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PARANORMED RIESZ DIFFERENCE SEQUENCE SPACES OF

FRACTIONAL ORDER

TAJA YAYING1

Abstract. In this article we introduce paranormed Riesz difference sequence
spaces of fractional order α, rt

0

(

p, ∆(α)
)

, rt
c

(

p, ∆(α)
)

and rt
∞

(

p, ∆(α)
)

deĄned
by the composition of fractional difference operator ∆(α), deĄned by (∆(α)x)k =
∞
∑

i=0

(−1)i Γ(α+1)
i!Γ(α−i+1) xk−i, and Riesz mean matrix Rt. We give some topological prop-

erties, obtain the Schauder basis and determine the α-, β- and γ- duals of the new
spaces. Finally, we characterize certain matrix classes related to these new spaces.

1. Introduction

Throughout the paper Γ(m) will denote the gamma function of all real numbers
m /∈ ¶0, −1, −2, . . .♢ . Γ(m) can be expressed as an improper integral given by

(1.1) Γ(m) =
∫ ∞

0
e−xxm−1dx.

Using (1.1), we state some properties of gamma function which are used throughout
the text:

1. for m ∈ N, Γ(m + 1) = m!;
2. for any real number m /∈ ¶0, −1, −2, . . .♢ , Γ(m + 1) = mΓ(m);
3. for particular cases, we have Γ(1) = Γ(2) = 1, Γ(3) = 2!, Γ(4) = 3!, . . .

Throughout the paper N = ¶0, 1, 2, 3, . . .♢ and let w be the space of all real valued
sequences. By ℓ∞, c0 and c we mean the spaces all bounded, null and convergent

Key words and phrases. Riesz difference sequence spaces, difference operator ∆(α), Schauder basis,
α-, β-, γ- duals, matrix transformation.
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176 T. YAYING

sequences, respectively, normed by ∥x∥
∞

= sup
k

♣xk♣ . Also by ℓ1, cs and bs, we mean the

spaces of absolutely summable, convergent series and bounded series, respectively. The
space ℓ1 is normed by

∑

k ♣xk♣ and the spaces cs and bs are normed by supn ♣
∑n

k=0 xk♣ .
Here and henceforth, the summation without limit runs from zero to ∞. Also, let
e = ¶1, 1, 1 . . .♢ and e(k) be the sequences whose only non-zero term is 1 in the kth

place for each k ∈ N.
Let p = (pk) be a bounded sequence of strictly positive real numbers with M =

max¶1, H♢, where H = supk pk. Then, Maddox [43, 44] deĄned the sequence spaces
ℓ∞(p), c0(p), c(p) and ℓ(p) as follows:

ℓ∞(p) =

{

x = (xk) ∈ w : sup
k∈N

♣xk♣pk < ∞

}

,

c0(p) =
{

x = (xk) ∈ w : lim
k→∞

♣xk♣pk = 0
}

,

c(p) =
{

x = (xk) ∈ w : lim
k→∞

♣xk − l♣pk = 0 for some l ∈ R

}

and

ℓ(p) =

{

x = (xk) ∈ w :
∑

k

♣xk♣pk < ∞

}

,

which are complete spaces paranormed by

g(x) = sup
k∈N

♣xk♣
pk
M and h(x) =

(

∑

k

♣xk♣pk


1

M

.

Let X and Y be two sequence spaces and A = (ank) be an inĄnite matrix of real or
complex entries. Then A deĄnes a matrix mapping from X to Y if for every sequence
x = (xk), the A-transform of x, i.e., Ax = ¶(Ax)n♢ ∈ Y, where

(1.2) (Ax)n =
∑

k

ankxk, n ∈ N.

The sequence space XA deĄned by

(1.3) XA = ¶x = (xk) ∈ w : Ax ∈ X♢

is called the domain of matrix A.
By (X, Y ), we denote the class of all matrices A from X to Y. Thus A ∈ (X, Y ) if

and only if the series on the R.H.S. of the (1.2) converges for each n ∈ N and x ∈ X
such that Ax ∈ Y for all x ∈ X.

The notion of difference sequence space X(∆) for X = ¶ℓ∞, c, c0♢ was introduced
by Kızmaz [40]. Since then several authors [15Ű19, 21Ű24] generalized the notion of
difference operator ∆ and studied various sequence spaces of integer order. However,
for a positive proper fraction α, Baliarsingh and Dutta [10] (see also [11,12,20]) have
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deĄned a generalized fractional difference operator ∆(α) and its inverse as

(∆(α)x)k =
∑

i

(−1)i Γ(α + 1)

i!Γ(α − i + 1)
xk−i,(1.4)

(∆(−α)x)k =
∑

i

(−1)i Γ(−α + 1)

i!Γ(−α − i + 1)
xk−i.(1.5)

Throughout the paper it is assumed that the series on the R.H.S. of (1.4) and (1.5)
are convergent for x = (xk) ∈ w. It is more convenient to express ∆(α) as a triangle

(∆(α))nk =











(−1)n−k
Γ(α + 1)

(n − k)!Γ(α − n + k + 1)
, if 0 ≤ k ≤ n,

0, if k > n.

Moreover, Dutta and Baliarsingh [20] also studied the paranormed difference sequence
spaces of fractional order X(Γ, ∆α̃, u, p) for X = ¶c0, c, ℓ∞♢, where

(∆α̃x)k =
∞
∑

i=0

(−1)i Γ(α + 1)

i!Γ(α − i + 1)
xk+i.

Furthermore, Baliarsingh and Dutta [11] studied the sequence spaces X(Γ, ∆α̃, p) for
X = ¶c0, c, ℓ∞♢. For some nice papers on fractional difference operator and related
sequence spaces, one may refer to [10Ű13, 20, 25Ű34] and the references mentioned
therein.

Let (tk) be a sequence of positive numbers and let

Tn =
n
∑

k=0

tk, n ∈ N.

The Riesz mean matrix Rt = (rt
nk) was deĄned in [1, 3] as

rt
nk =











tk

Tn

, 0 ≤ k ≤ n,

0, k > n.

The Riesz sequence spaces rt
∞, rt

0 and rt
c were introduced by Malkowsky [3] as follows:

rt
∞ = (ℓ∞)Rt , rt

0 = (c0)Rt and rt
c = (c)Rt .

Altay and Başar [1] introduced the paranormed Riesz sequence spaces rt(p) as

rt(p) =

{

x = (xk) ∈ w :
∑

n

∣

∣

∣

∣

∣

1

Tn

n
∑

k=0

tkxk

∣

∣

∣

∣

∣

pn

< ∞

}

.

The paranormed Riesz sequence spaces rt
∞(p), rt

0(p) and rt
c(p) were studied by Altay

and Başar [2] as follows:

rt
∞(p) =

{

x = (xk) ∈ w : sup
n∈N

∣

∣

∣

∣

∣

1

Tn

n
∑

k=0

tkxk

∣

∣

∣

∣

∣

pn

< ∞

}

,
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rt
0(p) =

{

x = (xk) ∈ w : lim
n→∞

∣

∣

∣

∣

∣

1

Tn

n
∑

k=0

tkxk

∣

∣

∣

∣

∣

pn

= 0

}

and

rt
c(p) =

{

x = (xk) ∈ w : lim
n→∞

∣

∣

∣

∣

∣

1

Tn

n
∑

k=0

tkxk − l

∣

∣

∣

∣

∣

pn

= 0 for some l ∈ R

}

.

Since then various authors studied Riesz sequence spaces. One may refer to [1Ű7]
and the references cited therein for more studies on Riesz sequence spaces. Following
Altay and Başar [1, 2] and Baliarsingh [12], we construct a more generalised Riesz
paranormed difference sequence spaces of fractional order and study in detail the
related problems.

2. Riesz Difference Operator of Fractional Order and Sequence
Spaces

In this section, we deĄne the product matrix Rt(∆(α)), obtain its inverse, intro-

duce paranormed Riesz difference sequence spaces of fractional order rt
∞

(

p, ∆(α)
)

,

rt
c

(

p, ∆(α)
)

and rt
0

(

p, ∆(α)
)

and give some topological properties of the spaces.

Combining the Riesz mean matrix Rt and the difference operator ∆(α), we obtain
a new product matrix Rt(∆(α)) = (r̃t

nk) given by

r̃t
nk =











n
∑

i=k
(−1)i−k

Γ(α + 1)

(i − k)!Γ(α − i + k + 1)

ti

Tn

, if 0 ≤ k ≤ n,

0, if k > n.

Equivalently,

Rt(∆(α)) =





















1 0 0 . . .
t0

T1

− α
t1

T1

t1

T1

0 . . .

t0

T2

− α
t1

T2

+
α(α − 1)

2!

t2

T2

t1

T2

− α
t2

T2

t2

T2

. . .

...
...

...
. . .





















.

Now, by simple calculation, one may obtain the inverse of the matrix Rt(∆(α)) as
given in the following lemma.

Lemma 2.1. The inverse of the product matrix Rt(∆(α)) is given by

(Rt(∆(α)))−1
nk =































(−1)n−k
k+1
∑

j=k

Γ(−α + 1)

(n − j)!Γ(−α − n + j + 1)

Tk

tj

, if 0 ≤ k < n,

Tn

tn

, if k = n,

0, if k > n.
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Let us deĄne a sequence y = (yn) which will be frequently used as the Rt(∆(α))-
transform of the sequence x = (xk) as follows:

(2.1) yn =
n−1
∑

k=0



n
∑

i=k

(−1)i−k Γ(α + 1)

(i − k)!Γ(α − i + k + 1)

ti

Tn

]

xk +
tn

Tn

xn, n ∈ N.

Now, we deĄne the paranormed Riesz difference sequence spaces of fractional order

α, rt
∞

(

p, ∆(α)
)

, rt
c

(

p, ∆(α)
)

and rt
0

(

p, ∆(α)
)

as follows:

rt
∞

(

p, ∆(α)
)

=
{

x = (xn) ∈ w : Rt(∆(α))x ∈ ℓ∞(p)
}

,

rt
c

(

p, ∆(α)
)

=
{

x = (xn) ∈ w : Rt(∆(α))x ∈ c(p)
}

,

rt
0

(

p, ∆(α)
)

=
{

x = (xn) ∈ w : Rt(∆(α))x ∈ c0(p)
}

.

Using the notation (1.3), the above sequence spaces may be rewritten as:

rt
∞

(

p, ∆(α)
)

=(ℓ∞(p))Rt(∆(α)),

rt
c

(

p, ∆(α)
)

=(c(p))Rt(∆(α)),

rt
0

(

p, ∆(α)
)

=(c0(p))Rt(∆(α)).

The above sequence spaces reduce to the following classes of sequence spaces in the
special cases of α and p = (pk):

1. if α = 0 then above classes reduce to X(p) for X = ¶rt
∞, rt

c, rt
0♢ as studied by

Altay and Başar [2], which further reduce to X in the case of p = (pk) = e as
studied by Malkowsky [3];

2. if α = 1 then above classes reduce to X(p, ∆(1)) for X = ¶rt
∞, rt

c, rt
0♢, where

(∆(1)x)k = xk − xk−1;
3. if α = m then above classes reduce to X(p, ∆(m)) for X = ¶rt

∞, rt
c, rt

0♢, where

(∆(m)x)k =
m
∑

j=0
(−1)j

(

m

j

)

xm−j.

We begin with the following result.

Lemma 2.2. The operator Rt(∆(α)) : w → w is linear.

Proof. The proof is a routine veriĄcation and hence omitted. □

Theorem 2.1. The sequence space rt
0

(

∆(α)
)

is a linear metric space paranormed by

(2.2) g∆(α)(x) = sup
k∈N

∣

∣

∣

(

Rt(∆(α))x
)

k

∣

∣

∣

pk
M .

g∆(α) is paranorm for the spaces rt
∞(p, ∆(α)) and rt

c(p, ∆(α)) only in the trivial case,
with inf pk > 0 when rt

∞(p, ∆(α)) = rt
∞(∆(α)) and rt

c(p, ∆(α)) = rt
0(∆

(α)).

Proof. We prove the theorem for the space rt
0(∆

(α)).

Clearly, g∆(α)(θ) = 0 and g∆(α)(−x) = g∆(α)(x) for all x ∈ rt
0

(

∆(α)
)

. To show the

linearity of g∆(α) with respect to coordinate wise addition and scalar multiplication, we
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take any two sequences u, v ∈ rt
0(p, ∆(α)) and scalars α1 and α2 in R. Since Rt(∆(α))

is linear and using Maddox [45], we get

g∆(α)(α1u + α2v)

= sup
k

∣

∣

∣

∣

∣

∣

k−1
∑

j=0





k
∑

i=j

(−1)i−j Γ(α + 1)

(i − j)!Γ(α − i + j + 1)

ti

Tk



(α1uj + α2vj) +
tk

Tk

(α1uk + α2vk)

∣

∣

∣

∣

∣

∣

pk
M

≤ max¶1, ♣α1♣♢ sup
k

∣

∣

∣

(

Rt(∆(α))u
)

k

∣

∣

∣

pk
M + max¶1, ♣α2♣♢ sup

k

∣

∣

∣

(

Rt(∆(α))v
)

k

∣

∣

∣

pk
M

= max¶1, ♣α1♣♢g∆(α)(u) + max¶1, ♣α2♣♢g∆(α)(v).

This follows the subadditivity of g∆(α) , i.e.,

g∆(α)(x + y) ≤ g∆(α)(x) + g∆(α)(y), for all x, y ∈ rt
0

(

p, ∆(α)
)

.

Let ¶xn♢ be any sequence of points in rt
0(p, ∆(α)) such that g∆(α)(xn − x) → 0 and

also (βn) be any sequence of scalars such that βn → β as n → ∞. Then by using the
subadditivity of g∆(α) , we get

g∆(α)(xn) ≤ g∆(α)(x) + g∆(α)(xn − x).

Now, since ¶g∆(α)(xn)♢ is bounded, we have

g∆(α)(βnxn − βx) = sup
k

∣

∣

∣

∣

∣

∣

k−1
∑

j=0





k
∑

i=j

(−1)i−j Γ(α + 1)

(i − j)!Γ(α − i + j + 1)

ti

Tk



 (βnxn
j − βxj)

+
tk

Tk

(βnxn
k − βxk)

∣

∣

∣

∣

∣

∣

pk
M

≤ ♣βn − β♣
pk
M g∆(α)(xn) + ♣β♣

pk
M g∆(α)(xn − x)

→ 0 as n → ∞.

Thus, scalar multiplication for g∆(α) is continuous. Consequently, g∆(α) is a paranorm
on the sequence space rt

0(p, ∆(α)). This completes the proof of the theorem. □

Theorem 2.2. The sequence space rt
0(p, ∆(α)) is a complete linear metric space para-

normed by g∆(α) defined in (2.2).

Proof. Let xi = ¶x
(i)
k ♢ be any Cauchy sequence in rt

0(p, ∆(α)). Then for ε > 0 there
exists a positive integer N0(ε) such that

g∆(α)(xi − xj) < ε,

for all i, j ≥ N0(ε). This implies that ¶(Rt(∆(α))x0)k, (Rt(∆(α))x1)k, . . .♢ is a Cauchy
sequence of real numbers for each Ąxed k ∈ N. Since R is complete, the sequence
((Rt(∆(α))xi)k) converges. We assume that (Rt(∆(α))xi)k → (Rt(∆(α))x)k as i → ∞.
Now, for each k ∈ N, j → ∞ and i ≥ N0(ε), it is clear that

(2.3)
∣

∣

∣(Rt(∆(α))xi)k − (Rt(∆(α))x)k

∣

∣

∣ <
ε

2
.
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Again, xi = ¶x
(i)
k ♢ ∈ rt

0(p, ∆(α)). This implies that

(2.4)
∣

∣

∣(Rt(∆(α))xi)k

∣

∣

∣

pk
M <

ε

2
,

for all k ∈ N. Therefore, using (2.3) and (2.4), we obtain

∣

∣

∣(Rt(∆(α))x)k

∣

∣

∣

pk
M ≤

∣

∣

∣(Rt(∆(α))x)k − (Rt(∆(α))xi)k

∣

∣

∣

pk
M +

∣

∣

∣(Rt(∆(α))xi)k

∣

∣

∣

pk
M

<
ε

2
+

ε

2
= ε,

for all i ≥ N0(ε). This shows that the sequence ((Rt(∆(α))x)k) belongs to the space
c0(p). Since (xi) is any arbitrary Cauchy sequence, the space rt

0(p, ∆(α)) is complete.
□

Theorem 2.3. The paranormed Riesz difference sequence spaces rt
0(p, ∆(α)),

rt
c(p, ∆(α)) and rt

∞(p, ∆(α)) are linearly isomorphic to c0(p), c(p) and ℓ∞(p), respec-
tively, where 0 < pk ≤ H < ∞.

Proof. We prove the result for the space rt
∞(p, ∆(α)). Using the notation (2.1), we

deĄne a mapping φ : rt
∞(p, ∆(α)) → ℓ∞(p) by x 7→ y = φx. Clearly, φ is linear and

x = 0 whenever φx = 0. Thus, φ is injective.
Let y = (yk) ∈ ℓ∞(p) and using (2.1) deĄne the sequence x = (xk) by

(2.5) xk =
k−1
∑

j=0





j+1
∑

i=j

(−1)k−j Γ(−α + 1)

(k − i)!Γ(−α − k + i + 1)

Tj

ti

yj



+
Tk

tk

yk, k ∈ N.

Then

g∆(α)(x) = sup
k∈N

∣

∣

∣

∣

∣

∣

k−1
∑

j=0





k
∑

i=j

(−1)i−j Γ(α + 1)

(i − j)!Γ(α − i + j + 1)

ti

Tk



xj +
tk

Tk

xk

∣

∣

∣

∣

∣

∣

pk
M

= sup
k∈N

∣

∣

∣

∣

∣

∣

k
∑

j=0

δkjyj

∣

∣

∣

∣

∣

∣

pk
M

= sup
k∈N

♣yk♣
pk
M < ∞,

where

δkj =







1, if k = j,

0, if k ̸= j.

Thus, x ∈ rt
∞(p, ∆(α)). Consequently, φ is surjective and paranorm preserving. Thus,

rt
∞(p, ∆(α)) ∼= ℓ∞(p). □
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3. Schauder Basis

In this section, we shall construct the Schauder basis for the sequence spaces
rt

0(p, ∆(α)) and rt
c(p, ∆(α)).

We recall that a sequence (xk) of a normed space (X, ∥·∥) is called a Schauder basis
for X if for every u ∈ X there exist a unique sequence of scalars (ak) such that

lim
n→∞

∥

∥

∥

∥

∥

u −
n
∑

k=0

akxk

∥

∥

∥

∥

∥

= 0.

Theorem 3.1. Let λk(t) = (Rt(∆(α))x)k for all k ∈ N and 0 < pk ≤ H < ∞. Define
the sequence b(k)(t) = (b(k)

n (t)) of the elements of the space rt
0(p, ∆(α)) for every fixed

k ∈ N by

b(k)
n (t) =



































j+1
∑

i=j

(−1)k−j Γ(−α + 1)

(k − i)!Γ(−α − k + i + 1)

Tj

ti

, if k < n,

Tn

tn

, if k = n,

0, k > n.

Then
(a) the sequence (b(k)(t)) is basis for the space rt

0(p, ∆(α)) and every x ∈ rt
0(p, ∆(α))

has a unique representation of the form

(3.1) x =
∑

k

λk(t)b(k)(t);

(b) the set ¶(Rt(∆(α)))−1e, b(k)(t)♢ is a basis for the space rt
c(p, ∆(α)) and every

x ∈ rt
c(p, ∆(α)) has a unique representation of the form

x = le +
∑

k

♣λk(t) − l♣ b(k)(t),

where l = limk→∞(Rt(∆(α))x)k.

Proof. (a) By the deĄnition of Rt(∆(α)) and b(k)(t), it is clear that

(3.2)
(

Rt(∆(α))b(k)(t)
)

= e(k) ∈ c0(p),

for 0 < pk ≤ H < ∞. Let x ∈ rt
0(p, ∆(α)) and for every non-negative integer m, we

put

(3.3) x[m] =
m
∑

k=0

λk(t)b(k)(t).

From (3.2) and (3.3), we obtain

Rt(∆(α))x[m] =
m
∑

k=0

λk(t)Rt(∆(α))b(k)(t) = (Rt(∆(α))x)ke(k),
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and
(

Rt(∆(α))(x − x[m])
)

i
=







0, if 0 ≤ i ≤ m,

(Rt(∆(α))x)i, if i > m.

Now, for ε > 0 there exists an integer m0 such that

sup
i≥m

∣

∣

∣(Rt(∆(α))x)i

∣

∣

∣

pk
M <

ε

2

for all m ≥ m0. Hence,

g∆(α)

(

x − x[m]
)

= sup
i≥m

∣

∣

∣(Rt(∆(α))x)i

∣

∣

∣

pk
M

≤ sup
i≥m0

∣

∣

∣(Rt(∆(α))x)i

∣

∣

∣

pk
M <

ε

2
< ε,

for all m ≥ m0.
To show the uniqueness of the representation, we suppose that

x =
∑

k

µk(t)b(k)(t).

Then, we have

(Rt(∆(α))x)n =
∑

k

µk(t)
(

Rt(∆(α))b(k)(t)
)

n

=
∑

k

µk(t)e(k)
n = µn(t), n ∈ N.

This contradicts the fact that (Rt(∆(α))x)k = λk(t), k ∈ N. Thus, the representation
(3.1) is unique.

(b) The proof is analogous to the previous theorem and hence omitted. □

4. α-, β- and γ-duals

In this section we shall compute α-, β- and γ-duals of rt
0(∆

(α)), rt
c(∆

(α)) and
rt

∞(∆(α)). Note that the notation α used for α-dual has different meaning to that of
the operator ∆(α).

For the sequence spaces X and Y, deĄne multiplier sequence space M(X, Y ) by

M(X, Y ) = ¶p = (pk) ∈ w : px = (pkxk) ∈ Y, for all x = (xk) ∈ X♢ .

Then the α-, β- and γ-duals of X are given by

Xα = M(X, ℓ1), Xβ = M(X, cs), Xγ = M(X, bs),

respectively. Now, we give the following lemmas given in [41] which will be used to
obtain the duals. Throughout F will denote the collection of all Ąnite subsets of N.

Lemma 4.1. Let A = (ank) be an infinite matrix. Then, the following statement
hold:
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(a) A ∈ (ℓ∞(p), ℓ(q)) if and only if

sup
K∈F

∑

n

∣

∣

∣

∣

∣

∣

∑

k∈K

ankB
1

pk

∣

∣

∣

∣

∣

∣

qn

< ∞, for all integers B > 1 and qn ≥ 1 for all n;

(b) A ∈ (ℓ∞(p), ℓ∞(q)) if and only if

sup
n∈N

(

∑

k

♣ank♣ B
1

pk

qn

< ∞, for all integers B > 1;

(c) A ∈ (ℓ∞(p), c(q)) if and only if

sup
n∈N

∑

k

♣ank♣ B
1

pk < ∞, for all integers B > 1,

exists (αk) ⊂ R such that lim
n→∞

(

∑

k

♣ank − αk♣ B
1

pk

qn

= 0, for all B > 1;

(d) A ∈ (ℓ∞(p), c0(q)) if and only if

lim
n→∞

(

∑

k

♣ank♣ B
1

pk

qn

= 0, for all integers B > 1.

Lemma 4.2. Let A = (ank) be an infinite matrix. Then, the following statement
hold:

(a) A ∈ (c0(p), ℓ∞(q)) if and only if

(4.1) sup
n∈N

(

∑

k

♣ank♣ B
−1
pk

qn

< ∞, for all integers B > 1;

(b) A ∈ (c0(p), c(q)) if and only if

sup
n∈N

∑

k

♣ank♣ B
−1
pk < ∞ , for all integers B > 1,(4.2)

exists (αk) ⊂ R such that sup
n∈N

∑

k

♣ank − αk♣ M
1

qn B
−1
pk < ∞,(4.3)

for all integers M, B > 1,

exists (αk) ⊂ R such that lim
n→∞

♣ank − αk♣qn = 0, for all k ∈ N;(4.4)

(c) A ∈ (c0(p), c0(q)) if and only if
(4.5)

exists (αk) ⊂ R such that sup
n∈N

∑

k

♣ank♣ M
1

qn B
−1
pk < ∞, for all integers M, B > 1,

(4.6) exists (αk) ⊂ R such that lim
n→∞

♣ank♣qn = 0, for all k ∈ N.

Lemma 4.3. Let A = (ank) be an infinite matrix. Then the following statement hold:
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(a) A ∈ (c(p), ℓ∞(q)) if and only if (4.1) holds and

sup
n∈N

∣

∣

∣

∣

∣

∑

k

ank

∣

∣

∣

∣

∣

qn

< ∞;

(b) A ∈ (c(p), c(q)) if and only if (4.2), (4.3) and (4.4) hold and

exists α ∈ R such that lim
n→∞

∣

∣

∣

∣

∣

∑

k

ank − α

∣

∣

∣

∣

∣

qn

= 0;

(c) A ∈ (c(p), c0(q)) if and only if (4.5) and (4.6) hold and

lim
n→∞

∣

∣

∣

∣

∣

∑

k

ank

∣

∣

∣

∣

∣

qn

= 0.

Theorem 4.1. Define the sets ν1(p), ν2(p), ν3(p), ν4(p), ν5(p) and ν6(p) as follows:

ν1(p) =
⋂

B>1

{

a = (ak) ∈ w :

sup
K∈F

∑

n

∣

∣

∣

∣

∣

∣

∑

k∈K





k+1
∑

j=k

(−1)n−k Γ(−α + 1)

(n − j)!Γ(−α − n + j + 1)

Tk

tj

ak +
Tn

tn

an





∣

∣

∣

∣

∣

∣

B
1

pk < ∞







,

ν2(p) =
⋂

B>1

{

a = (ak) ∈ w :
∑

k

∣

∣

∣

∣

∆(α)

(

ak

tk

)

Tk

∣

∣

∣

∣

B
1

pk < ∞ and

(

akTk

tk

B
1

pk

)

∈ c0

}

,

ν3(p) =
⋂

B>1

{

a = (ak) ∈ w :
∑

k

∣

∣

∣

∣

∆(α)

(

ak

tk

)

Tk

∣

∣

∣

∣

B
1

pk < ∞ and

{

∆(α)

(

ak

tk

)

Tk

}

∈ ℓ∞

}

,

ν4(p) =
⋃

B>1

{

a = (ak) ∈ w :

sup
K∈F

∑

n

∣

∣

∣

∣

∣

∣

∑

k∈K





k+1
∑

j=k

(−1)n−k Γ(−α + 1)

(n − j)!Γ(−α − n + j + 1)

Tk

tj

ak +
Tn

tn

an





∣

∣

∣

∣

∣

∣

B
−1

pk < ∞







,

ν5(p) =
⋃

B>1

{

a = (ak) ∈ w :

∑

n

∣

∣

∣

∣

∣

∣

∑

k





k+1
∑

j=k

(−1)n−k Γ(−α + 1)

(n − j)!Γ(−α − n + j + 1)

Tk

tj

ak +
Tn

tn

an





∣

∣

∣

∣

∣

∣

< ∞







,

ν6(p) =
⋂

B>1

{

a = (ak) ∈ w :
∑

k

∣

∣

∣

∣

∆(α)

(

ak

tk

)

Tk

∣

∣

∣

∣

B
−1

pk < ∞

}

,

where

(4.7) ∆(α)
(

ak

tk

)

=
ak

tk

+
n
∑

j=k+1

(−1)j−kaj

k+1
∑

i=k

Γ(−α + 1)

(j − i)!Γ(−α − j + i + 1)ti

.

Then
[

rt
∞(p, ∆(α))

]α
=ν1(p),

[

rt
∞(p, ∆(α))

]β
= ν2(p),

[

rt
∞(p, ∆(α))

]γ
= ν3(p),
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[

rt
c(p, ∆(α))

]α
=ν4(p) ∩ ν5(p),

[

rt
c(p, ∆(α))

]β
= ν6(p) ∩ cs,

[

rt
c(p, ∆(α))

]γ
=ν6(p) ∩ bs,

[

rt
0(p, ∆(α))

]α
= ν4(p),

[

rt
0(p, ∆(α))

]β
=
[

rt
0(p, ∆(α))

]γ
= ν6(p).

Proof. We prove the theorem for the space rt
∞(p, ∆(α)). Consider the sequence a =

(ak) ∈ w and x = (xk) is as deĄned in (2.5), then we have

anxn =
n−1
∑

j=0





j+1
∑

i=j

(−1)n−j Γ(−α + 1)

(n − i)!Γ(−α − n + i + 1)

Tj

ti

anyj



+
Tn

tn

anyn

= (Gy)n, for each n ∈ N,(4.8)

where G = (gnk) is a matrix deĄned by

gnk =



































k+1
∑

j=k

(−1)n−k Γ(−α + 1)

(n − j)!Γ(−α − n + j + 1)

Tk

tj

an, if 0 ≤ k < n,

Tn

tn

an, if k = n,

0, if k > n.

Thus, we deduce from (4.8) that ax = (anxn) ∈ ℓ1 whenever x = (xk) ∈ rt
∞(p, ∆(α))

if and only if Gy ∈ ℓ1 whenever y = (yk) ∈ ℓ∞(p). This yields that a = (an) ∈
[

rt
∞(p, ∆(α))

]α
if and only if G ∈ (ℓ∞(p), ℓ1).

Thus, by using Lemma 4.1(a) with qn = 1 for all n, we conclude that

[

rt
∞(p, ∆(α))

]α
= ν1(p).

Now, consider the following equation

n
∑

k=0

akxk =
n
∑

k=0

ak





k−1
∑

j=0





j+1
∑

i=j

(−1)k−j Γ(−α + 1)

(k − i)!Γ(−α − k + i + 1)

Tj

ti

yj



+
Tk

tk

yk





=
n−1
∑

k=0

ykTk





ak

tk

+
n
∑

j=k+1

(−1)j−kaj

k+1
∑

i=k

Γ(−α + 1)

(j − i)!Γ(−α − j + i + 1)ti



+
Tn

tn

anyn

=
n−1
∑

k=0

ykTk∆(α)
(

ak

tk

)

+
Tn

tn

anyn(4.9)

= (Hy)n, for each n ∈ N,
(4.10)
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where H = (hnk) is a matrix deĄned by

hnk =



























∆(α)
(

ak

tk

)

Tk, if 0 ≤ k < n,

Tn

tn

an, if k = n,

0, if k > n,

and ∆(α)
(

ak

tk

)

is as deĄned in (4.7). Thus, we deduce from (4.10) that ax = (akxk) ∈ cs

whenever x = (xk) ∈ rt
∞(p, ∆(α)) if and only if Hy ∈ c whenever y = (yk) ∈ ℓ∞(p).

