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CERTAIN PROPERTIES OF APOSTOL-TYPE
HERMITE-BASED-FROBENIUS-GENOCCHI POLYNOMIALS

WASEEM A. KHAN1 AND DIVESH SRIVASTAVA1

Abstract. This paper is well designed to set-up some new identities related to
generalized Apostol-type Hermite-based-Frobenius-Genocchi polynomials and by
applying the generating functions, we derive some implicit summation formulae
and symmetric identities. Further a relationship between Array-type polynomi-
als, Apostol-type Bernoulli polynomials and generalized Apostol-type Frobenius-
Genocchi polynomials is also established.

1. Introduction

Let a, b, c ∈ R+, a ̸= b and x ∈ R. The generalized Apostol-Bernoulli, Euler
and Genocchi polynomials with the parameters are given by means of the following
generating function as follows (see [1–17]):

(1.1)
(

t

λbt − at

)α

cxt =
∞∑

n=0
B(α)

n (x; λ; a, b, c) tn

n! ,

where |λ| = 1,
∣∣∣t ln b

a

∣∣∣ < 2π,

(1.2)
( 2

λbt + at

)α

cxt =
∞∑

n=0
E(α)

n (x; λ; a, b, c) tn

n! ,

where |λ| = 1,
∣∣∣t ln b

a

∣∣∣ < π, and

(1.3)
( 2t

λbt + at

)α

cxt =
∞∑

n=0
G(α)

n (x; λ; a, b, c) tn

n! ,
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where |λ| = 1,
∣∣∣t ln b

a

∣∣∣ < π.
It is clear from (1.1), (1.2) and (1.3) that B(α)

n (x; λ; 1, e, e) = Bn(x; λ),
E(α)

n (x; λ; 1, e, e) = En(x; λ) and G(α)
n (x; λ; 1, e, e) = Gn(x; λ).

Recently, Kurt et al. [3] and Simsek (see [13, 14]) introduced the Apostol type
Frobenius-Euler polynomials defined as follows.

Let a, b, c ∈ R+, a ̸= b, x ∈ R. The generalized Apostol type Frobenius-Euler
polynomials are defined by means of the following generating function:

(1.4)
(

at − u

λbt − u

)α

cxt =
∞∑

n=0
H(α)

n (x; u, a, b, c, λ) tn

n! .

For x = 0 and α = 1 in (1.4), we get
at − u

λbt − u
=

∞∑
n=0

Hn(u, a, b; λ) tn

n! ,

where Hn(u, a, b; λ) denotes the generalized Apostol type Frobenius-Euler numbers
(see [14, 16,17]).

On setting a = 1, b = e, λ = 1 in (1.4), the result reduces to( 1 − u

et − u

)α

ext =
∞∑

n=0
H(α)

n (x; u) tn

n! , α ∈ Z,

where H(α)
n (x; u) is called classical Frobenius-Euler polynomial of order α.

Observe that H(1)
n (x, u) = Hn(x, u) which denotes the Frobenius-Euler polynomials

and H(α)
n (0; u) = H(α)

n (u), which denotes the Frobenius-Euler numbers of order α.
Hn(x; −1) = En(x), which denotes the Euler polynomials, (see [7, 11, 15]).

Very recently, Yaşar and Özarslan [17] introduced Frobenius-Genocchi polynomials
defined by means of the following generating relation:

(1.5) (1 − λ)t
et − λ

ext =
∞∑

n=0
GF

n (x; λ) tn

n! .

Taking λ = −1 in (1.5), we get Genocchi polynomials
2t

et + 1ext =
∞∑

n=0
Gn(x) tn

n! , |t| < π.

