any u ∈ L2
r,q(Ω). □

Theorem 2.1. Let Ω ⋐ C
n be a bounded domain with C2-smooth boundary satisfying

condition (Hq). For f ∈ L2
r,q(C

n), 1 ⩽ q ⩽ n − 1, supp f ⊂ Ω, satisfying ∂f = 0 in

the distribution sense in C
n, there exists u ∈ L2

r,q−1(Cn), suppu ⊂ Ω such that ∂u = f
in the distribution sense in C

n.

Proof. Let f ∈ L2
r,q(C

n), supp f ⊂ Ω, then f ∈ L2
r,q(Ω). From Proposition 1.2,

Nn−r,n−q exists for n− q ⩾ 1. Since

(2.4) u = − ⋆ ∂ Nn−r,n−q ⋆ f.

Thus, suppu ⊂ Ω and u vanishes on bΩ. Now, we extend u to C
n by defining u = 0

in C
n \ Ω. As in Saber [18], the extended form u satisfies the equation ∂u = f in the

distribution sense in C
n. □

3. The L2 ∂ Cauchy Problem for Vector-Valued Forms

Let X be an n-dimensional complex manifold with a Hermitian metric g. We
assume that there is a smooth, real-valued function δ defined on a neighborhood U of
bΩ in X. Assume that E is a holomorphic vector bundle, of rank p, over X and E∗ its
dual. An E-valued differential (r, q)-form u on X is given locally by a column vector
tu = (u1, u2, . . . , up), where ua; 1 ⩽ a ⩽ p, are C-valued differential forms of type
(r, q) on X. For an orthonormal basis e1, e2, . . . , ep on the fiber Ez = π−1(z), over z,
a Hermitian metric h along the fibers of E is expressed as h = (hab); hab = h(ea, eb).
Let θ be the connection of the Hermitian metric h (θ is given locally by the (1, 0)-form
h−1∂h). The space L2

r,q(Ω, E) of square integrable differential forms of type (r, q) on
Ω is a Hilbert space under the scalar product

⟨u, v⟩ =
∫

Ω

t((h)u) ∧ ⋆v =
p∑

a=1

∫

Ω
((h)u)a ∧ ⋆ (v)a.

Let ker(∂,E) = ¶u ∈ dom (∂,E) : ∂u = 0♢ and Range(∂,E) = ¶∂u : u ∈
dom (∂,E)♢ be the kernel and the range of ∂, respectively. Let #E : C∞

r,q(X,E) →
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C∞
q,r(X,E

∗) be the operator defined by #E u = hu, which commutes with the Hodge
star operator. The corresponding operator #E∗ : C∞

r,q(X,E
∗) → C∞

q,r(X,E) is de-

fined by #E∗ u = h−1 u = #−1
E u. Let Πr,q : L2

r,q(Ω, E) → ker(□r,q, E) be the

orthogonal projection from the space L2
r,q(Ω, E) onto the space ker(□r,q, E). Let

C∞
r,q(Ω, E) =

{
φ ♣Ω : u ∈ C∞

r,q(X,E)
}

be the subspace of C∞
r,q(Ω, E) whose elements

can be extended smoothly up to bΩ. As in [12, I, page 127], that even for vector
bundles, we set Br,q(Ω, E) = C∞

r,q(Ω, E) ∩ dom (∂
∗
, E). Let Br,q(U,E) denote the

subset of Br,q(Ω, E) consisting of those forms whose support lies in U ∩ Ω. For each
τ ⩾ 0, we define the following norms on Br,q(U,E):

∥u∥2
τ = ⟨u, eτ ♣δ♣u⟩,(3.1)

D̃2
τ (u) = ∥∂u∥2

τ + ∥∂
∗

τu∥2
τ + ∥u∥2

τ ,

Ẽτ (u) =
p∑

a=1

Eτ (ua),

where Eτ is defined by (2.1) for complex-valued forms.

Theorem 3.1. Let X be an n-dimensional complex manifold and let Ω ⋐ X be a

bounded domain with C2-smooth boundary satisfying condition (Hq). Let E → X be

a holomorphic vector bundle over X. Then, for all τ ⩾ 0, and u = (u1, u2, . . . , up) ∈
Br,q(U,E), we obtain

Ẽ2
τ (u) + τ∥u∥2

τ ⩽ C


D̃

2
τ (u) + τ 2

p∑

a=1

∑

♣I♣=r

′

n∈J

∥ua
IJ∥2

τ


 .

Proof. First, observe that for elements u = (u1, u2, . . . , up) ∈ Br,q(E) which have
support in U , the norms ∥u∥2

τ and
∑b

a=1 ∥ua∥2
τ are equivalent (independently of τ). If

the metric h is represented by the matrix (hab), then

∥u∥2 =
∫

Ω

t((h)u) ∧ ⋆u =
n∑

a,b=1

∫

Ω
hab u

a ∧ ⋆ (u)b,

where the hab can be assumed to be C∞ on U . Now, for u ∈ Br,q(U,E), u =
(u1, u2, . . . , up) ∈ B(U,E) with ua ∈ Br,q(U), a = 1, 2, . . . , p. From (2.3), one obtains

(3.2) Ẽ2
τ (u) =

p∑

a=1

Eτ (ua) ⩽ C
p∑

a=1


D

2
τ (ua) + τ 2

∑

♣I♣=r

′

n∈J

∥ua
IJ∥2

τ


 .

Now, since θ is a C∞ form on U and ϑτu = ϑu− ⋆θ ∧ ⋆u, one obtains

C
p∑

a=1

∥ϑua∥2
τ ⩽ ∥ϑu∥2

τ ⩽ ∥ϑτu∥2
τ + ∥θ ∧ ⋆u∥2

τ ⩽ ∥ϑτu∥2
τ + C ′∥u∥2

τ .
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Thus,

(1 + C ′)D̃2
τ (u) ⩾ ∥∂u∥2

τ + ∥ϑτu∥2
τ + C ′∥u∥2

τ + ∥u∥2
τ

⩾ C
p∑

a=1

(
∥∂ua∥2

τ + ∥ϑua∥2
τ + ∥ua∥2

τ


.

Thus,

(3.3) (1 + C ′)D̃2
τ (u) ⩾ C

p∑

a=1

D2
τ (ua).

The inequalities (3.2) and (3.3) give the desired result. □

Theorem 3.2. Let X be an n-dimensional complex manifold and let Ω ⋐ X be a

bounded domain with C2-smooth boundary satisfying condition (Hq). Let E → X be a

holomorphic vector bundle over X. For q ⩾ 1, there exists a bounded linear operator

Nr,q : L2
r,q(Ω, E) → L2

r,q(Ω, E) such that

(i) Range (Nr,q, E) ⊂ dom(□r,q, E), Nr,q□r,q = I − Πr,q on dom(□r,q, E);

(ii) for u ∈ L2
r,q(Ω, E), we have u = ∂ ∂

∗
Nr,qu ⊕ ∂

∗
∂Nr,qu ⊕ Πr,qu;

(iii) Nr,q commutes with ∂ and ∂
∗
, Πr,qNr,q = Nr,qΠr,q = 0;

(iv) Nr,q(C
∞
r,q(Ω, E) ⊂ C∞

r,q(Ω, E) and Πr,q(C
∞
r,q(Ω, E)) ⊂ C∞

r,q(Ω, E).

Proof. Following Theorem 2.1, for τ = 0 and u ∈ dom(□r,q, E) of degree q ⩾ 1, we have
∥u∥2 ⩽ C∥□r,qu∥2. Since □r,q is one to one on dom(□, E) from [9, (1.5.3)], then there
exists a unique bounded inverse operator Nr,q : Range(□r,q, E) → dom (□r,q, E) ∩
(ker(□, E))⊥ such that Nr,q□r,qu = u on dom(□r,q, E). Thus, one can establish the
existence theorem of the inverse of □r,q the so called ∂-Neumann operator Nr,q. □

Theorem 3.3. Let X be an n-dimensional complex manifold and let Ω ⋐ X be a

bounded domain with C2-smooth boundary satisfying condition (Hq). Let E → X be

a holomorphic vector bundle over X. Then, for f ∈ L2
r,q(X,E), supp f ⊂ Ω, 1 ⩽ q ⩽

n− 1, satisfying ∂f = 0 in the distribution sense in X, there exists u ∈ L2
r,q−1(X,E),

suppu ⊂ Ω such that ∂u = f in the distribution sense in X.

Proof. Let f ∈ L2
r,q(X,E), supp f ⊂ Ω, then f ∈ L2

r,q(Ω, E). From Theorem 2.2,

Nn−r,n−q exists for n− q ⩾ 1. Since Nn−r,n−q = (□n−r,n−q)
−1 on Range(□n−r,n−q, E

∗)
and Range(Nn−r,n−q, E

∗) ⊂ dom(□n−r,n−q, E
∗), then

Nn−r,n−q#E ⋆ f ∈ dom (□n−r,n−q, E
∗) ⊂ L2

n−r,n−q(Ω, E
∗),

for q ⩽ n− 1. Thus, we can define u ∈ L2
r,q−1(Ω, E) by

(3.4) u = − ⋆ #E∗ ∂ Nn−r,n−q#E ⋆ f.

Now, we extend u to X by defining u = 0 in X \ Ω. As in [1], the extended form u
satisfies the equation ∂u = f in the distribution sense in X. □
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4. The L2 ∂ Cauchy Problem on Piecewise Smooth Strongly
Pseudoconvex Domains

A relatively compact open subset Ω of X has piecewise strongly pseudoconvex
boundary bΩ, if bΩ is covered by finitely many open subsets ¶Uj♢, 1 ⩽ j ⩽ k, of X
and there are C2 strictly plurisubharmonic functions δj on ¶Uj♢, 1 ⩽ j ⩽ k, such that
Ω ∩ (

⋃k
j=1 Uj) is the set of all x ∈

⋃k
j=1 Uj which, for every 1 ⩽ j ⩽ k, satisfy x /∈ Uj

or δj(x) < 0.
The boundary bΩ need not be piecewise smooth, so we do not require any further

conditions on the δj, 1 ⩽ j ⩽ k. Following P. W. Darko [7], one have the following
result.

Theorem 4.1. Let X be an n-dimensional complex manifold with a C∞ Hermitian

metric. Let Ω ⋐ X be a strongly pseudoconvex domain with piecewise smooth boundary.

For f ∈ L2
r,q(X), 1 ⩽ q ⩽ n−1, satisfying ∂f = 0 in the distribution sense in X, there

exists u ∈ L2
r,q−1(X), such that ∂u = f in the of distributions and ∥u∥2 ⩽ C∥f∥2,

where C depends on Ω and r, q but not on f .

Proposition 4.1. Let X and Ω be the same as in Theorem 3.1. Then, there exists a

uniquely bounded linear operator Nr,q : L2
r,q(Ω) → L2

r,q(Ω), such that □r,q ◦Nr,qu = u

for any u ∈ L2
r,q(Ω).

Proof. Following Theorem 3.1 as in [5, Section 4.4], we have Hr,q(Ω) = ¶0♢ for q > 0

and for every f ∈ L2
r,q(Ω), 1 ⩽ q ⩽ n − 1, there exists u ∈ dom ∂∩ dom ∂

∗
with

∂
∗
u ∈ dom ∂ and ∂u ∈ dom ∂

∗
, such that

∂ ∂
∗
u+ ∂

∗
∂u = f and ∥u∥2

⩽ C∥f∥2,

where C depends on Ω and r, q but not on f . Theorem 3.1 implies the fundamental
estimate

∥u∥2
⩽ C

(
∥∂u∥2 + ∥∂

∗
u∥2


.

Then there exists a uniquely determined bounded linear operator Nr,q : L2
r,q(Ω) →

L2
r,q(Ω), such that □r,q ◦Nr,qu = u for any u ∈ L2

r,q(Ω). □

Theorem 4.2. Let X and Ω be the same as in Theorem 3.1. For f ∈ L2
r,q(X),

1 ⩽ q ⩽ n − 1, supp f ⊂ Ω, satisfying ∂f = 0 in the distribution sense in X, there

exists u ∈ L2
r,q−1(X), suppu ⊂ Ω such that ∂u = f in the distribution sense in X.

Proof. Let f ∈ L2
r,q(X), supp f ⊂ Ω, then f ∈ L2

r,q(Ω). Since Nn−r,n−q exists for

n − q ⩾ 1. By defining u as in (2.4), then suppu ⊂ Ω and u vanishes on bΩ. As in
Saber [20], one can prove that the extended form u satisfies the equation ∂u = f in
the distribution sense in X. □

5. The Weighted L2 ∂ Cauchy Problem

Let (x0, x1, . . . , xn) be a (fixed) homogeneous coordinates of P
n and let ω be

the Fubini-Study metric of the complex projective space of P
n determined by
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(x0, x1, . . . , xn). If, for example, U0 is the open set in P
n defined by x0 ̸= 0 and

if (z1, z2, . . . , zn), where zi = xi/x0 is the homogeneous coordinates of U0, then the
metric ω is written in the form

ω =

∑n
i=1 ♣ dzi♣

2

1 +
∑n

i=1 ♣zi♣2
−

♣
∑n

i=1 zi dzi♣
2

(1 +
∑n

i=1 ♣zi♣2)2
, on U0.

This is well-known standard Kähler metric of Pn. Let ∇ be the Levi-Civita connec-
tion of P

n with the standard Fubini-Study metric ω. The Levi-Civita connection,
sometimes also known as the Riemannian connection or covariant derivative. Let
¶ei♢ be an orthonormal basis of vector fields. For any two vector fields u, v, the
curvature operator of the connection ∇ is given by R(u, v) = ∇u∇v − ∇v∇u − ∇[u,v].
with Rijkl = g(R(ei, ej)ek, el). We also define the Ricci tensor Rij =

∑
k εkRikkj which

turns out to be self-adjoint with respect to ω and the scalar curvature Θ as the trace
of the Ricci tensor

(5.1) Θ =
∑

i

Rii =
∑

i,j

εiεjRjiij.

Let dist(z, bΩ) be the Fubini distance from z ∈ Ω to the boundary bΩ and let
δ : P

n → R be a C2 defining function for Ω normalized by ♣dδ♣ = 1 on bΩ such
that

δ = δ(z) =




ll − dist(z, bΩ), if z ∈ Ω,

dist(z, bΩ), if z ∈ P
n\Ω,

where δ is computed with respect to the Kähler metric ω on P
n.

Proposition 5.1 (Bochner-Hörmander-Kohn-Morrey formula). Let Ω be a bounded

domain with C2-smooth boundary bΩ and C2-defining function δ(z). Then, for any

u ∈ C∞
r,q(Ω) ∩ dom ∂

∗

ϕ, with 1 ⩽ q ⩽ n− 1 and ϕ ∈ C2(Ω), we have

∥ ∂u∥2
ϕ + ∥ ∂

∗

ϕu∥2
ϕ =⟨Θu, u⟩ϕ +

∑

I,J

n∑

k=1

∫

Ω

∣∣∣∣∣
∂uI,J

∂zk

∣∣∣∣∣

2

e−ϕdV + ⟨(i∂∂ϕ)u, u⟩ϕ(5.2)

+
∑

I,K

n∑

α, β=1

∫

bΩ

∂2δ

∂zα∂zβ
uI,αK uI,βK e−ϕ dS.

Proof. This formula is known (cf. [9]) for some special cases. For the case ϕ = 0, the
stated formula was proved in Siu [22]. □

Proposition 5.2. ([17, Corollary 6.5]). Let Ω ⋐ P
n be a bounded domain with C2-

smooth boundary satisfying condition (Hq). Then, the Levi form of the function δ has

at least n− q + 1 positive eigenvalues at each point of Ω.
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Proposition 5.3. Suppose that Θ is the curvature term defined in (5.1) with respect

to the Fubini-Study metric ω. Then, for any (r, q)-form u of Ω ⋐ P
n with q ⩾ 1,

(Θu, u) = q(2n+ 1)♣u♣2, whenu is a (0, q)-form,

(Θu, u) = 0, for any (n, q)-formu,

(Θu, u) ⩾ 0, when r ⩾ 1 andu is a (r, q)-form.

In fact, the assertion for (0, q)-forms and (n, q)-forms was computed in [23]. Also,

following Lemma 3.3 of Henkin-Iordan [8] and its proof showed that the curvature

operator Θ acting on L2
r,q(Ω) is a semi-positive operator.

Theorem 5.1. Let Ω ⋐ P
n be a bounded domain with C2-smooth boundary satisfying

condition (Hq). For any 1 ⩽ q ⩽ n and t > 0, there exists a bounded linear operator

N t
r,q : L2

r,q(Ω) → L2
r,q(Ω) satisfies the following properties:

(i) Range (N t
r,q) ⊂ dom(□t

r,q), N
t
r,q□

t
r,q = I on dom(□t

r,q);

(ii) for f ∈ L2
r,q(Ω), we have u = ∂ ∂

∗

tN
t
r,qf ⊕ ∂

∗

t∂N
t
r,qf ,

(iii) ∂N t
r,q = N t

r,q+1∂, 1 ⩽ q ⩽ n− 1 and ∂
∗

tN
t
r,q = N t

r,q−1 ∂
∗

t , 2 ⩽ q ⩽ n,

(iv) N t
r,q, ∂N

t
r,q and ∂

∗

tN
t
r,q are bounded operators with respect to the L2-norms.

Proof. By choosing ϕt = −t log ♣δ♣, t > 0 in Proposition 4.1, and using Proposition
4.2 and Proposition 4.3, the identity (5.2) implies the weighted L2-existence for the ∂.
Also, for u ∈ dom(□t

r,q) of degree q ⩾ 1, we have for t > 0, t∥u∥t ⩽ ∥□t
r,qu∥t. Then, as

in Theorem 2.2 there exists a unique bounded inverse operator N t
r,q : Range(□t

r,q) →

dom (□t
r,q) ∩ (ker(□t

r,q))
⊥, such that N t

r,q□
t
r,qf = f on dom (□t

r,q). Therefore, one can

establish the existence theorem of the inverse of □t
r,q the so called weighted ∂-Neumann

operator N t
r,q. □

Theorem 5.2. Let Ω ⋐ P
n be a bounded domain with C2-smooth boundary satisfying

condition (Hq). Then, for f ∈ L2
r,q(δ

−t), 1 ⩽ q ⩽ n − 1, satisfying ∂f = 0 in the

distribution sense in P
n and f is supported in Ω, there exists u ∈ L2

r,q−1(δ−t) such that

∂u = f in the distribution sense in P
n with u is supported in Ω and

∫

Ω
♣u♣2δ−tdV ≤ C

∫

Ω
♣f ♣2δ−tdV,

for some C > 0.

Proof. Following Theorem 4.1, N t
r,q exists for forms in L2

n−r,n−q(P
n, δt). Let ⋆t denote

the weighted Hodge-star operator with respect to the weighted norm of L2
r,q(P

n, δt).

Then ⋆t = δt⋆ = ⋆δt, where ⋆ is the Hodge star operator with the unweighted L2 norm.
Thus, we can define u ∈ L2

r,q−1(P
n, δ−t) by

u = − ⋆t ∂ Nn−r,n−q ⋆−t f.

Thus suppu ⊂ Ω and u vanishes on bΩ. Now, we extend u to P
n by defining u = 0

in P
n \ Ω. As in Saber [20], the extended form u satisfies the equation ∂u = f in the

distribution sense in P
n. □
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The above result can be extended easily to the following result.

Theorem 5.3. Let X be an n-dimensional Kähler manifold with semi-positive holo-

morphic bisectional curvature and let Ω ⋐ X be a bounded domain with C2-smooth

boundary satisfying condition (Hq). Then, for f ∈ L2
r,q(δ

−t), 1 ⩽ q ⩽ n − 1, satis-

fying ∂f = 0 in the distribution sense in X and f is supported in Ω, there exists

u ∈ L2
r,q−1(δ

−t) such that ∂u = f in the distribution sense in X with u is supported

in Ω and ∫

Ω
♣u♣2δ−tdV ≤ C

∫

Ω
♣f ♣2δ−tdV,

for some C > 0.

6. Global Boundary Regularity for ∂mix

In this section, we study the global regularity for the ∂mix-equation with mixed
boundary conditions. Throughout this section, Ω will denote the annulus in a Stein
manifold X between Ω1 and Ω2 with C3 boundary. Let δ ∈ C3(Ω2) be the defining
function of Ω. We impose the ∂-Dirichlet boundary condition on Ω1 and the ∂-
Neumann boundary condition on Ω2. We say that U satisfies the ∂-Dirichlet condition
along Ω2 if UJ ♣Ω2

≡ 0 whenever J = (j1, . . . , jq) with jq ̸= n. We say U satisfies the
∂-Neumann condition along Ω1 if UJ ♣Ω1

≡ 0 when jq = n.

Definition 6.1. For 0 ⩽ r ⩽ n, 0 ⩽ q ⩽ n and u ∈ L2
r,q(Ω), u ∈ dom ∂mix if and only

if there exists f ∈ L2
r,q+1(Ω) and a sequence ¶uν♢ ∈ L2

r,q(Ω) which vanish near bΩ2

such that uν → u in L2
r,q(Ω) and ∂uν → u in L2

r,q+1(Ω), then we say u ∈ dom ∂mix

and ∂mix u = f .

Let ∂
∗

t,mix be the Hilbert-space adjoint of ∂mix . Let B2
r,q(Ω) denote the space of

(r, q)-forms which are C2-smooth in a neighborhood of Ω and satisfies ∂-Dirichlet
condition on bΩ2 and ∂-Neumann condition on bΩ1. Denote by Wm

r,q(Ω), m ∈ R, the
Hilbert spaces of (r, q)-forms with Wm(Ω)-coefficients and their norms are denoted
by ∥u∥W m .

As in Lemma 6.4 of [3] and Lemma 4.3.2 in [5], the Hörmander-Friderichs smooth
lemma also holds in this setting: Let u ∈ dom ∂mix ∩ dom ∂

∗

mix ∩ L2
r,q(Ω, ϕ), there

exists ¶uν♢ ∈ L2
r,q(Ω, ϕ) such that

(6.1) ∥uν − u∥ + ∥∂mix uν − ∂mix u∥ + ∥∂
∗

mixuν − ∂
∗

mixu∥ → 0.

From now on we fix ϕt(z) = t ♣z♣2 near bΩ1 and ϕt(z) = t(♣z♣2 − τδ) near bΩ2,
where t and τ are positive constants which will be determined later. Let □t

mix =
∂mix ∂

⋆

t,mix + ∂
⋆

t,mix∂mix be the complex Laplacian operator and take f ∈ dom(□t
mix) of

degree q ⩾ 1, then we have for every t > 0.
The proof of the following proposition follows by using a partition of unity.

Proposition 6.1. Let Ω = Ω1\Ω2 be an annulus domain in a Stein manifold X
between an internal domain Ω2 satisfies condition (Hn−q−1) and an external domain
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Ω1 satisfies condition (Hq). There exist a positive constant t∗ such that for any t ⩾ t∗,

the harmonic space H
m
r,q(E) has finite dimension and there exists a positive constant

Ct depending on t such that

(6.2) ∥u∥2
ϕt

⩽ Ct(∥∂mix u∥2
ϕt

+ ∥∂
∗

t,mix
u∥2

t ),

for u ∈ dom(∂mix) ∩ dom(∂
∗

t,mix
) with q ⩾ 1.

Proof. Assume first u is supported in a small neighborhood U of p ∈ bΩ. Since u
satisfies ∂-Dirichlet condition on bΩ2, then ⋆tu satisfies ∂-Neumann condition on bΩ2.
Now 1 ⩽ n − q ⩽ n − 2, since 2 ⩽ q ⩽ n − 1. Thus, for u ∈ B2

r,q(Ω), by a similar
argument of Proposition 3.1 in Saber [19], we have

t∥ ⋆t u∥2
−t ⩽ ∥∂ ⋆t u∥2

−t + ∥∂
∗
⋆t u∥2

−t,

when t is sufficiently large. Since the Hodge star operator ⋆ is an isometry operator
in L2-space, we have

(6.3) t∥ ⋆t u∥2
−t ⩽ ∥ ⋆t ∂ ⋆t u∥2

t + ∥ ⋆t ∂
∗
⋆t u∥2

t .

Substituting the identity ∂mix = ⋆t∂
∗
⋆t and ∂

∗

t,mix = ⋆t∂⋆t to (6.3). It follows that

t∥u∥2
t ⩽ ∥∂

∗

t,mixu∥2
t + ∥∂mix u∥2

t ,

for all u ∈ B2
r,q(Ω). Then (6.1) shows that (6.2) holds for all u ∈ dom ∂mix ∩

dom ∂
∗

t,mix ∩ L2
r,q(Ω, ϕt). □

Theorem 6.1. Let X and Ω be the same as in Proposition 5.1. There exists a positive

integer t∗ such that, for t ⩾ t∗, r ⩾ 0, q ⩾ 1, there exists a bounded linear operator

N t
mix

: L2
r,q(Ω) → L2

r,q(Ω) such that

(i) Range(N t
mix

) ⊂ dom(□t
mix

), N t
mix

□t
mix

= I − Hmix on dom(□t
mix

);
(ii) for u ∈ L2

r,q(Ω), we have u = ∂mix ∂
∗

t,mix
N t

mix
u ⊕ ∂

∗

t,mix
∂mixN

t
mix

u ⊕ Hmix u;

(iii) N t
mix
∂mix = ∂mixN

t
mix

on dom(∂mix);
(iv) N t

mix
∂

∗

t,mix
= ∂

∗

t,mix
N t

mix
on dom(∂

∗

t,mix
);

(v) N t
mix

, ∂mixN
t
mix

and ∂
∗

t,mix
N t

mix
are bounded operators with respect to the L2-

norms.

Proof. Following Proposition 5.1, one obtain that

(6.4) t∥f∥t ≤ ∥□t
mixf∥t.

Since □t
mix is a linear closed densely defined operator, then, from [9, Theorem 1.1.1],

Range(□t
mix) is closed. Thus, from (1.1.1) in [9] and the fact that □r,q is self adjoint,

we have the Hodge decomposition

L2
r,q(Ω) = ∂mix∂

⋆

t,mix dom □
t
mix ⊕ ∂

⋆

t,mix∂mix dom □
t
mix.

Since □t
mix is one to one on dom □t

mix from (1.5.3) in [9], then there exists a unique
bounded inverse operator N t

mix : Range□t
mix → dom□t

mix ∩ (ker□t
mix)⊥ such that

N t
mix□

t
mixf = f on dom□t

mix. Thus, we can establish the existence theorem of the
inverse of □t

mix the so called weighted ∂-Neumann operator N t
mix. □
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Corollary 6.1. (i) If f ∈ ker ∂mix, then ∂
∗

t,mix
N t

mix
f gives the solution ut to the

equation ∂mixut = f of minimal ut ∈ L2
r,q−1(Ω)-norm.

(ii) If f ∈ ker ∂
∗

t,mix
, then ∂mixN

t
mix
f gives the solution ut to the equation ∂

∗

t,mix
ut =

f of minimal ut ∈ L2
r,q+1(Ω)-norm.

Using the elliptic regularization method which was used in [14], one can pass from
the a priori estimates (6.4) to actual estimates and we can prove the following theorem.

Theorem 6.2. For every integer T ⩾ 0 and real t > T > 0, N t
mix

is bounded from

Wm
r,q(Ω) into itself.

By Theorem 5.1 (v), Theorem 5.2 and the density of C∞
r,q(Ω) inWm

r,q(Ω), the following
is immediate.

Corollary 6.2. If f ∈ Wm
r,q(Ω), m = 0, 1, 2, 3, . . . satisfies ∂mixf = 0, where q ⩾ 1,

then there exits u ∈ Wm
r,q−1(Ω) so that ∂mix u = f on Ω with estimate ∥u∥W m ≤

Cm∥f∥W m .

Theorem 6.3. For f ∈ C∞
r,q(Ω), with ∂mixf = 0, q ⩾ 1, there exists u ∈ C∞

r,q−1(Ω)

such that ∂mix u = f .

Proof. From Corollary 5.1, there is uk ∈ W k
r,q−1(Ω) satisfying ∂mixuk = f for each

positive integer k. We shall modify uk to generate a new sequence that converges
to a smooth solution. Since uk − uk+1 is in W k

r,q−1(Ω) ∩ ker(∂mix), there exists a

vk+1 ∈ W k+1
r,q−1(Ω) ∩ ker(∂mix) such that

∥uk − uk+1 − vk+1∥W k ≤ 2−k, k = 1, 2, 3, . . .

Setting ũk+1 = uk+1 + vk+1, then ũk+1 ∈ W k+1
r,q−1(Ω) and ∂mixũk = f . Inductively, we

can choose a new sequence ũk ∈ W k
r,q−1(Ω) such that ∂mixũk = f and

∥ũk+1 − ũk∥W k ≤ 2−k, k = 1, 2, 3, . . .

Set u∞ = ũt +
∑∞

k=t(ũk+1 − ũk), t ∈ N. Then u∞ is well defined and is in W k
r,q−1(Ω)

for every k. Thus, by the Sobolev embedding theorem, u∞ ∈ C∞
r,q(Ω) and ∂mixu∞ = f .

Thus the proof follows. □

Corollary 6.3. We assume that 0 ⩽ r ⩽ n, 2 ⩽ q ⩽ n and the boundary of

Ω is smooth. Let N t
mix

be the weighted ∂mix -Neumann operator. For every k ⩾

0, there exists Sk such that when t ⩾ Sk we have that N t
mix

, ∂mix N
t
mix

, ∂
∗

t,mix
N t

mix
,

∂
∗

t,mix
N t

mix
∂mix are exactly regular on W k

r,q(Ω).

Proof. When f ∈ C∞
r,q(Ω) ∩ dom ∂mix and supp f ⋐ U ∩ Ω, where U is a special

boundary chart, then from (6.4), we have that

(6.5) t∥f∥2
t ⩽ C2∥□t

mixf∥2
t .
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When f ∈ C∞
r,q(Ω) with supp f a compact subset in Ω, we have the following Garding’s

inequality

(6.6) ∥f∥2
W 1 ⩽ ∥∂mix f∥2

t + ∥∂
∗

t,mixf∥2
t + Ct∥f∥2

t .

Combining (6.5) and (6.6) and with a similar argument as in Kohn [14], the result
follows. □

Corollary 6.4. Suppose that f ∈ L2
r,q(Ω) ∩ ker ∂mix , where 2 ⩽ q ⩽ n− 1. Then for

each k > 0, there exists fn ∈ W k
r,q(Ω) with fn satisfying ∂-Dirichlet condition on bΩ2

such that fn → f in L2
r,q(Ω) and ∂mix fn = 0.

Corollary 6.5. Suppose that f ∈ C∞
r,q(Ω) ∩ ker ∂mix , where 0 ⩽ p ⩽ n, 2 ⩽ q ⩽ n− 1.

Then, there exists u ∈ C∞
r,q−1(Ω) ∩ dom ∂mix satisfying ∂-Dirichlet condition on bΩ2

such that fn −→ f in L2
r,q(Ω) and ∂mix u = f .