Therefore, by using Lemma 4.1 (c) with q = (qn) = 1, we get that

∑

k

∣

∣

∣

∣

∆(α)
(

ak

tk

)

Tk

∣

∣

∣

∣

B
1

pk < ∞ and lim
k→∞

Tk

tk

akB
1

pk = 0.

Thus,
[

rt
∞(p, ∆(α))

]β
= ν2(p).

Similarly, by using Lemma 4.1 (b), with qn = 1 for all n, we can deduce that
[

rt
∞(p, ∆(α))

]γ
= ν3(p). This completes the proof of the theorem. The duals of the other

spaces can be obtained by the similar proceedings and using Lemma 4.2 and 4.3. □

5. Matrix Transformations

In this section, we give certain results regarding matrix transformation of the Riesz
sequence spaces of fractional order to X(p) where X = ¶ℓ∞, c, c0♢. Let q = (qn) be a
non-decreasing bounded sequence of positive real numbers. For brevity, we write

∆(α)
(

ank

tk

)

=
ank

tk

+
n
∑

j=k+1

(−1)j−kanj

k+1
∑

i=k

Γ(−α + 1)

(j − i)!Γ(−α − j + i + 1)ti

and

∆(α)
∞

(

ank

tk

)

=
ank

tk

+
∞
∑

j=k+1

(−1)j−kanj

k+1
∑

i=k

Γ(−α + 1)

(j − i)!Γ(−α − j + i + 1)ti

,

for all n, k ∈ N. Let x, y ∈ w be connected by the relation y = Rt(∆(α))x. Then we
have by (4.9)

(5.1)
m
∑

k=0

ankxk =
m−1
∑

k=0

∆(α)
(

ank

tk

)

Tkyk + anm

tm

Tm

ym, n, m ∈ N.

Now, let us consider the following conditions before we proceed:

lim
k→∞

ank

tk

TkB
1

pk = 0, for all n, B ∈ N,(5.2)

sup
n∈N



∑

k

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tk

∣

∣

∣

∣

B
1

pk

]qn

< ∞, for all B ∈ N,(5.3)

sup
n∈N

∑

k

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tk

∣

∣

∣

∣

B
1

pk < ∞, for all B ∈ N,(5.4)
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exists (αk) ⊂ R such that lim
n→∞



∑

k

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tk − αk

∣

∣

∣

∣

B
1

pk

]qn

= 0,(5.5)

for all B ∈ N,

sup
n∈N



∑

k

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tk

∣

∣

∣

∣

B
−1
pk

]qn

< ∞, for all B ∈ N,(5.6)

sup
n∈N

∣

∣

∣

∣

∣

∑

k

∆(α)
∞

(

ank

tk

)

Tk

∣

∣

∣

∣

∣

qn

< ∞, for all n ∈ N,(5.7)

exists α ∈ R such that lim
n→∞

∣

∣

∣

∣

∣

∑

k

∆(α)
∞

(

ank

tk

)

Tk − α

∣

∣

∣

∣

∣

qn

= 0,(5.8)

exists (αk) ⊂ R such that lim
n→∞

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tk − αk

∣

∣

∣

∣

qn

= 0, for all k ∈ N,(5.9)

exists (αk) ⊂ R such that sup
n∈N

L
1

qn

∑

k

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tk − αk

∣

∣

∣

∣

B
−1
pk < ∞,(5.10)

for all L exists B ∈ N.

Theorem 5.1. Let A = (ank) be an infinite matrix. Then the following hold:

(a) A ∈ (rt
∞(p, ∆(α)), ℓ∞(q)) if and only if (5.2) and (5.3) hold;

(b) A ∈ (rt
∞(p, ∆(α)), c(q)) if and only if (5.2), (5.4) and (5.5) hold;

(c) A ∈ (rt
∞(p, ∆(α)), c0(q)) if and only if (5.2) holds and (5.5) holds, with αk = 0

for all k ∈ N.

Proof. We give the proof of (a) as the rest can be obtained in the similar manner.
Let A = (ank) ∈ (rt

∞(p, ∆(α)), ℓ∞(q)) and x = (xk) ∈ rt
∞(p, ∆(α)). Consider equation

(5.1). Since Ax exists and belongs to the space ℓ∞(q), therefore the necessity of the
condition (5.2) is obvious. Now, letting m → ∞ in equation (5.1), we straightly get

Ax =
∑

k





ank

tk

+
∞
∑

j=k+1

(−1)j−kanj

k+1
∑

i=k

Γ(−α + 1)

(j − i)!Γ(−α − j + i + 1)ti



Tkyk

=
∑

k

∆(α)
∞

(

ank

tk

)

Tkyk.(5.11)

This implies that A(Rt(∆(α)))−1y ∈ ℓ∞(q). That is, A(Rt(∆(α)))−1 ∈ (ℓ∞(p), ℓ∞(q)).
Therefore, A(Rt(∆(α)))−1 satisĄes the lemma 4.1(b) which is equivalent to the condi-
tion (5.3). This shows the necessity of the condition (5.3).

Conversely, let the conditions (5.2) and (5.3) hold and x ∈ rt
∞(p, ∆(α)). Then it

is clear that Ax exists. Now, using equation (5.11) and the condition (5.3) with
B > max¶1, sup

k

♣yk♣pk♢, we get

∥Ax∥ℓ∞(q) = sup
n∈N

∣

∣

∣

∣

∣

∑

k

ankxk

∣

∣

∣

∣

∣

qn
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= sup
n∈N

∣

∣

∣

∣

∣

∣

∑

k





ank

tk

+
∞
∑

j=k+1

(−1)j−kanj

k+1
∑

i=k

Γ(−α + 1)

(j − i)!Γ(−α − j + i + 1)



Tkyk

∣

∣

∣

∣

∣

∣

qn

≤ sup
n∈N

(

∑

k

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tkyk

∣

∣

∣

∣

qn

≤ sup
n∈N

(

∑

k

∣

∣

∣

∣

∆(α)
∞

(

ank

tk

)

Tk

∣

∣

∣

∣

B
1

pk

qn

< ∞.

This concludes that A ∈ (rt
∞(p, ∆(α)), ℓ∞(q)). □

By the similar proceedings, we can derive the following results.

Theorem 5.2. Let A = (ank) be an infinite matrix. Then the following hold:

(a) A ∈ (rt
c(p, ∆(α)), ℓ∞(q)) if and only if (5.2), (5.6) and (5.7) hold;

(b) A ∈ (rt
c(p, ∆(α)), c(q)) if and only if (5.2), (5.8), (5.9) and (5.10) hold and

(5.6) also holds, with qn = 1 for all n ∈ N;
(c) A ∈ (rt

c(p, ∆(α)), c0(q)) if and only if (5.2) holds and (5.8), (5.9) and (5.10)
also hold, with α = 0, αk = 0 for all k ∈ N.

Theorem 5.3. Let A = (ank) be an infinite matrix. Then the following hold:

(a) A ∈ (rt
0(p, ∆(α)), ℓ∞(q)) if and only if (5.2) and (5.6) hold;

(b) A ∈ (rt
0(p, ∆(α)), c(q)) if and only if (5.2), (5.9) and (5.10) hold and (5.6) also

holds, with qn = 1 for all n ∈ N;
(c) A ∈ (rt

0(p, ∆(α)), c0(q)) if and only if (5.2) holds and (5.9) and (5.10) also hold,
with αk = 0 for all k ∈ N.

Conclusion

In this article, we introduce paranormed difference sequence spaces rt
∞(∆(α)),

rt
c(∆

(α)) and rt
0(∆

(α)) of fractional order α, investigate their topological properties,
Schauder basis, α-, β- and γ- duals and characterize the matrix classes related to
these spaces. We conclude that the results obtained from the matrix domain of the
product matrix Rt(∆(α)) are more general and extensive than the existent results of
the previous authors. We expect that our results might be a reference for further
studies in this Ąeld. In our next paper, we will investigate the results obtained from
the matrix domain Rt(∆(α)) in the spaces ℓp of absolutely p-summable sequences,
1 ≤ p < ∞.

Acknowledgements. The author would like to thank the anonymous referees for
their careful reading and necessary comments which have improved the presentation
of the paper.
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[18] M. Mursaleen, Generalized spaces of difference sequences, J. Anal. Math. Appl. 203 (1996),

738Ű745.
[19] Z. U. Ahmad, M. Mursaleen and A. H. A. Bataineh, On some generalized spaces of difference

sequences, Southeast Asian Bull. Math. 29(4), 635Ű649.
[20] S. Dutta and P. Baliarsingh, A note on paranormed difference sequence spaces of fractional

order and their matrix transformations, J. Egyptian Math. Soc. 22 (2014), 249Ű253.
[21] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21 (1995),

377Ű386.
[22] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays.

Math. Sci. Soc. 231 (2000), 25Ű32.
[23] M. Et and M. Basarir, On some new generalized difference sequence spaces, Period. Math.

Hungar. 35 (1997), 169Ű175.
[24] A. Karaisa and F. Özger, Almost difference sequence spaces derived by using a generalized

weighted mean, Journal of Computational Analysis and Applications 19(1) (2015), 27Ű38.
[25] U. Kadak and P. Baliarsingh, On certain Euler difference sequence spaces of fractional order

and related dual properties, J. Nonlinear Sci. Appl. 8 (2015), 997Ű1004.



PARANORMED RIESZ DIFFERENCE SEQUENCE SPACES OF FRACTIONAL ORDER 191

[26] P. Baliarsingh, U. Kadak and M. Mursaleen, On statistical convergence of difference sequences of

fractional order and related Korovkin type approximation theorems, Quaest. Math. 41(8) (2018),
1117Ű1133.

[27] U. Kadak, Generalized statistical convergence based on fractional order difference operator and

its applications to approximation theorems, Iran. J. Sci. Technol. Trans. A Sci. 43(1)(2019),
225Ű237.

[28] U. Kadak, Generalized lacunary statistical difference sequence spaces of fractional order, Int. J.
Math. Math. Sci. 2015 (2015), Article ID 984283, 6 pages.

[29] U. Kadak, Generalized weighted invariant mean based on fractional difference operator with

applications to approximation theorems for functions of two variables, Results Math. 72(3) (2017),
1181Ű1202.

[30] H. Furkan, On some λ-difference sequence spaces of fractional order, J. Egypt Math. Soc. 25(1)
(2017), 37Ű42.

[31] F. Özger, Characterisations of compact operators on ℓp-type fractional sets of sequences, Demon-
str. Math. 52 (2019), 105Ű115.

[32] F. Özger, Some geometric characterisations of a fractional Banach set, Commun. Fac. Sci. Univ.
Ank. Sér. A1 Math. Stat. 68(1) (2019), 546Ű558.

[33] F. Özger, Some general results on fractional Banach sets, Turkish J. Math. 43(2) (2019), 783Ű
794.

[34] F. Özger, Compact operators on the sets of fractional difference sequences, Sakarya University
Journal of Science 23(3) (2019), 425Ű434.

[35] E. Malkowsky, F. Özger and V. Veličkovi‘c, Some mixed paranorm spaces, Filomat 31(4) (2017),
1079Ű1098.

[36] E. Malkowsky, F. Özger and V. Veličković, Matrix transformations on mixed paranorm spaces,

Filomat 31(10) (2017), 2957Ű2966.
[37] V. Veličković, E. Malkowsky and F. Özger, Visualization of the spaces W (u, v; ℓp) and their

duals, AIP Conf. Proc. 1759 (2016), DOI 10.1603/1.4959634.
[38] F.Özger and F. Başar, Domain of the double sequential band matrix B(r̃, s̃) on some Maddox’s

spaces, Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014), 394Ű408.
[39] E. Malkowsky, F. Özger and A. Alotaibi, Some notes on matrix mappings and their Hausdorff

measure of noncompactness, Filomat 28(5) (2014), 1059Ű1072.
[40] H. Kızmaz, On certain sequence spaces, Can. Math. Bull. 24 (1981), 169Ű176.
[41] K. G. Grosse-Erdmann, Matrix transformation between the sequence spaces of Maddox, J. Math.

Anal. Appl. 180 (1993), 223Ű238.
[42] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences,

Mathematical Proceedings of the Cambridge Philosophical Society 68(1) (1970), 99Ű104.
[43] I. J. Maddox, Spaces of strongly summable sequences, Q. J. Math. 18 (1967), 345Ű355.
[44] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Mathematical Pro-

ceedings of the Cambridge Philosophical Society 64 (1968), 335Ű340.
[45] I. J. Maddox, Elements of Functional Analysis, 2nd ed., Cambridge University Press, Cambridge,

1988.

1Department of Mathematics,
Dera Natung Government College,
Itanagar-791113, Arunachal Pradesh, India
Email address: tajayaying20@gmail.com





Kragujevac Journal of Mathematics

Volume 46(2) (2022), Pages 193–213.

GENERAL CLASSES OF SHRINKAGE ESTIMATORS FOR THE

MULTIVARIATE NORMAL MEAN WITH UNKNOWN VARIANCE:

MINIMAXITY AND LIMIT OF RISKS RATIOS

ABDELKADER BENKHALED1 AND ABDENOUR HAMDAOUI2

Abstract. In this paper, we consider two forms of shrinkage estimators of the
mean θ of a multivariate normal distribution X ∼ Np

(

θ, σ2Ip

)

in R
p where σ2 is

unknown and estimated by the statistic S2 (S2 ∼ σ2χ2

n
). Estimators that shrink

the components of the usual estimator X to zero and estimators of Lindley-type,
that shrink the components of the usual estimator to the random variable X. Our
aim is to improve under appropriate condition the results related to risks ratios of
shrinkage estimators, when n and p tend to infinity and to ameliorate the results of
minimaxity obtained previously of estimators cited above, when the dimension p is
finite. Some numerical results are also provided.

1. Introduction

Shrinkage estimates are alternative estimates that use information from all studies
to provide potentially better estimates for each study. While these estimates is
biased, they have a considerably smaller variance, and thus tend to be better in
terms of total mean squared error. For example, Xie et al. [21] introduced a class
of semiparametric/parametric shrinkage estimators and established their asymptotic
optimality properties, Hansen [9] compared the mean-squared error of ordinary least
squares (OLS), James-Stein, and least absolute shrinkage and selection operator
(Lasso) shrinkage estimators and shows that neither James-Stein nor Lasso uniformly
dominates the other, Selahattin et al. [15] provided several alternative methods for
derivation of the restricted ridge regression estimator (RRRE).

Key words and phrases. James-Stein estimator, multivariate Gaussian random variable, non-
central chi-square distribution, quadratic risk, shrinkage estimator.
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Mean vector parameter estimation is an important problem in the context of shrink-
age estimation and has been widely applied in many scientific and engineering prob-
lems. This fact is certainly reflected by the abundant literature on the subject, let us
cite for instance. Stein [16] showed the inadmissibility of the usual estimator X of the
mean θ of a multivariate normal distribution X ∼ Np (θ, σ2Ip) when the dimension
of the space of the observations p ⩾ 3. James and Stein [10], introduced the class of
shrinkage estimators δa = (1 − aS2/ ∥X∥2)X, that improving the usual estimator X
under the quadratic loss function. Many developments in this field has realized by
Lindley [12], Baranchik [1], Stein [17] and Selahattin and Issam [13]. Tsukuma and
Kubokawa [20] addresses the problem of estimating the mean vector of a singular mul-
tivariate normal distribution with an unknown singular covariance matrix. Selahattin
and Issam [14], introduced and derived the optimal extended balanced loss function
(EBLF) estimators and pridictors and discuss their performances.

When the dimension p is infinite, Casella and Hwang [4], studied the case where
σ2 is known (σ2 = 1) and showed that if the limit of the ratio ∥θ∥2 /p is a constant
c > 0, then the risks ratios of the James-Stein estimator δJS and the positive-part
of the James-Stein estimator δJS+, to the maximum likelihood estimator X, tend
to a constant value c/(1 + c). Benmansour and Hamdaoui [2], have taken the same
model given by Casella and Hwang [4], where the parameter σ2 is unknown and they
established the same results. Hamdaoui and Benmansour [6], considered the model
X ∼ Np (θ, σ2Ip) where σ2 is unknown and estimated by S2 (S2 ∼ σ2χ2

n). They studied
the following class of shrinkage estimators δφ = δJS+l(S2ϕ(S2, ∥X∥2)/∥X∥2)X, where
l is a real parameter. The authors showed that, when the sample size n and the
dimension of space parameters p tend to infinity, the estimators δφ have a lower
bound Bm = c/(1 + c) and if the shrinkage function ϕ satisfies some conditions, the
risks ratio R(δφ, θ)/R(X, θ) attains this lower bound Bm, in particulary the risks
ratios R(δJS, θ)/R(X, θ) and R(δJS+, θ)/R(X, θ). In Hamdaoui et al. [8], the authors
studied the limit of risks ratios of two forms of shrinkage estimators. The first one has
been introduced by Benmansour and Mourid [3], δψ = δJS+l(S2ψ(S2, ∥X∥2)/∥X∥2)X,
where l is a real parameter and ψ (·, u) is a function with support [0, b] and satisfies
some conditions different from the one given in Hamdaoui and Benmensour [6]. The
second is the polynomial form of shrinkage estimator introduced by Li and Kio [11].
Hamdaoui and Mezouar [7], studied the general class of shrinkage estimators δφ =
(

1 − S2ϕ
(

S2, ∥X∥2
)

/ ∥X∥2
)

X. They showed the same results given in Hamdaoui

and Benmansour [6], with different conditions on the shrinkage function ϕ.
In this work, we consider the model X ∼ Np (θ, σ2Ip) and independently of the

observations X, we observe S2 ∼ σ2χ2
n an estimator of σ2. It’s well known that

the quadratic risk of the usual estimator X is pσ2. Consequently, any estimator of
θ which has a quadratic risk less than pσ2 dominate X, then it is minimax. We
consider two different forms of shrinkage estimators of θ: estimators of the form
δψ = (1 − ψ(S2, ∥X∥2)S2/ ∥X∥2)X, and estimators of Lindley-type given by δϕ =
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(1 − φ(S2, T 2)S2/T 2)(X − X) + X, that shrink the components of the maximum
likelihood estimator X to the random variable X. Our aim in this work is based on
two points. First, when n and p tend to infinity, we give results of the limit of risks
ratios of estimators defined above to the maximum likelihood estimator X, different
from the one obtained in our published papers. The second point is to generalize and
to improve the results of minimaxity obtained by Strawderman [18], Sun [19] and
Hamdaoui and Benmansour [6].

The paper is outlined as follows: In Section 2, we consider the form of shrinkage
estimators defined in (2.2) and we study the minimaxity and the limit of risks ratio to
these estimators to the usual estimator X. In Section 3, we consider the second form
of shrinkage estimators defined in (3.1) of Lindley-type. In this case, we follow the
same steps as we treated the first form (2.2). In Section 4, we graphically illustrate
some results given in this paper. In the end, we give an Appendix which contains
technical lemmas used in the proofs of our results.

2. Shrinkage to Zero

Let X ∼ Np (θ, σ2Ip) where σ2 is unknown and estimated by S2 (S2 ∼ σ2χ2
n). The

aim is to estimate θ by an estimator δ relatively at the quadratic loss function

L (δ, θ) = ∥δ − θ∥2
p ,

with ∥·∥p is the usual norm in R
p. We associate its risk function

R (δ, θ) = Eθ (L (δ, θ)) .

We denote the general form of a shrinkage estimator as follows

(2.1) δφj
(

X,S2
)

=
(

1 − ϕ
(

S2, ∥X∥2
))

Xj, j = 1, . . . , p.

We recall that ∥X∥2

σ2 ∼ χ2
p (λ), where χ2

p (λ) denotes the non-central chi-square distribu-

tion with p degrees of freedom and non-centrality parameter λ = ∥θ∥2

2σ2 . We also recall
the following Lemma given by Fourdrinier et al. [5], that we will use often in the next.

Lemma 2.1. Let X ∼ Np (θ, σ2Ip) with θ ∈ R
p. Then

(a) for p ≥ 3 we have E
(

1
∥X∥2

)

= 1
σ2E

(

1
p−2+2K

)

;

(b) for p ≥ 5 we have E
(

1
∥X∥4

)

= 1
σ4 E

(

1
(p−2+2K)(p−4+2K)

)

,

where K ∼ P
(

∥θ∥2

2σ2

)

being the Poisson’s distribution of parameter
∥θ∥2

2σ2 .

For the next, we need the following results obtained by Hamdaoui and Benman-
sour [6].

Proposition 2.1 (Hamdaoui and Benmansour [6]). The risk of the estimator given

in (2.1) is

R
(

δφ(X,S2), θ
)

= σ2E
{

ϕ2
K χ2

p+2K − 2ϕK
(

χ2
p+2K − 2K

)

+ p
}

,
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where ϕK = ϕ
(

σ2χ2
n, σ

2χ2
p+2K

)

and K ∼ P
(

∥θ∥2

2σ2

)

being the Poisson’s distribution of

parameter
∥θ∥2

2σ2 and χ2
n is the central chi-square distribution with n degrees of freedom.

Furthermore, R
(

δφ (X,S2) , θ
)

≥ Bp (θ) with

Bp (θ) = σ2

{

p− 2 − E

{

(p− 2)2

p− 2 + 2K

}}

.

We set by bp (θ) = Bp(θ)
R(X,θ)

, it is clear that if lim
p→+∞

∥θ∥2

pσ2 = c (> 0), then

lim
p→∞

bp (θ) =
c

1 + c
.

In the particular case where ϕ(S2, ∥X∥2) = d S2

∥X∥2 we have

δd
(

X,S2
)

=

(

1 − d
S2

∥X∥2

)

X,

hence

R
(

δd(X,S2), θ
)

= σ2

{

p+ n
[

d2(n+ 2) − 2d(p− 2)
]

E

(

1

p− 2 + 2K

)}

.

For d = p−2
n+2

we obtain the James-Stein estimator which minimizes the risk of δd (X,S2)
whose quadratic risk is

R
(

δJS(X,S2), θ
)

= σ2

{

p− n

n+ 2
(p− 2)2E

(

1

p− 2 + 2K

)}

.

Proposition 2.2 (Hamdaoui and Benmansour [6]). If lim
p→+∞

∥θ∥2

pσ2 = c, then

lim
n,p→∞

R
(

δφ(X,S2), θ
)

R(X, θ)
≥ c

1 + c

and

lim
n,p→∞

R
(

δJS(X,S2), θ
)

R(X, θ)
=

c

1 + c
.

We note that from the Proposition 2.2, the risks ratio of any shrinkage estimator
δφ (X,S2) of the form (2.1) dominating the James-Stein estimator δJS (X,S2) , to the
maximum likelihood estimator attains the limiting lower bound Bm = c

1+c
(< 1),

when n and p tend simultaneously to infinity.

Now we rewrite the estimator in (2.1) by letting ϕ
(

S2, ∥X∥2
)

= ψ
(

S2, ∥X∥2
)

S2

∥X∥2 ,

as given by

(2.2) δψj
(

X,S2
)

=

(

1 − ψ
(

S2, ∥X∥2
) S2

∥X∥2

)

Xj, j = 1, . . . , p.
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Using the Proposition 2.1, the risk function of estimator δψ (X,S2) given in (2.2), is

R
(

δψ(X,S2), θ
)

= σ2E







ψ2
K

σ2

(σ2χ2
n)

2

(

σ2χ2
p+2K

) − 2ψK
(σ2χ2

n)
(

σ2χ2
p+2K

)

(

χ2
p+2K − 2K

)

+ p







= pσ2 + σ2E

{

χ2
n ψK

[

ψK χ2
n

χ2
p+2K

− 2

(

1 − 2K

χ2
p+2K

)]}

,

where ψK = ψ
(

σ2χ2
n , σ

2χ2
p+2K

)

.

We write ∆ψ = R
(

δψ (X,S2) , θ
)

−R (X, θ) . As R (X, θ) = pσ2, then

(2.3) ∆ψ = σ2E

{

χ2
n ψK

[

χ2
n ψK
χ2
p+2K

− 2

(

1 − 2K

χ2
p+2K

)]}

.

2.1. Limit of risks ratios. In this part, we are interested in studying of the limit
of risks ratios of estimators defined in (2.2), to the usual estimator X. So, we give
results different from the one given in our published papers.

Theorem 2.1. Assume that δψ (X,S2) is given in (2.2), such that p ≥ 3 and ψ
satisfies:

(H)
∣

∣

∣

∣

p− 2

n+ 2
− ψ

(

S2, ∥X∥2
)

∣

∣

∣

∣

≤ g (S2) a.s., where E
{

g2
(

σ2χ2
n+4

)}

= O
(

1
n2

)

, when

n is in the neighborhood of +∞.

If lim
p→+∞

∥θ∥2

pσ2 = c, then

lim
n,p→+∞

R
(

δψ (X,S2) , θ
)

R (X, θ)
=

c

1 + c
.

Proof. We note α = p−2
n+2

and ψ
(

S2, ∥X∥2
)

= ψ. As

R
(

δψ(X,S2), θ
)

= E







p
∑

i=1

[(

1 − ψ
S2

∥X∥2

)

Xi − θi

]2






and

R
(

δJS(X,S2), θ
)

= E







p
∑

i=1

[(

1 − α
S2

∥X∥2

)

Xi − θi

]2






,

then

∆JS =R
(

δψ(X,S2), θ
)

−R
(

δJS(X,S2), θ
)

=E

{ p
∑

i=1

{([(

1 − ψ
S2

∥X∥2

)

Xi − θi

]

−
[(

1 − α
S2

∥X∥2

)

Xi − θi

])

×
([(

1 − ψ
S2

∥X∥2

)

Xi − θi

]

+

[(

1 − α
S2

∥X∥2

)

Xi − θi

])}}
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=2E

{ p
∑

i=1

([

(α− ψ)
S2

∥X∥2Xi

] [(

1 − (α+ ψ)

2

S2

∥X∥2

)

Xi − θi

])}

=2E

{ p
∑

i=1

[

(α− ψ)

(

1 − (α+ ψ)

2

S2

∥X∥2

)

S2

∥X∥2X
2
i

]

−
p
∑

i=1

[

(α− ψ)
S2

∥X∥2Xi θi

]}

=2E

{ p
∑

i=1

[

(α− ψ)

(

1 +
(−α+ α− ψ − α)

2

S2

∥X∥2

)

S2

∥X∥2X
2
i

]

−
p
∑

i=1

[

(α− ψ)
S2

∥X∥2Xi θi

]}

=2E

{[

(α− ψ)
S2

∥X∥2

p
∑

i=1

X2
i

]

+
1

2

[

(α− ψ)2 S4

∥X∥4

p
∑

i=1

X2
i

]

−α
[

(α− ψ)
S4

∥X∥4

p
∑

i=1

X2
i

]

−
p
∑

i=1

[

(α− ψ)
S2

∥X∥2Xi θi

]}

=2E

{

(α− ψ)S2 +
1

2
(α− ψ)2 S4

∥X∥2 − α (α− ψ)
S4

∥X∥2

−
p
∑

i=1

[

(α− ψ)
S2

∥X∥2Xi θi

]}

.

Using the conditional expectation and the formula (2.7) given in Benmansour and
Mourid [3], we have

E

[

(α− ψ)
S2

∥X∥2 ⟨X, θ⟩
]

= E

{ p
∑

i=1

[

(α− ψ)
S2

∥X∥2Xi θi

]}

= λE

[

(

α− ψ
(

σ2χ2
n, σ

2χ2
p+2 (λ)

)) χ2
n

χ2
p+2 (λ)

]

,

where λ = ∥θ∥2

σ2 . Then

∆JS ≤2E

{

[

(♣α− ψ♣)S2
]

+
1

2
(α− ψ)2 S4

∥X∥2 + α (♣α− ψ♣) S4

∥X∥2

+λE

[

(∣

∣

∣α− ψ
(

σ2χ2
n, σ

2χ2
p+2 (λ)

)∣

∣

∣

) χ2
n

χ2
p+2 (λ)

]}

.

From the hypothesis (H) and the independence of two variables S2 and ∥X∥2 , we
have

∆JS ≤2E
[

S2g
(

S2
)]

+ E
[

S4g2
(

S2
)]

E

(

1

∥X∥2

)
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+ 2αE
[

S4g
(

S2
)]

E

(

1

∥X∥2

)

+ 2λE
[

S2g
(

S2
)]

E

(

1

χ2
p+2 (λ)

)

=2E

[

S4 g (S2)

S2

]

+ E
[

S4g2
(

S2
)]

E

(

1

∥X∥2

)

+ 2αE
[

S4g
(

S2
)]

E

(

1

∥X∥2

)

+ 2λE

[

S4 g (S2)

S2

]

E

(

1

χ2
p+2 (λ)

)

.

Using the Lemma 5.1 of the Appendix and the fact that E
(

1
χ2

p(λ)

)

≤ 1
p−2

, we obtain

∆JS

≤2n (n+ 2)σ2E





g
(

σ2χ2
n+4

)

χ2
n+4



+ n (n+ 2)σ2E
[

g2
(

σ2χ2
n+4

)]

E

(

1

χ2
p (λ)

)

+ 2n (n+ 2)σ2



αE
[

g
(

σ2χ2
n+4

)]

E

(

1

χ2
p (λ)

)

+ λE





g
(

σ2χ2
n+4

)

χ2
n+4



E

(

1

χ2
p+2 (λ)

)





≤2n (n+ 2)σ2E





g
(

σ2χ2
n+4

)

χ2
n+4



+
n (n+ 2)

p− 2
σ2E

[

g2
(

σ2χ2
n+4

)]

+ 2nσ2E
[

g
(

σ2χ2
n+4

)]

+ 2λ
n (n+ 2)

p
σ2E





g
(

σ2χ2
n+4

)

χ2
n+4



 .

Thus,

∆JS

pσ2
≤2n (n+ 2)

p
E





g
(

σ2χ2
n+4

)

χ2
n+4



+
n (n+ 2)

p (p− 2)
E
[

g2
(

σ2χ2
n+4

)]

+
2n

p
E
[

g
(

σ2χ2
n+4

)]

+
2λ

p

n (n+ 2)

p
E





g
(

σ2χ2
n+4

)

χ2
n+4



 .