Pathan and Khan [10] introduced the generalized Hermite-based Bernoulli polyno-
mials HB(α)

n (x, y) of two variables defined by(
t

et − 1

)α

ext+yt2 =
∞∑

n=0
HB(α)

n (x, y) tn

n! ,

which is essentially a generalization of Bernoulli numbers, Bernoulli polynomials,
Hermite polynomials and Hermite-Bernoulli polynomials HBn(x, y) introduced by
Dattoli et al. [2, page 386, (1.6)] in the form(

t

et − 1

)
ext+yt2 =

∞∑
n=0

HBn(x, y) tn

n! .
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Definition 1.1. Let c > 0. The generalized 2-variable 1-parameter Hermite Kamp’e
de Feriet polynomials Hn(x, y; c) polynomials for nonnegative integer n are defined by

(1.6) cxt+yt2 =
∞∑

n=0
Hn(x, y; c) tn

n! .

This is an extended 2-variable Hermite Kampé de Fériet polynomials Hn(x, y) defined
by (see [5–7,10])

ext+yt2 =
∞∑

n=0
Hn(x, y) tn

n! .

Note that Hn(x, y; e) = Hn(x, y). In order to collect the powers of t we expand the
left hand side of (1.6) to the representation

(1.7) Hn(x, y; c) = n!
[ n

2 ]∑
j=0

(ln c)n−2jxn−2jyj

j!(n − 2j)! .

Simsek [13] constructed the λ-Stirling type number of second kind S(n, ν; a, b; λ)
by mean of the following generating function:

(1.8)
∞∑

n=0
S(n, ν; a, b; λ) tn

n! = (λbt − at)ν

ν! ,

and the generalized array type polynomials is defined by Simsek (see [13, page 6,
(3.1)])

∞∑
n=0

Sn
ν (x; a, b; λ) tn

n! = (λbt − at)ν

ν! bxt.

Kurt and Simsek [3] introduced the polynomial Yn(x; λ; a), which is given by the
following generating function:

(1.9) t

λat − 1axt =
∞∑

n=0
Yn(x; λ; a) tn

n! , a ≥ 1.

We also note that for x = 0, above equation gives a relation as Yn(0; λ; a) = Yn(λ; a)
(see [13, 14]). Again if we set x = 0 and a = 1 in (1.9), we get

t

λ − 1 =
∞∑

n=0
Yn(0, λ; 1) tn

n! .

The paper is organized as follows. In Section 2, we introduce generalized Apostol-
type Hermite-based Frobenius-Genocchi polynomials HG(α)

n (x, y; u, a, b, c; λ) and their
properties. In Section 3, we derive some implicit summation formulae for general-
ized Apostol-type Hermite-based Frobenius-Genocchi polynomials. In Section 4, we
give general symmetry identities by using different analytical means and applying
generating functions and last Section 5, we find relation between λ-type Stirling poly-
nomials, Apostol-Bernoulli polynomials and generalized Apostol-type Hermite-based
Frobenius-Genocchi polynomials.
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2. Generalized Apostol-Type Hermite-Based-Frobenius-Genocchi
Polynomials HG(α)

n (x, y; u; a, b, c; λ)

The intent of this section is to define the generalized Apostol-type Hermite-based-
Frobenius-Genocchi polynomials HG(α)

n (x, y; u; a, b, c; λ) with suitable properties.

Definition 2.1. For a, b, c ∈ R+, a ≠ b, x, y ∈ R, the generalized Apostol-type
Hermite-based Frobenius-Genocchi polynomials HG(α)

n (x, y; u; a.b.c; λ) of order α are
defined by means of the following generating function:

(2.1)
(

(at − u)t
λbt − u

)α

cxt+yt2 =
∞∑

n=0
HG(α)

n (x, y; u; a, b, c; λ) tn

n! .

Remark 2.1. For y = 0 (2.1) reduces to(
(at − u)t
λbt − u

)α

cxt =
∞∑

n=0
G(α)

n (x; u; a, b, c; λ) tn

n! ,

where G(α)
n (x; u; a, b, c; λ) is known as Apostol-type Frobenius Genocchi polynomials

of order α (see [8]).

Remark 2.2. On setting x = y = 0 and α = 1 in (2.1), we have(
(at − u)t
λbt − u

)
=

∞∑
n=0

Gn(u; a, b; λ) tn

n! ,

where Gα
n(u; a.b.c; λ) denotes the generalized Apostol-type Frobenius-Genocchi num-

bers.

