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PARANORMED RIESZ DIFFERENCE SEQUENCE SPACES OF
FRACTIONAL ORDER

TAJA YAYING!

ABSTRACT. In this article we introduce paranormed Riesz difference sequence
spaces of fractional order «a, 7§ (p A(a)) f:(p7A(")) and 7t (p,A(O‘)) defined

by the composition of fractional difference operator A(® defined by (A(®z), =

0 .

Z:O(—l)l%xk s, and Riesz mean matrix R*. We give some topological prop-
7=

erties, obtain the Schauder basis and determine the a-, 8- and - duals of the new
spaces. Finally, we characterize certain matrix classes related to these new spaces.

1. INTRODUCTION

Throughout the paper I'(m) will denote the gamma function of all real numbers
m ¢ {0,—1,—-2,...}. I'(m) can be expressed as an improper integral given by

(1.1) ['(m) = /OOO e "z da.

Using (1.1), we state some properties of gamma function which are used throughout
the text:

1. form e N, I'(m+1) =ml;
2. for any real number m ¢ {0, — .}, T(m+ 1) = mI(m);
3. for particular cases, we have F( ) ( )=1T3)=2,T4)=3!,...

Throughout the paper N = {0,1,2,3,...} and let w be the space of all real valued
sequences. By f,, cp and ¢ we mean the spaces all bounded, null and convergent

Key words and phrases. Riesz difference sequence spaces, difference operator A(®) | Schauder basis,
a-, (-, v- duals, matrix transformation.
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176 T. YAYING

sequences, respectively, normed by ||z|| . = sup |z|. Also by ¢;, cs and bs, we mean the
k

spaces of absolutely summable, convergent series and bounded series, respectively. The
space {7 is normed by Y, |zx| and the spaces cs and bs are normed by sup,, |> 1 Zk| -
Here and henceforth, the summation without limit runs from zero to co. Also, let
e={1,1,1...} and e® be the sequences whose only non-zero term is 1 in the k"
place for each k € N.

Let p = (pr) be a bounded sequence of strictly positive real numbers with M =
max{1l, H}, where H = supy px. Then, Maddox [43,44] defined the sequence spaces

loo(p), co(p), c(p) and £(p) as follows:

loo(p) = {w = (zk) € w s sup | [™ < 00} :
keN

k—o0

co(p) = {x = (zx) € w: lim |zg["* = 0},
clp) ={z = (@) € w: Jim | — 1" = 0 for some | € R
—00

and

l(p) = {x: (zp) €w Y |myl™ <oo},

k

which are complete spaces paranormed by

1

™M

g(x) =sup |z and  h(z) = (Z Ifﬂklp’“> :
keN k

Let X and Y be two sequence spaces and A = (a,;) be an infinite matrix of real or

complex entries. Then A defines a matrix mapping from X to Y if for every sequence

x = (z,), the A-transform of z, i.e., Ax = {(Ax),} € Y, where

(1.2) (Ax), = Zankxk, n € N.
k

The sequence space X4 defined by
(1.3) Xa={r=(ap) ew: Az € X}

is called the domain of matrix A.

By (X,Y), we denote the class of all matrices A from X to Y. Thus A € (X,Y) if
and only if the series on the R.H.S. of the (1.2) converges for each n € N and z € X
such that Az € Y for all x € X.

The notion of difference sequence space X (A) for X = {(, ¢, co} was introduced
by Kizmaz [40]. Since then several authors [15-19,21-24] generalized the notion of
difference operator A and studied various sequence spaces of integer order. However,
for a positive proper fraction «, Baliarsingh and Dutta [10] (see also [11,12,20]) have
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defined a generalized fractional difference operator A® and its inverse as

(1.9 (@) = Y1) s
(1.5) (A7), = Z(_Dii!r?(_;a_tlﬁ Ty ke

Throughout the paper it is assumed that the series on the R.H.S. of (1.4) and (1.5)
are convergent for x = (z3) € w. It is more convenient to express A as a triangle

(1) [(a+1)
(n—k)T(a—n+k+1)
0, if £ > n.

if 0 <k<n,

(A(a))nk _

Moreover, Dutta and Baliarsingh [20] also studied the paranormed difference sequence
spaces of fractional order X (T', A% u, p) for X = {co, ¢, s}, Where

(Adx)k = i)(_l)imxkﬂ.

Furthermore, Baliarsingh and Dutta [11] studied the sequence spaces X (T', A%, p) for
X = {cy,¢,l}. For some nice papers on fractional difference operator and related
sequence spaces, one may refer to [10-13,20,25-34] and the references mentioned
therein.

Let (tx) be a sequence of positive numbers and let

Tn: Ztk, n € N.
k=0

The Riesz mean matrix R' = (rf,) was defined in [1,3] as

—, 0<k<n,
0, k > n.
The Riesz sequence spaces 1%, rh and rf were introduced by Malkowsky [3] as follows:
' = (loo)rt, 74 =(co)re and 7’ = (c)p.

Altay and Bagar [1] introduced the paranormed Riesz sequence spaces r(p) as

Tt(p)—{w—(xk)Ew:Z ;ithkm <oo}.

n | 4n k=0
The paranormed Riesz sequence spaces 1%_(p), rh(p) and r%(p) were studied by Altay
and Bagar [2] as follows:
Pn
< oo} ,

1
—_— thkz
5

rt (p) = {x = (xx) € w : sup
neN
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Z tkl'k

—0} and
Tn 1=

Zthk —1

"kO

n—oo

ro(p) = {x = (x) € w: lim

—OforsomeleR}.

re(p) = {x = () €w: lim

Since then various authors studied Riesz sequence spaces. One may refer to [1-7]
and the references cited therein for more studies on Riesz sequence spaces. Following
Altay and Basar [1,2] and Baliarsingh [12], we construct a more generalised Riesz
paranormed difference sequence spaces of fractional order and study in detail the
related problems.

2. RIESZ DIFFERENCE OPERATOR OF FRACTIONAL ORDER AND SEQUENCE
SPACES
In this section, we define the product matrix RY(A(®), obtain its inverse, intro-
duce paranormed Riesz difference sequence spaces of fractional order rf (p, A(O‘)) ,
rl ( ,A(a)) and 7 ( ,A(O‘)) and give some topological properties of the spaces.
Combining the Riesz mean matrix R* and the difference operator A(®, we obtain
a new product matrix R(A(®) = (7,) given by

—DrF — f0<k<
Pk = &Y (i—kT(a—i+k+nT, ="
0, it k> n.
Equivalently,
_ . . ; _
th - Oétfl til O
T Ty T,

Rt(A(a)) = to tl Oé(Oé — 1) t2 tl t2 t2

7 T TR T TR TN

Now, by simple calculation, one may obtain the inverse of the matrix R'(A(®) as
given in the following lemma.

Lemma 2.1. The inverse of the product matriz R'(A®)) is given by

k+1 F( a+1) Tk iF0<k<n

t ()\\—1 __
(RUA@) ={ T, P

t
0, if k > n.
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Let us define a sequence y = (y,) which will be frequently used as the RY(A(®)-
transform of the sequence x = (zy) as follows:

n—1 . .
21 = _1 i—k Ui i '

Now, we define the paranormed Riesz difference sequence spaces of fractional order

rgo( ,A(O‘)) Ll (p, A<a>) and 7! (p, A<a>) as follows:
L ,A(“)) ={z=(22) €w: R(A®)z € loo(p)} .
(p.A@) ={z = (2,) €w: R(AD)z € c(p)},

b (p,A®) = {2 = (2,) € w: R(A™)z € co(p) } -
Using the notation (1.3), the above sequence spaces may be rewritten as:

e (9, A) =(las () e (a0,

rt (P, A =(c(p)) pe(ae,

b (p, A®) =(co(p)) re(ato).

The above sequence spaces reduce to the following classes of sequence spaces in the
special cases of a and p = (pg):

1. if & = 0 then above classes reduce to X (p) for X = {rf_ r’ r{} as studied by
Altay and Bagar [2], which further reduce to X in the case of p = (py) = e as
studied by Malkowsky [3];

2. if a = 1 then above classes reduce to X (p, AY) for X = {r!
(AWx) = 24 — Tp_1;

3. if & = m then above classes reduce to X (p, A™) for X = {r!_ % rt}, where

(Al >k=]§0<—1>f(j)xm_j-
We begin with the following result.

t
Te

tortort}, where

Lemma 2.2. The operator RY(A®) 1w — w is linear.
Proof. The proof is a routine verification and hence omitted. 0

Theorem 2.1. The sequence space T} (A(O‘)) is a linear metric space paranormed by

(22) g (@) = sup | (R'(A)a) |7

ga s paranorm for the spaces rt_(p, A) and ri(p, A only in the trivial case,
with inf p, > 0 when 1t _(p, A®) =7t (A®) and ri(p, A@) = r{(A).
Proof. We prove the theorem for the space r§(A®)).

Clearly, gaw (0) = 0 and ga (—2) = ga (z) for all z € rf (A(O‘)) . To show the
linearity of g with respect to coordinate wise addition and scalar multiplication, we



180 T. YAYING

take any two sequences u,v € 75(p, A®) and scalars a; and ay in R. Since R*(A(®))
is linear and using Maddox [45], we get

ga (a1u + )
Pk

k=1 | k E
i Ma+1) t; ty
Tk ]2% [22( S T a4 7 1) T | @+ o) o e+ agu)

P
M

<max{l, |oq|} sup ‘(Rt(A(a))u)k‘pﬁk + max{1, |az|} Sup ‘(Rt(A(a))v)k

= max{L, |a1[}gac (u) + max{l, |as|}gac (v).
This follows the subadditivity of g, i.e.,
Ia@ (T +Y) < gaw (T) + gaw (y), forall z,y € rf (p, A(a)) :

Let {z"} be any sequence of points in 7(p, A®) such that gaw) (z" — x) — 0 and
also (5,) be any sequence of scalars such that 3, — § as n — oco. Then by using the
subadditivity of gaw), we get

Ia@ (") < ga@ (@) + ga@ (2" — ).

Now, since {ga (™)} is bounded, we have

n o gy i—j F(O_/ + 1) li n
fate (" = i) = sup 2 Lz;(‘” e a— it P o)

Pg

M

t
ﬁ(ﬁnxz — Bay)

Pk P
< |Bn = B ga@ (2") + B8] gaw (2" — z)
—0 as n — oo.
Thus, scalar multiplication for ga() is continuous. Consequently, ga() is a paranorm

on the sequence space 74(p, A(a)). This completes the proof of the theorem. 0

Theorem 2.2. The sequence space r§(p, A®) is a complete linear metric space para-
normed by gaw defined in (2.2).

Proof. Let x' = {ng)} be any Cauchy sequence in r§(p, A(®). Then for ¢ > 0 there
exists a positive integer Ny(e) such that
gaw (@' —a’) <e,

for all 4,7 > Ny(¢). This implies that {(R*(A®)20),, (RH(A®)z1), ...} is a Cauchy
sequence of real numbers for each fixed £ € N. Since R is complete, the sequence
(RY(A@)z%),) converges. We assume that (RY(A®)2?), — (RYA®) 1), as i — oo.
Now, for each k € N, j — oo and i > Ny(¢), it is clear that

(2.3) (R(A)at) = (R(A)a)] < 3.
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Again, ' = {z{"} € ri(p, A®). This implies that

bva €
M
< 2’

for all & € N. Therefore, using (2.3) and (2.4), we obtain

(2.4) (R(A®)a),

M Rt(A(a))l’)k i (Rt(A(a))xi)k‘ﬁ + ‘(Rt(A(a))xz’)k M
9

(R (A®)a),

IA

A

"3

(
= e
2 )

for all i > Ny(g). This shows that the sequence ((Rf(A(®)z);) belongs to the space
co(p). Since (z') is any arbitrary Cauchy sequence, the space 7§(p, A®) is complete.

O

Theorem 2.3. The paranormed Riesz difference sequence spaces rh(p, A,
ri(p, A and rt_(p, A are linearly isomorphic to co(p), c(p) and Ly (p), respec-
tively, where 0 < pp, < H < .

Proof. We prove the result for the space r!_(p, A®). Using the notation (2.1), we
define a mapping ¢ : 7t (p, A®) — £o(p) by x +— y = . Clearly, ¢ is linear and
x = 0 whenever px = 0. Thus, ¢ is injective.

Let y = (yx) € loo(p) and using (2.1) define the sequence x = (xy) by

k=1 [j+1 , [(—a+1) 1} T
25 _ —1)kJ =Yy —yr, k€N
25) @ Z:hl ST Ca— kit 6 Y] T
7=0 |i=j
Then
k-1 [ k a
- o Na+1) t; Ly
o (x) = su —1)"7 — — ool KL Bl
ga () k@g;o[;( S e =i+ 0T | T T
Pk
k M
—su St
= sup y,| V' < oo,
keN
where

s L itk=j,
o, itk #5.

Thus, x € % (p, A

p, A1), Consequently, ¢ is surjective and paranorm preserving. Thus,
rlo(p, A®) = Lo (p).

O
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3. SCHAUDER BASIS

In this section, we shall construct the Schauder basis for the sequence spaces
rh(p, A®) and 1! (p, A®).

We recall that a sequence (zy) of a normed space (X, ||-]|) is called a Schauder basis
for X if for every u € X there exist a unique sequence of scalars (ay) such that

u — Zakxk

k=0

= 0.

lim
n—o0

Theorem 3.1. Let A\,(t) = (RY(A®)x), for all k € N and 0 < pp, < H < co. Define
the sequence b (t) = (b%)(t)) of the elements of the space 14 (p, AY)) for every fized
keN by

-t — f k<
;( ) (k=)T(—a—k+i+1)t;’ ifk<mn,
b (t) =4 T, |
?’ ka’ =n,
0 k> n.

Then
(a) the sequence (b¥)(t)) is basis for the space v4(p, A™) and every x € rh(p, A®)
has a unique representation of the form

(3.1) T = Z AR (£) 6™ (¢

(b) the set {(R{(AW)) e, b (1)} is a basis for the space rt(p, A1) and every
x €7t (p, AY) has a unique representation of the form

z=1le+ > |\() —1[0"(2),
k
where | = limy_,o (RY(A®) ),
Proof. (a) By the definition of RY(A®)) and b®)(¢), it is clear that
(3.2) (R(AI (1)) = e® € eo(p),

for 0 < pp, < H < 0. Let o € rf(p, A®) and for every non-negative integer m, we
put

(3.3) 2™ = 3" N ()p)
k=0
From (3.2) and (3.3), we obtain

RYA@) 2 = 3™ X () RY A (£) = (RYA)z) e ®,
k=0
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and
0 fo<i<m
Rt A(a) _ plm] = ’ o ’
( (A (z — = ))l (RY(AC)z),, if i >m.

Now, for € > 0 there exists an integer mg such that

P
sup [(RY(A)a) | ™ <

i>m

€
2
for all m > mg. Hence,

Pk
M

IA(e) (.CE — x[m]> = sup ‘(Rt(A(a)):v)i

>m
t( A(Q) M _ €
< sup [(R(AD)a)| " < <,
i>mo 2

for all m > my.
To show the uniqueness of the representation, we suppose that

z =" m(t)p®(1).
Then, we have
(R{(A@)), = 3 ue(t) (RAA@DH (1))
k

= m(®)el) = p(t), neN.
k

This contradicts the fact that (R/(A®)2), = \i(t), k € N. Thus, the representation
(3.1) is unique.
(b) The proof is analogous to the previous theorem and hence omitted. O

4. a-, f- AND -DUALS

In this section we shall compute a-, $- and y-duals of 75(A@), rt(A®) and
rt_(A®). Note that the notation a used for a-dual has different meaning to that of
the operator A,

For the sequence spaces X and Y, define multiplier sequence space M (X,Y") by

M(X,)Y)={p=(pr) € w:pr = (pxy) €Y, forall x = (x;) € X}.
Then the a-, 5- and y-duals of X are given by
X=M(X,t), X°=M(X,cs), X?"=M(X,bs),

respectively. Now, we give the following lemmas given in [41] which will be used to
obtain the duals. Throughout JF will denote the collection of all finite subsets of N.

Lemma 4.1. Let A = (aux) be an infinite matriz. Then, the following statement
hold:
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(a) A € ({uc(p),€(q)) if and only if
dn
sup Z Z ankBi

KeF n |kek

(b) A € (os(p),l(q)) if and only if

< oo, for all integers B > 1 and q, > 1 for all n;

1\ I
sup (Z [ B"’“) < o0, for all integers B > 1;
neN k

(c) A € (lo(p), c(q)) if and only if

1
sup »_ |ank| B < 0o,  for all integers B > 1,
neN k

qn
ezists (ag) C R such that lim (Z | — aul B;k) =0, forallB>1;
k
(d) A€ (lx(p),co(q)) if and only if

1 qn
lim (Z || B”’c) =0, for all integers B > 1.
2

n—oo

Lemma 4.2. Let A = (an;) be an infinite matriz. Then, the following statement
hold:

(a) A € (co(p), les(q)) if and only if

L\
(4.1) sup <Z |G| Bpk> < oo, for all integers B > 1;
neN k
(b) A € (co(p), c(q)) if and only if
(4.2) supz || B;’Tcl < oo, forall integers B > 1,
neN k
(4.3) exists (o) C R such that sup Y |an, — o Min B < 00,
neN k

for all integers M, B > 1,

(4.4) exists (o) C R such that Jim lane — a|™ =0,  forallk eN;
(c) A€ (co(p),co(q)) if and only if
(4.5)
1 =1
exists (o) C R such that sup Y |ap,| Man BPe < oo,  for all integers M, B > 1,
neN k
(4.6) exists () C R such that 1im lane|™ =0,  forall k € N.

Lemma 4.3. Let A = (anx) be an infinite matriz. Then the following statement hold:
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(a) A € (c(p),loo(q)) if and only if (4.1) holds and
Z Qnk
k

(b) A € (c(p),c(q)) if and only if (4.2), (4.3) and (4.4) hold and

qn

< 00;

sup
neN

n—oo

exists a € R such that lim ‘Z Unp — O
k
(c¢) A€ (c(p),colq)) if and only if (4.5) and (4.6) hold and

dn
lim ’z -
k

= 0.
n—00

Theorem 4.1. Define the sets v1(p), va(p), v3(p), va(p), vs(p) and vs(p) as follows:

vi(p) = ﬂ {a:(ak) cEw:

B>1
k+1
. P(-a+1) B o In 7
1) k —_ —Qnp Bre < 5
?é%zn: k%; LZ; ) (n—jT(—a—n+j+1)t, " o

N Ty 1
Bplk < oo and (a;; kBplk) GCO}a
k

Bf%k- < 00 and {A(O‘) <Ctlk> Tk} S &X,},
k

w) = { = (o w3 ‘M (tk) T

B>1
A <“k) T,
173

Vg(p):ﬂ {az(ak)ewzz

k

B>1
va(p) = |J {a = (ax) € w:
B>1
k1 M(cadt1) . . B
n—~k Lk Ty =
;1;1;2 kz [Z(l) (= DT(a—ntjr0t* g,
n eK |j=k
V5(p> = U {(l = (ak) cw:
B>1
S I'(—a+1) T, T
_1\n—k i T,
zn: Zk: Lz_;;( ) - (a-—ntit04 % 5,5 =%
vs(p) = ) {G_ (ar) €w: Y |A (ak) Ty| B <oo},
B>1 . Lk
where
(4.7) tr Lk J':zk;rl( ) ]z':zk (=) (—a—j7+i+ 1)
Then
¥

t

o A" =), [0 A = (), (e A@)]" = (o),

o
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[MnN%} —s(p) M), [, A@)])” = vep) Nes,

(
i, A =vs(p) ks, [, A)]" = wa(p),
[0, A@)]° = [r (0, A@)]" = ve(p).

Proof. We prove the theorem for the space rf_(p, A®). Consider the sequence a =
(ar) € w and x = (xy) is as defined in (2.5), then we have

nol 7] . I(—a+1) T T,
ndn = —1)" —— nYj = nYn
nt ;) E;( T Ca—n st Y| T g, Y
(4.8) = (Gy)pn, foreachn e N,

where G = (gn) is a matrix defined by

k+1(—1)"—’“ [(zatl) Ty ifo<k<n
= (n—H(—a—n+j+1)t; " - ’
nk = \ In .
Ink t—an, if k =n,
0, if k> n.

Thus, we deduce from (4.8) that ax = (a,z,)

if and only if Gy € ¢; whenever y = (yx) €

[rtoo(p, A(a))]a if and only if G € ({xo(p), t1).
Thus, by using Lemma 4.1(a) with g, = 1 for all n, we conclude that

€ (, whenever x = (z;,) € rt_(p, A®)
ls(p). This yields that a = (a,) €

(e, A" = mi ().

Now, consider the following equation

Zakxk = Zak

k=1 (j+1 y D(—a+1) T T,
Z (Z (—1)* (k— ) (—a—k+itl )ty]) +Eyk:

7=0
—ZyT Z 1y a’g I'—a+1) —I—Tnay
j=kt1 ’ — i) (~a—j+i+1)t; 2
n—1 " Tn
(49 => whA“ ( ) + " anYn
k=0 tk tn

(4.10)
= (Hy),, foreachn e N,
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where H = (h,) is a matrix defined by
A@( )n, it0<k<n,
Ly,

&

Pk = —ay,, if k =n,
ln

, if k> n,

=)

and A(®) (?—:) is as defined in (4.7). Thus, we deduce from (4.10) that ax = (axxy) € cs

whenever x = (1) € r%_(p, A®) if and only if Hy € ¢ whenever y = (yi) € loo(p).
Therefore, by using Lemma 4.1 (c¢) with ¢ = (¢,) = 1, we get that

(a)
2; A (tk)j%
B
Thus, [t (p, A)]" = 15(p).
Similarly, by using Lemma 4.1 (b), with ¢, = 1 for all n, we can deduce that
[réo (p, A(a))} T = (p). This completes the proof of the theorem. The duals of the other
spaces can be obtained by the similar proceedings and using Lemma 4.2 and 4.3. [

T, 1
B < oo and lim ~Fa B = 0.

k—oo tk:

5. MATRIX TRANSFORMATIONS

In this section, we give certain results regarding matrix transformation of the Riesz
sequence spaces of fractional order to X (p) where X = {l,¢,c}. Let ¢ = (¢,) be a
non-decreasing bounded sequence of positive real numbers. For brevity, we write

. kt1 I'(—a+1)
Al <ank> =y )Y " a, _—
2 2 gzk;rl ]Z — i) (—a—j+i+ 1)
and
A(a) <ank> CLnk + Z j k(l Ig F(_Oé + 1)
<\t e 5 ! ST (—a—j+i+ 1)t

for all n,k € N. Let 2,y € w be connected by the relation y = R*(A®))z. Then we
have by (4.9)

s tin
(5.1) > kT = Z Al ( > Thyr + aan Ym, n,m €N,
k=0

Now, let us consider the followmg conditions before we proceed:

(5.2)  lim —TkBPk =0, foralln,BeN,

k—o00 k
1 dn
(5.3) sup [Z Ag‘;‘) <atnk> T.|Brr | < oo, forall BeN,
neN k k

(5.4) sup>_|A

neN k

(a'nk ) Tk
ty,

Bpk < oo, forall BeN,
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1 qn

(5.5) exists () C R such that lim lz ‘Ag‘;‘) (?’“) T — oy, BM] =0,

for all B € N,

_ q7L

(5.6) sup [Z A <ank> T} B < oo, forall BeN,

neN | tk’

in

(5.7) sup ZA (a”"’> Ti| <oo, forallneN,

neN

a qn

(5.8) exists o € R such that lim ‘Z Al <tnk> T, —al =0,

qn

(5.9) exists (o) C R such that lim ’Ag) <atnk> T, —ap] =0, forallkeN,
k

n—oo
A(Og) <ank> Tk — O
(78

(5.10) exists (o) C R such that sup Lo > Bn < 00,
neN k

for all L exists B € N.

Theorem 5.1. Let A = (anx) be an infinite matriz. Then the following hold:
(a) A€ (rl(p, A a)) lso(q)) if and only if (5.2) and (5.3) hold;
(b) A€ (rt (p, A), c(q)) if and only if (5.2), (5.4) and (5.5) hold;
(c) A e (rt (p, A(a ), co(q)) if and only if (5.2) holds and (5.5) holds, with oy, =0
for all k € N.

Proof. We give the proof of (a) as the rest can be obtained in the similar manner.
Let A = (au) € (rl (p, AY),l(q)) and = = (1) € 7t (p, A®). Consider equation
(5.1). Since Ax exists and belongs to the space £, (q), therefore the necessity of the
condition (5.2) is obvious. Now, letting m — oo in equation (5.1), we straightly get

k+1
. , I'(—a+1)
Av=3 S (1), 5 iy
! (tk " ani 2 T —j+z’+1)ti) KOk

j=k+1

(5.11) - ZA(Q (a"’“> Tos.

This implies that A(RY(A®))™ly € £,(q). That is, A(RH(A)) ™! € (lo(p), lo(q)).
Therefore, A(R!(A®))~! satisfies the lemma 4.1(b) which is equivalent to the condi-
tion (5.3). This shows the necessity of the condition (5.3).

Conversely, let the conditions (5.2) and (5.3) hold and = € r!_(p, A®). Then it
is clear that Ax exists. Now, using equation (5.11) and the condition (5.3) with
B > max{1,sup |yx|"*}, we get

k

an

Ax = su
Al = sup

Z Ank Tk
k
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Adn

. . L I'(—a+1)
%:(m+-iibh amg;U—UTFﬂ_j+i+U)ﬂ%

= sup
neN j=k+1
a an
< sup (Z AL (nk) Tyyx )
neN k tk
Ank 1 "
< sup Z Ag? () Ti.| Brx < 00.
neN \ ‘% 172
This concludes that A € (r!_(p, A), 45 (q)). O

By the similar proceedings, we can derive the following results.

Theorem 5.2. Let A = (ayi) be an infinite matriz. Then the following hold:

(a) A€ (rt(p, A), lo(q)) if and only if (5.2), (5.6) and (5.7) hold;

(b) A € (rt(p, A), c(q)) if and only if (5.2), (5.8), (5.9) and (5.10) hold and
(5.6) also holds, with q, =1 for alln € N;

(c) A € (rt(p, A), co(q)) if and only if (5.2) holds and (5.8), (5.9) and (5.10)
also hold, with o =0, oy, = 0 for all k € N.

Theorem 5.3. Let A = (ani) be an infinite matriz. Then the following hold:

(a) A€ (rb(p, A), loo(q)) if and only if (5.2) and (5.6) hold;

(b) A € (ri(p, A), c(q)) if and only if (5.2), (5.9) and (5.10) hold and (5.6) also
holds, with q, =1 for all n € N;

(c) A€ (rhi(p, A), colq)) if and only if (5.2) holds and (5.9) and (5.10) also hold,
with o, = 0 for all k € N.

CONCLUSION

In this article, we introduce paranormed difference sequence spaces 7! (A(®),
rt(A@) and 74(A@) of fractional order a, investigate their topological properties,
Schauder basis, a-, 8- and - duals and characterize the matrix classes related to
these spaces. We conclude that the results obtained from the matrix domain of the
product matrix R(A®) are more general and extensive than the existent results of
the previous authors. We expect that our results might be a reference for further
studies in this field. In our next paper, we will investigate the results obtained from
the matrix domain R*(A(®) in the spaces ¢, of absolutely p-summable sequences,
1<p<oo.

Acknowledgements. The author would like to thank the anonymous referees for
their careful reading and necessary comments which have improved the presentation
of the paper.
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GENERAL CLASSES OF SHRINKAGE ESTIMATORS FOR THE
MULTIVARIATE NORMAL MEAN WITH UNKNOWN VARIANCE:
MINIMAXITY AND LIMIT OF RISKS RATIOS

ABDELKADER BENKHALED! AND ABDENOUR HAMDAQUI?

ABSTRACT. In this paper, we consider two forms of shrinkage estimators of the
mean 6 of a multivariate normal distribution X ~ N, (6,521,) in R? where o2 is
unknown and estimated by the statistic S? (S? ~ o2x?2). Estimators that shrink
the components of the usual estimator X to zero and estimators of Lindley-type,
that shrink the components of the usual estimator to the random variable X. Our
aim is to improve under appropriate condition the results related to risks ratios of
shrinkage estimators, when n and p tend to infinity and to ameliorate the results of
minimaxity obtained previously of estimators cited above, when the dimension p is
finite. Some numerical results are also provided.

1. INTRODUCTION

Shrinkage estimates are alternative estimates that use information from all studies
to provide potentially better estimates for each study. While these estimates is
biased, they have a considerably smaller variance, and thus tend to be better in
terms of total mean squared error. For example, Xie et al. [21] introduced a class
of semiparametric/parametric shrinkage estimators and established their asymptotic
optimality properties, Hansen [9] compared the mean-squared error of ordinary least
squares (OLS), James-Stein, and least absolute shrinkage and selection operator
(Lasso) shrinkage estimators and shows that neither James-Stein nor Lasso uniformly
dominates the other, Selahattin et al. [15] provided several alternative methods for
derivation of the restricted ridge regression estimator (RRRE).

Key words and phrases. James-Stein estimator, multivariate Gaussian random variable, non-
central chi-square distribution, quadratic risk, shrinkage estimator.
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Mean vector parameter estimation is an important problem in the context of shrink-
age estimation and has been widely applied in many scientific and engineering prob-
lems. This fact is certainly reflected by the abundant literature on the subject, let us
cite for instance. Stein [16] showed the inadmissibility of the usual estimator X of the
mean 6 of a multivariate normal distribution X ~ N, (6,021,) when the dimension
of the space of the observations p > 3. James and Stein [10], introduced the class of
shrinkage estimators d, = (1 — a2/ || X||*)X, that improving the usual estimator X
under the quadratic loss function. Many developments in this field has realized by
Lindley [12], Baranchik [1], Stein [17] and Selahattin and Issam [13]. Tsukuma and
Kubokawa [20] addresses the problem of estimating the mean vector of a singular mul-
tivariate normal distribution with an unknown singular covariance matrix. Selahattin
and Issam [14], introduced and derived the optimal extended balanced loss function
(EBLF) estimators and pridictors and discuss their performances.

When the dimension p is infinite, Casella and Hwang [4], studied the case where
02 is known (02 = 1) and showed that if the limit of the ratio ||f||* /p is a constant
¢ > 0, then the risks ratios of the James-Stein estimator 6”° and the positive-part
of the James-Stein estimator 67T, to the maximum likelihood estimator X, tend
to a constant value ¢/(1 + ¢). Benmansour and Hamdaoui [2], have taken the same
model given by Casella and Hwang [4], where the parameter o2 is unknown and they
established the same results. Hamdaoui and Benmansour [6], considered the model
X ~ N, (0,0°1,) where o? is unknown and estimated by S? (5% ~ o2x2). They studied
the following class of shrinkage estimators &, = §7° +1(S%¢(S?, || X||?)/[| X ||*) X, where
[ is a real parameter. The authors showed that, when the sample size n and the
dimension of space parameters p tend to infinity, the estimators J, have a lower
bound B,, = ¢/(1 + ¢) and if the shrinkage function ¢ satisfies some conditions, the
risks ratio R(dy,0)/R(X,6) attains this lower bound B,,, in particulary the risks
ratios R(675,0)/R(X,0) and R(67°*,0)/R(X, ). In Hamdaoui et al. [8], the authors
studied the limit of risks ratios of two forms of shrinkage estimators. The first one has
been introduced by Benmansour and Mourid [3], §,, = 67 +1(S%(S?, | X]|%) /|1 X]1*) X,
where [ is a real parameter and ¢ (-, u) is a function with support [0, b] and satisfies
some conditions different from the one given in Hamdaoui and Benmensour [6]. The
second is the polynomial form of shrinkage estimator introduced by Li and Kio [11].
Hamdaoui and Mezouar [7], studied the general class of shrinkage estimators 64 =
(1 — S2%¢ (5’2, ||X||2) / ||X||2) X. They showed the same results given in Hamdaoui
and Benmansour [6], with different conditions on the shrinkage function ¢.

In this work, we consider the model X ~ N, (6,02I,) and independently of the
observations X, we observe S? ~ 02x2 an estimator of % It’s well known that
the quadratic risk of the usual estimator X is po?. Consequently, any estimator of
0 which has a quadratic risk less than po? dominate X, then it is minimax. We
consider two different forms of shrinkage estimators of : estimators of the form
0¥ = (1 — (S | X|I))S?/ | X||*)X, and estimators of Lindley-type given by % =
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(1 — p(S%,T%)S?/T?)(X — X) + X, that shrink the components of the maximum
likelihood estimator X to the random variable X. Our aim in this work is based on
two points. First, when n and p tend to infinity, we give results of the limit of risks
ratios of estimators defined above to the maximum likelihood estimator X, different
from the one obtained in our published papers. The second point is to generalize and
to improve the results of minimaxity obtained by Strawderman [18], Sun [19] and
Hamdaoui and Benmansour [6].

The paper is outlined as follows: In Section 2, we consider the form of shrinkage
estimators defined in (2.2) and we study the minimaxity and the limit of risks ratio to
these estimators to the usual estimator X. In Section 3, we consider the second form
of shrinkage estimators defined in (3.1) of Lindley-type. In this case, we follow the
same steps as we treated the first form (2.2). In Section 4, we graphically illustrate
some results given in this paper. In the end, we give an Appendix which contains
technical lemmas used in the proofs of our results.

