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ON DISTANCE SIGNLESS LAPLACIAN ESTRADA INDEX AND
ENERGY OF GRAPHS

ABDOLLAH ALHEVAZ1, MARYAM BAGHIPUR1, AND SHARIEFUDDIN PIRZADA2

Abstract. For a connected graph G, the distance signless Laplacian matrix is de-
fined as DQ(G) = Tr(G)+D(G), where D(G) is the distance matrix of G and Tr(G)
is the diagonal matrix of vertex transmissions of G. The eigenvalues ρ1, ρ2, . . . , ρn

of DQ(G) are the distance signless Laplacian eigenvalues of the graph G. In this
paper, we define the distance signless Laplacian Estrada index of the graph G as
DQ

E E(G) =
∑n

i=1 e

(
ρi− 2σ(G)

n

)
, where σ(G) is the transmission of a graph G. We

obtain upper and lower bounds for DQ
E E(G) and the distance signless Laplacian en-

ergy in terms of other graph invariants. Moreover, we derive some relations between
DQ

E E(G) and the distance signless Laplacian energy of G.

1. Introduction and preliminaries

All graphs throughout this paper are finite, undirected, simple and connected. Let
G be such a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). The
order of G is the number n = |V (G)| and its size is the number m = |E(G)|. The set
of vertices adjacent to v ∈ V (G), denoted by N(v), refers to the neighborhood of v.
The degree of vertex v, denoted by dG(v) (we simply write dv if it is clear from the
context) means the cardinality of N(v). A graph is called regular if each of its vertex
has the same degree. We write G ∼= H, where the graphs G and H are isomorphic.
The distance between two vertices u, v ∈ V (G), denoted by duv, is defined as the
length of a shortest path between u and v in G. The diameter of G is the maximum
distance between any two vertices of G. The distance matrix of G is denoted by
D(G) and is defined as D(G) = (duv)u,v∈V (G). The transmission TrG(v) of a vertex
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v is defined to be the sum of the distances from v to all other vertices in G, that is,
TrG(v) = ∑

u∈V (G)
duv. A graph G is said to be k-transmission regular if TrG(v) = k,

for each v ∈ V (G). The transmission of a graph G, denoted by σ(G), is the sum of
distances between all unordered pairs of vertices in G. For other undefined notations
and terminology, the readers are referred to [33].

For a graph G with V (G) = {v1, v2, . . . , vn}, TrG(vi) has been referred to as the
transmission degree Tri [26] and hence the transmission degree sequence is given by
{Tr1,Tr2, . . . ,Trn}. Let Tr(G) = diag(Tr1,Tr2, . . . ,Trn) be the diagonal matrix of
vertex transmissions of G. Aouchiche and Hansen [2, 3] introduced the Laplacian
and the signless Laplacian for the distance matrix of a connected graph. The matrix
DL(G) = Tr(G)−D(G) is called the distance Laplacian matrix of G, while the matrix
DQ(G) = Tr(G) + D(G) is called the distance signless Laplacian matrix of G. If G
is connected, then DQ(G) is symmetric, nonnegative and irreducible. Hence, all the
eigenvalues of DQ(G) can be arranged as ρ1 ≥ ρ2 ≥ · · · ≥ ρn, where ρ1 is called the
distance signless Laplacian spectral radius of G. (From now onwards, we will denote
ρ1(G) by ρ(G)).

Based on investigations on geometric properties of biomolecules, Ernesto Estrada
[13,14] considered an expression of the form

EE(G) =
n∑

i=1
eλi ,

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of a molecular graph
G. The mathematical significance of this quantity was recognized short time later [22]
and soon it became known under the name “Estrada index” [10]. The mathematical
properties of the Estrada index have been intensively studied, see for example, [5,10,23].
There exists a vast literature related to Estrada index and its bounds and we refer
the reader to the nice surveys [11,21].

This graph-spectrum-based invariant has also an important role in chemistry,
physics, and complex networks. For example, it has been used to measure the degree
of folding of long chain polymeric molecules, including proteins [12, 13, 16]. It has
found a number of applications in complex networks and characterizes the centrality
[14], also serves as an insightful measure for investigating robustness of complex net-
works [39], for which EE has an acute discrimination on connectivity and changes
monotonically with respect to the removal or addition of edges. For the application
of the Estrada index in network theory see the book [15] and the papers [38,39].

The pioneering papers [13,14] further proposes the study of graphs with an analogue
of the Estrada index defined with respect to other (than adjacency) matrices. Because
of the evident success of the graph Estrada index, this proposal has been put into effect
and Estrada index based of the eigenvalues of other graph matrices have, one-by-one,
been introduced: Estrada index based invariant with respect to distance matrix, as
well as Estrada index based invariant with respect to Laplacian matrix, have been
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introduced and studied, see for example [6,7,24,25,27,35–37,40,41]. Recently, in full
analogy with the Estrada index, the signless Laplacian Estrada index of a connected
graph G has been introduced and studied [4]. Further, in full analogy with the Estrada
index, the distance Estrada index of a connected graph G has been introduced in [19]

DEE(G) =
n∑

i=1
eµi ,

where µ1, µ2, . . . , µn are the eigenvalues of the distance matrix of a graph G. Now,
we define the distance signless Laplacian Estrada index DQ

EE(G), based on distance
signless Laplacian matrix of the graph G as

DQ
EE(G) =

n∑
i=1

e(ρi− 2σ(G)
n ),(1.1)

where ρ1, ρ2, . . . , ρn are the distance signlees Laplacian eigenvalues of a graph G. Let

Mk =
n∑

i=1

(
ρi − 2σ(G)

n

)k

.