Remark 2.3. If we set a = 1, b = c = e, u = −1, then (2.1) immediately reduces to
Hermite-based Genocchi polynomials (see [6, 7])( 2t

λet + 1

)α

ext =
∞∑

n=0
HG(α)

n (x, y; λ), |t| < π.

Now we give some properties of the generalized Apostol-type Hermite-based- Frobe-
nius Genocchi polynomials HG(α)

n (x, y; u; a, b, c; λ), which are stated in terms of theo-
rems as follows.

Theorem 2.1. For a, b, c ∈ R+, a ≠ b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the following
result holds true

(2u − 1)
n∑

r=0

(
n

r

)
HGr(x, y; u; a, b, c; λ)Gn−r(z; 1 − u; a, b, c; λ)(2.2)

=n(u − 1)HGn−1(x + z, y; u; a, b, c; λ) + nu HGn−1(x + z, y; 1 − u, a, b, c; λ)

+
n∑

r=0

(
n

r

)
(ln a)n−r

HGr(x + z, y; u; a, b, c; λ)

−
n∑

r=0

(
n

r

)
(ln a)n−r

HGr(x + z, y; 1 − u, a, b, c; λ).
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Proof. In order to prove (2.2), for α = 1, we get

(2u − 1)
(

(at − u)t
λbt − u

)
cxt+yt2

(
(at − (1 − u))t
λbt − (1 − u)

)
czt(2.3)

=t2(at − u)(at − (1 − u))c(x+z)t+yt2
[

1
λbt − u

− 1
λbt − (1 − u)

]
.

Employing the result of (2.1), (2.3) reduces as

(2u − 1)
∞∑

r=0
HGr(x, y; u; a, b, c; λ)tr

r!

∞∑
n=0

Gn(z; 1 − u; a, b, c; λ) tn

n!(2.4)

=(at − (1 − u)t)
∞∑

r=0
HGr(x + z, y; u, a, b, c; λ)tr

r! − (at − u)t

×
∞∑

r=0
HGr(x + z, y; 1 − u; a, b, c; λ)tr

r! .

Using [15, page 100, (1)] (2.4) reduces to

(2u − 1)
∞∑

n=0

n∑
r=0

(
n

r

)
HGr(x, y; u; a, b, c; λ) HGn−r(z, y; 1 − u; a, b, c; λ) tn

n!

(2.5)

=(at − (1 − u)t)
∞∑

r=0
HGr(x + z, y; u, a, b, c; λ)tr

r! − (at − u)t

×
∞∑

r=0
HGr(x + z, y; 1 − u; a, b, c; λ)tr

r!

=(u − 1)
∞∑

r=0
HGr(x + z, y; u, a, b, c; λ)tr+1

r! + u
∞∑

r=0
HGr(x + z, y; 1 − u, a, b, c; λ)tr+1

r!

+
∞∑

n=0

n∑
r=0

(
n

r

)
(ln a)n−r

HGr(x + z, y; u; a, b, c; λ) tn

n!

−
∞∑

n=0

n∑
r=0

(
n

r

)
(ln a)n−r

HGr(x + z, y; 1 − u; a, b, c; λ) tn

n! .

On comparing the coefficient of tn from the above equation, we arrive at our desired
result. □

Theorem 2.2. For a, b, c ∈ R+, a ≠ b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the following
relationship holds true

(2.6)
n∑

k=0
HG

(−α)
k (−x, −y; u; a, b, c; λ) HG

(α−m)
(n−k) (x, y; u; a.b.c; λ) = G(−m)

n (u; a, b; λ).
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Proof. In order to prove (2.6), replacing x with −x, y with −y and α with −α in
(2.1), we get get

(2.7)
∞∑

n=0
HG(−α)

n (−x, −y; u; a, b, c; λ) tn

n! =
(

(at − u)t
λbt − u

)(−α)

c−(xt+yt2).