From condition E
[

g2
(

σ2χ2
n+4

)]

= O
(

1
n2

)

and using the Schwarz inequality, when n

is in the neighborhood of +∞, we obtain

E





g
(

σ2χ2
n+4

)

χ2
n+4



 ≤ E1/2
[

g2
(

σ2χ2
n+4

)]

× E1/2

[

1

(χ2
n+4)

2

]

≤
√
M

1

n
×
√

1

n (n+ 2)
≤

√
M

1

n2

and

E
[

g
(

σ2χ2
n+4

)]

≤ E1/2
[

g2
(

σ2χ2
n+4

)]

≤
√
M

1

n
,
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where M is a real strictly positive. Then, when n is in the neighborhood of +∞, we
have

∆JS

pσ2
≤2 (n+ 2)

np

√
M +

n+ 2

np (p− 2)
M +

2

p

√
M +

2λ

pσ2
· (n+ 2)

np
M.

As lim
p→+∞

λ
p

= lim
p→+∞

∥θ∥2

pσ2 = c, then

lim
n,p→+∞

∆JS

pσ2
≤ 0.

Using the Proposition 2.2, we have

lim
n,p→+∞

R
(

δψ (X,S2) , θ
)

R (X, θ)
=

c

1 + c
. □

Example 2.1. Let ψ1 = p−2
n+2

− S2

(1+S2)2 , therefore

δψ1

(

X,S2
)

=

(

1 −
(

p− 2

n+ 2
− S2

(1 + S2)2

)

S2

∥X∥2

)

X.

It is sufficient to take g (S2) = S2

(1+S2)2 , then from the Lemma 5.1 of the Appendix, we

have

E
[

g2
(

σ2χ2
n+4

)]

= E







(

σ2χ2
n+4

)2

(1 + σ2χ2
n+4)

4







= (n+ 4) (n+ 6)σ4E

[

1

(1 + σ2χ2
n+8)

4

]

≤ (n+ 4) (n+ 6)

σ4
E

[

1

(χ2
n+8)

4

]

=
1

σ4
· (n+ 4) (n+ 6)

n (n+ 2) (n+ 4) (n+ 6)
+∞∼ 1

σ4
· 1

n2
.

Thus,

E
[

g2
(

σ2χ2
n+4

)]

= O
(

1

n2

)

.

2.2. Minimaxity. In this part we study the minimaxity of estimators defined in
(2.2). We give another results that improve the one given in Strawderman [18], Sun
[19] and Hamdaoui and Benmansour [6].

Theorem 2.2. Assume that δψ (X,S2) is given in (2.2), such that p ≥ 3 and ψ
satisfies:

(a) ψ
(

S2, ∥X∥2
)

is monotone non-decreasing in ∥X∥2
;

(b) 0 ≤ ψ
(

S2, ∥X∥2
)

≤ 2(p−2)
n+2

.
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A sufficient condition so that the estimator δψ (X,S2) is minimax is, for any k,

k = 0, 1, 2, . . . ,

E
{

ψ
(

σ2χ2
n+4 , σ

2χ2
p+2k

)}

≤ E
{

ψ
(

σ2χ2
n+2 , σ

2χ2
p+2k

)}

.

Proof. From the formula (2.3) and the condition (b), we have

∆ψ ≤ σ2E



















χ2
n ψK











2 (p− 2)

n+ 2
χ2
n

χ2
p+2K

− 2

(

1 − 2K

χ2
p+2K

)





























.

We will prove that the expectation on the right hand side being non-positive for any
K = k, k = 0, 1, 2, . . . .

By using the conditional expectation, we obtain

∆ψ ≤ σ2E











E



















ψk χ
2
n











2 (p− 2)

n+ 2
χ2
n

χ2
p+2k

− 2

(

1 − 2k

χ2
p+2k

)











∣

∣

∣

∣

∣

∣

∣

∣

∣

χ2
n





























≤ σ2E



















χ2
n E

(

ψk ♣ χ2
n

)

E





















2 (p− 2)

n+ 2
χ2
n

χ2
p+2k

− 2

(

1 − 2k

χ2
p+2k

)











∣

∣

∣

∣

∣

∣

∣

∣

∣

χ2
n





























,

the last inequality according to the condition (a) and the fact that the covariance of
two functions one increasing and the other decreasing is non-positive.

Using the Lemma 2.1, we obtain

E





















2 (p− 2)

n+ 2
χ2
n

χ2
p+2k

− 2

(

1 − 2k

χ2
p+2k

)











∣

∣

∣

∣

∣

∣

∣

∣

∣

χ2
n











=E





















2 (p− 2)

n+ 2
χ2
n

p− 2 + 2k
− 2 +

4k

p− 2 + 2k











∣

∣

∣

∣

∣

∣

∣

∣

∣

χ2
n











=

2 (p− 2)

(

χ2
n

n+ 2
− 1

)

p− 2 + 2k
.

Then

∆ψ ≤σ2E























χ2
n

2 (p− 2)

(

χ2
n

n+ 2
− 1

)

p− 2 + 2k
E
(

ψk ♣ χ2
n

)























=
2 (p− 2)σ2

p− 2 + 2k
E

{

χ2
n

(

χ2
n

n+ 2
− 1

)

ψk

}

.(2.4)
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From the Lemma 5.1 of the Appendix, we have

E

{

χ2
n

(

χ2
n

n+ 2
− 1

)

ψk

}

= nE
{

ψ
(

σ2χ2
n+4 , σ

2χ2
p+2k

)

− ψ
(

σ2χ2
n+2 , σ

2χ2
p+2k

)}

.

Using the sufficient condition

E
[

ψ
(

σ2χ2
n+4 , σ

2χ2
p+2k

)]

≤ E
[

ψ
(

σ2χ2
n+2 , σ

2χ2
p+2k

)]

,

we obtain

E

{

χ2
n

(

χ2
n

n+ 2
− 1

)

ψk

}

≤ 0.

Thus,
∆ψ ≤ 0. □

Example 2.2. Let ψ2 = 2(p−2)
n+2

ln (1 + S2) exp (−S2), therefore

δψ2

(

X,S2
)

=

(

1 − 2 (p− 2)

n+ 2

S2 ln (1 + S2) exp (−S2)

∥X∥2

)

X.

Remark 2.1. (i) Using the Lemma 5.2 of the Appendix, it is clear that if ψ
(

S2, ∥X∥2
)

is monotone non-increasing in S2, then the sufficient condition:

E
{

ψ
(

σ2χ2
n+4 , σ

2χ2
p+2k

)}

≤ E
{

ψ
(

σ2χ2
n+2 , σ

2χ2
p+2k

)}

is satisfied. Thus, the theorem 2.2 gives an improvement of the results of minimaxity
given in the first Theorem of Strawderman [18], Theorem 4.1 of Sun [19] and Theorem
4.1 of Hamdaoui and Benmansour [6].

(ii) Note that the James-Stein estimator satisfies the conditions of Theorem 2.2,
thus Theorem 2.2 gives another proof of the minimaxity of the James-Stein estimator.

3. Estimator of Lindley-Type

Let the model be X/θ, σ2 ∼ Np (θ, σ2Ip) , where the parameters θ and σ2 are
unknown and σ2 is estimated by S2 (S2 ∼ σ2χ2

n). The aim is to estimate the mean
θ = (θ1, θ2, . . . , θp)

t by shrinkage estimators of the form

(3.1) δφj
(

X,S2, T 2
)

=
(

1 − ϕ
(

S2, T 2
)) (

Xj −X
)

+X, j = 1, 2, . . . , p,

where

X =
1

p

p
∑

i=1

Xi and T 2 =
p
∑

i=1

(

Xi −X
)2
,

with the two random variables S2 and T 2 are independent. In the next, we follow the
same steps that we treated in Section 2, then we give a similar results to those given
in Section 2 with some changes in the proofs.

Lemma 3.1. For any functions f and g of the two variables S2 and T 2, such that

all expectations of (a) and (b) exist, we have

(a) E ¶f (S2, T 2)♢ = E
{

f
(

σ2χ2
n, σ

2χ2
p−1+2K

)}

;
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(b) E
{

g (S2, T 2)
p
∑

i=1

(

θi − θ
) (

Xi −X
)

}

= 2σ2E
{

Kg
(

σ2χ2
n, σ

2χ2
p−1+2K

)}

,

where K ∼ P
( p
∑

i=1

(

θi − θ
)2
/2σ2

)

being the Poisson’s distribution of parameter

p
∑

i=1

(

θi − θ
)2
/2σ2 and θ = 1

p

p
∑

i=1
θi.

Proof. Analogous to the proof of the Lemma 2.1 given by Sun [19]. □

The following proposition, gives the explicit formula of the risk of the estimator
δφ (X,S2, T 2) given in (3.1). For the proof see Appendix.

Proposition 3.1. Let δφ (X,S2, T 2) is given in (3.1), then for any p ≥ 4 we have

(i) R
(

δφ(X,S2, T 2), θ
)

= σ2
{

ϕ2
Kχ

2
p−1+2K − 2ϕK

(

χ2
p−1+2K − 2K

)

+ p
}

;

(ii) R
(

δφ(X,S2, T 2), θ
)

≥ Bp (θ) , where

ϕK = ϕ
(

σ2χ2
n, σ

2χ2
p−1+2K

)

and Bp (θ) = σ2E











p−
(

χ2
p−1+2K − 2K

)2

χ2
p−1+2K











;

(iii) if c = lim
p→+∞

p
∑

i=1

(

θi − θ
)2
/pσ2 exists, then

lim
p→+∞

Bp (θ)

R (X, θ)
= lim

p→+∞

Bp (θ)

pσ2
= lim

p→+∞
bp (θ) =

c

1 + c
.

Now, we consider the special case when ϕ (S2, T 2) = dS
2

T 2 , where d is a constant,
then the estimator given in (3.1) is written as

(3.2) δdj
(

X,S2, T 2
)

=

(

1 − d
S2

T 2

)

(

Xj −X
)

+X, j = 1, 2, . . . , p.

From the Proposition 3.1, we have

R
(

δd(X,S2, T 2), θ
)

= σ2

{

p−
[

2dn (p− 3) − d2n (n+ 2)
]

E

(

1

p− 3 + 2K

)}

.

We note that when d = 0, the estimator δ0 (X,S2, T 2) given in (3.2) becomes the
maximum likelihood estimator X, its risk equal pσ2. In this case, the James-Stein

estimator is obtained by minimizing the risk R
(

δd(X,S2, T 2), θ
)

, the James-Stein

estimator is given by

(3.3) δJSj
(

X,S2, T 2
)

=

(

1 − p− 3

n+ 2

S2

T 2

)

(

Xj −X
)

+X, j = 1, 2, . . . , p.

Its risk is

(3.4) R
(

δJS(X,S2, T 2), θ
)

= σ2

{

p− n

n+ 2
(p− 3)2 E

(

1

p− 3 + 2K

)}

,

where K ∼ P
( p
∑

i=1

(

θi − θ
)2
/2σ2

)

.



204 A. BENKHALED AND A. HAMDAOUI

Proposition 3.2. (a) If p ≥ 4, the James-Stein estimator δJS (X,S2, T 2) given in

(3.3) is minimax.

(b) If lim
p→+∞

p
∑

i=1

(

θi − θ
)2
/pσ2 = c(> 0), then

lim
n,p→+∞

R
(

δJS (X,S2, T 2) , θ
)

R (X, θ)
=

c

1 + c
.

Proof. (a) It is obviously from the formula (3.4).
(b) For p ≥ 6 and from the Lemma 3.1 given by Sun [19], we have

1

p− 3 +

p
∑

i=1

(θi−θ)
2

σ2

≤ E

(

1

p− 3 + 2K

)

≤ 1

p− 5 +

p
∑

i=1

(θi−θ)
2

σ2

,

then

R
(

δJS (X,S2, T 2) , θ
)

R (X, θ)
≥ 1 − n

n+ 2
· (p− 3)2

p2
· 1

p−5
p

+

p
∑

i=1

(θi−θ)
2

pσ2

and

R
(

δJS (X,S2, T 2) , θ
)

R (X, θ)
≤ 1 − n

n+ 2
· (p− 3)2

p2
· 1

p−3
p

+

p
∑

i=1

(θi−θ)
2

pσ2

.

Thus,

c

1 + c
= 1 − 1

1 + c
≤ lim

n,p→+∞

R
(

δJS (X,S2, T 2) , θ
)

R (X, θ)
≤ 1 − 1

1 + c
=

c

1 + c
. □

Remark 3.1. From Propositions 3.1 and 3.2, we note that the risks ratio of any shrink-
age estimator δφ (X,S2, T 2) of the form (3.1) dominating the James-Stein estimator
δJS (X,S2, T 2) , to the maximum likelihood estimator attains the limiting lower bound
Bm = c

1+c
, when n and p tend simultaneously to infinity.

Next, we consider the general form of shrinkage estimators of Lindley-type, defined
by

(3.5) δϕj
(

X,S2, T 2
)

=

(

1 − φ
(

S2, T 2
) S2

T 2

)

(

Xj −X
)

+X, j = 1, 2, . . . , p.

We write ∆ϕ = R (δϕ (X,S2, T 2) , θ) −R (X, θ) . Then

∆ϕ = σ2E

{

χ2
n φK

[

χ2
nφK

χ2
p−1+2K

− 2

(

1 − 2K

χ2
p−1+2K

)]}

,

where φK = φ
(

σ2χ2
n, σ

2χ2
p−1+2K

)

.
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3.1. Limit of risks ratios.

Proposition 3.3. Assume that δϕ (X,S2, T 2) is given in (3.5), such that p ≥ 3 and

φ satisfies

(H)
∣

∣

∣

p−3
n+2

− φ (S2, T 2)
∣

∣

∣ ≤ g (S2) a.s., where E
{

g2
(

σ2χ2
n+4

)}

= O
(

1
n2

)

.

If lim
p→+∞

p
∑

i=1

(

θi − θ
)2
/pσ2 = c, then

lim
n,p→+∞

R (δϕ (X,S2, T 2) , θ)

R (X, θ)
=

c

1 + c
.

Proof. We follow the same steps of the proof of Theorem 2.1, endeed we write α = p−3
n+2

and φ (S2, T 2) = φ. As

R
(

δϕ(X,S2, T 2), θ
)

= E







p
∑

i=1

[(

1 − φ
S2

T 2

)

(

Xi −X
)

− θi

]2






and

R
(

δJS(X,S2, T 2), θ
)

= E







p
∑

i=1

[(

1 − α
S2

T 2

)

(

Xi −X
)

− θi

]2






,

we have

∆JS =R
(

δϕ(X,S2, T 2), θ
)

−R
(

δJS(X,S2, T 2), θ
)

=2E

{ p
∑

i=1

[

(α− φ)
S2

T 2

(

Xi −X
)

] [(

1 − (α+ φ)

2

S2

T 2

)

(

Xi −X
)

− θi

]}

=2E

{ p
∑

i=1

[

(α− φ)

(

1 − (α+ φ)

2

S2

T 2

)

S2

T 2

(

Xi −X
)2
]

−
p
∑

i=1

[

(α− φ)
S2

T 2

(

Xi −X
)

θi

]}

=2E

{[

(α− φ)
S2

T 2

p
∑

i=1

(

Xi −X
)2
]

+
1

2

[

(α− φ)2 S
4

T 4

p
∑

i=1

(

Xi −X
)2
]

−α
[

(α− φ)
S4

T 4

p
∑

i=1

(

Xi −X
)2
]

−
p
∑

i=1

[

(α− φ)
S2

T 2

(

Xi −X
) (

θi −X
)

]}

=2E

{

[

(α− φ)S2
]

+
1

2

[

(α− φ)2 S
4

T 2

]

− α

[

(α− φ)
S4

T 2

]

−
p
∑

i=1

[

(α− φ)
S2

T 2

(

Xi −X
) (

θi −X
)

]}

.

As
p
∑

i=1

(

Xi −X
)

= 0, then

E

{

(α− φ)
S2

T 2

p
∑

i=1

(Xi −X)(θi −X)

}
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=E

{

(α− φ)
S2

T 2

p
∑

i=1

(Xi −X)(θi − θ) + (θ −X)(α− φ)
S2

T 2

p
∑

i=1

(Xi −X)

}

=E

{

(α− φ)
S2

T 2

p
∑

i=1

(Xi −X)(θi − θ)

}

=2σ2E

{

K
(

α− φ(σ2χ2
n, σ

2χ2
p−1+2K)

) χ2
n

χ2
p−1+2K

}

.

Hence,

∆JS ≤2E

{

(♣α− φ♣)S2 +
1

2
(α− φ)2 S

4

T 2
+ α (♣α− φ♣) S

4

T 2

+2σ2K
(∣

∣

∣α− φ
(

σ2χ2
n, σ

2χ2
p−1+2K

)∣

∣

∣

) χ2
n

χ2
p−1+2K

}

.

From hypothesis (H) and the independence to two variables S2 and T 2, we have

∆JS ≤2
{

E
[

S2g
(

S2
)]

+
1

2
E
[

S4g2
(

S2
)]

E
(

1

T 2

)

+αE
[

S4g
(

S2
)]

E
(

1

T 2

)}

+ 2σ2E

[

S2g
(

S2
) K

χ2
p−1+2K

]

=2E

[

S4 g (S2)

S2

]

+ E
[

S4g2
(

S2
)]

E
(

1

T 2

)

+ 2αE
[

S4g
(

S2
)]

E
(

1

T 2

)

+ 2σ2E

[

S4 g (S2)

S2
· K

χ2
p−1+2K

]

.

Using the conditional expectation, we have

E

[

S4 g (S2)

S2

K

χ2
p−1+2K

]

= E

{

E

([

S4 g (S2)

S2
· K

χ2
p−1+2K

]∣

∣

∣

∣

∣

S2

)}

=
1

2
E

{

E

([

S4 g (S2)

S2
· 2K

p− 3 + 2K

]∣

∣

∣

∣

∣

S2

)}

≤ 1

2
E

[

S4 g (S2)

S2

]

.

From the Lemma 5.1 of the Appendix, the independence of two variables χ2
n+4 and

χ2
p−1+2K and the fact that E

(

1
χ2

p−1+2K

)

= E
(

1
p−3+2K

)

≤ 1
p−3

, we obtain

∆JS ≤2n (n+ 2)σ2







E





g
(

σ2χ2
n+4

)

χ2
n+4



+
1

2
E
[

g2
(

σ2χ2
n+4

)]

E

(

1

χ2
p−1+2K

)







+ 2n (n+ 2)σ2



αE
[

g
(

σ2χ2
n+4

)]

+ E





g
(

σ2χ2
n+4

)

χ2
n+4







 E

(

1

χ2
p−1+2K

)
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≤2n (n+ 2)σ2E





g
(

σ2χ2
n+4

)

χ2
n+4



+
n (n+ 2)

p− 3
σ2E

[

g2
(

σ2χ2
n+4

)]

+ 2nσ2E
[

g
(

σ2χ2
n+4

)]

+ 2σ2n (n+ 2)

p− 3
E





g
(

σ2χ2
n+4

)

χ2
n+4



 .

Thus,

∆JS

pσ2
≤2n (n+ 2)

p
E





g
(

σ2χ2
n+4

)

χ2
n+4



+
n (n+ 2)

p (p− 3)
E
[

g2
(

σ2χ2
n+4

)]

+
2n

p
E
[

g
(

σ2χ2
n+4

)]

+
2λ

pσ2

n (n+ 2)

p− 3
E





g
(

σ2χ2
n+4

)

χ2
n+4



 ,

where λ =
p
∑

i=1

(

θi − θ
)2
/σ2.

From the condition E
[

g2
(

σ2χ2
n+4

)]

= O
(

1
n2

)

, when n is in the neighborhood of

+∞, we have

∆JS

pσ2
≤2 (n+ 2)

np

√
M +

n+ 2

np (p− 3)
M +

2

p

√
M +

2λ

pσ2
· (n+ 2)

np
M,

where M is real strictly positive.

As lim
p→+∞

λ

p
= lim

p→+∞

p
∑

i=1

(

θi − θ
)2
/pσ2 = c, hence

lim
n,p→+∞

∆JS

pσ2
≤ 0.

Thus, from Propositions 3.1 and 3.2, we have

lim
n,p→+∞

R (δϕ (X,S2, T 2) , θ)

R (X, θ)
=

c

1 + c
. □

3.2. Minimaxity.

Proposition 3.4. Assume that δϕ (X,S2, T 2) is given in (3.5), such that p ≥ 4. If

(a) φ (S2, T 2) is monotone non-decreasing in T 2;

(b) 0 ≤ φ (S2, T 2) ≤ 2 (p− 3)

n+ 2
.

A sufficient condition so that the estimator δϕ (X,S2, T 2) is minimax is, for any k,

k = 0, 1, 2, . . . , and for each fixed T 2

E
{

φ
(

σ2χ2
n+4 , σ

2χ2
p−1+2k

)}

≤ E
{

φ
(

σ2χ2
n+2 , σ

2χ2
p−1+2k

)}

.

Proof. The proof is similar to proof of Theorem 2.2. Endeed, from condition (b), we
obtain

∆ϕ =σ2E

{

χ2
n φK

[

χ2
n φK

χ2
p−1+2K

− 2

(

1 − 2K

χ2
p−1+2K

)]}
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≤σ2E







χ2
n φK





2(p−3)
n+2

χ2
n

χ2
p−1+2K

− 2

(

1 − 2K

χ2
p−1+2K

)











.

We will prove that the expectation on the right hand side being non-positive for any
K = k, k = 0, 1, 2, . . .

By using the conditional expectation, we have

∆ϕ ≤ σ2E



E







χ2
n φk





2(p−3)
n+2

χ2
n

χ2
p−1+2k

− 2

(

1 − 2k

χ2
p−1+2k

)]

∣

∣

∣

∣

∣

∣

χ2
n











≤ σ2E







χ2
n E

(

φk♣ χ2
n

)

E









2(p−3)
n+2

χ2
n

χ2
p−1+2k

− 2

(

1 − 2k

χ2
p−1+2k

))

∣

∣

∣

∣

∣

∣

χ2
n











,

the last inequality according to the condition (a) and the fact that the covariance of
two functions one increasing and the other decreasing is non-positive.

As

E









2(p−3)
n+2

χ2
n

χ2
p−1+2k

− 2

(

1 − 2k

χ2
p−1+2k

)



 ♣ χ2
n



 = E





2 (p− 3)
(

χ2
n

n+2
− 1

)

p− 3 + 2k

∣

∣

∣

∣

∣

∣

χ2
n





=
2 (p− 3)

(

χ2
n

n+2
− 1

)

p− 3 + 2k
,

then

∆ϕ ≤ σ2E























χ2
n

2 (p− 3)

(

χ2
n

n+ 2
− 1

)

p− 3 + 2k
E
(

φk ♣ χ2
n

)























=
2 (p− 3)σ2

p− 3 + 2k
E

{

χ2
n

(

χ2
n

n+ 2
− 1

)

φk

}

.

Using the sufficient condition

E
{

φ
(

σ2χ2
n+4 , σ

2χ2
p−1+2k

)}

≤ E
{

φ
(

σ2χ2
n+2 σ

2χ2
p−1+2k

)}

,

we have

E

{

χ2
n

(

χ2
n

n+ 2
− 1

)

φk

}

≤ 0,

hence ∆ϕ ≤ 0. □

Remark 3.2. Note that the James-Stein estimator given in (3.3) satisfies the conditions
of the Proposition 3.4, thus the James-Stein estimator is minimax.
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4. simulation

We illustrate the graph of the upper bound given by the formula (2.4) for the risk
difference ∆ψ of the estimator δψ2 (X,S2) given in the Example 2.2 and the maxi-
mum likelihood estimator, divided by the risk of the maximum likelihood estimator
R (X, θ) = pσ2, as a function of d = ∥θ∥2 and s = σ2, for various values of n and p.

Figure 1. n = 10 and p = 4

Figure 2. n = 25 and p = 10

In Figure 1 and Figure 2, we note that an upper bound of risks difference of the
estimator δψ2 (X,S2) given in the Example 2.2 and the maximum likelihood estimator
X, divided by the risk of the maximum likelihood estimator is negative, thus the
estimator δψ2 (X,S2) is minimax for n = 10 and p = 4 and for n = 25 and p = 10.
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5. Appendix

Lemma 5.1 (Casella and Hwang [4]). For any real function h such that

E
(

h
(

χ2
q (λ)

)

χ2
q (λ)

)

exists, we have

E
{

h
(

χ2
q (λ)

)

χ2
q (λ)

}

= qE
{

h
(

χ2
q+2 (λ)

)}

+ 2λE
{

h
(

χ2
q+4 (λ)

)}

.

Lemma 5.2 (Benmansour and Hamdaoui [2]). Let f be a real function. If for p ≥ 3,
Eχ2

p(λ)[(f(U)] exists, then

(a) if f is monotone non-increasing, we have

Eχ2
p+2

(λ)[(f(U)] ≤ Eχ2
p(λ)[(f(U)];

(b) if f is monotone non-decreasing, we have

Eχ2
p+2

(λ)[(f(U)] ≥ Eχ2
p(λ)[(f(U)].

Proof. (Proposition 3.1) (i)

R
(

δφ
(

X,S2, T 2
)

, θ
)

=E

[ p
∑

i=1

[(

1 − ϕ
(

S2, T 2
)) (

Xi −X
)

+X − θi
]2
]

=E

[

[

1 − ϕ
(

S2, T 2
)]2

p
∑

i=1

(

Xi −X
)2
]

+ E

[ p
∑

i=1

(

X − θi
)2
]

+ 2E

[

[

1 − ϕ
(

S2, T 2
)]

p
∑

i=1

(

Xi −X
) (

X − θi
)

]

.

As

E

[

[

1 − ϕ
(

S2, T 2
)]2

p
∑

i=1

(

Xi −X
)2
]

=E
[

(1 − ϕK)2 T 2
]

=σ2E
[

(1 − ϕK)2 χ2
p−1+2K

]

(5.1)

and

E

[ p
∑

i=1

(

X − θi
)2
]

=E

[ p
∑

i=1

(

X − θ + θ − θi
)2
]

=E

[ p
∑

i=1

(

X − θ
)2
]

+
p
∑

i=1

(

θ − θi
)2

+ 2

( p
∑

i=1

(

θ − θi
)

)

E
(

X − θ
)

=σ2 +
p
∑

i=1

(

θ − θi
)2
.(5.2)

The last equality comes from the distribution of X, X ∼ Np

(

θ, σ
2

p

)

and the fact that
p
∑

i=1

(

θ − θi
)

= 0.
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Furthermore, we have

2E

[

[

1 − ϕ
(

S2, T 2
)]

p
∑

i=1

(

Xi −X
) (

X − θi
)

]

= − 2E

[

[

1 − ϕ
(

S2, T 2
)]

p
∑

i=1

(

Xi −X
) (

θi − θ + θ −X
)

]

= − 2E

[

[

1 − ϕ
(

S2, T 2
)]

p
∑

i=1

(

Xi −X
) (

θi − θ
)

]

− 2E

[

[

1 − ϕ
(

S2, T 2
)] (

θ −X
)

p
∑

i=1

(

Xi −X
)

]

= − 2E

[

[

1 − ϕ
(

S2, T 2
)]

p
∑

i=1

(

Xi −X
) (

θi − θ
)

]

.

The last equality follows from the fact that
p
∑

i=1

(

Xi −X
)

= 0.

Using (b) of Lemma 3.1, we have

(5.3) − 2E

[

[

1 − ϕ
(

S2, T 2
)]

p
∑

i=1

(

Xi −X
) (

θi − θ
)

]

= −4σ2E [K (1 − ϕK)] .

From formulas (5.1), (5.2) and (5.3) and the fact that E (K) =

p
∑

i=1

(θi−θ)
2

2σ2 , we have

R
(

δφ
(

X,S2, T 2
)

, θ
)

= E
{

σ2 (1 − ϕK)2 χ2
p−1+2K + σ2 + 2σ2K − 4σ2K (1 − ϕK)

}

= σ2E
{

ϕ2
K χ2

p−1+2K − 2ϕK
(

χ2
p−1+2K − 2K

)

+ p
}

.

(ii) We note that R
(

δφ (X,S2, T 2) , θ
)

can be written as

R
(

δφ
(

X,S2, T 2
)

, θ
)

=σ2E











p−
(

χ2
p−1+2K − 2K

)2

χ2
p−1+2K











+ σ2E







χ2
p−1+2K

(

ϕK − 1 +
2K

χ2
p−1+2K

)2






≥σ2E











p−
(

χ2
p−1+2K − 2K

)2

χ2
p−1+2K











= Bp (θ) .

(iii)

Bp (θ) = σ2E











p−
(

χ2
p−1+2K − 2K

)2

χ2
p−1+2K










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= σ2

{

p− E

{

E

[(

χ2
p−1+2K +

4K2

χ2
p−1+2K

− 4K

)

♣ K
]}}

= σ2

{

p− E

(

p− 1 + 2K +
4K2

p− 3 + 2K
− 4K

)}

= σ2

{

p− 2 − E

[

(p− 3)2

p− 3 + 2K

]}

.

Thus, from Lemma 3.1 given in Sun [19], we obtain

lim
p→+∞

bp (θ) = lim
p→+∞

Bp (θ)

pσ2
=

c

1 + c
. □
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ON (m, h1, h2)-G-CONVEX DOMINATED STOCHASTIC PROCESSES

JORGE ELIECER HERNÁNDEZ HERNÁNDEZ1

Abstract. In this paper is introduced the concept of (m, h1, h2)-convexity for
stochastic processes dominated by other stochastic processes with the same property,
some mean square integral Hermite-Hadamard type inequalities for this kind of
generalized convexity are established and from the founded results, other mean
square integral inequalities for the classical convex, s-convex in the Ąrst and second
sense, P -convex and MT -convex stochastic processes are deduced.

1. Introduction

In 1974, B. Nagy applied a characterization of measurable stochastic processes to
solve a generalization of the (additive) Cauchy functional equation [15]. Later, in 1980
K. Nikodem [17] considered convex stochastic processes, and in 1995 A. Skowronski [27]
obtained some further results on Wright convex stochastic processes, which generalize
some known properties of convex stochastic processes. For a detailed study about
this topic the following references are helpful [2, 3, 13, 24,25].