7. L2 theory for ∂mix

We consider an operator ∂mix which satisfies that ∂c ⊆ ∂mix ⊆ ∂, where ∂ is the
maximal realization of the differential operator ∂. As Theorem 2.2 in Li-Shaw [16],
we prove the following theorem.

Theorem 7.1. Let X and Ω be the same as in Proposition 5.1. Then, for 0 ⩽ r ⩽ n,

2 ⩽ q ⩽ n, the Dolbeault cohomology Hr,q
L2 (Ω) with L2(Ω)-coefficients vanishes, i.e.,

Hr,q

∂mix, L2
(Ω) =

¶f ∈ L2
r,q(Ω) : ∂mix f = 0♢

¶f ∈ L2
r,q(Ω) : f = ∂mix u, u ∈ L2

r,q−1(Ω)♢
= ¶0♢.

Proof. Let f ∈ L2
r,q(Ω) with ∂mix f = 0. Extending f to be zero in Ω2, denoted by f 0,

we have that f 0 ∈ L2
r,q(Ω1) and ∂f 0 = 0 in Ω1. This follows from the assumption that

Ω2 has C2 boundary and the strong ∂c and weak ∂c are equal. Here we only need
the boundary Ω2 to be Lipschitz. For a proof of such weak equal strong results, see
e.g. Lemma 2.4 in Laurent-Thiébaut-Shaw [15]. Thus we have from the L2 theory
for bounded domains satisfies condition (Hq), there exists a solution v ∈ L2

r,q−1(Ω1)

such that ∂v = f 0 in Ω1. From the elliptic regularity in the interior for ∂, we can
assume that the form v is in W 1

r,q−1(Ω2). The form v satisfies ∂v = 0 on Ω2. Since

q > 1 and the boundary of Ω2 is C2-smooth, there exists a solution w ∈ W 1
r,q−1(Ω2)

such that ∂w = v in Ω2. This follows from a result of Ho [10] for sufficiently smooth
boundary when the boundary is only C2. Let w̃ be a W 1 extension of w to Ω1. We
set u = v − ∂w̃ in Ω1. Then u is in L2

r,q−1(Ω1) with ∂u = f in Ω1. But u = 0 on Ω2.

This implies that u ∈ dom ∂mix and ∂mix u = f . □

Theorem 7.2. Let Ω = Ω1\Ω2 between two bounded strictly pseudoconvex domains

Ω1 and Ω2 in an n-dimensional Stein manifold X such that Ω2 ⋐ Ω1. Then

Hr,1

∂mix , L2
(Ω) ̸= 0.

Proof. The proof follows as in Lemma 2.3 in Li and Shaw [16]. □
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POSITIVE SOLUTIONS FOR FIRST-ORDER NONLINEAR

CAPUTO-HADAMARD FRACTIONAL RELAXATION

DIFFERENTIAL EQUATIONS

ABDELOUAHEB ARDJOUNI1 AND AHCENE DJOUDI2

Abstract. This article concerns the existence and uniqueness of positive solu-
tions of the first-order nonlinear Caputo-Hadamard fractional relaxation differential
equation



D
α

1
(x (t) − g (t, x (t))) + wx (t) = f (t, x (t)) , 1 < t ≤ e,

x (1) = x0 > g (1, x0) > 0,

where 0 < α ≤ 1. In the process we convert the given fractional differential equation
into an equivalent integral equation. Then we construct appropriate mappings and
employ the Krasnoselskii fixed point theorem and the method of upper and lower
solutions to show the existence of a positive solution of this equation. We also use
the Banach fixed point theorem to show the existence of a unique positive solution.
Finally, an example is given to illustrate our results.

1. Introduction

Fractional differential equations with and without delay arise from a variety of appli-
cations including in various fields of science and engineering such as applied sciences,
practical problems concerning mechanics, the engineering technique fields, economy,
control systems, physics, chemistry, biology, medicine, atomic energy, information
theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability and
instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems,
etc. In particular, problems concerning qualitative analysis of linear and nonlinear
fractional differential equations with and without delay have received the attention
of many authors, see [1]–[13], [16] and the references therein.

Key words and phrases. Fixed points, fractional differential equations, positive solutions, existence,
uniqueness, relaxation phenomenon.
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Zhang in [16] investigated the existence and uniqueness of positive solutions for the
nonlinear fractional differential equation

{

Dαx (t) = f(t, x(t)), 0 < t ≤ 1,

x (0) = 0,

where Dα is the standard Riemann Liouville fractional derivative of order 0 < α < 1
and f : [0, 1] × [0, ∞) → [0, ∞) is a given continuous function. By using the method
of the upper and lower solution and cone fixed-point theorem, the author obtained
the existence and uniqueness of a positive solution.

The nonlinear fractional differential equation

{

CDαx (t) = f(t, x(t)) +C Dα−1g (t, x (t)) , 0 < t ≤ T,

x (0) = θ1 > 0, x′ (0) = θ2 > 0,

has been investigated in [4], where CDα is the standard Caputo’s fractional derivative
of order 1 < α ≤ 2, g, f : [0, T ] × [0, ∞) → [0, ∞) are given continuous functions, g is
non-decreasing on x and θ2 ≥ g (0, θ1). By employing the method of the upper and
lower solutions and Schauder and Banach fixed point theorems, the authors obtained
positivity results.

In [6], Chidouh, Guezane-Lakoud and Bebbouchi discussed the existence and unique-
ness of the positive solution of the following nonlinear fractional relaxation differential
equation

{

CDαx (t) + wx (t) = f (t, x (t)) , 0 < t ≤ 1,

x (0) = x0 > 0,

where 0 < α ≤ 1, w > 0 and f : [0, 1]× [0, ∞) → [0, ∞) is a given continuous function.
By using the method of the upper and lower solutions and Schauder and Banach fixed
point theorems, the existence and uniqueness of solutions has been established.

Ahmad and Ntouyas in [3] studied the existence and uniqueness of solutions to the
following boundary value problem



















D
α
1



D
β
1 u(t) − g (t, ut)



= f(t, ut), t ∈ [1, b],

u(t) = ϕ(t), t ∈ [1 − r, 1],

D
β
1 u(1) = η ∈ R,

where D
α
1 and D

β
1 are the Caputo-Hadamard fractional derivatives, 0 < α, β < 1. By

employing the fixed point theorems, the authors obtained existence and uniqueness
results.

In this paper, we are interested in the analysis of qualitative theory of the problems
of the positive solutions to fractional differential equations. Inspired and motivated
by the works mentioned above and the papers [1]–[13], [16] and the references therein,
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we concentrate on the positivity of solutions for the first-order nonlinear Caputo-
Hadamard fractional relaxation differential equation

(1.1)

{

D
α
1 (x (t) − g (t, x (t))) + wx (t) = f (t, x (t)) , 1 < t ≤ e,

x (1) = x0 > g (1, x0) > 0,

where 0 < α ≤ 1, w > 0, g, f : [1, e] × [0, ∞) → [0, ∞) are continuous. To show
the existence and uniqueness of the positive solution, we transform (1.1) into an
integral equation and then by the method of upper and lower solutions and use the
Krasnoselskii and Banach fixed point theorems.

This paper is organized as follows. In Section 2, we introduce some notations and
lemmas, and state some preliminaries results needed in later sections. Also, we present
the inversion of (1.1) and the Banach and Krasnoselskii fixed point theorems. For
details on the Banach and Krasnoselskii theorems we refer the reader to [15]. In
Sections 3 and 4, we give and prove our main results on positivity and we provide an
example to illustrate our results.

2. Preliminaries

Let X = C ([1, e]) be the Banach space of all real-valued continuous functions
defined on the compact interval [1, e], endowed with the maximum norm. Define the
cone

E = ¶x ∈ X : x(t) ≥ 0 for all t ∈ [1, e]♢ .

We introduce some necessary definitions, lemmas and theorems which will be used
in this paper. For more details, see [9, 13].

Definition 2.1 ([9]). The Hadamard fractional integral of order α > 0 for a continuous
function x : [1, +∞) → R is defined as

I
α
1 x(t) =

1

Γ(α)

∫ t

1



log
t

s

α−1

x(s)
ds

s
, α > 0.

Definition 2.2 ([9]). The Caputo-Hadamard fractional derivative of order α > 0 for
a continuous function x : [1, +∞) → R is defined as

D
α
1 x(t) =

1

Γ(n − α)

∫ t

1



log
t

s

n−α−1

δn(x)(s)
ds

s
, n − 1 < α < n,

where δn =


t d
dt

n
, n ∈ N.

Lemma 2.1 ([9]). Let n − 1 < α ≤ n, n ∈ N and x ∈ Cn ([1, T ]). Then

(Iα
1D

α
1 x) (t) = x(t) −

n−1
∑

k=0

x(k)(1)

Γ(k + 1)
(log t)k.

Lemma 2.2 ([9]). For all µ > 0 and ν > −1

1

Γ(µ)

∫ t

1



log
t

s

µ−1

(log s)ν ds

s
=

Γ(ν + 1)

Γ(µ + ν + 1)
(log t)µ+ν .
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Definition 2.3 ([14]). The two-parameter function of the Mittag-Leffler type is
defined by the series expansion

Eα,β (z) =
∞
∑

n=0

zn

Γ(αn + β)
, α > 0, β ∈ C, z ∈ C.

For β = 1, we obtain the Mittag-Leffler function in one parameter

Eα (z) =
∞
∑

n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C.

Lemma 2.3 ([14]). The generalized Mittag-Leffler function Eα,β (−x) with x ≥ 0 is

completely monotonic if and only if 0 < α ≤ 1 and β ≥ α. In other words, it yields

(−1)n dn

dxn
Eα,β (−x) ≥ 0, for all n ∈ N.

Obviously, 0 ≤ Eα,β (−x) ≤ 1
Γ(β)

, where x ≥ 0, 0 ≤ α ≤ 1 and β ≥ α.

The following lemma is fundamental to our results.

Lemma 2.4. Let x ∈ C ([1, e]), x′ and ∂g
∂t

exist, then x is a solution of (1.1) if and

only if

x (t) = (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, x (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

F (s, x (s))
ds

s
, 1 ≤ t ≤ e,(2.1)

where F (t, x) = f (t, x) − wg (t, x).

Proof. It is easy to prove by the Laplace transform. □

Lastly in this section, we state the fixed point theorems which enable us to prove
the existence and uniqueness of a positive solution of (1.1).

Definition 2.4. Let (X, ∥·∥) be a Banach space and H : X → X. The operator H is
a contraction operator if there is an λ ∈ (0, 1) such that x, y ∈ X imply

∥Hx − Hy∥ ≤ λ ∥x − y∥ .

Theorem 2.1 (Banach [15]). Let K be a nonempty closed convex subset of a Banach

space X and H : K → K be a contraction operator. Then there is a unique x ∈ K

with Hx = x.

Theorem 2.2 (Krasnoselskii fixed point theorem [15]). If K is a nonempty bounded,

closed and convex subset of a Banach space X, A and B two operators defined on K

with values in X such that

i) Ax + By ∈ K for all x, y ∈ K;

ii) A is continuous and compact;

iii) B is a contraction.

Then there exists z ∈ K such that z = Az + Bz.
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3. Existence of Positive Solutions

In this section, we consider the results of existence problem for many cases of (1.1).
Moreover, we introduce the following conditions.

(H1) g, F : [1, e] × [0, ∞) → [0, ∞) are continuous functions and g is nondecreasing
on x.

(H2) There exists Lg ∈ (0, 1) such that

♣g(t, x) − g(t, y)♣ ≤ Lg ∥x − y∥ .

(H3) There exists LF > 0 such that

♣F (t, x) − F (t, y)♣ ≤ LF ∥x − y∥ .

We note that to apply Theorem 2.2 we need to construct two mappings, one is
contraction and the other is completely continuous. Therefore, we express (2.1) as

(3.1) x (t) = (Ax) (t) + (Bx) (t) = (Hx) (t) ,

where the operators A,B : E → X are defined by

(Ax) (t) =
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

F (s, x (s))
ds

s

and

(Bx) (t) = (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, x (t)) .

We need the following lemmas to establish our results.

Lemma 3.1. Assume that (H1) holds. Then, the operator A : E → E is completely

continuous.

Proof. By Lemma 2.3 and taking into account that F is continuous nonnegative
function, we get that A : E → E is continuous. The function F : [1, e] × Bη → [0, ∞)
is bounded, then there exists ρ > 0 such that 0 ≤ F (t, x (t)) ≤ ρ, where Bη =
¶x ∈ E, ∥x∥ ≤ η♢. We obtain

♣(Ax) (t)♣ =

∣

∣

∣

∣

∣

∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

F (s, x (s))
ds

s

∣

∣

∣

∣

∣

≤
1

Γ (α)

∫ t

1



log
t

s

α−1

♣F (s, x (s))♣
ds

s

≤
ρ

Γ (α)

∫ t

1



log
t

s

α−1 ds

s

≤
ρ (log t)α

Γ (α + 1)
.

Thus,

∥Ax∥ ≤
ρ

Γ (α + 1)
.

Hence, A(Bη) is uniformly bounded.
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Now, we will prove that A(Bη) is equicontinuous. Let x ∈ Bη, then for any
t1, t2 ∈ [1, e], t2 > t1, we have

♣(Ax) (t1) − (Ax) (t2)♣

=

∣

∣

∣

∣

∣

∫ t1

1



log
t1

s

α−1

Eα,α



−w



log
t1

s

α

F (s, x (s))
ds

s

−
∫ t2

1



log
t2

s

α−1

Eα,α



−w



log
t2

s

α

F (s, x (s))
ds

s

∣

∣

∣

∣

∣

≤
1

Γ (α)

∫ t1

1

∣

∣

∣

∣

∣



log
t1

s

α−1

−


log
t2

s

α−1
∣

∣

∣

∣

∣

♣F (s, x (s))♣
ds

s

+
1

Γ (α)

∫ t2

t1



log
t2

s

α−1

♣F (s, x (s))♣
ds

s

≤
ρ

Γ (α)



∫ t1

1





log
t1

s

α−1

−


log
t2

s

α−1


ds

s
+
∫ t2

t1



log
t2

s

α−1 ds

s



≤
ρ

Γ (α + 1)



(log t1)
α − (log t2)

α + 2


log
t2

t1

α

≤
2ρ

Γ (α + 1)



log
t2

t1

α

,

which is independent of x and tends to zero as t2 → t1. Thus, A(Bη) is equicontinuous.
So, the compactness of A follows by Ascoli Arzela’s theorem. □

Lemma 3.2. Assume that (H1) and (H2) hold. Then the operator B : E → E is a

contraction.

Proof. By Lemma 2.3 and taking into account that g is continuous nonnegative
function and x0 > g (1, x0), we get that B : E → E. For x, y ∈ E we have

♣(Bx) (t) − (By) (t)♣ = ♣g (t, x (t)) − g (t, y (t))♣ ≤ Lg ∥x − y∥ .

Thus, ∥Bx − By∥ ≤ Lg ∥x − y∥. Hence, B is a contraction. □

Now, for any x ∈ [a, b] ⊂ R
+, we define respectively the upper and lower control

functions as follows

H (t, x) = sup
a≤y≤x

F (t, y) , h (t, x) = inf
x≤y≤b

F (t, y) .

It is clear that these functions are nondecreasing on [a, b].

Definition 3.1. Let x, x ∈ E, a ≤ x ≤ x ≤ b, satisfying

x (t) ≥ (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, x (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

H (s, x (s))
ds

s
, 1 ≤ t ≤ e,
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and

x (t) ≤ (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, x (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

h (s, x (s))
ds

s
, 1 ≤ t ≤ e.

Then the functions x and x are called a pair of upper and lower solutions for the
equation (1.1).

Theorem 3.1. Assume that (H1) and (H2) hold and x and x are respectively upper

and lower solutions of (1.1), then (1.1) has at least one positive solution.

Proof. Let

K = ¶x ∈ E : x (t) ≤ x (t) ≤ x (t) , t ∈ [1, e]♢ .

As K ⊂ E and K is a nonempty bounded, closed and convex subset. By Lemma
3.1, A : K → E is completely continuous. Also, from Lemma 3.2, B : K → E is a
contraction. Next, we show that if x, y ∈ K, we have Ax +By ∈ K. For any x, y ∈ K,
we have x ≤ x, y ≤ x, then

(Ax) (t) + (By) (t)

= (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, y (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

F (s, x (s))
ds

s

≤ (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, x (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

H (s, x (s))
ds

s

≤x (t)(3.2)

and

(Ax) (t) + (By) (t)

= (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, y (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

F (s, x (s))
ds

s

≥ (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, x (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

h (s, x (s))
ds

s

≥x (t) .(3.3)

Thus, from (3.2) and (3.3), we obtain that Ax + By ∈ K. We now see that all the
conditions of the Krasnoselskii’s fixed point theorem are satisfied. Thus there exists
a fixed point x in K. Therefore, (1.1) has at least one positive solution x in K. □
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Corollary 3.1. Assume that (H1) and (H2) hold and there exist λ1, λ2, λ3, λ4 ≥ 0
such that

(3.4) λ1 ≤ g (t, x) ≤ λ2, (t, x) ∈ [1, e] × [0, +∞) ,

and

(3.5) λ3 ≤ F (t, x) ≤ λ4, (t, x) ∈ [1, e] × [0, +∞) .

Then (1.1) has at least one positive solution x ∈ E, moreover

(3.6) x (t) ≥ (x0 − g (1, x0)) Eα (−w (log t)α) + λ1 + λ3 (log t)α
Eα,α+1 (−w (log t)α)

and

(3.7) x (t) ≤ (x0 − g (1, x0)) Eα (−w (log t)α) + λ2 + λ4 (log t)α
Eα,α+1 (−w (log t)α) .

Proof. From (3.5) and the definition of control functions, we have

(3.8) λ3 ≤ h (t, x) ≤ H (t, x) ≤ λ4.

Now, let

x (t) = (x0 − g (1, x0)) Eα (−w (log t)α) + λ2 + λ4 (log t)α
Eα,α+1 (−w (log t)α)

= (x0 − g (1, x0)) Eα (−w (log t)α) + λ2

+ λ4

∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α ds

s
.

Taking into account (3.4) and (3.8), we have

x (t) = (x0 − g (1, x0)) Eα (−w (log t)α) + λ2

+ λ4

∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α ds

s

≥ (x0 − g (1, x0)) Eα (−w (log t)α) + g (t, x (t))

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

H (s, x (s))
ds

s
.

It is clear that x is the upper solution of (1.1).
Now, let

x (t) = (x0 − g (1, x0)) Eα (−w (log t)α) + λ1 + λ3 (log t)α
Eα,α+1 (−w (log t)α)

= (x0 − g (1, x0)) Eα (−w (log t)α) + λ1

+ λ3

∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α ds

s
.

By (3.4), (3.8) and the same way that we used to search the upper solution, we
conclude also that x is the lower solution of (1.1). Therefore, from Theorem 3.1,
we conclude that (1.1) has at least one positive solution x ∈ E which verifies the
inequalities (3.6) and (3.7). □
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Corollary 3.2. Assume that (H1) and (H2) hold and there exists a1, a2 > 0 such

that

(3.9) a1 ≤ g (t, x) , a2 ≤ F (t, x) , (t, x) ∈ [1, e] × [0, +∞) ,

and

(3.10) lim
x→+∞

g (t, x) < +∞, lim
x→+∞

F (t, x) < +∞,

then (1.1) has at least one positive solution.

Proof. By (3.10), there exist positive constants N1, N2, R1 and R2 such that

(3.11) g (t, x) ≤ N1, for any x ≥ R1, t ∈ [1, e] ,

and

(3.12) F (t, x) ≤ N2, for any x ≥ R2, t ∈ [1, e] .

Let C1 = max
1≤t≤e,0≤x≤R1

g (t, x) and C2 = max
1≤t≤e,0≤x≤R2

F (t, x). Then, by (3.11) and

(3.12), we have

a1 ≤ g (t, x) ≤ N1 + C1, for any x ≥ 0, t ∈ [1, e] ,

and

a2 ≤ F (t, x) ≤ N2 + C2, for any x ≥ 0, t ∈ [1, e] .

Thus, from Corollary 3.1, (1.1) has at least one positive solution x in E which satisfies
the following inequalities

x (t) ≥ (x0 − g (1, x0)) Eα (−w (log t)α) + a1 + a2 (log t)α
Eα,α+1 (−w (log t)α)

and

x (t) ≤ (x0 − g (1, x0)) Eα (−w (log t)α) + N1 + C1

+ (N2 + C2) (log t)α
Eα,α+1 (−w (log t)α) . □

4. Uniqueness of Positive Solution

In this section, we shall prove the uniqueness of the positive solution using the
contraction mapping principle.

Theorem 4.1. Assume that (H1)-(H3) hold and

(4.1) Lg +
LF

Γ (α + 1)
< 1,

then (1.1) has a unique positive solution x ∈ K.
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Proof. From Theorem 3.1, it follows that (1.1) has at least one positive solution in K.
Hence, we need only to prove that the operator H defined in (3.1) is a contraction on
X. In fact, since for any x1, x2 ∈ K, (H2) and (H3) are verified, then we have

♣(Hx1) (t) − (Hx2) (t)♣

≤ ♣g (t, x1 (t)) − g (t, x2 (t))♣

+
∫ t

1



log
t

s

α−1

Eα,α



−w



log
t

s

α

♣F (s, x1 (s)) − F (s, x2 (s))♣
ds

s

≤Lg ∥x1 − x2∥ +
(log t)α

Γ (α + 1)
LF ∥x1 − x2∥

≤



Lg +
LF

Γ (α + 1)



∥x1 − x2∥ .

Thus,

∥Hx1 − Hx2∥ ≤



Lg +
LF

Γ (α + 1)



∥x1 − x2∥ .

Hence, the operator H is a contraction mapping by (4.1). Therefore, by the contraction
mapping principle, we conclude that the problem (1.1) has a unique positive solution
x ∈ K. □

Finally, we give an example to illustrate our results.

Example 4.1. We consider the following nonlinear Caputo-Hadamard fractional relax-
ation differential equation

(4.2)































D
1/3
1



x (t) −
x (t) + 2

x (t) + 3



+ x (t)

=
(t + 6) x2 (t) + (4t + 21) x (t) + 5t + 18

(t + 3) (x2 (t) + 4x (t) + 3)
, 1 < t ≤ e,

x (1) = 1,

where

α =
1

3
, w = 1, x0 = 1, g (t, x) =

x + 2

x + 3
, g (1, x0) =

3

4
,

f (t, x) =
(t + 6) x2 + (4t + 21) x + 5t + 18

(t + 3) (x2 + 4x + 3)
, F (t, x) =

1

3 + t



t

x + 1
+ 3



.

Since g is nondecreasing on x and F is decreasing on x

2

3
≤ g (t, x) ≤ 1,

3

3 + e
≤ F (t, x) ≤ 1,

for (t, x) ∈ [1, e]× [0, ∞). Hence, by Corollary 3.1, (4.2) has a positive solution, which
verifies x (t) ≤ x (t) ≤ x (t), where

x (t) =
1

4
E1/3



− (log t)1/3


+ 1 + (log t)1/3
E1/3,4/3



− (log t)1/3




FRACTIONAL RELAXATION DIFFERENTIAL EQUATIONS 907

and

x (t) =
1

4
E1/3



− (log t)1/3


+
2

3
+

3

3 + e
(log t)1/3

E1/3,4/3



− (log t)1/3


,

are respectively the upper and lower solutions of (4.2). Also, we have

Lg +
LF

Γ (α + 1)
≃ 0.64 < 1.

Then, by Theorem 4.1, (4.2) has a unique positive solution which is bounded by x

and x.
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EXISTENCE AND UNIQUENESS OF THE MILD SOLUTION OF

AN ABSTRACT SEMILINEAR FRACTIONAL DIFFERENTIAL

EQUATION WITH STATE DEPENDENT NONLOCAL CONDITION

MOHAMED A. E. HERZALLAH1 AND ASHRAF H. A. RADWAN2

Abstract. The purpose of this paper is to investigate the existence and unique-
ness of mild solutions to a semilinear Cauchy problem for an abstract fractional
differential equation with state dependent nonlocal condition. Continuous depen-
dence of solutions on initial conditions and local ϵ-approximate mild solution of the
considered problem will be discussed.

1. Introduction

Many authors are interested in studying different classes of differential equations
by using several forms of accompanying conditions. L. Byszewski [1] inaugurated the
study of Cauchy problems for the abstract evolution differential equation
u′(t) + Au(t) = f(t, u(t)), t ∈ (t0, t0 + a], with the nonlocal condition u(t0) +
g(t1, t2, . . . , tp, u(·)) = u0. K. Deng [2] indicated that the nonlocal condition can be
applied in physics with more precise measurements, accurate results and better effect
than the usual initial condition. Deng used the nonlocal form g(u) =

∑p
k=1 cku(tk),

where ck, k = 1, 2, . . . , p, are given constants. A. El-Sayed et al. [3] discussed the
existence of solutions to the deviated-advanced nonlocal differential inclusion

x′(t) ∈F (t, x(t)) a.e. t ∈ (0, 1),
m
∑

k=1

akx(ϕ(τk)) =α
n
∑

j=1

bjx(ψ(ηj)), ak, bj > 0, τk, ηj ∈ (0, 1),

Key words and phrases. Caputo derivative, state dependent nonlocal condition, C0-semigroups,
continuous dependence, ϵ-approximate solution, Krasnoselskii’s fixed point theorem.
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where F is a set-valued function from [0, 1]×R into P (R+) (the power set of R+), α > 0
is a parameter and ϕ, ψ are, respectively, deviated and advanced given functions. In [3]
some special forms of nonlocal conditions are displayed such as

∑m
k=1 akx(ϕ(τk)) = 0,

∑m
k=1 akx(ϕ(τk)) = αx(ψ(η)), τk, η ∈ (0, 1),

∫ 1
0 x(ϕ(s))ds = 0,

∫ 1
0 x(ψ(s))ds = 0 and

∫ 1
0 x(ϕ(s))ds = α

∫ 1
0 x(ψ(s))ds. E. Hernandez and D. O’Regan [8] investigated the

existence and uniqueness of mild solutions for the class

u′(t) = Au(t) + F (t, u(γ(t))), t ∈ [0, a],

with the state dependent nonlocal condition

u(0) = H(σ(u), u) ∈ X,

where A generates an analytic semigroup of linear operators on a Banach space X
and F (·), γ(·), H(·) and σ(·) are suitable continuous functions. The state dependent
nonlocal condition generalizes many types of nonlocal conditions. For instance, the
conditions u(0) = u0, u(0) =

∑p
i=1 ciu(ti), with 0 ≤ t1 < · · · < tp ≤ a and u(0) = g(u),

where g ∈ C(C(J,X), X) can be considered as state dependent nonlocal conditions.
For more details about the state dependent nonlocal conditions see [7]. For the history,
applications and significant results on fractional derivatives and integrals, we refer the
reader to [10,12,14–16,19].

The aim of our manuscript is to discuss the existence and uniqueness of mild
solutions to the state dependent nonlocal problem

cDαu(t) =Au(t) + F (t, u(t), u (γ(t))) , t ∈ [0, b],(1.1)

u(0) =H (σ(u), u) ∈ X.(1.2)

cDα denotes the Caputo fractional derivative of order α ∈ (0, 1). The operator A
is the infinitesimal generator of a C0-semigroup ¶T (t)♢t≥0 of operators on X and
F (·), γ(·), H(·) and σ(·) are appropriate continuous functions satisfying some hypothe-
ses. We illustrate our results by giving an illustrative example. Further, we discuss
the continuous dependence of solutions on initial conditions and local ϵ-approximate
mild solution of problem (1.1). The results obtained are based upon the method of
semigroups, the contraction mapping principle and the Krasnoselskii’s fixed point
theorem.

The rest of this paper is organized as follows. In Section 2, we display some notations,
main definitions and theorems which are used through out the paper. The main results
will be given in Section 3 where we investigate the existence and uniqueness of mild
solutions to problem (1.1)–(1.2). In Section 4, we discuss the continuous dependence of
solutions on initial conditions and study local ϵ-approximate mild solution of problem
(1.1).

2. Preliminaries

Here, we introduce some notations, main definitions and theorems which are crucial
in what follows.
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Let J = [0, b], where b > 0, (X, ∥ · ∥X) be a Banach space, B(X) be the space of all
bounded linear operators from X into X, C(J,X) be the set of all continuous functions
u : J → X with the norm ∥u∥C= sup¶∥u(t)∥ : u ∈ C(J,X), t ∈ J♢, Cn(J,X) be the
set of all n-differentiable functions, with u(n) ∈ C(J,X), AC(J,X) be the set of all
absolutely continuous functions from J into X.

Let ϕη, η > 0, be the function ϕη(t) = tη−1/Γ(η) for t > 0 and ϕη(t) = 0 for t ≤ 0.
For η = 0, ϕ0(t) is the Dirac delta function.

Let A : D(A) ⊂ X → X be the infinitesimal generator of a C0-semigroup ¶T (t)♢t≥0

of uniformly bounded linear operators on X.
Let ρ(A) be the resolvent set of A, i.e., the set of all complex numbers λ for which

λI − A is invertible. The family ¶(λI − A)−1♢λ∈ρ(A) of bounded linear operators is
called the resolvent of A.

A function γ(t) : J → J is said to be a deviated function if γ(t) ≤ t for all t ∈ J .
As an example of a deviated function, we have γ(t) = βt, β ∈ (0, 1).

Farctional integral according to Riemann-Liouville approach and Caputo fractional
derivative are given in what follows [10,14].

Definition 2.1. The fractional integral of order α > 0 with the lower limit 0 of the
function u : [0,∞) → X is defined by

Iαu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds = (ϕα ∗ u)(t), t ≥ 0,

provided that the right-hand side is point-wise defined. The symbol ∗ stands for the
convolution operation and Γ(·) is the Euler gamma function.

Definition 2.2. The Caputo derivative of order α ∈ (0, 1) with the lower limit 0 for
a function u ∈ AC(J,X) is defined by

cDαu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Du(s)ds = I1−αDu(t), D =

d

dt
.

We recall some definitions and properties about C0-semigroups [6, 13].

Definition 2.3. A family ¶T (t) : 0 ≤ t < ∞♢ of linear operators from X to X is
called a C0-semigroup if:

1. ∥T (t)∥ ≤ ∞, i.e., sup¶∥T (t)u∥ : u ∈ X, ∥u∥ ≤ 1♢ < ∞ for each t ≥ 0;
2. T (t+ s)u = T (t)T (s)u for all u ∈ X and all t, s ≥ 0;
3. T (0)u = u for all u ∈ X;
4. t 7→ T (t)u is continuous for t ≥ 0 for each u ∈ X.

Definition 2.4. For the C0-semigroup ¶T (t)♢t≥0, the following holds.