Making use of the above equation in the left-hand side of (2.6), we can write
∞∑

k=0
HG

(−α)
k (−x, −y; u; a, b, c; λ) tk

k!

∞∑
n=0

HG(α−m)
n (x, y; u; a, b, c; λ) tn

n! =
(

(at − u)t
λbt − u

)−m

.

We can write the above equation as
∞∑

k=0
HG

(−α)
k (−x, −y; u; a, b, c; λ) tk

k!

∞∑
n=0

HG(α−m)
n (x, y; u; a, b, c; λ) tn

n!

=
∞∑

n=0
G(−m)

n (u; a, b; λ) tn

n! .

Using [15, page 100, (1)] in the above equation and then comparing the coefficients
of tn, we immediately come to our desired result (2.6). □

Theorem 2.3. For n ≥ 0, p, q ∈ R, the following formula for generalized Apostol
type Frobenius-Genocchi-Hermite polynomials holds true

HG(α)
n (px, qy; u, a, b, c; λ) =

n∑
k=0

n!
(n − k)!HG

(α)
n−k(x, y; u, a, b, c; λ)

×
[ k

2 ]∑
j=0

((p − 1)x ln c)k−2j((q − 1)y ln c)j

(k − 2j)!j! .

Proof. Rewrite the generating function (2.1), we have
∞∑

n=0
HG(α)

n (px, qy; u, a, b, c; λ) tn

n!

=
(

(at − u)t
λbt − u

)α

cxt+yt2
c(p−1)xtc(q−1)yt2

=
( ∞∑

n=0
HG(α)

n (x, y; u, a, b, c; λ) tn

n!

)( ∞∑
k=0

((p − 1)x ln c)k tk

k!

)
×

 ∞∑
j=0

((q − 1)y ln c)j t2j

j!


=
( ∞∑

n=0
HG(α)

n (x, y; u, a, b, c; λ) tn

n!

) ∞∑
k=0

∞∑
j=0

((p − 1)x ln c)k((q − 1)y ln c)j tk+2j

k!j!

 .

Replacing k by k − 2j in above equation, we have
∞∑

n=0
HG(α)

n (px, qy; u, a, b, c; λ) tn

n! =
( ∞∑

n=0
HG(α)

n (x, y; u, a, b, c; λ) tn

n!

)
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×

 ∞∑
k=0

[ k
2 ]∑

j=0
((p − 1)x ln c)k−2j((q − 1)y ln c)j tk

(k − 2j)!j!


=

∞∑
n=0

∞∑
k=0

[ k
2 ]∑

j=0
HG(α)

n (x, y; u, a, b, c; λ)((p − 1)x ln c)k−2j((q − 1)y ln c)j tn+k

(k − 2j)!j!n! .

Again replacing n by n − k in above equation, we have
∞∑

n=0
HG(α)

n (px, qy; u, a, b, c; λ) tn

n!

=
∞∑

n=0

n∑
k=0

[ k
2 ]∑

j=0
HG

(α)
n−k(x, y; u, a, b, c; λ)((p − 1)x ln c)k−2j((q − 1)y ln c)j

× tn

(k − 2j)!j!(n − k)! .

Finally, equating the coefficients of tn on both sides, we acquire the result. □

Remark 2.4. By taking c = e in Theorem 2.3, we get the following corollary.

Corollary 2.1. For p, q ∈ R, x, y ∈ C and n ≥ 0, we have

HG(α)
n (px, qy; u, a, b; λ)

=
n∑

k=0

n!
(n − k)!HG

(α)
n−k(x, y; u, a, b; λ)

[ k
2 ]∑

j=0

((p − 1)x)k−2j((q − 1)y)j

(k − 2j)!j! .

Theorem 2.4. For n ≥ 0, p, q ∈ R and x, y ∈ C, we have

HG(α)
n (px, qy; u, a, b, c; λ)(2.8)

=
n∑

k=0

(
n

k

)
HG

(α)
n−k(x, y; u, a, b, c; λ)Hk((p − 1)x, (q − 1)y; c).