Then

M0 = n,

M1 = 0,

M2 = 2
∑

1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

.(1.2)

Recalling the power series expansion of ex, we can write the distance signless Laplacian
Estrada index as

DQ
EE(G) =

∑
k≥0

Mk

k! .(1.3)

The rest of the paper is organized as follows. In Section 2, we obtain some upper
and lower bounds for the distance signless Laplacian Estrada index DQ

EE(G) involving
different graph invariants, and also characterize the extremal graphs. In Section 3,
we compute the distance signless Laplacian Estrada index of some classes of graphs,
as well as giving some relations with the earlier distance Estrada index. Finally, in
Section 4, we derive some relations between the distance signless Laplacian Estrada
index and the distance signless Laplacian energy of G.

2. Bounds for the Distance Signless Laplacian Estrada Index

We start by giving some previously known results that will be needed in the proofs
of our results in the sequel.
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Lemma 2.1. ([1, Theorem 2.2]). If the transmission degree sequence of G is
{Tr1,Tr2, . . . ,Trn}, then

ρ(G) ≥ 2
√∑n

i=1 Tr2
i

n
,

with equality if and only if G is transmission regular.

Lemma 2.2. ([42, Lemma 2.2]). If G is a connected graph of order n, then

ρ(G) ≥ 4σ(G)
n

,

with equality if and only if G is transmission regular.

The following lemma will be helpful in the sequel. Its proof is similar to [28,
Lemma 2], and hence is excluded.

Lemma 2.3. A connected graph G has two distinct distance signless Laplacian eigen-
values if and only if G is a complete graph.

For non-increasing real sequences (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn)
of length n, we say that (x) is majorized by (y) or (y) majorizes (x), denoted by
(x) ⪯ (y) if

n∑
i=1

xi =
n∑

i=1
yi and

k∑
i=1

xi ≤
k∑

i=1
yi, for all k = 1, 2, . . . , n− 1.

The following observation can be found in [32].

Lemma 2.4 ([32]). Let (x) = (x1, x2, . . . , xn) and (y) = (y1, y2, . . . , yn) be nonin-
creasing sequences of real numbers of length n. If (x) ⪯ (y), then for any convex
function ψ, we have ∑n

i=1 ψ(xi) ≤ ∑n
i=1 ψ(yi). Furthermore, if (x) ≺ (y) and ψ is

strictly convex, then ∑n
i=1 ψ(xi) <

∑n
i=1 ψ(yi).

Lemma 2.5 ([34]). Let G be a connected graph of order n having distance signless
Laplacian eigenvalues ρ1, ρ2, . . . , ρn and transmission degrees Tr1,Tr2, . . . ,Trn. Then

(Tr1,Tr2, . . . ,Trn) ⪯ (ρ1, ρ2, . . . , ρn).

Now, we present some upper bounds for the distance signless Laplacian Estrada
index involving different graph invariants.

Theorem 2.1. Let G be a connected graph of order n. Then, for any integer k0 ≥ 2,

DQ
EE(G) ≤n− 1 −

√√√√2
∑

1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

+
k0∑

k=2

Mk(G) −
(√

2∑1≤i<j≤n(dij)2 +∑n
i=1 Tr2

i −4σ2(G)
n

)k

k!
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+ e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n ,(2.1)
with equality if and only if G = K1.

Proof. We have

DQ
EE(G) =

k0∑
k=0

Mk(G)
k! +

∑
k≥k0+1

1
k!

n∑
i=1

(
ρi − 2σ(G)

n

)k

≤
k0∑

k=0

Mk(G)
k! +

∑
k≥k0+1

1
k!

n∑
i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
k

≤
k0∑

k=0

Mk(G)
k! +

∑
k≥k0+1

1
k!

 n∑
i=1

(
ρi − 2σ(G)

n

)2
 k

2

=
k0∑

k=0

Mk(G)
k! +

∑
k≥k0+1

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n

)k

k!

=
k0∑

k=0

Mk(G)
k! + e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n

−
k0∑

k=0

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n

)k

k! ,

and (2.1) follows. From the derivation of (2.1), it is evident that equality will be
attained in (2.1) if and only if G has no non-zero eigenvalues, i.e., G = K1. □

Remark 2.1. Since

Mk(G) =
n∑

i=1

(
ρi − 2σ(G)

n

)k

≤
n∑

i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
k

≤

 n∑
i=1

(
ρi − 2σ(G)

n

)2
 k

2

= (M2(G))
k
2 .

In the second inequality above, we use the following inequality: For nonnegative
a1, a2, . . . , an and integer k ≥ 2

n∑
i=1

ak
i ≤

(
n∑

i=1
a2

i

) k
2

.(2.2)

Hence, Mk(G) −
(√

M2(G)
)k

≤ 0. Then

k0∑
k=2

Mk(G) −
(√

2∑1≤i<j≤n(dij)2 +∑n
i=1 Tr2

i −4σ2(G)
n

)k

k! ≤ 0.
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Therefore, we have the following observation from Theorem 2.1,

DQ
EE(G) ≤n− 1 −

√√√√2
∑

1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

+ e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n .

