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UNIFORMLY CONVERGENT NUMERICAL METHOD FOR
SINGULARLY PERTURBED DELAY PARABOLIC DIFFERENTIAL

EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE

MESFIN MEKURIA WOLDAREGAY1 AND GEMECHIS FILE DURESSA1

Abstract. The motive of this work is to develop ε-uniform numerical method
for solving singularly perturbed parabolic delay differential equation with small
delay. To approximate the term with the delay, Taylor series expansion is used.
The resulting singularly perturbed parabolic differential equation is solved by using
non-standard finite difference method in spatial direction and implicit Runge-Kutta
method for the resulting system of IVPs in temporal direction. Theoretically the
developed method is shown to be accurate of order O(N−1 + (∆t)2) by preserving
ε-uniform convergence. Two numerical examples are considered to investigate ε-
uniform convergence of the proposed scheme and the result obtained agreed with
the theoretical one.

1. Introduction

The class of differential difference equations which have characteristics of delay and
singularly perturbed behavior is known as singularly perturbed differential difference
equations or singularly perturbed delay differential equations (SPDDEs). SPDDEs
plays an important role in modeling real life phenomena in Bioscience, Control The-
ory, Economics and Engineering [6]. A few application areas are the mathematical
modeling of: epidemiology and population dynamics [11], physiological kinetics [1],
production of blood cell [16]. Singularly perturbed differential equations relate an
unknown function to its derivatives evaluated at the same instance. Whereas, sin-
gularly perturbed delay differential equations model physical problems for which the
evaluation depend on the present state of the system and also on the past history. In
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general, when the perturbation parameter approaches to zero the smoothness of the
solution of the SPDDEs deteriorates and it forms a boundary layer(s) [19]. The time
dependent problem i.e. singularly perturbed parabolic delay differential equations
(SPPDDEs) have applications in the study of modeling of neuronal variability [23].

Various mathematical models are given in books [25,26], for the determination of
the behavior of a neuron to random synaptic inputs. In 1991, Musila and Lansky [18]
gives generalization for the Stein’s model [23] and proposed a model to treat the time
evolution trajectories of the membrane potential in terms of SPPDDEs as

(1.1) ∂u

∂t
= σ2

2
∂2u

∂x2 +
(
µD − x

τ

)
∂u

∂x
+λsu(x+as, t)+ωsu(x+ is, t)− (λs +ωs)u(x, t),

where µD and σ are diffusion moments of Wiener process characterizing the influence
of dendritic synapses on the cell excitability. The excitatory input contributes to the
membrane potential by an amplitude as with intensity λs and similarly the inhibitory
input contributes by an amplitude is with intensity ωs. The first derivative term
is because of the exponential decay between two consecutive jumps caused by the
input processes. The membrane potential decays exponentially to the resting level
with a membrane time constant τ . This model makes available time evolution of the
trajectories of the membrane potential. The model in (1.1) is a singularly perturbed
parabolic differential difference equation, one can hardly derive its exact solution.
Hence, to simulate this model, one has to land to a very suitable numerical methods.
In the last few years, scholar’s have devoted for the development of numerical solution
of this problem. In addition to that, authors try to show the influence of the delay
parameter on the behavior of the solution. In research articles [2–4, 12, 13, 19, 20]
authors develop different numerical schemes to study a classes of SPPDDEs and
discussed the effect of shifts on the solution.

In this paper, we construct and analyze a non-standard finite difference scheme
which utilizes on uniform mesh. The proposed scheme uses the procedures of method
of line, which consist of non-standard finite difference operator for the spatial dis-
cretization and Runge-Kutta method for the time discretization. For the theoretical
analysis, the global error is decomposed into two parts: the first is due to the spatial
discretization and the second is due to the temporal discretization of the semi-discrete
problem obtained after the spatial discretization.

The main contribution of this work is, to develop ε-uniform numerical scheme for
the SPPDDEs containing small delay on the spatial variable. In the proposed method,
it is not required to have any restriction on the mesh generation.

This paper is organized as follows. In Section 1 a brief introduction about the
problem is given, in Section 2 definition of the problem and the behavior of its analyt-
ical solution is given. In Section 3, discretizing the spatial domain and techniques of
non-standard finite difference is discussed, and the ε-uniform convergence of the semi-
discrete problem is proved. Next, Runge-Kutta method used for the system of IVPs
resulted from spatial discretization and discuss the convergence of the discrete scheme.
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In Section 4, numerical examples and results are given to validate the theoretical
analysis and finally, in Section 5, the conclusion of the work done is presented.

Notations. Through out this paper N,M denoted for the number of mesh elements
in space and time direction respectively. C (in some case indexed) is denoted for
positive constant independent of perturbation parameter and N . The norm ∥·∥ΩN

x ×ΩM
t

is used to denote discrete maximum norm.