Proof. In order to proof above result, we set x as px and y as qy in (2.1),
∞∑

n=0
HG(α)

n (px, qy; u, a, b, c; λ) tn

n! =
(

(at − u)t
λbt − u

)α

cxt+yt2
c(p−1)xtc(q−1)yt2

=
∞∑

n=0
HG(α)

n (x, y; u, a, b, c; λ) tn

n!

∞∑
k=0

Hk((p − 1)x, (q − 1)y; c) tk

k! .

By assistance of [15] and then on comparing the coefficients of tn, we have arrive at
our result. □

Theorem 2.5. For n ≥ 0, p, q ∈ R and x, y ∈ C, we have

HG(α+β)
n (x + z, y + z; u, a, b, c; λ) =

n∑
k=0

(
n

k

)
HG

(α)
k (x, z; u; a, b, c; λ)
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× HG
(β)
n−k(z, y; u; a, b, c; λ),

HG(−α)
n (2x, 2y; u2; a2, b2, c2; λ2) =

n∑
k=0

(
n

k

)
HG

(−α)
k (x, y; u; a, b, c; λ)

× HH
(−α)
n−k (x, y; −u; a, b, c; λ).

Proof. Proof of these identities can be solved by making use of (2.1) and (1.5) with
some required calculations. □

3. Summation Formulae for Generalized Apostol-Type
Hermite-Based-Frobenius-Genocchi Polynomials

Here in this section, we provide the implicit formulae for generalized Apostol-type
Hermite-based-Frobinis-Genocchi polynomials.
Theorem 3.1. For a, b, c ∈ R+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the following
relation holds true

HG
(α)
k+l(z, y; u; a, b, c; λ) =

k,l∑
n,m=0

(
l

m

)(
k

n

)
(z − x)m+n(ln c)m+n(3.1)

× HG
(α)
k−n+l−m(x, y; u; a, b, c; λ).

Proof. Replacing t by t + w in (2.1) and then using ([15], page 52, (2)), in the above
equation, we get

(3.2)
(

(a(t+w) − u)(t + w)
λbt+w − u

)α

cy(t + w)2 = c−x(t+w)
∞∑

k,l=0
HG

(α)
k+l(x, y; u; a, b, c; λ) tk

k!
wl

l! .

Replacing x by z and then equating the obtained equation from the above equation
(3.2), we get

c(z−x)(t+w)
∞∑

k,l=0
HG

(α)
k+l(x; u; a, b, c; λ)) tk

k!
wl

l! =
∞∑

k,l=0
HG

(α)
k+l(z, y; u; a, b, c; λ)) tk

k!
wl

l! .

Expanding the exponent part of left-hand side, the above equation converts as
∞∑

N=0

(ln c)[(z − x)(t + w)]N
N !

∞∑
k,l=0

HG
(α)
k+l(x, y; u; a, b, c; λ)) tk

k!
wl

l!(3.3)

=
∞∑

k,l=0
HG

(α)
k+l(z, y; u; a, b, c; λ)) tk

k!
wl

l! .

On comparing the coefficients of equal powers of t and w after taking the reference
of [15, page 52, (2) and page 100, (1)] to the above equation, we attain our required
result. □

Corollary 3.1. For l = 0, the above result reduces to

HG
(α)
k (z, y; u; a, b, c; λ) =

k∑
n=0

(
k

n

)
(z − x)n(ln c)n

HG
(α)
k−n(x, y; u; a, b, c; λ).
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Theorem 3.2. For a, b, c ∈ R+, a ≠ b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, n ≥ 0, the
following relation holds true

HG(α)
n (x, y; u; a, b, c; λ) =

n∑
m=0

(
n

m

)
G

(α)
n−m(u; a, b; λ) Hm(x, y; c).