2. SHRINKAGE TO ZERO

Let X ~ N, (6,0%1,) where o2 is unknown and estimated by S? (S? ~ o?x?2). The
aim is to estimate € by an estimator 0 relatively at the quadratic loss function

L(5,6) =164,
with [|-[|, is the usual norm in R?. We associate its risk function
R(6,0) = Ey (L (6,0)).
We denote the general form of a shrinkage estimator as follows

(2.1) 07 (X,8%) = (1—o (S IXI°) X5, G=1,....p.

We recall that ”f—y ~ X3 (A), where x7 (A) denotes the non-central chi-square distribu-

tion with p degrees of freedom and non-centrality parameter A = %. We also recall
the following Lemma given by Fourdrinier et al. [5], that we will use often in the next.

Lemma 2.1. Let X ~ N, (9,g2lp) with 0 € RP. Then
(a) forp >3 wehaveE( 1 ): 1E( 1 );.

1x 2 a2 p—2+2K
1) _1 1
(b) for p>5 we have E (IIXH4) ==F ((p_2+2K)(p_4+2K)) ,
where K ~ P (%) being the Poisson’s distribution of parameter %.

For the next, we need the following results obtained by Hamdaoui and Benman-
sour [6].

Proposition 2.1 (Hamdaoui and Benmansour [6]). The risk of the estimator given
in (2.1) s

R (5¢’(X, 52), 9) =o’E {cbi Xorox — 20K <X12>+2K - 2K) +p} )



196 A. BENKHALED AND A. HAMDAOUI

where ¢ = ¢ (a2xfl, 02X12)+2K> and K ~ P (IIGH ) being the Poisson’s distribution of

parameter ”9”2 and X2 is the central chi-square distribution with n degrees of freedom.

Furthermore, R ((W (X, 5% ,9) > B, () with

Bp(e):GQ{p—z—E{]%(}}.

We set by b, (0) = R()g 9)), it is clear that if pggloo |1|i|| = ¢ (> 0), then
lim b, (0) = ——.
p—00 1 +c

In the particular case where ¢(S2, || X|*) = dH;HQ we have

d 2 52
b (XS)z( —d“XH2>X,

hence

R (5d(X7 52),9) — o2 {p+ n [d2(n +2) —2d(p — 2)] E <p_21+2K>} .

Ford = =5 2 we obtain the James-Stein estimator which minimizes the risk of 6 (X, $%)
whose quadratlc risk is

R (875(X,5%),0) = {p - %(p —2)2E <p—21—|—2K> } .

Proposition 2.2 (Hamdaoui and Benmansour [6]). If EIE L'f”j = ¢, then
p oo

R (5°(X, 5%),0) c
lim >
n,p—00 R(X,0) I+ec

and
R(675(X,8%),0) ¢
lim = i
np—oo R(X,0) 1+c

We note that from the Proposition 2.2, the risks ratio of any shrinkage estimator
5% (X, S?) of the form (2.1) dominating the James-Stein estimator §7% (X, S?), to the
maximum likelihood estimator attains the limiting lower bound B, = 15 (< 1),
when n and p tend simultaneously to infinity.

Now we rewrite the estimator in (2.1) by letting ¢ (SQ, ||X||2) = (52 | X|| )

as given by

(2.2) o7 (X,8%) = (1 — v (8% X% H)S(TIZ> X;, j=1,....p

2
X117
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Using the Proposition 2.1, the risk function of estimator 6% (X, S?) given in (2.2), is

R(6%(X,5%),0) = o’ {@Z’%("QX?%)Z)) — by ((%)) ok — 2K) + }

2 2.2
g (U Xp+2K o220k

2 2K
=P02+02E{Xi Vi [wg Xn —2<1— 2 )H
Xp+2K Xp+2K

where Vg = ¢ <02X721 a02X127+2K) )
We write Ay, = R ((w (X, 52) ,9) — R(X,6). As R(X,6) = po?, then

(2.3) szﬁE{Xiw [X“W—2<1— 2K ﬂ}

Xp+2K Xp+2K

2.1. Limit of risks ratios. In this part, we are interested in studying of the limit
of risks ratios of estimators defined in (2.2), to the usual estimator X. So, we give
results different from the one given in our published papers.

Theorem 2.1. Assume that §% (X, S?%) is given in (2.2), such that p > 3 and

satisfies: )

(H) % — ) (52, HXH2) < g(S?) a.s., where £ {92 (02xi+4>} =0 (n%), when
n is in the nezghborhood of 4o00.

If lim LQHQ = ¢, then

p—-+00

R (5% (X,S%),0) c
lim = )
n,p—-+oo R(X,0) 1+c¢

Proof. We note a = 23 and ¢ (5’2 | X|| ) =1). As

and

then
Ass =R (6Y(X,5%),0) — R (679(X, 5%),0)

(o) 2o = [0 o)
[0vpep) o] o0 -ogep) 2 e
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QE} (oo gr] [ (-5 ) <=0 )

Efo-o (-5 e

2<%
[1X]

=2 {3 e (14 T ) ]

Sl v e}

<2 ) 0 g e o
o[l eS| - 3 [ el
25005+ 0 el 0

=1

Using the conditional expectation and the formula (2.7) given in Benmansour and
Mourid [3], we have

B (o0 i 0| = B {S |20 o}

l a — g[; o? Xn,U Xp+2 ()‘))) Xf,jzn()\)] ’

where A = Hi—‘f. Then
1 G4 S
A §2E{ (la=o]) 82| + % (@ =) =2 + a(la —v]) =
| I+3 DSk x|P

B [(\a b (2 o ) XX(A)] } |

From the hypothesis (H) and the independence of two variables S? and || X||*, we
have

Ags <2B[5% (87)] + B [s'¢? (8%)] B (H;H)
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+20E [5'g (%) E (II T >+2AE[52 (52)}E< : 1 )

Xpt2 (A)
=28 |5 |+ 2[5 ()] 2 ()

oz [5' (51 2 () + 2 [0 2 (57 o)

Using the Lemma 5.1 of the Appendix and the fact that £ ( x21(/\)> < zﬁ we obtain

Ass

g (0 2Xi+4)
2

Xn+4
ak [9 (U2Xi+4)} E <X21()‘>> + \E (X iz+4
D n

g (0‘2X72z+4>] 4 n (n + 2) J2E [92 (02X72,L+4)]

Xpta p—2
g (U 2X721+4>
X3L+4 .

<2n(n+2)o’E

+n(n+2)0°E g (*X0) | B <x§1(A>>

" <xp+i (M) ]

+2n (n +2) o?

<2n(n+2)0’E

n(n+ 2)
p

o’E

+ 2no?E [g (02X721+4>} +2)
Thus,

Ays < 2n(n+2) |9 (02X3+4) n(n+ 2)

B T 19° (0"X0sa)]

po? = p Xit4
+ 2 [y (o%2,)] + 2002 g (™)
p e p P X4 |

From condition E {92 (azxi +4>] =0 (#) and using the Schwarz inequality, when n

is in the neighborhood of 400, we obtain

2.2
5| (;%ﬁ%) < B[t (o) < B [u%;)?]
< Vit < Vi~
n n

and
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where M is a real strictly positive. Then, when n is in the neighborhood of 400, we
have

Ays _2(n+2 2 2 2\ 2
ss 22 qpy nH2 4 24 2Dy,

po* ~  np np (p —2) p po*  np
As lim 2 = lim ||9H22 = ¢, then
p—+o00 p——oo PO
lim —= <0
n,p——+0o0o po

Using the Proposition 2.2, we have
R (8% (X, 8%),0) c
lim = :
n,p—o00 R(X,0) 1+c¢

Example 2.1. Let ¢ = z;é — (HS;)Q, therefore

" 2\ _ B p—2_ S? 52
7 (X.57) O <n+2 u+s%ﬂuxw *

It is sufficient to take g (S?) = 5 then from the Lemma 5.1 of the Appendix, we

(1452)%°
have
2
o*Xn 4)
E g (0°Xnia)| = B )
] = o
— (n+4)(n+6)'E lll
(14022 )"
< (n+4)in+6)E [ 21 4]
o (Xn—i-S)
1 it el 1
ot n(n+2)(n+4)(n+6) ot n?
Thus,

1
[7* ()] =0 ()
2.2. Minimaxity. In this part we study the minimaxity of estimators defined in

(2.2). We give another results that improve the one given in Strawderman [18], Sun
[19] and Hamdaoui and Benmansour [6].

Theorem 2.2. Assume that §¥ (X, S?) is given in (2.2), such that p > 3 and v
satisfies:
(a) ¢ (5’2, ||X||2> is monotone non-decreasing in | X |*;

(b) 0 < (S ]1X]) < 222

— n+2
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A sufficient condition so that the estimator 6 (X, S?) is minimaz is, for any k,
E=0,1,2,...,
E {¢ (azxfhul ,02X123+2k:)} <FE {¢ (02Xi+2 a02X123+2k)} :

Proof. From the formula (2.3) and the condition (b), we have

2(p—2) v2
n 2K
Ay <OPE N W—?(l— : )
Xp+2K Xp+2K

We will prove that the expectation on the right hand side being non-positive for any
K=k k=0,1,2,....
By using the conditional expectation, we obtain

[ 2 (p - 2>X2
n 2k
A¢§02EE ¢kX$L n+22—2<1— 5 ) Xi
Xp+2k Xp+2k
2 (p - 2) 2
2 2 2 n—+ 2 Xn 2k 2
<PEIN E(vn | X3) B || E—-2{1- Xa| (s
Xp+2k Xp+2k

the last inequality according to the condition (a) and the fact that the covariance of
two functions one increasing and the other decreasing is non-positive.
Using the Lemma 2.1, we obtain

[ 2(p—2) Xz
n 2k
E 7H‘22_2<1_ . > X2
Xp+2k Xp+2k
i 2
2p—2) o(p—2) (X 4
- p—2+2k p—2+2k || A T p—2+2k

Then

(2.4) -2, {Xi ( Xa —1> wk}.
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From the Lemma 5.1 of the Appendix, we have

E {XZ (7352 - 1) Y/Jk} =nk {w (U2Xi+4 7‘72X;2;+2k) - (02X721+2 702X§+2k)} .

Using the sufficient condition

E W (02X721+4 a02X129+2k;)} <FE W (02X31+2 70—2X12;+2k)} )

2
E{xi (nXH - 1) wk} <0.

Ay <0, 0

we obtain

Thus,

Example 2.2. Let 1hy = 2(57;22) In (1 + S5?) exp (—S5?), therefore

_ 2 2 2
5¢2(X,82): 1_2(]9 2)51D(1+S)26Xp( S%) X
n+ 2 | X ]

Remark 2.1. (i) Using the Lemma 5.2 of the Appendix, it is clear that if ¢ (5’2, HX||2>

is monotone non-increasing in S?, then the sufficient condition:

E {w (02X3L+4 v02X§+2k’)} <E {w (UQX%H ’U2X22’+2k)}
is satisfied. Thus, the theorem 2.2 gives an improvement of the results of minimaxity
given in the first Theorem of Strawderman [18], Theorem 4.1 of Sun [19] and Theorem
4.1 of Hamdaoui and Benmansour [6].
(ii) Note that the James-Stein estimator satisfies the conditions of Theorem 2.2,
thus Theorem 2.2 gives another proof of the minimaxity of the James-Stein estimator.

3. ESTIMATOR OF LINDLEY-TYPE

Let the model be X/0,0% ~ N, (0,0%1,), where the parameters 6 and o* are
unknown and o? is estimated by S? (S? ~ 0?x2). The aim is to estimate the mean
0= (01,0,... ,9p)t by shrinkage estimators of the form

(3.1) 09 (x,81%) = (1-¢(8%7%)) (X; -X)+X, j=12..p,

where
. 1 p p 2
X=-YX ad T°=) (X;,-X),
Piza i=1
with the two random variables S? and 72 are independent. In the next, we follow the
same steps that we treated in Section 2, then we give a similar results to those given

in Section 2 with some changes in the proofs.

Lemma 3.1. For any functions f and g of the two variables S* and T?, such that
all expectations of (a) and (b) exist, we have

(a) E{f (527 TQ)} =F {f (0-2X72’L70-2X]2)—1+2K>};
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P
) E{g (5,7 £ (0= 8) (X - X) } = 20°F {Kg (¢, 0"\ 106) }
where K ~ P (Z (GZ —9)2/202> being the Poisson’s distribution of parameter
=1
E (9 —9) /202 and 0 = * XP: 0;.
i=1 Piz
Proof. Analogous to the proof of the Lemma 2.1 given by Sun [19]. U

The following proposition, gives the explicit formula of the risk of the estimator
6% (X, 52, T?) given in (3.1). For the proof see Appendix.

Proposition 3.1. Let 6 (X, S?,T?) is given in (3.1), then for any p > 4 we have
(i) R (59(X, 5%,7%),0) = 02 { 63X 1 carc — 20k (2orin — 2K) +p):
(i) R (5¢(X, SQ,TQ),H) > B, (0), where

2 2
Xo—14or — 2K
O = ¢(02X$L,U2X12)_1+2K> and B, (0) = olE {p ( P J; ) };

Xp—1+2K

(iii) if c= lim Z (9 - 9) /po? exists, then

p—+00 ;=1

B, () B, (0) . _c
p—+oo R (X, 0) pLErHOO po? _pggrnoo by (0) = 14+¢

Now, we consider the special case when ¢ (S5?,T?) = d%, where d is a constant,
then the estimator given in (3.1) is written as

S? =\ = .
(3.2) 08 (X, 8%,77) = (1 —dT2> (X, -X)+X, j=12....p
From the Proposition 3.1, we have
1
d 2 2 _o2) a2
R(5 (X,S85,T ),9) =0 {p [2dn(p 3) dn(n+2)}E<p_3+2K>}.

We note that when d = 0, the estimator §° (X, 5% T?) given in (3.2) becomes the
maximum likelihood estimator X, its risk equal po?. In this case, the James-Stein
estimator is obtained by minimizing the risk R <5d(X 82 T?), 9), the James-Stein
estimator is given by

—-35? =\ = .
(3.3) 53.’5(X,S2’T2):<1_§+2P>(Xj—X)+X, j=1,2,....p.
Its risk is
JS 2 2 _n g2 1
s st - - et (o))

where K ~ P (£ (6:-7)° /20%)
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Proposition 3.2. (a) If p > 4, the James-Stein estimator 67° (X, 52, T?) given in
(3.3) is minimaz.

. N2,
(b) If pll)I_Eloo Zgl (92- — 0) /po® = c(>0), then
y R (875 (X,82,17),0) c
nproo R(X.0) 1+

Proof. (a) It is obviously from the formula (3.4).
(b) For p > 6 and from the Lemma 3.1 given by Sun [19], we have

1p 2§E< >§ 1p 27
> (6:-9) p—3+2K > (6:-9)
p_3_‘_1:1T p_5+lle
then
Ji’(<5"s()<',SZ,T2),9)>1 n  (p—3)° 1
R(X.0) ot 2 Sy
@_'_i:l
p po?
and
R(éJS(X,SQ,T2)79)<1 n (p—3)° 1
R(X,0) = n+2  pP S (0,7)°
ﬂ_,r_z':l
p po?
Thus,
C 1 . R<5JS(XJSQ7T2)79) 1 C
=1- < lim <1-— = )
l+c¢ 1+c¢ = npotoo R(X,0) l+c 1+c¢

Remark 3.1. From Propositions 3.1 and 3.2, we note that the risks ratio of any shrink-
age estimator §¢ (X, S%,T?) of the form (3.1) dominating the James-Stein estimator
675 (X, S2,T?), to the maximum likelihood estimator attains the limiting lower bound

B, = 117, when n and p tend simultaneously to infinity.

Next, we consider the general form of shrinkage estimators of Lindley-type, defined
by

T2
We write A, = R (0¥ (X, 5%,7?),0) — R(X,0). Then
A

2 2K
Xp—1+2K Xp—1+2K

where o = ¢ (U2X%7 0'2X;2;—1+2K) :

(3.5) 5;?(X,52,T2):<1—¢(52,T2) 52) (Xj—Y)JrY, i=1,2....p.
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3.1. Limit of risks ratios.

Proposition 3.3. Assume that 6% (X, S? T?) is given in (3.5), such that p > 3 and
© satisfies

(H) |25 — (5% T2)’ < g(5?) a.s., where E{g2 (a2xi+4)} =0 (%) .

If lim Z (9 —9) /po? = c, then

p—+00 ;-1
p BOP(XT%).0)  c
n,p—-+oo R(X,0) S l+4c

Proof. We follow the same steps of the proof of Theorem 2.1, endeed we write v = %
and ¢ (S?,T?%) = p. As

R (5(X, 5%, 12),6) = E{Zp: _<1 - %ﬁ) (X: - X) —ei_Q}

and R (579(X,5%,17),0) = E{z: (1 —afj) (x, - X) —9{2},
WeAh:e_R (5@(X,52,T2),9) R(679(X, 82T 2) 9)
25 {3 00 5 (5T |(1- 52 (v-X) o
(a+¢ )S) 2
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S2 p _ —
=K {(a — @)ﬁ Z(Xz — X)(0; — 9>}
=1
X2
=202F {K (a — @(szi, 02X129_1+2K)) 2n} '
Xp—142K

S4

1 5 54
Ajg SZE{(|04—Q0|)52+2(04—<P) 75 talla—el) =

+202K (o — ¢ (633, X2 1)) ” Xiw} .
2

From hypothesis (H) and the independence to two variables S? and T2, we have

Ays <2 {E [529 (52)} + ;E [54g2 (52” E( 1 )

+aE [$'g ($?)] E (;)} +20°F [529 (%) Xi_ile
<2n [0 st ()] 6 ()

+20E [s'g (5?)] E (T12> +20°E [549(52) K 1 .

Using the conditional expectation, we have

S? X;Q)—1+2K
g(8%) K g(s*) K
E[S“ o~ = EJE( |55 — S?
Xp—1+2K Xp—-1+2K

f <(l§§ﬁg)'p3ﬁwlsz>}
E|st2

N~ N =

< Iz

From the Lemma 5.1 of the Appendix, the independence of two variables x?,, and

Xo_112x and the fact that E ( o ) =F (ﬁ) < -1 we obtain

p—14+2K p=3’
g (o*xa 1 !
Ays <2 (n +2) 0 {E (X,LMH) + §E {92 (02X721+4>] E <X§1+2K>}

g <U2Xi+4)

Xn+4

o (nt2)o? (aE o(ris )] + B

1
£ i)
Xp—1+2K
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<2n(n+2)o’E

g <0'2X31+4)] i n (n + 2)0‘2E [92 (0‘2X2+4>}

Xid p—3
g (‘7 2X?L+4)
X721+4 '

5 o (n+2)

+ 2no’E [9(02xi+4>}+ o P E

Thus,

E [92 (02X31+4)}

g (02X31+4) ]

2
Xn+4

AT <2n(n+2)E [9 (02X72H4)] N n(n+2)

po? = p Xoi4 p(p—3)

+ 2;‘12 9 (0*X2 )] + ;;2 & ;”_JF;) E

where \ = i ((% - 5)2 Jo?.

i=1
From the condition FE {92 (02X2+4)} =0 (#) , when n is in the neighborhood of
400, we have
A 2 2 2 2
i 2D A Ay B 2 Dy
po? np np (p — 3) p02 np
where M is real strictly positive.

A ,
As lim = = lim Z (Hi — 9)2 /po? = ¢, hence

p%—&-oop p—+00 ;=1

Ays
lim —— § 0.
n,p—>—+00 pg

Thus, from Propositions 3.1 and 3.2, we have
lim R(0%(X,5%,7°%),0) ¢
n,p—>-+oo R(X,0) S l+c

3.2. Minimaxity.
Proposition 3.4. Assume that 6% (X, S? T?) is given in (3.5), such that p > 4. If

(a) ¢ (S?,T?) is monotone non-decreasing in T?;

2(p—3)

b) 0 < p(S2%,T?) < ——2.

() 0= ¢ (57,77 < P
A sufficient condition so that the estimator 6% (X, S?,T?) is minimax is, for any k,
k=0,1,2,..., and for each fived T?

E {80 (02X31+4 702X;27—1+2k)} <FE {90 (O-QX?L-FQ 702X;2>—1+2k)} .

Proof. The proof is similar to proof of Theorem 2.2. Endeed, from condition (b), we

obtain
2K
A, —0’F {Xn % [X" LS 2 (1 — )] }
Xp 1+2K Xp 142K
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2(p=3) . 2
o 2K
SUQE{Xi oK [Z“ X —2<1—2 )”
Xp—-1+2K Xp—1+2K

We will prove that the expectation on the right hand side being non-positive for any
K=Fk k=0,1,2,...
By using the conditional expectation, we have

2(p=3) , 2

“nt2 Xn 2k
ES X5 ¢x 2”—2(1— > )] Xa

Xp-1+2k Xp—1+2k
2(p=3) |2

o 2k

sy (1o ) e,
Xp—1+2k Xp—1+2k

the last inequality according to the condition (a) and the fact that the covariance of
two functions one increasing and the other decreasing is non-positive.

A, < o’E

<o’E {xi E(pl X2) E

As
_ 2
25%123) Xn 2k 2| _ 2(p—3) (nXi@ — 1) 2
E 2 —2(1-= | Xn| = E I Xn
Xp—1+2k Xp—1+2k p—3+2
2
2(0-3)(25-1)
N p—3+2k
then
2
2(;;—3)( %:2 —1)
2 2 n 2
2 (p - 3) o’ 2 X2
= - F n_ ] )
p—3+2k "1 \n+2 ok
Using the sufficient condition
E {90 (02X721+4 702X12;—1+2k)} <E {%0 <02X721+2 02X§—1+2k)} ’
we have
2
X
E {2 n__ ] <0
hence A, < 0. ]

Remark 3.2. Note that the James-Stein estimator given in (3.3) satisfies the conditions
of the Proposition 3.4, thus the James-Stein estimator is minimax.
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4. SIMULATION

We illustrate the graph of the upper bound given by the formula (2.4) for the risk
difference A, of the estimator %2 (X, S?) given in the Example 2.2 and the maxi-
mum likelihood estimator, divided by the risk of the maximum likelihood estimator
R(X,6) = po?, as a function of d = ||4||* and s = o2, for various values of n and p.

FIGURE 1. n=10 and p =4

FIGURE 2. n =25 and p =10

In Figure 1 and Figure 2, we note that an upper bound of risks difference of the
estimator §%2 (X, S?) given in the Example 2.2 and the maximum likelihood estimator
X, divided by the risk of the maximum likelihood estimator is negative, thus the
estimator 6% (X, S?) is minimax for n = 10 and p = 4 and for n = 25 and p = 10.
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5. APPENDIX
Lemma 5.1 (Casella and Hwang [4]). For any real function h such that
E (h (Xg (/\)) X; ()\)) exists, we have
E{n (V)W) =aB{h (W)} +2B{n (2, ()}

Lemma 5.2 (Benmansour and Hamdaoui [2]). Let f be a real function. If for p > 3,
Eaml(f(U)] exists, then

(a) if f is monotone non-increasing, we have
E ol(F(U)] < Eeml(f(U)];
(b) if f is monotone non-decreasing, we have

Ee ol(f(U)] = Exm(fU)).

Xp+2

Proof. (Proposition 3.1) (i)

R( (x,52.72),0) =B |32 [(1 -0 (527)) (4~ X) + X -0

—5|[1- o (521 S (x - %)+ B[S (X -0
428 “ ~o (7] 3 (X~ X) (X—Gi)] |

N—

As
P “1_¢(52 )3 (x- %) ] B[ - 6x)* T
(5.1) =0*B [(1— ¢x)” X2 1ok
and
B (x-0)] -5 [s (x-717-0)]
5| (X-0) [+ (- 0) 42 (S 0-0)) E(X-7)
(5.2) —o? + 2: (G-0)".

The last equality comes from the distribution of X, X ~ N, (?, ";) and the fact that
p _
2 (5-0)-

=1
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Furthermore, we have
28 “1 o (s2.1?)] i (.- %) (¥ - 91.)]
__2p| — 0
—_2p| — 0

—2E_ — ¢

G
G
(*
G

:—2E- —¢

Ti=1

p _
The last equality follows from the fact that > (Xi - X ) =0.
i=1
Using (b) of Lemma 3.1, we have

63) -28 [[1 (8.7 3 (X - X) (- e)] — APB[K (1- ).

=1

> (09

From formulas (5.1), (5.2) and (5.3) and the fact that F (K) = = , we have

20-2
R(6%(X,8%1%),0) = E{o* (1= ¢x)* X2 1jox + 07 +20°K — 40°K (1 — ¢c) }
=0’E {Qﬁ( X?)—1+2K — 20K <X§—1+2K - QK) + p} .

(i) We note that R (5¢ (X, 52,177 ,6) can be written as

(2 —2K)’
R ((W (X, 527T2) 79) —o’E {p B p—l-;2K }

Xp—1+2K

2
2K
+0°E {X§_1+2K <¢K -1+ 2) }
Xp—14+2K

2
2z — 2K
>0’E {p - (Xp 1J;ZK ) } =B,(0).

Xp—1+42K

(iii)
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4K?
- e - ) )
Xp—142K

4K?
= d{p—E|lp—14+2K+ ——— — 4K
U{p PR TR TR

cofpor-sf )

Thus, from Lemma 3.1 given in Sun [19], we obtain

[1]

B, (0
lim b,(0) = lim pg): c. O
p—+oo p—+oo  po 1+c
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ON (m, hq, he)-G-CONVEX DOMINATED STOCHASTIC PROCESSES

JORGE ELIECER HERNANDEZ HERNANDEZ!

ABSTRACT. In this paper is introduced the concept of (m, hy, hse)-convexity for
stochastic processes dominated by other stochastic processes with the same property,
some mean square integral Hermite-Hadamard type inequalities for this kind of
generalized convexity are established and from the founded results, other mean
square integral inequalities for the classical convex, s-convex in the first and second
sense, P-convex and MT-convex stochastic processes are deduced.

1. INTRODUCTION

In 1974, B. Nagy applied a characterization of measurable stochastic processes to
solve a generalization of the (additive) Cauchy functional equation [15]. Later, in 1980
K. Nikodem [17] considered convex stochastic processes, and in 1995 A. Skowronski [27]
obtained some further results on Wright convex stochastic processes, which generalize
some known properties of convex stochastic processes. For a detailed study about
this topic the following references are helpful [2,3,13,24,25].

Convexity is one of the hypotheses often used in optimization theory. It is generally
used to give global validity for certain propositions, which otherwise would only be
true locally. A function f: I — R, where I C R is an interval, is said to be a convex
function on I if the inequality

(1.1) fltz+ (1 —t)y) <if(x) + (1 —=16)f(y)

holds for all z,y € I and t € [0,1]. If the reversed inequality in (1.1) holds, then f is
concave.

Key words and phrases. (m, hy, hy)-convexity, dominated convexity, mean square integral inequal-
ities, stochastic processes.
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The convexity of functions and their generalized forms play an important role in
many fields such as Economic Science, Biology, Optimization and other [6,21].

About the concept of convexity, its evolution has had a great impact in the com-
munity of investigators. In recent years, for example, generalized concepts such as
s-convexity, h-convexity, M'T-convexity, log-convexity, P-convexity, n-convexity, quasi
convexity and others, as well as combinations of these new concepts have been intro-
duced. The following references give more information about the research in this area
[1,5,11,14,16,18,22,29].

Similarly, some recent studies have been introduced the following concepts: J-
convex [26], Wright-convex [27], strongly convex [9], strongly Wright [10], p-convex
[20], harmonically convex [19], s-convex in the first and second sense [12,23] stochastic
process.

The well-known Hermite-Hadamard inequality establish that for every convex func-
tion f: ICR—R

(1.2) f <a+b) < 1 /abf(;g)d;g < @+ F0)

2 “b—a 2
holds for every a,b € I, with a < b.

In 2012, D. Kotrys presented the Hermite-Hadamard inequality for convex stochastic
processes [8].

Theorem 1.1. If X : [ x Q — R is Jensen-convex and mean square continuous in
the interval T x €0, then for any u,v € T, we have

(1.3) X(“;r”,.>< 1 /qu(t,-)dtgxm");X(”")

u—v
almost everywhere for all u,v € I.

Many researchers have developed works where they relate the concepts of generalized
convexity and stochastic processes using the inequality (1.3). For example, E. Set et
al. in [23] investigated Hermite-Hadamard type inequalities for stochastic processes
in the second sense, and M. J. Vivas-Cortez and J. E. Herndndez Herndndez in [30]
studied about (hy, ha, m)-GA-convexity for stochastic processes.

Following this line of research, this paper introduces the concept of (m,hy,hs)-
convexity for stochastic processes dominated by other stochastic processes with the
same property, some mean square integral Hermite-Hadamard type inequalities for
this kind of generalized convexity are established, and from the founded results, other
integral inequalities for stochastic processes with other types of convexity are deduced.

2. PRELIMINARIES

The following references [8,13,27,28] contain the basic notions of stochastic processes
used in this work.

Let (2, A, p) be an arbitrary probability space. A function X : 2 — R is called
a random variable if it is A-measurable and P{w € Q: X(w) € R} =0. Let I C R



ON (m, h1, h2)-G-CONVEX DOMINATED STOCHASTIC PROCESSES 217

be time. A function X : I x Q — R is called a stochastic process if for all t € I the
function X (¢,-) : Q@ — R is a random variable.

In this work 7 is an interval and X (¢, -) is called a stochastic process with continuous
time.

It is said that the stochastic process X : I x 2 — R is called

(a) continuous in probability on the interval I if for all ¢y € I it follows that
M= tlLI%X(t, ) = X(to, ),
where P — lim denotes the limit in probability;
(b) mean-square continuous in the interval [ if for all tq € 1
p— HImE(X(t,-) — X(to,-)) =0,

t—to
where E(X (¢,-)) denote the expectation value of the random variable X (t, -);
(c) increasing (decreasing) if for all u,v € I such that t < s,
X(U,) < X('Uv)7 (X(ua> > X(Ua)) (ae)u

(d) monotonic if it is increasing or decreasing;
(e) differentiable at a point ¢ € [ if there exists a random variable X'(¢,-) : I xQ —
R such that

X(t,-) — X(to,-
X'(t,):u—hm (7) (07)‘
t—to t— tO
A stochastic process X : I x 2 — R is continuous (differentiable) if it is continuous
(differentiable) at every point of the interval .

Definition 2.1. Let (€2, A, P) be a probability space, I C R be an interval with
E(X(t,)*) <ocforallt € I. Let [a,b] CI,a=ty <t <---<t,=">bDbe a partition
of [a,b] and 0 € [t;_1,t;] for K =1,2,...,n. A random variable Y :  — R is called
mean-square integral of the process X (t,-) on [a, b] if the following identity holds

n 2
JgIEIOE [Z X(Qk, )(tk - tk—l) - Y‘| = 0,
k=0

then it can be written

/abX(t, Nt =Y() (ae.).

Also, mean square integral operator is increasing, that is,

/abX(t"Mt = /ab Z(t,)dt (a.e.),

where X (t,-) < Z(t,-) in [a, ] ([26]).

In throughout paper, we will consider the stochastic processes that is with continu-
ous time and mean-square continuous.

In 1980, K. Nickoden introduced an important definition in which the property of
convexity for stochastic processes is established [17].
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Definition 2.2. Set ({2, A, P) to be a probability space and I C R be an interval. It
is said that a stochastic process X : I x  — R is convex if the following inequality
holds almost everywhere

(2.1) XAu+ (1 =Nv,-) <AX(u,-) + (1= X)X (v,-),
for all u,v € I and X € [0, 1].

In the work of J. E. Herndndez Herndndez and J. F. Gémez [7] the following
definition is introduced.

Definition 2.3. Let hq, hy : [0,1] — R be two non negative functions, m € (0, 1] and
I C R an interval. A stochastic process X : I x Q — R is (m, hy, ho)-convex if the
following inequality holds almost everywhere

(2.2) X (ta+m(1—t)b,-) < hi ()X (a,-) +mho(t) X (b,-),
for all a,b € I and t € [0,1].

Some other kinds of generalized convexity for stochastic process, as s-convexity in
the second sense and P-convexity are presented in the same work.

With the notion of dominated convexity introduced by S. S. Dragomir et al. in [4],
the following definitions for stochastic processes are introduced.

Definition 2.4. Let I C R be an interval and G : I x {2 — R be a non negative
convex stochastic process. A stochastic process X : [ x Q — R is called a convex
dominated by G if the following inequality holds almost everywhere

(2.3) [tX(a,-)+ (1 —t)X (b,-) — X (ta+ (1 —t)b,-)]
<t(t)G(a,")+ (1 —=t)G (b,-) — G (ta+ (1 — )b, -),

for all a,b € I and t € [0,1].
Definition 2.5. Let hy, hy : [0,1] — R be two non negative functions, m € (0, 1],
I C R an interval and G : I x Q@ — R be a non negative (m, hy, hy)-convex stochastic
process. A stochastic process X : [ x 2 — R is called a (m, hy, hy)-convex dominated
by G if the following inequality holds almost everywhere
(2.4) |h1(t) X (a, ) + mho(t) X (b,-) — X (ta +m(1 — )b, -)|

<hi(t)G(a,-) + mhs(t)G (b,-) — G (ta + m(1 —t)b, ),
for all a,b € I and t € [0,1].