2. Problem Formulation

A class of singularly perturbed parabolic differential difference equation with delay
on the spatial variable on domain D = Ωx × Ωt is given by

(2.1)



∂u

∂t
− ε2∂

2u

∂x2 + a(x)∂u
∂x

+ α(x)u(x− δ, t) + β(x)u(x, t) = f(x, t),

u(x, 0) = u0(x), x ∈ D0 = {(x, 0) : x ∈ Ω̄x},
u(x, t) = ϕ(x, t), (x, t) ∈ DL = {(x, t) : −δ ≤ x ≤ 0, t ∈ Ωt},
u(1, t) = ψ(t), t ∈ Ωt,

where (x, t) ∈ D = Ωx × Ωt = (0, 1) × (0, T ] for fixed positive number T, ε is a
singular perturbation parameter with 0 < ε ≪ 1 and δ is delay parameter assumed to
be sufficiently small as order of o(ε). We assume, the functions a(x), α(x), β(x) and
f(x, t), u0(x), ϕ(x, t) and ψ(x, t) are sufficiently smooth, bounded and independent of
ε. The coefficients of reaction term β(x) and delay term α(x) are assumed to satisfy
α(x) + β(x) ≥ θ > 0, for all x ∈ Ω̄x, for some positive constant θ. This condition
ensure that the solution of (2.1) exhibits boundary layer in the neighborhood of
DL = {(x, t) : −δ ≤ x ≤ 0, t ∈ Ωt} if a(x) − δβ(x) < 0 or in the neighborhood of
DR = {(x, t) : x = 1, t ∈ Ωt} if a(x) − δβ(x) > 0 for x ∈ Ω̄x.

When the shift parameter is zero (i.e., δ = 0) the above equation reduces to a
singularly perturbed parabolic differential equation, which exhibits layer(s) depending
on the value of a(x). If a(x) < 0 a boundary layer appears in the neighborhood of
x = 0, in case a(x) > 0 corresponds to existence of a boundary layer near x = 1. For
the case a(x) change sign interior layer will appear on the solution of the problem [9].
The layer is maintained for δ ̸= 0 but sufficiently small.

When the shift parameter δ < ε, the use of Taylor’s series expansion for the term
containing shift is valid [24].

2.1. Estimate for the delay term. From the assumption δ < ε, by using Taylor
series approximation for u(x− δ, t), we obtain

(2.2) u(x− δ, t) ≈ u(x, t) − δ
∂u

∂x
(x, t) + δ2

2
∂2u

∂x2 (x, t) +O(δ3).
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Now, substituting this approximations into (2.1), we obtain

(2.3)



∂u

∂t
− cε(x)∂

2u

∂x2 + p(x)∂u
∂x

+ q(x)u(x, t) = f(x, t),
u(x, 0) = u0(x), x ∈ Ω̄,
u(0, t) = ϕ(0, t), t ∈ Ω̄t,
u(1, t) = ψ(1, t), t ∈ Ω̄t,

where cε(x) = ε2 − δ2

2 α(x), p(x) = a(x) − δα(x), q(x) = α(x) + β(x). For small
δ, equations in (2.1) and (2.3) are asymptotically equivalent, because the difference
between the two equations is order of O(δ3). Now we assume again 0 < cε(x) ≤
ε2−δ2C1 = cε, where α(x) ≥ 2C1. We also assumed that p(x) = a(x)−δα(x) ≥ p∗ > 0,
which guarantee the occurrence of boundary layer in the neighborhood of x = 1. The
other case p(x) = a(x) − δα(x) ≤ p∗ < 0, imply the occurrence of the boundary layer
in the neighborhood of x = 0 and can be treated in similar manner.

We impose the compatibility conditions

(2.4)
{
u0(0) = ϕ(0, 0),
u0(1) = ψ(1, 0),

and

(2.5)


∂ϕ(0, 0)
∂t

− cε
∂2u0(0)
∂x2 + p(0)∂u0(0)

∂x
+ q(0)u0(0) = f(0, 0),

∂ψ(1, 0)
∂t

− cε
∂2u0(1)
∂x2 + p(1)∂u0(1)

∂x
+ q(1)u0(1) = f(1, 0),

so that the data matches at the two corners (0, 0) and (1, 0). The considered case
is when boundary layer occurs near x = 1. Now, using compatibility conditions in
(2.4) and (2.5), we have the conditions that guarantee the existence of a constant C
independent of cε such that for all (x, t) ∈ D̄

|u(x, t) − u(x, 0)| = |u(x, t) − u0(x)| ≤ Ct and
|u(x, t) − u(0, t)| = |u(x, t) − ϕ(0, t)| ≤ C(1 − x),

for the detail of this one can see [21, page 105].

Remark 2.1. We note that there does not exist a constant C independent of cε such
that |u(x, t) − u(1, t)| = |u(x, t) −ψ(1, t)| ≤ Cx, since a regular boundary layer exists
near x = 1.

By setting cε = 0 in (2.3) we obtain the reduced problem as:

(2.6)


∂u0

∂t
+ p(x)∂u

0

∂x
+ q(x)u0(x, t) = f(x, t), for all (x, t) ∈ D,

u0(x, 0) = u0(x), x ∈ Ω̄x,
u0(0, t) = ϕ0(t), t ∈ Ω̄t.

This is a first order hyperbolic PDE with initial data given along the two sides t = 0
and x = 0 of the domain D̄. For small values of cε the solution u(x, t) of the problem
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in (2.3) will be very close to u0(x, t). To obtain error bounds on the solution of the
difference scheme, we assume that the solution of the reduced problem in (2.6) is
sufficiently smooth.

2.2. Properties of continuous solution. To show a boundedness of the solutions
u(x, t) of (2.3), we assume the initial condition to be zero. Since u0(x) is assumed
sufficiently smooth and using the property of norm, we prove the following lemma.

Lemma 2.1. The bound on the solution u(x, t) of the continuous problem in (2.3) is
given by

|u(x, t)| ≤ C, for all (x, t) ∈ D̄.