1. There exist constants N ≥ 1 and ω ≥ 0 such that ∥T (t)∥ ≤ Neωt for 0 ≤ t < ∞.
2. ¶T (t)♢t≥0 is called a C0-contraction semigroup if ∥T (t)∥ ≤ 1 for each t ≥ 0.
3. ¶T (t)♢t≥0 is called a uniformly continuous semigroup if t 7→ T (t) is continuous

in the uniform operator topology.
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4. The linear operator A : D(A) ⊂ X → X is called the (infinitesimal) generator
of ¶T (t)♢t≥0 where the domain D(A) of A is the set of all functions u ∈ X for
which the limit lim

t→0+
(T (t)u− u)/t exists in X. The previous limit gives Au in

X. The domain D(A) is dense in X and A is closed.
5. ¶T (t)♢t≥0 is a compact semigroup, if and only if ¶T (t)♢t≥0 is continuous in the

uniform operator topology and (λI − A)−1 is compact for λ ∈ ρ(A).
6. If ¶T (t)♢t≥0 is compact, then (λI − A)−1 =

∫∞

0 e−λsT (s)ds, Reλ > ω.

A useful Krasnoselskii’s fixed point theorem [4] and Gronwall’s inequality [18] are
given in what follows.

Theorem 2.1. Let X be a Banach space, Y be a bounded, closed and convex subset of

X and K,Q be operators of Y into X such that Ku+Qv ∈ Y for every pair u, v ∈ Y .

If Q is a contraction and K is completely continuous, then the equation Ku+Qu = u
has a solution in Y .

Theorem 2.2. Suppose α > 0, a(t) is a nonnegative function locally integrable on

J , g(t) is a nonnegative, nondecreasing continuous function defined on J , g(t) ≤ c
(constant), and u(t) is nonnegative and locally integrable on J with

u(t) ≤ a(t) + g(t)
∫ t

0
(t− s)α−1u(s)ds,

then

(2.1) u(t) ≤ a(t) +
∫ t

0



∞
∑

n=1

(g(t)Γ(α))n

Γ(nα)
(t− s)nα−1a(s)

]

ds, t ∈ J.

3. Existence and Uniqueness of Solutions

In this part, we investigate the existence and uniqueness of continuous mild solutions
to the nonlocal problem (1.1)–(1.2).

Consider the one-sided stable probability density [11,19]

(3.1) ψα(θ) =
1

π

∞
∑

n=1

(−1)n−1θ−1−αn Γ(1 + αn)

n!
sin(αnπ), α ∈ (0, 1), θ ∈ (0,∞),

whose Laplace transform is given by

(3.2)
∫ ∞

0
e−λθψα(θ)dθ = e−λα

,

and consider the probability density function

(3.3) hα(θ) =
1

α
θ−1−1/αψα(θ−1/α), θ ∈ (0,∞),

which satisfies

(3.4) hα(θ) ≥ 0,
∫ ∞

0
hα(θ)dθ = 1 and

∫ ∞

0
θνhα(θ) =

Γ(1 + ν)

Γ(1 + αν)
, ν ∈ [0, 1].
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We have relied on the following lemma to define a mild solution for problem (1.1)–
(1.2).

Lemma 3.1. The solution of the nonlocal problem (1.1)–(1.2) can be expressed by the

integral equation

u(t) =
∫ ∞

0
hα(θ)T (tαθ)H (σ(u), u) dθ

+ α
∫ t

0

∫ ∞

0
θ(t− s)α−1hα(θ)T ((t− s)αθ)F (s, u(s), u(γ(s)))dθds.(3.5)

Proof. Let u(t) be a solution of problem (1.1). Operating Iα on both sides of (1.1),
we obtain

u(t) = u(0) + ϕα(t) ∗ Au(t) + ϕα(t) ∗ F (t, u(t), u(γ(t))).(3.6)

Let U(λ) =
∫∞

0 e−λsu(s)ds and P (λ) =
∫∞

0 e−λsF (s, u(s), u(γ(s)))ds, λ > 0. Taking
Laplace transform for (3.6), we get

U(λ) =
1

λ
u(0) +

1

λα
AU(λ) +

1

λα
P (λ)

= λα−1(λαI − A)−1u(0) + (λαI − A)−1P (λ)

= λα−1
∫ ∞

0
e−λαsT (s)u(0)ds+


∫ ∞

0
e−λαsT (s)ds



P (λ),(3.7)

where I is the identity operator defined on X. Using (3.2), direct calculation gives
that

λα−1
∫ ∞

0
e−λαsT (s)u(0)ds =

∫ ∞

0
α(λt)α−1e−(λt)α

T (tα)u(0)dt

=
∫ ∞

0
−

1

λ

d

dt



e−(λt)α



T (tα)u(0)dt

=
∫ ∞

0

∫ ∞

0
θψα(θ)e−λtθT (tα)u(0)dθdt

=
∫ ∞

0
e−λt


∫ ∞

0
ψα(θ)T



tα

θα



u(0)dθ


dt(3.8)

and

∫ ∞

0
e−λαsT (s)ds



P (λ)(3.9)

=

∫ ∞

0
αtα−1e−(λt)α

T (tα)dt


P (λ)

=

∫ ∞

0

∫ ∞

0
αψα(θ)e−λtθT (tα) tα−1dθdt



P (λ)

=



∫ ∞

0
e−λt



α
∫ ∞

0
ψα(θ)T



tα

θα



tα−1

θα
dθ



dt



P (λ)

=
∫ ∞

0
e−λt



α
∫ ∞

0
ψα(θ)T



tα

θα



tα−1

θα
dθ



∗ F (t, u(t), u(γ(t)))

]

dt
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=
∫ ∞

0
e−λt



α
∫ t

0

∫ ∞

0
ψα(θ)T



(t− s)α

θα



(t− s)α−1

θα
F (s, u(s), u(γ(s)))dθds

]

dt.

Substituting (1.2), (3.8) and (3.9) into (3.7), we get

U(λ)

=
∫ ∞

0
e−λt


∫ ∞

0
ψα(θ)T



tα

θα



H (σ(u), u) dθ


dt

+
∫ ∞

0
e−λt



α
∫ t

0

∫ ∞

0
ψα(θ)T



(t− s)α

θα



(t− s)α−1

θα
F (s, u(s), u(γ(s)))dθds

]

dt.

Inverting the Laplace transform, we obtain

u(t) =
∫ ∞

0
ψα(θ)T



tα

θα



H (σ(u), u) dθ

+ α
∫ t

0

∫ ∞

0
ψα(θ)T



(t− s)α

θα



(t− s)α−1

θα
F (s, u(s), u(γ(s)))dθds.

Using (3.3), we get (3.5). This completes the proof. □

Define the operators ¶Sα(t)♢t≥0 and ¶Rα(t)♢t≥0 for any u ∈ X, by

Sα(t)u =
∫ ∞

0
hα(θ)T (tαθ)udθ and Rα(t)u = α

∫ ∞

0
θhα(θ)T (tαθ)udθ.(3.10)

Now, the mild solution of the nonlocal problem (1.1)–(1.2) can be defined by
following.

Definition 3.1. A function u(t) ∈ C(J,X) is called a mild solution of the nonlocal
problem (1.1)–(1.2) if u(0) = H (σ(u), u) and

u(t) = Sα(t)H (σ(u), u) +
∫ t

0
(t− s)α−1Rα(t− s)F (s, u(s), u(γ(s)))ds.(3.11)

The following lemma gives some basic properties of Sα and Rα which are useful in
the sequel [9, 17].

Lemma 3.2. The operators Sα(t), t ≥ 0, and Rα(t), t ≥ 0, have the following

properties.

1. For any fixed t ≥ 0, the operators Sα(t) and Rα(t) are linear and bounded

operators, which means that for any u ∈ X

∥Sα(t)u∥ ≤ M∥u∥ and ∥Rα(t)u∥ ≤
αM

Γ(1 + α)
∥u∥, for all t ∈ J,(3.12)

where M := supt∈[0,∞) ∥T (t)∥B(X) < ∞.
2. For every u ∈ X, t 7→ Sα(t)u and t 7→ Rα(t)u are continuous functions from

[0,∞) into X.

3. The operators Sα(t), t ≥ 0, and Rα(t), t ≥ 0, are strongly continuous in [0,∞),
which means that for all u ∈ X and 0 ≤ t1 < t2 ≤ b, we have

∥Sα(t2)u− Sα(t1)u∥ → 0 and ∥Rα(t2)u−Rα(t1)u∥ → 0 as t2 → t1.
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4. If T (t) is a compact operator for every t > 0, then the operators Sα(t) and Rα(t)
are also compact for every t > 0.

In order to discuss the existence and uniqueness of mild solutions to the nonlocal
problem (1.1)–(1.2), consider the following assumptions:

(H1) T (t) is a compact operator for each t > 0;
(H2) γ : J → J is a deviated continuous function, i.e., γ(t) ≤ t, t ∈ J ;
(H3) σ : C(J,X) → J is a Lipschitz function with Lipschitz constant Lσ;
(H4) F : J ×X2 → X is continuous and there exist constants p, q > 0 such that

∥F (t, u1, v1) − F (t, u2, v2)∥ ≤ p∥u1 − u2∥ + q∥v1 − v2∥, with f = max
t∈J

∥F (t, 0, 0)∥;

(H5) H : J × C(J,X) → X is continuous and there exists λ > 0 such that

∥H(u1, u2) −H(v1, v2)∥ ≤ ∥u1 − v1∥ + λ∥u2 − v2∥

and H(·) is bounded, with h = supu∈C(J,X) ∥H(σ(u), u)∥.

Noting that for all u, v ∈ C(J,X):
(a) from (H3) and (H5),

∥H(σ(u), u) −H(σ(v), v)∥ ≤ (λ+ Lσ)∥u− v∥;(3.13)

(b) from (H4),

∥F (t, u, v)∥ ≤ ∥F (t, u, v) − F (t, 0, 0)∥ + ∥F (t, 0, 0)∥

≤ p∥u∥ + q∥v∥ + f.(3.14)

For the existence of mild solutions to problem (1.1)–(1.2), we give the following
theorem.

Theorem 3.1. Let the assumptions (H1)–(H5) be satisfied. Then, the nonlocal problem

(1.1)–(1.2) has at least one mild solution u ∈ C(J,X) if

max

{

(λ+ Lσ)M,
M(p+ q)bα

Γ(1 + α)

}

< 1.

Proof. Let N(r) be the nonempty, closed and convex subset of C(J,X) such that

N(r) =

{

u ∈ C(J,X) : ∥u∥ ≤ r, r =
M [bαf + hΓ(1 + α)]

Γ(1 + α) −M(p+ q)bα

}

.

Let W : C(J,X) → C(J,X) be the operator given by Wu(t) = Ku(t) +Qu(t), where

Ku(t) =
∫ t

0
(t− s)α−1Rα(t− s)F (s, u(s), u(γ(s)))ds(3.15)

and

Qu(t) = Sα(t)H (σ(u), u) .(3.16)

The proof will be given in four steps.
Step 1. Ku+Qv ∈ N(r) whenever u, v ∈ N(r).
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Using (3.15) and (3.16) with applying (3.12), we have

∥Ku(t) +Qv(t)∥

≤
∫ t

0
(t− s)α−1∥Rα(t− s)F (s, u(s), u(γ(s)))∥ds+ ∥Sα(t)H (σ(v), v) ∥

≤
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1∥F (s, u(s), u(γ(s)))∥ds+M∥H (σ(v), v) ∥.

Using (3.14) and (H5), we obtain

∥Ku(t) +Qv(t)∥ ≤
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1 [p∥u(s)∥ + q∥u(γ(s))∥ + f ] ds+ hM.

For u ∈ N(r), we get

∥Ku+Qv∥ ≤ M



bα[f + (p+ q)r]

Γ(α+ 1)
+ h



= r.(3.17)

Thus, Ku+Qv ∈ N(r) whenever u, v ∈ N(r).
Step 2. K is continuous.
Let ¶un♢∞

n=1 be a sequence in C(J,X) such that un tends to u ∈ C(J,X) as n tends
to ∞ for all t ∈ J .

Using (3.15) and (3.12) we have

∥Kun(t) −Ku(t)∥

≤
∫ t

0
(t− s)α−1∥Rα(t− s) [F (s, un(s), un(γ(s))) − F (s, u(s), u(γ(s)))] ∥ds

≤
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1∥F (s, un(s), un(γ(s))) − F (s, u(s), u(γ(s)))∥ds.

Applying (H4), we obtain

∥Kun(t) −Ku(t)∥

≤
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1 [p∥un(s) − u(s)∥ + q∥un(γ(s)) − u(γ(s))∥] ds.

Then

∥Kun −Ku∥ ≤
Mbα(p+ q)

Γ(α+ 1)
∥un − u∥,

which tends to zero as n tends to ∞. Thus, K is a continuous operator.
Step 3. K is compact.
From (3.12), (3.14) and (3.15), we have

∥Ku(t)∥ ≤
∫ t

0
(t− s)α−1∥Rα(t− s)F (s, u(s), u(γ(s)))∥ds

≤
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1∥F (s, u(s), u(γ(s)))∥ds



ABSTRACT SEMILINEAR EQUATION WITH STATE DEPENDENT NONLOCAL CONDITION917

≤
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1 [p∥u(s)∥ + q∥u(γ(s))∥ + f ] ds.

For u, v ∈ N(r), we get

∥Ku∥ ≤
Mbα[f + (p+ q)r]

Γ(1 + α)
.

So, the class of functions ¶Ku(t)♢ is uniformly bounded in N(r).
Let 0 ≤ t1 ≤ t2 ≤ b. From (3.15), we have

∥Ku(t2) −Ku(t1)∥

≤

∥

∥

∥

∥

∫ t1

0

[

(t2 − s)α−1 − (t1 − s)α−1
]

Rα(t2 − s)F (s, u(s), u(γ(s)))ds
∥

∥

∥

∥

+
∥

∥

∥

∥

∫ t2

t1

(t2 − s)α−1Rα(t2 − s)F (s, u(s), u(γ(s)))ds
∥

∥

∥

∥

+
∥

∥

∥

∥

∫ t1

0
(t1 − s)α−1 [Rα(t2 − s) −Rα(t1 − s)]F (s, u(s), u(γ(s)))ds

∥

∥

∥

∥

.

Applying (3.12) and (3.14), we obtain

∥Ku(t2) −Ku(t1)∥

≤
αM [f + (p+ q)r]

Γ(1 + α)


∫ t1

0

[

(t2 − s)α−1 − (t1 − s)α−1
]

ds+
∫ t2

t1

(t2 − s)α−1ds


+
∫ t1

0
(t1 − s)α−1∥ (Rα(t2 − s) −Rα(t1 − s))F (s, u(s), u(γ(s)))∥ds.

Since lim
t2→t1

∥Rα(t2 − s) −Rα(t1 − s)∥ = 0 uniformly for 0 ≤ s ≤ t1 ≤ t2 ≤ b, it is easy

to see that ∥Ku(t2) −Ku(t1)∥ → 0 as t2 → t1. Thus, ¶Ku(t)♢ is equicontinuous. By
Arzela-Ascoli theorem, ¶Ku(t)♢ is relatively compact and K is a compact operator.

Step 4. Q is a contraction.
Let u, v ∈ N(r). From (3.16), we have

∥Qu(t) −Qv(t)∥ ≤ ∥Sα(t) (H(σ(u), u) −H(σ(v), v)) ∥,

then by applying (3.12) and (3.13), we get ∥Qu − Qv∥ ≤ (λ + Lσ)M∥u − v∥. Since
(λ+ Lσ)M < 1, Q is a contraction operator [5].

As a consequence of Krasonselskii’s fixed point theorem, the operator W has at
least one fixed point. Therefore, the nonlocal problem (1.1)–(1.2) has at least one
mild solution u ∈ N(r) which completes the proof. □

For the uniqueness of mild solutions to problem (1.1)–(1.2), we give the following
theorem.

Theorem 3.2. Let the assumptions (H1)-(H5) be satisfied. Then, the nonlocal problem

(1.1)–(1.2) has a unique mild solution u ∈ C(J,X) if

M



λ+ Lσ +
bα(p+ q)

Γ(1 + α)



< 1.
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Proof. Consider the operator W : C(J,X) → C(J,X) such that

Wu(t) = Sα(t)H (σ(u), u) +
∫ t

0
(t− s)α−1Rα(t− s)F (s, u(s), u(γ(s)))ds.(3.18)

The proof will be given in two steps.
Step 1. W maps N(r) into itself. From (3.12) and (3.18), we have

∥Wu(t)∥ ≤ ∥Sα(t)H (σ(u), u) ∥ +
∫ t

0
(t− s)α−1∥Rα(t− s)F (s, u(s), u(γ(s)))∥ds

≤ M∥H (σ(u), u) ∥ +
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1∥F (s, u(s), u(γ(s)))∥ds.

Let u ∈ N(r), with applying (3.14), we get

∥Wu∥ ≤ M



bα[f + (p+ q)r]

Γ(1 + α)
+ h



= r.

Therefore, WN(r) ⊆ N(r) .
Step 2. W is a contraction. Let u, v ∈ N(r). Using (3.12), (3.13) and (3.18), we

obtain

∥Wu(t) −Wv(t)∥

≤∥Sα(t) [H (σ(u), u) −H (σ(v), v)] ∥

+
∫ t

0
(t− s)α−1∥Rα(t− s) [F (s, u(s)u(γ(s))) − F (s, v(s), v(γ(s)))] ∥ds

≤M∥H (σ(u), u) −H (σ(v), v) ∥

+
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1∥F (s, u(s)u(γ(s))) − F (s, v(s), v(γ(s)))∥ds

≤M(λ+ Lσ)∥u(t) − v(t)∥+

+
αM

Γ(α+ 1)

∫ t

0
(t− s)α−1 [p∥u(s) − v(s)∥ + q∥u(γ(s)) − v(γ(s))∥] ds.

Then

∥Wu−Wv∥ ≤ M



λ+ Lσ +
bα(p+ q)

Γ(1 + α)



∥u− v∥.

Since M


λ+ Lσ + bα(p+q)
Γ(1+α)



< 1, W is a contraction operator and it has a unique fixed

point u ∈ N(r) which is the unique mild solution of the nonlocal problem (1.1)–(1.2).
Therefore, we get the required. □

We finalize this section by the following example to illustrate our results.

Example 3.1. Let X = L2 ([0, π],R), the space of all functions for which the 2nd power
of the absolute value is Lebesgue integrable. Consider a fractional partial differential
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equations of the form














tD
0.4x(t, z) + zD

2x(t, z) =
1

19 + et



∥x(t)∥

1 + ∥x(t)∥
+

∥x(0.7t)∥

1 + ∥x(0.7t)∥



, t ∈ [0, 1],

x(0, z) = 0.3x (σ(x), z) ∈ L2 ([0, π],R) , z ∈ [0, π],

where tD
0.4 denotes Caputo fractional partial derivatives with α = 0.4.

Let A be an operator defined by Ax = −x′′ with the domain

D(A) = ¶x(·) ∈ L2 ([0, π],R) : x′ is absolutely continuous, x(0) = x(π) = 0♢ ,

then A generates a C0-semigroup ¶T (t)♢t≥0 which is compact [21], that is (H1) holds.

Operator A has the natural eigenvalues m,−m2, with normalized eigenvectors xm(t) =

(2/π)0.5 sin(mt). For each x ∈ L2 ([0, π],R) , T (t)v =
∑∞

m=1 e
−m2t ⟨v, xm⟩xm. In

particular, T (·) is a uniformly stable semigroup and ∥T (t)∥L2[0,π] ≤ e−t. Our problem
can be reformed as the nonlocal problem (1.1)–(1.2).

Let σ ∈ CLip (C ([0, 1], L2([0, π],R)) , [0, 1]), with Lσ = 0.2. Defining H(·) by
H(t, x) = 0.3x, then ∥H(t, x) −H(t, y)∥ ≤ 0.3∥x− y∥. Clearly, λ = 0.3. Let

F (t, x(t), y(t)) =
1

19 + et



∥x(t)∥

1 + ∥x(t)∥
+

∥y(t)∥

1 + ∥y(t)∥



,

then f = 0 and

∥F (t, x1(t), y1(t)) − F (t, x2(t), y2(t))∥

≤
1

20

∥

∥

∥

∥

∥

∥x1(t)∥

1 + ∥x1(t)∥
−

∥x2(t)∥

1 + ∥x2(t)∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥y1(t)∥

1 + ∥y1(t)∥
−

∥y2(t)∥

1 + ∥y2(t)∥

∥

∥

∥

∥

∥



≤
1

20
(∥x1(t)∥ − ∥x2(t)∥ + ∥y1(t)∥ − ∥y2(t)∥)

≤
1

20
(∥x1(t) − x2(t)∥ + ∥y1(t) − y2(t)∥) .

So, we have p = q = 0.05. Therefore, all conditions of Theorem 3.2 are satisfied and
the considered problem has a unique continuous mild solution.

4. Continuous Dependence and ϵ-Approximate Mild Solution

In this section, we discuss the continuous dependence of solutions on initial condi-
tions and the local ϵ-approximate mild solution of problem (1.1).

Theorem 4.1. Let the assumptions (H1), (H2) and (H4) be satisfied and u1(t) and

u2(t) be the solutions of problem (1.1) corresponding to u1(0) = u0
1 and u2(0) = u0

2,

respectively. Then

∥u1 − u2∥ ≤ M∥u0
1 − u0

2∥



1 +
∞
∑

n=1

[M(p+ q)]n

Γ(1 + nα)
bnα



.(4.1)
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Proof. Let u1(t) and u2(t) be the solutions of problem (1.1) corresponding to u1(0) =
u0

1 and u2(0) = u0
2, respectively. Hence,

cDαu1(t) = Au1(t) + F (t, u1(t), u1 (γ(t))) , u1(0) = u0
1, t ∈ J,

and
cDαu2(t) = Au2(t) + F (t, u2(t), u2 (γ(t))) , u2(0) = u0

2, t ∈ J.

This implies

u1(t) = Sα(t)u0
1 +

∫ t

0
(t− s)α−1Rα(t− s)F (s, u1(s), u1(γ(s)))ds

and

u2(t) = Sα(t)u0
2 +

∫ t

0
(t− s)α−1Rα(t− s)F (s, u2(s), u2(γ(s)))ds.

So, we have

∥u1(t) − u2(t)∥

≤∥Sα(t)(u0
1 − u0

2)∥

+
∫ t

0
(t− s)α−1∥Rα(t− s)[F (s, u1(s), u1(γ(s))) − F (s, u2(s), u2(γ(s)))]∥ds.

Using (H4), (H2) and (3.12), we get

∥u1(t) − u2(t)∥ ≤ M∥u0
1 − u0

2∥ +
αM(p+ q)

Γ(1 + α)

∫ t

0
(t− s)α−1∥u1(s) − u2(s)∥ds.

Applying Theorem 2.2, we obtain

∥u1(t) − u2(t)∥ ≤ M∥u0
1 − u0

2∥ +
∫ t

0

∞
∑

n=1

[M(p+ q)]n

Γ(nα)
(t− s)nα−1M∥u0

1 − u0
2∥ds.

Therefore, it is easy to get the required inequality. □

One can note the following.
(a) Since

Γ(αn+ 1)

Γ(αn+ α+ 1)
≤

Γ(αn+ 1)

Γ(αn+ 2)
=

1

αn+ 1
,

then

lim
n→∞

Γ(αn+ 1)

Γ(αn+ α+ 1)
= 0.

Therefore, by the ratio test,
∞
∑

n=1

[M(p+ q)]n

Γ(1 + nα)
bnα

is a convergent series.
(b) Inequality (4.1) shows continuous dependence of solutions of the problem (1.1)

on initial conditions as well as it gives the uniqueness which follows by putting u0
1 = u0

2.
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Definition 4.1. A solution of the integral inequality
∥

∥

∥

∥

u(t) − Sα(t)u(0) −
∫ t

0
(t− s)α−1Rα(t− s)F (s, u(s), u(γ(s)))ds

∥

∥

∥

∥

≤ ϵ

is called a local ϵ-approximate mild solution of problem (1.1).

Theorem 4.2. Let the assumptions (H1), (H1) and (H4) be satisfied. Suppose that

u1(t) and u2(t) are ϵ-approximate mild solutions of problem (1.1) corresponding to

u1(0) = u0
1 and u2(0) = u0

2, respectively. Then

∥u1 − u2∥ ≤


ϵ1 + ϵ2 +M∥u0
1 − u0

2∥




1 +
∞
∑

n=1

[M(p+ q)]n

Γ(1 + nα)
bnα



.(4.2)

Proof. Let u1(t) and u2(t) be ϵ-approximate mild solutions of problem (1.1) corre-
sponding to u1(0) = u0

1 and u2(0) = u0
2, respectively. Hence

∥

∥

∥

∥

u1(t) − Sα(t)u0
1 −

∫ t

0
(t− s)α−1Rα(t− s)F (s, u1(s), u1(γ(s)))ds

∥

∥

∥

∥

≤ ϵ1

and
∥

∥

∥

∥

u2(t) − Sα(t)u0
2 −

∫ t

0
(t− s)α−1Rα(t− s)F (s, u2(s), u2(γ(s)))ds

∥

∥

∥

∥

≤ ϵ2.

We know that

∥z∥ − ∥y∥ ≤ ∥z − y∥ ≤ ∥z∥ + ∥y∥, for all z, y ∈ X,

so let z = u1(t) − u2(t) and

y =Sα(t)(u0
1 − u0

2)

+
∫ t

0
(t− s)α−1Rα(t− s) [F (s, u1(s), u1(γ(s))) − F (s, u2(s), u2(γ(s)))] ds.

Hence,

∥u1(t) − u2(t)∥

−
∥

∥

∥Sα(t)(u0
1 − u0

2)

+
∫ t

0
(t− s)α−1Rα(t− s)[F (s, u1(s), u1(γ(s))) − F (s, u2(s), u2(γ(s)))]ds

∥

∥

∥

∥

≤
∥

∥

∥

∥



u1(t) − Sα(t)u0
1 −

∫ t

0
(t− s)α−1Rα(t− s)F (s, u1(s), u1(γ(s)))ds



−


u2(t) − Sα(t)u0
2 −

∫ t

0
(t− s)α−1Rα(t− s)F (s, u2(s), u2(γ(s)))ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

u1(t) − Sα(t)u0
1 −

∫ t

0
(t− s)α−1Rα(t− s)F (s, u1(s), u1(γ(s)))ds

∥

∥

∥

∥

+
∥

∥

∥

∥

u2(t) − Sα(t)u0
2 −

∫ t

0
(t− s)α−1Rα(t− s)F (s, u2(s), u2(γ(s)))ds

∥

∥

∥

∥

≤ϵ1 + ϵ2.
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Then

∥u1(t) − u2(t)∥

≤ϵ1 + ϵ2 + ∥Sα(t)(u0
1 − u0

2)∥

+
∫ t

0
(t− s)α−1 ∥Rα(t− s)[F (s, u1(s), u1(γ(s))) − F (s, u2(s), u2(γ(s)))]∥ ds.

Using (3.12), (H4) and (H2), we obtain

∥u1(t) − u2(t)∥

≤ϵ1 + ϵ2 +M∥u0
1 − u0

2∥ +
αM(p+ q)

Γ(1 + α)

∫ t

0
(t− s)α−1∥u1(s) − u2(s)∥ds.

Applying Theorem 2.2, we have

∥u1(t) − u2(t)∥ ≤ϵ1 + ϵ2 +M∥u0
1 − u0

2∥

+
∫ t

0

∞
∑

n=1

[

αM(p+q)Γ(α)
Γ(1+α)

]n

Γ(nα)
(t− s)nα−1



ϵ1 + ϵ2 +M∥u0
1 − u0

2∥


ds.

Therefore, we get the required. □

Remark 4.1. From Definition 4.1, if ϵ = 0, then u(t) is a solution of the integral
equation

u(t) = Sα(t)u(0) +
∫ t

0
(t− s)α−1Rα(t− s)F (s, u(s), u(γ(s)))ds,

which is a mild solution of problem (1.1).

Remark 4.2. From (4.2), ϵ1 = ϵ2 = 0 implies u1(t) and u2(t) are the mild solutions of
(1.1) corresponding to the initial conditions u1(0) = u0

1 and u2(0) = u0
2, respectively.

Further, (4.2) reduced to (4.1), which gives continuous dependence of mild solutions
of (1.1) corresponding to initial conditions.

Remark 4.3. (4.2) proves the uniqueness of mild solutions of (1.1) if ϵ1 = ϵ2 = 0 and
u0

1 = u0
2.
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GEOMETRIC INVARIANTS UNDER THE MÖBIUS ACTION OF
THE GROUP SL(2;R)

DEBAPRIYA BISWAS1 AND SANDIPAN DUTTA1

Abstract. In this paper we have introduced new invariant geometric objects in
the homogeneous spaces of complex, dual and double numbers for the principal
group SL(2;R), in the Klein’s Erlangen Program. We have considered the action
as the Möbius action and have taken the spaces as the spaces of complex, dual and
double numbers. Some new decompositions of SL(2;R) have been used.

1. Introduction

In this paper, we have described and extended the geometry of the group SL(2;R)
on the two-dimensional space in the line of the Erlangen program defined by Felix
Klein. The Erlangen program states that, have a geometric space and a transformation
group, a geometry is the study of the invariance of geometric objects under a group
action of that transformation group [11,17]. A geometry is often referred to as a pair
(G, X), where G is the transformation group and X is the geometric space. This pair
is called Klein’s geometry [14]. Vladimir V. Kisil has shown three geometries under
linear fractional transformation of the group SL(2;R) [8,10]. By the geometric spaces
taken, they are classified as elliptic, parabolic and hyperbolic cases [8]. The elliptic
case is isomorphic to the upper half plane of the space of complex numbers. Similarly,
parabolic case and hyperbolic cases are isomorphic to the upper half plane of spaces
of dual and double numbers respectively, [16]. Similar work can be done for lower
half plane also. Kisil in his paper [8] worked on the geometric objects which are lying
strictly in the upper half planes of complex, dual and double numbers. He did not

Key words and phrases. Lie group, SL(2;R) group, Invariants, Möbius transformation, Homoge-
neous spaces, Iwasawa decomposition
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mention about other geometric objects. In this paper, we have taken the geometric
objects of paper [8] which intercept the U -axis at two real points and those which have
U -axis as a tangent and showed that they are also invariants under some restrictions.

The aim of our work is to extend the work of Kisil in the same line to include more
invariant geometric objects in the existing SL(2;R) geometry. The reason behind it is
to fill the gaps in the existing geometries of SL(2;R). Erlangen program of SL(2;R)
applications in mathematics and theoretical physics, e.g optics, classical mechanics
(see Section 5), functional calculus [7] etc.

In this paper, we restrict ourselves to the geometry of the Lie group SL(2; R).
However interested readers may find construction of some other pairs of Klein’s
geometry in [14, 15] of the type (G, X), where G is a principal group and X be a
geometric space.

In next section we have discussed some of the terminologies and results of our
predecessors in this subject and in section 3 and 4 we mentioned our results. After
that some applications in physics have been described in Section 5.

2. Preliminaries

In our paper, we shall use the following terminologies.

Definition 2.1 (Transformation group). A transformation group G is a non-void set
of mappings of a set X into itself with the following properties:

(a) the identity map is included in G;
(b) if g1 ∈ G and g2 ∈ G, then g1g2 ∈ G;
(c) if g ∈ G, then g−1 exists and belongs to G.