Note that if m = 1, hy(t) = t and ha(t) = 1 — ¢ for all ¢ € [0, 1] the Definition
2.4 is obtained, if m = 1, hy(t) = t* and ho(t) = 1 — t* for all ¢ € [0, 1] and some
s € (0,1] we have the definition of s-convex stochastic process in the first sense [12];
if m =1, hy(t) = t* and hy(t) = (1 —¢)® for all ¢ € [0,1] and some s € (0, 1] we
have the definition of s-convex stochastic process in the second sense [23]; if m = 1,
hy(t) = ho(t) = 1 for all t € [0,1] then the definition of P-convex stochastic process

follows [7] and also, if m = 1, hy(t) = 2\/‘/1% and hs(t) = ﬁ for all ¢t € (0,1) the

definition of MT-convex stochastic process is obtained.
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3. MAIN RESULTS

Henceforth, hy, hs : [0, 1] — R are considered non-negative functions and m € (0, 1].

Proposition 3.1. Let G : [ x Q2 — R and X : I x Q2 — R be a non negative
(m, hy, he)-convex stochastic processes. The following statements are equivalent:

i) X is a (m,hy, hy)-conver dominated by G;
i1) the stochastic processes (G — X) and (G + X) are (m, hy, he)-convex;
iii) there ezist two (m, hy, he)-convex stochastic processes H, K : I x Q@ — R such
that X = 3 (H — K) and G = 5 (H + K).

Proof. i) < ii) The condition (2.4) is equivalent to

G (ta+m(1 —t)b,-) — hy(t)G(a,-) — mha(t)G (b, ")
<hi()X(a,-) + mhy(t)X (b,-) — X (ta +m(1 —t)b, )
<hy(t)G(a,-) + mhy(t)G (b,-) — G (ta + m(1 — t)b,-)

and, from this double inequality, making a correct rearrange it follows that
(G+ X) (ta+m(1 = £)b,) < h(t) (G + X) (a, ) + mha(t) (G + X) (b, )
and
(G—=X)(ta+m(1—1t)b,-) < hi(t) (G —X) (a,-) +mha(t) (G— X) (b,-).

iii) = ii) Lets define X = § (H — K) and G = § (H + K) . Adding and subtracting
we have (G + X)= H and (G — X) = K, so, both are (m, hy, hy)-convex stochastic
processes.

i1) = i) By condition ii), (G 4+ X) and (G — X)) are (m, hy, hy)-convex stochastic
processes, so H = G+ K and K = G — X are (m, hy, hs)-convex stochastic processes.

O

Proposition 3.2. Let X : [ x Q — R be a (m, hy, hy)-convez stochastic process and
A Q — R a random variable, then the stochastic process defined by A(-)X(t,-) is
(m, hy, hs)-conver.

Proof. Using Definition 2.3 we have the desired result. O

Proposition 3.3. Let G : I x Q — R be a (m, hy, he)-convez stochastic process and
X,Y : I xQ — R two (m, hy, he)-convex stochastic process dominated by G, then we
have that X +Y is a (m, hy, hy)-convez stochastic process dominated by 2G. Also, if
A :Q — R is a random variable, then the (m, hy, he)-convex stochastic process defined
by A()X(t,-) is dominated by |A()| G.



220 J. E. HERNANDEZ H.

Proof. With the help of Definition 2.5 and the triangular inequality we have that
|h () (X +Y)(u,-) + mho(t)(X +Y)(v,-) = (X +Y)(tu+ (1 —t)v,)|
= | X (u,-) +mho() X (v, ) = X(tu + (1 = t)v, )
+ hY (u, ) +mhe ()Y (v,) = Y(tu+ (1 — t)v,-)|
<[hX(u,-) +mha(t) X (v, ) = X(tu+ (1 = t)v, )]
+ |hY (u,-) + mha(t)Y (v, ) = Y (tu+ (1 — t)v, )|
<2(h1(t)G(u,-) + mho(t)G(v,-) — G(tu + (1 — t)v,-))

and
[ha(8)A() X (u,-) + mho(H)A()X (v, -) = AC) X (tu+ (1 = t)v, )|
<|AQG)| (P (t)G(u, ) + mho(t)G(v,-) — G(tu + (1 — t)v,-)).
The proof is complete. U

Remark 3.1. The previous proposition is also valid for the case of subtraction of sto-
chastic processes, and it is easily proved that the algebraic sum of n (m, hy, hs)-convex
stochastic processes, each one dominated by the same (m, hy, hy)-convex stochastic
process G is a (m, hy, hy)-convex stochastic process dominated by nG.

Proposition 3.4. Let G : I x Q@ — R be a (m, hy, he)-convex stochastic process,
{Xi},_, be a finite collection of (m, hy, hy)-convex stochastic process dominated by
G, and {Ay},_, a finite collection of random variables. Then S;_; Ax(-)Xy(t,-) is
dominated by > p_, |Ax| G.

Theorem 3.1. Let X : I x Q0 — R be a mean square integrable stochastic process
on the interval [0,b/m] and (m, hy, hy)-convex. Then the following inequalities hold
almost everywhere

B1) X <a+ b7 ) - hi(1/2) /abX(u, u+ ”W/b/m)((u, Jau

2 b—a b—a a/m
and
(3.2) bia/b (u, ) dt <& <“");X<b’ D rn)
m a . b
(3.3) + (X G );X (G ))I(hz),
where ) )
1) = [ ma(t)dt and I(hz)z/ ho(t)dt.

Proof. Let a,b € I and m € (0,1]. Then for ¢ € [0, 1] we have

X<a+b7'> :X<ta+(1—t)b—|—(1—t)a—|—tb’_>7
2 2
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and using the (m, hy, he)-convexity of X we obtain

¥ (a—2i—57 ) < hi(1/2)X (ta+ (1 — )b, ) +mha(1/2)X (t; +(1 - t);» ) -

Integrating over t € [0, 1] it follows that

X (“‘2”’,) <hi(1/2) /le(tﬁ (1—1)b,-)dt

1 a b
na(1/2) [ X (=0t
pna(1/2) [ X (1 -0 )
and with the change of variable u = ta + (1 — ¢)b and v =t + (1 — ¢)2 we achieve
the inequality (3.1).
Now, using the (m, hy, hy)—convexity of X we have

(3.4) X (ta+ (1 —1t)b,-) < h ()X (a,-) + mho(t) X (:1 )
and
(3.5) X (1= Da+1h,-) < hi(D)X (b,-) + mha() X (T‘; ) .

Adding (3.4) and (3.5) and integrating over ¢ € [0, 1] it follows that

/OIX(ta—i—(1—t)b,~)dt—|—/01X((1—t)a+tb,.)dt

< (X (a,) + X (b)) /01 ha(£)dt +m <X (£,)+x (b, )) /01 ho(t)dt.

m m

So, with the above change of variable and doing

[(hl):/olhl(t)dt and I(hg):/olhg(t)dt,

the inequality (3.3) is attained.
The proof is complete. U

Corollary 3.1. Let X : I x Q — R be an mean square integrable on the interval I
and convex stochastic process. Then the following inequalities hold almost everywhere

Proof. Letting m = 1, hy(t) = t and ho(t) = 1 — ¢, t € [0,1], in Theorem 3.1, we
obtain the desired result. U

Corollary 3.2. Let X : I x Q — R be an mean square integrable on the interval I
and s-convex stochastic process in the second sense. Then the following inequalities
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hold almost everywhere

o1 a-+b 1 b X (a,-)+ X (b,-)
2 X< 2 ’.>S(b—a)/a)((u")(lluS (s+1) '

Proof. Let s € (0,1]. Making m = 1, hy(t) = t° and hy(t) = (1 —¢)° for t € [0,1] in
Theorem 3.1, it follows the desired result. [l

Corollary 3.3. Let X : I x Q2 — R be an mean square integrable on the interval 1
and s-convex stochastic process in the first sense. Then the following inequalities hold
almost everywhere

X<a;b"> = (bia) /abXWw)dug X(“f);X(b,-).

Proof. Let s € (0,1]. Making m = 1, hy(t) = t* and ho(t) = 1 —¢° for ¢t € [0,1] in
Theorem 3.1, we have the desired result. 0]

Corollary 3.4. Let X : [ X2 — R be an mean square integrable on the interval I and
P-convex stochastic process. Then the following inequalities hold almost everywhere

X <a;b,-> < bfa/abX(u,-)dugz(X(a,-)+X(b,-)).

Proof. Letting m = 1, hy(t) = ho(t) = 1 for t € [0,1] in Theorem 3.1 we obtain the
desired result. O

Corollary 3.5. Let X : [ x€) — R be an mean square integrable on the interval I and
MT-convex stochastic process. Then the following inequalities hold almost everywhere

a+b 1 b ™ (X (a,)) + X (b))
X< 5 7.>§2(b—a)/aX(u’.)du§ 1 :

Proof. Letting m = 1, hy(t) = Vt/2v/1 —t and hy(t) = /1 —t/2y/t for t € [0,1] in

Theorem 3.1 we have the desired result. O

Remark 3.2. The inequality found in Corollary 3.1 coincides with that presnted in [8],
the result found in Corollary 3.2 coincides with that presented in Theorem 6 in [23].

Theorem 3.2. Let X,G : I x Q — R be a mean square integrable stochastic process
on the interval [0,b/m| and (m,hy, he)-convex. If X is dominated by G, then the
following inequalities hold almost everywhere

bia/bX(u,-)dujLm2h2(1/2)/b/mX(u,-)—X(aer,-)‘

b—a /m 2

hqi(1/2)
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X)L XOD gy 7 (e (%) (L)) 1) - 2 [ x

—a

LNV itha) - 6w

where
I(hy) = /01 h(t)dt and 1(hy) = /1 ho(t)dt.
Proof. Let a,b € I and m € (0,1]. Then, for t € [0, 1] we have
<a+b ) (m+ (1—-t)b+ (1 —t)a+tb )
2
and

2
Using definition of (m, hq, he)-convexity dominated by G we obtain that

<a+b ) <m+ 1—t)b+(1—t)a+tb’>.

hi ()X (ta + (1 — )b, -) + mho(t) X ((1 - t)m +t:z ) X <“ ‘5 b’ >

< hy(1/2)G(tat(1—0)b, ) +mhs(1/2)G ((1 - (7‘;) it <b> > e (“ b ) .

m 2

Integrating over ¢ € [0, 1] it follows that

m(1/2); ! /bX(u,')du—i— ”W/b/m)((u,-) _X (““ﬁ)‘

—aJa b—a a/m

<hi(1/2); L /bG(u,.)du+W/b/mG(u,-)—G<a+b’.>.

—QaJa a/m

So, the first inequality is obtained.
Now, also we have

m

h()X (a, ) + mhs(t) X ( b ) _ X (ta+ (1— 1), .)’

<hi1(1/2)G(a,-) + mha(1/2)G (:I, ) —G(ta+ (1—-1),-)

and
a

I ()X (b, ) + mho(t)X ( ) ~ X (1= t)a+ b, .)‘

m

<hi(1/2)G(b, ) + mhs(1/2)G (:1 ) —G((1—t)a+th,-).
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Adding these inequalities, integrating over ¢ € [0, 1] and taking the notation

1 1
I(hy) = / h(t)dt and  I(hs) = / ha(t)dt,
0 0
we obtain the desired result. O

Corollary 3.6. Let X, G : I x Q2 — R be two mean square integrable stochastic
processes on the interval I and convex. If X is dominated by G, then the following
inequalities hold almost everywhere

1 b a+b 1 b a+b
. _ . < . _ .
‘b—a/aX(u’ )du X( 5 ,>| _b—a/aG(u’ )du G< 5 ,)

and
(X(aa') +X(b7)) 1 /b G(CL,') +G(b7) 1 /b
— . < - . .
2 b, Xy < 2 b—alJ, G lw)du
Proof. Letting m = 1, hy(t) = t and hyo(t) = 1 — ¢, t € [0,1], in Theorem 3.2 we
achieve the desired result. [l

Corollary 3.7. Let X, G : I x 2 — R be two mean square integrable stochastic
processes on the interval I and s-convex in the second sense. If X is dominated by G,
then the following inequalities hold almost everywhere

1 b a+b 1 b a—+b
X (u, )du — 21X Al < / Y — 2571 :
|b—a/a (u,-)du ( 5 ,) S — aG(u, )du G( 5 ,)

and
s+1 b—a

(G(a7 ) + G(b7 )) i 1
s+1 b—a

/abX(u,~)du < /abG(u,')du.

Proof. Let s € (0,1]. Making m = 1, hy(t) = t* and ho(t) = (1 —1¢)°, t € [0,1], in
Theorem 3.2 we have the desired result. OJ

Corollary 3.8. Let X,G : I x 2 — R be two mean square integrable on the interval
I and s-convex stochastic process in the first sense. If X is dominated by G, then the
following inequalities hold almost everywhere

b -5 g or-o((42)

and

(X(a7 ) + X(b7 )) 1 b (G(a, ) + G(b, )) 1 b
5 —b_a/aX(u,-)dug 5 —b_a/aG(u,')du.

Proof. Letting m = 1, hy(t) = ¢* and ho(t) = 1 —t°, t € [0,1], in Theorem 3.2 it
follows the desired result. O
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Corollary 3.9. Let X, G : I x 2 — R be two mean square integrable stochastic
processes and P-convex. If X is dominated by G, then the following inequalities hold
almost everywhere

2 b a+b 2 b a+b
) _ Al < ) _ .
‘b_a/GX(u,)du X< 5 ,) _b_a/aG(u,)du G( 5 ,)

and

<

’(X( )+ X (b, bia/x ul < (Gla,) + G, 7@/0

Proof. Letting m =1, hy(t) = ho(t) =1 for all ¢t € [0, 1], in Theorem 3.2 we have the
desired result O

Corollary 3.10. Let X,G : I x Q — R be two mean square integrable stochastic
processes on the interval I and MT -convez. If X is dominated by G, then the following
inequalities hold almost everywhere

1 b a—+b
’b_a/GX(u,-)du—QX< 5 ,-)
and

m(X(a,-) + X(b,
4 b—a/X

1 b a+b
< . — .
/ G(u,)du 2G< 5 )

“b—a a

7 (G(a, )4+G _a/ G (u

Proof. Letting m = 1, hy(t) = Vt/2¢/1 —t and hy(t) = /1 —1/2/t for t € [0,1] in

Theorem 3.2 we obtain the desired result. [l

4. CONCLUSIONS

In the development of the present work it was introduced the concept of (m, hy, h)-
convex stochastic process dominated by another stochastic process of the same type,
also some properties associated with them were found (Definition 2.5, Propositions 3.1,
3.2 and 3.3). From the aforementioned definition the Hermite-Hadamard inequality
for stochastic processes (Theorem 3.1) was found and some Corollaries that involve the
same inequality for classical convex stochastic process and other types of generalized
convex stochastic process (Corollaries 3.1-3.5). Also it was studied the absolute value
of the difference of the extremes of right and left side of the Hermite-Hadamard
inequality for the generalized convex stochastic process under study, similarly some
corollaries for other types of convexity were found (Theorem 3.2 and Corollaries
3.6-3.10).

The author hopes that the results presented will stimulate the study of the relation-
ship between generalized convexity and stochastic processes, thus providing a path to
possible applications.
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aB-WEIGHTED d,-STATISTICAL CONVERGENCE IN
PROBABILITY

MANDOBI BANERJEE

ABSTRACT. In this paper we consider the notion of generalized density, namely, the
natural density of weight g was introduced by Balcerzak et al. (Acta Math. Hungar.
147(1) (2015) 97-115) and the entire investigation is performed in the setting of
probability space extending the recent results of Ghosal (Appl. Math. Comput.
249 (2014) 502-509) and Das et al. (Filomat 31(5) (2017) 1463-1473).

1. INTRODUCTION

In the year 1932, Agnew [1] defined the deferred Cesdarro mean of sequences of real
numbers such as

1 dn
(Dpg)n = Z Tk,

q’ﬂ - pTL k‘:pn+1

where {p, }nen and {g, }nen are sequences of non-negative integers satisfying

Pn < ¢qn, forallmeN, and lim g, = 4o0.
n—oo

In 2016, the concept of deferred statistical convergence (similar concept has been
discussed by Aktuglu [3] in 2014 which was named as af3-statistical convergence)
were given by Kiigiikaslan and Yilmaztiirk [21] such as (earlier this concept has been
defined by the same authors and submitted as a thesis to Mersin University/Turkey).

Key words and phrases. af3-weighted d4-statistical convergence in probability, af-weighted d,-
strongly Cesaro convergence in probability, g-weighted S,g-convergence in probability, g-weighted
N, p-convergence in probability.
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Let {pn}nen and {q, }nen be two sequences as above. A sequence {z,},en is said to
be deferred statistically convergent to L if for every ¢ > 0

lim
n—oo qn — D

{pn <k < go:lan—L| >} =0.

After then some work has been carried out with related to this concept [13,21,26].
In [4], the notion of natural density [14, 15,23] (and also the natural density of

order « [5,7]) was further extended as follows: Let g : N — [0, 00) be a function with

lim,, o, g(n) = co. The upper density of weight g was defined in [4] by the formula

- _ card(AN[1,n])

dy(A) = hgl_)Sogp o(n)
for A € N. Then the family J, = {A C N : d,(A) = 0} forms an ideal. It was also
observed in [4] that N € J, if and only if ﬁ — 0. Hence, we additionally assume
that —25 - 0. So that N ¢ J, and it was observed in [4,10], that J, is a proper
admissible P-ideal of N. The collection of all functions g of this kind satisfying the
above-mentioned property is denoted by G.

A sequence r = {x,}nen in a metric space (X, p) is said to be dg-statistically
convergent to a € X if for any € > 0 we have dy(A(e)) = 0, where A(e) = {n € N :
p(xp,a) > e}

Another generalization of the statistical convergence is known as weighted statistical
convergence which was established by Karakaya and Chishti [20] in 2009 and gradually
improved by Aizpuru et al. [2], Cinar and Et [6,12], Das et al. [9], Ghosal [16-18], Isik
and Altin [19], Mursaleen et al. [22] and Som [25].

In this paper the idea of four types of convergences of a sequence of random variables,
namely,

(a) ap-weighted dg-statistically convergent sequence in probability;

(b) af-weighted d,-strongly Cesarro convergence in probability;

(c) g-weighted S,p-convergence in probability;

(d) g-weighted N,s-convergence in probability all have been introduced and the
interrelations among them have been investigated. Also their certain basic properties
are analyzed.

The main object of this paper is to improve all the existing results in this direction
[4,9,11,16,17] which could be effectively extended. Moreover, we intend to establish
the relations among these four summability notions. It is important to note that the
methods of proofs and in particular the examples are not analogous to the real case.

2. DEFINITIONS AND NOTATIONS
The following definitions and notions will be needed in sequel.

Definition 2.1 (see [3]). Let a = {an}neny and S = {8, }nen be two sequences of
positive real numbers such that
(i) @ and [ are both non-decreasing;
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(ii) B, > o, for all n € N;

(iii) (Bn — ) — 00 as n — o0.

Then the sequence of real numbers {x, },ecy is said to be af-statistically convergent
of order v (where 0 < v < 1) to a real number z if for every ¢ > 0

3 1 . J—
7}1—%0(5“ T {k € [an, Bl : |2k — x| > €} = 0.

S'Y
In this case we write 2, — x and the set of all sequences which are aS-statistically
convergent of order +y is denoted by S_ 5.

Definition 2.2 (see [9]). A sequence of real numbers {¢, },en is said to be a weighted
sequence if there exists a positive real number ¢ such that ¢, > ¢ for all n € N.

Definition 2.3 (see [17]). Let {t,},en be a sequence of real numbers such that
li}g %)rolftn > 0 and Thpm) = Xielan,pte for all n € N. A sequence of real numbers

{2 }nen is said to be weighted a(-statistically convergent of order v (where 0 < v < 1)
to x if for every € > 0

lim
n—oo T

apB(n)
(Sagitn)

ap’’n

In this case we write x,, —— x. The class of all weighted «a3-statistically convergent
sequences of order 7 is denoted by (574, t).

«

H{k < Topm) : telor — x| > e} = 0.

Definition 2.4 (see [17]). Let ¢ be a modulus function and {¢, },en be a sequence of
real numbers such that liminf,, ¢, > 0 and Topm) = Ziejan .tk for all n € No A
sequence of random variables { X, }nen is said to be weighted modulus «af-statistical
convergence of order v (where 0 < v < 1) in probability to a random variable X
(where X : W — R) if for any ,0 > 0

lim

n—oo T

aB(n)

(87 ,,P®.ty)
———

{k < Tapm) : thp(P(| Xy — X[ 2 €)) =2 0} = 0.

In this case, X, —= X and the class of all weighted modulus statistically

convergent sequences of order v in probability is denoted by (Sgﬁ, P?t,).

Definition 2.5 (see [17]). Let ¢ be a modulus function and {t, },en be a sequence of
nonnegative real numbers such that £; > 0 and T,,3(,) = D ke[am,fu]tk — 00 @S N — 0.
A sequence of random variables { X}, },en is said to be weighted modulus af-strongly
Cesarro convergent of order v (where 0 < v < 1) in probability to a random variable
X if for any € > 0

Y (P Xe — X[ >¢)) =0.
(n) k€[on,Bn]

T
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(N 5,P?tn)
In this case, X, ? X and the class of all sequences of random variables

which are weighted modulus af-strong Cesarro convergent of order v in probability,
is denoted by (NJg, P?,ty).

«

Definition 2.6 (see [17]). Let ¢ be a modulus function and {¢, },en be a sequence of
real numbers such that liminf, . ¢, > 0 and T,g(,) = > kelam,fn]tk for allm € N. A
sequence of random variables { X, } e is said to be weighted modulus S, s-convergence
of order «y in probability (where 0 < v < 1) to a random variable X if for every ¢,6 > 0
. 1
lim —— ’{k' c [aB(n) : tk¢(P<|Xk — X| Z 8)) Z 5}’ = O,

n—oo TV

afB(n)

where Iogm) = (Tiam), Tiam)] and [x] denotes the greatest integer not grater than

(WS 5,P? tn)
z. In this case we write X, — % " X. The class of all weighted modulus S,3-

convergent sequences of order « in probability is denoted by (ngﬂ, P?t,).

Definition 2.7 ([17]). Let {t,}.en be a sequence of nonnegative real numbers such
that ¢ > 0 and Togm) = Xkejan gtk — 00, as n — 0o and ¢ be a modulus function.
The sequence of random variables {X,,},en is said to be weighted modulus N,g-
convergence of order 7 in probability (where 0 < v < 1) to a random variable X if for
any € > 0

lim
n—oo

> t(P(IXe — X| 2 ) = 0.
aﬁ(n) ke]a,@(n)

(WN7,,P? tn) )
In this case, X,, —=—""% X and the class of all weighted modulus N, p-convergent

sequences of order  in probability is denoted by (WNg,, P? t,).

3. MAIN RESULTS

First we introduce the definition of a3-weighted d,-statistical convergence in prob-
ability of random variables as follows.

Definition 3.1. Let {t,},cy be a weighted sequence and Ti5¢,) = D kefan, stk for all
n € N. Then the sequence of random variables {X,, },en is said to be af-weighted
dg-statistically convergent in probability to a random variable X (where X : W — R)
if for any €,0 > 0

1
lim - [{k < Topo) : teP (| Xi — X| 2 €) > 6} = 0.

Hence, we assume that g : (0,00) — (0,00) is a continuous function such that

aBfWSE
lim g(z) = oo and lim %ﬁ‘:))) # 0 and we write X, ——% X and the class of
T—00 n—oo af(n

all af-weighted dg-statistically convergent sequences in probability is denoted by
WSy .
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Throughout the paper we assume that ¢ : (0, 00) — (0, 00) is a continuous function

. - i _Tapm)
such that mll_g)log(x) = oo and nh—>rgog(Ta5<n)) 70

afW Sy apws?h
Theorem 3.1. If X,, ——5 X and X,, ——=> Y, then P{X =Y} =1.

Proof. 1f possible let P{X =Y} # 1. Then there exist two positive real numbers ¢, &
such that P(|X — Y| >¢) > d and t, > J for all n € N. Then

Tapm) 1 2
- [k < Topi  PX — Y] 2 2) > 8%}
g(Ta (n)) g(Ta (n)) "
1 € 52
<——— RELZS T P || Xy —X|> =) > —
= 9(Tapn)) |{ = Sestm (’ k=Xl 2) 2}
+ Hk<T -tP<|X Y|>€>>52}
—m N > Lap(n) - bk k — Z 5] <5 )
9(Topm)) B(n) 2 2
which is impossible because the right hand side tends to zero as n — oo but not the
left hand side. Hence, the result follows. [l

The following example shows that weighted «/3-statistical convergence in probability
[17] and «of-weighted d,-statistical convergence in probability are totally different.

Ezxample 3.1. Let the sequence of random variables { X, },cy is defined by,

{—1,1} with pm.f P(X,, = —1) = P(X,, =0), ifne {12,22.32, ...},
X, € ¢{0,1} with pm.f P(X, =0)=1— 1

oz

P(X,=1)=4, otherwise.

Let t, = 2n, a,, = n, B, = n? for all n € N and g(z) = W/ for all x € (0, 00). Then
T, (n):n4+nforalln€NandM%Oasn—)oo.
g(TaB(n))
For 0 < e <1, we get

if n = m2
P(|Xn_0|25>:{11, if n =m*, where m € N,

-1, ifn# m?, where m € N.

Now, let 0 < § < 1. Then

1 2
kS T 6P(X— 0] 29 20} <
af(n
and
Vnt+n—1

[{k < Tupiny : 6P X5 — 0] > £) > 5] > >n.

9(Tapm) vnt+n

This shows that { X, }nen is weighted a/5-statistically convergent in probability to a

random variable 0 but it is not af8-weighted d,-statistically convergent in probability
to 0.
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Therefore we come to a conclusion that Definition 3.1 is the non-trivial extension
of the notions obtained by different authors in the past, because if we take g(x) = x7
for all x € (0,00) and 0 < v < 1 then Definition 3.1 reduces to the Definition 2.1 [9]
and Definition 2.1 [17].

The proof of the following two theorems are straightforward, so we choose to state
these results without proof.

afWSP
Theorem 3.2. Let f : R — R be a continuous function on R. If X, ——%% X and

afW Sk
P(|X| > «) =0 for some positive real number a, then f(X,) ——= f(X).

oW Sk
Theorem 3.3. Let X, —— % 2 and f R — R is a continuous function, then

SP

£ % 4.

Definition 3.2. Let {t,},en be a sequence of non-negative real numbers such that
t1 > 0 and Thpn) = YXrefay,g,)tk — 00 as n — o0o. The sequence of random variables
{ X }nen is said to be af-weighted dy-strongly Cesarro convergent in probability to a
random variable X if for any ¢ > 0

1
lim ——— Y 4P(| Xy — X|>¢)=0.
n%mg(Taﬂ(n)) k€[oun ,Bn)
afWNY
In this case, X,, —— X and the class of all af-weighted d,-strongly Cesarro
convergent sequences in probability is denoted by aSW N, fl’g.

In the following, the relationship between aBWSSQ and aSW N 59 is investigated.

Theorem 3.4. Let ( be a positive real number such that t, > ¢ for all n € N. If

{an }nen be a bounded sequence and liminf,, . Taitn) > 1, then ozBWNgq C ozBWSSg.

Proof. Let X, aﬁW—Ng> X and € > 0. Then

1
——— Y 4P(| X, - X|>e)
9(Tasm) pe o]

¢
9(Tapm))

Hence, the result follows. [l

[{k < Tapin) : P Xi — X| 2 £) = 6}

The following example shows that, the sequence of random variables {X,, },en in
afW Sy converges to X but not in afSW N7 converges to X.

Example 3.2. Let t, =n, o, = 1, B, = n for all n € N and g(x) = /x for all x €

(0,00). Then Typm) = w for all n € N and gé?‘f;:;)) - 0 as n — oo.
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Consider the sequence of random variables {X,, },cn is defined by,

{—1,1} with probability 3, if n = {T,,}*™ for any m € N,
X, €{1{0,1} withpmfP(Xn:()) =1- -,
P(X,=1)="%, if n # {T;,}*™ for any m € N.
n2

Let 0 < e < 1, then,
1, ifn={T,}' for any m € N,
—0l>e) =
P X =0 2 ¢) {13, if n # {T,,}*™ for any m € N.
n2

aBWSp
This implies X, — .

Let H={n € N: n# {T,,}'™ where m € N}.
Now we have the inequality

N uP(IXr—0l>e)= > tP(Xp—0/>e)+ > tHP(|Xi—0 >¢)

k€lan,Bn] k€lan,Bn] k€[an,Bn]
keH k¢ H
> > >
k€[an,Bn] \/_ ke€lon,Bn]
keH k¢ H

> y/n for all n > 2)

Il
—

M-
sl

"1
>Z—k>\/ﬁ (since

k

B

> 1. This inequality shows

This implies _ ZtkP (| X = 0] > ¢) >

_l’_

1)

4/n(n

[\

that {X,, }nen is not ozﬁWNfl’g summable to 0.

Theorem 3.5. Let the weighted sequence {t,}nen be bounded such that
671 — Qp

limsup—————— < o0.
n—oo g(Tag(n))
Then aBW S C aBW N .
Bn—amn

oW SE
Proof. Let X, — % X and t, < M for all n € N and lim SUP 00 5Ty )

where M; and M, are positive real numbers. For any £,0 > 0 setting H = {k <
T B(n) tkP(|Xk—X|>E)Z5} Then

M27

Z tk |Xk — X| > 6)
g(TaB(n))ke[an Bn]

1
M,

< |{k‘§Taﬁ(n) ZtkP(|Xk—X| 26) Z(S}|—|—Mg5

9(Tapmy)
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Since ¢ is arbitrary, the result follows. O

The following example shows that the sequence of random variables {X,, },en in
afW N, converges to X but not in afW .Sy converges to X.

Ezample 3.3. Let ¢ € (0,1), v € (2¢,4c) N Q and a sequence of random variables
{X, }nen is defined by

{-1,0}, with pm.f P(X, = —1) =1

P(ano)zl—%, ifn:[m%], where m € N,
"7 1{0,1}, with pm.f P(X, =0)=1- 1,
P(X,=1) =%, if n # [m<], where m € N,

Top(n)
g(Ta,B(n))

Let t, = 2n, a,, = n, B, = n? for all n € N and g(z) = 2 for all z € (0,00). Then
Topny = n* +n for all n € N and lim,,_,« £ 0.
For 0 < e, 0 <1, we get

1 2 1 1 1
—_ t,P(| Xy — 0] > ¢) g{(nzc—nc+1)+<++...+ >}
9(Tosm)) ke[a%:,/&n] ny 13 ' 23 (n2)3

(where M is a positive constant)

<
—py—2c

and

1 nen)e 1,

ny 2
So, {Xn}nen € afW NG but not in afW S .

Now we would like to introduce the definitions of g-weighted S,s-convergence in
probability and g-weighted N,g-convergence in probability for a sequence of random
variables as follows.

Definition 3.3. Let {t,},cn be a weighted sequence and Tosm)y = Yrefan, gtk for
all n € N. Then the sequence of random variables { X, } ey is said to be g-weighted
Sap-convergence in probability to X if for every €,6 > 0

1
lim ———— [{k € Lag(n) : e P(| Xy — X| > £) > 6}| =0,
n—)oo.q(TaB(n)) (n)

where Ingpm) = (Tiam), Tiamy) and [z] denotes the greatest integer not greater than
dg

w
z. In this case we write X, — X. The class of all g-weighted Sy p-convergent
sequences in probability is denoted by WS i%

dg w dg

WS
It is very obvious that if X,, —=% X and X,, —% Y, then P{X =Y} = 1.
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Definition 3.4. Let {t,}.en be a sequence of non-negative real numbers such that
t1 > 0 and Thp(n) = Xiefay,p,)tk — 00 as n — oco. The sequence of random variables
{ X }nen is said to be g-weighted N,g-convergence in probability to a random variable

X if for any € > 0
1
lim —— Z L P(| Xy — X|>¢)=0.
n*}OOg(Taﬂ(n)) kEIaB(n)

dg
In this case X, ————> X and the class of all g-weighted N,g-convergent sequences in
probability is denoted by W N, ;f;g

In the following, the relationship between WSi and W N of 18 investigated.

Theorem 3.6. Let {t,},en be a weighted sequence. Then WNig@ C WSi% and this
inclusion is strict.

Proof. For the first part of this theorem, let £, > 0, then
> tP(Xk—X[>¢)
kelog(n)
kelaﬁ(n),tkp(|Xk7X|ZE)25 ke[aﬂ(n),tkP(\kaX\zs)<6
Z(SH/{} € [cxﬂ(n) : tkP(’Xk — X’ > 8) > 5}|
For the second part we will give an example. Let ¢, = n, a(n) = n!, f(n) =

(n+ 1)! for all n € N and g(x) = y/z for all x € (0,00) and a sequence of random
variables {X,, }nen is defined by,

{-1,1}, with pm.f P(X,, =1) = P(X,, = —1), if n is the first
Xo € § [/ (Tis) — Tiay)] integer in the interval (Tiaguyjs T,
{0,1}, with pm.f P(X, =0)=1— 5, P(X,=1) =5, otherwise.

For 0 <e,6 <1, we get

— 0, asn —0.

1
———— |k € Lapm) : e P(IXp—0[ 2 &) = 6} <

9(Tapm) T — Tiatn)

For next

1
> WP( Xk -0 >¢)
9(Tasm) kel

- [ (Tisem) — TR Tisem) — Tae)] 13 1
N 2 /(Tis) — Tratm)
Hence, the result. O
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SOME REMARKS ON VARIOUS SCHUR CONVEXITY
FARZANEH GORJIZADEH! AND NOHA EFTEKHARI!