Proof. From the compatibility condition |u(x, t) −u(x, 0)| =|u(x, t) −u0(x)| ≤ Ct, we
have |u(x, t)|−|u0(x)| ≤|u(x, t) − u0(x)| ≤ Ct, which implies |u(x, t)| ≤ Ct+|u0(x)|
for all (x, t) ∈ D̄, since t ∈ [0, T ] and u0(x) is bounded it implies |u(x, t)| ≤ C. □

Lemma 2.2 (Continuous maximum principle). Let v be a sufficiently smooth function
defined on D which satisfies v(x, t) ≥ 0 for all (x, t) ∈ ∂D. Then Lv(x, t) > 0 for all
(x, t) ∈ D implies that v(x, t) ≥ 0 for all (x, t) ∈ D̄.

Proof. Let (x∗, t∗) be such that
v(x∗, t∗) = min

(x,t)∈D̄
v(x, t)

and suppose that v(x∗, t∗) < 0. It is clear that v(x∗, t∗) /∈ ∂D. So, we have
Lv(x∗, t∗) = vt(x∗, t∗) − cεvxx(x∗, t∗) + p(x)vx(x∗, t∗) + q(x)v(x∗, t∗).

Since
v(x∗, t∗) = min

(x,t)∈D̄
v(x, t),

which implies vx(x∗, t∗) = 0, vt(x∗, t∗) = 0 and vxx(x∗, t∗) ≥ 0 and implies that
Lv(x∗, t∗) < 0, which contradict to the assumption made above. Here, we have
Lv(x∗, t∗) > 0 for all (x, t) ∈ D. Hence, v(x, t) ≥ 0 for all (x, t) ∈ D, which complete
the proof. □

Lemma 2.3 (Stability estimate). Let u(x, t) be the solution of the continuous problem
in (2.3). Then we have the bound

u ≤ θ−1∥f∥ + max{u0(x),max{ϕ(x, t), ψ(x, t)}},
where ∥f∥ = max |f(x, t)|.

Proof. We define two barrier functions ϑ± as
ϑ±(x, t) = θ−1∥f∥ + max{u0(x),max{ϕ(x, t), ψ(x, t)}} ± u(x, t).

At the initial value

ϑ±(x, 0) = θ−1∥f∥ + max{u0(x),max{ϕ(x, t), ψ(x, t)}} ± u(x, 0) ≥ 0.
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At the boundary points

ϑ±(0, t) = θ−1∥f∥ + max{u0(0),max{ϕ(0, t), ψ(0, t)}} ± u(0, t) ≥ 0,
ϑ±(1, t) = θ−1∥f∥ + max{u0(1),max{ϕ(1, t), ψ(1, t)}} ± u(1, t) ≥ 0

and

Lϑ±(x, t) =ϑ±
t (x, t) − cεϑ

±
xx(x, t) + p(x)ϑ±

x (x, t) + q(x)ϑ±(x, t)
=(max{ϕt(x, t), ψt(x, t)} ± ut(x, t)) − cε(max{ϕxx(x, t), u0xx(x), ψxx(x, t)}

± uxx(x, t)) + p(x)
(

max{u0x(x, t),max{ϕx(x, t), ψx(x, t)}} ± ux(x, t)
)

+ q(x)
(
θ−1∥f∥ + max{u0(x),max{ϕ(x, t), ψ(x, t)}} ± u(x, t)

)
≥0,

since cε ≥ 0, p(x) ≥ p∗ > 0 and q(x) ≥ θ > 0. This implies that Lϑ±(x, t) ≥ 0. Hence,
by maximum principle we have,

ϑ±(x, t) ≥ 0, for all (x, t) ∈ D̄,

which implies

u(x, t) ≤ θ−1∥f∥ + max{u0(x),max{ϕ(x, t), ψ(x, t)}}.

Hence, the proof is completed. □

Lemma 2.4. The bound on the derivative of the solution u(x, t) of the problem in
(2.3) with respect to x is given by∣∣∣∣∣∂iu(x, t)

∂xi

∣∣∣∣∣ ≤ C
(
1 + c−i

ε exp
(
−p∗(1 − x)/cε

))
, (x, t) ∈ D̄, i = 0, 1, 2, 3, 4.

Proof. See in [10]. □

3. Formulation of Numerical Scheme

3.1. Discretization in spatial direction. The theoretical basis of non-standard
discrete modeling method is based on the development of exact finite difference
method. In [17], Micken’s presented techniques and rules for developing non-standard
FDMs for different problem types. In Mickens’s rules, to develop a discrete scheme,
denominator function for the discrete derivatives must be expressed in terms of more
complicated functions of step sizes than those used in the standard procedures. These
complicated functions constitutes a general property of the schemes, which is useful
while designing reliable schemes for such problems.
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For the problem of the form in (2.3), in order to construct exact finite difference
scheme we follow the procedures used in [3]. Consider the constant coefficient sub-
equations given in (3.1) and (3.2) by ignoring the time variable as

−cε
d2u(x)
dx2 + p∗du(x)

dx
+ θu(x) =0,(3.1)

−cε
d2u(x)
dx2 + p∗du(x)

dx
=0,(3.2)

where p(x) ≥ p∗ and q(x) ≥ θ. Thus the problem (3.1) has two independent solutions
namely exp(λ1x) and exp(λ2x) with

(3.3) λ1,2 =
−p∗ ±

√
(p∗)2 + 4cεθ

−2cε

.