Theorem 2.2. Let G be a connected graph of order n. Then for any integer k0 ≥ 2

DQ
EE(G) ≤n− 2 − ρ1 + 2σ(G)

n
−
√
ξ

+
k0∑

k=2

Mk(G) −
(
ρ1 − 2σ(G)

n

)k
−
(√

ξ
)k

k! + eρ1− 2σ(G)
n + e

√
ξ,(2.3)

where ξ = 2∑1≤i<j≤n(dij)2 + ∑n
i=1 Tr2

i −4σ2(G)
n

−
(
ρ1 − 2σ(G)

n

)2
, with equality if and

only if G = K1.

Proof. We have

DQ
EE(G) − eρ1− 2σ(G)

n

=
k0∑

k=0

Mk(G) −
(
ρ1 − 2σ(G)

n

)k

k! +
∑

k≥k0+1

1
k!

n∑
i=2

(
ρi − 2σ(G)

n

)k

≤
k0∑

k=0

Mk(G) −
(
ρ1 − 2σ(G)

n

)k

k! +
∑

k≥k0+1

1
k!

n∑
i=2

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
k

≤
k0∑

k=0

Mk(G) −
(
ρ1 − 2σ(G)

n

)k

k! +
∑

k≥k0+1

1
k!

 n∑
i=2

(
ρi − 2σ(G)

n

)2
 k

2

=
k0∑

k=0

Mk(G) −
(
ρ1 − 2σ(G)

n

)k

k!

+
∑

k≥k0+1

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n
−
(
ρ1 − 2σ(G)

n

)2
)k

k!

=
k0∑

k=0

Mk(G) −
(
ρ1 − 2σ(G)

n

)k

k!

+ e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n
−(ρ1− 2σ(G)

n )2
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−
k0∑

k=0

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n
−
(
ρ1 − 2σ(G)

n

)2
)k

k! ,

where the first inequality follows from inequality:
n∑

i=2

(
ρi − 2σ(G)

n

)k

≤
n∑

i=2

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
k

.

Also, in the second inequality, we use the inequality (2.2). Further, bearing in mind
the power-series expansion of ex = ∑

k≥0
xk

k! , we have

e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n
−(ρ1− 2σ(G)

n )2

=
k0∑

k=0

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n
−
(
ρ1 − 2σ(G)

n

)2
)k

k!

+
∑

k≥k0+1

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n
−
(
ρ1 − 2σ(G)

n

)2
)k

k! .

Hence, the last equality holds. Then the result follows. □

Theorem 2.3. Let G be a connected graph of order n and diameter d. Then

1
2
√

2n(n2 + 4n− 3) ≤ DQ
EE(G) ≤ n− 1 + e

√
n(n−1)

(
d2+ n2(n−1)

4 −n+1
)
.(2.4)

Equality holds on both sides of (2.4) if and only if G ∼= K1.

Proof. Lower bound. From (1.1), we get

DQ
EE

2(G) =
n∑

i=1
e2(ρi− 2σ(G)

n ) + 2
∑
i<j

e(ρi− 2σ(G)
n )e(ρj− 2σ(G)

n ).(2.5)

By the arithmetic-geometric mean inequality, we get

2
∑
i<j

e(ρi− 2σ(G)
n )e(ρj− 2σ(G)

n ) ≥n(n− 1)
∏

i<j

e(ρi− 2σ(G)
n )e(ρj− 2σ(G)

n )
 2

n(n−1)

(2.6)

=n(n− 1)
( n∏

i=1
e(ρi− 2σ(G)

n )
)n−1

 2
n(n−1)

=n(n− 1)(eM1) 2
n

=n(n− 1).(2.7)
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By means of a power-series expansion and M0 = n,M1 = 0 and

M2 = 2
∑

1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

,

we get

n∑
i=1

e2(ρi− 2σ(G)
n ) =

n∑
i=1

∑
k≥0

[
2
(
ρi − 2σ(G)

n

)]k
k!

=n+ 4
∑

1≤i<j≤n

(dij)2 + 2
n∑

i=1
Tr2

i −8σ2(G)
n

+
n∑

i=1

∑
k≥3

[
2
(
ρi − 2σ(G)

n

)]k
k! .

We use a multiplier r ∈ [0, 4] to arrive at

n∑
i=1

e2(ρi− 2σ(G)
n ) ≥n+ 4

∑
1≤i<j≤n

(dij)2 + 2
n∑

i=1
Tr2

i −8σ2(G)
n

+ r
n∑

i=1

∑
k≥3

(
ρi − 2σ(G)

n

)k

k!

=n+ 4
∑

1≤i<j≤n

(dij)2 + 2
n∑

i=1
Tr2

i −8σ2(G)
n

− rn− r
∑

1≤i<j≤n

(dij)2

− r

2

n∑
i=1

Tr2
i +2σ2(G)

n
+ rDQ

EE(G)

=(1 − r)n− 6σ2(G)
n

+ (4 − r)
∑

1≤i<j≤n

(dij)2 + (2 − r

2)
n∑

i=1
Tr2

i

+ rDQ
EE(G),

where from (1.3), we get

rDQ
EE(G) =r

n∑
i=1

∑
k≥0

(
ρi − 2σ(G)

n

)k

k! = rn+ r
∑

1≤i<j≤n

(dij)2 + r

2

n∑
i=1

Tr2
i

− 2σ2(G)
n

+ r
n∑

i=1

∑
k≥3

(
ρi − 2σ(G)

n

)k

k! ,

and hence the last but one equality follows.
Since ∑1≤i<j≤n(dij)2 ≥ n(n−1)

2 and ∑n
i=1 Tr2

i ≥ n(n− 1)2, also by Cauchy-Schwartz
inequality we have (2σ(G))2 = (∑n

i=1 Tri)2 ≤ n
∑n

i=1 Tr2
i , and then, for r ≤ 1, we

obtain

n∑
i=1

e2(ρi− 2σ(G)
n ) ≥ (1 − r)n+ (4 − r)n(n− 1)

2 + 1 − r

2
(
n(n− 1)2

)
+ rDQ

EE(G).