Definition 2.2 (Homogeneous space). A topological space X together with an ab-
stract group (G, ∗), which acts on X transitively is said to be a homogeneous space
[4].

Definition 2.3 (Isotropy subgroup). For an abstract group G and for a group action
of it on a set X, the set of elements Gx = ¶g ∈ G : g · x = x♢ forms a subgroup of G
which is called the isotropy (fix) subgroup of G by x.

In his paper [8], Kisil have shown that if H is a one-dimensional subgroup of

SL(2;R), namely K =

{(

cos t − sin t
sin t cos t

)

: t ∈ R

}

, N =

{(

1 ν
0 1

)

: ν ∈ R

}

and

A =

{(

α−1 0
0 α

)

: α (> 0) ∈ R

}

, then SL(2;R)/H (H = K, N, A) is a homoge-

neous space.
Dual numbers and double numbers are defined by O = ¶u+ iv : i2 = 0, (u, v) ∈ R

2♢
and D = ¶u + iv : i2 = 1, (u, v) ∈ R

2♢, respectively.
Complex numbers with dual and double numbers are denoted as

R
σ = ¶a + ib : i2 = σ = −1, 0, 1, (a, b) ∈ R

2♢.
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The Möbius action is defined as g : SL(2;R) × R
σ → R

σ by

g · z =
az + b

cz + d
,

for z ∈ R
σ and g =

(

a b
c d

)

∈ SL(2;R). It is a left action of SL(2;R) on R
σ, i.e.,

g1(g2 · z) = (g1g2) · z.
To study the action we shall decompose g ∈ SL(2;R) by the Iwasawa decomposition

as g = gagngk, where ga ∈ A, gn ∈ N and gk ∈ K [8, 12].
From now on througout this paper we shall denote elliptic case (SL(2;R)/K) which

is isomorphic to the upper half plane of the space of complex numbers [8], parabolic
case (SL(2;R)/N) which is isomorphic to the upper half plane of dual numbers and
hyperbolic case (SL(2;R)/A) which is isomorphic to the upper half plane of double
numbers namely and in short we denote it as EPH-cases.

In this paper we shall refer to cycles [8], as straight lines and one of the following.
Circles in the elliptic case, parabolas (with vertical axis of symmetry) in the parabolic
case and rectangular hyperbolas (with vertical axis of symmetry) in the hyperbolic
case. Also, the word parabola and hyperbola in this paper always assume only one of
the above described types.

The center of a cycle is referred to as :

1. center of a circle in the elliptic case;
2. focus of a parabola in the parabolic case and
3. center of a rectangular hyperbola in the hyperbolic case.

The vertex of a cycle is referred to as:

1. the lowest point of a circle;
2. vertex of a parabola and
3. vertex of a rectangular hyperbola, in each of the three EPH cases.

We can define the radius of a cycle as:

1. radius of a circle in the elliptic case;
2. distance between center and vertex of a parabola in the parabolic case;
3. distance between center and vertex of a hyperbola in the hyperbolic case.

In the next subsections 2.1 and 3.1, we shall discuss some of the results stated by
Kisil [8]. We shall give their proof in details. Earlier most of the works (of subsections
2.1 and 3.1) have been proved using CAS (computer algebra system), by brute-force
calculations [8, 10] or, given a short proof.

2.1. Action of the subgroups.

Lemma 2.1. The action of the subgroup N under Möbius transformation on R
σ is

gn · (u, v) = (u + ν, v), where gn =

(

1 ν
0 1

)

and (u, v) ∈ R
σ, which defines shifts

along the real axis U by ν (see [8]).
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Lemma 2.2. The action of the subgroup A under Möbius transformation on R
σ is

gn · (u, v) = α−2(u, v), where ga =

(

α−1 0
0 α

)

, α > 0, and (u, v) ∈ R
σ, which defines

dilations by the factor α−2, which fixes the origin (0, 0) (see [8]).

1

1

O U

V

(a) N -orbit

O U

V

1

1

(b) A-orbit

Figure 1. Actions of different subgroups of SL(2;R)

Theorem 2.1. A K-orbit in R
σ passing through the point (0, t) has the following

equation (see [8])

(2.1) u2 − σv2 − v(t−1 − σt) + 1 = 0.

Proof. If (u, v) be any point on the K−orbit passing through (0, t) then it can be
determined as follows.

u + iv =

(

cos θ − sin θ
sin θ cos θ

)

· (it) =
(it) cos θ − sin θ

(it) sin θ + cos θ

=
(− sin θ − it cos θ)(cos θ − it sin θ)

cos2 θ − i2 sin2 θ
.

There are three cases to follow.
(a) In the elliptic case (i2 = −1),

u + iv =
− sin θ cos θ + t2 sin θ cos θ

cos2 θ + t2 sin2 θ
+ i

t

cos2 θ + t2 sin2 θ
,

then u = (t2−1) sin θ cos θ

cos2 θ+t2 sin2 θ
and v = t

cos2 θ+t2 sin2 θ
.

From the above expressions of u and v, we get u2 + v2 − v(t−1 + t) = −1.
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(b) In the parabolic case (i2 = 0),

u + iv = −sin θ cos θ

cos2 θ
= i

t

cos2 θ
,

then u = − tan θ and v = t sec2 θ. Thus, u2 − vt−1 = −1.
(c) In the hyperbolic case (i2 = 1),

u + iv = −sin θ cos θ − t2 sin θ cos θ

cos2 θ − t2 sin2 θ
+ i

t

cos2 θ − t2 sin2 θ
,

then u = −(t2+1) sin θ cos θ

cos2 θ−t2 sin2 θ
and v = t

cos2 θ−t2 sin2 θ
.

Thus, u2 − v2 − v(t−1 − t) = −1.
Combining the above three cases, we get the K-orbit as (Figure 2)

u2 − σv2 − v(t−1 − σt) + 1 = 0, for σ = i2 = −1, 0, 1.

U

V

1

1

(a) Elliptic case

U

V

1

1

(b) Parabolic case

U

V

1

1

(c) Hyperbolic
case

Figure 2. Orbits of the subgroup K in EPH -cases

□

Remark 2.1. The shape of a geometric object in R
σ is solely dependent upon the

action of the subgroup K.

Theorem 2.2. The curvature of the K-orbit (at the vertex) in the elliptic, parabolic

and hyperbolic cases are (see [8])

(2.2) κ =
2t

1 + σt2
, σ = −1, 0, 1.
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Proof. There are three cases to follow.
(a) We know that the curvature of a circle is inverse of its radius. As our K-orbit

in the elliptic case is a circle with equation

u2 +

(

v − t−1 + t

2

)2

=

(

t−1 − t

2

)2

,

therefore its curvature would be κe = 2
t−1−t

= 2t
1−t2 .

(b) In the parabolic case, a K-orbit is a parabola with equation

u2 =
1

t
(v − t).

For determining the curvature, let us suppose that its parametric equation is u = r
t

and v = t + r2

t
, where r being an arbitrary parameter. The differential coefficients of

u and v with respect to r at vertex (i.e when r = 0) are u′ = 1
t
, v′ = 0, u′′ = 0 and

v′′ = 2
t
. Therefore, the curvature at the vertex is

κp

∣

∣

∣

∣

∣

r=0

=

∣

∣

∣

∣

∣

u′v′′ − u′′v′

(u′2 + v′2)
3

2

∣

∣

∣

∣

∣

= 2t.

(c) In the hyperbolic case, the K-orbit can be written as
(

v +
t−1 − t

2

)2

− u2 =

(

t−1 + t

2

)2

,

or, (v − b)2 − u2 = r2 (say). We parametrize u and v as u = r tan θ, v = b + r sec θ,
where θ is the parameter. The differential coefficients of u and v with respect to θ at
the vertex (i.e., when θ = 0) are u′ = r, v′ = 0, u′′ = 0 and v′′ = r. Its curvature at
the vertex is

κh

∣

∣

∣

∣

∣

θ=0

=

∣

∣

∣

∣

∣

u′v′′ − u′′v′

(u′2 + v′2)
3

2

∣

∣

∣

∣

∣

=
1

r
=

2

1 + t2
.

Combining the above three cases, we get the curvature of the K-orbit as

κ =
2t

1 + σt2
, σ = −1, 0, 1. □

Next theorem has been proved in short earlier in the paper [8] we shall give its
detailed proof.

Theorem 2.3. Möbius transformation preserves cycles in the upper half plane, [8].

Proof. We know by the Lemmas 2.1 and 2.2 that the subgroups N and A produces
shifts and dilations, respectively. Also, the subgroup K has orbits which are either
circles, parabolas or hyperbolas. We have to prove that Möbius transformations
preserve the cycles in the upper half plane.

Our first observation is that the subgroups A and N obviously preserve all circles,
parabolas, hyperbolas and straight lines in all Rσ. Thus we use subgroups A and
N to fit a given cycle exactly on a particular orbit of subgroup K shown on Figure
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2 of the corresponding type. Let g =

(

a b
c d

)

∈ SL(2;R) be an arbitrary Möbius

transformation. We shall show that gC is of the same type of cycle as C.
To this end, for an arbitrary cycle C, we can find g′

n ∈ N which puts the centre of
C on the V -axis (see Figure 3).

U

V

a K−orbit in the elliptic case

C

gC

g′
n

gn

ga

g′
a

Figure 3. Pictorial representation of the proof of Theorem 2.3

Then there is a unique g′
a ∈ A which scales it exactly to an orbit of K. To be

more precise, we calculate the values of the shift factor and scaling factor in order to
determine the factors of g′

n and g′
a for all the three EPH-cases.

Suppose we consider any cycle with centre (f, h) and vertex (u, v) and translate it
to the V -axis by a shift factor f , then the co-ordinates of the center become (0, h) and

vertex become (0, v). Therefore, the shift factor is f and of the form g′
n is

(

1 −f
0 1

)

in all three EPH-cases. Next we find the form of g′
a. Let us consider the cycle with

the given vertex (0, v1) and curvature κ1 at the point (0, v1). Now in order to fit
this cycle into the orbit whose vertex and curvature are given by (0, v) and κ, we
calculate the scaling factor α, as follows. We have v = αv1 and κ = κ1

α
, i.e., α = v

v1

and vκ = v1κ1 = v1
2v1

1+σv2

1

= 2
σ+v−2

1

(cf. Theorem 2.2). Therefore, v1 =
√

vκ
2−σvκ

. This

shows α = v
v1

=
√

κ
v(2−σvκ)

, which is the scaling factor and g′
a =

(

1√
α

0

0
√

α

)

for all

the EPH cases.
Next, we show that this scaling factor α if exists then it is unique. Indeed, suppose

that α and α′ are both scaling factors used to bring the vertex (0, v1) to fit into the
orbit with vertex (0, v). Then we have v = αv1 and v = α′v1, i.e., (α − α′)v1 = 0.
Now, we know that v1 ̸= 0, therefore, α − α′ = 0, i.e., α = α′. This shows that the
scaling factor is unique.
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Let us take

g′ = g(g′
ag′

n)−1 =











a√
α

ua + b√
α

c
√

α
uc + d√

α











.

As g′ ∈ SL(2;R) using Iwasawa decomposition we get g′ = gagngk, for some ga ∈
A, gn ∈ N and gk ∈ K. Now,

gC = g(g′
ag′

n)−1(g′
ag′

nC) = (gagngk)(g′
ag′

nC)

= gagn(gk(g′
ag′

nC) = gagng′
ag′

nC (as K-orbits are K-invariant).

Also, ga, gn, g′
a, g′

n do not change the shape of the cycle therefore gC is the same type
of cycle as C. □

3. Introduction of Two New Subgroups A′ and N ′ of SL(2;R)

In the earlier section 2.1 where we have seen the importance of K-subgroups in
SL(2;R) geometry. In this section we introduce two subgroups of matrices A′ and N ′

defined by

A′ =

{(

cosh t sinh t
sinh t cosh t

)

: t ∈ R

}

, N ′ =

{(

1 0
ν 1

)

: ν ∈ R

}

in place of the subgroup K to obtain our results. We first describe their orbits.

Proposition 3.1. The subgroups A′ =

{(

cosh t sinh t
sinh t cosh t

)

: t ∈ R

}

and

N ′ =

{(

1 0
ν 1

)

: ν ∈ R

}

are conjugate to A =

{(

et 0
0 e−t

)

: t ∈ R

}

and

N =

{(

1 ν
0 1

)

: ν ∈ R

}

, respectively.

Proof. This can be seen by the following two equations

( 1√
2

− 1√
2

1√
2

1√
2

)

·
(

et 0
0 e−t

)

·
( 1√

2
− 1√

2
1√
2

1√
2

)

=

(

cosh t sinh t
cosh t sinh t

)

and
(

0 1
−1 1

)

·
(

1 −ν
0 1

)

·
(

1 −1
1 0

)

=

(

1 0
ν 1

)

.

Therefore, any matrix of A′ is similar to a matrix of A and any matrix of N ′ is similar
to a matrix of N . □
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3.1. Orbits of the two new subgroups A′ and N ′.

Theorem 3.1. The orbits of the subgroup A′ are cycles

u2 − σv2 + (t−1 + σt)v − 1 = 0, where σ = i2 = −1, 0, 1,

which intercept the U -axis at two real points (1, 0) and (−1, 0) and have center on the

V -axis in all the three elliptic, parabolic and hyperbolic cases.

Proof. We have the following three cases.
(a) Elliptic case. If (u, v) be an arbitrary point on the A′-orbit which passes

through (0, t), then

u + iv =

(

cosh θ sinh θ
sinh θ cosh θ

)

· (it) =
it cosh θ + sinh θ

it sinh θ + cosh θ

=
(1 + t2) cosh θ sinh θ

cosh2 θ + t2 sinh2 θ
+ i

t

cosh2 θ + t2 sinh2 θ
.

Eliminating θ, we get u2 + v2 = 1 + (t − t−1)v.
(b) Parabolic case. Similar to the previous case if (u, v) is an arbitrary point on

the orbit which passes through (0, t), then

u + iv =

(

cosh θ sinh θ
sinh θ cosh θ

)

· (it) =
it cosh θ + sinh θ

it sinh θ + cosh θ
=

sinh θ

cosh θ
+ i

t

cosh2 θ
.

Therefore, the orbit would be u2 = −1
t

(v − t) .
(b) Hyperbolic case Again by taking an arbitrary point (u, v) in the orbit and

assuming that it passes through (0, t), we have

u + iv =

(

cosh θ sinh θ
sinh θ cosh θ

)

· (it) =
it cosh θ + sinh θ

it sinh θ + cosh θ

=
(1 − t2) cosh θ sinh θ

cosh2 θ − t2 sinh2 θ
+ i

t

cosh2 θ − t2 sinh2 θ
.

Eliminating θ, we get u2 − v2 = 1 − (t + t−1)v, which is a hyperbola intercepting the
U -axis at two real points.

Combining the above three cases we get the A′-orbit as

(3.1) u2 − σv2 + (t−1 + σt)v − 1 = 0, σ = i2 = −1, 0, 1.

Putting v = 0 we get u2 = 1, i.e., u = ±1. Thus, they are cycles intercepting the
U -axis at (1, 0) and (−1, 0) unlike the K-orbit. □

Theorem 3.2. In an A′-orbit

(a) in the elliptic case, the relation between radius re and center (0, ve) is r2
e −v2

e =
1;

(b) in the parabolic case, the relation between vertex (0, vp) and center (focus)
(0, rp/4) is rpvp = 1 and
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U

V

1
1

(a) Circles inter-
cept the U -axis

U

V

1

1

(b) Parabolas in-
tercepting the
U -axis

U

V

1

1

(c) Rectangular
hyperbolas inter-
cepting the U -
axis

Figure 4. The orbits of the subgroup A′ in elliptic, parabolic and
hyperbolic cases

(c) in the hyperbolic case, the relation between center (0, vh) and rh which is the

distance between the center and vertex is v2
h − r2

h = 1.

Proof. There are three cases to follow.
(a) Elliptic case. In this case, the A′-orbit is u2 + (v − ve)

2 = r2
e , where re and ve

are of the form re = t+t−1

2
and ve = t−t−1

2
(for some t ∈ R). Therefore, by a simple

calculation we can show r2
e − v2

e =
(

t+t−1

2

2 −
(

t−t−1

2

2
= 1.

(b) Parabolic case. In this case, the A′-orbit is u2 = rp(v + vp)
2, we have center

(0, rp/4) and vertex is (0, vp), then rp and vp are of the form rp = −1
t

and vp = −t for
some t ∈ R. Therefore, rpvp = 1.

(c) Hyperbolic case. The A′-orbit in this case is (v − vh)2 − u2 = r2
h. We have

vh = t+t−1

2
and rh = t−t−1

2
for some t ∈ R, then v2

h − r2
h = 1. □
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Remark 3.1. The subgroups A′ and N ′ come naturally in Möbius action of SL(2;R).
In the next proposition we show that.

Proposition 3.2. The isotropy (fix) subgroups of (0, 1) ∈ R
σ under the Möbius action

of SL(2;R) are K, A′ and N ′.

Proof. Let i2 = −1, 0, 1, for the three cases elliptic, parabolic and hyperbolic. Then
if ai+b

ci+d
= i, then by calculation, we get

(

a b
c d

)

=

(

cos t − sin t
sin t cos t

)

,

(

1 t
0 1

)

,

(

cosh t sinh t
sinh t cosh t

)

,

for the three cases, respectively. □

Theorem 3.3. The orbits of the subgroup N ′ are

u2 − σv2 − v(t−1 − σt) = 0, σ = i2 = −1, 0, 1.

They are circles, parabolas and rectangular hyperbolas which are tangent to the U -axis

and have center on the V -axis in the elliptic, parabolic and hyperbolic cases respectively.

Proof. We have the following three cases.
(a) Elliptic case. If (u, v) be an arbitrary point on N ′-orbit which passes through

(1, t) (If we take (0, t) point, then it is only (0, 0) in the parabolic case), then

u + iv =

(

1 0
ν 1

)

· (1 + it) =
1 + it

ν(1 + it) + 1
=

1 + ν + νt2

(1 + ν)2 + ν2t2
+ i

t

(1 + ν)2 + ν2t2
.

Eliminating ν we get the orbit as

u2 + v2 − v(t−1 + t) = 0.(3.2)

(b) Parabolic case. If the cycle passes through (1, t), then any arbitrary point
(u, v) on the N ′-orbit would be

u + iv =

(

1 0
ν 1

)

· (1 + it) =
1 + it

ν + iνt + 1
=

1

1 + ν
+ i

t

(1 + ν)2
.

The orbit would be

u2 − vt−1 = 0.(3.3)

(c) Hyperbolic case. If (u, v) be any arbitrary point on the orbit and it passes
through (1, t), then

u + iv =

(

1 0
ν 1

)

· (1 + it) =
1 + it

ν + iνt + 1
=

1 + ν + νt2

(1 + ν)2 − ν2t2
+ i

t

(1 + ν)2 − ν2t2
.

Eliminating ν we get the orbit as

u2 − v2 − v(t−1 − t) = 0.
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U

V

1

1

(a) Circles touch
the U -axis

U

V

1

1

(b) Parabolas
touch the U -axis

U

V

1

1

(c) Rectangular hy-
perbolas touch the
U -axis

Figure 5. Cycles which are tangent to the U -axis

Combining the above three cases we get

(3.4) u2 − σv2 − v(t−1 − σt) = 0, σ = −1, 0, 1.

As such the orbits of N ′ are cycles which are tangent to the U -axis. □

Remark 3.2. The center of a N ′-orbit passing through (1, t) is of the form
(

0, t−1−σt
2



for some t ∈ R and σ = −1, 0, 1, in EPH cases.

Proposition 3.3. Orbits of the isotropy subgroups of K, N ′ and A′ of (0, 1) in R
σ in

elliptic, parabolic and hyperbolic cases are

u2 − σv2 − 2lv − σ = 0, where l ∈ R.

4. Main Result

In this section we develop our work.

4.1. Decomposition of SL(2;R) using the subgroups A′ and N ′. In this subsec-
tion we define two other decomposition of SL(2;R) in order to include new invariances
of types of cycles for the transformation group SL(2;R).

Theorem 4.1. Any matrix g =

(

a b
c d

)

∈ SL(2;R), where d ≠ 0 can be represented

uniquely as g = gagngn′, where ga ∈ A, gn ∈ N and gn′ ∈ N ′.
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Proof. For g =

(

a b
c d

)

, let ga =

(

α−1 0
0 α

)

, gn =

(

1 ν
0 1

)

and gn′ =

(

1 0
t 1

)

.

Then g = gagngn′ , i.e.,
(

a b
c d

)

=

(

α−1 0
0 α

)

·
(

1 ν
0 1

)

·
(

1 0
t 1

)

=

(

α−1(1 + tν) α−1ν
αt α

)

.

Therefore, d = α, t = c
d

and ν = bd.
The uniqueness can be obtained by using another decomposition with the same

form and showing that the corresponding matrices are equal. □

Theorem 4.2. Any matrix g =

(

a b
c d

)

∈ SL(2;R), where ♣d♣ > ♣c♣ can be repre-

sented uniquely as g = gagnga′, where ga ∈ A, gn ∈ N and ga′ ∈ A′.

Proof. Let ga =

(

α−1 0
0 α

)

, gn =

(

1 ν
0 1

)

and ga′ =

(

cosh t sinh t
sinh t cosh t

)

for

α, t, ν ∈ R and α > 0. Then g = gagnga′ , i.e.,
(

a b
c d

)

=

(

α−1 0
0 α

)

·
(

1 ν
0 1

)

·
(

cosh t sinh t
sinh t cosh t

)

=

(

α−1(cosh t + ν sinh t) α−1(sinh t + ν cosh t)
α sinh t α cosh t

)

.

Thus, α =
√

d2 − c2, t = tanh−1
(

c
d



and ν = bd − ac.

One can prove the uniqueness of the decomposition by taking another decomposition
with the same form and showing that the corresponding matrices are equal. □

4.2. Invariance of cycles in R
σ. We now introduce new types of cycles in the

existing SL(2;R) geometries [8, 9] which have important applications (see Section 5).

Theorem 4.3. If C is any arbitrary cycle which have U-axis as a tangent in the

space of R
σ with center (u, v), then it is invariant under the Möbius action of g =

(

a b
c d

)

∈ SL(2;R) if u > −d
c
.

U

V

CgC

g′
n

gn

ga

g′
a (u, v)

O

Figure 6. Pictorial representation of the proof of the Theorem 4.3
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Proof. The Möbius action on the cycle C by the matrix g′
n =

(

1 −u
0 1

)

shifts

its center (u, v) to (0, v). Then applying Möbius action again on g′
nC by g′

a =
(

1√
α

0

0
√

α

)

, α > 0, we scale its center to (0, vα−1).

As N ′-orbit have center of the form t−1−σt
2

, by Remark 3.3, as such if we want g′
ag′

nC

to be a N ′-orbit then we must have vα−1 = t−1−σt
2

, σ = −1, 0, 1, t ∈ R. Therefore,

the scaling factor α = 2vt
1−σt2 .

The uniqueness of g′
a can be proved by taking another g′′

a =

(

1√
α′

0

0
√

α′

)

. By the

same calculations we get α′ = 2vt
1−σt2 . Therefore, g′

a = g′′
a .

Now,

g′ = g(g′
ag′

n)−1 =

(

a
√

α (au + b)
√

α−1

c
√

α (cu + d)
√

α−1

)

∈ SL(2;R).

If g(g′
ag′

n)−1 have a decomposition of the form of Theorem 4.1, then cu + d > 0, i.e.,
u > −d

c
.

We can decompose g(g′
ag′

n)−1 = gagngn′ for some ga ∈ A, gn ∈ N and gn′ ∈ N ′.
Now,

gC = g(g′
ag′

n)−1g′
ag′

nC = gagngn′(g′
ag′

nC)

= gagng′
ag′

nC (as g′
ag′

nC is a N ′−orbit therefore it is N ′-invariant).

As ga, g′
a, gn, g′

n do not change the shape of C, by Remark 2.1, therefore, gC would be
the same type of cycle as C geometrically. □

Theorem 4.4. If C is an arbitrary cycle with center (uλ, vλ) and radius rλ which

intercepts the U-axis at two real points then it is invariant under the Möbius ac-

tion of g =

(

a b
c d

)

∈ SL(2;R) and if it satisfies ♣c♣α < ♣cuλ + d♣, where α =
√

(v2
λ − r2

λ)σ + rλvλ(1 − ♣σ♣), σ = −1, 0, 1, and λ = e, p, h in elliptic, parabolic and

hyperbolic cases, respectively.

U

V

CgC

g′
n

gn

ga
g′

a

O

Figure 7. Pictorial representation of the proof of the Theorem 4.4
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Proof. We consider the following three cases.
(a) Elliptic case. Let us take an arbitrary circle (u − ue)

2 + (v − v2
e)2 = r2

e with
center (ue, ve) and radius re which intercepts the U -axis at two real points therefore
♣re♣ > ♣ve♣.

First we translate the center of C to V -axis by a shift factor ue, then the coordinates

of the center become (0, ve) and the matrix which shifts is of the form g′
n =

(

1 −ue

0 1

)

.

Next to fit the circle into an A′-orbit, we take Möbius action by the matrix g′
a ∈ A

defined as g′
a =

(

1√
αe

0

0
√

αe

)

, αe > 0. The radius and center (see Remark 2.1)

become reα
−1 and (0, veα

−1). If g′
ag′

nC is an A′-orbit, then using the Theorem 3.2 (of

A′-orbit) we get (rα−1
e )2 − (veα

−1
e )2 = 1, i.e., αe =

√

r2
e − v2

e .

(b) Parabolic case. In this case we take an arbitrary parabola (with vertical
axis of symmetry) (u − up)

2 = rp(v + vp) which intercepts the U -axis at two real

points. Applying Möbius action by g′
n =

(

1 −up

0 1

)

, we can shift the center to

(0, vp), by Lemma 2.1, and applying g′
a =

(

1√
αp

0

0
√

αp

)

, αp > 0, we get the parabola

as u2 = rpα−1
p (v + vpα−1

p ). If this is an A′-orbit then by the Theorem 3.2 we get

(rpα−1
p )(vpα−1

p ) = 1, i.e., αp =
√

rpvp.
(c) Hyperbolic case. We take an arbitrary hyperbola (with vertical axis of

symmetry) (v − vh)2 − (u − uh)2 = r2
h with center (uh, vh) which intercepts U -axis at

two real points then ♣vh♣ > ♣rh♣. To fit this into a A′-orbit we apply Möbius actions
by two matrices

g′
n =

(

1 −uh

0 1

)

, g′
a =

(

1√
αh

0

0
√

αh

)

, αh > 0.

Therefore, the equation transforms to the hyperbola (v − vhα−1
h )2 − u2 = (rhα−1

h )2.
To fit this into a A′-orbit using the Theorem 3.2, we get (vhα−1

h )2 − (rhα−1
h )2 = 1, i.e.,

αh =
√

v2
h − r2

h.

Combining the above three cases we have αλ =
√

(v2
λ − r2

λ)σ + rλvλ(1 − ♣σ♣) for
σ = −1, 0, 1 and λ = e, p, h.

Let us take α in place of αe, αp and αh and u in place of ue, up and uh. Uniqueness
of α can be proved by taking another α′ and doing the same calculations we get

α′ =
√

(v2
λ − r2

λ)σ + rλvλ(1 − ♣σ♣) for σ = −1, 0, 1 and λ = e, p, h. Therefore, α = α′

and α is unique.
Now,

g′ = g(g′
ag′

n)−1 =

(

a
√

α au+b√
α

c
√

α cu+d√
α

)

∈ SL(2;R).
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If g′ have decomposition of the form of Theorem 4.2, then ♣c♣α < ♣cu + d♣. Thus,
g(g′

ag′
n)−1 = gagnga′ for some ga ∈ A, gn ∈ N and ga′ ∈ A′. Therefore,

gC = g(g′
ag′

n)−1g′
ag′

nC = gagnga′(g′
ag′

nC)

= gagng′
ag′

nC (as g′
ag′

nC is a A′-orbit therefore it is A′-invariant).

As ga, g′
a, gn, g′

n do not change shape of the cycle therefore gC is the same cycle as
C. □

5. Discussion on Some Physical Applications of the Action of the
Subgroups of the Group SL(2;R)

In optics, paraxial system is largely depend upon paraxial groups which are used
to solve paraxial wave equation [1]. In fact, SL(2;R) acts as a ray transfer matrix [3].
In chapter 2 of [3], the authors found the refractive matrix of the form

R =

(

1 0
(

−n1−n2

r



1

)

.

That is two paraxial systems are dependent upon the relation

(

y2

V2

)

= R

(

y1

V1

)

.

This is the direct application of action of N ′ group.
In classical mechanics Galilean relativity principle [17] states that laws of mechanics

will be invariant under the following linear transformation
(

t2

x2

)

=

(

1 0
v 1

)(

t1

x1

)

,

where t is time and x is spatial component. The matrix belongs to the group N ′.
These two examples show that if these ordered pairs obey the conditions of our

theorems, in the previous section 4 then they are invariant under SL(2;R) action.

6. Conclusion and Future Work

In the elliptic and parabolic cases the upper half plane is preserved but in the
hyperbolic case it is not true, which has some implications in geometry, physics and
analysis [8].

We have obtained new invariant objects in the three homogeneous spaces. It applies
to all the fields where SL(2;R) is used.

In future we can study the projective space of cycles. A generic cycle can be

represented as C =

(

g + if c
a −g + if

)

, where i is a hypercomplex unit and C is

a(x2 − y2) − 2gx − 2fy + c = 0. A cycle C is transformed to gCg−1 under the Möbius
action of g ∈ SL(2;R) [2]. After extending the cycle group by us in the previous
theorems we can now include more values in (a, g, f, c) ∈ R

4 and investigate further.
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We can use our theory to find invariant metric [5] such as

ds2 =
du2 − σdv2

v2
, σ = −1, 0, 1.

In future, we can enrich Erlangen program of SL(2;R) by including new invariants
in all the three spaces. This theory can be used to make function theories on R

2

[6, 13]. We can also extend our study of invariants to higher dimensional Lie groups,
e.g., SL(3;R), SL(3;C), etc.
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SOME RESULTS FOR ENDOMORPHISMS IN PRIME RINGS

ABDELKARIM BOUA1

Abstract. In this article, we present some commutativity theorems for a prime
ring R equipped with endomorphisms α, β, γ and δ satisfying any one of the following
identities:
(1) [α(x), β(y)] + γ([x, y]) + δ(x ◦ y) = 0 for all x, y ∈ R;
(2) α(x) ◦ β(y) + γ([x, y]) = 0 for all x, y ∈ R.

Moreover, we provide examples to show that the assumed restrictions cannot be
relaxed.