We discretize the spatial domain [0, 1], using uniform mesh length ∆x = h such that
ΩN

x = {xi = x0 + ih, i = 1, 2, . . . , N, x0 = 0, xN = 1, h = 1/N}, where N is the
number of mesh points in spatial direction. We denote the approximate solution of
u(x) at xi’s by Ui. Now our objective is to calculate a difference equation which
has the same general solution as the problem (3.1) has at the grid point xi given by
Ui = A1 exp(λ1xi) + A2 exp(λ2xi) Using the procedures used in [17], we have

(3.4) det

Ui−1 exp(λ1xi−1) exp(λ2xi−1)
Ui exp(λ1xi) exp(λ2xi)
Ui+1 exp(λ1xi+1) exp(λ2xi+1)

 = 0.

Simplifying (3.4), we obtain that

(3.5) exp
(
p∗h

2cε

)
Ui−1 − 2 cosh

h
√

(p∗)2 + 4cεθ

2cε

Ui + exp
(

−p∗h

2cε

)
Ui+1 = 0

is an exact difference scheme for (3.1).
After doing the arithmetic manipulation and rearrangement on (3.5) we obtain

(3.6) − cε
Ui−1 − 2Ui + Ui+1
hcε

p∗

(
exp(p∗h

cε
) − 1

) + p∗Ui − Ui−1

h
= 0.

The denominator function becomes γ2 = hcε

p∗

(
exp

(
hp∗

cε

)
− 1

)
. Adopting this denomi-

nator function for the variable coefficient problem, we write it as

(3.7) γ2
i = hcε

p(xi)

(
exp

(
hp(xi)
cε

)
− 1

)
,

where γ2
i is a function of cε, pi and h, where pi is denoted for p(xi). By using (3.7) in

to the main semi-descrete scheme, we obtain
dUi(t)
dt

− cε
Ui+1(t) − 2Ui(t) + Ui−1(t)

γ2
i

+ p(xi)
Ui(t) − Ui−1(t)

h
+ q(xi)Ui(t) = f(xi, t).
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Let Ui(t) is denoted for the approximation of u(xi, t). By using the non-standard finite
difference approximation. At this stage the problem in (2.3) reduces to semi-discrete
form as

(3.8)



LhUi(t) ≡ dUi(t)
dt

− cε
Ui+1(t) − 2Ui(t) + Ui−1(t)

γ2
i

+ p(xi)
Ui(t) − Ui−1(t)

h
+q(xi)Ui(t) = fi(t),

U0(t) = ϕ(0, t),
UN(t) = ψ(1, t) and
Ui(0) = u0(xi).

The system of IVPs in (3.8) can be written in compact form as

(3.9) dUi(t)
dt

= AUi(t) + Fi(t),

where A is a tridiagonal matrix of size N − 1 ×N − 1 and Ui(t) and Fi(t) are column
vectors with N − 1 entries. The entries of A and F are given respectively as

aii = 2cε

γ2
i

+ p(xi)
h

+ q(xi), i = 1, 2, . . . , N − 1,

aii+1 = − cε

γ2
i

, i = 1, 2, . . . , N − 2,

aii−1 = − cε

γ2
i

− p(xi)
h

, i = 2, . . . , N − 1,

and 
F1(t) = f1(t) −

(
cε

γ2
1

+ p(x1)
h

)
ϕ(0, t),

Fi(t) = fi(t), i = 2, 3, . . . , N − 2,

FN−1(t) = fN−1(t) −
(

2cε

γ2
N−1

)
ψ(1, t).

Now we need to show the semi-discrete operator Lh satisfies the maximum principle
and the uniform stability estimate.

Lemma 3.1 (Semi-discrete maximum principle). Suppose U0(t) ≥ 0, UN(t) ≥ 0. Then
LhUi(t) ≥ 0 for all i = 1, 2, . . . , N − 1, implies that Ui(t) ≥ 0 for all i = 0, 1, . . . , N.

Proof. Suppose there exist p ∈ {0, 1, . . . , N} such that Up(t) = min0≤i≤N Ui(t). Sup-
pose that Up(t) < 0, which implies p ≠ 0, N . Also we have Up+1 − Up > 0 and
Up − Up−1 < 0. Now, we have

LhUp(t) = dUp(t)
dt

− cε
Up+1(t) − 2Up(t) − Up−1(t)

γ2
p

+ pp
Up(t) − Up−1(t)

h
+ qpUp(t).

Using the assumption, we obtain that LhUi(t) < 0 for i = 1, 2, . . . , N − 1. Thus, the
supposition Ui(t) < 0, i = 0, 1, . . . , N is wrong. Hence,

Ui(t) ≥ 0, for all i = 0, 1, . . . , N. □
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Lemma 3.2. The solution Ui(t) of the semi-discrete problem in (3.8) or (3.9) satisfy
the following bound.

|Ui(t)| ≤ θ−1 max
i

|LhUi(t)| + max
i

{|u0(xi)|,max
i

{ϕ(xi, t), ψ(xi, t)}}.

Proof. Let p = θ−1 maxi|LhUi(t)| + maxi{|u0(xi)|,maxi{ϕ(xi, t), ψ(xi, t)}} and we
define the barrier function ϑ±

i (t) by

(3.10) ϑ±
i (t) = p± Ui(t).

At the boundary points
ϑ±

0 (t) = p± u0(t) = p± ϕ(0, t) ≥ 0,
ϑ±

N(t) = p± uN(t) = p± ϕ(1, t) ≥ 0.