(2.8)
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By substituting (2.7) and (2.8) in (2.5), and solving for DQ
EE(G), we get

DQ
EE(G) ≥ 1

2

(
r +

√
r2 − 2n(2r + 3) + 2n2(r + 4) + 2n3(1 − r)

)
.

It is easy to see that for n ≥ 2 the function

f(x) := 1
2

(
x+

√
x2 − 2n(2x+ 3) + 2n2(x+ 4) + 2n3(1 − x)

)
monotonically decreases in the interval [0, 1]. As a result, the best bound for DQ

EE(G)
is attained for r = 0. This gives us the first part of the proof.

Upper bound. We have

DQ
EE(G) =n+

n∑
i=1

∑
k≥1

(
ρi − 2σ(G)

n

)k

k!

≤n+
n∑

i=1

∑
k≥1

∣∣∣ρi − 2σ(G)
n

∣∣∣k
k!

=n+
∑
k≥1

1
k!

n∑
i=1

(ρi − 2σ(G)
n

)2
 k

2

≤n+
∑
k≥1

1
k!

 n∑
i=1

(
ρi − 2σ(G)

n

)2
 k

2

(2.9)

=n+
∑
k≥1

1
k!

2
∑

1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

 k
2

=n− 1 +
∑
k≥0

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n

)k

k!

=n− 1 + e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n .

Since dij ≤ d for i ̸= j and there are n(n−1)
2 pairs of vertices in G, we have

2∑1≤i<j≤n(dij)2 +∑n
i=1 Tr2

i −4σ2(G)
n

≤ 2n(n−1)
2 d2 + n3(n−1)2

4 − n(n− 1)2, so that

DQ
EE(G) ≤ n− 1 + e

√
n(n−1)

(
d2+ n2(n−1)

4 −n+1
)
.

Hence, we get the right-hand side of the (2.4).
Now, suppose that the equality in (2.4) holds, then all the inequalities in the above

argument must hold as equalities. In particular, from (2.6), we get ρ1 = ρ2 = · · · =
ρn = 2σ(G)

n
(see [17]). Since, by Lemma 2.2, ρ1 ≥ 4σ(G)

n
, a contradiction. Thus, the

left- hand side equality in (2.4) holds if and only if G is an empty graph. Since G is a
connected graph, this only happens in the case of G ∼= K1, then the graph G has all
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zero DQ-eigenvalues. Again, let the right-hand side equality in (2.4) holds, then from
(2.9), we get ρ1 = ρ2 = · · · = ρn = 2σ(G)

n
. Similarly, we get G ∼= K1 and the proof is

complete. □

Now, we turn our attention to giving some lower bounds for the distance signless
Laplacian Estrada index in terms of other graph invariants.

Theorem 2.4. Let G be a connected graph of order n. Then

DQ
EE(G) ≥ e

2σ(G)
n + (n− 1)e

−2σ(G)
n(n−1) ,(2.10)

with equality if and only if G = Kn.

Proof. Starting with (1.1) and using the arithmetic-geometric mean inequality, we get

DQ
EE(G) =eρ1− 2σ(G)

n + eρ2− 2σ(G)
n + · · · + eρn− 2σ(G)

n

≥eρ1− 2σ(G)
n + (n− 1)

(
n∏

i=2
eρi− 2σ(G)

n

) 1
n−1

(2.11)

=eρ1− 2σ(G)
n + (n− 1)

(
e

2σ(G)
n

−ρ1

) 1
n−1

.(2.12)

Consider the following function
f(x) = ex + (n− 1)e

−x
n−1 ,(2.13)

for x ≥ 0. We have
f ′(x) = ex − e

−x
n−1 ≥ 0,

for x ≥ 0. It is easy to see that f(x) is an increasing function for x ≥ 0. From (2.12)
and Lemma 2.2, we obtain

DQ
EE(G) ≥ e

2σ(G)
n + (n− 1)e

−2σ(G)
n(n−1) .(2.14)

This completes the first part of the proof. Now, we suppose that the equality holds in
(2.10). Then all inequalities in the above argument must be equalities. From (2.14),
we have ρ1 = 4σ(G)

n
, which implies that G is a transmission regular graph. From (2.11)

and the arithmetic-geometric mean inequality, we get ρ2 = ρ3 = · · · = ρn. Therefore,
G has exactly two distinct distance signless Laplacian eigenvalues, and then by Lemma
2.3, G is the complete graph Kn.

Conversely, one can easily see that the equality holds in (2.10) for the complete
graph Kn. This completes the proof. □

Remark 2.2. For a graph G of order n ≥ 2 and size m, it was shown in [43] that

EE(G) ≥ e
2m
n + (n− 1)e− 2m

n(n−1) ,(2.15)
with equality if and only if G is the empty graph or the complete graph. Since
σ(G) ≥

(
n
2

)
≥ m and the function f(x) defined in (2.13) is increasing function, hence

our given lower bound for distance signless Laplacian Estrada index in (2.10) is larger
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than the above lower bound in (2.15) for usual Estrada index. If G is the complete
graph Kn, then σ(G) =

(
n
2

)
= m and therefore the bounds coincide.