Proof. From equation (2.1) and (1.7), we have
∞∑

n=0
HG(α)

n (x, y; u; a, b, c; λ) tn

n! =
(

(at − u)t
λbt − u

)α

cxt+yt2

=
∞∑

n=0
G(α)

n (u; a, b) tn

n!

∞∑
m=0

Hm(x, y; c) tm

m! .

On using [15, page 100, (1)], and then comparing the coefficient of equal powers, we
have the required result. □

Theorem 3.3. For a, b, c ∈ R+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the relation
holds true

HG(α)
n (x + 1, y; u; a, b, c; λ) =

n∑
m=0

(
n

m

)
(ln c)n−m

HG(α)
m (x, y; u; a, b, c; λ).

Proof. Replacing x by x + 1, (2.1) reduces to
∞∑

n=0
HG(α)

n (x + 1, y; u; a, b, c; λ) tn

n! =
(

(at − u)t
λbt − u

)α

c(x+1)t+yt2

=
(

(at − u)t
λbt − u

)α

c(xt+yt2)ct

=
∞∑

m=0
HG(α)

m (x, y; u; a, b, c; λ) tm

m!

∞∑
n=0

(ln c)n tn

n! .

Using [15, page 100, (1)] and on comparing coefficient of tn, we have the required
result. □

Theorem 3.4. For a, b, c ∈ R+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the relation
holds true

HG(α+1)
n (x, y; u; a, b, c; λ) =

n∑
m=0

(
n

m

)
Gn−m(u; a, b; λ)HG(α)

m (x, y; u; a, b; λ).

Proof. Replacing α by α + 1 in (2.1), we have(
(at − u)t
λbt − u

)α+1

cxt+yt2 =
(

(at − u)t
λbt − u

) (
(at − u)t
λbt − u

)α

cxt+yt2

=
∞∑

n=0
Gn(u; a, b; λ) tn

n!

∞∑
m=0

HG(α)
m (x, y; u; a, b, c; λ) tm

m! .

Making use of [15, page 100, (1)] and then on comparing coefficient of tn, we lead to
our required result. □
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Theorem 3.5. For a, b, c ∈ R+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z, the relation
holds true

HG(α)
n (y, x; u; a, b, c; λ) =

[ n
2 ]∑

k=0

n!
k! (n − 2k)!G

(α)
n−2k(y, u; a, b, c; λ)(x ln c)k.

Proof. Interchanging x and y in (2.1), we have(
(at − u)t
λbt − u

)α

cyt+xt2 =
∞∑

n=0
HG(α)

n (y, x; u; a, b, c; λ) tn

n!

=
∞∑

n=0
G(α)

n (y; u; a, b, c; λ) tn

n!

∞∑
k=0

(x ln c)k t2k

k! .

Making use of [15, page 100, (3))] and then on comparing coefficient of tn, we lead to
our required result. □

4. Symmetric Identities

In this section, we establish symmetric identities for generalized Apostol type
Hermite-based Frobenius-Genocchi polynomials by applying the generating function
(2.1). Such type of identities have been introduced by many authors namely Khan
[6], Khan et al. [5, 7] and Pathan and Khan [10–12].

Theorem 4.1. Let a, b, c > 0, a ̸= b, x, y ∈ R and n ≥ 0, the following relation holds
true

n∑
k=0

(
n

k

)
bkan−k

HG
(α)
n−k(bx, b2y; u; A, B, c; λ)HG

(α)
k (ax, a2y; u; A, B, c; λ)(4.1)

=
n∑

k=0

(
n

k

)
akbn−kG

(α)
n−k(ax, a2y; u; A, B, c; λ)HG

(α)
k (bx, b2y; u; A, B, c; λ).

Proof. In order to proof (4.1), we suppose a function H(t) as

H(t) =
[(

(Aat − u)at

λBat − u

)(
(Abt − u)bt
λBbt − u

)]α

c2(abxt+a2b2yt2).

The above expression is symmetric in a and b hence we can write above equation into
two ways as follows:

H(t) =
∞∑

n=0
HG(α)

n (bx, b2y; u; A, B, c; λ)(at)n

n!