On the discretized domain xi, i = 1, 2, . . . , N − 1, we have

Lhϑ±
i (t) =

d
(
p± Ui(t)

)
dt

− cε

(
p± Ui+1(t) − 2(p± Ui(t)) + p± Ui−1(t)

γ2

)

+ pi

(
p± Ui(t) −

(
p± Ui−1(t)

)
h

)
+ qi(p± Ui(t))

=qip± LhUi(t)

=qi

(
θ−1 max

i
|LhUi(t)| + max

i
{|u0(xi)|,max

i
{ϕ(xi, t), ψ(xi, t)}}

)
± fi(t)

≥0, since qi ≥ θ.

From Lemma 3.1, we obtain ϑ±
i ≥ 0, for all (xi, t) ∈ Ω̄N

x × Ωt.
This complete the proof. □

3.2. Convergence Analysis. Now, let us analyze the convergence of the spatial
discretization. We proved above the semi-discrete operator Lh satisfy the maximum
principle and the uniform stability estimate. Note that Ui(t) is denoted for the spatial
semi-discretization approximate solution to the exact solution u(x, t) at x = xi,
i = 0, 1, . . . , N .

Let define the forward and backward finite differences in space as:

D+v(xi, t) = v(xi+1, t) − v(xi, t)
h

, D−v(xi, t) = v(xi, t) − v(xi−1, t)
h

,

respectively, and the second order finite difference operator as

δ2v(xi, t) = D+D−v(xi, t) = D+v(xi, t) −D−v(xi, t)
h

.

Theorem 3.1. Let the coefficients functions p(x), q(x) and the source function f(x, t)
in (2.3) be sufficiently smooth, so that u(x, t) ∈ C4[0, 1]×[0, T ]. Then the semi-discrete
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solution Ui(t) of (2.3) satisfies

(3.11)
∣∣∣Lh

(
u(xi, t) − Ui(t)

)∣∣∣ ≤ Ch

1 + sup
x∈(0,1)

exp
(

− p∗(1 − x)/cε

)
c3

ε

 .
Proof. We consider the truncation error in spatial discretization as:∣∣∣Lh

(
u(xi, t) − Ui(t)

)∣∣∣
=
∣∣∣Lhu(xi, t) − LhUi(t)

∣∣∣
≤Ccε

∣∣∣∣∣∂2u

∂x2 (xi, t) −D+
x D

−
x u(xi, t)

∣∣∣∣∣+ Ccε

∣∣∣∣∣
(
h2

γ2
i

− 1
)
D+

x D
−
x u(xi, t)

∣∣∣∣∣+ Ch

∣∣∣∣∣∂2u

∂x2 (xi, t)
∣∣∣∣∣

≤Ccεh
2
∣∣∣∣∣∂4u

∂x4 (xi, t)
∣∣∣∣∣+ Ch

∣∣∣∣∣∂2u

∂x2 (xi, t)
∣∣∣∣∣+ Ch

∣∣∣∣∣∂2u

∂x2 (xi, t)
∣∣∣∣∣

≤Ccεh
2
∣∣∣∣∣∂4u

∂x4 (xi, t)
∣∣∣∣∣+ Ch

∣∣∣∣∣∂2u

∂x2 (xi, t)
∣∣∣∣∣.

The bound cε

∣∣∣h2

γ2
i

− 1
∣∣∣ ≤ Ch used in above expression is based on the behavior of the

denominator function (γ2
i ) in non-standard finite difference. To illustrate the bound

given there, let us define σ =: pih/cε, σ ∈ (0,∞). Then

cε

∣∣∣∣∣h2

γ2
i

− 1
∣∣∣∣∣ = pih

∣∣∣∣∣ 1
exp(σ) − 1 − 1

σ

∣∣∣∣∣ =: pihR(σ).

By simplifying and writing explicitly we obtain

R(σ) = exp(σ) − σ − 1
σ(exp(σ) − 1)

and we obtain the limit is bounded as

lim
σ→0

R(σ) = 1
2 , lim

σ→∞
R(σ) = 0.

Hence, for all σ ∈ (0,∞), we have R(σ) ≤ C. So, the error estimate in the spatial
discretization is bounded as

(3.12)
∣∣∣Lh

(
u(xi, t) − Ui(t)

)∣∣∣ ≤ Ccεh
2
∣∣∣∣∣∂4u

∂x4 (xi, t)
∣∣∣∣∣+ Ch

∣∣∣∣∣∂2u

∂x2 (xi, t)
∣∣∣∣∣ .

From (3.12) and boundedness of derivatives of solution in Lemma 2.4, we obtain∣∣∣Lh
(
u(xi, t) − Ui(t)

)∣∣∣ ≤Ccεh
2
∣∣∣∣∣1 + c−4

ε exp
(

−p∗(1 − xi)
cε

)∣∣∣∣∣
+ Ch

∣∣∣∣∣1 + c−2
ε exp

(
−p∗(1 − xi)

cε

)∣∣∣∣∣
≤Ch

∣∣∣∣∣1 + max
i
c−3

ε exp
(

−p∗(1 − xi)
cε

)∣∣∣∣∣ . □
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Lemma 3.3. For a fixed mesh and for ε → 0, it holds

(3.13) lim
cε→0

max
j

exp
(

−p∗(1−xj)
cε

)
cm

ε

= 0, m = 1, 2, 3, . . . ,

where xj = jh, h = 1/N , for all j = 1, 2, . . . , N − 1.

Proof. Let us consider the partition of the interval [0, 1], with points xj = jh, h =
1/N, j = 0, 1, . . . , N . By using x1 = h, 1 − xN−1 = h, we have

max
1≤j≤N−1

exp(−p∗xj/cε)
cm

ε

≤ exp(−p∗x1/cε)
cm

ε

= exp(−p∗h/cε)
cm

ε

and

max
1≤j≤N−1

exp(−p∗(1 − xj)/cε)
cm

ε

≤ exp(−p∗(1 − xN−1)/cε)
cm

ε

= exp(−p∗h/cε)
cm

ε

.