1. Introduction

Let R be a ring with center Z(R). For any x, y ∈ R, [x, y] will denote the commuta-
tor xy − yx while x ◦ y will represent the anti-commutator xy + yx. Recall that a ring
R is said to be prime if aRb = ¶0♢ implies that either a = 0 or b = 0. A ring R is said
to be 2-torsion free if 2a = 0 (where a ∈ R) implies a = 0. It is straight forward to see
that a prime ring with characteristic different from two is 2-torsion free. A mapping
f : R → R is said to be centralizing on R if [f(x), x] ∈ Z(R) holds for all x ∈ R. In
the special case if [f(x), x] = 0 for all x ∈ R, f is said to be commuting on R. An
additive mapping d : R → R is said to be a derivation of R if d(xy) = d(x)y + xd(y)
for all x, y ∈ R. A derivation d is said to be inner if there exists a ∈ R such that
d(x) = ax − xa for all x ∈ R. Following Bresar [6], an additive mapping F : R → R

is called a generalized derivation if there exists a derivation d : R → R such that
F (xy) = F (x)y + xd(y) holds for all x, y ∈ R. The concept of generalized derivations
includes both the concept of derivation and the concept of left multiplier (i.e., an
additive mapping F : R → R satisfying F (xy) = F (x)y for all x, y ∈ R).

Key words and phrases. Prime ring, endomorphisms, commutativity.
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Recently, a considerable number of researchers have investigated the ideals in
prime rings as well as the commutativity of prime rings that consider derivations and
generalized derivations, see for example [1–3] and [4].

Over the last four decade, several authors have proved results on commutativity
of prime rings or semiprime rings that admitting automorphisms, derivations or
generalized derivations which are centralizing or commuting on appropriate subset of
R (see [2–5] etc.).

In this paper, we investigate the commutativity of a prime ring R admitting endo-
morphisms α, β, γ and δ satisfying any one of the following properties:

(a) [α(x), β(y)] + γ([x, y]) + δ(x ◦ y) = 0 for all x, y ∈ R;
(b) α(x) ◦ β(y) + γ([x, y]) = 0 for all x, y ∈ R.

.

2. Some preliminaries

This section, includes some well known basic identities which will be used for
developing the proof of our main results:

(a) [x, yz] = y[x, z] + [x, y]z for all x, y, z ∈ R;
(b) [xy, z] = x[y, z] + [x, z]y for all x, y, z ∈ R;
(c) x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z for all x, y, z ∈ R;
(d) (xy) ◦ z = x(y ◦ z) − [x, z]y = (x ◦ z)y + x[y, z] for all x, y, z ∈ R.

3. Some Results for Prime Rings

Theorem 3.1. Let R be a prime ring with char(R) ̸= 2, α, β, γ and δ endomorphisms

of R such that

[α(x), β(y)] + γ([x, y]) + δ(x ◦ y) = 0, for all x, y ∈ R.

If β, γ are onto, then δ = 0 and R is commutative.

Proof. Suppose that

(3.1) [α(x), β(y)] + γ([x, y]) + δ(x ◦ y) = 0, for all x, y ∈ R.

Replacing y by yx in (3.1), we get
(3.2)
β(y)[α(x), β(x)]+[α(x), β(y)]β(x)+γ([x, y])γ(x)+δ(x◦y)δ(x) = 0, for all x, y ∈ R.

For y = x, (3.1) implies that

(3.3) [α(x), β(x)] + 2δ(x2) = 0, for all x ∈ R.

Using (3.1) and (3.3), then (3.2) can be rewritten as

(3.4) 2β(y)δ(x2) = γ([x, y])(γ(x) − β(x)) + δ(x ◦ y)(δ(x) − β(x)), for all x, y ∈ R.
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For y = x, (3.4) gives

(3.5) β(x)δ(x2) = δ(x2)(δ(x) − β(x)) = δ(x2)δ(x) − δ(x2)β(x), for all x ∈ R.

Taking xy in place of y in (3.4), it is obvious to see that

2β(x)β(y)δ(x2) =γ(x)γ([x, y])(γ(x) − β(x))(3.6)

+ δ(x)δ(x ◦ y)(δ(x) − β(x)), for all x, y ∈ R.

Left-multiplying (3.4) by β(x), we have also

2β(x)β(y)δ(x2) =β(x)γ([x, y])(γ(x) − β(x))(3.7)

+ β(x)δ(x ◦ y)(δ(x) − β(x)), for all x, y ∈ R.

By identifying (3.6) and (3.7), we can easily arrive at

(γ(x) − β(x))γ([x, y])(γ(x) − β(x)) + (δ(x) − β(x))δ(x ◦ y)(δ(x) − β(x)) = 0.

For x = y, using char(R) ̸= 2, then

(3.8) (δ(x) − β(x))δ(x2)(δ(x) − β(x)) = 0, for all x ∈ R.

Using (3.5) and (3.8), we obtain

(3.9) (δ(x) − β(x))β(x)δ(x2) = 0, for all x ∈ R,

and
(δ(x) − β(x))δ(x2)δ(x) = (δ(x) − β(x))δ(x2)β(x), for all x ∈ R.

Right-multiplying (3.4) by β(x)δ(x2) and using (3.9), we get

(3.10) 2β(y)δ(x2)β(x)δ(x2) = γ([x, y])(γ(x) − β(x))β(x)δ(x2), for all x, y ∈ R.

Replacing y by xy in (3.10), we can easily arrive at

(3.11) (γ(x) − β(x))γ([x, y])(γ(x) − β(x))β(x)δ(x2) = 0, for all x, y ∈ R.

Using (3.10) and (3.11), we find that

(γ(x) − β(x))β(y)δ(x2)β(x)δ(x2) = 0, for all x, y ∈ R.

Since β is onto, we get

(γ(x) − β(x))Rδ(x2)β(x)δ(x2) = ¶0♢, for all x ∈ R.

By primeness of R, we obtain

(3.12) γ(x) = β(x) or δ(x2)β(x)δ(x2) = 0 for all x ∈ R.

Suppose there exists x0 ∈ R such that γ(x0) = β(x0), then (3.4) becomes

(3.13) 2β(y)δ(x2

0
) = δ(x0 ◦ y)(δ(x0) − β(x0)), for all y ∈ R.

In (3.13) we substitute x0y for y and using char(R) ̸= 2, to get

(δ(x0) − β(x0))β(y)δ(x2

0
) = 0, for all y ∈ R.

Since β is onto, we obtain (δ(x0) − β(x0))Rδ(x2

0
) = ¶0♢. By primeness of R, we

conclude that either δ(x0) = β(x0) or δ(x2

0
) = 0.
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If δ(x0) = β(x0), according to our assumption after (3.12) it follows from (3.4) that
2β(y)δ(x2

0
) = 0 for all y ∈ R. Since β is onto and char(R) ̸= 2, we conclude that

δ(x2

0
) = 0. In both cases, we have δ(x2

0
) = 0 and by (3.12), we get

δ(x2)β(x)δ(x2) = 0, for all x ∈ R.

Using (3.5), we conclude that

0 = δ(x2)β(x)δ(x2)δ(x2) = δ(x2)(δ(x2)δ(x) − δ(x2)β(x))δ(x2),

which leads to 0 = δ(x2)δ(x2)δ(x)δ(x2) = δ(x7) = (δ(x))7 for all x ∈ R. By a well-
know result of Lovitzki [7] a prime rings cannot be nil of bounded index. Then δ = 0.

In this case, equation (3.4) becomes

(3.14) γ([x, y])(γ(x) − β(x)) = 0, for all x, y ∈ R.

Taking ty in place of y in (3.14), and using it again, we obtain

γ([x, y])γ(t)(γ(x) − β(x)) = 0, for all x, y, t ∈ R.

Since γ is onto, we get γ([x, y])R(γ(x) − β(x)) = ¶0♢, for all x, y ∈ R. In view of the
primeness of R, the last equation reduces to

(3.15) γ([x, y]) = 0 or γ(x) = β(x), for all x, y ∈ R.

If there exists x0 ∈ R such that γ([x0, y]) = 0 for all y ∈ R, it is clear that γ(x0) ∈ Z(R)
because γ is onto and so, [α(x), β(x0)] = 0 for all x ∈ R.

By hypothesis, we have

[α(x), β(yx0)] + γ([x, yx0]) = 0, for all x, y ∈ R,

which leads to

(3.16) β(y)[α(x), β(x0)] + [α(x), β(y)]β(x0) + γ([x, y])γ(x0) = 0, for all x, y ∈ R.

Since [α(x), β(x0)] = 0 for all x ∈ R, (3.16) becomes

[α(x), β(y)]β(x0) + γ([x, y])γ(x0) = 0, for all x, y ∈ R.

Using (3.1), the last equation yields

(3.17) γ([x, y])(γ(x0) − β(x0)) = 0, for all x, y ∈ R.

Replacing y by yt in (3.17) and using it with the fact that γ is onto, we conclude
that γ([x, y])R(γ(x0) − β(x0)) = ¶0♢, for all x, y ∈ R. Since R is prime, we obtain
γ([x, y]) = 0 for all x, y ∈ R or γ(x0) = β(x0). Therefore, [x, y] = 0 for all x, y ∈ R or
γ(x0) = β(x0). In this case, (3.15) forces that R is commutative or γ(x) = β(x) for
all x ∈ R.

Now assume that the second case, then (3.1) becomes

(3.18) [α(x), β(y)] + β([x, y]) = 0, for all x, y ∈ R.

Taking xy instead of x in (3.18), we obtain

β([x, y])(β(y) − α(y)) = 0, for all x, y ∈ R.
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Putting xr in place of x where r ∈ R, we can easily arrive at

β([x, y])R(β(y) − α(y)) = ¶0♢, for all x, y ∈ R.

In light of primeness of R, we arrive at

(3.19) β([x, y]) = 0 or α(y) = β(y), for all x, y ∈ R.

If there exists y0 ∈ R such that α(y0) = β(y0), by (3.18) we have

0 =[α(y0), β(x)]) + β([y0, x]) = [β(y0), β(x)]) + β([y0, x])

=2β([y0, x]), for all x ∈ R.

Since char(R) ̸= 2, we get β([y0, x]) = 0 for all x ∈ R. Then (3.19) becomes
β([x, y]) = 0 for all x, y ∈ R. Since β is onto, then [x, y] = 0 for all x, y ∈ R,

which forces that R is commutative. □

Corollary 3.1. Let R be a prime ring with char(R) ̸= 2 and α, β endomorphisms of

R such that β is onto, then the following assertions are equivalent:

(a) [α(x), β(y)] + β([x, y]) = 0 for all x, y ∈ R;

(b) R is commutative.

Proof. Just replace γ by β and δ with the null application in Theorem 3.1. □

Corollary 3.2. Let R be a prime ring with char(R) ̸= 2 and α an endomorphism of

R, then the following assertions are equivalent:

(a) α(x) + x ∈ Z(R) for all x ∈ R;

(b) R is commutative.

Proof. If we put β = idR, we get the required result. □

Theorem 3.2. Let R be a prime ring with char(R) ̸= 2, α is an automorphism of R

and β, γ epimorphisms of R, then the following assertions are equivalent:

(a) α(x) ◦ β(y) + γ([x, y]) = 0 for all x, y ∈ R;

(b) R is commutative.

Proof. It is obvious that (b)⇒(a).
(a)⇒(b) Suppose that

(3.20) α(x) ◦ β(y) + γ([x, y]) = 0, for all x, y ∈ R.

Replacing y by yx in (3.20) and using identity (c), we get

(3.21) β(y)[α(x), β(x)] = (α(x) ◦ β(y))β(x) + γ([x, y])γ(x), for all x, y ∈ R.

From (3.20) and (3.21) it follows that

(3.22) β(y)[α(x), β(x)] = γ([x, y])(γ(x) − β(x)), for all x, y ∈ R.

Putting xy in place of y in (3.22), we find that

(3.23) (γ(x) − β(x))γ([x, y])(γ(x) − β(x)) = 0, for all x, y ∈ R.
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Invoking (3.22), (3.23) yields

(γ(x) − β(x))β(y)[α(x), β(x)] = 0, for all x, y ∈ R.

Since β is onto, we obtain

(γ(x) − β(x))R[α(x), β(x)] = ¶0♢, for all x ∈ R.

By primeness of R, we get

(3.24) γ(x) = β(x) or [α(x), β(x)] = 0, for all x ∈ R.

If there exists x0 ∈ R such that [α(x0), β(x0)] = 0, then (3.22) gives γ([x0, y])(γ(x0) −
β(x0)) = 0 for all y ∈ R. Replacing y by yr, we get γ([x0, y])γ(r)(γ(x0) − β(x0)) = 0
for all y, r ∈ R. Since γ is onto, we obtain γ([x0, y])R(γ(x0) − β(x0)) = ¶0♢ for all
y ∈ R. By primeness of R, one can easily verify that γ([x0, y]) = 0 for all y ∈ R or
γ(x0) = β(x0).

Suppose the first case and using (3.20), we get α(x0) ◦ β(y) = 0 for all y ∈ R.

Replacing y by yt and using identity (c), we obtain β(y)[α(x0), β(t)] = 0 for all
y, t ∈ R. Since R is prime and β is onto, we get α(x0) ∈ Z(R), and therefore, (3.20)
forces that 2α(x0)Rβ(y) = 0 for all y ∈ R. Using the fact that R is prime and
char(R) ̸= 2, we get α(x0) = 0. Since α is an automorphism of R, we obtain x0 = 0.
In this case, (3.24) becomes γ(x) = β(x), for all x ∈ R. Replacing y by xy in (3.20)
and using it, we get

α(x) ◦ β(x)β(y) + β(x)(−α(x) ◦ β(y)) = 0, for all x, y ∈ R.

Developing the last expression, we arrive at

[α(x), β(x)]β(y) = 0, for all x, y ∈ R.

Using the fact that R is prime and β is onto, we obtain [α(x), β(x)] = 0, for all x, y ∈
R. For y = x, (3.20) with the last expression give α(x)β(x) = β(x)α(x) = 0 for all
x ∈ R.

Replacing y by yx in (3.20) and using it again, we obtain

(3.25) α(x) ◦ β(y)β(x) + β([x, y])β(x) = 0, for all x, y ∈ R.

Developing (3.25) by using identity (c), we conclude that

(3.26) [α(x), β(y)]β(x) + β([x, y])β(x) = 0, for all x, y ∈ R.

Putting yt in place of y and using identity (a) with (3.26), we can easily arrive at

(3.27) ([α(x), β(y)] + β([x, y]))β(t)β(x) = 0, for all x, y, t ∈ R.

Since β is onto, equation (3.27) reduces to

([α(x), β(y)] + β([x, y]))Rβ(x) = ¶0♢, for all x, y ∈ R.

By primeness of R, we obtain

[α(x), β(y)] + β([x, y]) = 0 or β(x) = 0, for all x, y ∈ R.
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It is clear that both cases give the following equation

(3.28) [α(x), β(y)] + β([x, y]) = 0, for all x, y ∈ R.

As (3.28) is the same as (3.18), arguing as in the proof of Theorem 3.1, we conclude
that R is commutative. □

In Examples 3.1, 3.2, we show that the condition “R is prime” is necessary in
Theorems 3.1, 3.2.

Example 3.1. Let us defined R and α, β, γ : R → R as follow:

R =

















x y 0
0 0 0
0 z 0







∣

∣

∣

∣

∣

∣

∣

x, y, z ∈ Z











, α







x y 0
0 0 0
0 z 0





 =







x y 0
0 0 0
0 −z 0





 ,

β =idR, γ







x y 0
0 0 0
0 z 0





 =







x −y 0
0 0 0
0 z 0





 and δ = 0.

It is clear that R is a ring which is not prime and char(R) ̸= 2. Moreover, α is an
endomorphism of R and β, γ epimorphisms of R such that [α(x), β(y)] + γ([x, y]) = 0
for all x, y ∈ R, but R is noncommutative.

Example 3.2. Let us defined R and α, β, γ : R → R as follow:

R =

















x y 0
0 0 0
0 z 0







∣

∣

∣

∣

∣

∣

∣

x, y, z ∈ Z











, α = idR,

β =







x y 0
0 0 0
0 z 0





 =







−x y 0
0 0 0
0 z 0





 , γ







x y 0
0 0 0
0 z 0





 =







x −y 0
0 0 0
0 z 0





 .

It is clear that R is a ring which is not prime and char(R) ̸= 2. Moreover, α is an
automorphism of R and β, γ epimorphisms of R such that α(x) ◦ β(y) + γ([x, y]) = 0
for all x, y ∈ R, but R is noncommutative.

The following example proves that the condition “char(R) ̸= 2” in Theorem 3.2 is
not superfluous.

Example 3.3. Let us define R = M2(Z2) and α = β = γ = idR. It is clear that R is a
noncommutative prime ring such that char(R) = 2. Moreover, α is an automorphism
of R and β, γ epimorphisms of R such that

(a) [α(x), β(y)] + γ([x, y]) = 0 for all x, y ∈ R;
(b) α(x) ◦ β(y) + γ([x, y]) = 0 for all x, y ∈ R.

But R is noncommutative.



950 A. BOUA

References

[1] M. Ashraf, A. Ali and S. Ali, (σ, τ)-derivations on prime near rings, Arch. Math. 40(3) (2004),
281–286.

[2] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42(1–2)
(2002), 3–8.

[3] M. Ashraf and A. Boua, On semiderivations in 3-prime near-rings, Commun. Korean Math.
Soc. 31(3) (2016), 433–445.

[4] H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad.
Math. Bull. 37 (1994), 443–447.

[5] H. E. Bell and N.-Ur Rehman, Generalized derivations with commutativity and anti-

commutativity conditions, Math. J. Okayama Univ. 49 (2007), 139–147.
[6] M. Bresar, On the distance of the composition of two derivations to the generalized derivations,

Glasgow Math. J. 33 (1991), 89–93.
[7] A. A. Klein, A new proof of a result of Levitzki, Proc. Amer. Math. Soc. 81(1) (1981), 8.

1Abdelkarim Boua,
Sidi Mohammed Ben Abdellah University, Polydisciplinary Faculty, LSI,
Taza, Morocco
Email address: abdelkarimboua@yahoo.fr



Kragujevac Journal of Mathematics

Volume 45(6) (2021), Pages 951–968.

A NEW METHOD TO SOLVE DUAL SYSTEMS OF FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS BY LEGENDRE

WAVELETS

RAZIEH KAVEHSARCHOGHA1, REZA EZZATI2∗, NASRIN KARAMIKABIR1,
AND FARAJOLLAH MOHAMMADI YAGHOBBI1

Abstract. The method that will be presented, is numerical solution based on
the Legendre wavelets for solving dual systems of fractional integro-differential
equations (FIDEs). First of all we make the operational matrix of fractional order
integration. The application of this matrix is transforming FIDEs to a system of
algebric equations. By this changing, we are able to solve it by a simple solution. In
this way, the Legendre wavelets and their operator matrix are the most important
keys of our solution. After explaining the method we test on some illustrative
examples which numerical solutions of these examples demonstrate the validity and
applicability of suggested method.

1. Introduction

Nowadays using fractional calculus has valuable usages in some fields of science
and engineering. The study of dual systems of FIDEs have many applications in
engineering, biomechanice and other scientific divisions. Dual systems of FIDEs also
appear in modeling some of chemical and material engineering processes [8, 13, 15].
In most cases obtaining an analytical solution of FIDEs is impossible or so difficult.
Thus, various procedures for obtaining approximate solutions of this kind of equations
have attracted the attentions of many researchers.

In recent years, several numerical methods have been devoted for solving FIDEs
but they are not properly applied to solve dual systems of FIDEs [1, 4, 18]. The
greatest information that we can obtain from this case, is studing of papers that have

Key words and phrases. Legendre wavelets, fractional integro-differential equations, algebraic,
dual systems.
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been presented by various methods to arrive to an approximate solution. One of
these methods is wavelet method [20]. Wavelets are generally a family of oscillatory
functions which can be used to obtain approximate solutions of unknown functions
[12]. There are many methods for solving FIDEs, by helping of wavelets; for instance
take a look at [2,9,11,22]. The application of wavelets is significant in many scientific
disciplines, such as time-frequency analysis, signal processing and numerical analysis
[3].

This paper is based on Legendre wavelets that are a special type of wavelets
that successfully have passed the exams in system analysis, system identification,
optimal control and numerical solutions of differential and integral equations. Legendre
wavelets are based on Legendre polynomials. From numerical point of view, wavelets
have a closer and more accurate approximation than Legendre polynomials [17]. In
the study of various methods for numerical solution of systems of FIDEs, we find that
the wavelets method has been used less. Therefore, we have chosen the method of
the Legendre wavelets for numerical solution of systems of FIDEs. We now apply the
Legendre wavelets method to solve the following dual system [21]:




Drf(x) = u1(x, f(x), g(x)) +

∫ x
0 u2(t, f(t), g(t))dt,

Dsg(x) = v1(x, f(x), g(x)) +
∫ x

0 v2(t, f(t), g(t))dt,

where x, t ∈ [0, 1], r, s ∈ (0, 1], and Dr, Ds display the Caputo derivative operator.

2. Legendre Wavelets and their Functional Properties

2.1. Legendre wavelets. Legendre wavelets are defined on [0, 1) as [10]:

ψnm(x) =





2
k
2

√

m+
1

2
Lm(2kx− n̂),

n̂− 1

2k
≤ x <

n̂+ 1

2k
,

0, otherwise,

where n = 1, 2, . . . , 2k−1, n̂ = 2n−1, m = 0, 1, 2, . . . ,M−1, k,M ∈ N, m is the degree
of the Legendre polynomials and Lm(x) are the well-known Legendre polynomials of
order m that are defined on the interval [−1, 1] and satisfy the following recursive
formula

L0(x) = 1, L1(x) = x,

Lm+1(x) =
(

2m+ 1

m+ 1

)
xLm(x) −

(
m

m+ 1

)
Lm−1(x), m = 1, 2, . . .

2.2. Function approximation. The Legendre wavelet series representation of the
function f(x) defined over [0, 1) is given by

(2.1) f(x) =
∞∑

n=1

∞∑

m=0

anmψnm(x) = AT Ψ(x),
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where anm = ⟨f(x), ψnm(x)⟩ and ⟨·, ·⟩ denotes the inner product. If the infinite series
in (2.1) is finited, (2.1) can be written as

(2.2) f(x) ≈
2k−1∑

n=1

M−1∑

m=0

anmψnm(x) = AT Ψ(x),

where A and Ψ(x) are 2k−1M × 1 matrices given by

A =
[
a10, a11, . . . , a1(M−1), a20, a21, . . . , a2(M−1), . . . , a2k−10, a2k−11, . . . , a2k−1(M−1)

]T

Ψ(x) =
[
ψ10(x), ψ11(x), . . . , ψ1(M−1)(x), ψ20(x), ψ21(x), . . . , ψ2(M−1)(x), . . . ,

ψ2k−10(x), ψ2k−11(x), . . . , ψ2k−1(M−1)(x)
]T

.

For simplicity, (2.2) can be rewritten as

f(x) ≈
n′∑

i=1

aiψi(x) = AT
n′Ψn′(x) = f̂(x),

where ai = anm, ψi = ψnm, n′ = 2k−1M , i = M(n−1)+m+1. Obtain the collocation
points as

xi =
i− 0.5

n′
, i = 1, 2, · · · , 2k−1M.

We define the Legendre wavelets matrix as

ϕn′
×n′ =

[
Ψ

(
1

2n′

)
,Ψ

(
3

2n′

)
,Ψ

(
5

2n′

)
, . . . ,Ψ

(
i− 0.5

n′

) ]
.

3. Operational Matrix of the Integration for Legendre Wavelets

3.1. Preliminaries and natations. In this section, we first present some definitions
and basic concepts that have the most applications in this paper [19].

Definition 3.1. The Reimann-Liouville fractional integral operator of order γ ≥ 0 is
a function defined as

Iγf(x) =





1

Γ(γ)

∫ x

0
(x− t)γ−1f(t)dt, γ > 0,

f(x), γ = 0,

where Γ(γ) is the gamma function as

Γ(γ) =
∫

∞

0
tγ−1e−tdt.

Definition 3.2. The Caputo fractional derivative of order γ > 0 is defined as

Dγf(x) =





1

Γ(n− γ)

∫ x

0
(x− t)n−γ−1f (n)(t)dt, γ > 0, n− 1 < γ < n,

d(n)f(x)

dxn
, γ = n,
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where x ∈ [0,∞), and n = 1, 2, 3, . . .

For x > 0 the Caputo derivative and Reimann-Liouville integral operator have the
following relationships

DγIγf(x) =f(x),

IγDγf(x) =f(x) −
n−1∑

m=0

f (m)(0+)

m!
xm, n− 1 < γ < n.(3.1)

3.2. Operational matrix of the fractional integration. Here the main goal is to
get the fractional-order Legendre wavelets operational matrix of integration. For this
purpose, we have to define the set of Block puls functions (BPFs) as follows [16]

bi(x) =





1,
i− 1

n′
≤ x <

i

n′
,

0, otherwise,

where i = 1, 2, . . . , n′, and n′ = 2k−1M .
The BPFs have two properties which will be used later

bi(x)bj(x) =




bi(x), i = j,

0, i ̸= j,

∫ x

0
bi(x)bj(x)dx =





1

n′
, i = j,

0, i ̸= j.

Definition 3.3. Let C = [c1, c2, . . . , cn′ ]T and D = [d1, d2, . . . , dn′ ]T be two matrices
n′ × n′, then we define that C ⊗D = [c1d1, c2d2, . . . , cn′dn′ ]T .

Lemma 3.1. Suppose that g(x) and h(x) are two functions defined on L2[0, 1] as

we have g(x) = GTBn′(x) and h(x) = HTBn′(x), where GT = [g1, g2, . . . , gn′ ], HT =
[h1, h2, . . . , hn′ ] and Bn′(x) = [b1, b2, . . . , bn′ ]T , then we have

g(x)h(x) ≈GTBn′(x)HTBn′(x) = (GT ⊗HT )Bn′(x),(3.2)

g(x)2 ≈(GTBn′(x))2 = (GT )2Bn′(x).(3.3)

Proof. By using the properties of BPFs, the proof is obvious. □

The fractional integration of order γ in Reimann-Liouvill concept can be expressed
as [5]

(3.4) IγBn′(x) ≈ RγBn′(x),



A NEW METHOD TO SOLVE DUAL SYSTEMS OF FRACTIONAL EQUATIONS 955

where Rγ is the BPFs operational matrix with

Rγ =
1

n′
γ

1

Γ(γ + 2)




1 ξ1 ξ2 · · · ξn′
−1

0 1 ξ1 · · · ξn′
−2

0 0 1 · · · ξn′
−3

0 0 0 · · · ξn′
−4

...
...

...
. . .

...
0 0 0 · · · 1




,

and ξk = (k + 1)γ+1 − 2kγ+1 + (k − 1)γ+1, k = 1, 2, . . . , n′ − 1.
We now derive the Legendre wavelets operational matrix of the fractional integration.

The integration of Legendre wavelets Ψn′(x) can be obtained as

(3.5) IΨn′(x) =
∫ x

0
Ψn′(τ)dτ ≈ qn′

×n′Ψn′(x),

where the n′-square matrix qn′
×n′ is called Legendre wavelets operational matrix and

q
γ
n′

×n′ is called Legendre wavelets fractional integral operational matrix and achived
by

(3.6) IγΨn′(x) ≈ q
γ
n′

×n′Ψ(x)n′ ,

the Legendre wavelets can be expanded into n′-set BPFs as

(3.7) Ψn′(x) ≈ ϕn′
×n′Bn′(x),

we get [6] from (3.4), (3.6) and (3.7)

q
γ
n′

×n′Ψn′(x) ≈IγΨn′(x) ≈ Iγϕn′
×n′Bn′(x) = ϕn′

×n′IγBn′(x) ≈ ϕn′
×n′RγBn′(x)

≈ϕn′
×n′Rγϕ−1

n′
×n′ψn′(x).

Finally, we conclude from (3.6) qγ
n′

×n′ ≈ ϕn′
×n′RγΨ−1

n′
×n′ .

In general, the matrix ϕn′
×n′ counted in the below form

ϕn′
×n′ =




L 0 0 · · · 0
0 L 0 · · · 0
0 0 L · · · 0
...

...
...

. . .
...

0 0 0 · · · L



,

where L is a M ×M matrix given by [7]

L =




ψ10

(
1

2n′

)
ψ10

(
3

2n′

)
· · · ψ10

(
i− 0.5

n′

)

ψ11

(
1

2n′

)
ψ11

(
3

2n′

)
· · · ψ11

(
i− 0.5

n′

)

...
...

. . .
...

ψ2k−1(M−1)

(
1

2n′

)
ψ2k−1(M−1)

(
3

2n′

)
· · · ψ2k−1(M−1)

(
i− 0.5

n′

)




.
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The six basis functions are by




ψ10(x) =
√

2,

ψ11(x) =
√

6(4x− 1), 0 ≤ x < 1
2
,

ψ12(x) =
√

10(24x2 − 12x+ 1),




ψ20(x) =
√

2,

ψ21(x) =
√

6(4x− 1), 1
2

≤ x < 1,

ψ22(x) =
√

10(24x2 − 36x+ 13).

Here, we present the matrices Rγ, ϕn′
×n′ and qγ for k = 2, M = 3, n = 1, 2,

m = 0, 1, 2, γ = 0.6 and using the collocation points xi = i−0.5
n′

, i = 1, 2, . . . , n′,

n′ = 2k−1M . Clearly, we have:

R0.6 =




0.23872 0.24622 0.17586 0.14847 0.13201 0.12061
0 0.23872 0.24622 0.17586 0.14847 0.13201
0 0 0.23872 0.24622 0.17586 0.14847
0 0 0 0.23872 0.24622 0.17586
0 0 0 0 0.23872 0.24622
0 0 0 0 0 0.23872




,

ϕ6×6 =




1.41421 1.41421 1.41421 0 0 0
−1.63299 0 1.63299 0 0 0
0.52705 −1.58114 0.52705 0 0 0

0 0 0 1.41421 1.41421 1.41421
0 0 0 −1.63299 0 1.63299
0 0 0 0.52705 −1.58114 0.52705




,

q0.6 =




0.45856 0.18277 −0.02360 0.47845 −0.07337 0.01977
−0.14723 0.15079 0.12261 0.06705 −0.03495 0.01469
−0.05571 −0.09082 0.10681 −0.04913 0.00096 0.00190

0 0 0 0.45856 0.18277 −0.02360
0 0 0 −0.14723 0.15079 0.12261
0 0 0 −0.05571 −0.09082 0.10681




.

3.3. Error analysis. The following theorem presents the error analysis of the Le-
gendre wavelets approximation function. By increasing values of k and M the error
gets closer to zero. As you will see, solved examples confirm this sentence. So, we
say surely the mentioned method and its approximation function will be successfully
responsive for solving examples of the discussed subject.

Theorem 3.1 ([14]). Suppose f(x) ∈ C2[0, 1] and f̂(x) is the best approximation of

f(x), then we have for these two functions defined in (2.1) and (2.2):

∥ef∥2 = ∥error(f(x))∥2 = ∥f(x) − f̂(x)∥2 = o

(
1

M !2Mk

)
,

=
c

M !2Mk
c>0

as k → ∞, M → ∞.
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4. Numerical Examples

In this section, we are going to solve two numerical examples by using the proposed
method in Section 3, Also, we will compare their approximate and exact solution from
graphical and numerical point of view. The numerical results show these performance
of the mentioned method.