ABSTRACT. The aim of this work is to investigate the Schur convexity, Schur ge-
ometrically convexity, Schur harmonically convexity and Schur power convexity of
some special functions. Some sufficient conditions are obtained to guarantee the
above-mentioned properties satisfy. We attain some special inequalities. Also, we
obtain some applications of main results.

1. INTRODUCTION

Throughout this work, we denote R} = {(x1,...,2,): z; >0, i=1,2,...,n}. For
the convenience of the readers, we recall the relevant material.

Definition 1.1 ([5]). Let n > 2 and z,y € R", where z = (21,...,2,) and y =
(y1,--.,Yn). We say that x is majorized by y and denoted by = < y, if

k k
i=1 i=1

; ) = ; Yils

where x> zj9) > -+ > 2}, and yp) > Yz = -+ - = Ypn) are rearrangements of x and
y in decreasing order.

Let E C R"™ be a set with nonempty interior. We say ¢ : E — R is Schur convex if
x <y implies p(x) < ¢(y) and ¢ is said to be Schur concave if —¢ is Schur convex.

A function f : R" — R is called a symmetric function, if f(Pz) = f(z) for any
xr € R™ and any n x n permutation matrix P. A set £ C R" is called symmetric, if
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x € E implies P € FE for any n x n permutation matrix P. Also, a set £ C R" is
called a convex set if for any z,y € E and X € [0, 1], we have Az + (1 — \)y € E.
In this work, we need the following three lemmas.

Lemma 1.1 ([5]). Let E C R" be a symmetric convex set with nonempty interior
and ¢ : E — R is a continuous symmetric function on E. If ¢ is differentiable on
int £, then ¢ is Schur convex (Schur concave) on E if and only if

T _ > <
(21 :1:2)< ) 132) 0 or(<0)

holds for all x = (xq,...,1,) € int E.

Lemma 1.2 ([2,7]). Let E C R} be a symmetric geometrically convex set with a
nonempty interior and ¢ : E — R, be continuous on E and differentiable on int E.
Then ¢ is Schur geometrically convex (Schur geometrically concave) if and only if ¢
is symmetric on E and

0 0
(1.1) (log 1 — log x2) <xla;i - x28;> >0 or(<0)
holds for all x = (x1,...,x,) € int E, where E is a geometrically convex set, if for

any x,y € E and o, B € [0, 1] such that o + 3 = 1, we have 2*y® € E.
Since for any x1,x9 € R, we have

(x1 — z2)(logxq — logxs) > 0,
we can reduce (1.1) to the following inequality

, - 9p _ 9¢ > <0).
(1.2) (x1 — x2) <x1 - X 2) 0 or(<£0)

Lemma 1.3. ([6, Lemma 2.2]). Let E C R} be a symmetric harmonic convex set with
nonempty interior and ¢ : E — Ry be a continuous symmetric function on E. If ©
is differentiable on int E, then ¢ is Schur harmonic convex (Schur harmonic concave)
on F if and only if

0 0
(1 — x2) (:E%az - x%(ﬁ) >0 or(<0)

holds for all x = (1,...,x,) € int E, where E is a harmonic convex set, if for any
x,y € E, we have 213’1’/ e FE.

xT

In 1923, the Schur convexity was discovered by I. Schur. It has many interested
applications of symmetric functions in Hadamard’s inequality, analytic inequalities,
stochastic ordering and some other branches of graphs and matrices, see for example
[1,3,4].

We organize this paper as follow. We establish the integral mean of fg is Schur
convex, Schur geometrical convex, Schur harmonic convex, and Schur power convex
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on [0,00) x [0,00), for convex, continuous and similarly ordered functions f and g. In
Section 3, we obtain some applications of results in Section 2.

2. MAIN RESULTS

In this section, we obtain some results for special functions to be Schur convex
(Schur concave), Schur geometrically convex, Schur harmonically convex, and Schur
power convex.

We say that f,g: R — R are similarly ordered function if for all x,y € R, we have

(f(z) = f(y)(g(z) —g(y)) >0,

if the above inequality reversed, we say that f and g have oppositely ordered.

Lemma 2.1. Let f,g : R — [0,00) be convex, continuous and similarly ordered
functions. Then for z,y € R, we have

—— [ fotvit <

Proof. Since f and g have similarly ordered, for any z,y € R we have

(f(z) = f(y)(g(z) — g(y)) > 0.

f(x)g(z) + f(y)g(y)
. .

It follows that
(2.1) f(@)gy) + f(y)g(z) < f(x)g(x) + f(y)g(y).

On the other hand, f and g are convex functions, so for z,y € R and t € [0, 1], we
have

fltz+ (1 —=t)y) <tf(x)+ (1 —1)f(y),
gtz 4+ (1 = t)y) < tg(z) + (1 —t)g(y).

By multiplying both sides of the latter inequalities together and integrating on [0, 1],
we get

/01 flte+ (1= t)y)g(te + (1 - t)y)dt

< /Ol[th(x)g(m) +t(1—=8)[f(2)g(y) + g(x) f ()] + (L = )* f(y)g(y)]dt,

with change of variable u =tz + (1 — t)y = t(x — y) + y, it follows

yix /xy Flu)g(u)du < f(:v)g(:t)-;f(y)g(y) L f@)y) Jg F(v)g(x)
_ f@)g@) + FW)gy)
< ; _

Now, (2.1) follows from the last inequality. O
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Theorem 2.1. Let f,g : R — [0,00) be convex, continuous and similarly ordered

functions. Then
1

Flr,y)=q Y77
f(x)g(x), T =y,

[ fgwat, x4y,

is Schur convexr on R2.

Proof. By Lemma 2.1, we have

(aF_aF> (y— ) = [_ 1 /:f(t)g(t)dt—l— FW)9(y)

Oy Oz (y — x)? y—=
R f@g@)] .
e [ routeyar+ K29
~f@)gla) + Fw)gly) ~ — [ riogra = .
Now Lemma 1.1 implies that F'is Schur convex. 0

Corollary 2.1. Let a > 1. Then
1

Fle,y)=q Y77

e’ T =1,

Yoot
/ t*e'dt, x#y,

is Schur convez on [0,00) x [0, 00).

Proof. Suppose that f,g : [0,00) — [0,00) are defined by f(¢) = t* and g(t) = €".
Since a > 1, the function f is increasing and convex, according to Theorem 2.1, F' is
Schur convex. 0

The next two corollaries are results of Theorem 2.1.

Corollary 2.2. Let f : R — [0,00) be increasing, continuous and convex function.

Then
1

Floyy) =4 y—7 [ et aty

e’ f(x), T =y,

is Schur convexr on R2.

Corollary 2.3. Let f : [0,00) — [0, 00) be increasing, continuous and convex function

and o« > 1. Then
1

Fle,y)=q Y77
v f (), T =y,
is Schur convex on [0,00) x [0,00).

[erwat, w4y,
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Similar to Lemma 2.1, we have the following lemma for concave and oppositely
ordered functions.

Lemma 2.2. Let f,g : R — [0,00) be concave, continuous and oppositely ordered
functions. Then for x,y € R we have

1 Y

t)g(t)dt >
| gty >
Theorem 2.2. Let f,g: R — [0,00) be concave, continuous and oppositely ordered
functions. Then

f(@)g(z) + f(y)g(y)
. .

1 Y
Finy) y_fo®MW% r#y,

f(x)g(x), r =y,

is Schur concave on R2.

Proof. The result follows by similar arguments to the proof of Theorem 2.1 and using
Lemma 2.2. [

Theorem 2.2 implies next two corollaries.

Corollary 2.4. Let f : [0,00) — [0,00) be decreasing and concave function and

O0<a<l. Then .

Flz,y)=q Y77
‘/L‘af(x% r=1y,
is Schur concave on [0, 00) X [0, 00).

[ e«

Corollary 2.5. The function

y
/sechtlntdt, T #y,
Flz,y)=q Y=o/

sechzInx, x =1,
is Schur concave on [0, 00) X [0, 00).
By Lemmas 1.1, 1.2 and 1.3, we have the following theorem.

Theorem 2.3. Let f and g be two real continuous functions defined on R, then

1 Y
He()dt, x+y,
Floy) — [ etdr, a#y
f(l’)g(l’), r =Y,
is Schur convex (concave) on [0,00) x [0,00) if and only if
(2.2) Flz,y) < <Z>f(l’>9(fr) + f(y)g(y)

2 Y
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is Schur geometrically convez (concave) on [0,00) x [0,00) if and only if
zf(x)g(z) +yf(y)g(y)
T+y
and is Schur harmonically convez (concave) on R2 if and only if
2’ f(@)g(x) + v*f ()9 ()
24 F < (> )
(2.4 (@) < ()Y
Proof. From Lemma 1.1 it follows that F' is Schur convex (concave) on [0, c0) X [0, 00)
if and only if

(2.3) Fz,y) < (2)

)

-2 (5 -55) 00,

x
On the other hand, as in the proof of Theorem 2.1, we have

OF OF 2
-G - 5 ) = st + Fnatn) - 2
This implies (2.2).
From Lemma 1.2 it follows that F' is Schur geometrically convex (concave) on
[0,00) x [0, 00) if and only if

[ gty

oy ox
But
OF  OF\ Y v yf ()9 ()
-0 (s o5 ) = =) |~ [ gt D2
e v/ (2)g(a)
o [ roatoe 0]
= 2 (x)g(@) + ufW)a(v) - 2 [ FDa(e)at

hence (2.3) follows.
From Lemma 1.3 it follows that F' is Schur harmonically convex (concave) on R%
if and only if

On the other hand, we have

oy (20 _ 2OFN v ()9 (y)
(y )(y o ax> (y )[ (y_x>2/wf(t)g(t)dt+ -

R *f (l’)g(l’)]

RO f()g(t)dt + g

=2 f(x)g(x) +v* f(y)g(y) — I; 1—52 zy

f()g(t)dt,
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Therefore, (2.4) holds. O
In [8, Definition 2.3], we put f(x) = x*, then the following definition follows.

Definition 2.1. Let o be a positive real number and £ C R’ be such that x € E

1 1
implies 7& = (x,...,x5) € E. A real-valued function F': E — R is said to be Schur
power convex if

F(xla"wmn) SF(ylw"ayn)a

holds for each pair of n-tuples z = (z1,x2,...,2,) and y = (y1, %2, ..., ¥,) in E such
that

(xf, .., z0) < (yfy .. u0),

and F' is Schur power concave if —F' is Schur power convex.

Remark 2.1. Let E C R} and «a be a positive real number. Then F : E — (0,00) is
Schur power convex on £ if and only if F (a:é) is Schur convex function.

Lemma 2.3. Let E € R be a symmetric convex set with nonempty interior and
F: E — R be a continuous symmetric function on E. If F' is differentiable on int F,
then F' is Schur power convex (Schur power concave) on E if and only if

a « —aaF —aaF
(2] — a5) (x% o — 1 8@) > 0(<0),

for all x = (z1,...,2,) € int E and o € R,
Proof. The result follows by using Definition 2.1 and Remark 2.1 and Lemma 1.1. [

Theorem 2.4. Let « € Ry. Let f and g be two real continuous functions defined on

R, then
1

Flz,y)=q Y7
f()g(), T =y,

is Schur power convez (concave) on [0,00) X [0,00) if and only if

' f(x)g(x) +y'* f(y)g(y)
pl-a 4yl '

[ fgat, a4y,

F,y) < (2)

Proof. Let z,y € [0,00) and = # y. According to Lemma 2.3, F'(z,y) is Schur power
convex (concave) if and only if

_LOF _0OF
<w—w(¢@—f a)zwsm

X

But we have
oFr oF
a L« 11— - 11—«
(y* —x%) (y 9 " (9:10)



248 F. GORJIZADEH AND N. EFTEKHARI

11—«

~ o) | [ f0a0ar s

(y — )
s P (@)l
s [ satan s ST

vy f(y)g(y)
Yy—x

- (y -
v f(@)g(x) +y T f(gly) a4y
0 @)g(@) + v S )alw) = P st
y—ux (y—2)* Ja
As F' is symmetric, that is F'(z,y) = F(y,x), we get the conclusion. O

Corollary 2.6. Let o, 8 € (0,00) and f be a real continuous function defined on R,

then
1

o i O
T,Y) = z

lﬂf(ﬂf), r=1Y,
is Schur power convez on [0, 00) x [0,00) if and only if

o' P f ) + 4" P f(y)
le—a + yl—a

Proof. In Theorem 2.4, put g(z) = . O

F(r,y) <

Theorem 2.5. Let f,g:[0,00) — [0,00) be convex (concave), continuous and simi-
larly (oppositely) ordered functions on [0,00). Then

1 Y
F(z,y) = y—x/x ft)g(t)dt, = #y,
f(z)g(x), =y

(i) is Schur geometrically convex (concave) on |0,
(ii) is Schur harmonically convex (concave) on |0,
(iii) s Schur power convez (concave) on [0,00) X [0,00), if 0 < a < 1.

Proof. (i) As f and ¢ have similarly (oppositely) ordered and nonnegative on [0, 00),
then for all z,y € [0, 00), we have

(2.5) (y —2)(f(y)g(y) — f(x)g(x)) > 0(<0).
This implies that

zf(y)g(y) +yf(x)g(z) < (Z)xf(x)g(z) +yf(y)g(y),
and it follows that

fWgly) + [(@)g(x) _ (>)aff (x)g(x) +yf(y)g(y)
2 - T4y ’

Now, from (2.6) and Lemma 2.1 (Lemma 2.2) together with Theorem 2.3 it follows
that F'(z,y) is Schur geometrically convex (concave) on [0,00) x [0, c0).

(2.6)
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(ii) Since f and g have similarly (oppositely) ordered and nonnegative on [0, 00),
then for all z,y € [0, 00), we have (2.5). It follows that

(v* = 2*)(f(¥)g(y) — f(2)9(2)) > 0 (< 0).
This implies that

v fW)g(y) + v’ f(2)g(x) < (Z)2* f(2)g(x) + v° f(y)g(y),
and it follows that
F)9(0) + £@)ate) _ 2 (@)ale) + 0ot
2 - x% 4 12 '
From (2.7) and Lemma 2.1 (Lemma 2.2) together with Theorem 2.3 it follows that
F(z,y) is Schur harmonically convex (concave) on [0, 00) x [0, 00).

(iii) Since f and ¢ have similarly (oppositely) ordered and nonnegative on [0, co)
and 0 < o < 1, then for all z,y € [0,00) we have

(W' =2 (f(y)gly) — f(x)g(z)) = 0(<0).

(2.7)

It follows that

e (W) +y o f(@)g(z) < (2 f(@)g(z) + ¥~ f(w)g(y).
This yields

l1—a -«
(2.8) TWaly) + [@)g(x) _ e f@)gle) +y = (y)g(y)
2 rl-o + yl—a
Now, from the inequality (2.8) and Lemma 2.1 (Lemma 2.2) together with Theorem
2.3 it follows that F'(x,y) is Schur power convex (concave) on [0, 00) X [0, 00). O

Corollary 2.7. Let o, € (1,2). Then

1 Y
[eta-nrta, w4y,
Fla,y)=q y—

N1 — )P, T =y,

is Schur concave, geometrically Schur concave and harmonically Schur concave on
0, 1] x [0, 1]. Also, for all x,y € [0, 1] such that x # y the following inequalities hold

/ 1911 — )P dt > 21 —2)’ 4y (1 —y)P!
y—x 2 ’
[ G k)t U k)
y—1xJe - r+y ’
/ 1911 — )P dt > (1 —2)P 4y (1 —y)P !
y— ZL‘2 +y2 .



250 F. GORJIZADEH AND N. EFTEKHARI

Proof. In Theorems 2.2, 2.5, we put f(x) = 27 and g(x) = (1 — x)?~1. Since
a, € (1,2) on [0, 1] the function f is increasing and concave and g is decreasing and
concave. It follows that on [0, 1] the functions f and g are concave, continuous and
oppositely ordered. Now, Theorem 2.3 implies the results. [l

Theorem 2.6. Let o be a positive real number and f : (0,00) — (0,00) be a log-
concave function. Then t“f(t) is log-concave and the following inequality holds

Lo o f(2) -y ()
el A OL ey s ey oy

Proof. For a > 0, function t“ is log-concave. Since Int is concave and a > 0, we have

Aa(Inz) + (1 = Nalny < aln(Ax + (1 — N)y),

S0
AInz®) + (1 =N Iny* <In(Az + (1 — N)y)*.
Thus, t* is log-concave. Put g(z) = z®f(x), then for t € [0, 1], we have

glte + (1 —=t)y) = (tz + (1 —t)y)* f(tx 4+ (1 —t)y)
> (@) (y*) " (f (@) (f(w)
= (2 f (@) (v f(y)'™
= (9(=))"(9(y)"™"
- (259 s,
that is, g(x) = x f(x) is log-concave. By integrating both sides of the above inequality
on [0, 1] and change of variable u = tx + (1 — t)y, getting w = z:‘;g;, then we have

/ (tw+ (1=0)y) [t + (1 - y)dt = 5 £(y) / (Z% ) .

1
y—x

[ fwdu = () [ wtar
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Lemma 2.4. Let I be an interval in R and f,g: I — [0,00) be continuous functions.
Then for x € I"™ C R"™ the function

F) =3 [ et

is Schur convez if and only if f and g are similarly ordered functions (is Schur concave
if and only if f and g are oppositely ordered functions).

Proof. Clearly F' is symmetric. According to Lemma 1.1, F' is Schur convex if and
only if for z1, x5 € I, we have

oF  OF
(21— 29) (61:1 - 8:@) = (21 — x2) (f(z1)g(71) — f(22)g(72)) > 0,
if and only if f and g are similarly ordered functions. U

Lemma 2.5. Let I be an interval in R and f : I — (0,00) be differentiable on int I.
Then for x € I™ C R"™ the function

n

F(z) =[] f(=:)

=1

is Schur convez if and only z'ff% is increasing on I (is Schur concave if and only z'ff7,
is decreasing on I).

Proof. Clearly F' is symmetric. According to Lemma 1.1, F' is Schur convex if and
only if for z1, x5 € I, we have

i=2 i=1,i£2

(01— ) (gF-SF) — (21— ) (f’(wl)lﬁ[f(%)—f’(wz) 11 f(x»)
R H Pl (7 () fs) — f() ' (22)) = 0,

if and only if fTI is increasing on I. O

Remark 2.2. As in the literature, the infinite decreasing sequence x = (z,,) majorized
by the infinite decreasing sequence y = (y,) and denoted by z < y, if there exists
an infinite doubly stochastic square matrix P = (p;;) (i.e., p;; > 0 for all 7,57 € N,
and all rows sum and all columns sum are equal one) such that =z = y.P. If (a,) be a
sequence in the interval [0, 1], we take x; = ayy; + (1 — aq)y2, 22 = (1 — aq)y1 + a1ya,
and z3 = aays + (1 — a2)ys, v4 = (1 — an)ys + oy, . . ., where y = (y,) is an infinite



252 F. GORJIZADEH AND N. EFTEKHARI

decreasing real sequence. If we put

[ oy 11— 0 0 0 0 0 i
1—0(1 (03] 0 0 0 0 0
0 0 ap  l—ay 0 0 O
P= 0 0 ].—062 (6%) 0 0 0 )
0 0 0 0 0
i . . . . 0 |

then z = yP and x < y.

Ezxample 2.1. In Lemma 2.5, set f(z) = sinz and I = (0, 7). The function f'(z) = cosz
];,((5)) = cotz is decreasing on I. So, F(x) = [[",sinz; is Schur concave. Let
x = (z,) and y = (y,) be two decreasing sequence in I = (0, ), such that = < y as

in Remark 2.2. Since F' is Schur concave, we have F'(z) > F(y) and so

and

sin(a1y; + (1 — aq)ye) sin((1 — aq)y1 + a1y2) sin(asys + (1 — as)yy)

x sin((1 — as)ys + agya) - -+ > [ sinys.
i=1

% for all © € N, we have

1

0 2

n(‘%;y?)sm (ys—;w) s <Hsinyi> ‘
i=1

Erample 2.2. In Lemma 2.5, put f(z) = cosx and I = (0, 7). The function f'(z) =
J},(j)) = —tanx is decreasing on /. So F'(z) = [}, cosx; is Schur concave.
Let 2 = (z,) and y = (y») be two decreasing sequence in I = (0, 7), such that z <y

as in Remark 2.2. Since F' is Schur concave, we have F'(z) > F(y) and so

In the special case, a; =

—sinx and

cos(a1yr + (1 — aq)y2) cos((1 — aq)yr + aqys) cos(aays + (1 — an)ys)
x cos((1 — ao)ys + aoya) - -+ > [] cos yi.
i=1

% for all 7 € N, we have

oo :
COS (w;m) cos (y3;y4) R <Hcosy¢> .
i=1

As in [9], let I = (0,1) and L,, = {x =(x1,...,2,) €R": i T; = ml} for some
i=1

Z !
=1

In the special case, a; =

O<m<mn,D,=I1"NL,and Q= (y,...,y), where y =

3=

Lemma 2.6. ([9, Lemma 2.1)). If f : I"™ — R is a Schur-convex function, then f()
is a global minimum in D,,. If f is strictly Schur-convex on I™, then f(£2) is the unique
global mimimum in D,
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Remark 2.3. In Example 2.2 and Lemma 2.6, put [ = 7 and z; € (0,3), for i =

L,2,...,n,and } z; =m. Then Q = (Z,...,7) and we have F(r) < F(£2), that is

i=1
n T n
H cosx; < |(cos— | .
i=1 n

Similarly in Example 2.1, for [ = 7, we have
T _m\"
Hsm z; < (sm > .
i=1 n

Lemma 2.7. Let I be an interval in R and f : I — (0,00) be continuous, then for
each x € I C R", the function

rw) =11 [ o
L 5 Syt

is Schur convez if and only if =———— is decreasing on I (is Schur concave if and

f(z)
Jy f@)dt

only if @ is increasing on I).

Proof. Clearly F' is symmetric. According to Lemma 1.1, F' is Schur convex if and
only if for z1, x5 € I, we have

w02 (o = G0 ) =t = ) (fm) I/ s s 11 f(t)dt>
—(21 — 2) ﬁ[g/ox F(t)dt
< (s [ r@ae= s [ fe)at)
207
if and only if J Oxf];g)dt is decreasing on 1. U

3. APPLICATIONS

In this section, we obtain some inequalities, which are the applications of the results
in Section 2.

The next two examples are the applications of Lemma 2.1 and Theorems 2.1, 2.3
and 2.5.

Example 3.1. Let a > 1 and E,(x) = >32, F(#kﬂ) be the Mittage-LefHler function.

Let
1

Yy
tYE,(t%)dt, = # vy,
Flo =] 77

Y Ey (%), x=y.
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Since t* and E,(t) are convex, continuous and similarly ordered on [0, 00), then Lemma
2.1 and Theorems 2.1, 2.3 and 2.5 imply that F' is Schur convex, Schur geometrically
convex and Schur harmonically convex on [0,00) x [0,00) and for x,y € [0,00), the
following inequalities hold

1 Yy OcEa (07 OéEa o
y—1xJo 2
1 Yy a—&—lEa « a+1Ea fo
Yy—Jz T+y
1 Yy a+2Ea « a+2Ea (o
FExample 3.2. Let a > 0 and
1 Y
[ TOE(dt w £y,
Flo,y)={ Y= 77
[(x)Ey(x9), T =y.

Since I'(t) and E,(t) are convex, continuous and similarly ordered on [%, oo) , then

Lemma 2.1 and Theorems 2.1, 2.3 and 2.5 imply that F' is Schur convex, Schur
geometrically convex and Schur harmonically convex on [%,oo) X {%,oo) and for
T,y € [%, oo) , the following inequalities hold

1 r E, @ I E o
/y F<t>Ea(ta)dt < (f) a(ZE )+ (y) a(y )’
Yy—TJz 9
1 T Ea fo' T Ea a
/yr(t)Ea(tO‘)dt <T@ Ea(x?) + yT(y) Ealy”)
1 2I‘ E o 2F E o
%Xﬂﬁhﬁ%dtgx (2)Eo(z%) + y*T(y) Eo(y X
y — T Jx 1'2 + y2
Remark 3.1. For x,y € [0,00), the following majorizations hold
@2 (it i) < (5 2)
. HZ(x,y)7H2(l"y) x’y 9
T+y T+y
(3.3) ( v > <9,

2
1 -
ty

where Hy (x,y) = 1
Ezample 3.3. Let f,g:]0,00) — [0,00) be convex, continuous and similarly ordered
functions. Then for x,y € [0, 00) with = # y, (3.1), (3.2) and (3.3) and Theorem 2.1
imply the following inequalities

L[ eae < = [ pagtnn

Yy—x Jita T+ Y Jitaty
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! (Hzéc,w) ! (mé,y)) <t /f F(B)g(t)dt,

15 (50 < = [ rweo

For increasing, continuous and convex function f : [0,00) — [0,00) and a > 1,
Remark 3.1 and Corollaries 2.1, 2.3 imply the following inequalities

1 I+y —1 1
/ teeldt < / t*e'dt,
Y —T Ji+zx Y +x 1+z+y

« 1
<1> eHz(lac»y) < 11/1y t“etdt,

@ g 1 y
(x—i—y) eTyg t*edt,
Yy— T Jax
1

1+ _ 1
tF(t)dt < / tF(t)dt,
y—J]/—f—x f() x—l—y 14+z+y f(>

1 @ 1 1 1 )
(HZ(xy)) f<H2<$ y)) < —i/i £ f(4)dt

1
Y

() (5 == L

For increasing, continuous and convex function f : [0,00) — [0, 00), Remark 3.1 and
Corollary 2.2 imply the following inequalities

[ ewar < [ g,

Yy —T Ji+zx T+ Y J1idaty

| 1 1 3
ey f|l—— | < et £ (1) dt
‘ f(Hz(fv,y)>_ —1/; ¢ 1)

oty 1 Y
= (“y> < / et (t)dt.
2 Yy—a Jax
Remark 3.1 and Corollary 2.5 imply the following inequalities

< |-

1 1+y —1 1
/ sechtIntdt > / sech tIn tdt,

Y — Ji4=z J?+y 1+z+y
1 1 1 3
sech| ——— | In > / “sechtIn tdt,

sech<x+y>ln<m+y>2 ! /ysechtlntdt.

Remark 3.1 and Corollary 2.7 imply the following inequalities, for «, 8 € (1,2),

1 I+y -1 1
/ t N1 — )P dt > / t (1 — )P,
Y—T Jita T+ Y Jitaty
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: - ! . L v jo1 B-1
(fb(wy)) (1_112@5,?;)) i/t (1—t)*at,

<x+y>a—1 (1_ x+y)ﬁ—1 - / 111 — 1)1,
2 2 Ty—z

Remark 3.1 and Example 3.1 imply the followmg inequalities, for @« > 1 and the

Mittage-Leffler function E,(z) = >3, m

I\/

1 1+ -1
/ 1B, (1) dt < / 1B, (1) dt,
Y—T Jitz x + +J:+y

() = () ) s o s
(£ B (52)) 5 [

Remark 3.2. Let a > 1 and E,(z) = Y32, F(#kﬂ) be the Mittage-Leffler function on
(0,00). In Lemma 2.4, set f(t) = Ea(t) and ¢(t) = 1. Then the function

n oo n oo karl
:Z.:M:O/o Fak+ ;,@2 (k + 1)L (ak + 1)
oo n k+1 [e's) Z?:l x§+1
=22 & =Y i
oo (k+1)l(ak+1)  ZT(ak+1)

is Schur convex on R?.
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ON RAPID EQUIVALENCE AND TRANSLATIONAL RAPID
EQUIVALENCE

VALENTINA TIMOTIC!', DRAGAN DJURCIC?, AND MALISA R. ZIZOVIC?

ABSTRACT. In this paper we will prove some properties of the rapid equivalence and
consider some selection principles and games related to rapidly varying sequences.

1. INTRODUCTION

Let S be the set of sequences of positive real numbers, and S; be the set of nonde-
creasing sequences from S [5]. Let ¢ = (¢,)nen € S. A sequence c is said to be rapidly
varying in the sense of de Haan, if

(1.1) lim = oo

n—-+0o00 Cp,
holds for each A > 1. The set of all these sequences is denoted by R . These
sequences are objects in rapid variation theory in the sense of de Haan, which is very
important in asymptotic analysis and applications (see, e.g., [1-3,8,10,15]). The
theory of rapid variation is an important modification of Karamata’s theory of regular
variation [13], and its relation can be seen on example of slow and rapid variation
within generalized inverse (see, e.g., [7]). Elements of the class R s are important
objects in dynamic systems theory [10,11,15], infinite topological games theory and
selection principles theory [3-6].
A sequence c is translationally slowly varying (in the sense of Karamata) if

(1.2) lim P g

n—+o00 ¢,
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holds for each A > 1. Translationally slowly varying sequences form the class Tr(SV)
(see, e.g., [4-6]), and it holds Ro s NTr(SV;) # &, Reo s \Tr(SV;) # @ and Tr(SV;) \
Ry s # 9.

A sequence c is translationally rapidly varying (in the sense of de Haan) if
(1.3) lim Pl g

n—+00 Cp,

holds for each A > 1.

The class of translationally rapidly varying sequences is denoted by 7r(Rux ). It
holds Tr(Res) C Reo s for each XA > 1 (see, e.g., [5]).

The classes of sequences mentioned above have nice and deep connections with
selection principles theory and infinitely long two-person game theory (see, for example,
2,3,5,6]).

Motivated by the study of some equivalence relations on classes of functions and
sequences given in [7,8,14], in this paper we define a relation on the class of transla-
tionally rapidly varying sequences and investigate some properties of this relation. In
particular, we study relationships of this relation with selection principles and game
theory complementing the research in [2,3,5,6]. We also obtain some additional infor-
mation on the classes of rapidly varying and translationally rapidly varying sequences.

Definition 1.1. Sequences ¢ and d of positive real numbers are mutually translation-
ally rapidly equivalent, denoted by

tr
c~d as n— +oo,

if

. Chn]
(1.4) nl_l)I_iI_loo i +00
and

)
(1.5) lim —— = +o0

n—+o0 ¢,

hold for each A > 1.

The previous relation is a modification of the rapid equivalence relation between
sequences ¢ and d given by
& n
(1.6) lim 2% = 400

n——+0oo dn
and

d
(1.7) lim 21—

n—+oo Cp,

+00,

for each A > 1. We denote it by ¢ ~ d as n — +oo (see, e.g., [8,14]).

Let ¢ be a nondecreasing sequence from a subset V of S. The capacity of ¢ with
respect to V is the subfamily of S given by MY = {2 = (z,) € S | ¢, < 7, <
Cni1 for each n € N}.



ON RAPID EQUIVALENCE AND TRANSLATIONAL RAPID EQUIVALENCE 261

Let A and B be nonempty subfamilies of S. Let us adduce two selection principles
which we need in this paper:

(a) (Rotberger, see, e.g.,[12]) S1(A,B): for each sequence (A"),ey of elements
from A there is an element b € B, so that b, € A" for each n € N;

(b) (Koc¢inac, see, e.g., [9]) az(A, B): for each sequence (A"),en of elements from
A, there is an element b € B, so that b N A™ is infinite for each n € N.

Games associated to the previous two selection principles are the following.

G1(A,B). Two players, I and II, play a round for each positive integer. In m!
round, m € N, the player I plays a sequence A™ € A, and the player II plays an
element b,, € A™. II wins the play A, by; A% bo;. .. if and only if b = (b,) € B.

The symbol G, (A, B) denotes the following infinitely long game for two players, I
and II, who play a round for each natural number n. In the first round the player I plays
an arbitrary element A' € A, and the player II chooses a subsequence A"V j € N,
of the sequence A'. At the k™" round, k& > 2, the player I plays an arbitrary element
A* € A and the player II chooses a subsequence A" of the sequence A*, such
that A™W) N A»0) = () is satisfied, for each p < k — 1. The player II wins the play
AL ATMG), AR ATEG): L if and only if all elements from Y = Ugen Ujen A0 form
a subsequence y € B.

Note that if IT has a winning strategy (even if I does not have a winning strategy)
in a game defined above, then the corresponding selection principle holds.

Note that in the paper [5] it is proven that the player II does not have a winning
strategy in the game G1(Tr(SVy), Tr(SVy)).

h

2. RESULTS

Proposition 2.1. Ifce€ S, d € S and ¢ Ldasn — +oo holds, then ¢ € Tr(Ry.s)
and d € Tr(Ruo.s)-

Proof. Let ¢,d € S and ¢ £ d as n — +oo hold. Therefore, for A = 1, it holds

lim,, 4o C’;lzl = 400 and lim,,_, d’gf = 4o00. For A > 1 it holds lim,, ., 6[27:"] =
. Dan | A4n-1 | dna1 ) .
lim,, o (d[mnl s - > = +oo for each A € [k,k+ 1), k=25, s e N. It
means, for A\ = 2, lim,,_, sz = lim, ;0 (Zzi . %) = +00. Therefore, 400 =
2 2
lim oo (255 252) = oo (52)° = (Hieoe 522) . Thus, lim, o 52 =
400, so for each A > 1, lim5_>+ooc[z—:‘°’] = +o00 holds. Therefore, ¢ € Tr(Rus)-
Analogously we prove that d € Tr(Ry ). OJ

ol . tr . . . o .
Proposition 2.2. The relation ~ is a reflexive, symmetric and nontransitive relation

in Tr(Res).