Then, by the repeated application of L’Hospital’s rule, we have

lim
cε→0

exp(−p∗h/cε)
cm

ε

= lim
r=1/cε→∞

rm

exp(p∗hr) = lim
r=1/cε→∞

m!
(p∗h)m exp(p∗hr) = 0.

Hence, the proof is completed. □

Theorem 3.2. Under the hypothesis of boundedness of semi-discrete solution (i.e.,
it satisfies the semi-discrete maximum principle), Lemma 3.3 and Theorem 3.1, the
semi-discrete solution satisfy the following bound.

(3.14) sup
0<cε≪1

max
i

|u(xi, t) − Ui(t)|ΩN
x ×Ωt

≤ CN−1.

Proof. Results from boundedness of solution, Lemma 3.1 and Theorem 3.1 gives the
required estimates. □

3.3. Discretization in temporal direction. On the time domain Ωt = [0, T ], we
construct a mesh with mesh length ∆tj = tj+1 − tj, j = 0, 1, 2, . . . ,M − 1, where M
denotes the number of mesh points in time direction. First rewrite (3.9) in the form

(3.15) dUi(t)
dt

= f
(
t, Ui(t)

)
,

with the initial condition U(xi, 0) = u0(xi), i = 0, 1, . . . , N , where f
(
t, Ui(t)

)
=

−AUi(t) + Fi(t). Now, we solve the system of IVPs in (3.15) using implicit Runge-
Kutta method of order 2 and 3 given in [7].
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We construct the scheme for each j = 0, 1, 2, . . . ,M − 1, as
(3.16)

k1 = f(tj, Ui,j),

k2 = f
(
tj + 1

2∆tj, Ui,j + 1
2∆tjk1

)
,

k3 = f
(
tj + 3

4∆tj, Ui,j + 3
4∆tjk2

)
,

U∗
i,j+1 = Ui,j + 2

9∆tjk1 + 1
3∆tjk2 + 4

9∆tjk3,

k4 = f(tj + ∆tj, U∗
i,j+1),

Ui,j+1 = Ui,j + 7
24∆tjk1 + 1

4∆tjk2 + 1
3∆tjk3 + 1

8∆tjk4, i = 1, 2, . . . , N − 1.

For each j the local approximation Ui,j+1 to Ui(tj+1) has third order (i.e., O(∆tj)3)
accuracy [7]. Let denote ∆t = maxj ∆tj.

Lemma 3.4. From the approximation method in temporal direction, the global error
estimates in this direction is given by

∥Ej+1∥ = max
j

|Ui(tj+1) − Ui,j+1|ΩN
x ×ΩM

t
≤ C(∆t)2,

where ∥Ej+1∥ is the global error in the temporal direction at (j + 1)th time level.

Proof. Using the local error estimate upto jth time step, we obtain the global error
estimate at (j + 1)th time step.

∥Ej+1∥ =
∥∥∥∥∥

j∑
l=1

el

∥∥∥∥∥ (j ≤ M)

≤ ∥e1∥+∥e2∥+ · · · + ∥ej∥ (∥el∥= Cl(∆tj)3)
≤ C1(j∆t)(∆t)2

≤ C1T (∆t)2 (since j∆t ≤ T )
≤ C(∆t)2.

Hence,

□(3.17) ∥Ej+1∥= max
j

|Ui(tj+1) − Ui,j+1|≤ C(∆t)2.

Here, since C and ∆t are independent of the perturbation parameter ε. By taking
the suprimum for all ε ∈ (0, 1] we obtain

(3.18) sup
0<cε≪1

max
j

|Ui(tj+1) − Ui,j+1|ΩN
x ×ΩM

t
≤ C(∆t)2.

This shows that the discretization in time direction is consistent and global error is
bounded, with the error bound O(∆t)2.
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Now, we use (3.14) and (3.18) to prove the ε-uniform convergence of the fully
discrete scheme as

sup
0<cε≪1

max
i,j

|u(xi, tj) − Ui,j|= sup
0<cε≪1

max
i,j

|u(xi, tj) − Ui(tj) + Ui(tj) − Ui,j|

≤ sup
0<cε≪1

max
i,j

|u(xi, tj) − Ui(tj)|

+ sup
0<cε≪1

max
i,j

|Ui(tj) − Ui,j|.

Hence, we obtain the required bound as
(3.19) sup

0<cε≪1
∥u(xi, tj) − Ui,j∥ΩN

x ×ΩM
t

≤ C
(
N−1 + (∆t)2

)
.

Remark 3.1. The inequality in (3.19) shows the ε-uniform convergence of the scheme
with order of convergence: first order in spatial direction and second order in temporal
direction.

4. Numerical Results and Discussion

To validate the established theoretical results, we perform some experiments using
the proposed numerical scheme on the problem given in (2.1). We consider two
numerical examples to verify the ε-convergence of the proposed scheme.
Example 4.1. From [20]

∂u

∂t
− ε2∂

2u

∂x2 + (2 + x+ x2)∂u
∂x

+
(

1 + x2

2

)
u(x− δ, t) = sin(πx(1 − x)),

with T = 1 subject to the initial condition u(x, 0) = 0, x ∈ [0, 1], and interval-
boundary conditions ϕ(x, t) = 0, −δ ≤ x ≤ 0, ψ(1, t) = 0 on t ∈ [0, 1].
Example 4.2. From [9] by setting η = 0
∂u

∂t
− ε2∂

2u

∂x2 + ∂u

∂x
+ (2 − x2)u(x− δ, t) + (1 + x2 + exp(x))u(x, t) = 50(x(1 − x))3,

with T = 2 subject to the initial condition u(x, 0) = 0, x ∈ [0, 1], and interval-boundary
conditions ϕ(x, t) = 0, −δ ≤ x ≤ 0, ψ(1, t) = 0 on t ∈ [0, 2].