Example 4.1 ([21]).

(4.1)





Drf(x) = −1

2
f 2(x) − g(x) +

1

2
−

∫ x

0
g(t)f(t)dt, 0 < r ≤ 1,

Dsg(x) = g2(x) + f 2(x) −
∫ x

0
g(t)dt, 0 < s ≤ 1,

with the initial conditions f(0) = 1 and g(0) = 0. Exact solutions for the above
coupled systems when r = s = 1 are obtained by f(x) = cosx and g(x) = sin x, the
exact solutions of f(x) and g(x) for r, s ∈ (0, 1) are unknown.

Let

(4.2)




Drf(x) ≈ AT

n′Ψn′(x),

Dsg(x) ≈ ET
n′Ψn′(x),

where AT
n′ = [a1, a2, a3, . . . , an′ ] and ET

n′ = [e1, e2, e3, . . . , en′ ]. By using the initial
conditions and (3.1), (3.6), (3.7) and (4.2), we have

(4.3)





f(x) = IrDrf(x) + f(0) ≈ AT
n′qr

n′
×n′Ψn′(x) + 1

≈ AT
n′qr

n′
×n′ϕn′

×n′Bn′(x) + [1, . . . , 1]n′
×n′ ,

g(x) = IsDsg(x) + g(0) ≈ ET
n′qs

n′
×n′Ψn′(x) ≈ En′qs

n′
×n′ϕn′

×n′Bn′(x).

Then, by using (3.2), (3.3), (3.5) and (4.3), we obtain

f 2(x) ≈(AT
n′q

r
n′

×n′ϕn′
×n′)2Bn′(x) + 2AT

n′q
r
n′

×n′ϕn′
×n′Bn′(x) + [1, 1, . . . , 1]n′

×n′ ,

g2(x) ≈(ET
n′q

s
n′

×n′ϕn′
×n′)2Bn′(x),

∫ x

0
g(t)dt ≈

∫ x

0
ET

n′q
s
n′

×n′Ψn′(t)dt ≈ ET
n′q

1+s
n′

×n′ϕn′
×n′Bn′(x),

(4.4)

g(x)f(x) ≈(ET
n′q

s
n′

×n′ϕn′
×n′Bn′(x))(AT

n′q
r
n′

×n′ϕn′
×n′Bn′(x) + 1)

=(ET
n′q

s
n′

×n′ϕn′
×n′ ⊗ AT

n′q
r
n′

×n′ϕn′
×n′)Bn′(x) + ET

n′q
s
n′

×n′ϕn′
×n′Bn′(x),

∫ x

0
g(t)f(t)dt ≈

∫ x

0
(ET

n′q
s
n′

×n′ϕn′
×n′ ⊗ AT

n′q
r
n′

×n′ϕn′
×n′)Bn′(t)dt

+
∫ x

0
ET

n′q
s
n′

×n′ϕn′
×n′Bn′(t)dt

=(ET
n′q

s
n′

×n′ϕn′
×n′ ⊗ AT

n′q
r
n′

×n′ϕn′
×n′)

∫ x

0
Bn′(t)dt

+ ET
n′q

s
n′

×n′ϕn′
×n′

∫ x

0
Bn′(t)dt
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≈(ET
n′q

s
n′

×n′ϕn′
×n′ ⊗ AT

n′q
r
n′

×n′ϕn′
×n′)

∫ x

0
ϕ−1

n′
×n′Ψn′(t)dt(4.5)

+ (ET
n′q

s
n′

×n′ϕn′
×n′)

∫ x

0
ϕ−1

n′
×n′Ψn′(t)dt

≈(ET
n′q

s
n′

×n′ϕn′
×n′ ⊗ AT

n′q
r
n′

×n′ϕn′
×n′)ϕ−1

n′
×n′qn′

×n′ϕn′
×n′Bn′(x)

+ ET
n′q

1+s
n′

×n′ϕn′
×n′Bn′(x).

By replacing (3.7), (4.2)–(4.4) and (4.5) into (4.1), and also according to the
properties of BPFs, we conclude

(4.6)





AT
n′ϕn′

×n′ = −1

2
(AT

n′qr
n′

×n′ϕn′
×n′)2 − AT

n′qr
n′

×n′ϕn′
×n′

−ET
n′qs

n′
×n′ϕn′

×n′ − (ET
n′qs

n′
×n′ϕn′

×n′ ⊗ AT
n′qr

n′
×n′ϕn′

×n′

+ET
n′qs

n′
×n′ϕn′

×n′)ϕ−1
n′

×n′qn′
×n′ϕn′

×n′ ,

ET
n′ϕn′

×n′ = (ET
n′qs

n′
×n′ϕn′

×n′)2 + (AT
n′qr

n′
×n′ϕn′

×n′)2 + 2AT
n′qr

n′
×n′ϕn′

×n′

−ET
n′q

1+s
n′

×n′ϕn′
×n′ + [1, 1, . . . , 1]1×n′ .

(4.6) is now a system of nonlinear algebric equations which is a transformed type
of (4.1). It has 2n′ unknown coefficients, Ai and Ei, which we can find them and the
numerical solutions of f(x) and g(x) by solving this system by presented numerical
method.

The approximate solutions obtained by using the proposed method and also absolute
error value for different values k,M, r, s and x in the Tables 1 − 3 have been shown.
From Tables 1-3 and Figures 1-5 we can see that by increasing k and M the numerical
solutions converge to the exact solutions, specially when r, s → 1.

Table 1. Numerical results of the Example 4.1 for k = 2, M = 6,
n′ = 2k−1M = 12, i = 1, 2, 3, . . . , n′, and different values r and s.

xi = i−0.5
n′

r = 0.7, s = 0.7 r = 0.8, s = 0.8 r = 0.9, s = 0.9 r = 1, s = 1 Ecact solution

f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x)

x1 = 0.04167 0.98729, 0.11185 0.99339, 0.08097 0.99660, 0.05817 0.99827, 0.41546 0.99913, 0.04166

x2 = 0.12500 0.95593, 0.24847 0.97390, 0.19959 0.98486, 0.15830 0.99136, 0.12435 0.99220, 0.12467

x3 = 0.20833 0.91290, 0.34846 0.94327, 0.29703 0.96398, 0.24904 0.97758, 0.20629 0.97838, 0.20683

x4 = 0.29167 0.86384, 0.42851 0.90475, 0.38190 0.93530, 0.33342 0.95704, 0.28680 0.95777, 0.28755

x5 = 0.37500 0.81126, 0.49298 0.86008, 0.45627 0.89968, 0.41195 0.92988, 0.36531 0.93051, 0.36627

x6 = 0.45833 0.75698, 0.54381 0.81063, 0.52091 0.85786, 0.48458 0.89628, 0.44128 0.89679, 0.44245

x7 = 0.54167 0.70249, 0.58196 0.75760, 0.57604 0.81054, 0.55109 0.85648, 0.51418 0.85685, 0.51556

x8 = 0.62500 0.64909, 0.60799 0.70209, 0.62168 0.75844, 0.61113 0.81076, 0.58351 0.81096, 0.58510

x9 = 0.70833 0.59794, 0.62222 0.64516, 0.65768 0.70224, 0.66435 0.75944, 0.64878 0.75945, 0.65057

x10 = 0.79167 0.55009, 0.62485 0.58783, 0.68380 0.64269, 0.71035 0.70287, 0.70954 0.70266, 0.71153

x11 = 0.87500 0.50650, 0.61613 0.53112, 0.69978 0.58050, 0.74871 0.64145, 0.76535 0.64100, 0.76754

x12 = 0.95833 0.46802, 0.59639 0.47601, 0.70530 0.51646, 0.77900 0.57560, 0.81583 0.57488, 0.81823
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Table 2. Numerical results of the Example 4.1 for k = 6, M = 3,
n′ = 2k−1M = 96, i = 1, 2, 3, . . . , n′, and different values r and s

xi = i−0.5
n′

r = 0.85, s = 0.85 r = 0.9, s = 0.9 r = 0.95, s = 0.95 r = 1, s = 1 Ecact solution

f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x)

x8 = 0.07813 0.99150, 0.12072 0.99393, 0.10459 0.99568, 0.09043 0.99694, 0.07804 0.99695, 0.07805

x16 = 0.16146 0.97100, 0.22197 0.97769, 0.19983 0.98292, 0.17943 0.98698, 0.16075 0.98699, 0.16076

x24 = 0.24479 0.94160, 0.31225 0.95307, 0.28786 0.96250, 0.26449 0.97018, 0.24234 0.97019, 0.24235

x32 = 0.32813 0.90481, 0.39397 0.22105, 0.36986 0.93492, 0.34583 0.94664, 0.32226 0.94665, 0.32227

x40 = 0.41146 0.86177, 0.46779 0.88241, 0.44602 0.90064, 0.42322 0.91653, 0.39993 0.91654, 0.39995

x48 = 0.49479 0.81349, 0.53383 0.83787, 0.51619 0.86010, 0.49628 0.88006, 0.47483 0.88007, 0.47485

x56 = 0.57813 0.76090, 0.59198 0.78813, 0.58007 0.81378, 0.56461 0.83748, 0.54643 0.83749, 0.54645

x64 = 0.66146 0.70490, 0.64202 0.73389, 0.63733 0.76217, 0.62776 0.78910, 0.61424 0.78910, 0.61427

x72 = 0.74479 0.64638, 0.68365 0.67585, 0.68758 0.70579, 0.68530 0.73523, 0.67779 0.73523, 0.67782

x80 = 0.82813 0.58625, 0.71652 0.61477, 0.73042 0.64520, 0.73680 0.67626, 0.73663 0.67626, 0.73666

x88 = 0.91146 0.52539, 0.74023 0.55138, 0.76544 0.58097, 0.78185 0.61260, 0.79036 0.61259, 0.79040

x96 = 0.99979 0.46474, 0.75438 0.48647, 0.79219 0.51373, 0.82002 0.54469, 0.83861 0.54468, 0.83865

Table 3. Absolute error relevant to Tables 1 and 2 when r = s = 1

xi ef eg xi ef eg

x1 8.6311e− 04 1.0824e− 04 x8 1.3409e− 05 3.1776e− 06
x2 8.4048e− 04 3.2442e− 04 x16 1.2897e− 05 6.5587e− 06
x3 7.9451e− 04 5.3968e− 04 x24 1.2015e− 05 9.9213e− 06
x4 7.2457e− 04 7.5337e− 04 x32 1.0753e− 05 1.3255e− 05
x5 6.3022e− 04 9.6491e− 04 x40 9.1071e− 06 1.6552e− 05
x6 5.1122e− 04 1.1739e− 03 x48 7.0736e− 06 1.9807e− 05
x7 3.6749e− 04 1.3801e− 03 x56 4.6529e− 06 2.3020e− 05
x8 1.9913e− 04 1.5838e− 03 x64 1.8473e− 06 2.6198e− 05
x9 6.3200e− 06 1.7858e− 03 x72 1.3399e− 06 2.9357e− 05
x10 2.1069e− 04 1.9875e− 03 x80 4.9047e− 06 3.2527e− 05
x11 4.5169e− 04 2.1913e− 03 x88 8.8442e− 06 3.5751e− 05
x12 7.1658e− 04 2.4006e− 03 x96 1.3158e− 05 3.9088e− 05

Example 4.2 ([21]).

(4.7)





Drf(x) =
1

3
g(x)f(x) − g(x) + 1 − ∫ x

0 [g(t) − 2f(t)]dt, 0 < r ≤ 1,

Dsg(x) =
1

3
g(x)f(x) +

1

2
f 2(x) + 2f(x) − ∫ x

0 [g(t) + f(t)]dt, 0 < s ≤ 1,

with the initial conditions f(0) = 0 and g(0) = 0, exact solutions for the above coupled
systems when r = s = 1 are obtained by f(x) = x and g(x) = x2. The exact solutions
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Figure 1. Numerical solution for different values of r and s when
k = 2, M = 6 and n′ = 12.
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Figure 2. Numerical solution for different values of r and s when
k = 6, M = 3 and n′ = 96.
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Figure 3. Numerical solution for different values of r and s when
k = 3, M = 4 and n′ = 16.
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Figure 4. Numerical solution for different values of r and s when
k = 3, M = 4 and n′ = 16.
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Figure 5. Numerical solution for different values of r and s when
k = 4, M = 5 and n′ = 40.

of f(x) and g(x) for r, s ∈ (0, 1) are unknown. Let

(4.8)




Drf(x) ≈ AT

n′Ψn′(x),

Dsg(x) ≈ ET
n′Ψn′(x),

where AT
n′ = [a1, a2, a3, . . . , an′ ] and ET

n′ = [e1, e2, e3, . . . , en′ ].
By using the initial conditions and (3.2), (3.6), (3.7) and (4.8) we have

(4.9)




f(x) = IrDrf(x) + f(0) ≈ AT

n′qr
n′

×n′Ψn′(x) ≈ AT
n′qr

n′
×n′ϕn′

×n′Bn′(x),

g(x) = IsDsg(x) + g(0) ≈ ET
n′qs

n′
×n′Ψn′(x) ≈ ET

n′qs
n′

×n′ϕn′
×n′Bn′(x).

So, by using (3.2), (3.3), (3.5) and (4.9), we obtain

g(x)f(x) ≈(ET
n′q

s
n′

×n′ϕn′
×n′Bn′(x))(AT

n′q
r
n′

×n′ϕn′
×n′Bn′(x))

=(ET
n′q

s
n′

×n′ϕn′
×n′ ⊗ AT

n′q
r
n′

×n′ϕn′
×n′)Bn′(x),(4.10)

f 2(x) ≈(AT
n′q

r
n′

×n′ϕn′
×n′Bn′(x))2 = (AT

n′q
r
n′

×n′ϕn′
×n′)2Bn′(x),(4.11)

∫ x

0
f(t)dt ≈

∫ x

0
AT

n′q
r
n′

×n′Ψn′(t)dt = AT
n′q

r
n′

×n′

∫ x

0
Ψn′(t)dt

≈AT
n′q

r
n′

×n′q
1
n′

×n′Ψ(x) ≈ AT
n′q

1+r
n′

×n′ϕn′
×n′Bn′(x),(4.12)

∫ x

0
g(t)dt ≈

∫ x

0
ET

n′q
s
n′

×n′Ψn′(t)dt ≈ ET
n′q

1+s
n′

×n′ϕn′
×n′Bn′(x).(4.13)
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By replacing (3.7) and (4.8)–(4.13) into (4.7), we obtain

(4.14)





AT
n′ϕn′

×n′Bn′(x) =
1

3
(En′qs

n′
×n′ϕn′

×n′ ⊗ AT
n′qr

n′
×n′ϕn′

×n′)Bn′(x)

−ET
n′qs

n′
×n′ϕn′

×n′Bn′(x) + [1, 1, 1, . . . , 1]1×n′Bn′(x)

−ET
n′q

1+s
n′

×n′ϕn′
×n′Bn′(x) + 2AT

n′q
1+r
n′

×n′ϕn′
×n′Bn′(x),

ET
n′ϕn′

×n′ =
1

3
(ET

n′qs
n′

×n′ϕn′
×n′ ⊗ AT

n′qr
n′

×n′ϕn′
×n′)Bn′(x)

+
1

2
(AT

n′qr
n′

×n′ϕn′
×n′)2Bn′(x) + 2AT

n′qr
n′

×n′ϕn′
×n′Bn′(x)

−ET
n′q

1+s
n′

×n′ϕn′
×n′Bn′(x) − AT

n′q
1+r
n′

×n′ϕn′
×n′Bn′(x).

According to the properties of BPFs and (4.14) we have




AT
n′ϕn′

×n′ =
1

3
(ET

n′qs
n′

×n′ϕn′
×n′ ⊗ AT

n′qr
n′

×n′ϕn′
×n′) − ET

n′qs
n′

×n′ϕn′
×n′

+[1, 1, 1, . . . , 1]1×n′ − ET
n′q

1+s
n′

×n′ϕn′
×n′ + 2AT

n′q
1+r
n′

×n′ϕn′
×n′ ,

ET
n′ϕn′

×n′ =
1

3
(ET

n′qs
n′

×n′ϕn′
×n′ ⊗ AT

n′qr
n′

×n′ϕn′
×n′) +

1

2
(AT

n′qr
n′

×n′ϕn′
×n′)2

+2AT
n′qr

n′
×n′ϕn′

×n′ − ET
n′q

1+s
n′

×n′ϕn′
×n′ − AT

n′q
1+r
n′

×n′ϕn′
×n′ .

Table 4. Numerical results of the Example 4.2 for k = 2, M = 6,
n′ = 12 and different values r and s.

xi = i−0.5
n′

r = 0.7, s = 0.7 r = 0.8, s = 0.8 r = 0.9, s = 0.9 r = 1, s = 1 Ecact solution

f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x)

x1 = 0.04167 0.11157, 0.02570 0.08101, 0.01331 0.05826, 0.00681 0.04162, 0.00345 0.04167, 0.00174

x2 = 0.12500 0.24734, 0.08992 0.19985, 0.05289 0.15887, 0.03048 0.12485, 0.01729 0.12500, 0.01563

x3 = 0.20833 0.34747, 0.17865 0.29849, 0.11560 0.25105, 0.07284 0.20808, 0.04499 0.20833, 0.04340

x4 = 0.29167 0.43049, 0.28039 0.38662, 0.19511 0.33858, 0.13148 0.29130, 0.08656 0.29167, 0.0851

x5 = 0.37500 0.50203, 0.39010 0.46725, 0.28816 0.42265, 0.20501 0.37452, 0.14198 0.37500, 0.14063

x6 = 0.45833 0.56500, 0.50429 0.54192, 0.39228 0.50386, 0.29232 0.45773, 0.21126 0.45833, 0.21007

x7 = 0.54167 0.62123, 0.62019 0.61160, 0.50541 0.58259, 0.39247 0.54094, 0.29439 0.54167, 0.29340

x8 = 0.62500 0.67207, 0.73553 0.67698, 0.62570 0.65908, 0.50455 0.62415, 0.39137 0.62500, 0.39063

x9 = 0.70833 0.71856, 0.84840 0.73855, 0.75142 0.73351, 0.62770 0.70736, 0.50221 0.70833, 0.50174

x10 = 0.79167 0.76163, 0.95723 0.79675, 0.88091 0.80600, 0.76104 0.79057, 0.62689 0.79167, 0.62674

x11 = 0.87500 0.80212, 1.06071 0.85194, 1.01260 0.87667, 0.90368 0.87377, 0.76541 0.87500, 0.76563

x12 = 0.95833 0.84082, 1.15789 0.90445, 1.14498 0.94558, 1.05471 0.95697, 0.91778 0.95833, 0.91840
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Table 5. Numerical results of the Example 4.2 for k = 6, M = 3,
n′ = 96, for i = 8, 16, 24, . . . , 96, and different values r and s.

r = 0.85 r = 0.90 r = 0.95 r = 1

xi = i−0.5
n′

s = 0.85 s = 0.90 s = 0.95 s = 1 Exact solution

f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x) f(x), g(x)

x8 = 0.07813 0.12072, 0.01712 0.10466, 0.01221 0.09051, 0.00867 0.07812, 0.00613 0.07813, 0.00610

x16 = 0.16146 0.22252, 0.05872 0.20055, , 0.45011 0.18013, 0.03434 0.16146, 0.02609 0.16146, 0.02607

x24 = 0.24479 0.31477, 0.11879 0.29056, 0.09507 0.26714, 0.07568 0.24479, 0.05995 0.24479, 0.05992

x32 = 0.32813 0.40070, 0.19461 0.37657, 0.16072 0.35221, 0.13191 0.32812, 0.10769 0.32813, 0.10767

x40 = 0.41146 0.48172, 0.28420 0.45943, 0.24076 0.43578, 0.20252 0.41145, 0.16932 0.41146, 0.16930

x48 = 0.49479 0.55863, 0.38597 0.53961, 0.33418 0.51805, 0.28702 0.49478, 0.24484 0.49479, 0.24482

x56 = 0.57813 0.63198, 0.49845 0.61741, 0.44006 0.59916, 0.38499 0.57811, 0.33424 0.57813, 0.33423

x64 = 0.66146 0.70212, 0.62030 0.69306, 0.55752 0.67920, 0.49602 0.66144, 0.43754 0.66146, 0.43753

x72 = 0.74479 0.76936, 0.75018 0.76670, 0.68568 0.78823, 0.61968 0.74478, 0.55472 0.74479, 0.55471

x80 = 0.82813 0.83390, 0.88680 0.83845, 0.82367 0.83628, 0.75556 0.82811, 0.68579 0.82813, 0.68579

x88 = 0.91146 0.89595, 1.02884 0.90839, 0.97059 0.91339, 0.90321 0.91144, 0.83075 0.91146, 0.83076

x96 = 0.99479 0.95568, 1.17499 0.97659, 1.12551 0.98958, 1.06215 0.99477, 0.98960 0.99479, 0.98961

Table 6. Absolute error relevant to Tables 4 and 5 when r = s = 1

xi ef eg xi ef eg

x1 4.9582e− 05 1.7179e− 03 x8 1.4528e− 06 2.6604e− 05
x2 1.5141e− 04 1.6686e− 03 x16 3.0835e− 06 2.5657e− 05
x3 2.5823e− 04 1.5927e− 03 x24 4.7883e− 06 2.4283e− 05
x4 3.6945e− 04 1.4885e− 03 x32 6.5581e− 06 2.2451e− 05
x5 4.8451e− 04 1.3539e− 03 x40 8.3847e− 06 2.0132e− 05
x6 6.0291e− 04 1.1872e− 03 x48 1.0261e− 05 1.7294e− 05
x7 7.2421e− 04 9.8598e− 04 x56 1.2179e− 05 1.3901e− 05
x8 8.4799e− 04 7.4813e− 04 x64 1.4134e− 05 9.9173e− 06
x9 9.7387e− 04 4.7122e− 04 x72 1.6120e− 05 5.3045e− 06
x10 1.1015e− 03 1.5269e− 04 x80 1.8131e− 05 2.1047e− 08
x11 1.2305e− 03 2.1017e− 04 x88 2.0162e− 05 5.9769e− 06
x12 1.3606e− 03 6.2023e− 04 x96 2.2208e− 05 1.2736e− 05
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Figure 6. Numerical solution for different values of r and s, when
k = 2, M = 6 and n′ = 12.
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Figure 7. Numerical solution for different values of r and s when
k = 6, M = 3 and n′ = 96.
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Figure 8. Numerical solution for different values of r and s when
k = 3, M = 4 and n′ = 16.
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Figure 9. Numerical solution for different values of r and s when
k = 3, M = 4 and n′ = 16.
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Figure 10. Numerical solution for different values of r and s when
k = 4, M = 5 and n′ = 40.

5. Conclusion

The main purpose of the presented article is introducing Legendre wavelets method
for resolving coupled systems of FIDEs. As you saw, the numerical results obtained
here, confirm its high accuracy degree.

The most noticeable profit of the mentioned method is converting complicated
equations to simple ones, like we performed on examples. One of the best benefits
of this procedure is having high exactness that you may have been recognized it
according to the tables and figures.
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THE MINIMUM EDGE COVERING ENERGY OF A GRAPH

SAMIRA SABETI1, AKRAM BANIHASHEMI DEHKORDI1,
AND SAEED MOHAMMADIAN SEMNANI1

Abstract. In this paper, we introduce a new kind of graph energy, the minimum
edge covering energy, ECE

(G). It depends both on the underlying graph G, and on
its particular minimum edge covering CE . Upper and lower bounds for ECE

(G) are
established. The minimum edge covering energy and some of the coefficients of the
polynomial of well-known families of graphs like Star, Path and Cycle Graphs are
computed.

1. Introduction

In the study of spectral graph theory, we use the spectra of the certain matrix
associated with the graph, such as the adjacency matrix, the Laplacian matrix, and
other related matrices. Some useful information about the graph can be obtained
from the spectra of these various matrices. Let G be a simple graph and let its vertex
set be V (G) = ¶v1, v2, . . . , vn♢. The adjacency matrix A(G) of the graph G is a
square matrix of order n whose (i, j)-entry is equal to unity if the vertices vi and vj

are adjacent and it is equal to zero otherwise. The eigenvalues λ1, λ2, . . . , λn of A(G),
assumed in nonincreasing order, are the eigenvalues of the graph G. The concept of
energy of a graph was introduced by I. Gutman [1] in the year 1978 as the sum of the
absolute values of its eigenvalues:

E(G) =
n
∑

i=1

♣λi♣.

One of the remarkable chemical applications of spectral graph theory is based on the
close correspondence between the graph eigenvalues and the molecular orbital energy

Key words and phrases. Minimum edge covering set, minimum edge covering matrix, graph energy,
minimum edge covering eigenvalues.

2018 Mathematics Subject Classification. Primary: 05C50.
DOI 10.46793/KgJMat2106.969S
Received: November 19, 2018.
Accepted: July 15, 2019.

969



970 S. SABETI, A. BANIHASHEMI, AND S. MOHAMMADIAN SEMNANI

levels of π-electron in conjugated hydrocarbons. An interesting quantity in Huckel
theory is the sum of the energies of all the electrons in a molecule, so-called total
π-electron energy E. For more details on the mathematical aspects of the theory of
graph energy see [2–5]. The basic properties including various upper and lower bounds
for energy of a graph have been established [6,7], and it has found remarkable chemical
applications in the molecular orbital theory of conjugated molecules [8]. Recently
C. Adiga et al. [8] defined the minimum covering energy, EC(G) of a graph which
depends on its particular minimum cover C. Further, incidence energy, matching
energy, minimum dominating energy, Laplacian minimum dominating energy and
minimum dominating distance energy of a graph G can be found in [9–16]. Motivated
by these papers, we study the minimum edge covering ECE

of a graph G. We compute
some properties of the characteristic polynomial of a minimum edge covering matrix of
a graph G. Upper and lower bounds for ECE

(G) are established. It is possible that the
minimum edge covering energy that we are considering in this paper may have some
applications in chemistry as well as in other areas. Let G = (V, E) be a simple finite
graph that is has no loops no multiple and directed edges. Graph G has n vertices, m

edges with vertex set V (G) = ¶v1, v2, . . . , vn♢ and edge set E(G) = ¶e1, e2, . . . , em♢.

Definition 1.1. A subset C of V is called a covering set of G if every edge of G is
incident to at least one vertex of C. Any covering set with minimum cardinality is
called a minimum covering set.

Definition 1.2. A subset of E is called an edge covering set of G if every vertex of G is
incident to at least one edge of it. Any edge covering set with minimum cardinality is
called a minimum edge covering set. Let CE be a minimum edge covering set of a graph
G. The minimum edge covering matrix of G is a m × m matrix ACE

(G) = (eij)m×m,
where

eij =











1, if ei, ej are adjacent,
1, if i = j and ei ∈ CE,
0, otherwise.

The characteristic polynomial of ACE
(G) is denoted by fm(G, λ) = det(λI −

ACE
(G)) = c0λ

m + c1λ
m−1 + c2λ

m−2 + · · · + cm. The matrix ACE
(G) is real and

symmetric. Then the eigenvalues of ACE
(G) are real numbers and are labeled in

non-increasing order λ1 ≥ λ2 ≥ · · · ≥ λm. The minimum edge covering energy of G is
defined as

ECE
(G) =

m
∑

i=1

♣λi♣.

2. Problem Formulation and some Basic Properties of Minimum Edge
Covering Energy

Following theorem obtains the coefficients of polynomial without applying determi-
nant expansion.
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Theorem 2.1. Let G be a graph with vertex set V , edge set E, and the minimum edge

covering set CE. Let fm(G, λ) = det(λI−ACE
(G)) = c0λ

m+c1λ
m−1+c2λ

m−2+· · ·+cm

be the characteristic polynomial of G. Then

(i) c0 = 1;

(ii) c1 = −♣CE♣;

(iii) c2 =

(

♣CE♣

2

)

−

(

1

2

m
∑

i=1

deg(ei)

)

;

(iv) c3 = −

(

♣CE♣

3

)

+ ♣CE♣

(

1

2

m
∑

i=1

deg(ei)

)

−
∑

i∈CE

deg(ei)−2(K1,3 +C3), where C3 is

the number of triangles and K1,3 is the number of star graphs with four vertices

in G.

Proof. (i) Directly from the definition of fm(G, λ), it follows that c0 = 1.
(ii) Since the sum of diagonal elements of ACE

(G) is equal to ♣CE♣, sum of deter-
minants of all 1 × 1 principal submatrices of ACE

(G) is the trace of ACE
(G) which

evidently equal to ♣CE♣. Thus, (−1)1c1 = ♣CE♣.
(iii) (−1)2c2 is equal to sum of determinats of all the 2 × 2 principal submatrices

of ACE
(G) , that is

c2 =
∑

1≤i<j≤m

∣

∣

∣

∣

∣

eii eij

eji ejj

∣

∣

∣

∣

∣

=
∑

1≤i<j≤m

(eiiejj − eijeji)

=
∑

1≤i<j≤m

eiiejj −
∑

1≤i<j≤m

e2
ij =

(

♣CE♣

2

)

−
1

2

m
∑

i=1

deg(ei).

(iv)

c3 =(−1)3
∑

1≤i<j<k≤m

∣

∣

∣

∣

∣

∣

∣

eii eij eik

eji ejj ejk

eki ekj ekk

∣

∣

∣

∣

∣

∣

∣

= −
∑

1≤i<j<k≤m

[eii(ejjekk − ekjejk) − eij(ejiekk − ekiejk)

+ eik(ejiekj − ekiejj)]

= −
∑

1≤i<j<k≤m

eiiejjekk +
∑

1≤i<j<k≤m

[eiiejk + ejjeik + ekkeij]

−
∑

1≤i<j<k≤m

eijejkeki −
∑

1≤i<j<k≤m

eikekjeji

=

(

♣CE♣

3

)

+ ♣CE♣

(

1

2

m
∑

i=1

deg(ei)

)

−
∑

i∈CE

deg(ei) − 2(k1,3 + C3).

Thus,

c3 =

(

♣CE♣

3

)

+ ♣CE♣

(

1

2

m
∑

i=1

deg(ei)

)

−
∑

i∈CE

deg(ei) − 2(k1,3 + C3). □
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Corollary 2.1. Let G be a path Pn with n vertices and m edges, then

(i) c0 = 1;

(ii) c1 = −


m+1
2

⌉

, ⌈x⌉ is the smallest integer number greater than or equals to x;

(iii) c2 =

(

⌈

m+1
2

⌉

2

)

− (m − 1);

(iv) c3 =

(

⌈

m+1
2

⌉

3

)

+


m + 1

2

⌉

(m − 1) −
∑

i∈CE

deg(ei).

Corollary 2.2. Let G be a cycle Cn with n vertices and m edges, then

(i) c0 = 1;

(ii) c1 = −


m

2

⌉

;

(iii) c2 =

(

⌈

m
2

⌉

2

)

− m;

(iv) c3 = −

(

⌈

m
2

⌉

3

)

+


m

2

⌉

(m − 2), m ≥ 4.