Let M(G) = (∏n
i=1 Tri)

1
n be the geometric mean of the transmission degrees se-

quence. Then 2σ(G)
n

≥ M(G) holds, and equality is attained if and only if Tr1 = · · · =
Trn (i.e., the graph G is transmission regular).

Lemma 2.6 ([44]). Let a1, a2, . . . , an be non-negative numbers. Then

n

 1
n

n∑
i=1

ai −
(

n∏
i=1

ai

) 1
n

 ≤ n
n∑

i=1
ai −

(
n∑

i=1
a

1
2
i

)2

.

Theorem 2.5. Let G be a connected graph of order n ≥ 2. Then

DQ
EE(G) ≥ e

2
√

4σ2(G)−M2(G)n
n(n−1) − 2σ(G)

n + (n− 1)

e 2σ(G)
n

−
(

2
√

4σ2(G)−M2(G)n
n(n−1)

)
1

n−1

,(2.16)

with equality if and only if G = Kn.

Proof. Using the arithmetic-geometric mean inequality, we obtain

DQ
EE(G) =eρ1− 2σ(G)

n + eρ2− 2σ(G)
n + · · · + eρn− 2σ(G)

n

≥eρ1− 2σ(G)
n + (n− 1)

(
n∏

i=2
eρi− 2σ(G)

n

) 1
n−1

(2.17)

=eρ1− 2σ(G)
n + (n− 1)

(
e

2σ(G)
n

−ρ1

) 1
n−1

.

By Lemma 2.1, ρ1 ≥ 2
√∑n

i=1 Tr2
i

n
. Setting √

ai = Tri in Lemma 2.6, we get

n2

∑n
i=1 Tr2

i

n
−
(

2σ(G)
n

)2
 ≥

n∑
i=1

Tr2
i −n

(
n∏

i=1
Tr2

i

) 1
n

.

Combining this with Lemma 2.1, yields

ρ1 ≥ 2

√√√√4σ2(G) −M2(G)n
n(n− 1) .(2.18)

It is easy to see that 2
√

4σ2(G)−M2(G)n
n(n−1) ≥ 4σ(G)

n
, and so,

2

√√√√4σ2(G) −M2(G)n
n(n− 1) − 2σ(G)

n
≥ 2σ(G)

n
≥ 0.

Similarly to Theorem 3.4, we get the result. When G = Kn, we have ρ1 = 2n−2, ρ2 =
· · · = ρn = n−2, σ(G) = n(n−1)

2 and M(G) = n−1. Hence, DQ
EE(G) = en−1+(n−1)e−1

and the equality holds.
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Conversely, suppose that the equality holds. Then from (2.17), we have ρ2 = · · · =
ρn. Clearly 4σ2(G) = M2(G)n if and only if n = 1. From (2.18), it follows that ρ1 > 0
for n ≥ 2. Thus G has exactly two distinct distance signless Laplacian eigenvalues,
and so Lemma 2.3 implies that G is the complete graph Kn. □

Let G be a k-transmission regular graph. Then σ(G) = nk
2 and M(G) = k and

hence we get the following observation.

Corollary 2.1. Let G be a k-transmission regular graph. Then

DQ
EE(G) ≥ ek + (n− 1)e

−k
n−1 ,

with equality if and only if G = Kn.

We recall Holder inequality. Let a1, . . . , an, b1, . . . , bn be non-negative real numbers,
p, q > 1 and 1

p
+ 1

q
= 1. Then

n∑
i=1

aibi ≤
(

n∑
i=1

ap
i

) 1
p
(

n∑
i=1

bq
i

) 1
q

.

Here, we give the lower bound for DQ
EE(G) in terms of n and σ(G).

Theorem 2.6. Let G be a connected graph of order n. Then

DQ
EE(G) > n+ 2

(
σ(G)
n

)2

.

Proof. By Holder inequality for p = q = 2, we have

2σ(G) =
n∑

i=1
Tri ≤

√
n

(
n∑

i=1
Tr2

i

) 1
2

.

Hence,
n∑

i=1
Tr2

i ≥ 4σ2(G)
n

.(2.19)

Now, by Cauchy-Schwartz inequality, we have

Tr2
i =

 n∑
j=1

dij

2

≤ n
n∑

j=1
d2

ij.

Hence,
n∑

i=1
Tr2

i ≤ n
n∑

i=1

n∑
j=1

d2
ij,

and then by (2.19) we get∑
1≤i<j≤n

d2
ij ≥ 1

2n

n∑
i=1

Tr2
i ≥ 1

2n.
4σ2(G)
n

= 2σ2(G)
n2 .
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Thus, we have

DQ
EE(G) >n+

∑
1≤i<j≤n

(dij)2 + 1
2

n∑
i=1

Tr2
i −2σ2(G)

n

≥n+ 2σ2(G)
n2 + 2σ2(G)

n
− 2σ2(G)

n

=n+ 2
(
σ(G)
n

)2

. □

Corollary 2.2. Let G be a connected graph of order n. Then

DQ
EE(G) > n2 + 1

2 .

Proof. Since dij ≥ 1 for i ≠ j and there are n(n−1)
2 pairs of vertices in G, from the

lower bound of Theorem 2.6, we get

DQ
EE(G) > n+ 2

(
σ(G)
n

)2

≥ n+ 2
 n(n−1)

2
n

2

= n2 + 1
2 . □

Hence, the result.