∞∑
k=0

HG
(α)
k (ax, a2y; u; A, B, c; λ)(bt)k

k!

(4.2)

=
∞∑

n=0

n∑
k=0

(
n

k

)
bkan−k

HG
(α)
n−k(bx, b2y; u; A, B, c; λ)HG

(α)
k (ax, a2y; u; A, B, c; λ) tn

n! .
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Again we can write

H(t) =
∞∑

n=0
HG(α)

n (ax, a2y; u; A, B, c; λ)(bt)n

n!

∞∑
k=0

HG
(α)
k (bx, b2y; u; A, B, c; λ)(at)k

k!

(4.3)

=
∞∑

n=0

n∑
k=0

(
n

k

)
akbn−k

HG
(α)
n−k(ax, a2y; u; A, B, c; λ)HG

(α)
k (bx, b2y; u; A, B, c; λ) tn

n! .

Comparing (4.2) and (4.3), we arrive at our desired result. □

Corollary 4.1. For α = 1 in Theorem 4.1, we have the following symmetric identity:
n∑

k=0

(
n

k

)
bkan−k

HGn−k(bx, b2y; u; A, B, c; λ)HGk(ax, a2y; u; A, B, c; λ)

=
n∑

k=0

(
n

k

)
akbn−k

HGn−k(ax, a2y; u; A, B, c; λ)HGk(bx, b2y; u; A, B, c; λ).

Theorem 4.2. Let a, b, c > 0, a ≠ b, x, y ∈ R and n ≥ 0, the following relation holds
true:

n∑
k=0

(
n

k

)
a−1∑
i=0

b−1∑
j=0

(−λ)(i+j)bkan−k
HG

(α)
n−k

(
bx + b

a
i + j, b2y; u; A, B, c; λ

)

× G
(α)
k (az, 0; u; A, B, c; λ)

=
n∑

k=0

b−1∑
i=0

a−1∑
j=0

(−λ)(i+j)
(

n

k

)
akbn−k

HG
(α)
n−k

(
ax + a

b
i + j, a2y; u; A, B, c; λ

)
× G

(α)
k (bz, 0; u; A, B, c; λ).

Proof. In order to prove above result, we suppose I(t) is

I(t) =
[(

(Aat − u)at

λBat − u

)(
(Abt − u)bt
λBbt − u

)]α (1 + λ(−1)a+1cabt)2

(λcat + 1)(λcbt + 1)cab(x+z)t+a2b2yt2

=
(

(Aat − u)at

λBat − u

)α

cabxt+a2b2yt2
a−1∑
i=0

(−λ)icibt

(
(Abt − u)bt
λBbt − u

)α

cabzt
b−1∑
j=0

(−λ)jcjat.

Using [15, page 100, (1)] we have

I(t) =
∞∑

n=0

n∑
k=0

(
n

k

)
a−1∑
i=0

b−1∑
j=0

(−λ)i+jan−kbk
HG

(α)
n−k(bx + b

a
i + j, b2y; u; A, B, c; λ)

× G
(α)
k (az; u; A, B, c; λ) tn

n! .

On the other hand, we have

I(t) =
∞∑

n=0

n∑
k=0

(
n

k

)
b−1∑
i=0

a−1∑
j=0

(−λ)i+jbn−kak
HG

(α)
n−k

(
ax + a

b
i + j, a2y; u; A, B, c; λ

)
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× G
(α)
k (bz; u; A, B, c; λ) tn

n! .

On comparing both the results, we have the required relation. □

5. Relation Between λ-Type Striling Numbers of Second Kind,
Apostol-Bernoulli Polynomial and Generalized Apostol-Type

Hermite-Based-Frobenius-Genocchi Polynomial

This section deals with some relationships in between Array-type polynomials,
Apostol-Bernoulli polynomial and generalized Apostol-type Hermite-based Frobenius-
Genocchi polynomial.