Remark 2.1. Let G be a path Pn with n vertices and m edges, then
m
∑

i=1

deg(ei) = 2(m − 1).

Theorem 2.2. If λ1, λ2, . . . , λm are eigenvalues of ACE
(G),then

m
∑

i=1

λ2
i = ♣CE♣ +

m
∑

i=1

deg(ei).

Proof. The sum of squares of the eigenvalues of ACE
(G) is just the trace of (ACE

(G))2

Therefore,
m
∑

i=1

λ2
i =

m
∑

i=1

m
∑

j=1

eijeji = 2
∑

i<j

(eij)
2 +

m
∑

i=1

(eii)
2 = ♣CE♣ +

m
∑

i=1

deg(ei). □

Theorem 2.3 (Parity theorem). Let G be a graph with a minimum edge covering set

CE. If the minimum edge covering energy ECE
(G) of G is a rational number, then

ECE
≡ ♣CE♣ (mod 2).(2.1)

Proof. Let λ1, λ2, . . . , λr be positive, and the rest of the minimum edge covering
eigenvalues non-positive. Thus,

ECE
(G) =

m
∑

i=1

♣λi♣ = (λ1 + λ2 + · · · + λr) − (λr+1 + λr+2 + · · · + λm),

implies ECE
(G) = 2(λ1 + λ2 + · · · + λr) − ♣CE♣. Since λ1, λ2, . . . , λr are algebraic

integers, so is their sum. Hence, λ1 + λ2 + · · · + λr must be an integer if ECE
(G) is

rational. □
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3. The Minimum Edge Covering Energy of Some Graphs

Theorem 3.1. The minimum edge covering energy of a star graph K1,n−1 is m for

n ≥ 2. The polynomial of it is λm − mλm−1.

Proof. Let K1,n−1 be a star graph with vertex set V = ¶v0, v1, v2, . . . , vn−1♢ and center
v0, then

AcE
(G) =

















1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

















,

that AcE
(G) is m × m. Then its characteristic polynomial is

fm(k1,n−1, λ) = det













λ − 1 −1 · · · −1
−1 λ − 1 · · · −1
...

...
. . .

...
−1 −1 · · · λ − 1













.(3.1)

By computing determinant of upper triangular of matrix (3.1) we will have

fm(k1,n−1, λ) = λm − mλm−1.

Then

Spec(k1,n−1) =

(

m 0
1 m − 1

)

,

ECE
(G) =

m
∑

i=1

♣λi♣ = m. □

Theorem 3.2. Let G be a path or a cycle graph with a minimum edge covering set

CE. Then ECE
(G) ≃ 2m − ♣CE♣ or ♣ECE

(G) − (2m − ♣CE♣)♣ ≤ 1.

Proof. Let λ1, λ2, . . . , λr be positive eigenvalues, and the rest of the minimum edge
covering eigenvalues non-positive. Thus,

ECE
(G) =

m
∑

i=1

♣λi♣ = (λ1 + λ2 + · · · + λr) − (λr+1 + λr+2 + · · · + λm),

implies ECE
(G) = 2(λ1 + λ2 + · · · + λr) − ♣CE♣. Since λ1, λ2, . . . , λr are algebraic

integers, so sum (λ1 + λ2 + · · · + λr) ≃ m. Hence, ECE
(G) ≃ 2m − ♣CE♣. □

Theorem 3.3 (Upper bound). Let G be a graph with n vertices, m edges, and let CE

be a minimum edge covering set of G. Then

ECE
(G) ≤

√

√

√

√m

 m
∑

i=1

deg(ei) + ♣CE♣


.
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Proof. Let λ1 ≥ λ2 ≥ λ3 · · · ≥ λm be the eigenvalues of ACE
(G). Bearing in mind the

Cauchy-Schwarz inequality




m
∑

i=1

aibj





2

≤





m
∑

i=1

a2
i









m
∑

i=1

b2
i



,

we put ai = 1 and bi = ♣λi♣ and we have

[ECE
(G)]2 =





m
∑

i=1

♣λi♣





2

≤ m





m
∑

i=1

♣λi♣
2



 = m
m
∑

i=1

λ2
i = m





m
∑

i=1

deg(ei) + ♣CE♣



.□

Theorem 3.4 (Lower bound). Let G be a graph with n vertices and m edges, and let

CE be a minimum edge covering set of G. If D = ♣ det ACE
(G)♣ , then

[ECE
(G)]2 ≥

m
∑

i=1

deg(ei) + ♣CE♣ + m(m − 1) m

√

√

√

√

 m
∏

i=1

λi

2

,(3.2)

with equality if G is a star of order n.

Proof. We have

[ECE
(G)]2 =





m
∑

i=1

♣λi♣





2

=





m
∑

i=1

♣λi♣









m
∑

i=1

♣λi♣



 =
m
∑

i=1

♣λi♣
2 +

∑

i̸=j

♣λi♣♣λj♣.

Now, by inequality between the arithmetic mean and geometric mean, we have

1

m(m − 1)

∑

i̸=j

♣λi♣♣λj♣ ≥


∏

i̸=j

♣λi♣♣λj♣


1
m(m−1)

.

Thus,

[ECE
(G)]2 ≥

m
∑

i=1

♣λi♣
2 + m(m − 1)



∏

i̸=j

♣λi♣♣λj♣


1
m(m−1)

≥
m
∑

i=1

♣λi♣
2 + m(m − 1)

 m
∏

i=1

♣λi♣
2(m−1)


1

m(m−1)

=
m
∑

i=1

♣λi♣
2 + m(m − 1)

∣

∣

∣

∣

m
∏

i=1

λi

∣

∣

∣

∣

2
m

=
m
∑

i=1

deg(ei) + ♣CE♣ + m(m − 1)D
2
m .

Since in the star graphs the multiplicity of λ = 0 is m−1, so Πm
i=1λi = det ACE

(G) = 0,
♣CE♣ = m and

∑m
i=1 deg(ei) = m(m − 1). Then, by placing the above values in (3.2),

equality cases hold

m2 = [ECE
(K1,n−1)]

2 ≥ m(m − 1) + m + m(m − 1) m

√

√

√

√

 m
∏

i=1

λi

2

= m2. □
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PSEUDO COMMUTATIVE DOUBLE BASIC ALGEBRAS

SHOKOOFEH GHORBANI1

Abstract. In this paper, we study the concept of pseudo commutative double basic
algebras and investigate some related results. We prove that there are relations
among pseudo commutative double basic algebras and other logical algebras such
as pseudo hoops, pseudo BCK-algebras and double MV-algebras. We obtain a close
relation between pseudo commutative double basic algebras and pseudo residuted
l-groupoids. Then we investigate the properties of the boolean center of pseudo
commutative double basic algebras and we use the boolean elements to deĄne and
study algebras on subintervals of pseudo commutative double basic algebras.

1. Introduction

C. C. Chang introduced the concept of MV-algebra in 1958 [16] to prove the
completeness theorem of infinite valued Łukasiewicz propositional calculus. Basic
algebras were introduced by I. Chajda et al. as a generalization of MV-algebras and
orthomodular lattices, see [8,10] and [11]. They are very useful in non-classical logics
including the logic of quantum mechanics. Every basic algebra is in fact a bounded
lattice with the so-called section antitone involutions.

I. Chajda introduced the concept of double basic algebra in 2009 [12] as a gen-
eralization of basic algebra. Double basic algebras are determined by two binary,
two unary and a nullary operation satisfying similar axioms to those defining basic
algebras. Hence the class of these algebras forms a variety. He proved that there
exists a one-to-one correspondence between the variety of double basic algebras and
the class of lattices with section antitone bijections. Also, he obtained the relation
between double MV-algebras and double basic algebras.

Key words and phrases. Pseudo commutative double basic algebra, double MV-algebra, pseudo
residuted l-groupoid, boolean element.

2010 Mathematics Subject Classification. Primary: 06D99. Secondary: 06C15, 03G25, 03G05.
DOI 10.46793/KgJMat2106.977G
Received: February 11, 2019.
Accepted: July 23, 2019.

977



978 SH. GHORBANI

The concept of interval algebra was introduced in [9] for MV-algebras. Chajda and
Kuhr extended this concept also for double basic algebras in [12]. In the case of a
double basic algebra, they endowed the subinterval [a, 1] with the structure of double
basic algebra for all elements a in a double basic algebra.

In this paper, we will obtain some properties of (pseudo commutative) double basic
algebras. We find under what conditions pseudo commutative double basic algebras
are double MV-algebras. We will study the relation between pseudo commutative
double basic algebras and pseudo residuated l-gropoids. Finally, we will obtain some
properties of boolean elements of a pseudo commutative double basic algebra and we
will prove that a boolean center is subalgebra of a pseudo commutative double basic
algebra. We will prove that, if a, b are boolean elements of a pseudo commutative
double basic algebra and a ≤ b, then the subintervals of the form [0, a] and [a, b] can
also be endowed with a double basic algebra structure.

2. Preliminaries

In this section, we recall some definitions and theorems which will be needed in
this paper.

Definition 2.1 ([8,10]). A basic algebra is an algebra (A, ⊕, ¬, 0, 1) of type (2, 1, 0, 0)
satisfying the following identities:

(BA1) x ⊕ 0 = x;
(BA2) ¬¬x = x;
(BA3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x;
(BA4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1.

Orthomodular lattices and MV-algebras are examples of basic algebras. It is obvious
that a basic algebra is an MV-algebra if and only if the operation ⊕ is associative
and commutative. It was recently shown that a basic algebra is an MV-algebra if and
only if it is associative (see [15]).

Definition 2.2 ([12]). A double basic algebra is an algebra A = (A, ⊕,⊞,− ,∼ , 0, 1)
of type (2, 2, 1, 1, 0, 0) satisfying the following identities:

(P1) x ⊕ 0 = x, x⊞ 0 = x;
(P2) (x−)∼ = x, (x∼)− = x;
(P3) (x∼ ⊕ y)−

⊞ y = (y∼ ⊕ x)−
⊞ x = (x−

⊞ y)∼ ⊕ y = (y−
⊞ x)∼ ⊕ x;

(P4) (((x⊞ y)∼ ⊕ y)−
⊞ z)∼ ⊕ (x⊞ z) = 1, (((x ⊕ y)−

⊞ y)∼ ⊕ z)−
⊞ (x ⊕ z) = 1.

The connections between basic and double basic algebras are obvious. Suppose that
(A, ⊕, ¬, 0, 1) is a basic algebra. Then (A, ⊕, ⊕, ¬, ¬, 0, 1) is a double basic algebra.
Conversely, if we are given a double basic algebra in which ⊕ coincides with ⊞, then
the negations − and ∼ coincide too, hence the double basic algebra becomes a basic
algebra (see [13]).

Proposition 2.1 ([13]). Let (A, ⊕,⊞,− ,∼ , 0, 1) be a double basic algebra. Then the
reduct (A,⊞,− , 0, 1) is a basic algebra if and only if A satisfies the identity x⊕y = x⊞y.
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We call a double basic algebra (A, ⊕,⊞,− ,∼ , 0, 1) pseudo-commutative if it satisfies
the identity x ⊕ y = y ⊞ x for all x, y ∈ A.

Given a double basic algebra (A, ⊕,⊞,− ,∼ , 0, 1), define a binary relation ≤ on A

by x ≤ y if and only if x∼ ⊕ y = 1 if and only if x−
⊞ y = 1. Then (A, ≤) is a lattice

and the following identities hold:

x ∨ y = (x∼ ⊕ y)−
⊞ y and x ∧ y = (x− ∨ y−)∼ = (x∼ ∨ y∼)−.

If a double basic algebra is pseudo-commutative, then the induced lattice is distributive
(see [12]).

Proposition 2.2 ([12, 13]). Let (A, ⊕,⊞,− ,∼ , 0, 1) be a double basic algebra. Then
the following hold for all x, y, z ∈ A:

(1) 0 ⊕ x = x, 0⊞ x = x;
(2) 1 ⊕ x = 1 = x ⊕ 1, 1⊞ x = 1 = x⊞ 1;
(3) x∼ ⊕ x = 1, x−

⊞ x = 1;
(4) x ≤ y if and only if y− ≤ x− if and only if y∼ ≤ x∼;
(5) x ≤ y implies x ⊕ z ≤ y ⊕ z and x⊞ z ≤ y ⊞ z;
(6) y ≤ x ⊕ y and y ≤ x⊞ y;
(7) if x ⊕ y = z and y ≤ x−, then x = (z−

⊞ y)∼;
(8) if x⊞ y = z and y ≤ x∼, then x = (z∼ ⊕ y)−;
(9) (x ∧ y∼) ⊕ y = x ⊕ y, (x ∧ y−)⊞ y = x⊞ y;

(10) if x−, y are comparable, then x ⊕ y = x ⊕ (y ∧ x−);
(11) if x∼, y are comparable, then x⊞ y = x⊞ (y ∧ x∼);
(12) (x ∧ y) ⊕ z = (x ⊕ z) ∧ (y ⊕ z), (x ∧ y)⊞ z = (x⊞ z) ∧ (y ⊞ z);
(13) 1∼ = 0 = 1−, 0∼ = 1 = 0−.

Let (L, ∧, ∨, (fa)a∈L, 0, 1) be a bounded lattice equipped with a set ¶fa, a ∈ L♢ of
partial mappings such that every fa is defined just on the section [a, 1] and, moreover

(i) every fa is a bijection of [a, 1] onto [a, 1];
(ii) both fa and f−1

a
are antitone, i.e., for x, y ∈ [a, 1] with x ≤ y, we have

fa(y) ≤ fa(x) and f−1

a
(y) ≤ f−1

a
(x).

It was proved in [12] that to any bounded lattice with section antitone bijections
can be assigned a double basic algebra. Also conversely, every double basic algebra
induces a bounded lattice equipped with antitone bijections in every section.

Definition 2.3 ([12]). A double MV-algebra is an algebra (A, ⊕,⊞,− ,∼ , 0, 1) of type
(2, 2, 1, 1, 0, 0) satisfying the following identities for all x, y, z ∈ A:

(D1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z and x⊞ (y ⊞ z) = (x⊞ y)⊞ z;
(D2) x ⊕ y = y ⊞ x;
(D3) x ⊕ 0 = x and x⊞ 0 = x;
(D4) x−∼ = x and x∼− = x;
(D5) x ⊕ 1 = 1 and x⊞ 1 = 1;
(D6) (x∼ ⊕ y)−

⊞ y = (y∼ ⊕ x)−
⊞ x = (x−

⊞ y)∼ ⊕ y = (y−
⊞ x)∼ ⊕ x.
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Proposition 2.3 ([12]). Let (A, ⊕,⊞,− ,∼ , 0, 1) be a double basic algebra. The follow-
ing conditions are equivalent:

(a) A is a double MV-algebra;
(b) A is pseudo-commutative and associative both in ⊕ and ⊞;
(c) A satisfies the Exchange identity (x ⊕ (y ⊞ z) = y ⊞ (x ⊕ z)).

Pseudo hoops were introduced by Bosbach in [2] and [3] under the name of comple-
mentary semigroups. It was proved that a bounded pseudo-hoop is a meet semilattice
ordered residuated, integral and divisible monoid.

Definition 2.4 ([2]). A pseudo-hoop is an algebra (A, ⊙, →,⇝, 1) of type (2, 2, 2, 0)
such that, for all x, y, z ∈ A:

(psHOOP1) x ⊙ 1 = 1 ⊙ x = x;
(psHOOP2) x → x = x⇝ x = 1;
(psHOOP3) (x ⊙ y) → z = x → (y → z);
(psHOOP4) (x ⊙ y)⇝ z = y ⇝ (x⇝ z);
(psHOOP5) (x → y) ⊙ x = (y → x) ⊙ y = x ⊙ (x⇝ y) = y ⊙ (y ⇝ x).

Pseudo-BCK algebras were introduced by G. Georgescu and A. Iorgulescu ([19]) as
non-commutative generalizations of BCK-algebras.

Definition 2.5 ([19]). A pseudo-BCK algebra (more precisely, reversed left-pseudo-
BCK algebra) is a structure (A, ≤, →,⇝, 1) where ≤ is a binary relation on A, → and
⇝ are binary operations on A and 1 is an element of A satisfying, for all x, y, z ∈ A,
the axioms:

(psBCK1) x → y ≤ (y → z)⇝ (x → z), x⇝ y ≤ (y ⇝ z) → (x⇝ z);
(psBCK2) x ≤ (x → y)⇝ y, x ≤ (x⇝ y) → y;
(psBCK3) x ≤ x;
(psBCK4) x ≤ 1;
(psBCK5) if x ≤ y and y ≤ x, then x = y; (psBCK6) x ≤ y if and only if x → y = 1

if and only if x⇝ y = 1.

3. Some Properties of Double Basic Algebras

In any double basic algebra (A, ⊕,⊞,− ,∼ , 0, 1), we define four new derived binary
operations as follows:

x ⊙ y = (x∼ ⊕ y∼)−, x⊡ y = (x−
⊞ y−)∼,

x⇝ y = x∼ ⊕ y, x → y = x−
⊞ y,

for all x, y ∈ A. It can be easily shown that
(C1) x− = x → 0, x∼ = x⇝ 0;
(C2) x ⊕ y = x−

⇝ y, x⊞ y = x∼ → y;
(C3) x ⊕ y = (x− ⊙ y−)∼, x⊞ y = (x∼

⊡ y∼)−;
(C4) x ∨ y = (x → y)⇝ y = (y → x)⇝ x = (x⇝ y) → y = (y ⇝ x) → x;
(C5) x ∨ y = (x ⊙ y−)⊞ y = (y ⊙ x−)⊞ x = (x⊡ y∼) ⊕ y = (y ⊡ x∼) ⊕ x;
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(C6) x ∧ y = (x ⊕ y−)⊡ y = (y ⊕ x−)⊡ x = (x⊞ y∼) ⊙ y = (y ⊞ x∼) ⊙ x;
(C7) (((x⇝ y) → y)⇝ z) → (x⇝ z) = (((x → y)⇝ y) → z)⇝ (x → z) = 1.

Proposition 3.1. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a double basic algebra. Then for all
x, y, z ∈ A, the following statements hold:

(1) x ≤ y if and only if x → y = 1 if and only if x⇝ y = 1;
(2) x → 1 = x → x = x⇝ x = x⇝ 1 = 1;
(3) 1 → x = 1⇝ x = x;
(4) y ≤ x → y and y ≤ x⇝ y;
(5) x ⊙ 1 = 1 ⊙ x = x, x⊡ 1 = 1⊡ x = x;
(6) x ⊙ y ≤ y, x⊡ y ≤ y;
(7) if x ≤ y, then x ⊙ z ≤ y ⊙ z and x⊡ z ≤ y ⊡ z;
(8) x ≤ y implies that y → z ≤ x → z and y ⇝ z ≤ x⇝ z;
(9) x ≤ y → z if and only if y ≤ x⇝ z;

(10) ((x⇝ y) → y)⇝ y = x⇝ y, ((x → y)⇝ y) → y = x → y;
(11) (x ∨ y) → z = (x → z) ∧ (y → z), (x ∨ y)⇝ z = (x⇝ z) ∧ (y ⇝ z).

Proof. The proof of parts (1)-(7) is straightforward by Proposition 2.2 and the defini-
tion of the operators.

(8) Suppose that x ≤ y. Then y∼ ≤ x∼ by Proposition 2.2 part (4). Applying
Proposition 2.2 part (5), we get y∼ ⊕ z ≤ x∼ ⊕ z. By (P2) and (C2), we obtain
y ⇝ z ≤ x⇝ z. Similarly, we can prove y → z ≤ x → z.

(9) Suppose that x ≤ y → z. Using part (8), we have (y → z) ⇝ z ≤ x ⇝ z. By
(C4), we have y ≤ y ∨ z = (y → z)⇝ z. Hence, y ≤ x⇝ z. Similarly, we can show
that y ≤ x⇝ z implies x ≤ y → z.

(10) Using (C4), we have x ≤ (x⇝ y) → y and x ≤ (x → y)⇝ y. Applying part
(8), we obtain ((x ⇝ y) → y) ⇝ y ≤ x ⇝ y and ((x → y) ⇝ y) → y ≤ x → y. On
the other hand, by (C4), we have x⇝ y ≤ ((x⇝ y) → y)⇝ y and x → y ≤ ((x →
y)⇝ y) → y.

(11) We have that x, y ≤ x ∨ y. By part (8), we get (x ∨ y) → z ≤ x → z and
(x ∨ y) → z ≤ y → z. Thus (x ∨ y) → z is a lower bound of ¶x → z, y → z♢. Let u be
an arbitrary lower bound of ¶x → z, y → z♢. Applying part (9), we get x ≤ u ⇝ z

and y ≤ u⇝ z. Thus x∨y ≤ u⇝ z. Using part (9), we have u ≤ (x∨y) → z. Hence,
(x ∨ y) → z = (x → z) ∧ (y → z). Similarly, (x ∨ y)⇝ z = (x⇝ z) ∧ (y ⇝ z). □

Proposition 3.2. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then the following properties hold, for every x, y, z ∈ A:

(1) x ∨ y ≤ x ⊕ y, x ∨ y ≤ x⊞ y;
(2) if x ≤ y, then z → x ≤ z → y, z ⇝ x ≤ z ⇝ y;
(3) x → y = y−

⇝ x−, x⇝ y = y∼ → x∼;
(4) x → y∼ = y ⇝ x−;
(5) if x ≤ y, then z ⊙ x ≤ z ⊙ y, z ⊡ x ≤ z ⊡ y;
(6) (x → y) ⊙ y− = x− ∧ y−, (x⇝ y)⊡ y∼ = x∼ ∧ y∼;
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(7) (x ∨ y) ⊙ z = (x ⊙ z) ∨ (y ⊙ z), (x ∨ y)⊡ z = (x⊡ z) ∨ (y ⊡ z);
(8) (x → y)⊡ x = x ∧ y = (x⇝ y) ⊙ x;
(9) x ≤ y → z if and only if x⊡ y ≤ z;

(10) x ≤ y ⇝ z if and only if x ⊙ y ≤ z;
(11) x → (y ∧ z) = (x → y) ∧ (x → z), x⇝ (y ∧ z) = (x⇝ y) ∧ (x⇝ z);
(12) (y ∨ z) ⊕ x = (y ⊕ x) ∨ (z ⊕ x), (y ∨ z)⊞ x = (y ⊞ x) ∨ (z ⊞ x);
(13) (x ∧ y) ⊙ z = (x ⊙ z) ∧ (y ⊙ z), (x ∧ y)⊡ z = (x⊡ z) ∧ (y ⊡ z).

Proof. The proofs of (1)-(4) are easy.
(5) Suppose x ≤ y. By Proposition 2.2 part (4), we have y− ≤ x− and y∼ ≤ x∼.

Using Proposition 2.2 part (5), we obtain y− ⊕ z− ≤ x− ⊕ z− and y∼
⊞ z∼ ≤ x∼

⊞ z∼.
Since A is pseudo commutative, then z−

⊞ y− ≤ z−
⊞ x− and z∼ ⊕ y∼ ≤ z∼ ⊕ x∼. By

Proposition 2.2 part (4), we have (z−
⊞x−)∼ ≤ (z−

⊞y−)∼ and (z∼⊕x∼)− ≤ (z∼⊕y∼)−,
that is z ⊙ x ≤ z ⊙ y, z ⊡ x ≤ z ⊡ y.

(6) We have (x → y) ⊙ y− = ((x−
⊞ y)∼ ⊕ y)− = (x ∨ y)− = x− ∧ y−. Similarly, we

can prove (x → y)⊡ y∼ = x∼ ∧ y∼.
(7) It follows from Proposition 2.2 part (12), (P2) and definition ⊙.
(8) Since A is pseudo commutative and by (C6), we have

(x → y)⊡ x = (x−
⊞ y)⊡ x = (y ⊕ x−)⊡ x = x ∧ y;

(x⇝ y) ⊙ x = (x∼ ⊕ y) ⊙ x = (y ⊞ x∼) ⊙ x = x ∧ y.

(9) Let x ≤ y → z. By Proposition 3.1 part (7), we get x ⊡ y ≤ (y → z) ⊡ y =
y ∧ z ≤ z. Conversely, suppose x⊡ y ≤ z. Then

x ≤ (x ∨ y−) = (x⊡ y) ⊕ y− ≤ z ⊕ y− = y−
⊞ z = y → z.

(10) The proof is similar to part (9).
(11) Since y ∧ z ≤ y, z, then x → (y ∧ z) ≤ x → y and x → (y ∧ z) ≤ x → z

by part (2). Hence, x → (y ∧ z) is a lower bound of ¶x → y, x → z♢. Let u be an
arbitrary lower bound of ¶x → y, x → z♢. Then u ≤ x → y and u ≤ x → z. By part
(9), we have u⊡ x ≤ y and u⊡ x ≤ z. So, u⊡ x ≤ y ∧ z. Again, applying part (9),
we obtain u ≤ x → (y ∧ z). Hence, x → (y ∧ z) = (x → y) ∧ (x → z). Similarly,
x⇝ (y ∧ z) = (x⇝ y) ∧ (x⇝ z).

(12) Since y, z ≤ y ∨ z, then y ⊕ x ≤ (y ∨ z) ⊕ x and z ⊕ x ≤ (y ∨ z) ⊕ x by
Proposition 2.4 part (5). Hence, (y ⊕ x) ∨ (z ⊕ x) ≤ (y ∨ z) ⊕ x. Conversely, let
u := (y ⊕x)∨ (z ⊕x). Then y ⊕x ≤ u and z ⊕x ≤ u. By Proposition 3.1 part (7) and
(C6), we have z∧x∼ = (z⊕x)⊡x∼ ≤ u⊡x∼ and y∧x∼ = (y⊕x)⊡x∼ ≤ u⊡x∼. Since A

is a distributive lattice, then (z∨y)∧x∼ = (y∧x∼)∨(z∧x∼) ≤ u⊡x∼. By Proposition
2.2 part (5) and (C5), we get ((z ∨ y) ∧ x∼) ⊕ x ≤ (u⊡ x∼) ⊕ x = u ∨ x = u. Using
Proposition 2.2 part (12) and part (3), we obtain ((z∨y)⊕x)∧(x∼⊕x) = (z∨y)⊕x ≤ u.
Hence, (z ∨ y) ⊕ x ≤ (y ⊕ x) ∨ (z ⊕ x).

(13) It follows from part (12) and definitions ⊙ and ⊡. □

Corollary 3.1. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic algebra.
Then y ⊙ x = x⊡ y for all x, y ∈ A.
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Proof. Since x ⊡ y ≤ x ⊡ y, then x ≤ y → (x ⊡ y) by Proposition 3.2 part (9). We
obtain y ≤ x⇝ (x⊡ y) by Proposition 3.1 part (9). Using Proposition 3.2 part (10),
we get y ⊙ x ≤ x⊡ y. Similarly, we can prove x⊡ y ≤ y ⊙ x. Hence x⊡ y = y ⊙ x. □

Proposition 3.3. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra.

(1) If (x ⊙ y)⇝ z = x⇝ (y ⇝ z) for any x, y, z ∈ A, then ⊕ is associative.
(2) If (x⊡ y) → z = x → (y → z) for any x, y, z ∈ A, then ⊞ is associative.

Proof. (1) We have (x∼ ⊕ y∼) ⊕ z = (x ⊙ y) ⇝ z = x ⇝ (y ⇝ z) = x∼ ⊕ (y∼ ⊕ z).
Hence ⊕ is associative. The proof of part (2) is similar. □

Corollary 3.2. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic algebra
such that (A, ∧, ∨, ⊙,⇝, →, 1) and (A, ∧, ∨,⊡, →,⇝, 1) be pseudo hoops. Then A is
a double MV-algebra.

Proof. Let (A, ∧, ∨, ⊙,⇝, →, 1) and (A, ∧, ∨,⊡, →,⇝, 1) be pseudo hoops. Then ⊕
and ⊞ are associative by Proposition 3.3. Since ⊕ and ⊞ are associative and A is a
pseudo commutative, then A is a double MV-algebra. □

Proposition 3.4. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra such that satisfies the following identities for all x, y, z ∈ A

x → y ≤ (y → z)⇝ (x → z), x⇝ y ≤ (y ⇝ z) → (x⇝ z).

Then ⊕ and ⊞ are associative.

Proof. Suppose that A satisfies x → y ≤ (y → z)⇝ (x → z) and x⇝ y ≤ (y ⇝ z) →
(x⇝ z). Then (A, ≤, →,⇝, 1) is a pseudo-BCK algebra. By Proposition 1.2 part (3)
in [17], we have x ⇝ (y → z) = y → (x ⇝ z) and x → (y ⇝ z) = y ⇝ (x → z).
Thus, x∼ ⊕ (y−

⊞ z) = y−
⊞ (x∼ ⊕ z). So A satisfies Exchange identity. Hence, ⊕ and

⊞ are associative by Proposition 2.3. □

Corollary 3.3. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic algebra
such that (A, ≤, →,⇝, 1) is a pseudo BCK-algebra. Then A is a double MV-algebra.

Proof. Similarly to the proof of Proposition 3.4, we can prove the associativity of
⊕ and ⊞. Since A is a pseudo commutative, then A is a double MV-algebra by
Proposition 2.3. □

The relation between (commutative) basic algebras and residuated groupoids have
been studied in [7]. In the following, we will study the relation between pseudo
commutative double basic algebras and pseudo residuated l-groupoids.

Definition 3.1. A pseudo residuated l-groupoid is an algebra (A, ∧, ∨, ∗, →,⇝, 0, 1)
of type (2, 2, 2, 2, 2, 0, 0) such that

(R1) (A, ∧, ∨, 0, 1) is a bounded lattice;
(R2) (A, ∗, 1) is a groupoid with 1, i.e. it satisfies x ∗ 1 = 1 ∗ x = x;
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(R3) x ∗ y ≤ z if and only if x ≤ y → z if and only if y ≤ x⇝ z for any x, y, z ∈ A

(pseudo residuation).

Proposition 3.5. Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid. Then

(1) if x ≤ y, then x ∗ z ≤ y ∗ z and z ∗ x ≤ z ∗ y;
(2) (x → y) ∗ x ≤ x ∧ y, x ∗ (x⇝ y) ≤ x ∧ y;
(3) x ≤ y implies y → z ≤ x → z and y ⇝ z ≤ x⇝ z;
(4) 1 → x = x, 1⇝ x = x.

Proof. (1) Suppose that x ≤ y. Since y ∗z ≤ y ∗z and z ∗y ≤ z ∗y, then y ≤ z → y ∗z

and y ≤ z ⇝ z ∗ y. Thus x ≤ z → y ∗ z and x ≤ z ⇝ z ∗ y. Therefore x ∗ z ≤ y ∗ z

and z ∗ x ≤ z ∗ y.
The proofs of (2)-(4) are easy. □

Proposition 3.6. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then (A, ∧, ∨,⊡, →,⇝, 0, 1) and (A, ∧, ∨, ⊙,⇝, →, 0, 1) are pseudo residuated
l-groupoids.