Exact solution is not available for these two problems, therefore maximum nodal
errors are calculated by using the double mesh technique given in [9] as

EN,M
ε,δ = max

i,j
|UN,M

i,j − U2N,2M
i,j |,

where N and M are the number of mesh points in x and t, respectively. UN,M
i,j are

the computed solutions of the problem using N , M mesh numbers and U2N,2M
i,j are

computed solutions on double number of mesh points 2N, 2M by including the mid
points xi+1/2 and tj+1/2 into the mesh points. For any value of the mesh points N,M
the ε-uniform error estimate are calculated by

EN,M = max
ε,δ

∣∣∣EN,M
ε,δ

∣∣∣ .
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The rate of convergence of the method is given by

rN,M
ε,δ = log2

(
EN,M

ε,δ /E2N,2M
ε,δ

)
=

log
(
EN,M

ε,δ

)
− log

(
E2N,2M

ε,δ

)
log 2

and the ε-uniform convergence is calculated by

rN,M = log2

(
EN,M/E2N,2M

)
=

log
(
EN,M

)
− log

(
E2N,2M

)
log 2 .

The solutions of Examples 4.1 and 4.2 have a boundary layer on the right side of
the x-domain as shown in Figures 3 and 5. The effect of perturbation parameter
ε and delay parameter δ is shown in Figures 1 and 2, by using different values for
ε and δ for the test problems, i.e., one can observe from Figure 1 (a) and 2 (a),
when the perturbation parameter tends to zero strong boundary layer is formed on
the right side of the x-domain, in Figures 1 (b) and 2 (b) we observe that as the
value of the delay parameter increases the thickness of the boundary layer decreases.
The numerical results displayed in Tables 1 and 3 indicate the proposed method is
convergent independent of the perturbation parameter. From the results in tables 1−3
and Figure 4, one can observe that the maximum point-wise error EN,M

ε,δ decreases as
N increases for each value of ε. in addition to that, the maximum point-wise error is
stable as ε → 0 for each N , M . Using the results in these two examples we confirm
the proposed numerical method is more accurate, stable and ε-uniform convergent
with rate of convergence one. Numerical results in tables and figure confirm the
parameter-uniformness of the proposed scheme. The results in this method are better
than that obtained in [20] and [19].

(a) (b)

Figure 1. Example 4.1, in (a) the solution behavior for different values
of ε at T = 1, in (b) the behavior of solution for different values of delay
at ε = 2−2 and T = 1.
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Table 1. Example 4.1 maximum absolute error and rate of convergence
for the proposed method and results in [20] with δ = 0.6ε

ε N=32 64 128 256 512 1024
↓ M=60 120 240 480 960 1920
Our
Scheme
2−6 3.9367e-03 1.9697e-03 9.8547e-04 4.9293e-04 2.4651e-04 1.2327e-04

0.9990 0.9991 0.9994 0.9997 0.9998 -
2−8 3.9308e-03 1.9667e-03 9.8399e-04 4.9219e-04 2.4614e-04 1.2308e-04

0.9990 0.9991 0.9994 0.9997 0.9999 -
2−10 3.9293e-03 1.9660e-03 9.8362e-04 4.9201e-04 2.4605e-04 1.2304e-04

0.9990 0.9991 0.9994 0.9997 0.9998 -
2−12 3.9289e-03 1.9658e-03 9.8353e-04 4.9196e-04 2.4603e-04 1.2303e-04

0.9990 0.9991 0.9994 0.9997 0.9998 -
2−14 3.9288e-03 1.9658e-03 9.8351e-04 4.9195e-04 2.4602e-04 1.4180e-04

0.9990 0.9991 0.9994 0.9997 0.7949 -
2−16 3.9288e-03 1.9658e-03 9.8350e-04 4.9195e-04 2.4602e-04 1.2302e-04

0.9990 0.9991 0.9994 0.9997 0.9999 -
2−18 3.9288e-03 1.9657e-03 9.8350e-04 4.9194e-04 2.4602e-04 1.2302e-04

0.9990 0.9991 0.9994 0.9997 0.9999 -
2−20 3.9288e-03 1.9657e-03 9.8350e-04 4.9194e-04 2.4602e-04 1.2302e-04

0.9990 0.9991 0.9994 0.9997 0.9999 -
Result
in [20]
2−6 5.9208e-03 3.6201e-03 2.1189e-03 1.1966e-03 6.5640e-04 3.5122e-04

0.7097 0.7727 0.8243 0.8663 0.9022 0.9703
2−8 5.9146e-03 3.6167e-03 2.1172e-03 1.1959e-03 6.5607e-04 3.5165e-04

0.7096 0.7725 0.8241 0.8662 0.8997 0.9256
2−10 5.9131e-03 3.6158e-03 2.1168e-03 1.1957e-03 6.5597e-04 3.5161e-04

0.7096 0.7724 0.8240 0.8662 0.8997 0.9256
2−12 5.9127e-03 3.6156e-03 2.1167e-03 1.1957e-03 6.5594e-04 3.5160e-04