Convexity is one of the hypotheses often used in optimization theory. It is generally
used to give global validity for certain propositions, which otherwise would only be
true locally. A function f : I → R, where I ⊂ R is an interval, is said to be a convex
function on I if the inequality

(1.1) f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. If the reversed inequality in (1.1) holds, then f is
concave.

Key words and phrases. (m, h1, h2)-convexity, dominated convexity, mean square integral inequal-
ities, stochastic processes.
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The convexity of functions and their generalized forms play an important role in
many fields such as Economic Science, Biology, Optimization and other [6, 21].

About the concept of convexity, its evolution has had a great impact in the com-
munity of investigators. In recent years, for example, generalized concepts such as
s-convexity, h-convexity, MT -convexity, log-convexity, P -convexity, η-convexity, quasi
convexity and others, as well as combinations of these new concepts have been intro-
duced. The following references give more information about the research in this area
[1, 5, 11,14,16,18,22,29].

Similarly, some recent studies have been introduced the following concepts: J-
convex [26], Wright-convex [27], strongly convex [9], strongly Wright [10], p-convex
[20], harmonically convex [19], s-convex in the first and second sense [12,23] stochastic
process.

The well-known Hermite-Hadamard inequality establish that for every convex func-
tion f : I ⊂ R → R

(1.2) f



a + b

2



≤ 1

b − a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2

holds for every a, b ∈ I, with a < b.
In 2012, D. Kotrys presented the Hermite-Hadamard inequality for convex stochastic

processes [8].

Theorem 1.1. If X : I × Ω → R is Jensen-convex and mean square continuous in

the interval T × Ω, then for any u, v ∈ T , we have

(1.3) X


u + v

2
, ·


≤ 1

u − v

∫ v

u
X(t, ·)dt ≤ X(u, ·) + X(v, ·)

2

almost everywhere for all u, v ∈ I.

Many researchers have developed works where they relate the concepts of generalized
convexity and stochastic processes using the inequality (1.3). For example, E. Set et
al. in [23] investigated Hermite-Hadamard type inequalities for stochastic processes
in the second sense, and M. J. Vivas-Cortez and J. E. Hernández Hernández in [30]
studied about (h1, h2, m)-GA-convexity for stochastic processes.

Following this line of research, this paper introduces the concept of (m, h1, h2)-
convexity for stochastic processes dominated by other stochastic processes with the
same property, some mean square integral Hermite-Hadamard type inequalities for
this kind of generalized convexity are established, and from the founded results, other
integral inequalities for stochastic processes with other types of convexity are deduced.

2. Preliminaries

The following references [8,13,27,28] contain the basic notions of stochastic processes
used in this work.

Let (Ω,A, µ) be an arbitrary probability space. A function X : Ω → R is called
a random variable if it is A-measurable and P ¶w ∈ Ω : X(w) ̸∈ R♢ = 0. Let I ⊂ R
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be time. A function X : I × Ω → R is called a stochastic process if for all t ∈ I the
function X(t, ·) : Ω → R is a random variable.

In this work I is an interval and X(t, ·) is called a stochastic process with continuous
time.

It is said that the stochastic process X : I × Ω → R is called

(a) continuous in probability on the interval I if for all t0 ∈ I it follows that

µ − lim
t→t0

X(t, ·) = X(t0, ·),

where P − lim denotes the limit in probability;
(b) mean-square continuous in the interval I if for all t0 ∈ I

µ − lim
t→t0

E(X(t, ·) − X(t0, ·)) = 0,

where E(X(t, ·)) denote the expectation value of the random variable X(t, ·);
(c) increasing (decreasing) if for all u, v ∈ I such that t < s,

X(u, ·) ≤ X(v, ·), (X(u, ·) ≥ X(v, ·)) (a.e.);

(d) monotonic if it is increasing or decreasing;
(e) differentiable at a point t ∈ I if there exists a random variable X ′(t, ·) : I ×Ω →

R such that

X ′(t, ·) = µ − lim
t→t0

X(t, ·) − X(t0, ·)
t − t0

.

A stochastic process X : I × Ω → R is continuous (differentiable) if it is continuous
(differentiable) at every point of the interval I.

Definition 2.1. Let (Ω, A, P ) be a probability space, I ⊂ R be an interval with
E(X(t, ·)2) < ∞ for all t ∈ I. Let [a, b] ⊂ I, a = t0 < t1 < · · · < tn = b be a partition
of [a, b] and θk ∈ [tk−1, tk] for k = 1, 2, . . . , n. A random variable Y : Ω → R is called
mean-square integral of the process X(t, ·) on [a, b] if the following identity holds

lim
n→∞

E



n
∑

k=0

X(θk, ·)(tk − tk−1) − Y

]

2

= 0,

then it can be written
∫ b

a
X(t, ·)dt = Y (·) (a.e.).

Also, mean square integral operator is increasing, that is,
∫ b

a
X(t, ·)dt ≤

∫ b

a
Z(t, ·)dt (a.e.),

where X(t, ·) ≤ Z(t, ·) in [a, b] ([26]).
In throughout paper, we will consider the stochastic processes that is with continu-

ous time and mean-square continuous.
In 1980, K. Nickoden introduced an important definition in which the property of

convexity for stochastic processes is established [17].
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Definition 2.2. Set (Ω,A, P ) to be a probability space and I ⊂ R be an interval. It
is said that a stochastic process X : I × Ω → R is convex if the following inequality
holds almost everywhere

(2.1) X(λu + (1 − λ)v, ·) ≤ λX(u, ·) + (1 − λ)X(v, ·),
for all u, v ∈ I and λ ∈ [0, 1].

In the work of J. E. Hernández Hernández and J. F. Gómez [7] the following
definition is introduced.

Definition 2.3. Let h1, h2 : [0, 1] → R be two non negative functions, m ∈ (0, 1] and
I ⊂ R an interval. A stochastic process X : I × Ω → R is (m, h1, h2)-convex if the
following inequality holds almost everywhere

(2.2) X (ta + m(1 − t)b, ·) ≤ h1(t)X(a, ·) + mh2(t)X (b, ·) ,

for all a, b ∈ I and t ∈ [0, 1] .

Some other kinds of generalized convexity for stochastic process, as s-convexity in
the second sense and P -convexity are presented in the same work.

With the notion of dominated convexity introduced by S. S. Dragomir et al. in [4],
the following definitions for stochastic processes are introduced.

Definition 2.4. Let I ⊂ R be an interval and G : I × Ω → R be a non negative
convex stochastic process. A stochastic process X : I × Ω → R is called a convex
dominated by G if the following inequality holds almost everywhere

♣tX(a, ·) + (1 − t)X (b, ·) − X (ta + (1 − t)b, ·)♣(2.3)

≤t(t)G(a, ·) + (1 − t)G (b, ·) − G (ta + (1 − t)b, ·) ,

for all a, b ∈ I and t ∈ [0, 1] .

Definition 2.5. Let h1, h2 : [0, 1] → R be two non negative functions, m ∈ (0, 1],
I ⊂ R an interval and G : I × Ω → R be a non negative (m, h1, h2)-convex stochastic
process. A stochastic process X : I × Ω → R is called a (m, h1, h2)-convex dominated
by G if the following inequality holds almost everywhere

♣h1(t)X(a, ·) + mh2(t)X (b, ·) − X (ta + m(1 − t)b, ·)♣(2.4)

≤h1(t)G(a, ·) + mh2(t)G (b, ·) − G (ta + m(1 − t)b, ·) ,

for all a, b ∈ I and t ∈ [0, 1] .

Note that if m = 1, h1(t) = t and h2(t) = 1 − t for all t ∈ [0, 1] the Definition
2.4 is obtained, if m = 1, h1(t) = ts and h2(t) = 1 − ts for all t ∈ [0, 1] and some
s ∈ (0, 1] we have the definition of s-convex stochastic process in the first sense [12];
if m = 1, h1(t) = ts and h2(t) = (1 − t)s for all t ∈ [0, 1] and some s ∈ (0, 1] we
have the definition of s-convex stochastic process in the second sense [23]; if m = 1,
h1(t) = h2(t) = 1 for all t ∈ [0, 1] then the definition of P -convex stochastic process

follows [7] and also, if m = 1, h1(t) =
√

t
2
√

1−t
and h2(t) =

√
1−t

2
√

t
for all t ∈ (0, 1) the

definition of MT -convex stochastic process is obtained.
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3. Main Results

Henceforth, h1, h2 : [0, 1] → R are considered non-negative functions and m ∈ (0, 1] .

Proposition 3.1. Let G : I × Ω → R and X : I × Ω → R be a non negative

(m, h1, h2)-convex stochastic processes. The following statements are equivalent:

i) X is a (m, h1, h2)-convex dominated by G;

ii) the stochastic processes (G − X) and (G + X) are (m, h1, h2)-convex;

iii) there exist two (m, h1, h2)-convex stochastic processes H, K : I × Ω → R such

that X = 1

2
(H − K) and G = 1

2
(H + K).

Proof. i) ⇔ ii) The condition (2.4) is equivalent to

G (ta + m(1 − t)b, ·) − h1(t)G(a, ·) − mh2(t)G (b, ·)
≤h1(t)X(a, ·) + mh2(t)X (b, ·) − X (ta + m(1 − t)b, ·)
≤h1(t)G(a, ·) + mh2(t)G (b, ·) − G (ta + m(1 − t)b, ·) ,

and, from this double inequality, making a correct rearrange it follows that

(G + X) (ta + m(1 − t)b, ·) ≤ h1(t) (G + X) (a, ·) + mh2(t) (G + X) (b, ·)

and

(G − X) (ta + m(1 − t)b, ·) ≤ h1(t) (G − X) (a, ·) + mh2(t) (G − X) (b, ·).

iii) ⇒ ii) Lets define X = 1

2
(H − K) and G = 1

2
(H + K) . Adding and subtracting

we have (G + X) = H and (G − X) = K, so, both are (m, h1, h2)-convex stochastic
processes.

ii) ⇒ iii) By condition ii), (G + X) and (G − X) are (m, h1, h2)-convex stochastic
processes, so H = G + K and K = G − X are (m, h1, h2)-convex stochastic processes.

□

Proposition 3.2. Let X : I × Ω → R be a (m, h1, h2)-convex stochastic process and

A : Ω → R a random variable, then the stochastic process defined by A(·)X(t, ·) is

(m, h1, h2)-convex.

Proof. Using Definition 2.3 we have the desired result. □

Proposition 3.3. Let G : I × Ω → R be a (m, h1, h2)-convex stochastic process and

X, Y : I × Ω → R two (m, h1, h2)-convex stochastic process dominated by G, then we

have that X + Y is a (m, h1, h2)-convex stochastic process dominated by 2G. Also, if

A : Ω → R is a random variable, then the (m, h1, h2)-convex stochastic process defined

by A(·)X(t, ·) is dominated by ♣A(·)♣ G.
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Proof. With the help of Definition 2.5 and the triangular inequality we have that

♣h1(t)(X + Y )(u, ·) + mh2(t)(X + Y )(v, ·) − (X + Y )(tu + (1 − t)v, ·)♣
= ♣h1X(u, ·) + mh2(t)X(v, ·) − X(tu + (1 − t)v, ·)

+ h1Y (u, ·) + mh2(t)Y (v, ·) − Y (tu + (1 − t)v, ·)♣
≤ ♣h1X(u, ·) + mh2(t)X(v, ·) − X(tu + (1 − t)v, ·)♣

+ ♣h1Y (u, ·) + mh2(t)Y (v, ·) − Y (tu + (1 − t)v, ·)♣
≤2(h1(t)G(u, ·) + mh2(t)G(v, ·) − G(tu + (1 − t)v, ·))

and

♣h1(t)A(·)X(u, ·) + mh2(t)A(·)X(v, ·) − A(·)X(tu + (1 − t)v, ·)♣
≤ ♣A(·)♣ (h1(t)G(u, ·) + mh2(t)G(v, ·) − G(tu + (1 − t)v, ·)).

The proof is complete. □

Remark 3.1. The previous proposition is also valid for the case of subtraction of sto-
chastic processes, and it is easily proved that the algebraic sum of n (m, h1, h2)-convex
stochastic processes, each one dominated by the same (m, h1, h2)-convex stochastic
process G is a (m, h1, h2)-convex stochastic process dominated by nG.

Proposition 3.4. Let G : I × Ω → R be a (m, h1, h2)-convex stochastic process,

¶Xk♢n
k=1

be a finite collection of (m, h1, h2)-convex stochastic process dominated by

G, and ¶Ak♢n
k=1

a finite collection of random variables. Then
∑n

k=1
Ak(·)Xk(t, ·) is

dominated by
∑n

k=1
♣Ak♣ G.

Theorem 3.1. Let X : I × Ω → R be a mean square integrable stochastic process

on the interval [0, b/m] and (m, h1, h2)-convex. Then the following inequalities hold

almost everywhere

(3.1) X



a + b

2
, ·


≤ h1(1/2)

b − a

∫ b

a
X(u, ·)du +

m2h2(1/2)

b − a

∫ b/m

a/m
X(u, ·)du

and

1

b − a

∫ b

a
X (u, ·) dt ≤(X (a, ·) + X (b, ·))

2
I(h1)(3.2)

+
m


X


a
m

, ·


+ X


b
m

, ·


2
I(h2),(3.3)

where

I(h1) =
∫

1

0

h1(t)dt and I(h2) =
∫

1

0

h2(t)dt.

Proof. Let a, b ∈ I and m ∈ (0, 1] . Then for t ∈ [0, 1] we have

X



a + b

2
, ·


= X



ta + (1 − t)b + (1 − t)a + tb

2
, ·


,



ON (m, h1, h2)-G-CONVEX DOMINATED STOCHASTIC PROCESSES 221

and using the (m, h1, h2)-convexity of X we obtain

X



a + b

2
, ·


≤ h1(1/2)X (ta + (1 − t)b, ·) + mh2(1/2)X



t
a

m
+ (1 − t)

b

m
, ·


.

Integrating over t ∈ [0, 1] it follows that

X



a + b

2
, ·


≤h1(1/2)
∫

1

0

X (ta + (1 − t)b, ·) dt

+ mh2(1/2)
∫

1

0

X



t
a

m
+ (1 − t)

b

m
, ·


dt,

and with the change of variable u = ta + (1 − t)b and v = t a
m

+ (1 − t) b
m

we achieve
the inequality (3.1).

Now, using the (m, h1, h2)−convexity of X we have

(3.4) X (ta + (1 − t)b, ·) ≤ h1(t)X (a, ·) + mh2(t)X



b

m
, ·


and

(3.5) X ((1 − t)a + tb, ·) ≤ h1(t)X (b, ·) + mh2(t)X


a

m
, ·


.

Adding (3.4) and (3.5) and integrating over t ∈ [0, 1] it follows that
∫

1

0

X (ta + (1 − t)b, ·) dt +
∫

1

0

X ((1 − t)a + tb, ·) dt

≤ (X (a, ·) + X (b, ·))
∫

1

0

h1(t)dt + m



X


a

m
, ·


+ X



b

m
, ·


∫

1

0

h2(t)dt.

So, with the above change of variable and doing

I(h1) =
∫

1

0

h1(t)dt and I(h2) =
∫

1

0

h2(t)dt,

the inequality (3.3) is attained.
The proof is complete. □

Corollary 3.1. Let X : I × Ω → R be an mean square integrable on the interval I
and convex stochastic process. Then the following inequalities hold almost everywhere

X



a + b

2
, ·


≤ 1

b − a

∫ b

a
X(u, ·)du ≤ X (a, ·) + X (b, ·)

2
.

Proof. Letting m = 1, h1(t) = t and h2(t) = 1 − t, t ∈ [0, 1], in Theorem 3.1, we
obtain the desired result. □

Corollary 3.2. Let X : I × Ω → R be an mean square integrable on the interval I
and s-convex stochastic process in the second sense. Then the following inequalities
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hold almost everywhere

2s−1X



a + b

2
, ·


≤ 1

(b − a)

∫ b

a
X(u, ·)du ≤ X (a, ·) + X (b, ·)

(s + 1)
.

Proof. Let s ∈ (0, 1] . Making m = 1, h1(t) = ts and h2(t) = (1 − t)s for t ∈ [0, 1] in
Theorem 3.1, it follows the desired result. □

Corollary 3.3. Let X : I × Ω → R be an mean square integrable on the interval I
and s-convex stochastic process in the first sense. Then the following inequalities hold

almost everywhere

X



a + b

2
, ·


≤ 1

(b − a)

∫ b

a
X(u, ·)du ≤ X (a, ·) + X (b, ·)

2
.

Proof. Let s ∈ (0, 1] . Making m = 1, h1(t) = ts and h2(t) = 1 − ts for t ∈ [0, 1] in
Theorem 3.1, we have the desired result. □

Corollary 3.4. Let X : I ×Ω → R be an mean square integrable on the interval I and

P -convex stochastic process. Then the following inequalities hold almost everywhere

X



a + b

2
, ·


≤ 2

b − a

∫ b

a
X(u, ·)du ≤ 2(X (a, ·) + X (b, ·)).

Proof. Letting m = 1, h1(t) = h2(t) = 1 for t ∈ [0, 1] in Theorem 3.1 we obtain the
desired result. □

Corollary 3.5. Let X : I ×Ω → R be an mean square integrable on the interval I and

MT -convex stochastic process. Then the following inequalities hold almost everywhere

X



a + b

2
, ·


≤ 1

2 (b − a)

∫ b

a
X(u, ·)du ≤ π (X (a, ·) + X (b, ·))

4
.

Proof. Letting m = 1, h1(t) =
√

t/2
√

1 − t and h2(t) =
√

1 − t/2
√

t for t ∈ [0, 1] in
Theorem 3.1 we have the desired result. □

Remark 3.2. The inequality found in Corollary 3.1 coincides with that presnted in [8],
the result found in Corollary 3.2 coincides with that presented in Theorem 6 in [23].

Theorem 3.2. Let X, G : I × Ω → R be a mean square integrable stochastic process

on the interval [0, b/m] and (m, h1, h2)-convex. If X is dominated by G, then the

following inequalities hold almost everywhere
∣

∣

∣

∣

∣

h1(1/2)
1

b − a

∫ b

a
X(u, ·)du +

m2h2(1/2)

b − a

∫ b/m

a/m
X (u, ·) − X



a + b

2
, ·

∣

∣

∣

∣

∣

≤h1(1/2)
1

b − a

∫ b

a
G(u, ·)du +

m2h2(1/2)

b − a

∫ b/m

a/m
G (u, ·) − G



a + b

2
, ·

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and
∣

∣

∣

∣

∣

(X(a, ·) + X(b, ·))
2

I(h1) +
m

2



X



a

m
, ·


+ X



b

m
, ·


I(h2) − 1
b − a

∫ b

a
X (u, ·) du

∣

∣

∣

∣

∣

≤(G(a, ·) + G(b, ·))
2

I(h1) +
m

2



G



a

m
, ·


+ G



b

m
, ·


I(h2) − 1
b − a

∫ b

a
G (u, ·) du,

where

I(h1) =
∫

1

0

h1(t)dt and I(h2) =
∫

1

0

h2(t)dt.

Proof. Let a, b ∈ I and m ∈ (0, 1] . Then, for t ∈ [0, 1] we have

X



a + b

2
, ·


= X



ta + (1 − t)b + (1 − t)a + tb

2
, ·


and

G



a + b

2
, ·


= G



ta + (1 − t)b + (1 − t)a + tb

2
, ·


.

Using definition of (m, h1, h2)-convexity dominated by G we obtain that

∣

∣

∣

∣

∣

h1(t)X(ta + (1 − t)b, ·) + mh2(t)X



(1 − t)
a

m
+ t

b

m
, ·


− X



a + b

2
, ·

∣

∣

∣

∣

∣

≤ h1(1/2)G(ta+(1−t)b, ·)+mh2(1/2)G



(1 − t)


a

m



+ t



b

m



, ·


−G



a + b

2
, ·


.

Integrating over t ∈ [0, 1] it follows that
∣

∣

∣

∣

∣

h1(1/2)
1

b − a

∫ b

a
X(u, ·)du +

m2h2(1/2)

b − a

∫ b/m

a/m
X (u, ·) − X



a + b

2
, ·
∣

∣

∣

∣

∣

≤h1(1/2)
1

b − a

∫ b

a
G(u, ·)du +

m2h2(1/2)

b − a

∫ b/m

a/m
G (u, ·) − G



a + b

2
, ·


.

So, the first inequality is obtained.
Now, also we have

∣

∣

∣

∣

∣

h1(t)X(a, ·) + mh2(t)X



b

m
, ·


− X (ta + (1 − t)b, ·)
∣

∣

∣

∣

∣

≤h1(1/2)G(a, ·) + mh2(1/2)G



b

m
, ·


− G (ta + (1 − t)b, ·)

and
∣

∣

∣

∣

h1(t)X(b, ·) + mh2(t)X


a

m
, ·


− X ((1 − t)a + tb, ·)
∣

∣

∣

∣

≤h1(1/2)G(b, ·) + mh2(1/2)G


a

m
, ·


− G ((1 − t)a + tb, ·) .
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Adding these inequalities, integrating over t ∈ [0, 1] and taking the notation

I(h1) =
∫

1

0

h1(t)dt and I(h2) =
∫

1

0

h2(t)dt,

we obtain the desired result. □

Corollary 3.6. Let X, G : I × Ω → R be two mean square integrable stochastic

processes on the interval I and convex. If X is dominated by G, then the following

inequalities hold almost everywhere
∣

∣

∣

∣

∣

1

b − a

∫ b

a
X(u, ·)du − X



a + b

2
, ·

∣

∣

∣

∣

∣

≤ 1

b − a

∫ b

a
G(u, ·)du − G



a + b

2
, ·


and
∣

∣

∣

∣

∣

(X(a, ·) + X(b, ·))
2

− 1

b − a

∫ b

a
X (u, ·) du

∣

∣

∣

∣

∣

≤ G(a, ·) + G(b, ·)
2

− 1

b − a

∫ b

a
G (u, ·) du.

Proof. Letting m = 1, h1(t) = t and h2(t) = 1 − t, t ∈ [0, 1], in Theorem 3.2 we
achieve the desired result. □

Corollary 3.7. Let X, G : I × Ω → R be two mean square integrable stochastic

processes on the interval I and s-convex in the second sense. If X is dominated by G,

then the following inequalities hold almost everywhere
∣

∣

∣

∣

∣

1

b − a

∫ b

a
X(u, ·)du − 2s−1X



a + b

2
, ·
∣

∣

∣

∣

∣

≤ 1

b − a

∫ b

a
G(u, ·)du − 2s−1G



a + b

2
, ·


and
∣

∣

∣

∣

∣

(X(a, ·) + X(b, ·))
s + 1

− 1

b − a

∫ b

a
X (u, ·) du

∣

∣

∣

∣

∣

≤ (G(a, ·) + G(b, ·))
s + 1

− 1

b − a

∫ b

a
G (u, ·) du.

Proof. Let s ∈ (0, 1]. Making m = 1, h1(t) = ts and h2(t) = (1 − t)s, t ∈ [0, 1], in
Theorem 3.2 we have the desired result. □

Corollary 3.8. Let X, G : I × Ω → R be two mean square integrable on the interval

I and s-convex stochastic process in the first sense. If X is dominated by G, then the

following inequalities hold almost everywhere
∣

∣

∣

∣

∣

1

2s−1(b − a)

∫ b

a
X (u, ·) − X



a + b

2
, ·
∣

∣

∣

∣

∣

≤ 1

2s−1(b − a)

∫ b

a
G (u, ·) − G



a + b

2
, ·


and
∣

∣

∣

∣

∣

(X(a, ·) + X(b, ·))
2

− 1
b − a

∫ b

a
X (u, ·) du

∣

∣

∣

∣

∣

≤ (G(a, ·) + G(b, ·))
2

− 1
b − a

∫ b

a
G (u, ·) du.

Proof. Letting m = 1, h1(t) = ts and h2(t) = 1 − ts, t ∈ [0, 1], in Theorem 3.2 it
follows the desired result. □



ON (m, h1, h2)-G-CONVEX DOMINATED STOCHASTIC PROCESSES 225

Corollary 3.9. Let X, G : I × Ω → R be two mean square integrable stochastic

processes and P -convex. If X is dominated by G, then the following inequalities hold

almost everywhere
∣

∣

∣

∣

∣

2

b − a

∫ b

a
X(u, ·)du − X



a + b

2
, ·

∣

∣

∣

∣

∣

≤ 2

b − a

∫ b

a
G(u, ·)du − G



a + b

2
, ·


and
∣

∣

∣

∣

∣

(X(a, ·) + X(b, ·)) − 1
b − a

∫ b

a
X (u, ·) du

∣

∣

∣

∣

∣

≤ (G(a, ·) + G(b, ·)) − 1
b − a

∫ b

a
G (u, ·) du.

Proof. Letting m = 1, h1(t) = h2(t) = 1 for all t ∈ [0, 1], in Theorem 3.2 we have the
desired result □

Corollary 3.10. Let X, G : I × Ω → R be two mean square integrable stochastic

processes on the interval I and MT -convex. If X is dominated by G, then the following

inequalities hold almost everywhere
∣

∣

∣

∣

∣

1

b − a

∫ b

a
X(u, ·)du − 2X



a + b

2
, ·

∣

∣

∣

∣

∣

≤ 1

b − a

∫ b

a
G(u, ·)du − 2G



a + b

2
, ·


and
∣

∣

∣

∣

∣

π (X(a, ·) + X(b, ·))
4

− 1
b − a

∫ b

a
X (u, ·) du

∣

∣

∣

∣

∣

≤ π (G(a, ·) + G(b, ·))
4

− 1
b − a

∫ b

a
G (u, ·) du.

Proof. Letting m = 1, h1(t) =
√

t/2
√

1 − t and h2(t) =
√

1 − t/2
√

t for t ∈ [0, 1] in
Theorem 3.2 we obtain the desired result. □

4. Conclusions

In the development of the present work it was introduced the concept of (m, h1, h2)-
convex stochastic process dominated by another stochastic process of the same type,
also some properties associated with them were found (Definition 2.5, Propositions 3.1,
3.2 and 3.3). From the aforementioned definition the Hermite-Hadamard inequality
for stochastic processes (Theorem 3.1) was found and some Corollaries that involve the
same inequality for classical convex stochastic process and other types of generalized
convex stochastic process (Corollaries 3.1–3.5). Also it was studied the absolute value
of the difference of the extremes of right and left side of the Hermite-Hadamard
inequality for the generalized convex stochastic process under study, similarly some
corollaries for other types of convexity were found (Theorem 3.2 and Corollaries
3.6–3.10).

The author hopes that the results presented will stimulate the study of the relation-
ship between generalized convexity and stochastic processes, thus providing a path to
possible applications.
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αβ-WEIGHTED dg-STATISTICAL CONVERGENCE IN

PROBABILITY

MANDOBI BANERJEE

Abstract. In this paper we consider the notion of generalized density, namely, the
natural density of weight g was introduced by Balcerzak et al. (Acta Math. Hungar.
147(1) (2015) 97Ű115) and the entire investigation is performed in the setting of
probability space extending the recent results of Ghosal (Appl. Math. Comput.
249 (2014) 502Ű509) and Das et al. (Filomat 31(5) (2017) 1463Ű1473).

1. Introduction

In the year 1932, Agnew [1] deĄned the deferred Cesàrro mean of sequences of real
numbers such as

(Dp,qx)n =
1

qn − pn

qn
∑

k=pn+1

xk,

where ¶pn♢n∈N and ¶qn♢n∈N are sequences of non-negative integers satisfying

pn < qn, for all n ∈ N, and lim
n→∞

qn = +∞.

In 2016, the concept of deferred statistical convergence (similar concept has been
discussed by Aktuǧlu [3] in 2014 which was named as αβ-statistical convergence)
were given by Küçükaslan and Yilmaztürk [21] such as (earlier this concept has been
deĄned by the same authors and submitted as a thesis to Mersin University/Turkey).

Key words and phrases. αβ-weighted dg-statistical convergence in probability, αβ-weighted dg-
strongly Cesàro convergence in probability, g-weighted Sαβ-convergence in probability, g-weighted
Nαβ-convergence in probability.
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Let ¶pn♢n∈N and ¶qn♢n∈N be two sequences as above. A sequence ¶xn♢n∈N is said to
be deferred statistically convergent to L if for every ε > 0

lim
n→∞

1

qn − pn

♣¶pn < k ≤ qn : ♣xk − L♣ ≥ ε♢♣ = 0.

After then some work has been carried out with related to this concept [13,21,26].
In [4], the notion of natural density [14, 15, 23] (and also the natural density of

order α [5, 7]) was further extended as follows: Let g : N → [0, ∞) be a function with
limn→∞ g(n) = ∞. The upper density of weight g was deĄned in [4] by the formula

d̄g(A) = lim sup
n→∞

card(A ∩ [1, n])

g(n)
,

for A ⊂ N. Then the family Ig = ¶A ⊂ N : d̄g(A) = 0♢ forms an ideal. It was also
observed in [4] that N ∈ Ig if and only if n

g(n)
→ 0. Hence, we additionally assume

that n
g(n)

↛ 0. So that N /∈ Ig and it was observed in [4, 10], that Ig is a proper

admissible P -ideal of N. The collection of all functions g of this kind satisfying the
above-mentioned property is denoted by G.

A sequence x = ¶xn♢n∈N in a metric space (X, ρ) is said to be dg-statistically
convergent to a ∈ X if for any ε > 0 we have dg(A(ε)) = 0, where A(ε) = ¶n ∈ N :
ρ(xn, a) ≥ ε♢.

Another generalization of the statistical convergence is known as weighted statistical
convergence which was established by Karakaya and Chishti [20] in 2009 and gradually
improved by Aizpuru et al. [2], Cinar and Et [6,12], Das et al. [9], Ghosal [16Ű18], Işik
and Altin [19], Mursaleen et al. [22] and Som [25].

In this paper the idea of four types of convergences of a sequence of random variables,
namely,

(a) αβ-weighted dg-statistically convergent sequence in probability;
(b) αβ-weighted dg-strongly Cesàrro convergence in probability;
(c) g-weighted Sαβ-convergence in probability;
(d) g-weighted Nαβ-convergence in probability all have been introduced and the

interrelations among them have been investigated. Also their certain basic properties
are analyzed.

The main object of this paper is to improve all the existing results in this direction
[4, 9, 11,16,17] which could be effectively extended. Moreover, we intend to establish
the relations among these four summability notions. It is important to note that the
methods of proofs and in particular the examples are not analogous to the real case.