3. Distance Signless Laplacian Estrada Index of some Classes of
Graphs

In this section we obtain the distance signless Laplacian Estrada index of some
classes of graphs.

Lemma 3.1. Let G be a k-transmission regular graph of order n. Then

DQ
EE(G) = DEE(G).

Proof. Note that the distance signless Laplacian spectrum of the graph G consists of
k + µ1 ≥ k + µ2 ≥ · · · ≥ k + µn, where µ1 ≥ · · · ≥ µn is the distance spectrum of G.
Also it is easy to see that σ(G) = nk

2 . Then DQ
EE(G) = ∑n

i=1 e
k+µi−k = DEE(G). □

The Cartesian product of two graphs G and H, denoted by G × H, is the graph
with vertex set V (G) ×V (H) and two vertices (u1, u2) and (v1, v2) are adjacent if and
only if u1 = v1 and u2v2 ∈ E(H) or u2 = v2 and u1v1 ∈ E(G).

Corollary 3.1. Let G be an r-regular graph of diameter at most 2 with an adja-
cency matrix A and Spec(G) = {r, λ2, . . . , λn}. Then, the distance signless Laplacian
Estrada index of H = G×K2 is

DQ
EE(H) = e5n−2r−4 + e−n + n− 1 +

n∑
i=2

e−2λi−4.
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Proof. Let V (G) = {v1, v2, . . . , vn}, V (K2) = {w1, w2}. From the fact
dH((vi, wj), (vs, wt)) = dG(vi, vs) + dK2(wj, wt) = dG(vi, vs) + 1,

we see that all vertices of H have the same transmission and TrH(vi, wj) = 5n−2r−4.
So Tr(H) = (5n − 2r − 4)I. Then σ(H) = n(5n−2r−4)

2 . Note that H = G × K2 has
distance spectrum (see [30])

Spec(H) =

5n− 2(r + 2) −2(λi + 2) −n 0

1 1 1 n− 1


for i = 2, . . . , n. Then

DQ
EE(H) = e5n−2r−4 + e−n + n− 1 +

n∑
i=2

e−2λi−4. □

Given a graph G, the graph G∇G is obtained by joining every vertex of G to every
vertex of another copy of G.

Corollary 3.2. Let G be an r−regular graph with an adjacency matrix A and
Spec(G) = {r, λ2, . . . , λn}. Then, the distance signless Laplacian Estrada index of
G∇G is

DQ
EE(G∇G) = e3n−r−2 + en−r−2 + 2

n∑
i=2

e−2λi−4.

Proof. For v ∈ G∇G, it is easy to see that Tr(v) = d(v) + 2(n − d(v) − 1) + n =
3n−d(v)−2 = 3n−r−2. Then G∇G is a transmission regular graph and Tr(G∇G) =
(3n− r − 2)I. Note that the G∇G has distance spectrum (see [30])

Spec(G∇G) =

3n− r − 2 n− r − 2 −2(λi + 2)

1 1 2

 ,
for i = 2, . . . , n. Then

DQ
EE(G∇G) = e3n−r−2 + en−r−2 + 2

n∑
i=2

e−2λi−4. □

Next, we obtain the distance signless Laplacian Estrada index of the lexicographic
product G[H] of two graphs G and H. The following definition of the lexicographic
product of G and H is from [9].

Definition 3.1. Let G and H be two graphs on vertex sets V (G) = {u1, u2, . . . , up}
and V (H) = {v1, v2, . . . , vn}, respectively. Then their lexicographic product G[H] is
a graph defined by V (G[H]) = V (G) × V (H), the Cartesian product of V (G) and
V (H) in which u = (u1, v1) is adjacent to v = (u2, v2) if and only if either

(a) u1 is adjacent to v1 in G, or
(b) u1 = v1 and u2 is adjacent to v2 in G.
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Corollary 3.3. Let G be a k-transmission regular graph of order p. Let H be an
r-regular graph of order n with adjacency eigenvalues {r, λ2, . . . , λn}. Let {µ1, . . . , µp}
be the eigenvalues of the distance matrix D(G) of G. Then

DQ
EE(G[H]) = e2n−r−2

p∑
i=1

enµi + ne−4
n∑

j=2
e−2λj .

Proof. For v ∈ G[H], it is easy to see that Tr(v) = r+2(n−r−1)+kn = kn+2n−r−2.
Then G[H] is a transmission regular graph and Tr(G[H]) = (kn+ 2n− r − 2)I. Note
that G[H] has distance spectrum (see [29])

Spec(G[H]) =

nµi + 2n− r − 2 −2(λj + 2)

1 n

 ,
for i = 1, . . . , p and j = 2, . . . , n. Then

DQ
EE(G[H]) = e2n−r−2

p∑
i=1

enµi + ne−4
n∑

j=2
e−2λj . □

Theorem 3.1. Let G be an r-regular graph of order n, size m and diameter at most
2. If {2r, q2, . . . , qn} are the eigenvalues of the signless Laplacian matrix Q(G) of G,
then

DQ
EE(G) = e2(n2−n−m) +

n∑
i=2

e2m−2n−nqi .