Proof. Since A is a pseudo commutative double basic algebra, then (A, ∧, ∨, 0, 1) is a
bounded distributive lattice. By Proposition 3.1 part (5), (A, ⊙, 1) and (A,⊡, 1) are
groupoids with 1. Applying Proposition 3.2 part (9) and Proposition 3.1 part (9), we
get x⊡ y ≤ z if and only if x ≤ y → z if and only if y ≤ x⇝ z.

Hence, (A, ∧, ∨,⊡, →,⇝, 0, 1) is a pseudo residuated l-groupoid.
Again, By Proposition 3.2 part (10) and Proposition 3.1 part (9), we have

x ⊙ y ≤ z if and only if x ≤ y ⇝ z if and only if y ≤ x → z.

Hence, (A, ∧, ∨, ⊙,⇝, →, 1) is a pseudo residuated l-groupoid. □

For the case of basic algebra, the next theorems are proved in [7]. Here, we formulate
and prove them for the case of pseudo commutative double basic algebras as well.

Lemma 3.1. Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid satisfying
the pseudo double negation laws and

(i) x ∗ (y∼ → x∼) = x ∧ y;
(ii) (y−

⇝ x−) ∗ x = x ∧ y;

then the following hold:

(1) x → y = y−
⇝ x−, x⇝ y = y∼ → x∼;

(2) x ∗ (y ∗ z) = 0 implies (x ∗ y) ∗ z = 0;
(3) x → y = (x ∗ y∼)−, x⇝ y = (y− ∗ x)∼;

where x− = x → 0 and x∼ = x⇝ 0.

Proof. (1) By assumption, we have x ∗ (y∼ → x∼) = x ∧ y ≤ y and (y−
⇝ x−) ∗ x =

x ∧ y ≤ y. Thus, y∼ → x∼ ≤ x⇝ y and y−
⇝ x− ≤ x → y.

Using the pseudo double negation laws and substituting y− for x and x− for y in
y∼ → x∼ ≤ x⇝ y, this yields x → y ≤ y−

⇝ x−.
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In y−
⇝ x− ≤ x → y, applying the pseudo double negation laws and substituting

y∼ for x and x∼ for y, this yields x⇝ y ≤ y∼ → x∼. Hence, x → y = y−
⇝ x− and

x⇝ y = y∼ → x∼.
(2) Suppose x ∗ (y ∗ z) = 0. Then y ∗ z ≤ x⇝ 0 = x∼. So, y ≤ z → x∼. By part (1)

and pseudo double negation laws, we get y ≤ x⇝ z−. Thus, x ∗ y ≤ z → 0. Hence,
(x ∗ y) ∗ z = 0.

(3) Since x ∗ y∼ ≤ x ∗ y∼, then x ≤ y∼ → (x ∗ y∼). Applying part (1) and pseudo
double negation laws, we have x ≤ (x ∗ y∼)−

⇝ y. So, (x ∗ y∼)− ∗ x ≤ y. Hence,
(x ∗ y∼)− ≤ x → y.

On the other hand, using part (1) and then assumption (ii), we obtain

((x → y) ∗ x) ∗ y∼ = ((y−
⇝ x−) ∗ x) ∗ y∼ = (x ∧ y) ∗ y∼ ≤ y ∗ y∼ = 0.

Hence, ((x → y) ∗ x) ∗ y∼ = 0. By part (2), we get (x → y) ∗ (x ∗ y∼) = 0.
Thus, x → y ≤ (x ∗ y∼)−. Therefore, x → y = (x ∗ y∼)−. Similarly, we can prove
x⇝ y = (y− ∗ x)∼. □

Theorem 3.1. Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid satisfying
the conditions of Lemma 3.1. Then (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative double
basic algebra where x− = x → 0, x∼ = x⇝ 0, x⊕y = (y−∗x−)∼ and x⊞y = (x∼∗y∼)−.

Proof. We will check the axioms (P1)-(P4).
(P1) We have x ⊕ 0 = (0− ∗ x−)∼ = x−∼ = x and x⊞ 0 = (x∼ ∗ 0∼)− = x∼− = x.
(P2) It holds by assumption (pseudo double negation laws).
(P3) By Lemma 3.1 part (3), definitions of ⊕ and ⊞, pseudo double negation laws

and then assumption (i), we get

(x∼ ⊕ y)−
⊞ y =(y− ∗ x)⊞ y = (x⇝ y)−

⊞ y = ((x⇝ y) ∗ y∼)−

=((x∼−
⇝ y∼−) ∗ y∼)− = (x∼ ∧ y∼)− = x ∨ y.

Similarly, we can prove (y∼ ⊕ x)−
⊞ x = (x−

⊞ y)∼ ⊕ y = (y−
⊞ x)∼ ⊕ x = x ∨ y.

(P4) It is easy to prove (x ∧ y−)⊞ z ≤ x⊞ z. Hence,

1 = ((x ∧ y−)⊞ z)⇝ (x⊞ z)

= ((y− ∗ (x∼ → y−∼))⊞ z)⇝ (x⊞ z)

= ((y− ∗ (x∼ → y))⊞ z)⇝ (x⊞ z)

= ((y− ∗ (x⊞ y))⊞ z)⇝ (x⊞ z)

= (((x⊞ y)∼ ⊕ y)−
⊞ z)⇝ (x⊞ z)

= (((x⊞ y)∼ ⊕ y)−
⊞ z)∼ ⊕ (x⊞ z).

Similarly, we can prove (((x⊕y)−
⊞y)∼ ⊕z)−

⊞(x⊕z) = 1. Hence, (A, ⊕,⊞,− ,∼ , 0, 1)
is a double basic algebra. By Lemma 3.11 part (1) and (3), we have

x ⊕ y = (y− ∗ x−)∼ = x−
⇝ y = y∼ → x = (y∼ ∗ x∼)− = y ⊞ x.

Hence, (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative. □
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Lemma 3.2. Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid satisfying
the following identities:

x ∨ y = (y−
⇝ x−)⇝ y = (y∼ → x∼) → y;

then the following hold:

(1) x−∼ = x, x∼− = x;
(2) x → y = y−

⇝ x−, x⇝ y = y∼ → x∼;
(3) x ∗ (y ∗ z) = 0 implies (x ∗ y) ∗ z = 0;
(4) x → y = (x ∗ y∼)−, x⇝ y = (y− ∗ x)∼;
(5) (x → y) ∗ x = x ∧ y, x ∗ (x⇝ y) = x ∧ y.

Proof. (1) We have 1 ⇝ x− = x− ≤ x → 0 by Proposition 3.5 part (4). Applying
Proposition 3.5 part (3) and assumption, we get (x → 0) ⇝ 0 ≤ (1 ⇝ x−) ⇝ 0 =
x ∨ 0 = x. Hence, x−∼ ≤ x.

On the other hand, (x → 0) ∗ x ≤ 0 by Proposition 3.5 part (2). Hence, x ≤ (x →
0)⇝ 0 = x−∼. Therefore, x−∼ = x. Similarly, we can prove x∼− = x.

(2) Since x ≤ x ∨ y = (y−
⇝ x−)⇝ y, then (y−

⇝ x−) ∗ x ≤ y. Thus, y−
⇝ x− ≤

x → y. Also, using the pseudo double negation laws and substituting y∼ for x and
x∼ for y in y−

⇝ x− ≤ x → y, we obtain x⇝ y ≤ y∼ → x∼.
Similarly, we can show y∼ → x∼ ≤ x ⇝ y and x → y ≤ y−

⇝ x−. Hence,
x → y = y−

⇝ x−, x⇝ y = y− → x−.
The proof of part (3) and part (4) is similar to the proof of part (2) and part (3)

in Lemma 3.1, respectively.
(5) Using part (1), part (4) and then assumption, we get

(x → y) ∗ x = ((x → y) ∗ x−∼)−∼ = ((x → y) → x−)∼ = (x− ∨ y−)∼ = x ∧ y.

Similarly, we can prove that x ∗ (x⇝ y) = x ∧ y. □

Proposition 3.7. Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid. Then
A satisfies the conditions of Lemma 3.2 if and only if it satisfies the conditions of
Lemma 3.1.

Proof. Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid satisfying condi-
tions of Lemma 3.1. Using Lemma 3.1 part (1) and part (3), we obtain

x ∨ y =(y− ∧ x−)∼ = (y− ∗ (x → y))∼ = (x → y)⇝ y = (y−
⇝ x−)⇝ y;

x ∨ y =(y∼ ∧ x∼)− = ((x → y) ∗ y∼)− = (x⇝ y) → y = (y∼ → x∼) → y.

Conversely, suppose that A satisfies the conditions of Lemma 3.2. Applying Lemma
3.2 part (2) and then part (5), we obtain

x ∗ (y∼ → x∼) = x ∗ (x⇝ y) = x ∧ y, (y−
⇝ x−) ∗ x = (x → y) ∗ x = x ∧ y.

Also, by part (1) of Lemma 3.2, A satisfies the pseudo double negation laws. □

Corollary 3.4. Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid satisfying
the following identities:



PSEUDO COMMUTATIVE DOUBLE BASIC ALGEBRAS 987

x ∨ y = (y−
⇝ x−)⇝ y = (y∼ → x∼) → y.

Then (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative double basic algebra where x− =
x → 0, x∼ = x⇝ 0, x ⊕ y = (y− ∗ x−)∼ and x⊞ y = (x∼ ∗ y∼)−.

Proof. The proof follows from Proposition 3.7 and Theorem 3.1. □

By Proposition 3.6, if (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative double basic
algebra, then F ((A, ⊕,⊞,− ,∼ , 0, 1)) := (A, ∧, ∨,⊡, →,⇝, 0, 1) is a pseudo residuated
l-groupoid where x⊡ y = (x−

⊞ y−)∼, x → y = (x⊡ y∼)−, x⇝ y = (y−
⊡ x)∼.

Moreover, if (A, ∧, ∨, ∗, →,⇝, 0, 1) is a pseudo residuated l-groupoid that satisfies
the conditions of Lemma 3.1 (or Lemma 3.2), then G((A, ∧, ∨, ∗, →,⇝, 0, 1)) :=
(A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative double basic algebra, where x− = x → 0,
x∼ = x⇝ 0, x ⊕ y = (y− ∗ x−)∼ and x⊞ y = (x∼ ∗ y∼)−.

The category whose objects are double basic algebras and whose morphisms are
homomorphisms of double basic algebras is called the category of double basic algebras.
Let A be its subcategory whose object are pseudo commutative double basic algebras.
The category of pseudo residuated l-groupoids can be defined similarly. Let B be its
subcategory whose objects are pseudo residuated l-groupoids satisfying conditions of
Lemma 3.1. It is clear that F : A → B and G : B → A are functors. In the next
theorem, we study a relation between these functors.

Theorem 3.2. (1) Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic
algebra. Then G(F ((A, ⊕,⊞,− ,∼ , 0, 1))) = (A, ⊕,⊞,− ,∼ , 0, 1).

(2) Let (A, ∧, ∨, ∗, →,⇝, 0, 1) be a pseudo residuated l-groupoid that satisfies the
conditions of Lemma 3.1. Then

F (G((A, ∧, ∨, ∗, →,⇝, 0, 1))) = (A, ∧, ∨, ∗, →,⇝, 0, 1).

(3) The category A and the category B are categorically isomorphic.

Proof. (1) By Proposition 3.6, Proposition 3.2 part (3) and part (8),

F ((A, ⊕,⊞,− ,∼ , 0, 1)) := (A, ∧, ∨,⊡, →,⇝, 0, 1)

is a pseudo residuated l-groupoid satisfying conditions of Lemma 3.1. Hence,
G(F ((A, ⊕,⊞,− ,∼ , 0, 1))) is a pseudo commutative double basic algebra by Theo-
rem 3.1. Now, suppose that ⊕′,⊞′,−

′

and ∼
′

are the operations derived by ⊡, → and
⇝ on the pseudo residuated l-groupoid F ((A, ⊕,⊞,− ,∼ , 0, 1)), respectively. We will
prove that ⊕′ = ⊕, ⊞′ = ⊞, −

′

=− and ∼
′

=∼. Let x, y ∈ A be arbitrary. We have
x−

′

= x → 0 = x−
⊞ 0 = x− and x∼

′

= x⇝ 0 = x∼ ⊕ 0 = x∼. Using Lemma 3.1 part
(3) and part (1), we get

x⊞′ y =(x∼
′

⊡ y∼
′

)−
′

= (x∼
⊡ y∼)− = x⊞ y,

x ⊕′ y =(x−
′

⊡ y−
′

)∼
′

= (y−
⊡ x−)∼ = x−

⇝ y = y∼ → x = (y∼ ⊙ x∼)− = y ⊞ x

=x ⊕ y.
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(2) By Theorem 3.1, G((A, ∧, ∨, ∗, →,⇝, 0, 1)) := (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo
commutative double basic algebra. Hence, F (G((A, ∧, ∨, ∗, →,⇝, 0, 1))) is a pseudo
residuated l-groupoid satisfying conditions of Lemma 3.1. Let F (G((A, ∧, ∨, ∗, →,⇝

, 0, 1))) = (A, ∧′, ∨′, ∗′, →′,⇝′, 0, 1). We have

x ∗′ y =x⊡ y = (x−
⊞ y−)∼ = (x−∼ ∗ y−∼)−∼ = x ∗ y,

x →′ y =x−
⊞ y = (x ∗ y∼)− = x → y,

x⇝′ y =x∼ ⊕ y = (y− ∗ x)− = x⇝ y,

x ∧′ y =x ∗′ (y∼
′

→ x∼
′

) = x ∗ (y∼ → x∼) = x ∧ y,

x ∨′ y =(x−
′

∧′ y−
′

)∼
′

= (x− ∧ y−)∼.

(3) The proof follows from (i) and (ii). □

By Proposition 3.6, if (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative double basic
algebra, then H((A, ⊕,⊞,− ,∼ , 0, 1)) := (A, ∧, ∨, ⊙,⇝, →, 0, 1) is a pseudo residuated
l-groupoid, (that is x ⊙ y ≤ z if and only if x ≤ y ⇝ z if and only if y ≤ x → z for
any x, y, z ∈ A) where x ⊙ y = (x∼ ⊕ y∼)−, x⇝ y = x∼ ⊕ y, x → y = y ⊕ x−. Then
clearly, H : A → B is a functor.

Proposition 3.8. Let (A, ∧, ∨, ∗,⇝, →, 0, 1) be a pseudo residuated l-groupoid satis-
fying pseudo double negation laws and

(i)’ (y∼ → x∼) ∗ x = x ∧ y;
(ii)’ x ∗ (y−

⇝ x−) = x ∧ y.

Then (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative double basic algebra, where x− =
x → 0, x∼ = x⇝ 0, x ⊕ y = (x− ∗ y−)∼ and x⊞ y = (y∼ ∗ x∼)−.

Proof. Similar to Lemma 3.1, we can prove
(1) x → y = y−

⇝ x−, x⇝ y = y∼ → x∼;
(2) x ∗ (y ∗ z) = 0 implies (x ∗ y) ∗ z = 0;
(3) x → y = (y∼ ∗ x)−, x⇝ y = (x ∗ y−)∼;

and use them to prove that (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative double basic
algebra such that x− = x → 0, x∼ = x ⇝ 0, x ⊕ y = (x− ∗ y−)∼ and x ⊞ y =
(y∼ ∗ x∼)−. □

Theorem 3.3. (1) Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic
algebra. Then G(H((A, ⊕,⊞,− ,∼ , 0, 1))) = (A, ⊕,⊞,− ,∼ , 0, 1).

(2) Let (A, ∧, ∨, ∗,⇝, →, 0, 1) be a pseudo residuated l-groupoid that satisfies the
conditions of Proposition 3.14, then

H(G((A, ∧, ∨, ∗,⇝, →, 0, 1))) = (A, ∧, ∨, ∗,⇝, →, 0, 1).

Proof. (1) By Proposition 3.6, H((A, ⊕,⊞,− ,∼ , 0, 1)) := (A, ∧, ∨, ⊙,⇝, →, 0, 1) is a
pseudo residuated l-groupoid. Using Proposition 3.2 part (3) and part (4), we have

(i)’ (y∼ → x∼) ⊙ x = (x⇝ y) ⊙ x = x ∧ y;
(ii)’ x ⊙ (y∼ → x∼) = (x⇝ y)⊡ x = x ∧ y.
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Hence, by Proposition 3.8, G(H((A, ⊕,⊞,− ,∼ , 0, 1))) = (A, ⊕′,⊞′,−
′

,∼
′

, 0, 1) is a
pseudo commutative double basic algebra where x−

′

= x → 0, x∼
′

= x⇝ 0, x ⊕′ y =
(x−

′

⊙ y−
′

)∼
′

and x ⊞′ y = (y∼
′

⊙ x∼
′

)−
′

. We will show that −
′

=−, ∼
′

=∼, ⊕′ = ⊕
and ⊞′ = ⊞. It is obvious that −

′

=− and ∼
′

=∼. We have

x ⊕′ y =(x−
′

⊙ y−
′

)∼
′

= (x− ⊙ y−)∼ = x ⊕ y,

x⊞′ y =(y∼
′

⊙ x∼
′

)−
′

= (y∼ ⊙ x∼)− = (x∼
⊡ y∼)− = x⊞ y.

Hence, G(H((A, ⊕,⊞,− ,∼ , 0, 1))) = (A, ⊕,⊞,− ,∼ , 0, 1).
(2) G((A, ∧, ∨, ∗,⇝, →, 0, 1)) := (A, ⊕,⊞,− ,∼ , 0, 1) is a pseudo commutative dou-

ble basic algebra like Proposition 3.7. Hence, H(G((A, ∧, ∨, ∗, →,⇝, 0, 1))) is a pseudo
residuated l-groupoid satisfying conditions of Proposition 3.7. Suppose that

H(G((A, ∧, ∨, ∗, →,⇝, 0, 1))) = (A, ∧′, ∨′, ∗′,⇝′, →′, 0, 1).

We have

x ∗′ y =x ⊙ y = (x∼ ⊕ y∼)− = (x−∼ ∗ y−∼)∼− = x ∗ y,

x →′ y =x∼ ⊕ y = (x ∗ y−)∼ = x⇝ y,

x⇝′ y =x−
⊞ y = (y∼ ∗ x)− = x → y,

x ∧′ y =x ∗′ (y∼
′

→ x∼
′

) = (y−
⇝ x−) ∗ x = x ∧ y,

x ∨′ y =(x−
′

∧′ y−
′

)∼
′

= (x∼ ∧ y∼)− = x ∨ y. □

Proposition 3.9. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a double MV-algebra. Then
(A, ∧, ∨, ⊙,⇝, →, 1) and (A, ∧, ∨,⊡, →,⇝, 1) are pseudo hoops.

Proof. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a double MV-algebra. Then (A, ⊕,⊞,− ,∼ , 0, 1) is a
pseudo commutative double basic algebra. Hence, (A, ∧, ∨,⊡, →,⇝, 0, 1) is a pseudo
residuated l-groupoid by Proposition 3.6. Since ⊞ is associative, then ⊡ is associative.
By Proposition 3.2 part (8) (((x ⊡ y) → z) ⊡ x) ⊡ y = ((x ⊡ y) → z) ⊡ (x ⊡ y) ≤ z

and (((x⊡ y)⇝ z) ⊙ y) ⊙ x = ((x⊡ y)⇝ z) ⊙ (y ⊙ x) = ((x⊡ y)⇝ z) ⊙ (x⊡ y) ≤ z.
So, (x⊡ y) → z ≤ x → (y → z) and (x⊡ y)⇝ z ≤ y ⇝ (x⇝ z) by Proposition 3.2
part (9) and part (10). On the other hand

(x → (y → z))⊡ (x⊡ y) =((x → (y → z))⊡ x)⊡ y ≤ (y → z)⊡ y ≤ z,

(y ⇝ (x⇝ z)) ⊙ (x⊡ y) =(((y ⇝ (x⇝ z)) ⊙ y) ⊙ x) ≤ (x⇝ z) ⊙ x ≤ z.

Hence, (A, ∧, ∨, ⊙,⇝, →, 1) is a pseudo hoop. Similarly, we can prove (x ⊙ y)⇝ z =
x ⇝ (y ⇝ z) and (x ⊙ y) → z = y → (x → z). Hence, (A, ∧, ∨, ⊙,⇝, →, 1) is a
pseudo hoop. □

Corollary 3.5. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a double MV-algebra. Then (A, ≤, →,⇝, 1)
is a pseudo BCK-algebra.

Proof. We know that every pseudo-hoop is a pseudo-BCK algebra which is a meet
semilattice satisfying the pseudo-divisibility property. Since (A, ∧, ∨, ⊙,⇝, →, 1) is a
pseudo hoop by Proposition 3.9, then (A, ≤, →,⇝, 1) is a pseudo BCK-algebra. □



990 SH. GHORBANI

4. Boolean Center of Pseudo Commutative Double Basic Algebras

Let (L, ∧, ∨, 0, 1) be a bounded lattice. Recall that (see [1,21]) an element a ∈ L is
said to be complemented if there is an element b ∈ L such that a∨ b = 1 and a∧ b = 0.
If such an element b exists, then it is called a complement of a. Complements are
generally not unique unless the lattice is distributive. Hence in pseudo commutative
double basic algebras the complements are unique.

Proposition 4.1. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra and a ∈ A an element which has a complement b ∈ A. Then a− = a∼ = b and
b− = b∼ = a.

Proof. We have 1 = a ∨ b ≤ a ⊞ b. Hence, a ⊞ b = 1. Thus, a∼ ≤ b. On the
other hand, we have that a∼ = 0 ⊞ a∼ = (b ∧ a) ⊞ a∼ = (b ⊞ a∼) ∧ (a ⊞ a∼) =
(b⊞ a∼) ∧ (a∼ ⊕ a) = (b⊞ a∼) ∧ 1 = (b⊞ a∼) by Proposition 2.4 part (12) and part (3).
Since (b ∨ a∼) ≤ (b ⊞ a∼) = a∼, then b ≤ a∼. Therefore, a∼ = b and a = a∼− = b−.
Similarly, we can prove a− = b and b∼ = a. □

Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic algebra. We denote
by B(A) the boolean algebra associated with the bounded distributive lattice L(A) =
(A, ∧, ∨, 0, 1). The set B(A) is called the boolean center of A and elements of B(A)
are called the boolean elements of A.

Proposition 4.2. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then the following are equivalent:

(1) a ∈ B(A);
(2) a ∧ a− = 0;
(3) a ⊕ a = a;
(4) a⊞ a = a;
(5) a ∧ a∼ = 0;
(6) a ∨ a− = 1;
(7) a ⊙ a = a;
(8) a⊡ a = a;
(9) a ∨ a∼ = 1.

Proof. (1)⇒(2) Since a ∈ B(A), then a has a complement b ∈ A. By Proposition 4.1,
we have b = a−. Hence, a ∧ a− = 0.

(2)⇒(3) By Proposition 2.2 part (12) and part (3), we obtain a = 0 ⊕ a = (a ∧
a∼) ⊕ a = (a ⊕ a) ∧ (a∼ ⊕ a) = a ⊕ a.

(3)⇒(4) Since A is pseudo commutative, it is clear.
(4)⇒(5) Let a⊞ a = a. By Proposition 2.2 part (3), we have

a ∧ a∼ = (a− ∨ a)∼ = ((a⊞ a)∼ ⊕ a)− = (a∼ ⊕ a)− = 1− = 0.

(5)⇒(6) We have 0 = a∧a∼ = (a− ∨a∼−)∼ = (a− ∨a)∼. Hence a− ∨a = (a∧a∼)− =
0− = 1.
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(6)⇒(7) Using Proposition 3.1 part (5) and Proposition 3.2 part (7), we get a =
1 ⊙ a = (a ∨ a−) ⊙ a = (a ⊙ a) ∨ (a ⊙ a−) = (a ⊙ a) ∨ 0 = a ⊙ a.

(7)⇒(8) It is clear.
(8)⇒(9) Suppose a ⊡ a = a. Then a−

⊞ a− = a−. Similar to (4)⇒ (5), we can
prove a− ∧ a−∼ = 0. Hence, a ∨ a∼ = 1.

(9)⇒(1) Since a ∨ a∼ = 1, then a ∧ a− = 0. Similar to (2)⇒ (3), we can show that
a ⊕ a = a. Thus, a⊞ a = a. Then, similar to (4) ⇒ (5), we obtain a ∧ a∼ = 0. □

Proposition 4.3. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra and a ∈ B(A). Then the following hold:

(1) a− = a → a− = a⇝ a− = a → a∼ = a⇝ a∼ = a∼;
(2) a− → a = a−

⇝ a = a∼ → a = a∼
⇝ a = a.

Proof. (1) We have 1 = a ∨ a− = (a ⇝ a−) → a− = (a → a−) ⇝ a− by (C4).
Hence, a⇝ a− ≤ a− and a → a− ≤ a−. Since a− ≤ a⇝ a− and a− ≤ a → a−, then
a → a− = a⇝ a− = a−. By Proposition 3.2 part (4), we have a → a∼ = a⇝ a− = a−.
Similarly, we can prove a → a∼ = a⇝ a∼ = a∼.

(2) It follows from (1) and Proposition 3.2 part (3). □

Proposition 4.4. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra, a ∈ B(A) and x, y ∈ A. Then the following hold:

(1) a ⊕ x = x ⊕ a = a ∨ x = a⊞ x = x⊞ a;
(2) a ⊙ x = x ⊙ a = a ∧ x = a⊡ x = x⊡ a;
(3) a ∨ (x ⊙ y) = (a ∨ x) ⊙ (a ∨ y), a ∨ (x⊡ y) = (a ∨ x)⊡ (a ∨ y);
(4) a ∧ (x ⊕ y) = (a ∧ x) ⊕ (a ∧ y), a ∧ (x⊞ y) = (a ∧ x)⊞ (a ∧ y).

Proof. (1) Since A is pseudo commutative, we have a ∨ x ≤ a ⊕ x. Using Proposition
3.2 part (13) and (C6), we get (a⊕x)⊙(a∨x)∼ = (a⊕x)⊙(a∼ ∧x∼) = ((a⊕x)⊙a∼)∧
((a⊕x) ⊙x∼) = ((a⊕x) ⊙a∼) ∧ (a∧x∼) ≤ (a− ∧a) = 0. Hence (a⊕x)−

⊞ (a∨x) = 1
implies that a⊕x ≤ a∨x. Since A is pseudo commutative, then a⊕x = a∨x = x⊕a.
Similarly, we can prove a ∨ x = a⊞ x = x⊞ a.

(2) It follows from part (1) and the definitions of ⊙ and ⊡.
(3) By Proposition 3.2 part (7), Proposition 4.2 part (7) and Proposition 3.1 part (6),

we have (a∨x)⊙(a∨y) = (a⊙(a∨y))∨(x⊙(a∨y)) = (a⊙a)∨(a⊙y)∨(x⊙a)∨(x⊙y) =
a ∨ (x ⊙ y).

(4) Using Proposition 2.2 part (12) Proposition 4.2 part (3) and Proposition 2.2
part (6), we obtain

(a ∧ x) ⊕ (a ∧ y) =(a ⊕ (a ∧ y)) ∨ (x ⊕ (a ∧ y))

=(a ⊕ a) ∧ (a ⊕ y) ∧ (x ⊕ a) ∧ (x ⊕ y)

=a ∧ (x ⊕ y). □

Proposition 4.5. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra. Then B(A) is a boolean subalgebra of A.
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Proof. Clearly 0, 1 ∈ B(A). Let a, b ∈ B(A). By Proposition 4.1, we have a ∧ a− = 0,
a ∨ a− = 1, b ∧ b− = 0, b ∨ b− = 1. We will prove that a− ∨ b− is the complement of
a ∧ b and

(a ∧ b) ∧ (a− ∨ b−) =((a ∧ b) ∧ a−) ∨ ((a ∧ b) ∧ b−) = 0 ∨ 0 = 0,

(a ∧ b) ∨ (a− ∨ b−) =(a ∨ (a− ∨ b−)) ∧ (b ∨ (a− ∨ b−)) = 1 ∧ 1 = 1.

Similarly, we can show that a−∨b− is the complement of a a∧b. Hence a∧b, a∨b ∈ B(A)
and (B(A), ∧, ∨) is a distributive lattice. By Proposition 4.4 part (1), we have
a ⊕ b = a ∨ b ∈ B(A) and a⊞ b = a ∨ b ∈ B(A). It is clear that a−, a∼ ∈ B(A). Hence
B(A) is closed under the operations ⊕, ⊞, − and ∼. □

Corollary 4.1. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic algebra.
Then (B(A), ∧, ∨,− ) is a De Morgan lattice.

Proposition 4.6. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-
bra and a ∈ B(A). Then ([0, a], ⊕a

0
,⊞a

0
,−

a

0 ,∼
a

0 , 0, a) is a pseudo commutative double
basic algebra, where

x−
a

0 :=x− ⊙ a, x∼
a

0 := x∼
⊡ a,

x ⊕a

0
y :=x ⊕ y, x⊞a

0
y := x⊞ y.

Proof. Let x, y ∈ [0, a] be arbitrary. Using pseudo commutativity, Proposition 2.2
part (5) and Proposition 4.2 part (3) and part (4), we have 0 ≤ x ⊕ y ≤ a ⊕ a = a,
0 ≤ x ⊞ y ≤ a ⊞ a = a. Thus x ⊕ y, x ⊞ y ∈ [0, a]. By Proposition 3.1 part (6), we
obtain x−

a

0 := x− ⊙ a ≤ a and x∼
a

0 := x∼
⊡ a ≤ a. So, x−

a

0 , x∼
a

0 ∈ [0, a]. We will check
condition (P2) from the definition of a double basic algebra.

Applying Corollary 3.1, Proposition 4.4 part (1), Proposition 3.2 part (7) and
Proposition 4.2, we get

(x−
a

0 )∼
a

0 =(x− ⊙ a)∼
⊡ a = (x ⊕ a∼)⊡ a = a ⊙ (x ∨ a∼) = (a ⊙ x) ∨ (a ⊙ a∼)

=(a ∧ x) ∨ (a ∧ a∼) = x ∨ 0 = x,

(x∼
a

0 )−
a

0 =(x∼
⊡ a)− ⊙ a = (x⊞ a−) ⊙ a = a⊡ (x ∨ a−) = (a⊡ x) ∨ (a⊡ a−)

=(a ∧ x) ∨ (a ∧ a−) = x ∨ 0 = x.

It is easy to prove the other identities. □

Proposition 4.7. Let (A, ⊕,⊞,− ,∼ , 0, 1) be a pseudo commutative double basic alge-

bra with a, b ∈ B(A) and a ≤ b. Then ([a, b], ⊕b

a
,⊞b

a
,−

b
a ,∼

b
a , a, b) is a pseudo commu-

tative double basic algebra, where

x−
b
a :=(x− ⊙ b)⊞ a, x∼

b
a := (x∼

⊡ b) ⊕ a,

x ⊕b

a
y :=((x−

⊞ a)∼ ⊕ y) ∧ b, x⊞b

a
y := ((x∼ ⊕ a)−

⊞ y) ∧ b.

Proof. It could be easily proven by Proposition 4.6 and Theorem 4 in [12]. □
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