2. Definitions and Notations

The following deĄnitions and notions will be needed in sequel.

Definition 2.1 (see [3]). Let α = ¶αn♢n∈N and β = ¶βn♢n∈N be two sequences of
positive real numbers such that

(i) α and β are both non-decreasing;
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(ii) βn ≥ αn for all n ∈ N;
(iii) (βn − αn) → ∞ as n → ∞.
Then the sequence of real numbers ¶xn♢n∈N is said to be αβ-statistically convergent

of order γ (where 0 < γ ≤ 1) to a real number x if for every ε > 0

lim
n→∞

1

(βn − αn + 1)γ
♣¶k ∈ [αn, βn] : ♣xk − x♣ ≥ ε♢♣ = 0.

In this case we write xn

Sγ

αβ−−→ x and the set of all sequences which are αβ-statistically
convergent of order γ is denoted by Sγ

αβ.

Definition 2.2 (see [9]). A sequence of real numbers ¶tn♢n∈N is said to be a weighted
sequence if there exists a positive real number δ such that tn > δ for all n ∈ N.

Definition 2.3 (see [17]). Let ¶tn♢n∈N be a sequence of real numbers such that
lim inf

n→∞
tn > 0 and Tαβ(n) =

∑

k∈[αn,βn]tk for all n ∈ N. A sequence of real numbers

¶xn♢n∈N is said to be weighted αβ-statistically convergent of order γ (where 0 < γ ≤ 1)
to x if for every ε > 0

lim
n→∞

1

T γ
αβ(n)

♣¶k ≤ Tαβ(n) : tk♣xk − x♣ ≥ ε♢♣ = 0.

In this case we write xn

(Sγ

αβ
,tn)

−−−−−→ x. The class of all weighted αβ-statistically convergent
sequences of order γ is denoted by (Sγ

αβ, tn).

Definition 2.4 (see [17]). Let ϕ be a modulus function and ¶tn♢n∈N be a sequence of
real numbers such that lim infn→∞ tn > 0 and Tαβ(n) =

∑

k∈[αn,βn]tk for all n ∈ N. A
sequence of random variables ¶Xn♢n∈N is said to be weighted modulus αβ-statistical
convergence of order γ (where 0 < γ ≤ 1) in probability to a random variable X
(where X : W → R) if for any ε, δ > 0

lim
n→∞

1

T γ
αβ(n)

♣¶k ≤ Tαβ(n) : tkϕ(P (♣Xk − X♣ ≥ ε)) ≥ δ♢♣ = 0.

In this case, Xn

(Sγ

αβ
,P φ,tn)

−−−−−−−→ X and the class of all weighted modulus statistically
convergent sequences of order γ in probability is denoted by (Sγ

αβ, P φ, tn).

Definition 2.5 (see [17]). Let ϕ be a modulus function and ¶tn♢n∈N be a sequence of
nonnegative real numbers such that t1 > 0 and Tαβ(n) =

∑

k∈[αn,βn]tk → ∞ as n → ∞.
A sequence of random variables ¶Xn♢n∈N is said to be weighted modulus αβ-strongly
Cesàrro convergent of order γ (where 0 < γ ≤ 1) in probability to a random variable
X if for any ε > 0

lim
n→∞

1

T γ
αβ(n)

∑

k∈[αn,βn]

tkϕ(P (♣Xk − X♣ ≥ ε)) = 0.
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In this case, Xn

(Nγ

αβ
,P φ,tn)

−−−−−−−→ X and the class of all sequences of random variables
which are weighted modulus αβ-strong Cesàrro convergent of order γ in probability,
is denoted by (Nγ

αβ, P φ, tn).

Definition 2.6 (see [17]). Let ϕ be a modulus function and ¶tn♢n∈N be a sequence of
real numbers such that lim infn→∞ tn > 0 and Tαβ(n) =

∑

k∈[αn,βn]tk for all n ∈ N. A
sequence of random variables ¶Xn♢n∈N is said to be weighted modulus Sαβ-convergence
of order γ in probability (where 0 < γ ≤ 1) to a random variable X if for every ε, δ > 0

lim
n→∞

1

T γ
αβ(n)

♣¶k ∈ Iαβ(n) : tkϕ(P (♣Xk − X♣ ≥ ε)) ≥ δ♢♣ = 0,

where Iαβ(n) = (T[α(n)], T[β(n)]] and [x] denotes the greatest integer not grater than

x. In this case we write Xn

(W Sγ

αβ
,P φ,tn)

−−−−−−−−→ X. The class of all weighted modulus Sαβ-
convergent sequences of order γ in probability is denoted by (WSγ

αβ, P φ, tn).

Definition 2.7 ([17]). Let ¶tn♢n∈N be a sequence of nonnegative real numbers such
that t1 > 0 and Tαβ(n) =

∑

k∈[αn,βn]tk → ∞, as n → ∞ and ϕ be a modulus function.
The sequence of random variables ¶Xn♢n∈N is said to be weighted modulus Nαβ-
convergence of order γ in probability (where 0 < γ ≤ 1) to a random variable X if for
any ε > 0

lim
n→∞

1

T γ
αβ(n)

∑

k∈Iαβ(n)

tkϕ(P (♣Xk − X♣ ≥ ε)) = 0.

In this case, Xn

(W Nγ

αβ
,P φ,tn)

−−−−−−−−→ X and the class of all weighted modulus Nαβ-convergent
sequences of order γ in probability is denoted by (WNγ

αβ, P φ, tn).

3. Main Results

First we introduce the deĄnition of αβ-weighted dg-statistical convergence in prob-
ability of random variables as follows.

Definition 3.1. Let ¶tn♢n∈N be a weighted sequence and Tαβ(n) =
∑

k∈[αn,βn]tk for all
n ∈ N. Then the sequence of random variables ¶Xn♢n∈N is said to be αβ-weighted
dg-statistically convergent in probability to a random variable X (where X : W → R)
if for any ε, δ > 0

lim
n→∞

1

g(Tαβ(n))
♣¶k ≤ Tαβ(n) : tkP (♣Xk − X♣ ≥ ε) ≥ δ♢♣ = 0.

Hence, we assume that g : (0, ∞) → (0, ∞) is a continuous function such that

lim
x→∞

g(x) = ∞ and lim
n→∞

Tαβ(n)

g(Tαβ(n))
≠ 0 and we write Xn

αβW Sp

dg−−−−−→ X and the class of

all αβ-weighted dg-statistically convergent sequences in probability is denoted by
αβWSp

dg
.
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Throughout the paper we assume that g : (0, ∞) → (0, ∞) is a continuous function

such that lim
x→∞

g(x) = ∞ and lim
n→∞

Tαβ(n)

g(Tαβ(n))
̸= 0.

Theorem 3.1. If Xn

αβW Sp

dg−−−−−→ X and Xn

αβW Sp

dg−−−−−→ Y , then P¶X = Y ♢ = 1.

Proof. If possible let P¶X = Y ♢ ≠ 1. Then there exist two positive real numbers ε, δ
such that P (♣X − Y ♣ ≥ ε) > δ and tn > δ for all n ∈ N. Then

Tαβ(n)

g(Tαβ(n))
=

1

g(Tαβ(n))
♣¶k ≤ Tαβ(n) : tkP (♣X − Y ♣ ≥ ε) ≥ δ2♢♣

≤ 1

g(Tαβ(n))

∣

∣

∣

∣

∣

{

k ≤ Tαβ(n) : tkP


♣Xk − X♣ ≥ ε

2



≥ δ2

2

}
∣

∣

∣

∣

∣

+
1

g(Tαβ(n))

∣

∣

∣

∣

∣

{

k ≤ Tαβ(n) : tkP


♣Xk − Y ♣ ≥ ε

2



≥ δ2

2

}
∣

∣

∣

∣

∣

,

which is impossible because the right hand side tends to zero as n → ∞ but not the
left hand side. Hence, the result follows. □

The following example shows that weighted αβ-statistical convergence in probability
[17] and αβ-weighted dg-statistical convergence in probability are totally different.

Example 3.1. Let the sequence of random variables ¶Xn♢n∈N is deĄned by,

Xn ∈















¶−1, 1♢ with p.m.f P (Xn = −1) = P (Xn = 0), if n ∈ ¶12, 22, 32, . . . ♢,

¶0, 1♢ with p.m.f P (Xn = 0) = 1 − 1
n4 ,

P (Xn = 1) = 1
n4 , otherwise.

Let tn = 2n, αn = n, βn = n2 for all n ∈ N and g(x) = 4
√

x for all x ∈ (0, ∞). Then

Tαβ(n) = n4 + n for all n ∈ N and
Tαβ(n)

g(Tαβ(n))
↛ 0 as n → ∞.

For 0 < ε < 1, we get

P (♣Xn − 0♣ ≥ ε) =







1, if n = m2, where m ∈ N,
1

n4 , if n ̸= m2, where m ∈ N.

Now, let 0 < δ < 1. Then

1

Tαβ(n)

♣¶k ≤ Tαβ(n) : tkP (♣Xk − 0♣ ≥ ε) ≥ δ♢♣ ≤ 2

n2

and

1

g(Tαβ(n))
♣¶k ≤ Tαβ(n) : tkP (♣Xk − 0♣ ≥ ε) ≥ δ♢♣ ≥

√
n4 + n − 1

4
√

n4 + n
≥ n.

This shows that ¶Xn♢n∈N is weighted αβ-statistically convergent in probability to a
random variable 0 but it is not αβ-weighted dg-statistically convergent in probability
to 0.
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Therefore we come to a conclusion that DeĄnition 3.1 is the non-trivial extension
of the notions obtained by different authors in the past, because if we take g(x) = xγ

for all x ∈ (0, ∞) and 0 < γ ≤ 1 then DeĄnition 3.1 reduces to the DeĄnition 2.1 [9]
and DeĄnition 2.1 [17].

The proof of the following two theorems are straightforward, so we choose to state
these results without proof.

Theorem 3.2. Let f : R → R be a continuous function on R. If Xn

αβW Sp

dg−−−−−→ X and

P (♣X♣ ≥ α) = 0 for some positive real number α, then f(Xn)
αβW Sp

dg−−−−−→ f(X).

Theorem 3.3. Let Xn

αβW Sp

dg−−−−−→ x and f : R → R is a continuous function, then

f(Xn)
αβW Sp

dg−−−−−→ f(x).

Definition 3.2. Let ¶tn♢n∈N be a sequence of non-negative real numbers such that
t1 > 0 and Tαβ(n) =

∑

k∈[αn,βn]tk → ∞ as n → ∞. The sequence of random variables
¶Xn♢n∈N is said to be αβ-weighted dg-strongly Cesàrro convergent in probability to a
random variable X if for any ε > 0

lim
n→∞

1

g(Tαβ(n))

∑

k∈[αn,βn]

tkP (♣Xk − X♣ ≥ ε) = 0.

In this case, Xn

αβW Np

dg−−−−−→ X and the class of all αβ-weighted dg-strongly Cesàrro
convergent sequences in probability is denoted by αβWNp

dg
.

In the following, the relationship between αβWSp
dg

and αβWNp
dg

is investigated.

Theorem 3.4. Let ζ be a positive real number such that tn > ζ for all n ∈ N. If

¶αn♢n∈N be a bounded sequence and lim infn→∞
βn

Tαβ(n)
≥ 1, then αβWNp

dg
⊂ αβWSp

dg
.

Proof. Let Xn
αβW Np

g−−−−→ X and ε > 0. Then

1

g(Tαβ(n))

∑

k∈[αn,βn]

tkP (♣Xk − X♣ ≥ ε)

≥ ζ

g(Tαβ(n))
♣¶k ≤ Tαβ(n) : tkP (♣Xk − X♣ ≥ ε) ≥ δ♢♣.

Hence, the result follows. □

The following example shows that, the sequence of random variables ¶Xn♢n∈N in
αβWSp

dg
converges to X but not in αβWNp

dg
converges to X.

Example 3.2. Let tn = n, αn = 1, βn = n for all n ∈ N and g(x) = 4
√

x for all x ∈
(0, ∞). Then Tαβ(n) = n(n+1)

2
for all n ∈ N and

Tαβ(n)

g(Tαβ(n))
↛ 0 as n → ∞.



αβ-WEIGHTED dg-STATISTICAL CONVERGENCE IN PROBABILITY 235

Consider the sequence of random variables ¶Xn♢n∈N is deĄned by,

Xn ∈



















¶−1, 1♢ with probability 1
2
, if n = ¶Tm♢Tm for any m ∈ N,

¶0, 1♢ with p.m.f P (Xn = 0) = 1 − 1

n
3
2
,

P (Xn = 1) = 1

n
3
2
, if n ̸= ¶Tm♢Tm for any m ∈ N.

Let 0 < ε < 1, then,

P (♣Xn − 0♣ ≥ ε) =







1, if n = ¶Tm♢Tm for any m ∈ N,
1

n
3
2
, if n ̸= ¶Tm♢Tm for any m ∈ N.

This implies Xn

αβW Sp

dg−−−−−→ 0.
Let H = ¶n ∈ N : n ̸= ¶Tm♢Tm where m ∈ N♢.
Now we have the inequality
∑

k∈[αn,βn]

tkP (♣Xk − 0♣ ≥ ε) =
∑

k∈[αn,βn]

k∈H

tkP (♣Xk − 0♣ ≥ ε) +
∑

k∈[αn,βn]

k /∈H

tkP (♣Xk − 0♣ ≥ ε)

>
∑

k∈[αn,βn]

k∈H

1√
k

+
∑

k∈[αn,βn]

k /∈H

>
n
∑

k=1

1√
k

>
√

n (since
n
∑

k=1

1√
k

>
√

n for all n ≥ 2)

This implies 1
g(Tαβ(n))

n
∑

k=1

tkP (♣Xk − 0♣ ≥ ε) >

√
n

4

√

n(n+1)
2

≥ 1. This inequality shows

that ¶Xn♢n∈N is not αβWNp
dg

summable to 0.

Theorem 3.5. Let the weighted sequence ¶tn♢n∈N be bounded such that

lim sup
n→∞

βn − αn

g(Tαβ(n))
< ∞.

Then αβWSp
dg

⊂ αβWNp
dg

.

Proof. Let Xn

αβW Sp

dg−−−−−→ X and tn ≤ M1 for all n ∈ N and lim supn→∞
βn−αn

g(Tαβ(n))
< M2,

where M1 and M2 are positive real numbers. For any ε, δ > 0 setting H = ¶k ≤
Tαβ(n) : tkP (♣Xk − X♣ ≥ ε) ≥ δ♢. Then

1

g(Tαβ(n))

∑

k∈[αn,βn]

tkP (♣Xk − X♣ ≥ ε)

=
1

g(Tαβ(n))

∑

k∈[αn,βn]∩H

tkP (♣Xk − X♣ ≥ ε) +
1

g(Tαβ(n))

∑

k∈[αn,βn]∩Hc

tkP (♣Xk − X♣ ≥ ε)

≤ M1

g(Tαβ(n))
♣¶k ≤ Tαβ(n) : tkP (♣Xk − X♣ ≥ ε) ≥ δ♢♣ + M2δ.
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Since δ is arbitrary, the result follows. □

The following example shows that the sequence of random variables ¶Xn♢n∈N in
αβWNp

dg
converges to X but not in αβWSp

dg
converges to X.

Example 3.3. Let c ∈ (0, 1), γ ∈ (2c, 4c) ∩ Q and a sequence of random variables
¶Xn♢n∈N is deĄned by

Xn ∈



























¶−1, 0♢, with p.m.f P (Xn = −1) = 1
n
,

P (Xn = 0) = 1 − 1
n
, if n = [m

1
c ], where m ∈ N,

¶0, 1♢, with p.m.f P (Xn = 0) = 1 − 1
n8 ,

P (Xn = 1) = 1
n8 , if n ̸= [m

1
c ], where m ∈ N.

Let tn = 2n, αn = n, βn = n2 for all n ∈ N and g(x) = x
γ

4 for all x ∈ (0, ∞). Then

Tαβ(n) = n4 + n for all n ∈ N and limn→∞
Tαβ(n)

g(Tαβ(n))
̸= 0.

For 0 < ε, δ < 1, we get

1

g(Tαβ(n))

∑

k∈[αn,βn]

tkP (♣Xk − 0♣ ≥ ε) ≤ 2

nγ

{

(n2c − nc + 1) +



1

13
+

1

23
+ ... +

1

(n2)3

}

≤ M

nγ−2c
(where M is a positive constant)

and

1

g(Tαβ(n))
♣¶k ≤ Tαβ(n) : tkP (♣Xk − 0♣ ≥ ϵ) ≥ δ♢♣ ≥ (n4 + n)c

nγ
>

1

2
n4c−γ.

So, ¶Xn♢n∈N ∈ αβWNp
dg

but not in αβWSp
dg

.

Now we would like to introduce the deĄnitions of g-weighted Sαβ-convergence in
probability and g-weighted Nαβ-convergence in probability for a sequence of random
variables as follows.

Definition 3.3. Let ¶tn♢n∈N be a weighted sequence and Tαβ(n) =
∑

k∈[αn,βn]tk for
all n ∈ N. Then the sequence of random variables ¶Xn♢n∈N is said to be g-weighted
Sαβ-convergence in probability to X if for every ε, δ > 0

lim
n→∞

1

g(Tαβ(n))
♣¶k ∈ Iαβ(n) : tkP (♣Xk − X♣ ≥ ε) ≥ δ♢♣ = 0,

where Iαβ(n) = (T[α(n)], T[β(n)]] and [x] denotes the greatest integer not greater than

x. In this case we write Xn

W S
dg

αβ−−−→ X. The class of all g-weighted Sαβ-convergent

sequences in probability is denoted by WS
dg

αβ.

It is very obvious that if Xn

W S
dg

αβ−−−→ X and Xn

W S
dg

αβ−−−→ Y , then P¶X = Y ♢ = 1.
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Definition 3.4. Let ¶tn♢n∈N be a sequence of non-negative real numbers such that
t1 > 0 and Tαβ(n) =

∑

k∈[αn,βn]tk → ∞ as n → ∞. The sequence of random variables
¶Xn♢n∈N is said to be g-weighted Nαβ-convergence in probability to a random variable
X if for any ε > 0

lim
n→∞

1

g(Tαβ(n))

∑

k∈Iαβ(n)

tkP (♣Xk − X♣ ≥ ε) = 0.

In this case Xn

W N
dg

αβ−−−−→ X and the class of all g-weighted Nαβ-convergent sequences in

probability is denoted by WN
dg

αβ.

In the following, the relationship between WS
dg

αβ and WN
dg

αβ is investigated.

Theorem 3.6. Let ¶tn♢n∈N be a weighted sequence. Then WN
dg

αβ ⊂ WS
dg

αβ and this

inclusion is strict.

Proof. For the Ąrst part of this theorem, let ε, δ > 0, then
∑

k∈Iαβ(n)

tkP (♣Xk − X♣ ≥ ε)

=
∑

k∈Iαβ(n),tkP (|Xk−X|≥ε)≥δ

tkP (♣Xk − X♣ ≥ ε) +
∑

k∈Iαβ(n),tkP (|Xk−X|≥ε)<δ

tkP (♣Xk − X♣ ≥ ε)

≥δ♣¶k ∈ Iαβ(n) : tkP (♣Xk − X♣ ≥ ε) ≥ δ♢♣.
For the second part we will give an example. Let tn = n, α(n) = n!, β(n) =
(n + 1)! for all n ∈ N and g(x) =

√
x for all x ∈ (0, ∞) and a sequence of random

variables ¶Xn♢n∈N is deĄned by,

Xn ∈















¶−1, 1♢, with p.m.f P (Xn = 1) = P (Xn = −1), if n is the Ąrst

[ 4

√

(T[β(n)] − T[α(n)])] integer in the interval (T[α(n)], T[β(n)]],

¶0, 1♢, with p.m.f P (Xn = 0) = 1 − 1
n3 , P (Xn = 1) = 1

n3 , otherwise.

For 0 < ε, δ < 1, we get

1

g(Tαβ(n))
♣¶k ∈ Iαβ(n) : tkP (♣Xk−0♣ ≥ ε) ≥ δ♢♣ ≤ 1

4

√

(T[β(n)] − T[α(n)])
→ 0, as n → 0.

For next

1

g(Tαβ(n))

∑

k∈Iαβ(n)

tkP (♣Xk − 0♣ ≥ ε)

≥
[ 4

√

(T[β(n)] − T[α(n)])]¶[ 4

√

(T[β(n)] − T[α(n)])] + 1♢
2
√

(T[β(n)] − T[α(n)])
>

1

3
> 0.

Hence, the result. □
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SOME REMARKS ON VARIOUS SCHUR CONVEXITY

FARZANEH GORJIZADEH1 AND NOHA EFTEKHARI1

Abstract. The aim of this work is to investigate the Schur convexity, Schur ge-
ometrically convexity, Schur harmonically convexity and Schur power convexity of
some special functions. Some sufficient conditions are obtained to guarantee the
above-mentioned properties satisfy. We attain some special inequalities. Also, we
obtain some applications of main results.

1. introduction

Throughout this work, we denote R
n
+ = ¶(x1, . . . , xn) : xi > 0, i = 1, 2, . . . , n♢. For

the convenience of the readers, we recall the relevant material.

Definition 1.1 ([5]). Let n ≥ 2 and x, y ∈ R
n, where x = (x1, . . . , xn) and y =

(y1, . . . , yn). We say that x is majorized by y and denoted by x ≺ y, if

k
∑

i=1

x[i] ≤
k
∑

i=1

y[i], for 1 ≤ k ≤ n − 1,

n
∑

i=1

x[i] =
n
∑

i=1

y[i],

where x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and
y in decreasing order.

Let E ⊆ R
n be a set with nonempty interior. We say φ : E → R is Schur convex if

x ≺ y implies φ(x) ≤ φ(y) and φ is said to be Schur concave if −φ is Schur convex.

A function f : Rn → R is called a symmetric function, if f(Px) = f(x) for any
x ∈ R

n and any n × n permutation matrix P. A set E ⊆ R
n is called symmetric, if
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x ∈ E implies xP ∈ E for any n × n permutation matrix P. Also, a set E ⊆ R
n is

called a convex set if for any x, y ∈ E and λ ∈ [0, 1], we have λx + (1 − λ)y ∈ E.

In this work, we need the following three lemmas.

Lemma 1.1 ([5]). Let E ⊆ R
n be a symmetric convex set with nonempty interior

and φ : E → R is a continuous symmetric function on E. If φ is differentiable on

int E, then φ is Schur convex (Schur concave) on E if and only if

(x1 − x2)

(

∂φ

∂x1

−
∂φ

∂x2



≥ 0 or (≤ 0)

holds for all x = (x1, . . . , xn) ∈ int E.

Lemma 1.2 ([2, 7]). Let E ⊂ R
n
+ be a symmetric geometrically convex set with a

nonempty interior and φ : E → R+ be continuous on E and differentiable on int E.

Then φ is Schur geometrically convex (Schur geometrically concave) if and only if φ

is symmetric on E and

(1.1) (log x1 − log x2)

(

x1
∂φ

∂x1

− x2
∂φ

∂x2



≥ 0 or (≤ 0)

holds for all x = (x1, . . . , xn) ∈ int E, where E is a geometrically convex set, if for

any x, y ∈ E and α, β ∈ [0, 1] such that α + β = 1, we have xαyβ ∈ E.

Since for any x1, x2 ∈ R, we have

(x1 − x2)(log x1 − log x2) ≥ 0,

we can reduce (1.1) to the following inequality

(1.2) (x1 − x2)

(

x1
∂φ

∂x1

− x2
∂φ

∂x2



≥ 0 or (≤ 0).

Lemma 1.3. ([6, Lemma 2.2]). Let E ⊆ R
n
+ be a symmetric harmonic convex set with

nonempty interior and φ : E → R+ be a continuous symmetric function on E. If φ

is differentiable on int E, then φ is Schur harmonic convex (Schur harmonic concave)
on E if and only if

(x1 − x2)

(

x2
1

∂φ

∂x1

− x2
2

∂φ

∂x2



≥ 0 or (≤ 0)

holds for all x = (x1, . . . , xn) ∈ int E, where E is a harmonic convex set, if for any

x, y ∈ E, we have 2xy

x+y
∈ E.

In 1923, the Schur convexity was discovered by I. Schur. It has many interested
applications of symmetric functions in Hadamard’s inequality, analytic inequalities,
stochastic ordering and some other branches of graphs and matrices, see for example
[1, 3, 4].

We organize this paper as follow. We establish the integral mean of fg is Schur
convex, Schur geometrical convex, Schur harmonic convex, and Schur power convex
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on [0, ∞) × [0, ∞), for convex, continuous and similarly ordered functions f and g. In
Section 3, we obtain some applications of results in Section 2.

2. Main Results

In this section, we obtain some results for special functions to be Schur convex
(Schur concave), Schur geometrically convex, Schur harmonically convex, and Schur
power convex.

We say that f, g : R → R are similarly ordered function if for all x, y ∈ R, we have

(f(x) − f(y))(g(x) − g(y)) ≥ 0,

if the above inequality reversed, we say that f and g have oppositely ordered.

Lemma 2.1. Let f, g : R → [0, ∞) be convex, continuous and similarly ordered

functions. Then for x, y ∈ R, we have

1

y − x

∫ y

x
f(t)g(t)dt ≤

f(x)g(x) + f(y)g(y)

2
.

Proof. Since f and g have similarly ordered, for any x, y ∈ R we have

(f(x) − f(y))(g(x) − g(y)) ≥ 0.

It follows that

(2.1) f(x)g(y) + f(y)g(x) ≤ f(x)g(x) + f(y)g(y).

On the other hand, f and g are convex functions, so for x, y ∈ R and t ∈ [0, 1], we
have

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y),

g(tx + (1 − t)y) ≤ tg(x) + (1 − t)g(y).

By multiplying both sides of the latter inequalities together and integrating on [0, 1],
we get

∫ 1

0
f(tx + (1 − t)y)g(tx + (1 − t)y)dt

≤
∫ 1

0
[t2f(x)g(x) + t(1 − t)[f(x)g(y) + g(x)f(y)] + (1 − t)2f(y)g(y)]dt,

with change of variable u = tx + (1 − t)y = t(x − y) + y, it follows

1

y − x

∫ y

x
f(u)g(u)du ≤

f(x)g(x) + f(y)g(y)

3
+

f(x)g(y) + f(y)g(x)

6

≤
f(x)g(x) + f(y)g(y)

2
.

Now, (2.1) follows from the last inequality. □
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Theorem 2.1. Let f, g : R → [0, ∞) be convex, continuous and similarly ordered

functions. Then

F (x, y) =















1

y − x

∫ y

x
f(t)g(t)dt, x ̸= y,

f(x)g(x), x = y,

is Schur convex on R
2.

Proof. By Lemma 2.1, we have
(

∂F

∂y
−

∂F

∂x



(y − x) =



−
1

(y − x)2

∫ y

x
f(t)g(t)dt +

f(y)g(y)

y − x

−
1

(y − x)2

∫ y

x
f(t)g(t)dt +

f(x)g(x)

y − x

]

(y − x)

=f(x)g(x) + f(y)g(y) −
2

y − x

∫ y

x
f(t)g(t)dt ≥ 0.

Now Lemma 1.1 implies that F is Schur convex. □

Corollary 2.1. Let α ≥ 1. Then

F (x, y) =















1

y − x

∫ y

x
tαetdt, x ̸= y,

xαex, x = y,

is Schur convex on [0, ∞) × [0, ∞).

Proof. Suppose that f, g : [0, ∞) → [0, ∞) are defined by f(t) = tα and g(t) = et.

Since α ≥ 1, the function f is increasing and convex, according to Theorem 2.1, F is
Schur convex. □

The next two corollaries are results of Theorem 2.1.

Corollary 2.2. Let f : R → [0, ∞) be increasing, continuous and convex function.

Then

F (x, y) =















1

y − x

∫ y

x
etf(t)dt, x ̸= y,

exf(x), x = y,

is Schur convex on R
2.

Corollary 2.3. Let f : [0, ∞) → [0, ∞) be increasing, continuous and convex function

and α ≥ 1. Then

F (x, y) =















1

y − x

∫ y

x
tαf(t)dt, x ̸= y,

xαf(x), x = y,

is Schur convex on [0, ∞) × [0, ∞).
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Similar to Lemma 2.1, we have the following lemma for concave and oppositely
ordered functions.

Lemma 2.2. Let f, g : R → [0, ∞) be concave, continuous and oppositely ordered

functions. Then for x, y ∈ R we have

1

y − x

∫ y

x
f(t)g(t)dt ≥

f(x)g(x) + f(y)g(y)

2
.

Theorem 2.2. Let f, g : R → [0, ∞) be concave, continuous and oppositely ordered

functions. Then

F (x, y) =















1

y − x

∫ y

x
f(t)g(t)dt, x ̸= y,

f(x)g(x), x = y,

is Schur concave on R
2.

Proof. The result follows by similar arguments to the proof of Theorem 2.1 and using
Lemma 2.2. □

Theorem 2.2 implies next two corollaries.

Corollary 2.4. Let f : [0, ∞) → [0, ∞) be decreasing and concave function and

0 < α < 1. Then

F (x, y) =















1

y − x

∫ y

x
tαf(t)dt, x ̸= y,

xαf(x), x = y,

is Schur concave on [0, ∞) × [0, ∞).

Corollary 2.5. The function

F (x, y) =















1

y − x

∫ y

x
sech t ln tdt, x ̸= y,

sech x ln x, x = y,

is Schur concave on [0, ∞) × [0, ∞).

By Lemmas 1.1, 1.2 and 1.3, we have the following theorem.

Theorem 2.3. Let f and g be two real continuous functions defined on R, then

F (x, y) =















1

y − x

∫ y

x
f(t)g(t)dt, x ̸= y,

f(x)g(x), x = y,

is Schur convex (concave) on [0, ∞) × [0, ∞) if and only if

(2.2) F (x, y) ≤ (≥)
f(x)g(x) + f(y)g(y)

2
,
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is Schur geometrically convex (concave) on [0, ∞) × [0, ∞) if and only if

(2.3) F (x, y) ≤ (≥)
xf(x)g(x) + yf(y)g(y)

x + y
,

and is Schur harmonically convex (concave) on R
2
+ if and only if

(2.4) F (x, y) ≤ (≥)
x2f(x)g(x) + y2f(y)g(y)

x2 + y2
.

