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CONNECTEDNESS OF THE CUT SYSTEM COMPLEX ON
NONORIENTABLE SURFACES

FATEMA ALI1,2 AND FERIHE ATALAN1

Abstract. Let N be a compact, connected, nonorientable surface of genus g with
n boundary components. In this note, we show that the cut system complex of N is
connected for g < 4 and disconnected for g ≥ 4. We then define a related complex
and show that it is connected for g ≥ 4.

1. Introduction

Complexes of curves and cut system complexes of surfaces are fundamental geo-
metric objects in geometric topology. Let S be a compact, connected, orientable or
nonorientable surface of genus g ≥ 1 with n boundary components. Complexes of
curves, denoted by C(S), have been introduced by Harvey in [3, 4]. Other geomet-
ric objects on surfaces include the cut system complex introduced by Hatcher and
Thurston in [5]. They have played an ever increasing role since then.

In this note, we show that the cut system complexes of nonorientable surfaces are
connected for g < 4 and disconnected for g ≥ 4. We then introduce a related complex
and show that it is connected for g ≥ 4.

.

2. Preliminaries

Let a be a simple closed curve on S and let Sa denote the surface obtained by
cutting S along a. We call a on the surface S nonseparating if Sa is connected, and
separating otherwise. We denote a curve or its isotopy class by the same notation
throughout this article. Let Σ be a compact, connected, orientable surface of genus g
with n boundary components. Let us consider collections of g disjoint nonseparating
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simple closed curves a1, a2, . . . , ag on Σ, whose complement Σ \ (a1 ∪ · · · ∪ ag) is a
sphere with 2g + n boundary components. The collection of their isotopy classes is
called a cut system on Σ. Let ⟨a1, a2, . . . , ag⟩ be a cut system on Σ. Assume that
for some k, a′

k is a nonseparating simple closed curve transversely intersecting ak at
exactly one point and disjoint from all ai for i ̸= k. Then if we replace ak by a′

k in the
cut system, we obtain another cut system on Σ. This operation of replacing curves is
called an elementary move. There are three special types of paths which is described
in [5]. These special types of paths play an important role in the construction of
the cut system complex. The cut system complex of a surface Σ is a cell complex
of dimension 2. Each cut system is a 0-cell (vertex) of this complex. If two cells
are related by an elementary move then these two 0-cells are joined by a 1-cell (an
unoriented edge) corresponding to this move. Now, we have a graph, in other words;
a 1-dimensional cell complex containing the 0-cells and the 1-cells. Finally, we attach
2-cells to this graph along the boundaries resulting from the three special types of
paths to get the complex.

Hatcher and Thurston showed that the cut system complex of an orientable surface
is connected in [5]. Later, Wajnryb proved the same result by elementary techniques
in [6].

An analogous complex for nonorientable surfaces seems to be the following. Let N
be a compact, connected nonorientable surface of genus g with n boundary components.
If the regular neighborhood of the curve a is a Möbius band or an annulus, then we
say that a is one-sided or two-sided, respectively. We note that all one-sided simple
closed curves on N are nonseparating. In addition, there are two topological types of
one-sided simple closed curves on nonorientable surfaces of odd genus g ≥ 3. Let a be
a one-sided simple closed curve. We call a a one-sided essential simple closed curve if
either g = 1 or g ≥ 2 and the surface Na is nonorientable. Otherwise, we say that a
is a one-sided characteristic simple closed curve. A cut system on the nonorientable
surface N is defined by taking a family of pairwise disjoint one-sided essential simple
closed curves. Explicitly, let {a1, a2, . . . , ag} be a collection of pairwise disjoint one-
sided essential simple closed curves on the surface N . Then, the collection of their
isotopy classes ⟨a1, a2, . . . , ag⟩ is said to be a cut system if the surface obtained from
N by cutting along all ai in the collection is a sphere with g +n boundary components.
Let ⟨a1, a2, . . . , ai−1, ai, ai+1, . . . , ag⟩ be a cut system on the surface N . Let a′

i be a
one-sided essential simple closed curve on the surface N disjoint from ak for k ̸= i,
1 ≤ i ≤ g and such that it intersects ai at one point and does not intersect other
one-sided essential simple closed curves in the collection {a1, a2, . . . , ag}. Similar to
the orientable case, if we change ai by a′

i in the collection, and we get a new cut
system ⟨a1, a2, . . . , ai−1, a′

i, ai+1, . . . , ag⟩. This operation, introduced by Ashiba in [1],
is called an elementary move. Also, the cut system complex, denoted by O(N), of
a nonorientable surface is described in a similar fashion to the orientable case. As
we will show in the next section, unfortunately this complex is not connected for the
genus g ≥ 4.
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3. Main Theorem