Proof. 1. (Reflexivity) According to Proposition 2.1, from ¢ X dasn — +oo it follows
¢,d € Tr(Rx ). The asymptotic relation lim,, C[Z—:"] = +00 holds for each A > 1

in the class T7(Ra.), thus ¢ < ¢ as n — 400,
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2. (Symmetry) According to the definition of X, symmetry holds.
3. (Nontransitivity) The following example shows that the relation is not transitive.

Consider the sequences ¢, = (n — 1)!In(n + 1), d, = n! and e, = 1517(1:31!)7 n e N. It

holds ¢ & d, dX easn— 400, but ¢ X e does not hold as n — +oo. O

Proposition 2.3. Let ¢,d € S. If ¢ z d, then c ~ d as n — 400.

Proof. Let ¢,d € S and ¢ L das n — +o0. According to Proposition 2.1 it follows
¢,d € Tr(Rus) G Roos. Therefore, lim,, o0 % = lim,, 00 25 = 400 holds. It

d
. . _ Cn+41

follows lim,,_s o0 C[d*:] = lim,,_ oo (C[CA[;"]I . 21:; ;Jr ) = 400 for A > 1. Analo-
n

gously it can be proved that lim,,_, d?n"] = +00 holds for each A > 1, thus ¢ ~ d as
n — +oo holds. O

Proposition 2.4. Let T'S = Tr(SVy), x € MIS. Then it holds x ~ ¢ as n — +00
(~ is the relation defined by lim,, o ™ = 1). Also, MES C Tr(SVy) holds.

Proof. Let x € MCTS . Therefore, it holds ¢, < x, < ¢,11 for each n € N. It means
that 1 < limy, 00 2 < limy 00 szl =1, thus ¢ ~ z as n — +o0o. Thus, MZ° C [¢]
([c]~ is the class of strong asymptotic equivalence, generated by the sequence c). It
follows ¢ € MZ% holds (¢ € Tr(SV,)). So, if # € MTS, then x € [c]. and thus
Zy, = hy - ¢,, where for the sequence h = (h,), n € N, h — 1 holds as n — +oc.
Therefore, it holds lim,, ‘T;:l = 1, which means x € Tr(SVj).

The sequence d = (d,), n € N, given by d,, = ¢,41 + + as n — +00, belongs to
the class Tr(SV,) and it does not belong to the class MX®. It holds also d € [c]~. It
means that M2° C [c]. € Tr(SV;) holds. O

Proposition 2.5. The player 11 has a winning strategy in the game G1(MIS, MTS).

Proof. Let m € N. In m*™ round the player I chooses an element A™ € M. Then

IT chooses an element y,,, € A™, m € N. It holds ¢, < Ym < a1 < Yma1 < Cao, for
m € N. Therefore, 1 < y’;” L Gmt2 = Imd2  Emtl and limy, oo y’;—;l =1 hold. Hence,

Cm Cm+1 Cm

y € Tr(SV,) and it holds ¢,, < Ym < Cmy1, 50 y € MIS, O
Corollary 2.1. The selection principle S;(MXS MLS) holds.

Proposition 2.6. The player 11 has a winning strategy in the game G o, (MIS MT5).

Proof. (m'™" round, m > 1) Take a sequence p; < py < --- of prime numbers. In
m' round the player I chooses the sequence A™ € M2 and the player II chooses a
subsequence A" of the sequence A™, so that k,,(n) = p?, for n € N. Consider the
set Y = Upen Uneny A% of positive real numbers. We can consider this set as the

subsequence of the sequence y = (y;), ¢ € N, given by
{Akm("), if i = k,,(n) for some m,n € N,
Yi =

i, otherwise.
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By the construction of the sequence y, we have that y € S, y ~ ¢ as i — o0,

< yi < ¢y for i € N. Therefore, y € MX9 Also, y N A™ has infinitely many
elements for each m € N. This means that II wins the play A!, AF1(); A2 Ake(v)
i.e., IT has a winning strategy in the game G, (MZ% MT9). O

Corollary 2.2. The selection principle ao(MLS MTS) holds.

Consider now an important subclass of R .

Let ¢ € Roos. Therefore, it holds lim, _, = = A > 1. It follows from (1.1),
¢An] C[An] 0n+1

because -2 = —=r— ... holds for n € N large enough. On the right side there

n Clan]—1
are [An] —n, n € N, factors which tend to 400 as n — 400.
Cn41

The class of rapidly varying sequences which satisfy the relation lim,_, . =5 =

A > 1, A € R, we will denote by RTE and the class of rapidly varying sequences

00,8

which satisfy the relation lim,, ., . C’Zl =1 by RT*?S. We see that

RIFURLY, C Ry, RIS, CTr(SVy) and RLE CTr(RVj),

00,8 -+ 0,8 -+ 0,8 -+

where Tr(RVj) is the class of translationally regularly varying sequences in the sense
of Karamata (see, e.g., [5]).

Ezample 2.1. The sequence (c,) = ("), n € N, is an element of the class R1", and
the sequence (d,) = (e¥™), n € N, is an element of the class RIS,
Proposition 2.7. Let TRV = RI", © = (z,), n € N, and x € M"Y, Then x, < ¢,

as n — 400 (X is the relation defined by 0 < liminf, ;o 7 < limsup £* < +00).
Also, MIRY C R .

Proof. Let c € RZOI?S =TRV,ce€ MCTRV and for the sequence z it holds ¢, < x,, < ¢,41
for n € N. It means that for some A € R, it holds

. Cn+1
lim
n—-+o0o Cn,

=A< +o0.

T T
1< limy, oo — < limy, 00— <
n C'I’L

Hence, ¢ < x as n — +oo. Thus, MI®V C [c]- ([c]= is the class of weak asymptotic
equivalence generated by the sequence c¢). It holds that ¢ € MI®V ¢ € Ry ,. If
r € MRV then z € [¢|~ and z,, = h,, - c,, and for the sequence h = (h,), n € N, it
holds 1 < lim,,_, , ,ohy, < limy, 4 oohy < A < +00. Thus, for A > 1,

hmnHH)OZE[A | > himn%JrooM B mn%JrooC[/\ ] _ 1 . (+OO) — 400
n n C?’L
holds. The last means that r € Ry, s so MI®V C {c}= C Ry . O

Proposition 2.8. The player 11 has a winning strategy in the game Gy (MEEYV MIEV),

Proof. Let m € N. In m'™ round I chooses an element A™ € MI®V. TI chooses
an element y,, € A™, m € N. Thus, we get the sequence (y,,). Therefore, for
each m € N) ¢, < ym < st < Yms1 < Cmg2, SO0 1 < yTy”“ < &2 Tt follows

Cm
< lim,, +ooy;’:1 limy, 4 o0 11Ir1n_>+ooc’”jr2 llmn_>+ooc’§;1 A-A= A% and

for each m € N, ¢, < ym < ¢np1- Hence, y € MZRV- U

Ym+1
m
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Corollary 2.3. The selection principle S;(MITV MIEVY holds.

Proposition 2.9. The player 11 has a winning strateqgy in the game
G (MTRV MTRV)
a2 c ’ c :

Proof. (m!" round, m > 1) Let p; < py < --- be a sequence of prime numbers. In m'®

round I chooses the sequence A™ € M ?V and II chooses a subsequence A of the
sequence A™, so that k,,(n) = p?, for n € N. Consider the set Y = ey Upery A% ™
of positive real numbers. This set we can consider as the subsequence of the sequence
y = (y:), i € N, given by

B AFm(®) = if § = K, (n) for some m,n € N,
i Ci, otherwise.

By the construction of the sequence y, we have that y € S, y; < ¢; as 1 — 400,
ci < y; < ¢y for i € N. Therefore, y € MIEV. Also, y N A™ has infinitely
many elements for each m € N. This means that II wins the play A', AM():
A% Ak (). Am AR In other words, I has a winning strategy in the game
G Y M), 0

Corollary 2.4. The selection principle ao(MEIEY MIEVY) holds.

Remark 2.1. In Propositions 2.8 and 2.9, and in Corollaries 2.3 and 2.4, improvements
of some results from [3] are given.

Remark 2.2. Propositions 2.5, 2.6, Corollaries 2.1 and 2.2 hold also for the class
RTS C Tr(SVy).

00,8 +

A sequence x = (x,) € S is said to be logarithmic rapidly varying, with base 2,
if (logyx,), n € N, is an element of the class Ry s (see, e.g., [6]). The class of all
logarithmic rapidly varying sequences is denoted by Lo(Rss). It holds Lo(Rys) €
Roo s.

Proposition 2.10. Let 7,y €Sy and x ~ y asn — +00. If ¥ € Ly(R s) holds, then
Yy < Lg(Roo,s).

Proof. Let sequences x,y € S; be given, and let the sequence (log, z,), n € N, be
rapidly varying. Define the functions f(t) = zy and g(t) = yp, t > 1. Therefore,
it holds f(t) ~ g(t) as t — +oo, and log, f(t) is rapidly varying function. The
logy (M)~ logy(F(AS )
829(0) = 1og, (115 1))
t — +o0, for each A > 1. For ¢ large enough, g(t) < f(A5 - t) and f(A3 - 1) < g(At)
hold for A > 1. Therefore, log, g(t) = h(t), t > 1, belongs to the class R, s and hence
(logs ¥n) € Roo,s- O

functions f and ¢ are also nondecreasing. It holds — +00 as

Corollary 2.5. Proposition 2.10 holds when z, ~ y, as n — +00.
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WELL-POSEDNESS AND GENERAL DECAY OF SOLUTIONS FOR
THE HEAT EQUATION WITH A TIME VARYING DELAY TERM

ABDELKADER BRAIK!, ABDERRAHMANE BENIANI?, AND YAMINA MILOUDI?

ABSTRACT. We consider the nonlinear heat equation in a bounded domain with a
time varying delay term

ug + A%u — J(t)/o g(t — 8)A%u(s)ds + oK (t)u + BK (t)u (t — 7(t)) = 0,

with initial conditions. By introducing suitable energy and Lyapunov function-
als, under some assumptions, we then prove a general decay result of the energy
associated of this system under some conditions.

1. INTRODUCTION AND STATEMENT

Let us consider the following problem

w+ A= J(t) [ "ot — 5)A2u(s)ds + aK (tu

+ BK(t)u (t —7(t)) = 0, in Q x |0, +o0[,
(1.1) u=0, on 0f) x 10, +o00[,

u (0) = wo, in Q,

u(t—7(0)) = ho (t —7(0)), in Q x ]0,7(0)[,

where A%u = A(Au), Q be a bounded open domain in R™, n € N* of regular boundary
092, the function 7 : ]0, +00[ — |0, +o0[, 7(t) is a time varying delay, o and /3 are
positive real numbers, and the initial data (ug, ho) belongs to a suitable function
space.

Key words and phrases. Heat equation, time varying delay, energy decay, Lyapunov functional,
global existence, viscoelastic term.
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Time delay is the property of a physical system by which the response to an applied
force is delayed in its effect (see [12]). Whenever material, information or energy is
physically transmitted from one place to another, there is a delay associated with the
transmission. In, physical, chemical, biological, electrical, mechanical and economic
phenomena.

in recent years, the stability of partial differential equations with time-varying
delays has been studied in [8,15,20] via the Lyapunov method.

In the constant delay case the exponential stability was proved in [11,18] by using
the observability inequality which can not be applicable in the time-varying case (since
the system is not invariant by translation).

In recent years, the control of PDEs with time delay effects has become an active
area of research, see for example [1,19,23] and the references therein. In the case
of distributed parameter systems, even arbitrarily small delays in the feedback may
destabilize the system (see, e.g., [5,9,11,15]). Hence the stability issue of systems
with delay is of theoretical and practical importance.

There are more works on the Lyapunov-based technique for delayed PDEs. Most of
these studies analyze the case of constant delays. Thus, the conditions of stability and
the exponential limits have been derived for some heat equations and scalar waves
with constant delays and boundary conditions of Dirichlet without delay in [21].

S. Bernard, J. Belair and M. C. Mackey [16] studied the stability of the following
linear differential equation

v = —ax(t) — ﬂ/OJrOO z(t — s)f(s)ds,

where « and [ are constants.
Chengming Huang and Stefan Vandewalle [2] considered a more general equation,

(1.2) y(t) = ay(t) + By(t — )+ [ u(s)ds,

t—1
where «, 5,7 € R and u(t) = ¢(t) on [—7,0], and proved that the repeated trapezium
rule retains the asymptotic stability of (1.2). Wu and Gan in [22] further extended
the above study to the case of neutral equations.
In Section 3, page 16, Chengming Huang and Stefan Vandewalle [3] considered the
asymptotic stability of multi-dimensional equations of the form
t

(1.3) y(t)=Ly(t)+ Myt —7)+ K y(v)dv, t>0,

t—1

where L, M, K € 0% and y(t) = ¢(t) on [—7,0]. The characteristic equation equals

0
(1.4) det (\N[y— L — Me ™ — K e‘”du} 0,

where I; is the d x d identity matrix. The zero solution of (1.3) is asymptotically
stable if and only if all the roots A of (1.4) have negative real parts.
Recently the stability of PDEs with time-varying delays was analyzed in [8,20].
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Later, Mohamed Ferhat and Ali Hakem in [7] studied the decay properties of
solutions of the folowing system for the initial boundary value problem of a nonlinear
wave equation

(=2 = A= [ gle = ) Aus)ds + B (2,1)

+ ¥ (u'(z,t — 7(t))) = 0, in Q x (0, +00),
u=0, on I x (0,+00),
u(z,0) = ug(x), u'(x,0)=ui(z), in Q,

u'(t —7(0)) = fo(t — 7(0)), on Q x (0,7(0)),

where  is a bounded domain in R", n € N*, with a smooth boundary 02, 7(¢) > 0
is a time varying delay, uq, and us are positive real numbers.

Recently, the case of time-varying delay has been studied in [13,18]. For example,
in Nicaise et al. [18] in one space dimension studied

u — augy =0, O<ax<mt>0,
u(0,t) =0, t>0,

Uz (7, 1) = pou(m,t) — pu(m,t —7(t)), t>0,

u(z,0) = up(x), 0<z<m,

u(m,t —7(0)) = fo(t —7(0)), 0<t<7(0),

where g, 11 > 0 and a > 0. They proved the exponential stability result under the
conditions

7 <1, forallt>0,
exists M >0, O0<to<7<M, forallt>D0,

7€ W3>([0,T]), forall T > 0.
And in 2011 S. Nicaise and C. Pignotti in [13] considered an problem of the form

u' — Au —alAu' =0, in Q x (0, +00),
u=0, on I' x (0, 4+00),

, O(u+ au') ,
put = = ku'(t — 7(t)), on I'y x (0,4+00),
u(x,0) = up(x), v (x,0) = uy(z), inQ,
u = fo, on I'; x (—7(0),0).

We also recall the result by Xu, Yung and Li [4], where the authors proved a
result similar to the one in [11] for the one-space dimension by adopting the spectral
analysis approach. The case of time-varying delay in the wave equation has been
studied recently by Nicaise, Valein and Fridman [18]) in one-space dimension. They
proved an exponential stability result under the condition pus < +/1 — duy, where the
fuction 7 satisfies 7/(t) < d < 1 for all ¢ > 0.
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In [14], Nicaise, Pignotti and Valein extended the above result to higher space
dimensions and established an exponential decay.

The paper is organized as follows. In Section 2 we present some assumptions and
state the main result. The general decay result is proved in Sections 3.

We use the ideas given by G. Li, B. Zhu and Wenjun Liu in [10], and the multiplier
technique to prove our result.

2. PRELIMINARIES AND MAIN RESULTS

Firstly we assume the following hypotheses.
(H1) k& : R, —]0, +o0[ is a non-increasing function of class C*(R, ) satisfying

(2.1) K'(t) < —ck(t), forallt>0,

where ¢ is a positive constant.
(H2) J,g,¢ : Ry —]0, +00[ are non-increasing differentiable functions satisfying

(2.2) / " g(s)ds < 400, 1—J(1) / Cg(s)ds > 1> 0,
and

, I
(2.3) g'(t) < —u(t)g(t), forallt>0, tgnjoom =0

(H3) For the time-varying delay 7, it is varying betwin two positive constants 7g, 71,
and

(2.4) T eW?([0,7T]), forall T >0,
(2.5) 0<7o<7(t) <7, forallt>0,
(2.6) '(t) <d < 1, forall ¢ > 0.

(H4) «, 8 and ¢ are three positive constants satisfy,

(2.7) a > [0
and

2.8 < 1
(2.8) = 26k(0)’

for some § > 0.
We now state some lemmas needed later.

Lemma 2.1 (Sobolev-Poincare’s inequality). There exists a constant C, = C(2) such
that

(2.9) /Q|w|2daz < (Jp/Q \Aw[?dz,  for all w € HY(Q).
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We introduce, as in [11], the new variable

(2.10) 2(x,p,t) =u(z,t —p7(t)), (z,p,t) € Qx(0,1) x (0,400).
Then, we have

(2.11) T(t)z'(x p,t) = (7'(t)p — 1)z,(x, p,t), in Qx(0,1) x (0,+00),
where 2/ 1= % and z, := 32 . Then problem (1.1) may be rewritten as

up + A% - ()/ g(t — s)A%u(s)ds + ak(t)u

+ Bk(t)z (1,t) = in Q x (0, 4+00),

(0 (2 p01) = (7 (1) = D2yt in % (0, 1) x (0, +00),
(2.12) u=0, on 092x]0, +ool,

u (0) = uo, in Q,

2 (0,t) = u(t), in (0, 400),

2 (p,0) = ho (—p7(0)), in  x (0,1).

We define the energy of solution of problem (2.12) by

B(t) = [ak<>||u||2 (1= [ g()ds) lAull3 +T0) (g0 ) (1)

+&k(t) // |z(p, t \dpdx}

where ¢ is a positive constant, and

(90 8w) (1) = [ gt =) | Baw(t) — M) dv

Now we will establish a general decay rate estimate for the energy.

(2.13)

3. DECAY OF SOLUTIONS

We firstly give the global existence of solutions of the system, which has been proved
in [10].

Proposition 3.1. ([10, Lemma 2.1]). Let (H1)-(H4) hold. Then given uy € HY(Q),
ho € L*(2%(0,1)) and T > 0, there exists a unique weak solution (u, z) of the problem
(2.12) on (0,T) such that

u € C(0,T; H(Q)) N C1(0,T; L*()).

Lemma 3.1. Let (2.6) and (2.7) be satisfied, & be a positive constant and § sufficiently
small such that

B

— < £
B —q) St

(3.1)
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and (u, z) the solution of the problem (2.12). Then, the energy functional defined by
(2.13) it may be non-increasing function and satisfies

B(1) <370 (o o 8 (1) = 2(0) ([ g(s)ds) 1 al

(3.2) +§k’( // (0, )| dpda

<30 (¢ 0 8 (0= 570) ([ gfs)ds) .

Proof. At first, multiplying the first equation in (2.12) by «/, integrating over {2 and
using integration by parts, we have

1d 2 2 a2 Lo 9 )
ST (lAull3 + ak(t) ul3) + [l I = Sok(t) ||u||2+5k(t)/guz(1,t>dx

—J()/O t—s/AuAu( Ydxds = 0.

We denote by I(t) to the last term on the left side of (3.3) for I;(t) we have
(3.4)

(3.3)

L(t) = / (t—s) /Au — Au(s)) dzds
— J(t)/ g(t —s) /Au (t)Au(t)dxds
:;;ﬁ{/ g(t —s) /]Au u(s)|* dads

y / o(s) [ 18u(o)? dds +;(J(t) / t g(s)ds)l [ 18u(o) dads
;(/Ot ot =) [ |du(t) - Aus)?) deds
o= Uot TW)g(t = 5) [ 18u(t) — Au(s) duds
—70) [ g(s)ds [ |du(o)? dz

4570 ([ g()ds ) 1aul = 7(0) (9.0 Aw) () = 2J(0) (9 0 A (1),

+ 5T (09(0) | Au

Inserting (3.4) into (3.3) and using Young’s inequality, we obtain

S (k) + (1 = J0) [ g(s)ds ) 1 Aul3 + T0) (g0 ) (1))
(3:5) <Lak'(t) 2 — (1 38(0) [ + 220 (1 )2+ 27(0) (g0 A (1)
4590 (50 ) (1) — 5 (70 ([ 9()ds) + I09(0)) 18,
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Secondly, we multiply the second equation in (2.12) by &k(t)z(z, p,t) and integrate
over 2 x (0,1), to get

// (o O)F dpdm_“k’ // 1—07())*| (p. )| dpdz.

And from there we find

( o [ [ 10 \dpda:) = k) [ [ I=(o. 0 dpds
(3.6) —§k<t> 10— o) (. )] da
=Sk @) [ [ 12000 dpdz.

Taking the sum of (3.5) and (3.6), we obtain that
(3.7)

E'(t) <5 (ak'(t) + Ek(1) Jull; — (1 = 88k(E)) /|5 + ;J’(t) (90 Au) (t)

ED (e =701 - ) 100 + 300 0 20 1)

—;(J'm ([ a(s)as) + T0190) 1l + SR @r(0) [ [ |o(o.0)P dpi

Combining (3.1), (3.7) and hypotheses (H1)-(H4), the proof of Lemma 3.1 is complete.
0

Theorem 3.1. Assume (H1)-(H4). Then there ezist positive constants C and K
such that for any solution of problem (2.12), the energy satisfies the following estimate

(3.8) E(t) < Ce_KO/O v ()t

for every t > 0.

[\D\»—t

Now, we define the functional F(t) as follows

(3.9) F(t) = ; [ war

Lemma 3.2. The functional F satisfies the following estimate

PO <p-1+ ([ os)as) J(t)} I8ul + S 0(0) g 00) (1)

+ (08 —a) ()IIU\|2+ = [z DI

Proof. Differentiating and integrating by parts, we get
(3.11)

F'(t) = — | Aul + J (D) /Q /Dtg(t — §)Au(t) Au(s)dsdz — k:(t)/

Q

(3.10)

(au2 + Buz(t, 1)) dz.
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We denote by Fj(t) the second term on the right-hand side of above equality. By

using Young’s and Cauchy-Schwarz inequalities, we have
(3.12)

Fi0)=J0) [ [ ot = 9)du(o) [duts) - Aulw)) dsde+.10) ([ gls)ds) [ au?
<J0) [ [ gt = 5) 1u(t)] | u(s) — du(e)| dsde +J0) ([ g()ds) 1Aul
<ol + O [ ([ gt - 5)18u(s) - Au(p)] ds) do

+00 ([ gto)as) a2
< ([ otas) T [ [ gtt — 5)180(s) — D) s

+ (5470 ([ ts)as) ) 1wl

< (54 70) ([ gt)ds) ) IAull + 2 (0) (970 2 (1)

Inserting (3.12) into (3.11), we obtain the required proof. O

Lemma 3.3. Let G(t) be the function defined by

(3.13) G(t) = /Q /Ot gt — s)ult) [u(s) — u(t)] dsdz.

satisfies the estimate

(3.14) t
G'(t) < {5 25 (1 =17+ (1—1) (51 _ (/0 g(s)ds))] | Aul?

+ [25+ (ak(0) + 63) (/Otg(S)dS)] lull;
oF + 52,

+ </0tg(s)ds> [215 +20.7(0) + ==K (0) + (141)] (g0 Au) (1)

_ gig)qg (¢ o Au) (t) + (gk(O) + 5) (¢, )II5 -

Proof. We take the derivative of G(t) to get,

G'(t) = /Q /Ot g(t — s)u'(t) [u(s) — u(t)] dsdx — (/Ot g(s)ds> /Qu.u'dx

(3.15) .
[ [ gt = 9putt) [u(s) — u(t)] dsd,
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using the problem (2.12) we obtain

// (t—s) ds{ A2u+J()/O g(t — ) A2u(s)ds

—aK(t)u — BK(t)z dw—l—// (t—s)u — u(t)] dsdx

(1,
—</Otg ) A%+ )/ gt — $)A%u(s)ds
—aK(t)u — 5K( )z (1,1)] dz

:—/ Au/ (t — s) [Au(s) — Au(t)] dsdx
+ J(t /Q/O (t — s)Au(s ds/o g(t — s) [Au(s) — Au(t)] dsdx

(3.16) +/ /t "(t — s)u —u(t)] dsdzx + (/tg(s)ds)/g\Au]2d$
—aK(t / / (t—s) )] dsdx

= 5K [ 201) [ ot =) uls) — u(v)] dsdo
+ (/Ot g(s)ds) /Qu (aK(t)u+ K (t)z(t,1))dx

— J(t) (/Otg(s)ds) /QAU /Ot g(t — s)Au(s)dsdx
Syl

where G;(t), i = 1,8, denote the terms on the right side of the above equality in
order. Gy(t), Go(t) and G5(t) can be estimated as in [17] as follows, for any § > 0.
By Young’s and Cauchy-Schwartz, we obtain

(3.17) Gh(t) < 6|]Au\|2+415 (/t (5)ds) (g0 A (1)
and
1) <672t ( ) (1 Au()] + [Au(s) — Au(t)|)ds>2da:
( ) (|1 Au(s) — Ault )\)ds)de
(3.18) <8§J3(t) (/ ){ // (t — s) |Au(s) — Au(t)| dsdx

+2// (t — s) | Ault \dsdx}ué(/ ()ds)(goAu)(t)
< (2070 + 3= ) ([ o(6)ds) (9.0 ) () + 25 (1 = 1 Al
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For G3(t) and G5(t), we use Cauchy-Schwartz, Young’s and Poincare’s inequalities,
we get

(3.19)

<sluli+ 5 [ ([

<ol + s [ ([ =gt = syds) ([ 9t~ ) u(s) ~ (o) ds)
<ol + 52 ([ =g = s)as) ([ =g/t =) 1xuls) ~ Auv)ds) e
<ol = 5562 ([~ = 9)as) (5 0 ) (1)

Gult) < alully+ LD [ ([ g <t>>ds)2dx
<6 ||u ||§ a2k2 (/ ds)// (t —s) )? dsdzx

< d|ullz + anz (/ ds) 02// (t —s) (Au(s) — Au(t))” dsdz

<l + “2’;;?0)05 ([ s(s)ds) (g ) ()

Similarly, we have

B2 Goo <ol + 0 ([ s (g0 ) ()

32) Gl < ([ a)as) |(@k(0) + 0l + L0 0.

and

Gs(t) < — /Otgs ) {/Au/ (t —s) (Au(s) — Au(t)) dsdz
tg(s) N

/|Au\/ (t — 5) |Au(s) — Au(t)| dsda

J(t) | Aul;

o\&h

=)

c/;

B
\_/\_/\/

/Otg(s)ds
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< (/Otg(s)ds> J(t) [51 1Aul? + 4;/9 (/Otg(t — o) |Au(s) — Au(t)] ds)2dx]

NIRCORCIINT
(3.23)

Gu(®) < ( [/ glo)ds) 3(0) |61 1 a3 + W (90 8u) (1)

([ stsyas) a0
< (/Otg(s)ds) J(t) (51 _ /Otg(s)ds> |1 Au2 + W (9 0 Au)

< ([ ts1ds) (51— [ atoas) 10 N8l + = ([ at)ds) (9.0 ).

Summarizing these estimates with (3.16), we get (3.14). O

Lemma 3.4. Now, as in [7, Lemma 3.4], we introduce the folowing functional

1
(3.24) D(t) :/ e’QpT(t)/ 22(t, p)dxdp.
0 Q
Then
d—1

T1

(1)

71

(3.25) ¥'(t) <

—2T 1 —2T !
e 2t Dy + — llull; ~ +2) e [ |2t p)ll; dp.
T0 0

Proof. By differentiating, using the second equation in (2.12) and integrating by parts

over (0,1), we get
(3.26)

1 1
' (t) :—27'/(25)/0 pe_sz(t)/Qz2(t,p)dxdp—|—2/O e_sz(t)/Qz/(t,p)z(t,p)dxdp
1
:—27"(25)/ pe_Q’)T(t)/ 22(t, p)dxdp
0 Q

2 —2p7(t) / PTAY =2, (4 t. p)dxdp.
+ /0 e - 2,(t, p)z(t, p)dxdp

)
We denote by ®;(¢) the last term in the right-hand side of the equality above
1 T'(t)—1d
wi) = [ [ 7O g
1() 0 € Q T(t) dpz ( p) rap

1

—2p7(t pT'(t) =1 ,
_ [e o[ P, mdx]

0
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! 2 d —2p7(t pT/(t) —1
B /Q/O ‘ (t’p)dp (6 " 7(t) )dpdx
(3.27)

Dy(t) = [GQPT t)/ prt) =1 tp)dx] + 27 (¢ // pe= "W 2(t, p)dpda
0

) (Tﬂ )" 2) /Q/O e 70221, p)dpda

7)) =1 oy |.2 2 Loy, 2
< |2, + ) |22t,0)|
+ 27 (¢ // pe= 270 2t p)dpda — < 0 ) —2r(t) // (t, p)dpdx.
Since
e < e <727 <1 forallpe (0,1), t >0,
inserting (3.27) in (3.26), we obtain (3.25). O

Now, we are ready to prove the general decay result. For this, we define the
Lyapunov functional £ by

L(t) = NE(t) + J(t) (eF(t) + e/ G(t) + 20(t)).

Taking the derivative of £(t) with respect to ¢t we have
(3.28)

L) = NE'(t) + J(t) (eF'(t) + €1G'(t) + 628/ (£)) + J'(t) (eF () + e1G(¢) + e2D(t)).

By using (3.9), (3.13), (3.24), Young’s and Poincare’s inequalities, we obtain
(3.29)

T [F () + @ Gl0) + 0] < (= 5 ) 70 Il + e @ [l dp

€1

2 (/0 g(s)ds) C2J'(t) (g o Au) (t).

Exploiting (3.29) in (3.28) and using (3.7), (3.10), (3.14) and (H2), we arrive at
(3.30)

£t) < — J(b) l(e - 621) f]((f)) +e(a— B8 M

—a (26 + (k0)a+69) ([ o(s)as) o)) = 2]l

- [Nﬂj <§(1—d)—265> — J(0) (Zg+ (gk?( )+ ))] I2(1, D)1l

+ (1) []; —a i 5) 021 (g o Au) ()
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— J(t) [];[ </Otg(s)ds> (1) +e(l=90)—e (5 +26(1— l)z)

()
([ sts1as) 1) (e +-ersn) —er ([ ots)ds) )] s
-t e+ T [0l

+ [61 </Otg(s)ds> (215 +26.J%(0) + a 2256 E*(0) + 14g1l>

—1-614_5ZJ(0)—€21</;9( )ds )c;f](())] T(t) (g 0 Au) (1).

At this point, choose €1, €5 small enough such that 0 < €5 < €; < € and 9; sufficiently
small such that

cl—0)> e <5+25(1—z)2—(1—z> ((51—/0tg(s)ds>) — O (e1,8) > 0

and

o1, 62) = € (v — BO) M — & (25 + (k(0)a +3B) (/Otg(s)ds)> _2

To

Since (3.1), once €; and 0 are fixed, we want to choose N large enough such that

N]g <§(1—d)—255> —J(0)<4§+ 1@51&( )+5>> >0

N g(0)
?_1450

and
> 0.

For this, (3.30) becomes

e <= 30 |5 ([ atas) T8+ =) - 00| 180

2 J(t)
(3.31) -0 [ g tt _m] /01 .2}z o
[ 3 (Lo} i) 0 0-sm0
— J(t)[e = Co (er,e2)] |Jull;
where
(3.32)

B t 1 1 9 o® + 5%, 1-1 1-1
01—61</0 g(s)ds) (46+41(5+25J() o E*(0) + 10, +e I J(0).
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We then use (H2) and choose t; > t, so that there exist two positive constants Cy
and C3, such that (3.31) takes the form

(3.33) L'(t) < —=Cod (H)E(t) + C3J(t) (g o Au) (t), for all ¢t > t;.

On the other hand, as in [6], multiplying (3.33) by (¢) and using (3.31) and (3.2),
we have

()L (1) < =Cop(t)J (D) E(t) + Csip(1)J (1) (g 0 Au) ()
<

(3.34) —Oy(t) J(t)E(t) — C3J(t) (g 0 Au) (t)

< —Cou (I B) — 265 (0) — Cot ) ([ gt)ds ) a2

By (2.13), we have
(3.35)

(WL () +20B0)) < ~Cop (I BE) — Co () ([ gls)ds) 1 2u?

< —0(0)J(1) [02 o () tg(s)ds)] B(1).

From limt_,+oo% = 0, we can choose to > t; and then (3.35) gives

(3.36) (P(£)L(t) +205E(t)) < —C;w(t)J(t)E(t), for all ¢ > t,.

We define here, the function £ by

(3.37) L(t) = (t)L(t) + 2C3E(t).

By the definition of the functionals F'(t), G(t), ®(¢t) and E(t), since ¢'(t) < 0, we can
prove £(t) equivalent to E(t) and there exists a positive constant A such that

(3.38) () < M) J()L(t), for all £ > to.

By simple integration of 3.38 over [to, ] and use the equivalence of £(¢) and E(t) we
obtain t
E(t) < Ce T ftz w(t)J(t)dt, for all t > t,.

By the continuity and boundedness of E(t) in the interval [0, ¢s], we have

E(t) < Ce o Jo vOI0d - for all t > 0.
The proof of Theorem 3.1 is completed.