Proof. We know that the transmission of each vertex v ∈ V (G) is Tr(v) = d(v) +
2(n− d(v) − 1) = 2n− d(v) − 1 and so transmission σ(G) of G is σ(G) = n2 − n−m.
Also

DQ(G) = Tr(G) +D(G) =(2n− 2)I − rI + 2J − 2I − A(G)
=(2n− 4)I + 2J −Q(G),

where J is the all ones matrix. Then

DQ
EE(G) =

n∑
i=1

eρi− 2σ(G)
n = e(4n−2r−4)− 2(n2−n−m)

n +
n∑

i=2
e(2n−4−qi)− 2(n2−n−m)

n

=e2(n2−n−m) +
n∑

i=2
e2m−2n−nqi . □

As an immediate consequence of the above theorem, we get the following.

Corollary 3.4. Let G be an r-regular graph of order n, size m and diameter at most
2. If {r, λ2, . . . , λn} are the eigenvalues of the adjacency matrix A(G) of G, then

DQ
EE(G) = e2(n2−n−m) +

n∑
i=2

e−n(λi+2).
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4. Relations Between Distance Signless Laplacian Estrada Index and
Distance Signless Laplacian Energy

The energy E(G) of a graph G is equal to the sum of the absolute values of the
eigenvalues of the adjacency matrix of G. This quantity, introduced first time in [20]
and having a clear connection to chemical problems, has now attracted much attention
of mathematicians and mathematical chemists. We observe that several interesting
results have been obtained for the energy of different graph structures. The pioneering
paper [20] further proposes the study of energy in graphs with an analogue of the
energy defined with respect to other (than adjacency) matrices assigned to the graphs.
This proposal has been put into effect and extended: the energy of a graph with
respect to Laplacian matrix as well as the energy of a graph with respect to distance
matrix, have been studied (see [25, 30] for more details in this subject). Recently,
Alhevaz et al. [1] have considered a new kind of energy with respect to the distance
signless Laplacian matrix, the concept of distance signless Laplacian energy, denoted
by EDQ(G), and defined as

EDQ(G) =
n∑

i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣ .
In this section, we obtain some relations between EDQ(G) and DQ

EE(G) for a simple
connected graph G.

Theorem 4.1. Let G be a connected graph of order n with diameter d. Then

DQ
EE(G) − EDQ(G) ≤n− 1 −

√√√√n(n− 1)
(
d2 + n2(n− 1)

4 − n+ 1
)

+ e

√
n(n−1)

(
d2+ n2(n−1)

4 −n+1
)

(4.1)

or

DQ
EE(G) ≤ n− 1 + eE

DQ (G).(4.2)

Equality holds in (4.1) or (4.2) if and only if G ∼= K1.

Proof. From the proof of Theorem 2.3, we have

DQ
EE(G) = n+

n∑
i=1

∑
k≥1

(
ρi − 2σ(G)

n

)k

k! ≤ n+
n∑

i=1

∑
k≥1

∣∣∣ρi − 2σ(G)
n

∣∣∣k
k! .

Taking into account the definition of the distance signless Laplacian energy, we get

DQ
EE(G) ≤ n+ EDQ(G) +

n∑
i=1

∑
k≥2

∣∣∣ρi − 2σ(G)
n

∣∣∣k
k! ,
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which, as in Theorem 2.3, leads to

DQ
EE(G) − EDQ(G) ≤n+

n∑
i=1

∑
k≥2

∣∣∣ρi − 2σ(G)
n

∣∣∣k
k!

≤n− 1 −
√√√√2

∑
1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

+ e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n .

One can easily see that the function f(x) = ex − x monotonically increases for
x ≥ 0. Therefore, the best upper bound for DQ

EE(G) − EDQ(G) is obtained for
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n
≤ 2n(n−1)

2 d2 + n3(n−1)2

4 − n(n− 1)2, and we get

DQ
EE(G) − EDQ(G) ≤n− 1 −

√√√√n(n− 1)
(
d2 + n2(n− 1)

4 − n+ 1
)

+ e

√
n(n−1)

(
d2+ n2(n−1)

4 −n+1
)
.

Another way to obtain the relation between DQ
EE(G) and EDQ(G) is as follows:

DQ
EE(G) ≤n+

n∑
i=1

∑
k≥1

∣∣∣ρi − 2σ(G)
n

∣∣∣k
k!

≤n+
∑
k≥1

1
k!

(
n∑

i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
)k

=n+
∑
k≥1

(EDQ(G))k

k!

=n− 1 +
∑
k≥0

(EDQ(G))k

k! ,

implying
DQ

EE(G) ≤ n− 1 + eE
DQ (G).

Also, equality holds in (4.1) or (4.2) if and only G ∼= K1. □

Lemma 4.1 ([31]). Let x1, . . . , xn be positive numbers. Then
n

1
x1

+ . . .+ 1
xn

≤ n
√
x1x2 . . . xn.

Lemma 4.2 ([8]). Let a1, . . . , an and b1, . . . , bn be real numbers. Then(
n∑

i=1
ai

)
·
(

n∑
i=1

bi

)
≤ n

n∑
i=1

aibi.
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Equality occurs if and only if a1 = · · · = an or b1 = · · · = bn.

Theorem 4.2. Let G be a connected graph of order n. Then

e
−
√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n ≤ EDQ(G) ≤ e

√
2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n .

Proof. First we prove the given lower bound. By definition of the energy and by the
arithmetic-geometric mean inequality, we have

EDQ(G) =
n∑

i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣ =n
(

1
n

n∑
i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
)

≥n

 n

√√√√∣∣∣∣∣ρ1 − 2σ(G)
n

∣∣∣∣∣
∣∣∣∣∣ρ2 − 2σ(G)

n

∣∣∣∣∣ . . .
∣∣∣∣∣ρn − 2σ(G)

n

∣∣∣∣∣
 .