In this section, firstly, we will explain below why O(N) is not connected for g ≥ 4.
Let v1 = ⟨d1, a2, . . . , ag⟩ and v2 = ⟨d2, a2, . . . , ag⟩ be vertices of the complex which
are connected by an edge. Let N̄ denote the surface N whose holes are filled with
discs. Since d1 and d2 intersect transversally once and they are disjoint from all
ai’s we see that the homology classes of d1 and d2 are the same. This is because
in the surface N̄ both sums of the homology classes [d1] + [a2] + · · · + [ag] and
[d2] + [a2] + · · · + [ag] are the Poincaré dual to the first Stiefel Whitney class so that
[d1] + [a2] + · · · + [ag] = [d2] + [a2] + · · · + [ag] and thus [d1] = [d2]. As a conclusion,
we see that if two vertices of the complex are connected by an edge path then the
homology classes of the isotopy classes in these vertices are pairwise identical in N̄ .
In other words, if two vertices have a non-common homology class represented by the
isotopy classes contained in them then these two vertices are not connected by an
edge path. Such isotopy classes can be found for any g ≥ 4, hence, the cut system
complex cannot be connected in that case.

The above explanation raises the following question.
Question. What if we take g − 1 pairwise disjoint one-sided essential simple closed
curves {a1, a2, . . . , ag−1} on N as vertices, would the corresponding cut system complex
made of these vertices be connected?

The answer is still negative. Indeed, if v1 = ⟨d1, a2, . . . , ag−1⟩ and
v2 = ⟨d2, a2, . . . , ag−1⟩ are vertices of the complex, which are connected by an edge
then cutting N along all ai’s, we see that d1 and d2 are two one-sided curves inside a
holed Klein Bottle intersecting transversally at one point. Hence again the homology
classes [d1] and [d2] must coincide in N̄ . Therefore, the cut system complex still is
not connected.

As a result of these observations, we have the following results.

Theorem 3.1. Let N be a nonorientable surface of genus g with n holes, where g < 4.
Then the cut system complex O(N) is connected.

Let us take g − 2 pairwise disjoint one-sided essential simple closed curves
{a1, a2, . . . , ag−2} on N as vertices and let X(N) denote the corresponding cut system
complex made of these vertices. We call it partial cut system complex.

Theorem 3.2. Let N be a nonorientable surface of genus g with n holes, where g ≥ 4.
Then the partial cut system complex X(N) is connected.

The idea of the proofs is that any two vertices are connected by an edge path in
the complex. We use Wajnryb’s technique and follow his proof. The main ingredient
used in the proof is the following proposition which is proved by Atalan and Korkmaz
in [2].

Proposition 3.1. Let N be a nonorientable surface of genus g with n boundary
components. Let d1 and d2 be two one-sided essential simple closed curves on the
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surface N such that i(d1, d2) = k, where k ≥ 2. In this case, there is a one-sided
essential simple closed curve d such that i(d, d1) < k and i(d, d2) < k.

Proof of Theorem 3.1. Let g = 1. In this case, a cut system (on the surface N) con-
tains an isotopy class of a single curve. If two distinct one-sided curves intersect at
one point, we connect them by an edge. Since any two essential one-sided curves on
a genus one nonorientable surface intersect, using induction it follows from Proposi-
tion 3.1 that any two one-sided essential curves can be joined by an edge path in the
cut system complex O(N).

Let g = 2. Let v1 and v2 be any two vertices of the complex O(N). We will show
that there exists an edge path P = (v1 = s1, s2, . . . , sk = v2) connecting v1 and v2.
There are two cases.

Case 1. Suppose that the vertices v1 and v2 have one isotopy class of one-sided
essential simple closed curve in common, say d. Let us cut the surface N along the
curve d. The collection of the remaining one-sided essential simple closed curves
constitute two vertices of the cut system complex on the obtained surface of genus
one. We have showed that the complex O(N) is connected for g = 1. So, they can be
connected by a path. Including this common curve d to each of the vertices of this
path we obtain a path in O(N) connecting v1 to v2.

Case 2. Suppose that the vertices v1 and v2 do not have any common isotopy class
of one-sided essential simple closed curves. Let d1 and d2 be two different isotopy
classes of one-sided essential simple closed curves on N such that v1 and v2 contain d1
and d2, respectively. Then, we need to show that there exists an edge path connecting
v1 and v2. To prove this, as in the proof of Lemma 17 in [6], we will use induction on
i(d1, d2) = n.