REFERENCES

[1] C. T. Abdallah, P. Dorato, J. Benites-Read and R. Byrne, Delayed positive feedback can stabilize
oscillatory system, American Control Conference, San Francisco, 1993, 3106-3107.

[2] S. V. C. Huang, An analysis of delay-dependent stability for ordinary and partial differential
equations with fized and distributed delays, STAM J. Sci. Comput. 25 (2004), 1608-1632.

[3] S. V.C. Huang, Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equa-
tions with delays, Front. Math. China 4 (2009), 63-87.



WELL-POSEDNESS AND DECAY ESTIMATES 281

[4] S. Y. C. Q. Xu and L. Li, Stabilization of the wave system with input delay in the boundary
control, ESAIM Control Optim. Calc. Var. 12 (2006), 770-785.

[5] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time
delays in their feedbacks, STAM J. Control Optim. 26 (1988), 697-713.

[6] B. Feng, General decay for a viscoelastic wave equation with strong time-dependent delay, Bound.
Value Probl. (2017), 1-11.

[7] M. Ferhat and A. Hakem, On convezity for energy decay rates of a viscoelastic wave equation
with a dynamic boundary and nonlinear delay term, Facta Univ. Ser. Math. Inform. 30 (2015),
67-87.

[8] E. Fridman and Y. Orlov, Exponential stability of linear distributed parameter systems with
time-varying delays, Automatica 45 (2009), 194—201.

9] R. R. H. Logemann and G. Weiss, Conditions for robustness and nonrobustness of the stability
of feedback systems with respect to small delays in the feedback loop, STAM J. Control Optim.
34 (1996), 572-600.

[10] W. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an
internal time-varying delay term, Taiwanese J. Math. 17 (2013), 2101-2115.

[11] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay
term in the boundary or internal feedbacks, STAM J. Control Optim. 45 (2006), 1561-1585.

[12] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal dis-
tributed delay, STAM J. Control Optim. 21 (2008), 9-10.

[13] S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent
delay, Electron. J. Differential Equations 41 (2011), 1-20.

[14] S. Nicaise, C. Pignotti and J. Valein, Ezponential stability of the wave equation with boundary
time-varying delay, Discrete Contin. Dyn. Syst. Ser. B 21 (2011), 693-722.

[15] R. Rebarber and S. Townley, Robustness with respect to delays for exponential stability of
distributed parameter systems, STAM J. Control Optim. 37 (1998), 230-244.

[16] J. B. S. Bernard and M. C. Mackey, Sufficient conditions for stability of linear differential
equations with distributed delay, Discrete Contin. Dyn. Syst. Ser. B 1(2) (2001), 233-256.

[17] S. A. Messaoudi, General decay of solutions of a weak viscoelastic equation, Arab. J. Sci. Eng.
36 (2011), 1569-1579.

[18] J. V. S. Nicaise and E. Fridman, Stability of the heat and of the wave equations with boundary
time-varying delays, Discrete Contin. Dyn. Syst. Ser. S (2009), 559-581.

[19] I. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Automat.
Control 25 (1980), 600-603.

[20] J. R. T. Caraballo and L. Shaikhet, Method of lyapunov functionals construction in stability of
delay evolution equations, J. Math. Anal. Appl. (2007), 1130-1145.

[21] T. X. Wang, Stability in abstract functional-differential equations. Part II. Applications, J. Math.
Anal. Appl. 186 (1994), 835-861.

[22] S. Wu and S. Gan, Analytical and numerical stability of neutral delay integro-differential equa-
tions and neutral delay partial differential equations, Comput. Math. Appl. 55 (2008), 2426-2443.

[23] Q. C. Zhong, Robust control of time-delay systems, Springer, London, 2006.



282 A. BRAIK, A. BENIANI, AND Y. MILOUDI

IDEPARTMENT MATHEMATICS,

UNIVERSITY OF HASSIB BENBOUALI-CHLEF,

LABORATORY OF FUNDAMENTAL AND APPLICABLE MATHEMATICS OF ORAN,
UNIVERSITY OF HASSIB BENBOUALI-CHLEF 02000, ALGERIA.

Email address: braik.aek@gmail.com

2DEPARTMENT MATHEMATICS,

CENTER UNIVERSITY OF BELHADJ BOUCHAIB,

LABORATORY ACEDP, CENTER UNIVERSITY OF BELHADJ BOUCHAIB -B.P. 284 RP,
AIN TEMOUCHENT 46000, ALGERIA.

Email address: a.beniani@yahoo.fr

3SDEPARTMENT MATHEMATICS,

UNIVERSITY OF ORAN]1 AHMED BEN BELLA,

LABORATORY OF FUNDAMENTAL AND APPLICABLE MATHEMATICS OF ORAN,

UNIVERSITY OF ORAN1 AHMED BEN BELLA, B.P 1524 EL. M’NAOUAR, ORAN 31000, ALGERIA.
Email address: yamina69@yahoo.fr



KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 46(2) (2022), PAGES 283-294.

RIESZ LACUNARY SEQUENCE SPACES OF FRACTIONAL
DIFFERENCE OPERATOR

KULDIP RAJ, KAVITA SAINI!, AND NEERU SAWHNEY?

ABSTRACT. In this paper, we intend to make new approach to introduce and study
some fractional difference sequence spaces by Riesz mean associated with infinite
matrix and a sequence of modulus functions over n -normed spaces. Various algebraic
and topological properties of these newly formed sequence spaces have been explored
and some inclusion relations concerning these spaces are also establish. Finally, we
make an effort to study the statistical convergence through fractional difference
operator.

1. INTRODUCTION AND PRELIMINARIES

Baliarsingh and Dutta [1] introduced fractional difference operators A7, A% A=7,
A and discussed some topological results among these operators. Meng and Mei
[17] introduced binomial fractional difference sequence spaces by clubbing binomial
matrix and fractional difference operator. Recently, Baliarsingh et al. [4] studied
approximation theorems and statistical convergence in fractional difference sequence
spaces. Also, double difference fractional order sequence spaces has been introduced
by Baliarsingh in [5]. In [23] Nayak et al. introduced some weighted mean fractional
difference sequence spaces. Kirigci and Kadak [15] proposed almost convergent frac-
tional order difference sequence spaces. The reader can refer to the textbooks Basar
[6] and Mursaleen [20] for relevant terminology and required details on the domain
of triangles, sequence spaces and related topics. By N, R and C we denote the sets
of natural, real and complex numbers respectively. Let w be the space of all real or

Key words and phrases. Fractional difference operator, gamma function, modulus function, Riesz
mean, lacunary sequences.

2010 Mathematics Subject Classification. Primary: 46A45, 46A35, 40A05.

DOIT 10.46793/KgJMat2202.283R

Received: September 20, 2019.

Accepted: November 25, 2019.

283



284 K. RAJ, K. SAINI, AND N. SAWHNEY

complex sequences. For a proper fraction 7, defined the fractional difference operators
A7 w — w, AD :w — w and their inverses are as follows:

(1.1) AV(z,) :i(—l)iM:cy+i,
(1.2) AD(z,) = g(—l)imx‘m,
(1.3) A7 (x,) = g(—l)imﬂnm,
(1.4) A (g,) = 2(—1)mm
We suppose that the series defined in (1.1)—(1.4) are convergent. For 4 = I, we have

. _ 1 1 1 5 7 .
® A2x, =Ty — 5Tpi1 — gTwt2 — 16%0+3 — TogLutd — 35gTuts — 775

1
b A_qu =Ty + %xu—kl + %xu—ﬂ + %xu—i-?) + %xu+4 + %xu—% Ty
; v v B ly—l 83V—2 165 v—3 12?8)5 v—4 2523 v—>5 )
e A2y, =g, + 1z, + STy2+ 15Tv—3 + TogTv—a T 355Tw—5+
For more details about fractional difference operator (see [3]). By I'(m), we denote
the Gamma function of a real number m and m ¢ {0, —1,—-2,—3,...}. Now, by the
definition it will be expressed as associate improper integral, i.e.,

(1.5) L(m) = /0 T etmlgy,

It is clear from (1.5) if m € N, the set of nonnegative integers, then I'(m + 1) = ml.
For this reason, Gamma function is considered to be a generalization of elementary
factorial function. Currently, we tend to state some properties of Gamma function
that are as follows:

(i) if m € N, then we have I'(m + 1) = m/;

(ii) if m € R\ {0,—1,—-2,-3,...}, then we have I'(m + 1) = mI'(m);

(iii) for particular cases, we have I'(1) =I'(2) = 1, I'(3) = 2!, I'(4) = 3!, ...

Let U and V' be two sequence spaces and A = (ap,) be an infinite matrix of real or
complex numbers. Then we say that A defines a matrix transformation from U into
V' if for every sequence x = (z,) € U, the sequence Ax = {A,(x)}, the A-transform
of x is in V, where

An(z) = apx,, neN.

The idea of n-normed spaces was introduced by Misiak [19]. Let X be a linear space
over the field R of reals of dimension d, where d > n > 2 and n € N. A real valued

function ||-,..., || on X™ satisfying the following four conditions:
(i) [|91,99,...,0,|| = 0 if and only if ¥, ¥, ..., ¥, are linearly dependent in X;
(ii) ||91, 2, ..., Uy]| is invariant under permutation;

(iii) ||f01, D2, ..., Ol = |B] ||V, Ve, ..., ¥,]|| for any B € R;
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(iv) ||9 4+, 02, ..., 0nl] < |9, 02, ..., 00| + ||, 02,...,0,|| is called an n-norm

on X and the pair (X, ||-,...,||) is called a n-normed space over the field R. For
more definition and results on n-normed spaces see [13,14,22]. A sequence (x,) in a
n-normed space (X, ||-,...,]|) is said to converge to some L € X if

lim |(x, — L,21,...,2,-1)|| =0, forevery z1,...,2,-1 € X.
A sequence (z,) in a n-normed space (X, ||-,...,||) is said to be Cauchy with respect

to the n-norm if

V’Einoo (z, — xp, 21, ..., 2n—1)|| =0, for every zy,..., 2,1 € X.
In a n-normed space (X, ||,...,-||), a sequence (z,) is said to be bounded if for a
positive constant M, ||(z,, 21, ..., 2p-1)]| < M for all zq,..., 2,1 € X.

Let (p,) be a sequence of positive real numbers and P, = p; + ps + - - - + p,, for all
n € N. Thus, the Riesz transformation of z = (z,) is defined as

(1.6) t, = ]in I;p,,xy.
If the sequence (t,) contains a finite limit L, then the sequence (z,) is said to be Riesz
convergent to L. The set of all Riesz convergent sequence is denoted by (R, FP,). Let
us note that if P, — co, as n — oco. Then Riesz mean is regular. If p, = 1 for every
natural number v in (1.6), then Riesz mean reduces to Cesaro mean of order one.
An increasing non-negative integer sequence 0 = (v,.) with vy = 0 and v, —v,,_; — 00
as r — oo is known as lacunary sequence. The intervals determined by 6 will be
denoted by I, = (v,_1,1,]. We write h, = v, —1,_1 and ¢, denotes the ratio ”7”1. The

v.

space of lacunary strongly convergence was defined by Freedman et al. [10] as follows:

1
Ny = {x = (x,) : Tlirgoh— > |z, — L| = 0 for some L}.

T I/GIT

The space Ny is a BK-space with the norm

ol =5 - 3 ko )

r VEIT

Let # = (v,) be a lacunary sequence and (p,) be a sequence of positive real numbers
such that Hr = ZVEIT DPv, PI/r = Zue(o,ur} Pv, PVr—l = ZVE(O,I/T_l] Pv, Qr = %7 PO = 0.
Clearly, H. = P, — P,,_, and the intervals determine by 6 and (p,) are denoted by
I'=(P, _,,P,] lf wetakep, =1forallv € N, then H,, P,., P, |, Q, and I/ reduce
to h,, v, v,_1, q, and I, respectively.

A function v : X — R is termed as paranorm, where X be a linear metric space,
if following conditions are satisfied

(i) ¥(x) >0 for all x € X;

(ii) Y(—z) = ¢(x) for all z € X

(iii) ¥z + y) < V(@) + U(y) for all 2,y € X
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(iv) if (A\,) is a sequence of scalars with A, = A\ asn — oo and (z,) is a sequence
of vectors with ¢ (x,, — x) — 0 as n — oo, then ¥(A\,x, — Ax) — 0 as n — 0.

A function § : [0,00) — [0,00) is said to be modulus function if

(i) f(v) = 0 if and only if v = 0;

(i) f(v1 +v2) < f(v1) + f(ve) for all vy, ve;

(iii) f is increasing;

(iv) f is continuous from the right at 0.

The modulus function may be bounded or unbounded. Later, modulus function
has been discussed in [21,25-27,29] and references therein.

Lemma 1.1. Consider f = (f,) be a sequence of modulus functions and 0 < p < 1.
Then for each x > p, we have

2f,(1)(x)
fu(x) < )

For a proper fraction 7, let f = (f,) be a sequence of modulus functions, ¢ = (g,)
be a bounded sequence of strictly positive real numbers, 1 = (1) be a sequence of
strictly positive real numbers and 6 be a lacunary sequence. In this paper we define
the following sequence spaces as follows:

[:Raeafa A(,?),/,L,p,q,fl, ||77”]0
1
:{x = (z,) €w: lim I > by [a,w {fy<

T vel,

- qv
,uVA(”)a:V, 2. ,zn_luﬂ } = O},
[Ra 07 fa Aﬁ/)a H, P, qv‘Aa ||7 ceey ||]
. 1
:{x = (z,) Ew: TILrgO I ;lpy [am/ {fv(

for some L > 0}

,u,,A(:*):BV —L,z,... ,zn_luﬂqu} =0,

and

[:R707f7A(:Y)7,u’7p7 Q7‘A7 H? vy H]OO

:{Q; = (x,) € w: suphlrr > [anu {ﬁ(

r I/EIT

/LZ,A(:Y).Z',,, 21, .. ,zanﬂqu} < oo}.

If the sequence x = () is convergent to the limit L in

[R797f7 A(:Y)Jlu’ap7Q7‘A7 H7 ey H]

we denote it by [R,0,§, AP u,p, ¢, A, |-, ..., ||]] = limz = L.
Suppose f(x) = x. Then above spaces reduces to [R,0, AP . p, q, A, |- ..., [l]o,
(R, 0, A9 11, p, ¢, A, -5l and [R, 0, AT, p, g, Al [l]oo

By taking ¢ = (g,) = 1 for all v € N, then we get the spaces [R,0,§, AT, u,p, A,
||'a ceey '||]07 [:Ra 9, fa Ah)?llﬂpaﬂa ||7 ceey ||] and [:Ra 6)’ fa A(7)7#7p7‘Aa ||7 ceey ||]oo
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Suppose p, = 1 for all v € N, then we get the spaces as follows:
[(‘ZGM fa Aﬁ)?ﬂ) qa'Aa ”7 R “]0
1
:{x =(z,) €Ew: rh—glo}T Z Ay {f,,(

r I/GIT

[eoﬂfa A(;{)#%qa"qa ”7 B H]

:{x = (z) ew: Tlggo; > [f(

e ADgy 2 ,zanﬂqy = O},

,LLZ,A(XY)x,, — L.z, ... ,zn_lHﬂqV = 0}

r VEIT
and
[697»7 fa Aﬁ/)a H, Q7‘A7 ||’ ey ||]OO
1 ~ qu
:{x = (z,) € w :sup " > an, fl,( TN T zanﬂ < oo}.
r T llel'r

Suppose (p,) be a sequence of positive numbers and P, = p; + ps + ... + p,. Now, we
define the sequence spaces as follows:

[jz7f7 A(ﬁ)nuup)QPAa ||77||]0
1
_{.I' = (:CV) cw: nh—golofn;py |:am/ {fu(
[R7f7 A(ﬁ)nuap)qw’qa ||77||]

_{x — (5,) €w: ggo;nilp” [an,, [f(

/L,,A(;/)l',,, 21, ,zanﬂqu} = O},

u,,Amw,, —L,z,... ,zanﬂqu} = O}
and

[R, faA(:Y)nuapacb‘A? H? sy H]OO

:{a: = (z,) € w: Sup;nlipy [anu {h(

n

,uVA(&)a:V, 2y ,Zn_luﬂqy} < oo}

If0<gq, <supgq, = D, C = max{1,2P71}. Then
(1.7) ey +d|" < C(len|™ + [d]|™),

for every natural number v and ¢,,d, € R.

The main purpose of this paper is to introduce and study some lacunary convergent
sequence spaces defined by Riesz mean via modulus functions over n—normed spaces.
We shall make an effort to study some interesting algebraic and topological properties
of concerning sequence spaces. Also, we examine some interrelations between these
sequence spaces.
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2. MAIN RESULTS

Theorem 2.1. Suppose f = (f,) be a sequence of modulus functions, AT be a
fractional difference operator, u = (u,) be a sequence of positive real numbers and
q = (q,) be a bounded sequence of positive real numbers. Then the sequence spaces

[*{Ra 97 fa A(:Y)7 Hy Py Q7‘A7 H7 SR '||]07 [:Rw 67 fa A(’~Y)7 Ky Py qv‘Aa ”7 SRS H] and [:Rw 07 f7 A(:Y)7 2
D, ¢, A, |-+l are linear spaces over the field R of real numbers.
PT’OOf. Consider z = (J}V)ay = (yl/) € [:R707f7 A(:Y)auvpa(b‘/la ||7 ceey ||]0 and aaﬁ € R.

Since f is additive and by using inequality (1.7), we have

; > [anu {h(

r VEIT

~ qu
AP, + )z -zt ])] ]

<i > [a {f <|a|’ ADg, 2 z H)}qq
_Hr Vejrpu nv | v Hy vy~ly oy ~n—1
1 - qv
+ F ZI: DPv |:am/ |:f1/<’6” /LVA(’Y)y,/, 21yt >Zn1H>:| :|
T vely
<C’i > {a [f ( ADg, » z H)]qy]
= Hr VEITpV nv | Jv Hv vy~ly -y An—1
1 - qv
+ CF Z Pv {anu [fu( MVA(FY)yw Zly ey Zn—lH)] ]
T vel,

—0 as r— oo.

Hence, [R,0,§,AD u,p,q, A, ||,...,-|]]o is a linear space. Similarly, we can prove
others. 0

Theorem 2.2. Let f = (f,) be a sequence of modulus functions and q¢ = (q,)
be a bounded sequence of strictly positive real numbers. Then the sequence space
[R, 0,5, AD p,p,q, A, ..., o is a paranormed space with respect to the paranorm

> [anu [ﬁ( AV, 2, anH)]q]>A14

I/EI’r

1
H,

¥(z) = sup (

where M = max{1,sup, ¢, < co}.

Proof. Consider z = (z,),y = (y,) € [R,0,§, A0 pu,p,q, Al ...,
(x) > 0 and ¢(0) = 0. Now, by using Minkowski’s inequality, we get

(; > {any [fy(

r Z/EIT

< (; > {aw [fy<

T vel,

lo. Clearly,

&~

- qu
TP, | )

1

1Az, 5, zn_lH)]quM
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) a7\ ¥
/’LVA(’Y)yZMZl?.“ 7Zn1H>] ]) .
r VEIT
Hence, ¢(z +y) < ¢(z) + ¥ (y).
Finally, we prove that the scalar multiplication is continuous. Let v be any complex
number. Then
i

where K, is a positive integer such that v < K. Now, let v — 0 for any fixed = with
(x) # 0. So, by using definition of § for |y| < 1, we have

1
T Z Pv [anu |:f1/(

H

r ZIEIT

+ (; > {any [b(

Y(yz) =sup (; > [any

r I/EI’r

- qv M D
MVA(v)ryxV,zl,... ’anu)] D < K’yMw(iU)y

~ qV
(2'1) MVA('Y),YIV7 21, ’Z"_IHH <e, forr> 7’0(6).

Since f is continuous and taking + small enough, for 1 < r < ry, we have

L > fy(

Hr l/elr
Now, by combining (2.1) and (2.2) implies that ¢ (yz) — 0 as v — 0. Thus, the space
(R, 0,5, A9 1, p,q, A, |- ...,|]]o is a paranormed space with respect to the paranorm

Y(-). O

Theorem 2.3. Suppose f = (f,) be a sequence of modulus functions, ¢ = (q,) be a
bounded sequence of positive real numbers, p = (u,) be a sequence of positive real

(2.2)

am/

u,,A(:Y)’y:EZ,, 21y zn1H>]qy < e

numbers and 0 = (v,) be a lacunary sequence such that limsup, @, < oo. Then
[32707f)A(’Y)7M7p7Q7‘A7 ||7 SR ||] - [:Ra fa A(’Y)ulﬁ)p7Q7‘Aa ||7 SR ||]
Proof. Let x = (z,) € [R,0,§, A% 1u,p,q, A, ||-,...,-||]. Then for every e > 0 there

exists ip such that for every i > i

23 A= S nfe[i(

v vel;

,u,,Aﬁ)a:V —L,z,... ,zn_luﬂqy} < €.

Then, there is some positive constant N such that
(2.4) A; <N, foralli.
Now, limsup, @, < co. Then, there exists some positive number K such that
(2.5) Q. <K, forallr>1.
Therefore, for v,_y <n < v, and by (2.3), (2.4) and (2.5), we have
; > Dol Spl S non

ny=1 Vr—1 p=1

1
:P (Zpuyu+zpuyu+"'+zpuyu+ Z DvYut

Vr—1 vel vels I/GIZ‘O VEIi0+1
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~--+Zpyyy>

I/EIT
1
=p (AiHy +AgHy + -+ Ay Hig + Ajp 1 Hyp o + - + A H,)
<o (Hi+ Hy o Hig) + 55— (Higt1 + Higa + -+ + Hy)
Vr—1 Vr—1
N
€
+ P (PViOJrl - PViO + PV10+2 - PVi0+1 et PVT- - PVT—I)
NPViO €<PVT - Pyio)
PVr—l PV'I‘—I

NPy
P Y

Vr—1

— 00 as r — 00,

r—1

. w
where y, = ay,, {f,,( /LVA(V)J:Z, —L,z1,. .., znlu)] . Now, P,
then we have = € [R, f,AD u,p,q, A, |-,...,-||]. This completes the proof. O

Corollary 2.1. Let (p,) be sequence of positive numbers. If 1 < liminf, @, <
limsup, @, < co. Then

[:R>97f>A(:Y)7,uap7Q7‘A7 H7 ) H] = [:R7f7A(:Y)7:uap7Q7‘A7 H7 sy m

Theorem 2.4. The following inclusions are true.
(2) If p, <1 for all v € N, then

[69T7f7A('~Y)7M7Q7‘A7 ”77”] C [32797f7A(:Y)7:u’7p7Q7‘A7 H77H]7
with [Cy, , §, Ay, q, A, |-, ..., ||| =limz = [R,§,0, AP u,p,q, A, |-, ..., ||| - limz =
L.
(17) If p, > 1 for allv € N and IZ—: be upper bounded. Then
[:R7 f797A(’~Y)7:u7paQ7'~A7 ||a - 7|H - [egr,f, A(ﬁ),u,q,ﬂ, ||7 . '7'”]7
with [:Ra f?97A(i/)7,uap7q7'A7 H7 B H]—hmx = [earafa Aw)?ﬂa‘]a"qa H7 BRI H]—hmx =
L.

Proof. (i) Let p, < 1 for all v € N, then H, < h, for all » € N. So, there exists a
constant M; such that 0 < M; < IZ—: < 1 for all r € N. Let z = (z,) be a sequence

which converges to the limit L in [Cq,,f, AD, u, q, A, |-, ..., -||]. Then for e > 0 we get
1 ~ qv
F Zpl/[am/ fu( /’LZ/A(’V)'IV _L; Zla'--azn—lH>:|

r VEIT

5> a1

T vel,

<

~ qv
Mo MVA(V)L, —L,z,. .., zn_lu)} )
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Now, we get the desired result by taking the limit as r — co.
(7) Tt is easy so we omit it. O

Theorem 2.5. Suppose f and § be two sequences of modulus functions. Then the
following z’nclusz’ons hold:

(Z) [IR f, 0 A g 7,u p>q7‘A ” |” - [fR,fOf/,Q,AW),JLL,p,q,A, ||77H]7

(it)  [R.§,6,A0), u,p,q, A, || 0 [RFL0,AD g Al C
Rof+7.0,A0) i, p. g, A, I - II]-
Proof. Suppose z = (z,) € [R,§,0, A9 . p,q, A, ||-,...,||]. For given € > 0, choose

pE (0 1) such that f,(t) < € for all 0 < ¢ < p. Then we have

gpy[any{hof ( ANz, — L, zl,...,zanﬂqq
:; > Py [anu l:fu 0 fl(

T qv
yelr[f{( )} <p

wa])] ]
o > Py [any {fu 0 fL(

i )]
)]

<(e)” 4 max {1, <2fyp(1 )} 7 Z; Pv [am,[ ( ANz, — Loz ,zn_lHﬂqy}.

MVA(:’)%/ —L,z,...,

o AM xy, —Lo21,. 201

MVA(:Y)'IV - Lazla ceey

,ul,A(:Y)m,,—LJl,...,zn,l

Thus, we get * = (2,) € [R,fof,0,AD u,p,q, A | ...,-||]. This completes the
proof.

(ii) Let

xr = (xl/) € [R7 f797 A(:Y)alu’ap7 q7‘A7 ”) ER) H] N [Ru f,797 A(ﬁ)muu]%QPAa ||7 EIR) ||]

Then, we have

qv
Zpulianu[fzx“f'f( @ I/_Lazla"'azn—l‘)] :|
7’1/6[
<C’7 Z]%[%w{fu( [1'1/ ( ) V_Lazla"' 7Zn—1H> qu}
7" el J
—|—C’ Zpl,[am,{f < APz, — L 21,...,zn_1‘>rq
TVEI

—0 as r— oo.

Therefore, (x,) € [R,§+§,0,A9 1, p,q, A, |- ...,|]]. This completes the proof. [
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3. STATISTICAL CONVERGENCE

The concept of statistical convergence was introduced independently by Fast [9] and
Steinhaus [28]. Statistical convergence has been further studied by Connor [8], Fridy
([11], [12]), Miller [18], Balcerzak et al. [2], Y. Q. Cao and Xiaofei Qu [7] and others.

In this section, we introduce some inclusion relation between Sig ;o AG) p.g.a|-...ll

and [:Ra f?ea Aﬁ)?“apa(bﬂ? H7 ceey H]

Definition 3.1. A sequence z = (z,) is said to be Sig;9 A
to L if for every € > 0,

psgs e[ COTIVETENE

1 -
gl e kA, — Lozl 2 g =0

In this case, we write Sig ;9 A%) —limz = Lorx, = LSig;0am

7/"/7p7Q7‘A7”'7~"7'|” 7U7P7Q7‘A7H'7”'7'|” :

Theorem 3.1. Let f = (§,) be a sequence of modulus functions and 0 < inf, ¢, < q, <

Supy q, = D < Q. Then [IR, f, 6, A(ﬁ), o, P, q,.A, H, e H] C S[R,fﬁ,A(W,u,p,q,A,H-,..‘,-H]'
Proof. Consider z = (x,) € [R,f,0,AD u,p,q,A,|-,...,-||] and given ¢ > 0. Then
for each z1,...,2,_1, we have
1 (~) qv
F Z Pv |:a7w |:fV< ,LLVA 7 Ty — La 21y 7Zn—1H>:| :|
T vel,
:i Z DPula f ( ol A(:}’)m — L 21 z 1H)— ]
H ) v |Any |Tv v v 3 Rly e e ey An—
T vel lu AMNz, — L2, 2n—1]|>e€ -
1 - 74qv
+ — Z Dy {am, [fy( MVA(7)$V —L,z1,..., 201 D }
T vel||u AM xy —L,21,. 20 1| <€ -
1 ) o
ZF Z Pv | Ony fV( ,LLVA(’Y):EV - L, Zlyee e, Zn—lH)
T vel||p ANz, —L,z1,.. 20 _1]|>€ -
1
> > [l(e)]"
HT I/GIT
1 : inf g, D
2o Z min { [f, (€)™, [f, ()] " |

Y

1 ~
>Ry € Lol ADz, = Loz, ozl 2 €}

where R = min { [}, (€)% [f, ()]} . Thus, (2,) € Sig 6.4 upgut ool O

Theorem 3.2. Let f = (f,) be a bounded sequence of modulus functions and ¢ = (q,) be
a bounded sequence of positive real numbers. If 0 < inf, q, < ¢, <sup,q, =D < o0,
then S[fR,fﬂ,A(’Y) 1N - [:Rv fv 07 A('Y)v s D, Q>A7 ||7 SR ||]

7#7171%/[7”'7---,
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Proof. Suppose = (2,) € Six;0.A® upg...J] and € > 0 be given. Since f is
bounded, then there exists an integer J such that f(z) < J for all z > 0, then we have

}2 V; Py [any {h(’ Az, — Loz, 7zn_1H>ru}

: i

= ) Py
+ hllr > Py [anu [fy (‘

a”lel

u,,Aﬁ)gc,, —L,z,..., zan)ru}

T Ve]"‘vIIMVA(&>$V_L7217"'7Zn—1 ”ZE
VGI’I‘:”/‘LVA(W)'%V7L7Z17""Z7L—1 ||<6

inf ¢ D
Z maX{J v J }
T vel||p ANz, —L,21,.y2n 1] >€

o, > o]

T vel lu AMNzy,— L2120 —1]| <€

/LVA(:Y)ZEV — L, z,... ,zn_lHﬂqu}

1
<

. 1 -
SmaX{Jquyu JD} F‘{V € ]'r :pu(H:uVA(V)SUV - La Rlyo e 7Zn—1||) Z 6}‘

+max {[f, ()™, [f, ()]}
Thus, (z,) € [R,f,0, AP u,p,q,A,],...,-||]. This completes the proof. O
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GENERALIZED AVERAGED GAUSSIAN FORMULAS FOR
CERTAIN WEIGHT FUNCTIONS

RADA M. MUTAVDZIC!

ABSTRACT. In this paper we analyze the generalized averaged Gaussian quadrature
formulas and the simplest truncated variant for one of them for some weight func-
tions on the interval [0, 1] considered by Milovanovié in [10]. We shall investigate
internality of these formulas for the equivalents of the Jacobi polynomials on this
interval and, in some special cases, show the existence of the Gauss-Kronrod quad-
rature formula. We also include some examples showing the corresponding error
estimates for some non-classical orthogonal polynomials.

1. INTRODUCTION

Consider the [-point Gauss quadrature formula

QF () =Y w )
on the interval [a, b] with respect to a weight function w for the integral

b
1) = [ f@yuw()da.
It has the highest possible degree of exactness, 2/ — 1, and
Q7 (p) =1(p), pe P’

where P™ denotes the space of polynomials of degree up to m.

Key words and phrases. Gauss quadrature, Gauss-Kronrod quadrature, averaged Gaussian formu-
las, truncations of averaged Gaussian formulas.
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To estimate the error (I —Q%)(f), one can use the difference (A — Q¥)(f), where A
is some quadrature formula of degree greater than 2/—1. Any such quadrature formula
A requires at least [ 4+ 1 additional nodes, so it will have at least 2/ + 1 nodes. One
classical way for constructing a (214 1)-node formula A for certain weight functions is
Gauss-Kronrod quadrature formula with degree of exactness at least 3[+1. The Gauss-
Kronrod formulas are of optimal degree, given that the nodes of G{) are included.
For some weight functions on compact intervals, such as the Legendre weight function
w(z) =1 on [—1,1], the Gauss-Kronrod formulas have real zeros inside the interval
that interlace with the nodes of the Gauss formula and have positive weights. The
polynomials of degree [+ 1 that vanish in the [+ 1 additional nodes are called Stieltjes
polynomials. However, a real Gauss-Kronrod extension of a Gauss formula may not
exist in general. This happens e.g. for the Gauss-Laguerre and Gauss-Hermite cases
(see [6]), as well as for the Jacobi weights w®?(t) = (1 —¢)*(1+t)? for min{a, 3} >0
and max{a, 5} > 5/2 if [ is large enough (see [13]).

Another approach (see [7,8,11]) is to construct a new quadrature formula @;4; for
the functional

() = [ i) - 008(f)

for a given 6 € R, and then use the stratified quadrature formulas Qo1 = 0Q% + Q144
to estimate the error QY. As a special case, Laurie in [8] introduced the anti-Gaussian
quadrature formula inl

(I-Qi)m) =-I-Qr)(p), peP'

The averaged formula

1
Qélﬂ = §(QzG + Qﬁu)’

also introduced in [8], is of the stratified type and has the degree of exactness at least
2[+1. In the case of the Laguerre and Hermite weight functions, more general averaged
formulas ﬁ((l—i—’y)@f +Qi,) with v > —1 were considered in [4]. Here v is chosen so
that the degree of exactness is as large as possible. These modified formulas, denoted
by Qgil, are also stratified extensions. Moreover, among all stratified extensions,
these are the unique formulas with the maximum degree of exactness.

Recently, by following the results in [12] which characterize positive quadrature
formulas, Spalevi¢ [16] introduced a new (2! + 1)-node quadrature formula, called
generalized averaged Gaussian quadrature formula. Here we denote it by Q3 41 In
the cases of Laguerre and Hermite weight functions, this formula turns out to coincide
with Q§%,. The generalized averaged Gaussian formula has a degree of exactness at
least 21 + 2, but for one class of weight functions the degree of exactness is 3n + 1
and hence the formula coincides with Gauss-Kronrod formula (see [18]). Further,
the truncated generalized averaged Gauss formulas Qéll::arl are introduced in [14],
where [ > 2 and r = 1,2,...,0l — 1. These formulas have fewer nodes and the same
degree of exactness as the generalized averaged Gauss formulas. Hence, the truncated
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generalized averaged Gauss formulas can be useful as substitutes when (real) Gauss-
Kronrod formula do not exist.