Theorem 5.1. For a, b, c ∈ R+, a ̸= b, x, y ∈ R, λ ∈ C, k ∈ N, α ∈ Z and ν be an
integer, then we have

HG
(−ν)
n−2ν(x, y; u; a, b, b; λ) = (ν)!

(−n)2ν

n∑
k=0

l∑
m=0

(
m

k

)(
n

m

)
S

(
k, v, 1, b; λ

u

)
(5.1)

× Y
(ν)

m−k

(1
u

; a
)

Hl−m(x, y).

Proof. In order to proof above result, we replace of c with b and α with −ν in equation
(2.1), we get

∞∑
n=0

HG(−ν)
n (x, y; u; a, b, b; λ) tn

n! =
(

(at − u)t
λbt − u

)(−ν)

bxt+yt2
.

On arranging the above equation, we arrive at
∞∑

n=0
HG(−ν)

n (x, y; u; a, b, b; λ) tn

n! = (ν!)

(
λ
u
bt − 1

)ν
bxt+yt2

(ν!)
(

at

u
− 1

)ν
tν

tν

tν
.

By assistance of (1.8) and (1.9), above equation reduces to
∞∑

n=0
HG(−ν)

n (x, y; u; a, b, b; λ)tn+2ν

n! =(ν!)
∞∑

k=0
S

(
n, v, 1, b; λ

u

)
tk

k!(5.2)

×
∞∑

m=0
Y (ν)

m

(1
u

, 1; a
)

tm

m!

∞∑
l=0

Hl(x, y; b)tl

l! .

Using Lemma [15, page 100, (1)] we get
∞∑

n=0
HG(−ν)

n (x, y; u; a, b, b; λ)tn+2ν

n! =ν!
∞∑

l=0

m∑
k=0

l∑
m=0

(
m

k

)(
l

m

)
S

(
k, v, 1, b; λ

u

)

× Y
(ν)

m−k

(1
u

, 1; a
)

Hl−m(x, y; b)tl

l! .

Using [15, page 23, (22) and (23)] and replacing l by n, and then by comparing the
coefficients of tn we arrive at our required result. □
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Theorem 5.2. For a, b, c ∈ R+, a ̸= b, x ∈ R, λ ∈ C, k ∈ N, α ∈ Z and ν be an
integer, we have

HG
(−ν)
n−2ν(x, y; u; a, b, b; λ) = (ν)!

(−n)2ν

n∑
k=0

(
n

k

)
S

(
k, ν, 1, b,

λ

u

)
× HB

(ν)
n−k

(
x, y,

1
u

, 1, a, b
)

.

Proof. Making replacement of c with b and α with −ν in (2.1), we get
∞∑

n=0
HG(−ν)

n (x, y; u; a, b, b; λ) tn

n! =
(

(at − u)t
λbt − u

)(−ν)

bxt+yt2
.

On arranging the above equation, we arrive at
∞∑

n=0
HG(−ν)

n (x, y; u; a, b, b; λ) tn

n! = (ν!)

(
λ
u
bt − 1

)ν
bxt+yt2

(ν!)
(

at

u
− 1

)ν
tν

tν

tν
.

Using (1.8) and (1.1), the above equation converts into
∞∑

n=0
HG(−ν)

n (x, y; u; a, b, b; λ)tn+2ν

n! =(ν!)
∞∑

k=0
S

(
k, ν, 1, b; λ

u

)
tk

k!

×
∞∑

n=0
HB(ν)

n

(
x, y,

1
u

, 1, a, b
)

tn

n! .

Using [15, page 100, (1)] right-hand side, it converts as follows
∞∑

n=0
HG(−ν)

n (x, y; u; a, b, b; λ)tn+2ν

n! =ν!
∞∑

n=0

n∑
k=0

(
n

k

)
S

(
k, ν, 1, b,

λ

u

)

× HB
(ν)
n−k

(
x, y,

1
u

, 1, a, b
)

tn

n!! .

Using [15, page 23, (22) and (23)] and replacing l with n, then by comparing the
coefficients of tn, we arrive at our required result. □
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