There are three subcases.
Subcase (i). Let i(d1, d2) = 0. Then there is a vertex u containing both one-sided

essential curves d1 and d2. Hence, the vertex u is connected to v1 and v2 as in Case 1.
Subcase (ii). Let i(d1, d2) = 1. The regular neighborhood of d1 ∪ d2 is a two-holed

real projective plane. Let us denote Nd1∪d2 the surface obtained by cutting N along
d1 and d2. Since g = 2, Nd1∪d2has necessarily two components, one of which is a
nonorientable surface of genus one, so that we can find a one-sided essential simple
closed curve disjoint from d1 and d2, say e. Now, we can find two vertices w1 and w2
in the complex O(N) which are joined by an edge and such that w1 and w2 contain
d1 and d2, respectively. In other words, w1 = ⟨d1, e⟩ and w2 = ⟨d2, e⟩ are connected
by an edge. Finally, we join v1 to w1 and v2 to w2 as in Case 1. Therefore, we can
connect v1 and v2.

Subcase (iii). Let i(d1, d2) = n > 1. By Proposition 3.1, there is a one-sided
essential simple closed curve d such that i(d1, d) < n and i(d2, d) < n. We choose a
vertex u containing d. By induction on n, we can connect the vertex u to v1 and v2
in the cut system complex O(N).
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For the case g = 3 the proof is the same as for the case g = 2 except the Subcase
(ii), which we include below.

Subcase (ii). Let i(d1, d2) = 1. Since g = 3 and d1 and d2 are both essential, Nd1∪d2

has necessarily two components. Moreover, either both components are nonorientable
of genus one or one of the components is a nonorientable surface of genus two and
the other is a sphere with holes. Hence, in each case, we can find two disjoint one-
sided essential simple closed curves e1 and e2 that they are both disjoint from d1 and
d2. Now, we can find two vertices w1 and w2 in the complex which are joined by
an edge and such that w1 and w2 contain d1 and d2, respectively. In other words,
w1 = ⟨d1, e1, e2⟩ and w2 = ⟨d2, e1, e2⟩ are connected by an edge. Finally, we join w1 to
v1 and v2 to w2 as in Case 1. Therefore, we can connect v1 and v2.

This completes the proof of the theorem. □

Proof of Theorem 3.2. We use induction on the genus of the surface N for g ≥ 4.
Let g = 4. As in the above proof, there are two cases.
Case 1. Assume that v1 and v2 have one isotopy class of one-sided essential curve

in common, say d. Let e and f be the other one-sided essential simple closed curves of
v1 and v2, respectively. In other words, let v1 = ⟨d, e⟩ and v2 = ⟨d, f⟩. We will show
that v1 is connected to v2 by an edge path. In this case, there are three possibilities.

• The one-sided essential curves e and f are disjoint. Then, since d is disjoint
from both e and f , and these all curves are one-sided essential, there is another
essential simple closed curve, say g, in the complement of d ∪ e ∪ f . Hence, we
can find an essential one-sided simple closed curve c representing Z2-homology
class [e] + [f ] + [g] such that c intersects each of e and f at only one point.
Thus, we obtain the required path.

• The one-sided essential curves e and f intersect at one point. Then there is
nothing to prove.

• The one-sided essential curves e and f intersect at least two points. Let us cut
the surface N along the curve d. We get a nonorientable surface of genus three,
say Nd, in which i(e, f) = k ≥ 2. First assume that the curves e and f are still
essential in Nd. Then, by Proposition 3.1, there is a one-sided essential simple
closed curve c such that i(e, c) < k and i(f, c) < k.

Now assume without loss of generality that the curve e is not essential in Nd. Hence
e is characteristic in Nd. Since f is one-sided and e is characteristic the integer k
must be odd. Take representatives for e and f and a push-off of f that intersects f
transversally at one point. Also a take a slight perturbation f ′ of the push-off. By
inspection we see that our curves must be as in the diagram at Figure 1.

This new curve f ′ has the same homology class as f . It has at most two components.
If it is connected then it, call it c, intersects f in one point and e in k −2 points. Since
k−2 is odd, c is still one-sided. If the f ′ is not connected, then by homology arguments
one of the components must be one-sided and the other one must be two-sided. The
one-sided component, call it c again, will intersect f in at most one point and e in at



26 F. ALI AND F. ATALAN

e

f ′ f

· · · · · ·

Figure 1.

most k − 2 points. The curve c may not be essential in Nd but certainly is essential
in N .

In particular, in all cases we have obtained a one-sided essential simple closed curve
c such that i(e, c) < k and i(f, c) < k. Finally, using an induction argument we obtain
two sequences of essential one-sided simple closed curves e = e0, e1, . . . , ej = c and
c = c0, c1, . . . , cs = f such that any two adjacent essential one-sided simple closed
curves in the sequences intersect once. Then the sequence e = e0, e1, . . . , ej = c =
c0, c1, . . . , cs = f gives the required path in X(N).

Case 2. Assume that the vertices v1 and v2 do not have any common isotopy class
of one-sided essential simple closed curves. Let d1 and d2 be two different isotopy
classes of one-sided essential simple closed curves on N such that v1 and v2 contain
d1 and d2, respectively. Then, we show that there exists an edge path connecting v1
and v2. To prove this, as in the proof of Lemma 17 in [6], we will use induction on
i(d1, d2) = n.