0.7096 0.7724 0.8240 0.8662 0.8996 0.9256
2−14 5.9126e-03 3.6155e-03 2.1167e-03 1.1957e-03 6.5594e-04 3.5160e-04

0.7096 0.7724 0.8240 0.8662 0.8996 0.9256
2−16 5.9126e-03 3.6155e-03 2.1167e-03 1.1957e-03 6.5594e-04 3.5160e-04

0.7096 0.7724 0.8240 0.8662 0.8996 0.9256
2−18 5.9126e-03 3.6155e-03 2.1167e-03 1.1957e-03 6.5593e-04 3.5160e-04

0.7096 0.7724 0.8240 0.8662 0.8996 0.9256
2−20 5.9125e-03 3.6155e-03 2.1167e-03 1.1957e-03 6.5593e-04 3.5160e-04

0.7096 0.7724 0.8240 0.8662 0.8996 0.9256
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Table 2. Example 4.1’s ε-uniform absolute error and rate of conver-
gence for the proposed method and results in [20] and (in [19] for the
case δ = 0.9ε).

N: 32 64 128 256 512 1024
M: 60 120 240 480 960 1920
Our
Scheme.
EN,M 3.9288e-03 1.9657e-03 9.8350e-04 4.9194e-04 2.4602e-04 1.2302e-04
rN,M 0.9990 0.9991 0.9994 0.9997 0.9999 -
Result
in [20]
EN,M 5.9125e-03 3.6155e-03 2.1167e-03 1.1957e-03 6.5593e-04 3.5160e-04
rN,M 0.7096 0.7724 0.8240 0.8662 0.8996 0.9256
Result
in [19]
EM,N 8.3467e-03 5.3894e-03 3.3649e-03 2.0082e-03 1.1571e-03 6.4904e-04
rM,N 0.6311 0.6796 0.7447 0.7954 0.8341 -

(a) (b)

Figure 2. Example 4.2, in (a) the solution behavior for different values
of ε at T = 2, in (b) the behavior of solution for different values of delay
at ε = 2−2 and T = 2.

5. Conclusions

A numerical method is developed for solving a singularly perturbed parabolic delay
differential equation whose solution exhibit a boundary layer behavior. The developed
method is based on method of line that constitute the non-standard finite difference
for the spatial discretization and the Runge-Kutta order 2 and 3 implicit method in
the temporal direction for the system of IVP resulting from the spatial discretization.
Stability and convergence analysis of the proposed scheme is shown. The applicability
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Table 3. Example 4.2’s maximum absolute error and rate of conver-
gence for the proposed method with δ = 0.5ε

ε N=M=32 64 128 256 512 1024
↓
Our
Scheme
2−6 5.7389e-03 2.9180e-03 1.4718e-03 7.3915e-04 3.7036e-04 1.8537e-04

0.9758 0.9874 0.9936 0.9969 0.9985 -
2−8 5.7126e-03 2.9034e-03 1.4647e-03 7.3552e-04 3.6854e-04 1.8447e-04

0.9764 0.9871 0.9938 0.9969 0.9984 -
2−10 5.7061e-03 2.8998e-03 1.4630e-03 7.3461e-04 3.6808e-04 1.8424e-04

0.9766 0.9870 0.9939 0.9970 0.9984 -
2−12 5.7044e-03 2.8989e-03 1.4625e-03 7.3438e-04 3.6797e-04 1.8418e-04

0.9766 0.9871 0.9938 0.9969 0.9985 -
2−14 5.7040e-03 2.8987e-03 1.4624e-03 7.3433e-04 3.6794e-04 1.8417e-04

0.9766 0.9871 0.9938 0.9970 0.9984 -
2−16 5.7039e-03 2.8986e-03 1.4624e-03 7.3431e-04 3.6794e-04 1.8417e-04

0.9766 0.9870 0.9939 0.9969 0.9984 -
2−18 5.7039e-03 2.8986e-03 1.4624e-03 7.3431e-04 3.6793e-04 1.8416e-04

0.9766 0.9870 0.9939 0.9970 0.9985 -
2−20 5.7039e-03 2.8986e-03 1.4624e-03 7.3431e-04 3.6793e-04 1.8416e-04

0.9766 0.9870 0.9939 0.9970 0.9985 -

EN,M 5.7389e-03 2.9180e-03 1.4718e-03 7.3915e-04 3.7036e-04 1.8537e-04
rN,M 0.9758 0.9874 0.9936 0.9969 0.9985 -

(a) (b)

Figure 3. Example 4.1, (a) numerical solution for ε = 1, δ = 0.6ε and
(b) numerical solution for ε = 2−10, δ = 0.6ε.
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(a) (b)

Figure 4. Example 4.1 on left and Example 4.2 on right, Log-Log
scale plot of the maximum absolute error for different values of ε.

(a) (b)

Figure 5. Example 4.2, in (a) numerical solution for ε = 2−4, δ = 0.5ε
and in (b) numerical solution for ε = 2−20, δ = 0.5ε.

of the proposed scheme is investigated by taking two examples. The effect of the
perturbation parameter and the delay on the solution of the problem are shown
by using figures. The method is shown to be ε-uniformly convergent with order of
convergence O(N−1 +(∆t)2). The performance of the proposed scheme is investigated
by comparing with prior study. The proposed method gives more accurate, stable
and ε-uniform numerical result.

Acknowledgements. The authors would like to acknowledge the reviewers in ad-
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