Proof. From Lemma 1.1 it follows that F is Schur convex (concave) on [0, ∞) × [0, ∞)
if and only if

(y − x)

(

∂F

∂y
−

∂F

∂x



≥ 0 (≤ 0).

On the other hand, as in the proof of Theorem 2.1, we have

(y − x)

(

∂F

∂y
−

∂F

∂x



= f(x)g(x) + f(y)g(y) −
2

y − x

∫ y

x
f(t)g(t)dt.

This implies (2.2).
From Lemma 1.2 it follows that F is Schur geometrically convex (concave) on

[0, ∞) × [0, ∞) if and only if

(y − x)

(

y
∂F

∂y
− x

∂F

∂x



≥ 0 (≤ 0).

But

(y − x)

(

y
∂F

∂y
− x

∂F

∂x



= (y − x)



−
y

(y − x)2

∫ y

x
f(t)g(t)dt +

yf(y)g(y)

y − x

−
x

(y − x)2

∫ y

x
f(t)g(t)dt +

xf(x)g(x)

y − x

]

= xf(x)g(x) + yf(y)g(y) −
x + y

y − x

∫ y

x
f(t)g(t)dt,

hence (2.3) follows.
From Lemma 1.3 it follows that F is Schur harmonically convex (concave) on R

2
+

if and only if

(y − x)

(

y2 ∂F

∂y
− x2 ∂F

∂x



≥ 0 (≤ 0).

On the other hand, we have

(y − x)

(

y2 ∂F

∂y
− x2 ∂F

∂x



= (y − x)



−
y2

(y − x)2

∫ y

x
f(t)g(t)dt +

y2f(y)g(y)

y − x

−
x2

(y − x)2

∫ y

x
f(t)g(t)dt +

x2f(x)g(x)

y − x

]

= x2f(x)g(x) + y2f(y)g(y) −
x2 + y2

y − x

∫ y

x
f(t)g(t)dt,
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Therefore, (2.4) holds. □

In [8, Definition 2.3], we put f(x) = xα, then the following definition follows.

Definition 2.1. Let α be a positive real number and E ⊆ R
n
+ be such that x ∈ E

implies x
1
α = (x

1
α

1 , . . . , x
1
α
n ) ∈ E. A real-valued function F : E → R is said to be Schur

power convex if

F (x1, . . . , xn) ≤ F (y1, . . . , yn),

holds for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in E such
that

(xα
1 , . . . , xα

n) ≺ (yα
1 , . . . , yα

n),

and F is Schur power concave if −F is Schur power convex.

Remark 2.1. Let E ⊆ R
n
+ and α be a positive real number. Then F : E → (0, ∞) is

Schur power convex on E if and only if F (x
1
α ) is Schur convex function.

Lemma 2.3. Let E ∈ R
n
+ be a symmetric convex set with nonempty interior and

F : E → R be a continuous symmetric function on E. If F is differentiable on int E,

then F is Schur power convex (Schur power concave) on E if and only if

(xα
1 − xα

2 )

(

x1−α
1

∂F

∂x1

− x1−α
2

∂F

∂x2



≥ 0 (≤ 0),

for all x = (x1, . . . , xn) ∈ int E and α ∈ R+.

Proof. The result follows by using Definition 2.1 and Remark 2.1 and Lemma 1.1. □

Theorem 2.4. Let α ∈ R+. Let f and g be two real continuous functions defined on

R, then

F (x, y) =















1

y − x

∫ y

x
f(t)g(t)dt, x ̸= y,

f(x)g(x), x = y,

is Schur power convex (concave) on [0, ∞) × [0, ∞) if and only if

F (x, y) ≤ (≥)
x1−αf(x)g(x) + y1−αf(y)g(y)

x1−α + y1−α
.

Proof. Let x, y ∈ [0, ∞) and x ≠ y. According to Lemma 2.3, F (x, y) is Schur power
convex (concave) if and only if

(yα − xα)

(

y1−α ∂F

∂y
− x1−α ∂F

∂x



≥ 0 (≤ 0).

But we have

(yα − xα)

(

y1−α ∂F

∂y
− x1−α ∂F

∂x


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=(yα − xα)



−
y1−α

(y − x)2

∫ y

x
f(t)g(t)dt +

y1−αf(y)g(y)

y − x

−
x1−α

(y − x)2

∫ y

x
f(t)g(t)dt +

x1−αf(x)g(x)

y − x

]

=
x1−αf(x)g(x) + y1−αf(y)g(y)

y − x
−

x1−α + y1−α

(y − x)2

∫ y

x
f(t)g(t)dt.

As F is symmetric, that is F (x, y) = F (y, x), we get the conclusion. □

Corollary 2.6. Let α, β ∈ (0, ∞) and f be a real continuous function defined on R,

then

F (x, y) =















1

y − x

∫ y

x
tβf(t)dt, x ̸= y,

xβf(x), x = y,

is Schur power convex on [0, ∞) × [0, ∞) if and only if

F (x, y) ≤
x1−α+βf(x) + y1−α+βf(y)

x1−α + y1−α
.

Proof. In Theorem 2.4, put g(x) = xβ. □

Theorem 2.5. Let f, g : [0, ∞) → [0, ∞) be convex (concave), continuous and simi-

larly (oppositely) ordered functions on [0, ∞). Then

F (x, y) =















1

y − x

∫ y

x
f(t)g(t)dt, x ̸= y,

f(x)g(x), x = y,

(i) is Schur geometrically convex (concave) on [0, ∞) × [0, ∞);
(ii) is Schur harmonically convex (concave) on [0, ∞) × [0, ∞);
(iii) is Schur power convex (concave) on [0, ∞) × [0, ∞), if 0 < α < 1.

Proof. (i) As f and g have similarly (oppositely) ordered and nonnegative on [0, ∞),
then for all x, y ∈ [0, ∞), we have

(2.5) (y − x)(f(y)g(y) − f(x)g(x)) ≥ 0 (≤ 0).

This implies that

xf(y)g(y) + yf(x)g(x) ≤ (≥)xf(x)g(x) + yf(y)g(y),

and it follows that

(2.6)
f(y)g(y) + f(x)g(x)

2
≤ (≥)

xf(x)g(x) + yf(y)g(y)

x + y
.

Now, from (2.6) and Lemma 2.1 (Lemma 2.2) together with Theorem 2.3 it follows
that F (x, y) is Schur geometrically convex (concave) on [0, ∞) × [0, ∞).
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(ii) Since f and g have similarly (oppositely) ordered and nonnegative on [0, ∞),
then for all x, y ∈ [0, ∞), we have (2.5). It follows that

(y2 − x2)(f(y)g(y) − f(x)g(x)) ≥ 0 (≤ 0).

This implies that

x2f(y)g(y) + y2f(x)g(x) ≤ (≥)x2f(x)g(x) + y2f(y)g(y),

and it follows that

(2.7)
f(y)g(y) + f(x)g(x)

2
≤ (≥)

x2f(x)g(x) + y2f(y)g(y)

x2 + y2
.

From (2.7) and Lemma 2.1 (Lemma 2.2) together with Theorem 2.3 it follows that
F (x, y) is Schur harmonically convex (concave) on [0, ∞) × [0, ∞).

(iii) Since f and g have similarly (oppositely) ordered and nonnegative on [0, ∞)
and 0 < α < 1, then for all x, y ∈ [0, ∞) we have

(y1−α − x1−α)(f(y)g(y) − f(x)g(x)) ≥ 0 (≤ 0).

It follows that

x1−αf(y)g(y) + y1−αf(x)g(x) ≤ (≥)x1−αf(x)g(x) + y1−αf(y)g(y).

This yields

(2.8)
f(y)g(y) + f(x)g(x)

2
≤ (≥)

x1−αf(x)g(x) + y1−αf(y)g(y)

x1−α + y1−α
.

Now, from the inequality (2.8) and Lemma 2.1 (Lemma 2.2) together with Theorem
2.3 it follows that F (x, y) is Schur power convex (concave) on [0, ∞) × [0, ∞). □

Corollary 2.7. Let α, β ∈ (1, 2). Then

F (x, y) =















1

y − x

∫ y

x
tα−1(1 − t)β−1dt, x ̸= y,

xα−1(1 − x)β−1, x = y,

is Schur concave, geometrically Schur concave and harmonically Schur concave on

[0, 1] × [0, 1]. Also, for all x, y ∈ [0, 1] such that x ̸= y the following inequalities hold

1

y − x

∫ y

x
tα−1(1 − t)β−1dt ≥

xα−1(1 − x)β−1 + yα−1(1 − y)β−1

2
,

1

y − x

∫ y

x
tα−1(1 − t)β−1dt ≥

xα(1 − x)β−1 + yα(1 − y)β−1

x + y
,

1

y − x

∫ y

x
tα−1(1 − t)β−1dt ≥

xα+1(1 − x)β−1 + yα+1(1 − y)β−1

x2 + y2
.
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Proof. In Theorems 2.2, 2.5, we put f(x) = xα−1 and g(x) = (1 − x)β−1. Since
α, β ∈ (1, 2) on [0, 1] the function f is increasing and concave and g is decreasing and
concave. It follows that on [0, 1] the functions f and g are concave, continuous and
oppositely ordered. Now, Theorem 2.3 implies the results. □

Theorem 2.6. Let α be a positive real number and f : (0, ∞) → (0, ∞) be a log-

concave function. Then tαf(t) is log-concave and the following inequality holds

1

y − x

∫ y

x
tαf(t)dt ≥

xαf(x) − yαf(y)

ln(xαf(x)) − ln(yαf(y))
.

Proof. For α > 0, function tα is log-concave. Since ln t is concave and α > 0, we have

λα(ln x) + (1 − λ)α ln y ≤ α ln(λx + (1 − λ)y),

so

λ(ln xα) + (1 − λ) ln yα ≤ ln(λx + (1 − λ)y)α.

Thus, tα is log-concave. Put g(x) = xαf(x), then for t ∈ [0, 1], we have

g(tx + (1 − t)y) = (tx + (1 − t)y)αf(tx + (1 − t)y)

≥ (xα)t(yα)1−t(f(x))t(f(y))1−t

= (xαf(x))t(yαf(y))1−t

= (g(x))t(g(y))1−t

=

(

xαf(x)

yαf(y)

t

(yαf(y)),

that is, g(x) = xαf(x) is log-concave. By integrating both sides of the above inequality

on [0, 1] and change of variable u = tx + (1 − t)y, getting w =
xαf(x)

yαf(y)
, then we have

∫ 1

0
(tx + (1 − t)y)αf(tx + (1 − t)y)dt ≥ yαf(y)

∫ 1

0

(

xαf(x)

yαf(y)

t

dt,

1

y − x

∫ y

x
uαf(u)du ≥ yαf(y)

∫ 1

0
wtdt

=
yαf(y)

ln

(

xαf(x)

yαf(y)



(

xαf(x)

yαf(y)
− 1



=
xαf(x) − yαf(y)

ln (xαf(x)) − ln(yαf(y))
.

□
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Lemma 2.4. Let I be an interval in R and f, g : I → [0, ∞) be continuous functions.

Then for x ∈ In ⊆ R
n the function

F (x) =
n
∑

i=1

∫ xi

0
f(t)g(t)dt

is Schur convex if and only if f and g are similarly ordered functions (is Schur concave

if and only if f and g are oppositely ordered functions).

Proof. Clearly F is symmetric. According to Lemma 1.1, F is Schur convex if and
only if for x1, x2 ∈ I, we have

(x1 − x2)

(

∂F

∂x1

−
∂F

∂x2



= (x1 − x2) (f(x1)g(x1) − f(x2)g(x2)) ≥ 0,

if and only if f and g are similarly ordered functions. □

Lemma 2.5. Let I be an interval in R and f : I → (0, ∞) be differentiable on int I.

Then for x ∈ In ⊆ R
n the function

F (x) =
n
∏

i=1

f(xi)

is Schur convex if and only if f ′

f
is increasing on I (is Schur concave if and only if f ′

f

is decreasing on I).

Proof. Clearly F is symmetric. According to Lemma 1.1, F is Schur convex if and
only if for x1, x2 ∈ I, we have

(x1 − x2)

(

∂F

∂x1

−
∂F

∂x2



= (x1 − x2)



f ′(x1)
n
∏

i=2

f(xi) − f ′(x2)
n
∏

i=1,i≠2

f(xi)





= (x1 − x2)
n
∏

i=3

f(xi)(f
′(x1)f(x2) − f(x1)f

′(x2)) ≥ 0,

if and only if f ′

f
is increasing on I. □

Remark 2.2. As in the literature, the infinite decreasing sequence x = (xn) majorized
by the infinite decreasing sequence y = (yn) and denoted by x ≺ y, if there exists
an infinite doubly stochastic square matrix P = (pij) (i.e., pij ≥ 0 for all i, j ∈ N,

and all rows sum and all columns sum are equal one) such that x = y.P. If (αn) be a
sequence in the interval [0, 1], we take x1 = α1y1 + (1 − α1)y2, x2 = (1 − α1)y1 + α1y2,

and x3 = α2y3 + (1 − α2)y4, x4 = (1 − α2)y3 + α2y4, . . . , where y = (yn) is an infinite
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decreasing real sequence. If we put

P =























α1 1 − α1 0 0 0 0 0 · · ·
1 − α1 α1 0 0 0 0 0 · · ·

0 0 α2 1 − α2 0 0 0 · · ·
0 0 1 − α2 α2 0 0 0 · · ·

0 0 0 0
. . . . . . 0 · · ·

...
...

...
...

. . . . . . 0 · · ·























,

then x = yP and x ≺ y.

Example 2.1. In Lemma 2.5, set f(x) = sin x and I = (0, π). The function f ′(x) = cos x

and f ′(x)
f(x)

= cot x is decreasing on I. So, F (x) =
∏n

i=1 sin xi is Schur concave. Let

x = (xn) and y = (yn) be two decreasing sequence in I = (0, π), such that x ≺ y as
in Remark 2.2. Since F is Schur concave, we have F (x) ≥ F (y) and so

sin(α1y1 + (1 − α1)y2) sin((1 − α1)y1 + α1y2) sin(α2y3 + (1 − α2)y4)

× sin((1 − α2)y3 + α2y4) · · · ≥
∞
∏

i=1

sin yi.

In the special case, αi = 1
2

for all i ∈ N, we have

sin
(

y1 + y2

2

)

sin
(

y3 + y4

2

)

· · · ≥

(

∞
∏

i=1

sin yi


1
2

.

Example 2.2. In Lemma 2.5, put f(x) = cos x and I = (0, π
2
). The function f ′(x) =

− sin x and f ′(x)
f(x)

= − tan x is decreasing on I. So F (x) =
∏n

i=1 cos xi is Schur concave.

Let x = (xn) and y = (yn) be two decreasing sequence in I = (0, π
2
), such that x ≺ y

as in Remark 2.2. Since F is Schur concave, we have F (x) ≥ F (y) and so

cos(α1y1 + (1 − α1)y2) cos((1 − α1)y1 + α1y2) cos(α2y3 + (1 − α2)y4)

× cos((1 − α2)y3 + α2y4) · · · ≥
∞
∏

i=1

cos yi.

In the special case, αi = 1
2

for all i ∈ N, we have

cos
(

y1 + y2

2

)

cos
(

y3 + y4

2

)

· · · ≥

(

∞
∏

i=1

cos yi


1
2

.

As in [9], let I = (0, l) and Ln =


x = (x1, . . . , xn) ∈ R
n :

n
∑

i=1
xi = ml

}

for some

0 < m < n, Dn = In ∩ Ln and Ω = (y, . . . , y), where y = 1
n

n
∑

i=1
xi = ml

n
.

Lemma 2.6. ([9, Lemma 2.1]). If f : In → R is a Schur-convex function, then f(Ω)
is a global minimum in Dn. If f is strictly Schur-convex on In, then f(Ω) is the unique

global mimimum in Dn.
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Remark 2.3. In Example 2.2 and Lemma 2.6, put l = π
2

and xi ∈ (0, π
2
), for i =

1, 2, . . . , n, and
n
∑

i=1
xi = π. Then Ω = (π

n
, . . . , π

n
) and we have F (x) ≤ F (Ω), that is

n
∏

i=1

cos xi ≤
(

cos
π

n

)n

.

Similarly in Example 2.1, for l = π
2
, we have

n
∏

i=1

sin xi ≤
(

sin
π

n

)n

.

Lemma 2.7. Let I be an interval in R and f : I → (0, ∞) be continuous, then for

each x ∈ In ⊂ R
n, the function

F (x) =
n
∏

i=1

∫ xi

0
f(t)dt,

is Schur convex if and only if

∫ x
0 f(t)dt

f(x)
is decreasing on I (is Schur concave if and

only if

∫ x

0
f(t)dt

f(x)
is increasing on I).

Proof. Clearly F is symmetric. According to Lemma 1.1, F is Schur convex if and
only if for x1, x2 ∈ I, we have

(x1 − x2)

(

∂F

∂x1

−
∂F

∂x2



=(x1 − x2)



f(x1)
n
∏

i=2

∫ xi

0
f(t)dt − f(x2)

n
∏

i=1,i̸=2

∫ xi

0
f(t)dt





=(x1 − x2)
n
∏

i=3

∫ xi

0
f(t)dt

×
(

f(x1)
∫ x2

0
f(t)dt − f(x2)

∫ x1

0
f(t)dt

)

≥0,

if and only if

∫ x

0
f(t)dt

f(x)
is decreasing on I. □

3. Applications

In this section, we obtain some inequalities, which are the applications of the results
in Section 2.

The next two examples are the applications of Lemma 2.1 and Theorems 2.1, 2.3
and 2.5.

Example 3.1. Let α ≥ 1 and Eα(x) =
∑∞

k=0
xk

Γ(αk+1)
be the Mittage-Leffler function.

Let

F (x, y) =















1

y − x

∫ y

x
tαEα(tα)dt, x ̸= y,

xαEα(xα), x = y.
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Since tα and Eα(t) are convex, continuous and similarly ordered on [0, ∞), then Lemma
2.1 and Theorems 2.1, 2.3 and 2.5 imply that F is Schur convex, Schur geometrically
convex and Schur harmonically convex on [0, ∞) × [0, ∞) and for x, y ∈ [0, ∞), the
following inequalities hold

1

y − x

∫ y

x
tαEα(tα)dt ≤

xαEα(xα) + yαEα(yα)

2
,

1

y − x

∫ y

x
tαEα(tα)dt ≤

xα+1Eα(xα) + yα+1Eα(yα)

x + y
,

1

y − x

∫ y

x
tαEα(tα)dt ≤

xα+2Eα(xα) + yα+2Eα(yα)

x2 + y2
.

Example 3.2. Let α > 0 and

F (x, y) =















1

y − x

∫ y

x
Γ(t)Eα(tα)dt, x ̸= y,

Γ(x)Eα(xα), x = y.

Since Γ(t) and Eα(t) are convex, continuous and similarly ordered on
[

3
2
, ∞

)

, then

Lemma 2.1 and Theorems 2.1, 2.3 and 2.5 imply that F is Schur convex, Schur

geometrically convex and Schur harmonically convex on
[

3
2
, ∞

)

×
[

3
2
, ∞

)

and for

x, y ∈
[

3
2
, ∞

)

, the following inequalities hold

1

y − x

∫ y

x
Γ(t)Eα(tα)dt ≤

Γ(x)Eα(xα) + Γ(y)Eα(yα)

2
,

1

y − x

∫ y

x
Γ(t)Eα(tα)dt ≤

xΓ(x)Eα(xα) + yΓ(y)Eα(yα)

x + y
,

1

y − x

∫ y

x
Γ(t)Eα(tα)dt ≤

x2Γ(x)Eα(xα) + y2Γ(y)Eα(yα)

x2 + y2
.

Remark 3.1. For x, y ∈ [0, ∞), the following majorizations hold

(1 + x, 1 + y) ≺(1 + x + y, 1),(3.1)
(

1

H2(x, y)
,

1

H2(x, y)



≺

(

1

x
,
1

y



,(3.2)

(

x + y

2
,
x + y

2

)

≺(x, y),(3.3)

where H2 (x, y) = 2
1
x

+ 1
y

.

Example 3.3. Let f, g : [0, ∞) → [0, ∞) be convex, continuous and similarly ordered
functions. Then for x, y ∈ [0, ∞) with x ≠ y, (3.1), (3.2) and (3.3) and Theorem 2.1
imply the following inequalities

1

y − x

∫ 1+y

1+x
f(t)g(t)dt ≤

−1

x + y

∫ 1

1+x+y
f(t)g(t)dt,
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f

(

1

H2(x, y)



g

(

1

H2(x, y)



≤
1

1
y

− 1
x

∫ 1
y

1
x

f(t)g(t)dt,

f

(

x + y

2

)

g

(

x + y

2

)

≤
1

y − x

∫ y

x
f(t)g(t)dt.

For increasing, continuous and convex function f : [0, ∞) → [0, ∞) and α ≥ 1,

Remark 3.1 and Corollaries 2.1, 2.3 imply the following inequalities

1

y − x

∫ 1+y

1+x
tαetdt ≤

−1

y + x

∫ 1

1+x+y
tαetdt,

(

1

H2(x, y)

α

e
1

H2(x,y) ≤
1

1
y

− 1
x

∫ 1
y

1
x

tαetdt,

(

x + y

2

)α

e
x+y

2 ≤
1

y − x

∫ y

x
tαetdt,

1

y − x

∫ 1+y

1+x
tαf(t)dt ≤

−1

x + y

∫ 1

1+x+y
tαf(t)dt,

(

1

H2(x, y)

α

f

(

1

H2(x, y)



≤
1

1
y

− 1
x

∫ 1
y

1
x

tαf(t)dt,

(

x + y

2

)α

f

(

x + y

2

)

≤
1

y − x

∫ y

x
tαf(t)dt.

For increasing, continuous and convex function f : [0, ∞) → [0, ∞), Remark 3.1 and
Corollary 2.2 imply the following inequalities

1

y − x

∫ 1+y

1+x
etf(t)dt ≤

−1

x + y

∫ 1

1+x+y
etf(t)dt,

e
1

H2(x,y) f

(

1

H2(x, y)



≤
1

1
y

− 1
x

∫ 1
y

1
x

etf(t)dt,

e
x+y

2 f

(

x + y

2

)

≤
1

y − x

∫ y

x
etf(t)dt.

Remark 3.1 and Corollary 2.5 imply the following inequalities

1

y − x

∫ 1+y

1+x
sech t ln tdt ≥

−1

x + y

∫ 1

1+x+y
sech t ln tdt,

sech

(

1

H2(x, y)



ln

(

1

H2(x, y)



≥
1

1
y

− 1
x

∫ 1
y

1
x

sech t ln tdt,

sech
(

x + y

2

)

ln
(

x + y

2

)

≥
1

y − x

∫ y

x
sech t ln tdt.

Remark 3.1 and Corollary 2.7 imply the following inequalities, for α, β ∈ (1, 2),

1

y − x

∫ 1+y

1+x
tα−1(1 − t)β−1dt ≥

−1

x + y

∫ 1

1+x+y
tα−1(1 − t)β−1dt,
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(

1

H2(x, y)

α−1 (

1 −
1

H2(x, y)

β−1

≥
1

1
y

− 1
x

∫ 1
y

1
x

tα−1(1 − t)β−1dt,

(

x + y

2

)α−1 (

1 −
x + y

2

)β−1

≥
1

y − x

∫ y

x
tα−1(1 − t)β−1dt.

Remark 3.1 and Example 3.1 imply the following inequalities, for α ≥ 1 and the

Mittage-Leffler function Eα(x) =
∑∞

k=0
xk

Γ(αk+1)

1

y − x

∫ 1+y

1+x
tαEα(tα)dt ≤

−1

x + y

∫ 1

1+x+y
tαEα (tα) dt,

(

1

H2(x, y)

α

Eα

((

1

H2(x, y)

α

≤
1

1
y

− 1
x

∫ 1
y

1
x

tαEα(tα)dt,

(

x + y

2

)α

Eα

((

x + y

2

)α)

≤
1

y − x

∫ y

x
tαEα(tα)dt.

Remark 3.2. Let α ≥ 1 and Eα(x) =
∑∞

k=0
xk

Γ(αk+1)
be the Mittage-Leffler function on

(0, ∞). In Lemma 2.4, set f(t) = Eα(t) and g(t) = 1. Then the function

F (x) =
n
∑

i=1

∞
∑

k=0

∫ xi

0

tk

Γ(αk + 1)
dt =

n
∑

i=1

∞
∑

k=0

xk+1
i

(k + 1)Γ(αk + 1)

=
∞
∑

k=0

n
∑

i=1

xk+1
i

(k + 1)Γ(αk + 1)
=

∞
∑

k=0

∑n

i=1
xk+1

i

k+1

Γ(αk + 1)

is Schur convex on R
n
+.
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ON RAPID EQUIVALENCE AND TRANSLATIONAL RAPID

EQUIVALENCE

VALENTINA TIMOTIĆ1, DRAGAN DJURČIĆ2, AND MALIŠA R. ŽIŽOVIĆ2

Abstract. In this paper we will prove some properties of the rapid equivalence and
consider some selection principles and games related to rapidly varying sequences.

1. Introduction

Let S be the set of sequences of positive real numbers, and S1 be the set of nonde-
creasing sequences from S [5]. Let c = (cn)n∈N ∈ S. A sequence c is said to be rapidly

varying in the sense of de Haan, if

(1.1) lim
n→+∞

c[λn]

cn

= +∞

holds for each λ > 1. The set of all these sequences is denoted by R∞,s. These
sequences are objects in rapid variation theory in the sense of de Haan, which is very
important in asymptotic analysis and applications (see, e.g., [1Ű3, 8, 10, 15]). The
theory of rapid variation is an important modiĄcation of Karamata’s theory of regular
variation [13], and its relation can be seen on example of slow and rapid variation
within generalized inverse (see, e.g., [7]). Elements of the class R∞,s are important
objects in dynamic systems theory [10,11,15], inĄnite topological games theory and
selection principles theory [3Ű6].

A sequence c is translationally slowly varying (in the sense of Karamata) if

(1.2) lim
n→+∞

c[λ+n]

cn

= 1
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holds for each λ ⩾ 1. Translationally slowly varying sequences form the class Tr(SVs)
(see, e.g., [4Ű6]), and it holds R∞,s ∩Tr(SVs) ̸= ∅, R∞,s \Tr(SVs) ̸= ∅ and Tr(SVs)\
R∞,s ̸= ∅.

A sequence c is translationally rapidly varying (in the sense of de Haan) if

(1.3) lim
n→+∞

c[λ+n]

cn

= +∞

holds for each λ ⩾ 1.

The class of translationally rapidly varying sequences is denoted by Tr(R∞,s). It
holds Tr(R∞,s) ⊊ R∞,s for each λ ⩾ 1 (see, e.g., [5]).

The classes of sequences mentioned above have nice and deep connections with
selection principles theory and inĄnitely long two-person game theory (see, for example,
[2, 3, 5, 6]).

Motivated by the study of some equivalence relations on classes of functions and
sequences given in [7, 8, 14], in this paper we deĄne a relation on the class of transla-
tionally rapidly varying sequences and investigate some properties of this relation. In
particular, we study relationships of this relation with selection principles and game
theory complementing the research in [2,3,5,6]. We also obtain some additional infor-
mation on the classes of rapidly varying and translationally rapidly varying sequences.

Definition 1.1. Sequences c and d of positive real numbers are mutually translation-

ally rapidly equivalent, denoted by

c
tr
∼ d as n → +∞,

if

(1.4) lim
n→+∞

c[λ+n]

dn

= +∞

and

(1.5) lim
n→+∞

d[λ+n]

cn

= +∞

hold for each λ ⩾ 1.

The previous relation is a modiĄcation of the rapid equivalence relation between
sequences c and d given by

(1.6) lim
n→+∞

c[λn]

dn

= +∞

and

(1.7) lim
n→+∞

d[λn]

cn

= +∞,

for each λ > 1. We denote it by c
r
∼ d as n → +∞ (see, e.g., [8, 14]).

Let c be a nondecreasing sequence from a subset V of S. The capacity of c with
respect to V is the subfamily of S given by MV

c = ¶x = (xn) ∈ S ♣ cn ⩽ xn ⩽

cn+1 for each n ∈ N♢.
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Let A and B be nonempty subfamilies of S. Let us adduce two selection principles
which we need in this paper:

(a) (Rotberger, see, e.g.,[12]) S1(A,B): for each sequence (An)n∈N of elements
from A there is an element b ∈ B, so that bn ∈ An for each n ∈ N;

(b) (Kočinac, see, e.g., [9]) α2(A,B): for each sequence (An)n∈N of elements from
A, there is an element b ∈ B, so that b ∩ An is inĄnite for each n ∈ N.

Games associated to the previous two selection principles are the following.
G1(A,B). Two players, I and II, play a round for each positive integer. In mth

round, m ∈ N, the player I plays a sequence Am ∈ A, and the player II plays an
element bm ∈ Am. II wins the play A1, b1; A2, b2; . . . if and only if b = (bn) ∈ B.

The symbol Gα2(A,B) denotes the following inĄnitely long game for two players, I
and II, who play a round for each natural number n. In the Ąrst round the player I plays
an arbitrary element A1 ∈ A, and the player II chooses a subsequence Ar1(j), j ∈ N,
of the sequence A1. At the kth round, k ⩾ 2, the player I plays an arbitrary element
Ak ∈ A and the player II chooses a subsequence Ark(j) of the sequence Ak, such
that Ark(j) ∩ Arp(j) = ∅ is satisĄed, for each p ⩽ k − 1. The player II wins the play
A1, Ar1(j); . . . ; Ak, Ark(j); . . . if and only if all elements from Y = ∪k∈N ∪j∈N Ark(j) form
a subsequence y ∈ B.

Note that if II has a winning strategy (even if I does not have a winning strategy)
in a game deĄned above, then the corresponding selection principle holds.

Note that in the paper [5] it is proven that the player II does not have a winning
strategy in the game G1(Tr(SVs), T r(SVs)).

2. Results

Proposition 2.1. If c ∈ S, d ∈ S and c
tr
∼ d as n → +∞ holds, then c ∈ Tr(R∞,s)

and d ∈ Tr(R∞,s).