There are three subcases.
Subcase (i). Let i(d1, d2) = 0. Then, we can construct a vertex u = ⟨d1, d2⟩. Thus,

u is connected to v1 and v2 as in Case 1.
Subcase (ii). Let i(d1, d2) = 1. The regular neighborhood of d1 ∪ d2 is a two-holed

real projective plane. Then, there are two possibilities. One possibility is that Nd1∪d2

is a connected nonorientable surface of genus 1 (note that Nd1∪d2 cannot be connected
and orientable since both d1 and d2 are essential). Hence, we can find a one-sided
essential simple closed curve disjoint from d1 and d2. Again we can find two vertices
w1 and w2 containing d1 and d2, respectively, such that they are connected by an
edge. Hence, we join w1 to v1 and v2 to w2 as in Case 1. The other possibility is that
Nd1∪d2 is disconnected. We can notice that at least one component of Nd1∪d2 must
be nonorientable, so in this case we can also find a one-sided essential simple closed
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curve disjoint from d1 and d2, which allows to treat the disconnected case similarly.
Therefore, we can connect v1 and v2 by a path.

Subcase (iii). Let i(d1, d2) = n > 1. By Proposition 3.1, there is a one-sided
essential simple closed curve d such that i(d1, d) < n and i(d2, d) < n. Let us pick a
vertex u containing d. By induction on n, we can join u to v1 and v2.

Let g ≥ 5. By the induction hypothesis, we assume that the theorem holds for a
nonorientable surface of genus less than g. We will prove that the complex X(N) is
connected for a nonorientable surface of genus g. Let v1 and v2 be any two vertices of
the complex X(N). We will prove that these two vertices are connected by an edge
path.

Case 1. Suppose that v1 and v2 have one isotopy class of one-sided essential
curve in common, say d. Let us cut the surface N along the curve d. The collection
of the remaining one-sided essential simple closed curves constitute two vertices of
the cut system complex on the obtained surface of smaller genus. By the induction
hypothesis, they can be connected by a path. Including this common curve d to each
of the vertices of this path we obtain a path in X(N) connecting v1 to v2.

Case 2. Suppose that v1 and v2 do not have any common isotopy classes of one-
sided essential simple closed curves. Let d1 and d2 be two different isotopy classes of
one-sided essential simple closed curves on N such that v1 and v2 contain d1 and d2,
respectively. To prove the existence of an edge path joining v1 and v2, as in the proof
of Lemma 17 in [6], we will use induction on i(d1, d2) = n.

There are three subcases.
Subcase (i). Let i(d1, d2) = 1. The regular neighborhood of d1 ∪ d2 is a two-holed

real projective plane. Again, we have two possibilities. One possibility is that Nd1∪d2 is
a connected nonorientable surface of genus g − 3. So, one can choose pairwise disjoint
g − 3 one-sided essential curves disjoint from d1 and d2. Then, there are vertices w1
and w2 containing d1 and d2, respectively, such that they are joined by an edge. Thus,
we connect w1 to v1 and v2 to w2 as in Case 1. The other possibility is that Nd1∪d2 is
disconnected. However, by Theorem 3.10 in [2], we can find a sequence of essential
one-sided simple closed curves d1 = a1, a2, . . . , ak = d2 such that any two adjacent
curves ai and ai+1 in the sequence intersect once and Nai∪ai+1 is connected, where
Nai∪ai+1 is the surface obtained by cutting N along ai and ai+1. Therefore, using the
idea of the previous possibility, we can connect v1 and v2 by a path.

Subcase (ii). Let i(d1, d2) = 0. If [d1] + [d2] is not characteristic, then there is
a vertex u containing both curves d1 and d2. Hence, the vertex u is connected to v1
and v2 as in Case 1. Now, assume that [d1] + [d2] is characteristic, in this case g ≥ 6.
Then, [d2] is characteristic on Nd1 which is a connected nonorientable surface of genus
g ≥ 5. Without lost of generality, we can choose a one-sided essential curve c on Nd1 ,
which is not characteristic such that i(c, d2) = 1. This implies that [c] + [d1] is not
characteristic on N . So there is a vertex u containing both curves d1 and c. Now, we
can connect the vertex u and v1 as in Case 1. Moreover, u can be connected to v2
because i(c, d2) = 1 by Subcase (i) above.



28 F. ALI AND F. ATALAN

Subcase (iii). Let i(d1, d2) = n > 1. By Proposition 3.1, there is a one-sided
essential simple closed curve d such that i(d1, d) < n and i(d2, d) < n. We pick a
vertex u containing d. By induction on n, we can connect the vertex u to v1 and v2
in the partial complex X(N).

This finishes the proof of the theorem. □
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