By Lemma 4.1, we have

n

 n

√√√√∣∣∣∣∣ρ1 − 2σ(G)
n

∣∣∣∣∣
∣∣∣∣∣ρ2 − 2σ(G)

n

∣∣∣∣∣ . . .
∣∣∣∣∣ρn − 2σ(G)

n

∣∣∣∣∣
 ≥ n

 n∑n
i=1

1
|ρi− 2σ(G)

n |



≥n

 n∑n
i=1

1
|ρi− 2σ(G)

n |
∑n

i=1

∣∣∣ρi − 2σ(G)
n

∣∣∣


≥n

 n

n
∑n

i=1
1

|ρi− 2σ(G)
n |

∣∣∣ρi − 2σ(G)
n

∣∣∣
 (by Lemma 4.2)

≥n

 n

n2∑n
i=1

∣∣∣ρi − 2σ(G)
n

∣∣∣
 > n

 n

n2∑n
i=1 e

|ρi− 2σ(G)
n |


= 1∑n

i=1
∑

k≥0
(|ρi− 2σ(G)

n |)k

k!

= 1∑
k≥0

1
k!

(∑n
i=1

(∣∣∣ρi − 2σ(G)
n

∣∣∣)k
)

≥ 1∑
k≥0

1
k!

(∑n
i=1

(∣∣∣ρi − 2σ(G)
n

∣∣∣)2
) k

2
(by (2.2))

= 1∑
k≥0

1
k!

(√
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n

)k (by (1.2)).

Therefore, we have EDQ(G) ≥ e
−
√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n .
Now, we prove the given upper bound. We have,

EDQ(G) =
n∑

i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣ <
n∑

i=1
e|ρi− 2σ(G)

n |
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=
n∑

i=1

∑
k≥0

(∣∣∣ρi − 2σ(G)
n

∣∣∣)k

k! =
∑
k≥0

1
k!

n∑
i=1

(∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
)k

≤
∑
k≥0

1
k!

 n∑
i=1

(∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
)2
 k

2

( by inequality (2.2))

=
∑
k≥0

1
k!

2
∑

1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

 k
2

(by Eq. (1.2))

=
∑
k≥0

1
k!

√√√√2
∑

1≤i<j≤n

(dij)2 +
n∑

i=1
Tr2

i −4σ2(G)
n

k

=e
√

2
∑

1≤i<j≤n
(dij)2+

∑n

i=1 Tr2
i − 4σ2(G)

n ,

and the proof is complete. □

Theorem 4.3. Let G be a connected graph of order n. Then

EDQ(G) ≥ 1
2∑1≤i<j≤n(dij)2 +∑n

i=1 Tr2
i −4σ2(G)

n

.(4.3)

Proof. By definition of the energy and by the arithmetic-geometric mean inequality,
we have

EDQ(G) =
n∑

i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣ =n
(

1
n

n∑
i=1

∣∣∣∣∣ρi − 2σ(G)
n

∣∣∣∣∣
)

≥n

 n

√√√√∣∣∣∣∣ρ1 − 2σ(G)
n

∣∣∣∣∣
∣∣∣∣∣ρ2 − 2σ(G)

n

∣∣∣∣∣ . . .
∣∣∣∣∣ρn − 2σ(G)

n

∣∣∣∣∣
 .

By Lemma 4.1 and Lemma 4.2, we have

n

 n

√√√√∣∣∣∣∣ρ1 − 2σ(G)
n

∣∣∣∣∣
∣∣∣∣∣ρ2 − 2σ(G)

n

∣∣∣∣∣ . . .
∣∣∣∣∣ρn − 2σ(G)

n

∣∣∣∣∣
 ≥ n

 n∑n
i=1

1
|ρi− 2σ(G)

n |



≥n

 n∑n
i=1

1
|ρi− 2σ(G)

n |
∑n

i=1

∣∣∣ρi − 2σ(G)
n

∣∣∣
 ≥ n

 n

n
∑n

i=1
1

|ρi− 2σ(G)
n |

∣∣∣ρi − 2σ(G)
n

∣∣∣


≥n

 n

n2∑n
i=1

∣∣∣ρi − 2σ(G)
n

∣∣∣
 ≥ 1∑n

i=1

(∣∣∣ρi − 2σ(G)
n

∣∣∣)k

≥ 1(∑n
i=1

(∣∣∣ρi − 2σ(G)
n

∣∣∣)2
) k

2
= 1(

2∑1≤i<j≤n(dij)2 +∑n
i=1 Tr2

i −4σ2(G)
n

) k
2
,

Hence, for k = 2, we arrive at (4.3). □
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5. Conclusions

In this paper, we have defined the distance signless Laplacian Estrada index, where
we have given some upper and lower bounds for DQ

EE(G) in terms of other graph
invariants. Also, we have obtained the distance signless Laplacian Estrada index
for some classes of graphs. Moreover, we derive some relations between DQ

EE(G)
and the distance signless Laplacian energy of G. It would be interesting to give an
expression for DQ

EE(G) in terms of the ordinary Estrada index in certain classes of
graphs. Alternatively, one could possibly consider the range of values for DQ

EE(G)
over some family of graphs of fixed order, for example, trees on n vertices.
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