Proof. Let c, d ∈ S and c
tr
∼ d as n → +∞ hold. Therefore, for λ = 1, it holds

limn→+∞
cn+1

dn
= +∞ and limn→+∞

dn+1

cn
= +∞. For λ ⩾ 1 it holds limn→+∞

c[λ+n]

cn
=

limn→+∞



c[λ]+n

d[λ]+n−1
·

d[λ]+n−1

c[λ]+n−2
· · · dn+1

cn



= +∞ for each λ ∈ [k, k + 1), k = 2s, s ∈ N. It

means, for λ = 2, limn→+∞
cn+2

cn
= limn→+∞



cn+2

dn+1
· dn+1

cn



= +∞. Therefore, +∞ =

limn→+∞



cn+2

cn+1
· cn+1

cn



= lims→+∞



cs+1

cs

2
=



lims→+∞
cs+1

cs

2
. Thus, lims→+∞

cs+1

cs
=

+∞, so for each λ ⩾ 1, lims→+∞
c[λ+s]

cs
= +∞ holds. Therefore, c ∈ Tr(R∞,s).

Analogously we prove that d ∈ Tr(R∞,s). □

Proposition 2.2. The relation
tr
∼ is a reflexive, symmetric and nontransitive relation

in Tr(R∞,s).

Proof. 1. (Reflexivity) According to Proposition 2.1, from c
tr
∼ d as n → +∞ it follows

c, d ∈ Tr(R∞,s). The asymptotic relation limn→+∞
c[λ+n]

cn
= +∞ holds for each λ ⩾ 1

in the class Tr(R∞,s), thus c
tr
∼ c as n → +∞.
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2. (Symmetry) According to the deĄnition of
tr
∼, symmetry holds.

3. (Nontransitivity) The following example shows that the relation is not transitive.

Consider the sequences cn = (n − 1)! ln(n + 1), dn = n! and en = (n+1)!
ln(n+1)

, n ∈ N. It

holds c
tr
∼ d, d

tr
∼ e as n → +∞, but c

tr
∼ e does not hold as n → +∞. □

Proposition 2.3. Let c, d ∈ S. If c
tr
∼ d, then c

r
∼ d as n → +∞.

Proof. Let c, d ∈ S and c
tr
∼ d as n → +∞. According to Proposition 2.1 it follows

c, d ∈ Tr(R∞,s) ⊊ R∞,s. Therefore, limn→+∞
cn+1

dn
= limn→+∞

dn+1

cn
= +∞ holds. It

follows limn→+∞
c[λn]

dn
= limn→+∞



c[λn]

c[λn]−1
·

c[λn]−1

c[λn]−2
· · ·

cn+1

dn



= +∞ for λ > 1. Analo-

gously it can be proved that limn→+∞
d[λn]

cn
= +∞ holds for each λ > 1, thus c

r
∼ d as

n → +∞ holds. □

Proposition 2.4. Let TS = Tr(SVs), x ∈ MT S
c . Then it holds x ∼ c as n → +∞

(∼ is the relation defined by limn→+∞
xn

cn
= 1). Also, MT S

c ⊊ Tr(SVs) holds.

Proof. Let x ∈ MT S
c . Therefore, it holds cn ⩽ xn ⩽ cn+1 for each n ∈ N. It means

that 1 ⩽ limn→+∞
xn

cn
⩽ limn→+∞

cn+1

cn
= 1, thus c ∼ x as n → +∞. Thus, MT S

c ⊊ [c]∼
([c]∼ is the class of strong asymptotic equivalence, generated by the sequence c). It
follows c ∈ MT S

c holds (c ∈ Tr(SVs)). So, if x ∈ MT S
c , then x ∈ [c]∼ and thus

xn = hn · cn, where for the sequence h = (hn), n ∈ N, h → 1 holds as n → +∞.
Therefore, it holds limn→+∞

xn+1

xn
= 1, which means x ∈ Tr(SVs).

The sequence d = (dn), n ∈ N, given by dn = cn+1 + 1
n

as n → +∞, belongs to
the class Tr(SVs) and it does not belong to the class MT S

c . It holds also d ∈ [c]∼. It
means that MT S

c ⊊ [c]∼ ⊊ Tr(SVs) holds. □

Proposition 2.5. The player II has a winning strategy in the game G1(M
T S
c ,MT S

c ).

Proof. Let m ∈ N. In mth round the player I chooses an element Am ∈ MT S
c . Then

II chooses an element ym ∈ Am, m ∈ N. It holds cm ⩽ ym ⩽ cm+1 ⩽ ym+1 ⩽ cm+2, for
m ∈ N. Therefore, 1 ⩽

ym+1

ym
⩽

cm+2

cm
= cm+2

cm+1
· cm+1

cm
and limn→+∞

ym+1

ym
= 1 hold. Hence,

y ∈ Tr(SVs) and it holds cm ⩽ ym ⩽ cm+1, so y ∈ MT S
c . □

Corollary 2.1. The selection principle S1(M
T S
c ,MT S

c ) holds.

Proposition 2.6. The player II has a winning strategy in the game Gα2(MT S
c ,MT S

c ).

Proof. (mth round, m ⩾ 1) Take a sequence p1 < p2 < · · · of prime numbers. In
mth round the player I chooses the sequence Am ∈ MT S

c and the player II chooses a
subsequence Akm(n) of the sequence Am, so that km(n) = pn

m for n ∈ N. Consider the
set Y =

⋃

m∈N

⋃

n∈N Akm(n) of positive real numbers. We can consider this set as the
subsequence of the sequence y = (yi), i ∈ N, given by

yi =







Akm(n), if i = km(n) for some m, n ∈ N,

ci, otherwise.
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By the construction of the sequence y, we have that y ∈ S, y ∼ c as i → +∞,
ci ⩽ yi ⩽ ci+1 for i ∈ N. Therefore, y ∈ MT S

c Also, y ∩ Am has inĄnitely many
elements for each m ∈ N. This means that II wins the play A1, Ak1(n); A2, Ak2(n), . . .,
i.e., II has a winning strategy in the game Gα2(MT S

c ,MT S
c ). □

Corollary 2.2. The selection principle α2(M
T S
c ,MT S

c ) holds.

Consider now an important subclass of R∞,s.
Let c ∈ R∞,s. Therefore, it holds limn→+∞

cn+1

cn
= A ⩾ 1. It follows from (1.1),

because
c[λn]

cn
=

c[λn]

c[λn]−1
· · · cn+1

cn
holds for n ∈ N large enough. On the right side there

are [λn] − n, n ∈ N, factors which tend to +∞ as n → +∞.
The class of rapidly varying sequences which satisfy the relation limn→+∞

cn+1

cn
=

A > 1, A ∈ R, we will denote by RT R
∞,s and the class of rapidly varying sequences

which satisfy the relation limn→+∞
cn+1

cn
= 1 by RT S

∞,s. We see that

RT R
∞,s ∪ RT S

∞,s ⊊ R∞,s, RT S
∞,s ⊊ Tr(SVs) and RT R

∞,s ⊊ Tr(RVs),

where Tr(RVs) is the class of translationally regularly varying sequences in the sense
of Karamata (see, e.g., [5]).

Example 2.1. The sequence (cn) = (en), n ∈ N, is an element of the class RT R
∞,s, and

the sequence (dn) = (e
√

n), n ∈ N, is an element of the class RT S
∞,s.

Proposition 2.7. Let TRV = RT R
∞,s, x = (xn), n ∈ N, and x ∈ MT RV

c . Then xn ≍ cn

as n → +∞ (≍ is the relation defined by 0 < lim infn→+∞
xn

cn
⩽ lim sup xn

cn
< +∞).

Also, MT RV
c ⊊ R∞,s.

Proof. Let c ∈ RT R
∞,s = TRV , c ∈ MT RV

c and for the sequence x it holds cn ⩽ xn ⩽ cn+1

for n ∈ N. It means that for some A ∈ R, it holds

1 ⩽ limn→+∞
xn

cn

⩽ limn→+∞
xn

cn

⩽ lim
n→+∞

cn+1

cn

= A < +∞.

Hence, c ≍ x as n → +∞. Thus, MT RV
c ⊊ [c]≍ ([c]≍ is the class of weak asymptotic

equivalence generated by the sequence c). It holds that c ∈ MT RV
c , c ∈ R∞,s. If

x ∈ MT RV
c , then x ∈ [c]≍ and xn = hn · cn, and for the sequence h = (hn), n ∈ N, it

holds 1 ⩽ limn→+∞hn ⩽ limn→+∞hn ⩽ A < +∞. Thus, for λ > 1,

limn→+∞
x[λn]

xn

⩾ limn→+∞
h[λn]

hn

· limn→+∞
c[λn]

cn

=
1

A
· (+∞) = +∞

holds. The last means that x ∈ R∞,s so MT RV
c ⊊ ¶c♢≍ ⊊ R∞,s. □

Proposition 2.8. The player II has a winning strategy in the game G1(MT RV
c ,MT RV

c ).

Proof. Let m ∈ N. In mth round I chooses an element Am ∈ MT RV
c . II chooses

an element ym ∈ Am, m ∈ N. Thus, we get the sequence (ym). Therefore, for
each m ∈ N, cm ⩽ ym ⩽ cm+1 ⩽ ym+1 ⩽ cm+2, so 1 ⩽

ym+1

ym
⩽

cm+2

cm
. It follows

1 ⩽ limn→+∞
ym+1

ym
⩽ limn→+∞

ym+1

ym
⩽ limn→+∞

cm+2

cm+1
· limn→+∞

cm+1

cm
= A · A = A2 and

for each m ∈ N, cm ⩽ ym ⩽ cm+1. Hence, y ∈ MT RV
c . □
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Corollary 2.3. The selection principle S1(M
T RV
c ,MT RV

c ) holds.

Proposition 2.9. The player II has a winning strategy in the game

Gα2(MT RV
c ,MT RV

c ).

Proof. (mth round, m ⩾ 1) Let p1 < p2 < · · · be a sequence of prime numbers. In mth

round I chooses the sequence Am ∈ MT RV
c , and II chooses a subsequence Akm(n) of the

sequence Am, so that km(n) = pn
m for n ∈ N. Consider the set Y =

⋃

m∈N

⋃

n∈N Akm(n)

of positive real numbers. This set we can consider as the subsequence of the sequence
y = (yi), i ∈ N, given by

yi =







Akm(n), if i = km(n) for some m, n ∈ N,

ci, otherwise.

By the construction of the sequence y, we have that y ∈ S, yi ≍ ci as i → +∞,
ci ⩽ yi ⩽ ci+1 for i ∈ N. Therefore, y ∈ MT RV

c . Also, y ∩ Am has inĄnitely
many elements for each m ∈ N. This means that II wins the play A1, Ak1(n);
A2, Ak2(n); . . . ; Am, Akm(n); . . . In other words, II has a winning strategy in the game
Gα2(MT RV

c ,MT RV
c ). □

Corollary 2.4. The selection principle α2(M
T RV
c ,MT RV

c ) holds.

Remark 2.1. In Propositions 2.8 and 2.9, and in Corollaries 2.3 and 2.4, improvements
of some results from [3] are given.

Remark 2.2. Propositions 2.5, 2.6, Corollaries 2.1 and 2.2 hold also for the class
RT S

∞,s ⊊ Tr(SVs).

A sequence x = (xn) ∈ S is said to be logarithmic rapidly varying, with base 2,
if (log2 xn), n ∈ N, is an element of the class R∞,s (see, e.g., [6]). The class of all
logarithmic rapidly varying sequences is denoted by L2(R∞,s). It holds L2(R∞,s) ⊊

R∞,s.

Proposition 2.10. Let x, y ∈ S1 and x
r
∼ y as n → +∞. If x ∈ L2(R∞,s) holds, then

y ∈ L2(R∞,s).

Proof. Let sequences x, y ∈ S1 be given, and let the sequence (log2 xn), n ∈ N, be
rapidly varying. DeĄne the functions f(t) = x[t] and g(t) = y[t], t ⩾ 1. Therefore,

it holds f(t)
r
∼ g(t) as t → +∞, and log2 f(t) is rapidly varying function. The

functions f and g are also nondecreasing. It holds log2 g(λt)
log2 g(t)

⩾
log2(f(λ

2
3 ·t))

log2(f(λ
1
3 ·t))

→ +∞ as

t → +∞, for each λ > 1. For t large enough, g(t) < f(λ
1
3 · t) and f(λ

2
3 · t) < g(λt)

hold for λ > 1. Therefore, log2 g(t) = h(t), t ⩾ 1, belongs to the class R∞,f and hence
(log2 yn) ∈ R∞,s. □

Corollary 2.5. Proposition 2.10 holds when xn
tr
∼ yn as n → +∞.
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WELL-POSEDNESS AND GENERAL DECAY OF SOLUTIONS FOR
THE HEAT EQUATION WITH A TIME VARYING DELAY TERM

ABDELKADER BRAIK1, ABDERRAHMANE BENIANI2, AND YAMINA MILOUDI3

Abstract. We consider the nonlinear heat equation in a bounded domain with a
time varying delay term

ut + ∆2u − J(t)

∫

t

0

g(t − s)∆2u(s)ds + αK(t)u + βK(t)u (t − τ(t)) = 0,

with initial conditions. By introducing suitable energy and Lyapunov function-
als, under some assumptions, we then prove a general decay result of the energy
associated of this system under some conditions.

1. Introduction and Statement

Let us consider the following problem

(1.1)















































ut + ∆2u− J(t)
∫ t

0
g(t− s)∆2u(s)ds+ αK(t)u

+ βK(t)u (t− τ(t)) = 0, in Ω × ]0,+∞[ ,

u = 0, on ∂Ω × ]0,+∞[ ,

u (0) = u0, in Ω,

u (t− τ(0)) = h0 (t− τ(0)) , in Ω × ]0, τ(0)[ ,

where ∆2u = ∆(∆u), Ω be a bounded open domain in R
n, n ∈ N

∗ of regular boundary
∂Ω, the function τ : ]0,+∞[ −→ ]0,+∞[, τ(t) is a time varying delay, α and β are
positive real numbers, and the initial data (u0, h0) belongs to a suitable function
space.

Key words and phrases. Heat equation, time varying delay, energy decay, Lyapunov functional,
global existence, viscoelastic term.
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Time delay is the property of a physical system by which the response to an applied
force is delayed in its effect (see [12]). Whenever material, information or energy is
physically transmitted from one place to another, there is a delay associated with the
transmission. In, physical, chemical, biological, electrical, mechanical and economic
phenomena.

in recent years, the stability of partial differential equations with time-varying
delays has been studied in [8, 15,20] via the Lyapunov method.

In the constant delay case the exponential stability was proved in [11,18] by using
the observability inequality which can not be applicable in the time-varying case (since
the system is not invariant by translation).

In recent years, the control of PDEs with time delay effects has become an active
area of research, see for example [1, 19, 23] and the references therein. In the case
of distributed parameter systems, even arbitrarily small delays in the feedback may
destabilize the system (see, e.g., [5, 9, 11, 15]). Hence the stability issue of systems
with delay is of theoretical and practical importance.

There are more works on the Lyapunov-based technique for delayed PDEs. Most of
these studies analyze the case of constant delays. Thus, the conditions of stability and
the exponential limits have been derived for some heat equations and scalar waves
with constant delays and boundary conditions of Dirichlet without delay in [21].

S. Bernard, J. Belair and M. C. Mackey [16] studied the stability of the following
linear differential equation

x′ = −αx(t) − β

∫ +∞

0
x(t− s)f(s)ds,

where α and β are constants.
Chengming Huang and Stefan Vandewalle [2] considered a more general equation,

(1.2) y′(t) = αy(t) + βy(t− τ) + γ

∫ t

t−τ
y(s)ds,

where α, β, γ ∈ R and u(t) = ϕ(t) on [−τ, 0], and proved that the repeated trapezium
rule retains the asymptotic stability of (1.2). Wu and Gan in [22] further extended
the above study to the case of neutral equations.

In Section 3, page 16, Chengming Huang and Stefan Vandewalle [3] considered the
asymptotic stability of multi-dimensional equations of the form

(1.3) y′(t) = Ly(t) +My(t− τ) +K

∫ t

t−τ
y(ν)dν, t > 0,

where L,M,K ∈ Cd×d and y(t) = ϕ(t) on [−τ, 0]. The characteristic equation equals

(1.4) det
[

λId − L−Me−τλ −K

∫ 0

−τ
e−τνdν

]

= 0,

where Id is the d × d identity matrix. The zero solution of (1.3) is asymptotically
stable if and only if all the roots λ of (1.4) have negative real parts.

Recently the stability of PDEs with time-varying delays was analyzed in [8, 20].
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Later, Mohamed Ferhat and Ali Hakem in [7] studied the decay properties of
solutions of the folowing system for the initial boundary value problem of a nonlinear
wave equation
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(♣u′♣γ−2
u′)′ − ∆xu−

∫ t

0
g(t− s)∆u(s)ds+ µ1Ψ(u′(x, t))

+ µ2Ψ(u′(x, t− τ(t))) = 0, in Ω × (0,+∞),

u = 0, on Γ × (0,+∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x), in Ω,

u′(t− τ(0)) = f0(t− τ(0)), on Ω × (0, τ(0)),

where Ω is a bounded domain in R
n, n ∈ N

∗, with a smooth boundary ∂Ω, τ(t) > 0
is a time varying delay, µ1 and µ2 are positive real numbers.

Recently, the case of time-varying delay has been studied in [13,18]. For example,
in Nicaise et al. [18] in one space dimension studied
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


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

u′ − auxx = 0, 0 < x < π, t > 0,

u(0, t) = 0, t > 0,

ux(π, t) = µ0u(π, t) − µ1u(π, t− τ(t)), t > 0,

u(x, 0) = u0(x), 0 < x < π,

u(π, t− τ(0)) = f0(t− τ(0)), 0 < t < τ(0),

where µ0, µ1 ≥ 0 and a > 0. They proved the exponential stability result under the
conditions

τ ′ < 1, for all t > 0,

exists M > 0, 0 < τ0 ≤ τ ≤ M, for all t > 0,

τ ∈ W 2,∞([0, T ]), for all T > 0.

And in 2011 S. Nicaise and C. Pignotti in [13] considered an problem of the form
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
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u′′ − ∆u− a∆u′ = 0, in Ω × (0,+∞),

u = 0, on Γ × (0,+∞),

µu′′ =
∂(u+ au′)

∂ν
− ku′(t− τ(t)), on Γ1 × (0,+∞),

u(x, 0) = u0(x), u′(x, 0) = u1(x), in Ω,

u′ = f0, on Γ1 × (−τ(0), 0).

We also recall the result by Xu, Yung and Li [4], where the authors proved a
result similar to the one in [11] for the one-space dimension by adopting the spectral
analysis approach. The case of time-varying delay in the wave equation has been
studied recently by Nicaise, Valein and Fridman [18]) in one-space dimension. They
proved an exponential stability result under the condition µ2 ≤

√
1 − dµ1, where the

fuction τ satisfies τ ′(t) ≤ d < 1 for all t > 0.
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In [14], Nicaise, Pignotti and Valein extended the above result to higher space
dimensions and established an exponential decay.

The paper is organized as follows. In Section 2 we present some assumptions and
state the main result. The general decay result is proved in Sections 3.

We use the ideas given by G. Li, B. Zhu and Wenjun Liu in [10], and the multiplier
technique to prove our result.

2. Preliminaries and Main Results

Firstly we assume the following hypotheses.
(H1) k : R+ −→]0,+∞[ is a non-increasing function of class C1(R+) satisfying

(2.1) k′(t) ≤ −ck(t), for all t ≥ 0,

where c is a positive constant.
(H2) J, g, ψ : R+ −→]0,+∞[ are non-increasing differentiable functions satisfying

(2.2)
∫ +∞

0
g(s)ds < +∞, 1 − J(t)

∫ t

0
g(s)ds ≥ l > 0,

and

(2.3) g′(t) < −ψ(t)g(t), for all t ≥ 0, lim
t−→+∞

J ′(t)

ψ(t)J(t)
= 0.

(H3) For the time-varying delay τ , it is varying betwin two positive constants τ0, τ1,
and

τ ∈W 2,∞([0, T ]), for all T > 0,(2.4)

0 <τ0 ≤ τ(t) ≤ τ1, for all t > 0,(2.5)

τ ′(t) ≤d < 1, for all t > 0.(2.6)

(H4) α, β and δ are three positive constants satisfy,

(2.7) α ≥ βδ

and

(2.8) β ≤ 1

2δk(0)
,

for some δ > 0.
We now state some lemmas needed later.

Lemma 2.1 (Sobolev-Poincare’s inequality). There exists a constant Cp = C(Ω) such

that

(2.9)
∫

Ω
♣w♣2 dx ≤ Cp

∫

Ω
♣∆w♣2 dx, for all w ∈ H1

0 (Ω).
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We introduce, as in [11], the new variable

(2.10) z(x, ρ, t) = u(x, t− ρτ(t)), (x, ρ, t) ∈ Ω × (0, 1) × (0,+∞).

Then, we have

(2.11) τ(t)z′(x, ρ, t) = (τ ′(t)ρ− 1)zρ(x, ρ, t), in Ω × (0, 1) × (0,+∞),

where z′ := ∂z
∂t

and zρ := ∂z
∂ρ

. Then problem (1.1) may be rewritten as

(2.12)
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
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ut + ∆2u− J(t)
∫ t

0
g(t− s)∆2u(s)ds+ αk(t)u

+ βk(t)z (1, t) = 0, in Ω × (0,+∞),

τ(t)z′(x, ρ, t) = (ρτ ′(t) − 1)zρ(x, ρ, t), in Ω × (0, 1) × (0,+∞),

u = 0, on ∂Ω×]0,+∞[,

u (0) = u0, in Ω,

z (0, t) = u(t), in Ω(0,+∞),

z (ρ, 0) = h0 (−ρτ(0)) , in Ω × (0, 1).

We define the energy of solution of problem (2.12) by

(2.13)
E(t) =

1

2

[

αk(t) ∥u∥2
2 +

(

1 − J(t)
∫ t

0
g(s)ds

)

∥∆u∥2
2 + J(t) (g ◦ ∆u) (t)

+ξk(t)τ(t)
∫

Ω

∫ 1

0
♣z(ρ, t)♣2 dρdx

]

,

where ξ is a positive constant, and

(g ◦ ∆w) (t) =
∫ t

0
g(t− ν) ∥∆w(t) − ∆w(ν)∥2

dν.

Now we will establish a general decay rate estimate for the energy.

3. Decay of Solutions

We firstly give the global existence of solutions of the system, which has been proved
in [10].

Proposition 3.1. ([10, Lemma 2.1]). Let (H1)-(H4) hold. Then given u0 ∈ H0
1 (Ω),

h0 ∈ L2(Ω×(0, 1)) and T > 0, there exists a unique weak solution (u, z) of the problem

(2.12) on (0, T ) such that

u ∈ C(0, T ;H0
1 (Ω)) ∩ C1(0, T ;L2(Ω)).

Lemma 3.1. Let (2.6) and (2.7) be satisfied, ξ be a positive constant and δ sufficiently

small such that

(3.1)
β

2δ (1 − d)
≤ ξ ≤ αc,
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and (u, z) the solution of the problem (2.12). Then, the energy functional defined by

(2.13) it may be non-increasing function and satisfies

(3.2)

E ′(t) ≤1

2
J(t) (g′ ◦ ∆u) (t) − 1

2
J ′(t)

(
∫ t

0
g(s)ds

)

∥∆u∥2
2

+
ξ

2
k′(t)τ(t)

∫

Ω

∫ 1

0
♣z(ρ, t)♣2 dρdx

≤1

2
J(t) (g′ ◦ ∆u) (t) − 1

2
J ′(t)

(
∫ t

0
g(s)ds

)

∥∆u∥2
2 .

Proof. At first, multiplying the first equation in (2.12) by u′, integrating over Ω and
using integration by parts, we have

(3.3)

1

2

d

dt



∥∆u∥2
2 + αk(t) ∥u∥2

2

)

+ ∥u′∥2
2 − 1

2
αk′(t) ∥u∥2

2 + βk(t)
∫

Ω
u′z(1, t)dx

− J(t)
∫ t

0
g(t− s)

∫

Ω
∆u′∆u(s)dxds = 0.

We denote by I1(t) to the last term on the left side of (3.3) for I1(t) we have
(3.4)

I1(t) =J(t)
∫ t

0
g(t− s)

∫

Ω
∆u′(t) (∆u(t) − ∆u(s)) dxds

− J(t)
∫ t

0
g(t− s)

∫

Ω
∆u′(t)∆u(t)dxds

=
1

2

d

dt

[
∫ t

0
J(t)g(t− s)

∫

Ω
♣∆u(t) − ∆u(s)♣2 dxds

−J(t)
∫ t

0
g(s)

∫

Ω
♣∆u(t)♣2 dxds

]

+
1

2

(

J(t)
∫ t

0
g(s)ds

)′ ∫

Ω
♣∆u(t)♣2 dxds

− 1

2

(
∫ t

0
(J(t)g(t− s))′

∫

Ω
♣∆u(t) − ∆u(s)♣2

)

dxds

=
1

2

d

dt

[
∫ t

0
J(t)g(t− s)

∫

Ω
♣∆u(t) − ∆u(s)♣2 dxds

−J(t)
∫ t

0
g(s)ds

∫

Ω
♣∆u(t)♣2 dx

]

+
1

2
J(t)g(t) ∥∆u∥2

2

+
1

2
J ′(t)

(
∫ t

0
g(s)ds

)

∥∆u∥2
2 − 1

2
J ′(t) (g ◦ ∆u) (t) − 1

2
J(t) (g′ ◦ ∆u) (t).

Inserting (3.4) into (3.3) and using Young’s inequality, we obtain

(3.5)

1

2

d

dt

(

αk(t) ∥u∥2
2 +

(

1 − J(t)
∫ t

0
g(s)ds

)

∥∆u∥2
2 + J(t) (g ◦ ∆u) (t)

)

≤1

2
αk′(t) ∥u∥2

2 − (1 − δβk(t)) ∥u′∥2
2 +

βk(t)

4δ
∥z(1, t)∥2

2 +
1

2
J ′(t) (g ◦ ∆u) (t)

+
1

2
J(t) (g′ ◦ ∆u) (t) − 1

2

(

J ′(t)
(
∫ t

0
g(s)ds

)

+ J(t)g(t)
)

∥∆u∥2
2 .
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Secondly, we multiply the second equation in (2.12) by ξk(t)z(x, ρ, t) and integrate
over Ω × (0, 1), to get

ξ

2
k(t)τ(t)

∫

Ω

∫ 1

0

d

dt
♣z(ρ, t)♣2 dρdx = −ξ

2
k(t)

∫

Ω

∫ 1

0
(1 − ρτ ′(t))

∂

∂ρ
♣z(ρ, t)♣2 dρdx.

And from there we find

(3.6)

d

dt



ξ

2
k(t)τ(t)

∫

Ω

∫ 1

0
♣z(ρ, t)♣2 dρdx



=
ξ

2
(k(t)τ(t))′

∫

Ω

∫ 1

0
♣z(ρ, t)♣2 dρdx

− ξ

2
k(t)

∫

Ω

[

(1 − ρτ ′(t)) ♣z(ρ, t)♣2
]1

0
dx

− ξ

2
k(t)τ ′(t)

∫

Ω

∫ 1

0
♣z(ρ, t)♣2 dρdx.

Taking the sum of (3.5) and (3.6), we obtain that
(3.7)

E ′(t) ≤1

2
(αk′(t) + ξk(t)) ∥u∥2

2 − (1 − δβk(t)) ∥u′∥2
2 +

1

2
J ′(t) (g ◦ ∆u) (t)

− k(t)

2



ξ (1 − τ ′(t)) − β

2δ



∥z(1, t)∥2
2 +

1

2
J(t) (g′ ◦ ∆u) (t)

− 1

2

(

J ′(t)
(
∫ t

0
g(s)ds

)

+ J(t)g(t)
)

∥∆u∥2
2 +

ξ

2
k′(t)τ(t)

∫

Ω

∫ 1

0
♣z(ρ, t)♣2 dρdx.

Combining (3.1), (3.7) and hypotheses (H1)-(H4), the proof of Lemma 3.1 is complete.
□

Theorem 3.1. Assume (H1)-(H4). Then there exist positive constants C and K0

such that for any solution of problem (2.12), the energy satisfies the following estimate

(3.8) E(t) ≤ Ce
−K0

∫ t

0
ψ(t)J(t)dt

,

for every t ≥ 0.

Now, we define the functional F (t) as follows

(3.9) F (t) =
1

2

∫

Ω
u2dx.

Lemma 3.2. The functional F satisfies the following estimate

(3.10)
F ′(t) ≤

[

δ − 1 +
(
∫ t

0
g(s)ds

)

J(t)
]

∥∆u∥2
2 +

1 − l

4δ
J(t) (g ◦ u) (t)

+ (δβ − α) k(t) ∥u∥2
2 +

β

4δ
∥z(t, 1)∥2

2 .

Proof. Differentiating and integrating by parts, we get
(3.11)

F ′(t) = − ∥∆u∥2
2 + J(t)

∫

Ω

∫ t

0
g(t− s)∆u(t)∆u(s)dsdx− k(t)

∫

Ω



αu2 + βuz(t, 1)
)

dx.
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We denote by F1(t) the second term on the right-hand side of above equality. By
using Young’s and Cauchy-Schwarz inequalities, we have
(3.12)

F1(t) =J(t)
∫

Ω

∫ t

0
g(t− s)∆u(t) [∆u(s) − ∆u(t)] dsdx+ J(t)

(
∫ t

0
g(s)ds

)

∥∆u∥2
2

≤J(t)
∫

Ω

∫ t

0
g(t− s) ♣∆u(t)♣ ♣∆u(s) − ∆u(t)♣ dsdx+ J(t)

(
∫ t

0
g(s)ds

)

∥∆u∥2
2

≤δ ∥∆u∥2
2 +

J2(t)

4δ

∫

Ω

(
∫ t

0
g(t− s) ♣∆u(s) − ∆u(t)♣ ds

)2

dx

+ J(t)
(
∫ t

0
g(s)ds

)

∥∆u∥2
2

≤
(
∫ t

0
g(s)ds

)

J2(t)

4δ

∫

Ω

∫ t

0
g(t− s) ♣∆u(s) − ∆u(t)♣2 dsdx

+
(

δ + J(t)
(
∫ t

0
g(s)ds

))

∥∆u∥2
2

≤
(

δ + J(t)
(
∫ t

0
g(s)ds

))

∥∆u∥2
2 +

1 − l

4δ
J(t) (g ◦ ∆u) (t).