According to [8,16] and [1], the generalized averaged Gaussian formulas and trun-
cated variant for one of them have real nodes with positive weights, and only the two
outermost nodes may be exterior. Thus it remains to analyze when these formulas are
internal, i.e., all nodes are interior. This property is important when the integrand f
is defined only on the interval [a, b] and has also been investigated in [1,2] and [3].

In this paper, we are analyzing mentioned averaged formulas for some weight func-
tions recently considered by Milovanovi¢ in [10]. In two of these cases the orthogonal
polynomials can be expressed in terms of the Jacobi polynomials on [0, 1]. For these,
we will consider internality of the averaged formulas. In some simple cases of these
polynomials, the generalized averaged Gaussian formulas coincide with the Gauss-
Kronrod formula. The other two cases yield non-classical polynomials on [0, 1], and in
these cases we will give examples showing the error estimates for the Gauss formula.

2. THE EXTRACTION OF ORTHOGONAL POLYNOMIALS FROM GENERATING
FUNCTION FOR RECIPROCAL OF ODD NUMBERS

Let {m/(x)}2, be a sequence of monic polynomials orthogonal on [a, b] with respect
to the weight function w(x). These polynomials satisfy the three-term recurrence
relation

(2.1) T (z) = (v — a)m(z) — Bm-a(z), 1=0,1,...,

with mo(x) = 1 and 7_;(x) = 0. Here o and f3; are the recurrence coefficients and it
is convenient to define fy = [’ w(z)dz. The same recurrence coefficients occur in the
Jacobi continued fraction associated with the weight function w(x),

b w(t) dt ~ Bo B

a T —t r—og—2 — o —

F(x) =

which is known as the Stieltjes transform of the weight function w(z). The I-th
convergent of this continued fraction is

Bo Io Bi-1 UZ(I)

,
r—oqp—r—o— rT—o_ )

where o;(z) are the associated polynomials,
b —m(t
al(x):/ m@) = a1 o0
a T —t
These polynomials satisfy the same recurrence relation (2.1), where o = 0 and
o_1=—1 (see [9, pp. 111-114)).

Recently Shashikala [15] considered the series

1 1
T(z) =14+ = T
(x) +3x—|—5x+ +2l+1x
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Using the regular continued fraction,

1 4 ?
(2.2) Ta) = L 38 T6T. . Tl
' 1+ 1+ 1+ 1+ ’

and taking even and odd convergents, he obtained four sequences of monic orthogonal
polynomials {QZ(V)(Q:)}}’QO, v = 1,2,3,4. These polynomials satisfy the three-term
recurrence relation (2.1), with Q(()V)(x) =1 and le)(x) =z -3, QP (z) = o — 2,
Q) (z) =2 — +, 54)(30) = z — 3t. The first two polynomials, extracted from the
denominators of (2.2), are classical orthogonal polynomials (cf. [9, pp. 121-146]),

whereas the other two, extracted from the numerators, are non-classical polynomials.

Let us consider the polynomials pl(l)(a:) and pl@) (x) orthogonal on [0, 1] with respect
to the weight functions

(2.3) wW(z)=1—-2)Y2/yz and wP(z)=z(1l-2)*"Y2 A>-1/2

These polynomials satisfy the relation (2.1) with the recurrence coefficients (see [10])

wm_ 1 1y AP+4AN+ -1
TP T T a— (At 2+1)
(2.4) pO) VLA +1/2) (1 _ (2l — DA +1-1D(2A+2[-1)
‘ 0 P(A+1) LA+ 20— 2)(A 20— 1)2(A +21)
and
2) 3 @  3A+4AP+ 4N+ 1)1
ao = o al = ,
2(A+2) 20+ 20)(N+20+2)
(2.5) p@ _ VILT(A+1/2) @ _ 1R DDA+ 2 - 1)
‘ 0 2r(A+2) Poa 2t = DN F 202N+ 21+ 1)

Actually, these polynomials are the (monic) Jacobi polynomials transformed to the
interval [0, 1], with parameters (A — 1/2,F1/2), i.e.,

1 o102 1 o=
26)  p@) = gl -1, w0 = e 20 - ),
(a,8)

where p, are the monic Jacobi polynomials with respect to the weight function
(1 —2)%(1 + z)” on the interval [—1,1] (see [9, pp. 131-140]).

Milovanovié in [10] showed that, for A = 1/2, the coefficients (2.4) and (2.5) reduce
to the ones for the polynomials Q) (z) and Q®(z), respectively.

Let al(a’ﬁ ) and bl(a”B ) be the recurrence coefficients for the monic Jacobi polynomials
pl(a’ﬁ). It is easy to see that for [ > 1 we have
(A-1/2,~1/2) (A-1/2,~1/2)
a +1 1 b
2.7 M _ 2 pv_ o T
(2.7) a 5 Y 1 5
) al()\fl/2,1/2) 1 pA-1/21/2)

2
(2.8) a”) = 5 b=
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We may also be interested in the cases A = 0 and A = 1. Let Tj(z), U(x), Vi(z)
and W;(z) be the Chebyshev polynomials of first, second, third and fourth kinds,
respectively. For A = 0 we get pl(l)(a:) = 57;(2x — 1) and pl(2)(x) = 57 Vi(2z — 1).
Similarly, for A = 1 we obtain pl(l)(a:) = 2 Wi(2z — 1) and pl(z) () = 2U(2z — 1). In
each of these cases, the generalized averaged Gaussian quadrature formula coincides
with the Gauss-Kronrod quadrature formula.

It was also proved in [10] that the polynomials Q) (x) and Q¥ (x) are orthogonal
on [0, 1] with respect to the weight functions

2 2
29) w®(z) = 2V and w®(z) = 2va ,
4(tanh™ y/x)? + 72 4(tanh™" y/x)? + 72
respectively. The corresponding orthogonal polynomials are non-classical on [0, 1] and
their respective recurrence coefficients are

(3) 4 (3) 8124+ 120+ 3 (3) (2[)2(2l + 1)2

T M T Wrn@i+s) T @ — 1)@+ 124+ 3)
and
S 1wy 81% 4 201 + 11 @ _ (24 1)*(2042)?
O o h T W43+ T (A4 1) (4 +3)2(4l +5)°

Later on we will present some examples showing the error estimates for the Gauss
quadrature with respect to these weights using the mentioned averaged formulas.

3. THE GENERALIZED AVERAGED GAUSSIAN FORMULA Q%

The generalized averaged Gaussian formula Q% ,, introduced in [8], is internal if
the smallest zero 7 and the largest zero 2] ; of the polynomial

m1(z) = pra(z) — Bip-a ()

belong to the interval [0,1] (see [8]). Here p;, 7 = 0,1,..., are the orthogonal
polynomials and 5;, j = 1,2,..., the recurrence coefficients corresponding to the
original weight function. The largest zero z7,; belongs to [0, 1] if and only if

pry1(1) > 1.

Bipi-1(1)
Similarly, the smallest zero xT belongs to [0, 1] if and only if

pi+1(0) >

Bipi-1(0)

Obviously, the previous conditions are equivalent to the conditions for the Jacobi
polynomials with the same parameters. Indeed, using (2.6)—(2.8), these conditions

reduce to (A—1/2,%1/2)
D1 i () >1
A—1/2,71/2) (A—1/2,F1/2 -
Bz( [y )Pz(—l [ )(x)
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where € {—1,1}. Hence, Theorem 3 from [7] can be applied.
For the weight function w"(z), the conditions (18) and (19) from [7] reduce to

AP+ (8l — DA+ (82— 1)A >0 and A —\>0,

respectively. The first condition obviously holds for A > 0, but not for A € (—1/2,0)
and sufficiently large [ (the leading coefficient in [ in the latter case is negative). The
second condition holds for A € (—1/2,0] U [1, c0).

Similarly, for the weight function w®(z), the conditions (18) and (19) from [7]
reduce to
2A% + (81 4+ 3N+ (82 +8/+1)A =0 and 8%+ (8A+8) + 3>+ 3\ >0,
respectively. The first condition holds for A > 0, but not for A € (—=1/2,0) and
sufficiently large [. The second condition holds for A > —1/2.

Thus we have the following result.

Theorem 3.1. The generalized averaged Gaussian formula Q% for the weight func-
tions wM (x) and w® (x) is internal when X\ > 1 and \ > 0, respectively.

4. THE GENERALIZED AVERACGED GAUSSIAN FORMULA Q35 ,

Consider the generalized averaged formula @3, introduced in [16]. This formula
is internal if the smallest zero 1 and the largest zero zf,, of the polynomial

Fiii(z) = piya () — Brpapi-1 ()

belong to the interval [0,1] (see [16]). Here p;, j = 0,1,..., are the orthogonal
polynomials and 3;, j = 2,3,..., the recurrence coefficients corresponding to the
original weight function. The largest zero 371111 belongs to [0, 1] if and only if

@) o
Bryipi-1(1)

Similarly, the smallest zero " belongs to [0, 1] if and only if

pl+1(0) >,
Bi1pi-1(0)

As for the formula Q% _,, the previous conditions reduce to ones for the correspond-
ing Jacobi polynomials. So we use Theorem 3.1 from [17].

For the weight function w)(z), the conditions (3.5) and (3.6) from [17] reduce to
2A° 4+ (81 +3)N2+ (8 —=5)A >0 and A—)\*>0.

The first condition holds for A > 0, but not for A € (—1/2,0) and sufficiently large .
On the other hand, the second condition holds for A € [0, 1].

For the weight function w®(z), the conditions (3.5) and (3.6) from [17] reduce to
2N+ (S8L4+ TN+ (82 +8—3)A >0 and 82+ (8A+8)+7TA— A > 0.
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The first condition obviously holds for A > 0, but not for A € (—1/2,0) and sufficiently
large [. The second condition holds for A € (—1/2,7), whereas for A > 7 we have

-2
VG A

82+ (BA+8) +TA =X >82+8\ — A >0, forl> 1

Hence, we have the following result.

Theorem 4.1. The generalized averaged Gaussian formula Q3 41 for the weight func-

tion wV(z) is internal when \ € [0,1]. In the case of the weight function w® (x), that

V6—2
=2

formula is internal when X € [0,7). For A\ > 7, internality occurs when | >

Now let us consider the cases A = 0 and A = 1, i.e., the polynomials 57;(2z — 1),
5 Vi(2z — 1), 3Wi(2z — 1) and 5 U;(2z — 1). We have a; = v and 3, = 8 > 0 for
[l > r, where r = 2 for the polynomial %Tl(Qx — 1) and r = 1 for the polynomials
7 Vi(2z — 1), 3 W;(22 — 1) and 5;U;(2z — 1). Hence, Theorem 3.1 from [18] can be
applied and we have the following result.

Theorem 4.2. For the weight function w(z) with A =0 and | > 3, the quadrature
formulas Q% and Q3 have the algebraic degree of exactness at least 31+ 1. Hence,
these formulas coincide with the corresponding Gauss-Kronrod quadrature formula and
the monic polynomials w1 = Fji1 coincide with the corresponding monic Stieltjes
polynomials. The same results hold for the the weight function w®(z), when A = 1
and weight function w® (z) when A € {0,1} and [ > 1.

Using the previous fact, one has a simple method to compute the Gauss-Kronrod
quadrature formula. The computation of the latter formula is more complicated in
general (see [5]).

5. TRUNCATED GENERALIZED AVERAGED (GAUSSIAN FORMULAS

Let us consider the truncated generalized averaged Gaussian formulas Qélljll

(I > 2) introduced in [14] for r = [ — 1. This formula is internal if the smallest zero 7
and the largest zero 7,5 of the polynomial

(5.1) tiye(r) = (2 — 1) prya (v) = Brapi(x)
belong to the interval [0,1] (see [1]). Here p;, j = 2,3,..., are the orthogonal
polynomials and «;, 7 = 1,2,..., and §;, j = 3,4,..., the recurrence coefficients

corresponding to the original weight function.

Obviously, in the case of the weight functions given in (2.3), the polynomials (5.1)
have two outermost zeros inside the interval [0, 1] if and only if the corresponding
polynomials for the Jacobi weight functions with the same parameters have two
outermost zeros inside the interval [—1, 1]. Using Theorem 3.4 from [1], we have that
internality holds for [ > 3.
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Let [ = 2. In the case of the weight function w()(z), the conditions (3.12) and
(3.13) from [1] reduce to

XN 19A 2 1050+ 45 >0 and  20* 4+ 25X3 + 81X 4+ 63\ + 45 > 0.

The first condition holds for A € [A\1, As], where A\; & —0.46943 and Ay & 23.54142 are
the largest two zeros of the polynomial —z3 4 1922 + 1052 +45. The second condition
holds for A > —1/2.

Similarly, for the weight function w®(z), this formula is internal if and only if

A2 4802 + 260\ +216 >0 and 2X\* + 313 + 13672 + 188\ + 168 > 0.
These conditions hold for A > —1/2.

Theorem 5.1. The truncated generalized averaged Gaussian formula for the weight
function wM (x) is internal when X > —1/2 and | > 3. For | = 2 internality holds
when X € [A1, Aa], where A\; = —0.46943 and Ay =~ 23.54142 are the largest two zeros
of the polynomial —x® + 1922 + 1052 +45. For the weight function w® (z) this formula
is internal when \ > —1/2.

6. NUMERICAL RESULTS

FExample 6.1. We illustrate Theorems 3.1, 4.1 and 5.1 through some computations in
the case of the weight function w® for some values of [ and A. In the considered
cases, the corresponding averaged formulas are internal.

Table 1 displays the values of the nodes 27 and 27, for the formula Q% .

Table 2 displays the values of the nodes z{ and zf,, for the formula Q5. Note
that for A = 1 this formula coincides with the previous one, and also with the Gauss-
Kronrod quadrature formula (see Theorem 4.2).

Table 3 displays the values of the nodes 7, and ;.5 for the formula Ql(-l&-)?

Table 1: The values of 2T and 27, for w® and some [ and .

Al x] T
0.5 5 1.84918630347802(—2) 9.93315648803352(—1)
10 5.32426071493249(—3) 9.98085997371715(—1)
15 2.48373203616388(—3) 9.99108179903793(—1)
20 1.43168514326074(—3) 9.99486155846300(—1)
1 5 1.70370868554659(—2) 9.82962913144534(—1)
10 5.08927905953363(—3) 9.94910720940466(—1)
15 2.40763666390156(—3) 9.97592363336098(—1)
20 1.39810140940993(—3) 9.98601898590590(—1)
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Table 2: The values of 21" and zf; for w® and some [ and .

F F
A X Li41

0.5 5 1.85485046684558 9.93270563061661
10 5.32892821283948 9.98082336550544
15 2.48474645373049 9.99107386760496
20 1.43202203935648 9.99485892741121

(—2) (=
(—3) (—
(—3) (=
(=3) (=
15 1.70370868554659(—2) 9.82962913144534(—
(=3) (=
(=3) (=
(=3) (=

10 5.08927905953363 9.94910720940466
15 2.40763666390156 9.97592363336098

2
3
3
3
2
3
3
20 1.39810140940993(—3) 9.98601898590590

1)
1)
1)
1)
1)
1)
1)
1)

Table 3: The values of 71 and 7,45 for w® and some [ and \.

A l T1 Ti+2

0.5 5 4.05074383379349(—2) 9.76146311190531(—1)
10 1.50966909367400(—2) 9.91134246875255(—1)

15 7.80960712033176(—3) 9.95418464436467(—1)

20 4.75922686471797(—3) 9.97209253940011(—1)
(—2) (—1)

(~2) (-1)

(-3) (-1)

(-3) (-1)

15 3.80602337443566 9.61939766255643
10 1.45290912869740 9.85470908713026
15 7.59612349389597 9.92403876506104
20 4.65702698183462 9.95342973018165

Erample 6.2. We find the outermost nodes in the case of the weight function w(®) for
the formula Q% with A = 0.5 (Table 4) and for the formula Q5 ; with A = —0.2
(Table 5) for some [. Here these formulas have exterior node(s).

Table 4: The values of 27 and 27, for w®, A = 0.5 and some .

Al x] T
0.5 5 —1.03583467673738(—5) 9.91983668229218(—1)
10 —7.09110640371522(—7) 9.97894782375997(—1)
15 —1.44570778097492(—7) 9.99048751274800(—1)
20 —4.64835853269242(—8) 9.99460470025489(—1)
Table 5: The values of 24" and zf; for w®, A = —0.2 and some .

F F
A l T T

—0.2 5 —4.13229856738924(—5) 1.00140197341566

10 —2.37471751038235(—6) 1.00033417984287
15 —4.59266799101858(—7) 1.00014681665572
(=7)

20 —1.43959966526914 1.00008217031089
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Fzxample 6.3. Consider the integral

1) = [ syt

where f(t) = 999.1°€10(E+) ¢ = 1076 and w(t) = w®(¢). In Table 6, the estimation
of the errors |I(f) — QY(f)| for Gauss quadrature formula are obtained by means

of the quantities Erq = [Q%,,(f) — QF(f)], Ese = 1Q5,1(f) — QF ()| and Ersq =

|Ql(i)2(f) — QF(f)], for some [ and . As in the previous example, Q% ., = Q5. fo
A = 1. The sharp errors are denoted by Error.

Table 6: The estimates Erqg, Esq, Ersq and the sharp errors Error for some [ and .

A l ELG ESG ETSG Error

0.5 5 1.5198(—10) 1.5192(—10) 1.4323(—10) 1.5219(—10)
10 4.3114(—13) 4.3106(—13) 3.4123(—13) 4.3190(—13)

15 1.3219(—14) 1.3218(—14) 8.7665(—15) 1.3244(—14)

20 1.0866(—15) 1.0865(—15) 6.1493(—16) 1.0886(—15)

1 5 1.1092(—10) 1.1092(—10) 1.0410(—10) 1.1108(—10)
10 3.5846(—13) 3.5846(—13) 2.8175(—13) 3.5911(—13)

15 1.1599(—14) 1.1599(—14) 7.6384(—15) 1.1621(—14)

)

20 9.8190(—16) 9.8190(—16) 5.5211(—16) 9.8378(—16)

Note that the integrand in the previous example is not defined for some nodes in
Example 6.2.

Example 6.4. The next table displays the same estimations as in the previous example
for the integrand f(t) = e%*sin 10t and the weight function w(t) = w®(¢) from
(2.9). Note that for the weight functions given in (2.9), the corresponding orthogonal
polynomials are non-classical. Thus there is no analytical expression for the orthogonal
polynomials. Consequently, there is no general claim for internality of the averaged
formulas.

Table 7: The estimates Erq, Fsq, Erse and the sharp errors Error for some [.
l ELG ESG ETSG Error

5 3.4273(—3) 3.4276(—3) 3.4209(—3) 3.4276(—3)
10 8.4359(—11) 8.4359(—11) 8.4340(—11) 8.4359(—11)
15 9.6941(—21) 9.6941(—21) 9.6934(—21) 9.6941(—21)
20 3.1798(—32) 3.1798(—32) 3.1797(—32) 3.1798(—32)
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(m,n)-HYPERFILTERS IN ORDERED SEMIHYPERGROUPS
AHSAN MAHBOOB! AND NOOR MOHAMMAD KHAN?

ABSTRACT. First, we generalize concepts of left hyperfilters, right hyperfilters
and hyperfilters of an ordered semihypergroup by introducing concepts of left-m-
hyperfilters, right-n-hyperfilters and (m,n)-hyperfilters of an ordered semihyper-
group. Then, some properties of these generalized hyperfilters have been stud-
ied. Finally, left-m-hyperfilters (resp. right-n-hyperfilters, (m,n)-hyperfilters) of
(m,0)-regular (resp. (0,n)-regular, (m,n)-regular) ordered semihypergroups char-
acterize in terms of their completely prime generalized (m,0)-hyperideals (resp.
(0, n)-hyperideals, (m, n)-hyperideals).

1. INTRODUCTION AND PRELIMINARIES

In 1934, Marty [12] introduced the concept of hyperstructure and defined the notion
of hypergroup. The beauty of hyperstructure is that in hyperstructures multiplication
of two elements is a set while in classical algebraic structures, the multiplication of
two elements is an element which is the main reason for the researcher to attract
towards such type of algebraic structures. Thus, the notion of algebraic hyperstruc-
tures is a generalization of classical notion of algebraic structures. The concept of
ordered semihypergroup is a generalization of the concept of ordered semigroup and
was introduced by Heidari and Davvaz in [6]. Thereafter it was studied by several au-
thors. Davvaz et al. [1,2,6,13] studied some properties of hyperideals, bi-hyperideals
and quasi-hyperideals in ordered semihypergroups. The notion of (m,n)-ideals of
semigroups was introduced by Lajos [10] as a generalization of the notion of bi-ideals
in semigroups. In [9], authors introduced the notion of an (m,n)-quasi-hyperideal

Key words and phrases. Ordered semihypergroups, left-m-hyperfilters, right-n-hyperfilters, (m, n)-
hyperfilters.
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and proved different characterizations of (m, n)-quasi-hyperideals and minimal (m, n)-
quasi-hyperideals in semihypergroups.

In 1987, Kehayopulu [7] introduced the concept of filter on poe-semigroups. Later
on in 1990, Kehayopulu [8] defined the relation N on po-semigroup. The study of
left (right)-filter on po-semigroup initiated by S. K. Lee and S. S. Lee [11], and gave
some characterizations of the left(right)-filter of po-semigroup in term of the right(left)
prime ideals. In 2015, the notion of left hyperfilters, right hyperfilters and hyperfilters
of ordered semihypergroups introduced by Tang et al. [14] and also investigated
their related properties and characterized hyperfilters in terms of completely prime
hyperideals in ordered semihypergroups. In 2016, Omidi and Davvaz [13] defined
an equivalence relation N as follows. Let H be an ordered semihypergroup. Then,
N = {(a,b) € Hx H | N(a) = N(b)}, where N(a) denote the hyperfiter of H
generated by an element a of H, and also shown that N is the intersection of the
semilattice equivalence relation op = {(a,b) € H x H | a,b € P or a,b ¢ P}, where
P is completely prime hyperideal of H. Recently, Gu and Tang [4] constructed a
strongly ordered regular equivalence relation on an ordered semihypergroup by using
the concept of hyperfilter and shown that the corresponding quotient structure is a
semilattice.

A hyperoperation on a non-empty set H is a map o : H x H — P*(H), where
P*(H) = P(H) \ {0} (the set of all non-empty subsets of H). In such case, the H
is called a hypergroupoid. Let H be a hypergroupoid, A and B be any non-empty
subsets of H. Then

AoB= U aob.

acA,beB
We shall write, in whatever follows, A o z instead of A o {z} and z o A instead
of {z} o A for any x € H. Also, for simplicity, throughout the paper, we denote
aoao---oa (m-copies of a) with @™ for all « € H and m € Z. Moreover, the
hypergroupoid H is called a semihypergroup if, for all z,y, z € H,

(roy)oz==xo0(yoz),

ie.,

U uoz= U zow.
ucxroy veEYyoz

A non-empty subset T of semihypergroup H is called a subsemihypergroup of H if
ToTCT.

Definition 1.1 ([14]). Let H be a non-empty set. The triplet (H,o, <) is called
an ordered semihypergroup if (H,o) is a semihypergroup and (H, <) is a partially
ordered set such that

r<y=>xoz<yozx and zox < zoy,

for all z,y,z € H. Here, if A and B are non-empty subsets of H, then we say that
A < B if for every a € A there exists b € B such that a < b.
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Let H be an ordered semihypergroup. For a non-empty subset T" of H, we denote
(T] ={z € H |z <a for some a € T}.

Definition 1.2. Let H be an ordered semihypergroup and A be a non-empty subset
of H. Then, A is called a left (resp. right) hyperideal [2] of H if

(1) Ho AC A (resp. Ao H C A);
(2) (A] € A.
A is called hyperideal of H if A is both left hyperideal and right hyperideal of H.

A subsemihypergroup F' of ordered semihypergroup H is called left hyperflter (resp.
right hyperfilter) [14] if for any a,b € H, aobN F # () implies a € F (resp. b € F)
and for any a € F,b € H such that a < b implies b € F. If F is both left-hyperfiter
and right-hyperfiter of H, then F' is said to be hyperfilter of H.

An ordered semihypergroup H is called regular (left regular, right regular) [2] if for
ecachr e Hyxe(xoHox] (re€(Hoxox],z € (zxoxoH).

Lemma 1.1 ([2]). Let H be an ordered semihypergroup and A, B be any non-empty
subsets of H. Then the following hold:

(1) Ac(A];

(2) AC B (A C (B];
(3) (Ao (B] < (Ao BJ;
(4) ((AJo (B]] = (Ao BJ;
(5) (AJU(B] = (AU B].

Throughout this paper, H always denotes an ordered semihypergroup and m,n
denote positive integers, unless otherwise specified.

2. MAIN RESULTS

Definition 2.1. A subsemihypergroup F' of ordered semihypergroup H is called
left-m-hyperfilter (resp. right-n-hyperfilter) if

(1) for any a,b € S, aobN F # () implies a™ C F (resp. b" C F);
(2) a€e F,a<be Simpliesb € F.

If F'is both left-m-hyperfilter and right-n-hyperfilter of H, then F' is called (m,n)-
hyperfilter.

Remark 2.1. In particular for m = 1 (resp. n = 1), F' is a left hyperfilter (resp.
right hyperfilter). Clearly, each left hyperfilter (resp. right hyperfilter, hyperfilter) of
an ordered semihypergroup H is left-m-hyperfilter (resp. right-n-hyperfilter, (m,n)-
hyperfilter) for each positive integers m and n. Indeed let F' be any hyperfilter of H
and a,b € H such that aobN F # (). As F is left hyperfilter, a € F. Since F is
left hyperfilter, F' is subsemihypergroup, and thus a™ C F. Therefore, the concept of
a left-m-hyperfilter (resp. right-n-hyperfilter, (m, n)-hyperfilter) is the generalization
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of a left hyperfilter (resp. right hyperfilter, hyperfilter). Conversely, each left-m-
hyperfilter (resp. right-n-hyperfilter, (m, n)-hyperfilter) need not be a left hyperfilter
(resp. right hyperfilter, hyperfilter).

Ezample 2.1. Let H = {a,b,c,d}. Define hyperoperation o and order < on H as
follows:
a b c d

{a,0} {a,b} {a,b} {a b}
{a,0} {a,b} {a,b} {a,b},
{a,0} {a,b} {a,b} {b}
{a,0} {a,0} {0}  {c}
<:={(a,a), (b,b),(c,c), (d,d),(a,b)}.
Then H is an ordered semihypergroup. Let F' = {a,b}. Since docNF # () but d ¢ F
while d® C F. Therefore, F is a left-3-hyperfilter of H but not a left hyperfilter of H.

QL O Q|0

Lemma 2.1. Let H be an ordered semihypergroup and T be a subsemihypergroup
of H. Then, for every left-m-hyperfilter (resp. right-n-hyperfilter) F of H, either
FNOT =0 or FNOT is a left-m-hyperfilter (resp. right-n-hyperfilter) of T

Proof. Let FNT # () and z,y € FNT. Then, z,y € F,T. As F and T are left-m-
hyperfilter and subsemihypergroup of H, respectively. So zoy C Fand xoy C T.
Thus, x oy C FNT. Next, we assume that for any x,y € T, zoyN(FNT) # (.
Therefore, x oy N F # (). Since z,y € H and F is left-m-hyperfilter of H, 2™ C F.
Also ™ C T. Thus, 2™ C (FNT). Finally, take an element x € TNF and y € T such
that © < y. As F is left-m-hyperfilter of H and F 5 x <y € H, y € F. Therefore,
y € TNF. Hence, FFNT is a left-m-hyperfilter of T'. U

Corollary 2.1. Let H be an ordered semihypergroup and T be a subsemihypergroup
of H. Then for every (m,n)-hyperfilter F of H, either FNT =0 or FNT is an
(m, n)-hyperfilter of T.

Lemma 2.2. Let H be an ordered semihypergroup and {F; | i € I} be a family of
left-m-hyperfilters (resp. right-n-hyperfilters) of H. If Mic; Fi # 0, then Nic; F; is a
left-m-hyperfilter (resp. right-n-hyperfilter) of H.

Proof. Assume that N;c; F; # 0 and x,y € Nie; F;. Then x,y € F; for each i € I. As
for each i € I, F; is left-m-hyperfilter, x o y C F;. Therefore, z oy C ;c; F;. Thus,
Nicr Fi is a subsemihypergroup of H. Now, let x,y € H and xoy C ;¢ F;. Therefore,
xoy C F; for each i € I. As F}’s are left-m-hyperfilters, ™ C F; for each ¢ € I. So,
2™ C Ner Fi. Now take an element a € ;7 F; and b € H such that a < b. Then
a € F; for each ¢ € I. Since F;’s are left-m-hyperfilters, b € N;c; F;. Hence, N;cr F; is
a left-m-hyperfilter. O

Corollary 2.2. Let H be an ordered semihypergroup and {F; | i € I} be a family of
(m,n)-hyperfilters of H. If Nier Fi # 0, then Nicr F; is an (m,n)-hyperfilter of H.
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Remark 2.2. Union of any family of left-m-hyperfilters (resp. right-n-hyperfilters,
(m, n)-hyperfilters) of ordered semihypergroup H is not a left-m-hyperfilter (resp.
right-n-hyperfilter, (m, n)-hyperfilter) in general.

Following example shows that in general union of any family of left-m-hyperfilters
(resp. right-n-hyperfilters, (m,n)-hyperfilters) of ordered semihypergroup H is not a
left-m-hyperfilter (resp. right-n-hyperfilter, (m, n)-hyperfilter).

Ezample 2.2. Let H = {a,b,c,d,e}. Define hyperoperation o and an order < on H
as follows:

a b c d e

{oy {0} {d} {d} {d

{oy {b} {d} A{d} {d}

{d} {d}y {c,e} {d} {ce}”’

{d} {d} {d} A{d} {d}

{d} {d} {c,e} {d} {ce}

O QU O Q|0

<= {(a,a), (b,b), (¢, ), (d, d), (a,b), (¢, e)}.

Then H is an ordered semihypergroup. Here F} = {b} is left-2-hyperfilter because
FioF, C Fyand aoan F; # () implies a®> C F,. Thus F is left-2-hyperfilter but not
a hyperfilter. Similarly, F;, = {c, e} is left-2-hyperfilter. Now F} U Fy = {b, ¢, e}, since
boc={d} € F; U F,, therefore F} U F is not a subsemihypergroup of H, and hence
F1 UF5 is not a left-2-hyperfilter.

Let (H,e,<p) and (7,0, <7) be two ordered semihypergroups. Under the coordi-
natewise multiplication

(hi,t1) © (ho,t2) = hy ® hy X t1 0 1o,

where (s1,t1), (s2,t2) € H x T the cartesian product H x T of H and T forms a
semihypergroup. Define a partial order < on H x T by (hq,t1) < (hg, o) if and only
if hi <g he and t; <p to, where (h17t1>, (hg,tg) € HxT. Then, (H X T, <, S) is an
ordered semihypergroup [4].

Lemma 2.3. Let (H,o,<y) and (T,o,<r) be two ordered semihypergroups, F; and
Fy be two left-m-hyperfilter (resp. right-n-hyperfilter) of H and T, respectively. Then
Fy x Fy is a left-m-hyperfilter (resp. right-n-hyperfilter) of H x T.

Proof. Let (a,b), (c,d) € Fyx Fy. Now (a,b)o(c,d) = aecxbod. Asa,c € Fi,b,d € F,
and F, F, are left-m-hyperfilters of H and T respectively, a e ¢ C Fy,bod C F5.
Therefore, aecxbod C I} x Fy, it follows that Fi x F; is a subsemihypergroup of Hy x H,.
Next, we assume that (a,b), (¢,d) € H; x Hy such that (a,b) o (¢,d) N Fy x Fy # ).
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Now, we have
(a,b) o (c,d) N Fy X Fy # )
=aecxbodNFy x Fy #0
=aecNF, #0and bodNF, # ()
=a™ C F} and b™ C Fy
=(a™, ™) C F| X Fy
=(a,b)™ C F} X F.

Finally, we consider an element (a,b) € F; x Fy and (¢,d) € H x T such that
(a,b) < (c,d). Therefore, a <p c and b <r d. Since F; and F, are left-m-hyperfilters
of Hand T, ¢ € F} and d € F,. Thus, (¢,d) € F; X F,. Hence, F; X F, is a
left-m-hyperfilter of H x T O

Corollary 2.3. Let (H,e,<py) and (T,0,<7) be two ordered semihypergroups, F}
and Fy be two (m,n)-hyperfilters of H and T, respectively. Then Fy X Fy is an
(m,n)-hyperfilter of H x T.

Definition 2.2 ([9]). Let H be an ordered semihypergroup, m and n be the positive
integers. Then, a subsemihypergroup A of H is called an (m,n)-hyperideal of H if
(1) Ao Ho A™ C A and
@) (] C A

Dually, we may define (m, 0)-hyperideal and (0, n)-hyperideal of H.

If we drop the subsemihypergroup condition from the above definition, then A is
called a generalized (m,n)-hyperideal of H. Similarly, a generalized (m, 0)-hyperideal
and a generalized (0, n)-hyperideal are defined.

Remark 2.3. Tt is easy to check that each (m,n)-hyperideal (resp. (m,0)-hyperideal,
(0,n)-hyperideal) of any ordered semihypergroup is always a generalized (m,n)-
hyperideal (resp. (m,0)-hyerideal, (0,n)-hyperideal), but the converse is not true
in general. This has been shown by the following example.

Ezample 2.3. Let H = {a,b,c,d}. Define hyperoperation o and order < on H as

follows:
o ‘ a b c d

alf{a} {a} {a}  {a}
b {a} {a} {a}  {a} .
c|{a}t {a} {a} {a,b}
d|{a} {a} {a,b} {a,b,c}

<:={(a,a), (b,b), (¢, ), (d,d), (a,b)}.
Then H is an ordered semihypergroup. The subset {a,d} of H is a generalized

(m,n)-hyperideal of H, for all integers m,n > 2, which is not an (m,n)-hyperideal
of H.
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A generalized (m,0)-hyperideal (resp. generalized (0,n)-hyperideal, generalized
(m, n)-hyperideal) A of an ordered semihypergroup H is called completely prime if
for any two elements a,b € H such that aobN A # (), then a € A or b € A.

Let H be an ordered semihypergroup and m,n positive integers. Then H is called
an (m,n)-regular (resp. (m,0)-regular, (0,n)-regular) if for any a € H there exists
x € H such that a < a™owxoa™ (resp. a < a™ox,a < zoa")ie., ifa € (a™o Hoa"|
(resp. a € (a™ o H],a € (H o a"]) equivalently for each non-empty subset A of H,
AC (AmoHo A" (resp. AC (A" o H|, AC (H o A"]).

Lemma 2.4. Let H be an (m,0)-regular (resp. (0,n)-regular) ordered semihypergroup
and F be a non-empty subset of H. Then the following statements are equivalent:
(1) F is left-m-hyperfilter (resp. right-n-hyperfilter) of H;
(2) H\ F =0 or H\ F is completely prime generalized (m,0)-hyperideal ((0,n)
-hyperideal) of H, where H \ F' is the complement of F in H.

Proof. (1) = (2). Assume that H\ F # 0. If (H\ F)"o H C F, then H\ F C
(H\ F)™o H C F, which is a contradiction. Therefore, (H \ F))" o H C H \ F. Let
H>a<be H\F. If a € F, then, as F is a left-m-hyperfilter, we have b € F|
which is a contradiction. Thus, a € H \ F. To show that H \ F' is completely prime
(m,0)-hyperideal of H, let a,b € H,aobNH\F #(. Ifa€ Fandbe F,aobC F.
Thus, eithera € H\ Forbe H\ F.

(2) = (1). Let H \ F is completely prime generalized (m,0)-hyperideal of H. Let
a,b€ F. Ifaob C H\ F, by hypothesis a € H\ F or b € H\ F, a contradiction.
Thus a o b C F it follows that F' is subsemihypergroup. Now consider for any
a,b € HlaobNF # (. If @™ C H \ F, then since H is (m,0)-regular there exist
1,89 € H such that aob < a™osj0b< (a™)"o0sy080bC (H\F)"oH C H\F.
So, aob C H \ F, a contradiction. Therefore, a™ C F. Now take any element a € F’
and b € H such that a < b. If b € H\ F, then a € H \ F which is a contradiction.
Thus, b € F. Hence, F is a left-m-filter of H. O

Corollary 2.4. Let H be an (m,n)-regular ordered semihypergroup and F be a non-
empty subset of H. Then the following statements are equivalent:
(1) F is (m,n)-hyperfilter of H;
(2) H\ F =0 or H\ F is completely prime generalized (m,n)-hyperideal of H,
where H \ F is the complement of F in H.

Lemma 2.5. An (m,0)-reqular ((0,n)-reqular) ordered semihypergroup H does not
contain proper left-m-hyperfilters (right-n-hyperfilters) if and only if H does not con-
tain proper completely prime generalized (m,0)-hyperideals ((0,n)-hyperideals).

Proof. Assume that H does not contain a proper left-m-hyperfilter. Let A be any
proper completely prime generalized (m, 0)-hyperideal of H. Then, by Lemma 2.4,
H \ A is proper left-m-hyperfilter of H which is a contradiction. Therefore, H does
not contain any left-m-hyperfilter.
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Conversely, assume that H does not contain proper completely prime (m, 0)-hyper-
ideals. Let F' be any proper left-m-hyperfilter of H. Then by Lemma 2.4, H \ F'is a
proper completely prime generalized (m,0)-hyperideal of H which is a contradiction.
Hence, H does not contain proper left-m-hyperfilters. O

Corollary 2.5. An (m,n)-reqular ordered semihypergroup H does not contain proper
(m,n)-hyperfilters if and only if H does not contain proper completely prime general-
ized (m, n)-hyperideals.

Let (H,o,<p) and (T,%,<r) be two ordered semihypergroups. A mapping ¢ :
H — T is called a normal homomorphism if for each a,b € H, ¢(x oy) = ¢p(x) x ¢(y)
and ¢ is isotone, i.e., for each x,y € H, x <y y implies ¢(x) <7 ¢(y). Further, ¢ is
called reverse isotone if for all x,y € H, ¢(z) <r ¢(y) implies z <pg y.

Lemma 2.6. Let (H,*,<p) and (T,o,<r) be two ordered semihypergroups and ¢ :
H — T normal homomorphism. If F' a left-m-hyperfilter (right-n-hyperfilter) of T,
then ¢~ (F) is a left-m-hyperfilter (right-n-hyperfilter) of H.

Proof. First, we show that ¢~ '(F) is a subsemihypergroup of H. Let a,b € ¢! (F),
then ¢(a), d(b) € F. As ¢ is normal homomorphism and F is left-m-hyperfilter of T
dlaxb) =¢(a)od(b) CF. SoaxbC ¢ '(F). Next, take any a,b € H such that

(axb)N¢  (F)#£ 0= plaxb) N E # ()
S (6(a) 0 G(B) N F £ 0
= ($la)" C F
= 6(a) 0 Bla) o0 (a) C F
= dlaxax---*a) CF
= a" C ¢ (F).

If a € ¢~ '(F),b € H such that a <z b, then ¢(a) € F and ¢(a) <7 ¢(b). Therefore,
¢(b) € F implies b € ¢~ (F). Hence, ¢~ (F) is an left-m-hyperfilter of H. O

Corollary 2.6. Let (H,*,<py) and (T,o,<r) be two ordered semihypergroups and
¢ : H — T normal homomorphism. If F' an (m,n)-hyperfilter of T, then ¢=*(F) is
an (m,n)-hyperfilter of H.

3. CONCLUSION

When we take m = 1 = n, in all results of this paper, then we obtain all results
for left hyperfilters, right hyprerfilters and hyperfilters in an ordered semihypergroup
and some characterizations of regular ordered semihypergroups which is the main
application of results presented in this paper. Also we can extend all the results of
this paper in the setting of ordered I'-semihypergroup.
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4. PROBLEMS

(1) Under what condition a left-m-hyperfilter (right-n-hyperfilter, (m, n)-hyperfilter)
of an ordered semihypergroup coincides with a left hyperfilter (right hyperfilter, hy-
perfilter)?

(2) Under what conditions arbitrary union of left-m-hyperfilters (right-n-hyperfilters,
(m, n)-hyperfilters) of an ordered semihypergroup is a left-m-hyperfilter (right-n-
hyperfilter, (m, n)-hyperfilter)?
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EXISTENCE THEOREMS FOR A COUPLED SYSTEM OF
NONLINEAR MULTI-TERM FRACTIONAL DIFFERENTIAL
EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

BASHIR AHMAD!, AHMED ALSAEDI!, NAJLA ALGHAMDI?!,
AND SOTIRIS K. NTOUYAS?1

ABSTRACT. We discuss the existence and uniqueness of solutions for a coupled
system of nonlinear multi-term fractional differential equations complemented with
coupled nonlocal boundary conditions by applying the methods of modern func-
tional analysis. An example illustrating the uniqueness result is presented. Some
interesting observations are also described.

1. INTRODUCTION

The topic of boundary value problems has been fascinating due to its extensive
applications in applied and technical sciences. In recent years, an overwhelming
interest has been shown in the study of fractional differential equations and inclusions
equipped with a variety of boundary conditions, for instance, see [1,2,25,26,28,30] and
the references cited therein. Coupled systems of fractional-order differential equations
also constitute an important area of investigation in view of occurrence of such systems
in disease models [9,10], chaos [31], ecology [16] and so forth. Some recent theoretical
work on the topic can be found in the articles [3,4,6,7,12,29].

On the other hand, coupled systems involving more than one fractional order
differential operators need to be addressed further to strengthen the hot topic of
boundary value problems. Examples include Bagley-Torvik [27] and Basset [20]

Key words and phrases. Coupled system, multi-term fractional differential equations, Caputo
fractional derivative, nonlocal boundary conditions, existence.
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equations. For some recent results on multi-term (sequential) fractional differential
equations, see [5,8,18,19].

The nonlocal nature of fractional order operators is the key factor in the popularity
of fractional calculus, which has extended the scope of the existing integer-order
models by providing their fractional order counterparts. Examples include fractional
reaction-diffusion systems [13], anomalous diffusion [15], chaotic neuron model [23],
groundwater hydrology [24] and so forth. For more details, we refer the reader to
texts [14,21,22].

Motivated by recent work on fractional order coupled systems, we introduce and
study a coupled system of multi-term fractional differential equations:

Lyu(t) = f(t,u(t),v(t), 0<r<l,
Lyv(t) = g(t,u(t),v(t)), 0<p<l1,

(1.1)

complemented with nonlocal multi-point coupled boundary conditions:

uw(0) =0, «'(0)=0, wu(l)= iaw(m),
12)
v(0) =0, 2'(0)=0, v(l)= Eﬁju(ﬁj)a ni <&, foralli,j,

where

L" = ag CDT+2 “+ ay C1)T+1 “+ ag CDT, Li = b2 Cl)er2 + bl chJrl + bOCDp’

aq

¢D1 is the Caputo-type fractional derivative of order ¢ = r,p, f,g € C([0, 1] x Rx R, R)
and a;,b;, i = 0,1,2, are real constants such that a? = 4agas, b3 = 4byb, with
as # 0 # by. The existence and uniqueness results for the problem (1.1)—(1.2) are
derived via Leray-Schauder alternative and Banach fixed point theorem respectively.

The rest of the paper is arranged as follows. In Section 2, we recall some preliminary
concepts of fractional calculus and present an auxiliary lemma. The main results and
an illustrative are presented in Section 3. The paper concludes with some interesting
observations.

2. BASIC RESULTS

We begin this section with some preliminary concepts of fractional calculus [17,32].

Definition 2.1. The Riemann-Liouville fractional integral of order o € R, a > 0, for
a locally integrable real-valued function y on —oo < a <t < b < 400 is defined by

1) = gy [ =9 x (s

where I is the Euler gamma function.



A COUPLED SYSTEM OF MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS 319

Definition 2.2. Let y, x™ € L'[a,b] for —0o < a <t < b < +00. The Riemann-
Liouville fractional derivative of x of order a € (m — 1, m|, m € N, is defined as

t
am 1 dm
Do — 7[17(1 _ 77/ _ \m—l-a
X () = 2oL x (1) T —a) dim J (t—s) X (s)ds,

while the Caputo fractional derivative x of order a € (m — 1, m], m € N, is defined by
(t—a) (m_1) ; (L=a)" !
1 X ) T |-

Remark 2.1. If x € C™]a, b, then the Caputo fractional derivative D2 of order o € R,
m—1<a<m,meN, is defined as

‘Dex(t) =Dy |x(t) —x(a) = X (a)

1 t

DI = BN 0) = g [ s (o)

['(m

In our analysis, I* and D® respectively denote Riemann-Liouville fractional integral
and Caputo fractional derivative, with a = 0.

Lemma 2.1 ([17]). For ¢ € C(0,1) N L(0,1) holds:
I“D(t)) = (t) —co—crt — - —cp g t"', t>0,n—1<a<n,
where ¢;, 1 =1,...,n— 1, are arbitrary constants.
Definition 2.3. A pair of functions u,v € C([0, 1], R) satisfying the equations (1.1)
and the boundary conditions (1.2) is called a solution of the problem (1.1)—(1.2),

where it is assumed that u, v possess the Caputo fractional derivative of order r + 2
and p + 2 respectively on (0, 1).

We need the following auxiliary lemma, which concerns the linear variant of problem
(1.1)—(1.2).
Lemma 2.2. Let a? —4asag = 0, b? —4dbyby = 0, as # 0, by # 0 and w, z € C([0, 1], R).
Then the solution (u,v) (in the sense of Definition 2.3) of the system of linear fractional
differential equations

(2.1) {mw@%ﬂwm 0<7r<1,

Lyv(t) =z(t), 0<p<l,
supplemented with the boundary conditions (1.2) is given by
1 st s (s —6)—1
t) =— t)———~—w(0)dbd
u() =, [ [} o0y w()dsds

£ () Fb“ [ et S s

_;2/01 /0 p)E=0" ;(i);_lw(e)deds]
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(2.2) + ot [“@/5}/ (&) F(r w(0)dods

_bz/o /0 C(l)amz(ﬁ)dﬁdsl
[ [T ”p_lz(e)deds

+ [ “@/57/ o16) T —u(O)sds
. / / oy (Q)dedsl

(23) () [Z“ / " / <<m>(5;(">flz<e>deds

b
et
where

o(k) =(k — s)em(”_s), (k)= (k— s)e”(”_s), k=t1,n and¢;,

and

1

(Q)deds] ,

_ _b t mt __ ,mt 1 n __ ,n 1
o a17 Y )\l(t):(me e+ 1)(ne™ —e" + )’
2@2 262 2
No(t) = (mte™ —e™ +1)(n 30 aime™ — 30 i + 30 O‘i)’
o
(2.4)
1 (t) _(nte™ —e™ 4 1)(me™ — ™ + 1)
1 - )
i
oty " = € DOn T e = T e + £y By)

I
p=(me™ —e™ +1)(ne" —e" + 1)

p P P h h h
—(TLZ a;me"™ — Zaiem + Zaz)(mz 5j€jem§j — Z ﬁjemgj + Z ﬁ]) 7& "
i=1 i=1 i=1 j=1 j=1 j=1

Proof. Applying the integral operators I” and I? respectively on the first and second
equations of (2.1) and then using Lemma 2.1, we get

(2.5) (aaD* + a1 D + ag)u(t) = /Ot (t;:r);_w(s)ds + 1,
(26) (62D2 + le + bo)U(t) = /Ot (t;(t;))p_l,Z(S)dS + dl,
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where ¢; and d; are arbitrary constants. Using the method of variation of parameters
to solve (2.5) and (2.6), we get

1 t s _ r—1
(2.7)  u(t) = ce™ + cgte™ + — [ (t — 5)e™E) / &ww)dG +c | ds
as Jo o I'(r)
and
s (s —0)P1

(2.8)  v(t) = doe™ + dyte™ + le /t(t — S)e”(t—S) (/0 )

where m and n are given by (2.4). Using u(0) = 0, «'(0) = 0 and v(0) = 0, v'(0) = 0 in
(2.7) and (2.8) respectively, we find that co = ¢3 = 0 and ds = d3 = 0 and consequently,
we have

(2.9)

u(t) =e, [mtema;nf: - 1] + ;2 [ [t = sjeme ( [ese ;(f};_ w(e)cw) ds] ,
(2.10)

o(t) =ds l”’fem[;;m“] 1912 V (t — 5)eni= (/Os“;(i);_lz(e)w) ds].

On the other hand, using the conditions u(1) = >7_; ayv(n;) and v(1) = 2?21 Biu(&;)
n (2.9) and (2.10), respectively, we get the system:

z(0)do + d1> ds,

(2.11) Ajcy — Bidy = Vi, —DBsci + Agdy = Vs,
where
me™ —e™ 41 ne* —e"+1
A = A= ——
1 a2m2 ) 2 b2n2 Y
g _Shac(ue — e 1) S By — e+ 1)
byn? ’ asm? ’
(2. 12)
i — 9\~ 1 — 9 1
Lin L /"/ o E="" o) d(‘)ds——/ / =" (0)dbds,
I'(p) I'(r)
B 5] e)r 1 9);) 1
V_J”// (&) w(0)dbds — // 6)d6ds.
7 T(r) by L(p) #(6)
Solving the system (2.11), we find that
o AV + BV, g - ByVi 4+ AV,
YT A A,— BBy ' AAy — BBy

Substituting the values of ¢; and d; in (2.9) and (2.10) respectively together with the
notations (2.12) leads to the solution (2.2) and (2.3). The converse can be proven by
direct computation. The proof is completed. O
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3. EXISTENCE AND UNIQUENESS RESULTS

Define by M = {u | v € C([0,1],R)} the Banach space endowed with norm ||u||x
= SuPye(pq] |u(t)]. Then the product space (M x M, || - [laxn) is a Banach space
equipped with the norm ||(u, v)||asn = ||ullve + [|v]|n for (u,v) € M x M.

In view of Lemma 2.2, we introduce an operator Q : M x M — M x M as

Qu, v)(t) == (Q(u, v)(t), (u, v)(1)),

where
w0t = [ [ ot 6. u(0).v(6) o
a0 |5 [ [ gL (0.0, o))t
oS o) e asa
h . J s s — r—1
#ul0)|[Z2 [ (o) LD 16, u0). 0000 a0

1 ftogs (s — @)t
—62/0 /0 g(1)r<mg(9,u(9),v(0))deds]

and
Qo)) =, [ [ <0 a6, u(0).v(6) dos
h . i ors S — r—1
4—;u(t)l§:f;;ﬁgtlf / ¢(fj)(l,é2)jTG,u(H),v(G))des
—bt/ol /OSC(l)(SI:(i))pg(@,u(@),v(&))dﬁds}
2= i [T [0 G
+m@[®A&AQMF@9@MQW@MWS

—;/01 /08¢(1)<S;<i);_f(e,u(e),v(e))deds].

For the sake of brevity, we set the following notations:

(3.1)
1 - M : .
A, = L+ M) |me™ — €™ + 1]+ A 3 Bi&, [méjem™s — ™ +1
O PR e (14 A1)|me e + 1|+ szIﬁjfj |mé;e emsi 4+ 1|,
(3.2)

1 P
Ag=—— (147 "1+ P lnmge™ — e 41| b
2 “Mmmp+w{<+uome A+ o Y cin e e @
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(3.3)
A . 3‘ X ; p n n
_ OO n __ n 1 i ; nn, __  nmn; 1 7
1 \bzlnzl“(er 1) { 2|7”L6 e+ |+ 1;0477 ’nne e + ‘}
(3.4)
1 h . .
A = I m _ ,m 1 ~ e omé&; _ mé&; 1
* 7 Jagm?T(r + 1) fia|me™ — " + |+”1;BJ§J |m&;e e+ 1] ¢,

At = max [A(B)], Ao = mmax [A2()], = mmax [ (B)], iz = mmax |2 (t)].

Our first result, dealing with the existence of solutions for the problem (1.1)-(1.2), is
based on Leray-Schauder alternative.

Lemma 3.1. (Leray-Schauder alternative [11]). Let F : € — & be a completely
continuous operator and that A(F) ={xz € € |z =vF(z) for some 0 < v < 1}. Then
either the set A(F) is unbounded or F has at least one fixed point.

Theorem 3.1. Assume that
(H,) there exist real constants 0;,7y; >0, i = 1,2, and §g > 0, o > 0 such that

| f(t,ur, u2)| < 0o + b1 |ua| + daus)
and
lg(t, ur,u2)| < vo + mlur| +2lue|,  forallu; € R, i=1,2.
(Hy) max {wy,ws} < 1, where
(3.5) wi = 01(A1 + Ag) +71(Ag + Ay),  wa=0(A1 4+ As) +72(Ay + Ay),
Ay, Ay, Ay, Ay are respectively given by (3.1), (3.2), (3.3) and (3.4).
Then the problem (1.1)~(1.2) has at least one solution on [0, 1].

Proof. We first show that the operator Q : M x M — M x M is completely continuous.
The operators Q; and Qs are continuous since the functions f and g are continuous,
and thus the operator Q is continuous. Let 2 C M x M be a bounded set. Then
|f(t,u(t),v(t)] < Ly, |g(t,u(t),v(t))] < Ly for all (u,v) € Q, where Ly and Lo are
positive constants. In consequence for any (u,v) € Q, we get

191 (u, v)|lac = sup_[Q(u, v)(2)]
te[0,1]

< L
ag|m?2T(r + 1)

{(1 + A1) |me™ — ™+ 1|
N h
o D Bi& Im&ie™ — e+ 1
j=1

Lo ~ ~ & _ , }
+ < Nne" —e" + 1|+ A a;n¥|Inne™m — e + 1
i [+ g candlo |
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(36) :LlAl + L2A1.
Similarly, it can be shown that
(37) ||Q2(U, U)HM S LQAQ + LlAQ.

From (3.6) and (3.7), we deduce that Q; and Q, are uniformly bounded, and hence
the operator Q is uniformly bounded.

Next, we show that Q is equicontinuous. Let t1,t5 € [0, 1], with ¢; < t5. Then we
have

IQl(u v)(t2) = Qi (u, v)(t)]

<l {/ /|¢> ty) — |( d9ds+/tl / 6(ts)] 97« ldeds}

L o _
+\)\1(t2)—>\1(t1)!{ 2%‘10‘ /"/ =2 ggas

|a2| / 16(1) deds}

+ Dalt) — Aolt) {” [ [ 1oen =2 aoas

I'(r)
\bzl/ / (1) des}

Ly
tT’ o tT‘ t — 1 m(t1—t2) o m(t1—t2) 1
] {< [~ tplm(ts — ta)ema—) — gnit=t) 4 1]
+tmt e — ™ 1|}
L2 Zz a;T); . nn;
+\)\1(t2)—>\1(t1)’{w(1p+)’ nne"" — " + 1

+ Ly
|ag|m?2T(r + 1)
£ Dalta) = Maltr) {

Ly
a2 (p 1 1)

independently of (u,v) € 2. Analogously, we have

|me™ — e™ + 1|}

h
12] I/BJ 7

e o™M& 4]
‘ | 21—\(7,,_|_1)|| 5]6 € + |

]ne"—e*l\H—H) as top—t; — 0,

|QQ(U,, U)(tg) — Qg(u,v)(t1)| —0 as ty—t; — O,

independently of (u,v) € 2. Hence, the operators Q; and Q, are equicontinuous and
thus the operator Q is equicontinuous. By Arzeld-Ascoli’s theorem, we deduce that
the operator Q is completely continuous.
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Lastly, we consider a set ©(Q) = {(u,v) € M x M | (u,v) = vQ(u,v); 0 <v < 1}
and show that it is bounded. Let (u,v) € ©. Then (u,v) = vQ(u,v). For any ¢ € [0, 1],
we have u(t) = vQ; (u,v)(t), v(t) = vQa(u,v)(t). Thus,

|u(t)] =|vQu (u, v) (1) < Qi (u, v)(1)]

<o L o S o). oo lasas
+ o) |2 7b21“@/”1/ )= lg(0,ut6). o0 s

L'(p)

o [ o 2 0.u0), <>>|ded5]
+ | A (t) l j= 153/ / () (s—6 1|f(9’u(9)’v(9))|d9d8

Ibz\/ / \ (6, u(0), v (0 ))\déds]

(50 + (51‘U| —+ (52‘U|
= |ag|m?T'(r 4+ 1)

{(1+X1)|mem — ™+ 1

h
X2 Y 3,€] e — e+ 1|}

j=1

|b2|n*I'(p + 1) i=1
=(do + 01ful + da|v]) A1 + (Y0 + 7 lul + 1elv])As,
which, on taking the norm for ¢ € [0, 1], yields

R o
(0 + y1[u] + 2v]) {)\g\ne" — "+ 1|4+ A D>l |nae™ — ™ 4 1]}

(3:8)  Mullwe < (do + dullullae + daf[vlla) A1 + (30 + el + v2llvlle) Ax

Likewise, we can obtain

(3-9) vl < (vo + mllullae +72llvllve) Az + (30 + G flullae + d2f|v]lae) Az
From (3.8) and (3.9), we find that

[[wllae + [[v]lae <6o(A1 + Az) + v0(Ag + Ay)
+ [[ullae (01(A1 + A2) + 71 (As + Ay))
+ [[vllac (92(A1 + Az) +12(A2 + A1)
(3.10) <wo + max {wr, wa || (u, v)[aexan,
where wy = 0g(A1 + Az) + (A2 + A1) and wy, wy are given by (3.5).

In view of the definition [|(u,v)||nxnm = ||l + [|v]|ac, (3.10) leads to
wo

< .
[[(2; V) [laexn < 1 — max {wy,ws}
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Consequently, the set ©(Q) is bounded. By Lemma 3.1, the operator Q has at least
one fixed point. Therefore, the problem (1.1)—(1.2) has at least one solution on [0, 1],
which finish the proof. O

In the following result, we prove the uniqueness of solutions for the problem at
hand by means of Banach fixed point theorem.

Theorem 3.2. Assume that:
(Hj3) for allt € [0,1] and u;,v; € R, i = 1,2, there exist positive constants ¢, and lo
such that
|f(taU17U2) - f(t701702)| < 51(|U1 - U1| + |U2 - U2|)7
|9(t, w1, uz) — g(t,v1,v2)| < Lo(fur — vif + Juz — val).
Then there ezists a unique solution for the problem (1.1)=(1.2) on [0, 1] if
where Ay, Ay, Ay, Ay are given by (3.1)—(3.4).
Proof. Let us consider a closed ball B« = {(u,v) € M x M | ||(u,v)||axae < 7*} and
show that QB,« C B,+, where
M(A;+ A My(Ay + A
> (A1 + Ag) + My(Ay + Ay) M, = sup |f(t,0,0)],
I —0(AL+ Ag) — la(Ag + Ay) t€[0,1]

M = sup |g<t7070)|
t€0,1]

For (u,v) € B,, t € [0, 1], using (Hs), we get
|f(tu(t),v(t)] < |f(tult),v(t)) — f(£,0,0) + f(¢,0,0)]
< b (Ju@®)] + [o(®)]) + My
(3.12) < U1 ([lullae + [[v]lae) + M
< || (u, ) || + My < br* + M.

*

In a similar manner, we can find that
(3.13) lg(t,u(t),v(t))] < lor* + M.
Then, using (3.12) and (3.13), we obtain
11 (w; v)|lne = sup [ (u, v)(2)]
t€(0,1]

o L A w u S
Ste[oﬁ]{\aﬂ/ / o(t) £(0,u(0), v(0))|dod
+ A (1)) [Zz 1%/ / () 5;89);| (0. u(0), v(0))|dds

1

|a2|// z (0, u(0),v(0))|dbds
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+ a(t) l = 15]/ / (&) e =0 10,(6), 0(0))|dbds
o [ B 0.0, <»uw4}

smewmmmr+M1[ [ et
|a2] s ALED ‘r(rsﬂ)d
ﬁ%|2@/) ”M&“rf D

_l_
|)\1 p us . sP

E 7 M / _ n("h s) 7d

+( 2||(U U)HMXM+ 2 [ |b2 z:l 0 |(TI 8)6 |F(p+1) s

[A2(2)] / -5y 5" ]
+ (1 —s9)e" 7| ——<ds
b o 1R
G (s, v) e + M
lag|m?T(r + 1)

{(1 + A1) |me™ — ™ + 1|

h
Ao Y B [mEjem — e 4 1|}
=1

(£l (1, )l + M)
[ban?T(p + 1)

{:\2|ne” —e" + 1]

P
+ A Y e — e 4 1|}

i=1
(314) §(€17“* + Ml)Al + (627’* -+ Mg)Al.
Similarly, we have
(3.15) 190 (1, )¢ < (€7 + Ma)Ag + (17 + My)As.

From the inequalities (3.14) and (3.15), we get
19w, v) [[aexae = [1Q1(w, v) lne + [[Q2(w, v)[|ae < 77,
which implies that OB, C B,«. Now we will prove that the operator Q is a contraction.
For u;,v; € By, 1 = 1,2, and for each ¢ € [0, 1], we have
Q1 (w1, v1) — Q1 (uz2,v2) |l

= sup (01 (un,02)(t) = Q1 (uz. v2) )
t€[0,1]
9 r—1
< sup {w [ [ 60 5 156,010),010) ~ 70, ua(6), (6 s

te[0,1]
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i —1
+ ) [ =10 / / B0, (0), v1(8)) — g(0, us(6), vs(6))|dds

S _ r 1
|a2\ / / (1) 5—1f(0,u1(0),v1(0)) —f(9,uz(9),vg(9))|d9d51

A2 (t) [ = 153/ /MJ @ O 0, 01(9),02(0)) — (6, ua(6), va(6))|d0ds
(s — P!
|b2|/ / C) =gy l9 (0, ur(0), 01(9))—9(9,@(9),@2(9))|d9d5”

)em(t=s) uyp — v1| + |ug — v2|)ds
< [ 1= gereo) (H)ul 1+ Juz = val)

bad i /m o n(mi—s) sP B B
+ [A1(2)] [’bg‘ ; |(ni — s)e ’F(p+1)(|u1 vi| + [ug — v2|)ds

1 o
= 1— m(l—s) B B p :|
*aat y 10— 9 gy =l o = el

h_ B: &
e ey TR

(lur — v1] + |ug — va])ds

laz] (7“—i— 1)

S Sp
|b2|/ |(1—s)e™ n(1- | e Jr1)(|ul—1)1|—|-|uz—vg|)ds}

1

SWM{O + A1) |me™ —e™ + 1]

h
+ X0 BiE ImE e™ — e 4 1}<|u1 — v1] + |ug — vy)
j=1

Lo

. X n__n 1
+|bzrn2r<p+1>{ 2fne” =41l

p
+ A1y i |nmie — e 1\}(|u1 —v1| + [uz — v2l)
=1

<(O1 Ay 4 L) ([Jur — ual|v + [|vr — vallm)-

Similarly, one can find that

Qo (1, v1) — Qa(ug, v2)|lwe = sup [Qa(ur, v1)(t) — Qa(ug, va2)(t)]

t€[0,1]
< (Ag + G Az)([lur — ualne + [lor — vaflw)-
Thus,
1Q(u1, v1) — Q(uz, v2)||aixac
=[1Q1 (w1, v1) — Qu(ua, v2) e + [[Q2(ur, v1) — Qa(uz, v2)|Ine
< (G(A1+Ag) + 6(As + A1) ([Jur — uallae + [Jor — valne)
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which, in view of the assumption (3.11), implies that Q is a contraction. Consequently,
by Banach’s contraction mapping principle, the operator Q has a unique fixed point,
which is indeed the unique solution of the problem (1.1)—(1.2). This completes the
proof. O

FExample 3.1. Consider the coupled system of multi-term fractional differential equa-
tions:

(2 epr2/5 4 4¢P/ 49 CD2/5) u(t) = t21+ = {cosu(t) + |v(t)| 4+ tan~' t},
(3.16) 17/7 10/7 3/7 t lo(t)]?
D 2D ‘D t) = )+ ———2— 4+ sint
( * * ) v t+6{|u()|+1+!v(t)|3+sm}’

equipped with boundary conditions
(3.17) { w(0) =0, «(0)=0, wu(l)=20(1/6)4+v(1/5)+ 2v(1/4),
' v(0) =0, 2(0)=0, wo(1)=23u(1/2)+u(3/4).

Here, g =2/5, p=3/7,m =1/6, 12 =1/5,n3 =1/4, & = 1/2, & = 3/4, ag = 2,
OZQZ]_, ()é3:2, 51:3, ﬁgzl,a%—llagaozo, b%—4b260:0and

ft,u(t),v(t)) = \/1521+725{COS u(t) + [v(t)| + tan~* ¢}

and

T t+6 + o(t)
Clearly ¢, = 1/5 and ¢, = 1/6 as

[t ua(8), v1(t) = f(E, ua(t), va(1))] < ;{Iul(t) — ua(t)] + |vi(t) = va(D)[},

l9(t, ua (t), v1(£)) — g, ua(t), va(t))] < é{lul(t) — up(t)] + [0a (1) — 0a(2)[}-

Using the given data, we find that A; ~ 0.71336, Ay ~ 1.3058, A; ~ 0.70297, and
Ay = 1.2161. Further

Hence we deduce by Theorem 3.2 that the problem (3.16)—(3.17) has a unique solution
on [0, 1].

g(t,u(t),v(t)) ! {|u(t)| + 1|U(t)||3 + sin t} :

4. CONCLUSIONS

We have analyzed a fully coupled boundary value problem of nonlinear multi-term
fractional differential equations and nonlocal multi-point boundary conditions under
the assumption that a? = 4agasy, b3 = 4byby. Though the tools of fixed point theory
employed in the present analysis are the standard ones, yet their exposition to the
problem at hand enhances the scope of the literature on fractional order boundary
value problems. The cases a? > 4agay, b3 > 4boby and a3 < 4agay, b3 < 4byby for
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the problem (1.1)—(1.2) can be handled in a manner similar to that of a? = 4agas,
b% - 4b0b2.

As a special case, the results for a coupled system of nonlinear multi-term fractional
differential equations equipped with the two-point boundary conditions: «(0) = 0,
uw'(0) = 0, u(l) = 0, v(0) = 0, v'(0) = 0, v(1) = 0 follow by taking all a; = 0,
t=1,...,p,and §; =0, =1,...,h, in the results of this paper.
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