Inserting (3.12) into (3.11), we obtain the required proof. □

Lemma 3.3. Let G(t) be the function defined by

(3.13) G(t) =
∫

Ω

∫ t

0
g(t− s)u(t) [u(s) − u(t)] dsdx.

satisfies the estimate

(3.14)

G′(t) ≤
[

δ + 2δ (1 − l)2 + (1 − l)
(

δ1 −
(
∫ t

0
g(s)ds

))]

∥∆u∥2
2

+
[

2δ + (αk(0) + δβ)
(
∫ t

0
g(s)ds

)]

∥u∥2
2

+
(
∫ t

0
g(s)ds

)



1

2δ
+ 2δJ2(0) +

α2 + β2

4δ
k2(0) +



1 − l

4δ1

]

(g ◦ ∆u) (t)

− g(0)

4δ
C2
p (g′ ◦ ∆u) (t) +



β

4δ
k(0) + δ



∥z(t, 1)∥2
2 .

Proof. We take the derivative of G(t) to get,

(3.15)
G′(t) =

∫

Ω

∫ t

0
g(t− s)u′(t) [u(s) − u(t)] dsdx−

(
∫ t

0
g(s)ds

)
∫

Ω
u.u′dx

+
∫

Ω

∫ t

0
g′(t− s)u(t) [u(s) − u(t)] dsdx,
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using the problem (2.12) we obtain

(3.16)

G′(t) =
∫

Ω

∫ t

0
g(t− s) [u(s) − u(t)] ds

[

−∆2u+ J(t)
∫ t

0
g(t− s)∆2u(s)ds

−αK(t)u− βK(t)z (1, t)] dx+
∫

Ω

∫ t

0
g′(t− s)u(t) [u(s) − u(t)] dsdx

−
(
∫ t

0
g(s)ds

)
∫

Ω
u

[

−∆2u+ J(t)
∫ t

0
g(t− s)∆2u(s)ds

−αK(t)u− βK(t)z (1, t)] dx

= −
∫

Ω
∆u

∫ t

0
g(t− s) [∆u(s) − ∆u(t)] dsdx

+ J(t)
∫

Ω

∫ t

0
g(t− s)∆u(s)ds

∫ t

0
g(t− s) [∆u(s) − ∆u(t)] dsdx

+
∫

Ω

∫ t

0
g′(t− s)u(t) [u(s) − u(t)] dsdx+

(
∫ t

0
g(s)ds

)
∫

Ω
♣∆u♣2 dx

− αK(t)
∫

Ω
u

∫ t

0
g(t− s) [u(s) − u(t)] dsdx

− βK(t)
∫

Ω
z (t, 1)

∫ t

0
g(t− s) [u(s) − u(t)] dsdx

+
(
∫ t

0
g(s)ds

)
∫

Ω
u (αK(t)u+ βK(t)z (t, 1)) dx

− J(t)
(
∫ t

0
g(s)ds

)
∫

Ω
∆u

∫ t

0
g(t− s)∆u(s)dsdx

=
8
∑

i=1

Gi(t),

where Gi(t), i = 1, 8, denote the terms on the right side of the above equality in
order. G1(t), G2(t) and G3(t) can be estimated as in [17] as follows, for any δ > 0.
By Young’s and Cauchy-Schwartz, we obtain

(3.17) G1(t) ≤ δ ∥∆u∥2
2 +

1

4δ

(
∫ t

0
g(s)ds

)

(g ◦ ∆u) (t)

and

(3.18)

G2(t) ≤δJ2(t)
∫

Ω

(
∫ t

0
g(t− s) (♣∆u(t)♣ + ♣∆u(s) − ∆u(t)♣) ds

)2

dx

+
1

4δ

∫

Ω

(
∫ t

0
g(t− s) (♣∆u(s) − ∆u(t)♣) ds

)2

dx

≤δJ2(t)
(
∫ t

0
g(s)ds

) [

2
∫

Ω

∫ t

0
g(t− s) ♣∆u(s) − ∆u(t)♣2 dsdx

+2
∫

Ω

∫ t

0
g(t− s) ♣∆u(t)♣2 dsdx

]

+
1

4δ

(
∫ t

0
g(s)ds

)

(g ◦ ∆u) (t)

≤
(

2δJ2(t) +
1

4δ

)(
∫ t

0
g(s)ds

)

(g ◦ ∆u) (t) + 2δ (1 − l)2 ∥∆u∥2
2 .
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For G3(t) and G5(t), we use Cauchy-Schwartz, Young’s and Poincare’s inequalities,
we get

G3(t) ≤
(
∫

Ω
u2dx

)
1

2



∫

Ω

(
∫ t

0
g′(t− s) (u(s) − u(t)) ds

)2

dx


1

2

(3.19)

≤ δ ∥u∥2
2 +

1

4δ

∫

Ω

(
∫ t

0
g′(t− s) (u(s) − u(t)) ds

)2

dx

≤ δ ∥u∥2
2 +

1

4δ

∫

Ω

(
∫ t

0
−g′(t− s)ds

)(
∫ t

0
−g′(t− s) ♣u(s) − u(t)♣2 ds

)

dx

≤ δ ∥u∥2
2 +

1

4δ
C2
p

(
∫ t

0
−g′(t− s)ds

)(
∫ t

0
−g′(t− s) ♣∆u(s) − ∆u(t)♣2 ds

)

dx

≤ δ ∥u∥2
2 − 1

4δ
C2
p

(
∫ t

0
−g′(t− s)ds

)

(g′ ◦ ∆u) (t)

≤ δ ∥u∥2
2 − g(0)

4δ
C2
p (g′ ◦ ∆u) (t)

and

G5(t) ≤ δ ∥u∥2
2 +

α2k(2t)

4δ

∫

Ω

(
∫ t

0
g(t− s) (u(s) − u(t)) ds

)2

dx

(3.20)

≤ δ ∥u∥2
2 +

α2k2(t)

4δ

(
∫ t

0
g(s)ds

)
∫

Ω

∫ t

0
g(t− s) (u(s) − u(t))2

dsdx

≤ δ ∥u∥2
2 +

α2k2(t)

4δ

(
∫ t

0
g(s)ds

)

C2
p

∫

Ω

∫ t

0
g(t− s) (∆u(s) − ∆u(t))2

dsdx

≤ δ ∥u∥2
2 +

α2k2(0)

4δ
C2
p

(
∫ t

0
g(s)ds

)

(g ◦ ∆u) (t).

Similarly, we have

G6(t) ≤δ ∥z (t, 1)∥2
2 +

α2k2(0)

4δ
C2
p

(
∫ t

0
g(s)ds

)

(g ◦ ∆u) (t),(3.21)

G7(t) ≤
(
∫ t

0
g(s)ds

)



(αk(0) + δβ) ∥u∥2
2 +

β

4δ
k2(0) ∥z(t, 1)∥2

2

]

(3.22)

and

G8(t) ≤ −
(
∫ t

0
g(s)ds

)

J(t)
[
∫

Ω
∆u

∫ t

0
g(t− s) (∆u(s) − ∆u(t)) dsdx

+
(
∫ t

0
g(s)ds

)

∥∆u∥2
2

]

≤ −
(
∫ t

0
g(s)ds

)

J(t)
∫

Ω
♣∆u♣

∫ t

0
g(t− s) ♣∆u(s) − ∆u(t)♣ dsdx

−
(
∫ t

0
g(s)ds

)2

J(t) ∥∆u∥2
2
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≤
(
∫ t

0
g(s)ds

)

J(t)



δ1 ∥∆u∥2
2 +

1

4δ1

∫

Ω

(
∫ t

0
g(t− s) ♣∆u(s) − ∆u(t)♣ ds

)2

dx

]

−
(
∫ t

0
g(s)ds

)2

J(t) ∥∆u∥2
2 ,

(3.23)

G8(t) ≤
(
∫ t

0
g(s)ds

)

J(t)









δ1 ∥∆u∥2
2 +

(
∫ t

0
g(s)ds

)

4δ1

(g ◦ ∆u) (t)









−
(
∫ t

0
g(s)ds

)2

J(t) ∥∆u∥2
2

≤
(
∫ t

0
g(s)ds

)

J(t)









(

δ1 −
∫ t

0
g(s)ds

)

∥∆u∥2
2 +

(
∫ t

0
g(s)ds

)

4δ1

(g ◦ ∆u)









≤
(
∫ t

0
g(s)ds

)(

δ1 −
∫ t

0
g(s)ds

)

J(t) ∥∆u∥2
2 +

1 − l

4δ1

(
∫ t

0
g(s)ds

)

(g ◦ ∆u) .

Summarizing these estimates with (3.16), we get (3.14). □

Lemma 3.4. Now, as in [7, Lemma 3.4], we introduce the folowing functional

(3.24) Φ(t) =
∫ 1

0
e−2ρτ(t)

∫

Ω
z2(t, ρ)dxdρ.

Then

(3.25) Φ′(t) ≤ d− 1

τ1

e−2τ1 ∥z(t, 1)∥2
2 +

1

τ0

∥u∥2
2 −



τ ′(t)

τ1

+ 2



e−2τ1

∫ 1

0
∥z(t, ρ)∥2

2 dρ.

Proof. By differentiating, using the second equation in (2.12) and integrating by parts
over (0, 1), we get
(3.26)

Φ′(t) = − 2τ ′(t)
∫ 1

0
ρe−2ρτ(t)

∫

Ω
z2(t, ρ)dxdρ+ 2

∫ 1

0
e−2ρτ(t)

∫

Ω
z′(t, ρ)z(t, ρ)dxdρ

= − 2τ ′(t)
∫ 1

0
ρe−2ρτ(t)

∫

Ω
z2(t, ρ)dxdρ

+ 2
∫ 1

0
e−2ρτ(t)

∫

Ω

ρτ ′(t) − 1

τ(t)
zρ(t, ρ)z(t, ρ)dxdρ.

We denote by Φ1(t) the last term in the right-hand side of the equality above

Φ1(t) =
∫ 1

0
e−2ρτ(t)

∫

Ω

ρτ ′(t) − 1

τ(t)

d

dρ
z2(t, ρ)dxdρ

=



e−2ρτ(t)
∫

Ω

ρτ ′(t) − 1

τ(t)
z2(t, ρ)dx

]1

0
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−
∫

Ω

∫ 1

0
z2(t, ρ)

d

dρ



e−2ρτ(t)ρτ
′(t) − 1

τ(t)



dρdx

Φ1(t) =



e−2ρτ(t)
∫

Ω

ρτ ′(t) − 1

τ(t)
z2(t, ρ)dx

]1

0

+ 2τ ′(t)
∫

Ω

∫ 1

0
ρe−2ρτ(t)z2(t, ρ)dρdx

(3.27)

−


τ ′(t)

τ(t)
+ 2



∫

Ω

∫ 1

0
e−2ρτ(t)z2(t, ρ)dρdx

≤τ ′(t) − 1

τ(t)
e−2τ(t)

∥

∥

∥z2(t, 1)
∥

∥

∥

2

2
+

1

τ(t)

∥

∥

∥z2(t, 0)
∥

∥

∥

2

2

+ 2τ ′(t)
∫

Ω

∫ 1

0
ρe−2ρτ(t)z2(t, ρ)dρdx−



τ ′(t)

τ(t)
+ 2



e−2τ(t)
∫

Ω

∫ 1

0
z2(t, ρ)dρdx.

Since

e−2τ1 ≤ e−2τ(t) ≤ e−2ρτ(t) ≤ 1, for all ρ ∈ (0, 1), t > 0,

inserting (3.27) in (3.26), we obtain (3.25). □

Now, we are ready to prove the general decay result. For this, we define the
Lyapunov functional L by

L(t) = NE(t) + J(t) (ϵF (t) + ϵ1G(t) + ϵ2Φ(t)) .

Taking the derivative of L(t) with respect to t we have
(3.28)
L

′(t) = NE ′(t) + J(t) (ϵF ′(t) + ϵ1G
′(t) + ϵ2Φ

′(t)) + J ′(t) (ϵF (t) + ϵ1G(t) + ϵ2Φ(t)) .

By using (3.9), (3.13), (3.24), Young’s and Poincare’s inequalities, we obtain
(3.29)

J ′(t) [ϵF (t) + ϵ1G(t) + ϵ2Φ(t)] ≤
(

ϵ− ϵ1

2

)

J ′(t) ∥u∥2
2 + ϵ2J

′(t)e−2τ0

∫ 1

0
∥z(t, ρ)∥2

2 dρ

− ϵ1

2

(
∫ t

0
g(s)ds

)

C2
pJ

′(t) (g ◦ ∆u) (t).

Exploiting (3.29) in (3.28) and using (3.7), (3.10), (3.14) and (H2), we arrive at

L
′(t) ≤ − J(t)



(

ϵ− ϵ1

2

)

J ′(t)

J(t)
+ ϵ (α− βδ′

0)M

(3.30)

−ϵ1

(

2δ + (k(0)α+ δβ)
(
∫ t

0
g(s)ds

)

J(t)
)

− ϵ2

τ0

]

∥u∥2
2

−


N
M

2



ξ (1 − d) − β

2δ



− J(0)



ϵβ

4δ
+ ϵ1



β

4δ
k2(0) + δ

]

∥z(1, t)∥2
2

+ J(t)



N

2
− ϵ1

g(0)

4δ
C2
p

]

(g′ ◦ ∆u) (t)
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− J(t)



N

2

(
∫ t

0
g(s)ds

)

J ′(t)

J(t)
+ ϵ (1 − δ) − ϵ1



δ + 2δ (1 − l)2
)

−
(
∫ t

0
g(s)ds

)

J(t)
(

(ϵ+ ϵ1δ1) − ϵ1

(
∫ t

0
g(s)ds

))]

∥∆u∥2
2

− J(t)



ϵ2e
−2τ1 +

J ′(t)

J(t)
e−2τ0

]

∫ 1

0
∥z(ρ, t)∥2

2 dρ

+



ϵ1

(
∫ t

0
g(s)ds

)



1

2δ
+ 2δJ2(0) +

α2 + β2

4δ
k2(0) +

1 − l

4δ1



+ϵ
1 − l

4δ
J(0) − ϵ1

2

(
∫ t

0
g(s)ds

)

C2
p

J ′(t)

J(t)

]

J(t) (g ◦ ∆u) (t).

At this point, choose ϵ1, ϵ2 small enough such that 0 < ϵ2 < ϵ1 < ϵ and δ1 sufficiently
small such that

ϵ (l − δ) > ϵ1

(

δ + 2δ (1 − l)2 − (1 − l)
(

δ1 −
∫ t

0
g(s)ds

))

= C (ϵ1, δ) > 0

and

C0 (ϵ1, ϵ2) = ϵ (α− βδ)M − ϵ1

(

2δ + (k(0)α+ δβ)
(
∫ t

0
g(s)ds

))

− ϵ2

τ0

> 0.

Since (3.1), once ϵ1 and δ are fixed, we want to choose N large enough such that

N
M

2



ξ (1 − d) − β

2δ



− J(0)



ϵβ

4δ
+ ϵ1



β

4δ
k2(0) + δ



> 0

and
N

2
− ϵ1

g(0)

4δ
C2
p > 0.

For this, (3.30) becomes

(3.31)

L
′(t) ≤ − J(t)



N

2

(
∫ t

0
g(s)ds

)

J ′(t)

J(t)
+ ϵ (1 − δ) − C (ϵ1, δ)

]

∥∆u∥2
2

− J(t)



ϵ2e
−2τ1 +

J ′(t)

J(t)
e−2τ0

]

∫ 1

0
∥z(ρ, t)∥2

2 dρ

+



C1 − ϵ1

2

(
∫ t

0
g(s)ds

)

C2
p

J ′(t)

J(t)

]

J(t) (g ◦ ∆u) (t)

− J(t) [ϵ− C0 (ϵ1, ϵ2)] ∥u∥2
2 ,

where
(3.32)

C1 =ϵ1

(
∫ t

0
g(s)ds

)



1

4δ
+

1

4δ
+ 2δJ2(0) +

α2 + β2

4δ
k2(0) +

1 − l

4δ1



+ ϵ
1 − l

4δ
J(0).
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We then use (H2) and choose t1 ≥ t0 so that there exist two positive constants C2

and C3, such that (3.31) takes the form

(3.33) L
′(t) ≤ −C2J(t)E(t) + C3J(t) (g ◦ ∆u) (t), for all t > t1.

On the other hand, as in [6], multiplying (3.33) by ψ(t) and using (3.31) and (3.2),
we have

(3.34)

ψ(t)L′(t) ≤ −C2ψ(t)J(t)E(t) + C3ψ(t)J(t) (g ◦ ∆u) (t)

≤ −C2ψ(t)J(t)E(t) − C3J(t) (g′ ◦ ∆u) (t)

≤ −C2ψ(t)J(t)E(t) − 2C3E
′(t) − C3J

′(t)
(
∫ t

0
g(s)ds

)

∥∆u∥2
2 .

By (2.13), we have
(3.35)

(ψ(t)L(t) + 2C3E(t))′ ≤ −C2ψ(t)J(t)E(t) − C3J
′(t)

(
∫ t

0
g(s)ds

)

∥∆u∥2
2

≤ −ψ(t)J(t)



C2 +
2

lψ(t)J(t)
C3J

′(t)
(
∫ t

0
g(s)ds

)

]

E(t).

From limt→+∞

J ′(t)
ψ(t)J(t)

= 0, we can choose t2 ≥ t1 and then (3.35) gives

(3.36) (ψ(t)L(t) + 2C3E(t))′ ≤ −C2

2
ψ(t)J(t)E(t), for all t > t2.

We define here, the function L by

(3.37) L(t) = ψ(t)L(t) + 2C3E(t).

By the definition of the functionals F (t), G(t), Φ(t) and E(t), since ψ′(t) ≤ 0, we can
prove L(t) equivalent to E(t) and there exists a positive constant λ such that

(3.38) L
′(t) ≤ −λψ(t)J(t)L(t), for all t ≥ t2.

By simple integration of 3.38 over [t2, t] and use the equivalence of L(t) and E(t) we
obtain

E(t) ≤ Ce
−K0

∫

t

t2

ψ(t)J(t)dt
, for all t ≥ t2.

By the continuity and boundedness of E(t) in the interval [0, t2], we have

E(t) ≤ Ce−K0

∫

t

0
ψ(t)J(t)dt, for all t ≥ 0.

The proof of Theorem 3.1 is completed.
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RIESZ LACUNARY SEQUENCE SPACES OF FRACTIONAL

DIFFERENCE OPERATOR

KULDIP RAJ1, KAVITA SAINI1, AND NEERU SAWHNEY2

Abstract. In this paper, we intend to make new approach to introduce and study
some fractional difference sequence spaces by Riesz mean associated with inĄnite
matrix and a sequence of modulus functions over n -normed spaces. Various algebraic
and topological properties of these newly formed sequence spaces have been explored
and some inclusion relations concerning these spaces are also establish. Finally, we
make an effort to study the statistical convergence through fractional difference
operator.

1. Introduction and Preliminaries

Baliarsingh and Dutta [1] introduced fractional difference operators ∆γ̃ , ∆(γ̃), ∆−γ̃ ,
∆(−γ̃) and discussed some topological results among these operators. Meng and Mei
[17] introduced binomial fractional difference sequence spaces by clubbing binomial
matrix and fractional difference operator. Recently, Baliarsingh et al. [4] studied
approximation theorems and statistical convergence in fractional difference sequence
spaces. Also, double difference fractional order sequence spaces has been introduced
by Baliarsingh in [5]. In [23] Nayak et al. introduced some weighted mean fractional
difference sequence spaces. Kirişci and Kadak [15] proposed almost convergent frac-
tional order difference sequence spaces. The reader can refer to the textbooks Başar
[6] and Mursaleen [20] for relevant terminology and required details on the domain
of triangles, sequence spaces and related topics. By N, R and C we denote the sets
of natural, real and complex numbers respectively. Let w be the space of all real or

Key words and phrases. Fractional difference operator, gamma function, modulus function, Riesz
mean, lacunary sequences.
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complex sequences. For a proper fraction γ̃, deĄned the fractional difference operators
∆γ̃ : w → w, ∆(γ̃) : w → w and their inverses are as follows:

∆γ̃(xν) =
∞
∑

i=0

(−1)i Γ(γ̃ + 1)

i!Γ(γ̃ + 1 − i)
xν+i,(1.1)

∆(γ̃)(xν) =
∞
∑

i=0

(−1)i Γ(γ̃ + 1)

i!Γ(γ̃ + 1 − i)
xν−i,(1.2)

∆−γ̃(xν) =
∞
∑

i=0

(−1)i Γ(1 − γ̃)

i!Γ(1 − γ̃ − i)
xν+i,(1.3)

∆(−γ̃)(xν) =
∞
∑

i=0

(−1)i Γ(1 − γ̃)

i!Γ(1 − γ̃ − i)
xν−i.(1.4)

We suppose that the series deĄned in (1.1)Ű(1.4) are convergent. For γ̃ = 1
2
, we have

• ∆
1
2xν = xν − 1

2
xν+1 − 1

8
xν+2 − 1

16
xν+3 − 5

128
xν+4 − 7

256
xν+5 − · · · ;

• ∆− 1
2xν = xν + 1

2
xν+1 + 3

8
xν+2 + 5

16
xν+3 + 35

128
xν+4 + 63

256
xν+5 + · · · ;

• ∆( 1
2

)xν = xν − 1
2
xν−1 − 1

8
xν−2 − 1

16
xν−3 − 5

128
xν−4 − 7

256
xν−5 − · · · ;

• ∆(− 1
2

)xν = xν + 1
2
xν−1 + 3

8
xν−2 + 5

16
xν−3 + 35

128
xν−4 + 63

256
xν−5 + · · ·

For more details about fractional difference operator (see [3]). By Γ(m), we denote
the Gamma function of a real number m and m /∈ ¶0,−1,−2,−3, . . . ♢. Now, by the
deĄnition it will be expressed as associate improper integral, i.e.,

Γ(m) =
∫ ∞

0
e−ttm−1dt.(1.5)

It is clear from (1.5) if m ∈ N, the set of nonnegative integers, then Γ(m+ 1) = m!.
For this reason, Gamma function is considered to be a generalization of elementary
factorial function. Currently, we tend to state some properties of Gamma function
that are as follows:

(i) if m ∈ N, then we have Γ(m+ 1) = m!;
(ii) if m ∈ R \ ¶0,−1,−2,−3, . . . ♢, then we have Γ(m+ 1) = mΓ(m);
(iii) for particular cases, we have Γ(1) = Γ(2) = 1, Γ(3) = 2!, Γ(4) = 3!, . . .
Let U and V be two sequence spaces and A = (anν) be an inĄnite matrix of real or

complex numbers. Then we say that A deĄnes a matrix transformation from U into
V if for every sequence x = (xν) ∈ U , the sequence Ax = ¶An(x)♢, the A-transform
of x is in V, where

An(x) =
∑

ν

anνxν , n ∈ N.

The idea of n-normed spaces was introduced by Misiak [19]. Let X be a linear space
over the Ąeld R of reals of dimension d, where d ≥ n ≥ 2 and n ∈ N. A real valued
function ♣♣·, . . . , ·♣♣ on Xn satisfying the following four conditions:

(i) ♣♣ϑ1, ϑ2, . . . , ϑn♣♣ = 0 if and only if ϑ1, ϑ2, . . . , ϑn are linearly dependent in X;
(ii) ♣♣ϑ1, ϑ2, . . . , ϑn♣♣ is invariant under permutation;
(iii) ♣♣βϑ1, ϑ2, . . . , ϑn♣♣ = ♣β♣ ♣♣ϑ1, ϑ2, . . . , ϑn♣♣ for any β ∈ R;
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(iv) ♣♣ϑ + ϑ′, ϑ2, . . . , ϑn♣♣ ≤ ♣♣ϑ, ϑ2, . . . , ϑn♣♣ + ♣♣ϑ′, ϑ2, . . . , ϑn♣♣ is called an n-norm
on X and the pair (X, ♣♣·, . . . , ·♣♣) is called a n-normed space over the Ąeld R. For
more deĄnition and results on n-normed spaces see [13,14,22]. A sequence (xν) in a
n-normed space (X, ∥·, . . . , ·∥) is said to converge to some L ∈ X if

lim
ν→∞

∥(xν − L, z1, . . . , zn−1)∥ = 0, for every z1, . . . , zn−1 ∈ X.

A sequence (xν) in a n-normed space (X, ∥·, . . . , ·∥) is said to be Cauchy with respect
to the n-norm if

lim
ν,p→∞

∥(xν − xp, z1, . . . , zn−1)∥ = 0, for every z1, . . . , zn−1 ∈ X.

In a n-normed space (X, ∥·, . . . , ·∥), a sequence (xν) is said to be bounded if for a
positive constant M, ∥(xν , z1, . . . , zn−1)∥ ≤ M for all z1, . . . , zn−1 ∈ X.

Let (pv) be a sequence of positive real numbers and Pn = p1 + p2 + · · · + pn for all
n ∈ N. Thus, the Riesz transformation of x = (xν) is deĄned as

(1.6) tn =
1

Pn

n
∑

ν=1

pνxν .

If the sequence (tn) contains a Ąnite limit L, then the sequence (xν) is said to be Riesz
convergent to L. The set of all Riesz convergent sequence is denoted by (R,Pn). Let
us note that if Pn → ∞, as n → ∞. Then Riesz mean is regular. If pν = 1 for every
natural number ν in (1.6), then Riesz mean reduces to Cesàro mean of order one.

An increasing non-negative integer sequence θ = (νr) with ν0 = 0 and νr−νr−1 → ∞
as r → ∞ is known as lacunary sequence. The intervals determined by θ will be
denoted by Ir = (νr−1, νr]. We write hr = νr − νr−1 and qr denotes the ratio νr

νr−1
. The

space of lacunary strongly convergence was deĄned by Freedman et al. [10] as follows:

Nθ =


x = (xν) : lim
r→∞

1

hr

∑

ν∈Ir

♣xν − L♣ = 0 for some L


.

The space Nθ is a BK-space with the norm

∥x∥ = sup



1

hr

∑

ν∈Ir

♣xν ♣



.

Let θ = (νr) be a lacunary sequence and (pν) be a sequence of positive real numbers

such that Hr =
∑

ν∈Ir
pν , Pνr

=
∑

ν∈(0,νr] pν , Pνr−1 =
∑

ν∈(0,νr−1] pν , Qr = Pνr

Pνr−1
, P0 = 0.

Clearly, Hr = Pνr
− Pνr−1 and the intervals determine by θ and (pν) are denoted by

I ′
r = (Pνr−1 , Pνr

]. If we take pν = 1 for all ν ∈ N, then Hr, Pνr
, Pνr−1 , Qr and I ′

r reduce
to hr, νr, νr−1, qr and Ir, respectively.

A function ψ : X → R is termed as paranorm, where X be a linear metric space,
if following conditions are satisĄed

(i) ψ(x) ≥ 0 for all x ∈ X;
(ii) ψ(−x) = ψ(x) for all x ∈ X;
(iii) ψ(x+ y) ≤ ψ(x) + ψ(y) for all x, y ∈ X;
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(iv) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence
of vectors with ψ(xn − x) → 0 as n → ∞, then ψ(λnxn − λx) → 0 as n → ∞.

A function f : [0,∞) → [0,∞) is said to be modulus function if
(i) f(υ) = 0 if and only if υ = 0;
(ii) f(υ1 + υ2) ≤ f(υ1) + f(υ2) for all υ1, υ2;
(iii) f is increasing;
(iv) f is continuous from the right at 0.
The modulus function may be bounded or unbounded. Later, modulus function

has been discussed in [21,25Ű27,29] and references therein.

Lemma 1.1. Consider f = (fν) be a sequence of modulus functions and 0 < ρ < 1.
Then for each x > ρ, we have

fν(x) ≤
2fν(1)(x)

ρ
.

For a proper fraction γ̃, let f = (fν) be a sequence of modulus functions, q = (qν)
be a bounded sequence of strictly positive real numbers, µ = (µν) be a sequence of
strictly positive real numbers and θ be a lacunary sequence. In this paper we deĄne
the following sequence spaces as follows:

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0

=


x = (xν) ∈ w : lim
r→∞

1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν


= 0


,

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]

=


x = (xν) ∈ w : lim
r→∞

1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


= 0,

for some L > 0


and

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]∞

=

{

x = (xν) ∈ w : sup
r

1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν


< ∞


.

If the sequence x = (xν) is convergent to the limit L in

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]

we denote it by [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] − lim x = L.
Suppose f(x) = x. Then above spaces reduces to [R, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0,

[R, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] and [R, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]∞.
By taking q = (qν) = 1 for all ν ∈ N, then we get the spaces [R, θ, f,∆(γ̃), µ, p,A,

∥·, . . . , ·∥]0, [R, θ, f,∆(γ̃), µ, p,A, ∥·, . . . , ·∥] and [R, θ, f,∆(γ̃), µ, p,A, ∥·, . . . , ·∥]∞.
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Suppose pν = 1 for all ν ∈ N, then we get the spaces as follows:

[Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]0

=


x = (xν) ∈ w : lim
r→∞

1

hr

∑

ν∈Ir

anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν

= 0


,

[Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]

=


x = (xν) ∈ w : lim
r→∞

1

hr

∑

ν∈Ir

anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν

= 0


and

[Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]∞

=


x = (xν) ∈ w : sup
r

1

hr

∑

ν∈Ir

anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν

< ∞


.

Suppose (pν) be a sequence of positive numbers and Pn = p1 + p2 + ...+ pn. Now, we
deĄne the sequence spaces as follows:

[R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0

=


x = (xν) ∈ w : lim
n→∞

1

Pn

n
∑

ν=1

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν


= 0


,

[R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]

=


x = (xν) ∈ w : lim
n→∞

1

Pn

n
∑

ν=1

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


= 0


and

[R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]∞

=


x = (xν) ∈ w : sup
n

1

Pn

n
∑

ν=1

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν


< ∞


.

If 0 < qν ≤ sup qν = D, C = max¶1, 2D−1♢. Then

(1.7) ♣cν + dν ♣qν ≤ C(♣cν ♣qν + ♣dν ♣qν ),

for every natural number ν and cν , dν ∈ R.
The main purpose of this paper is to introduce and study some lacunary convergent

sequence spaces deĄned by Riesz mean via modulus functions over n−normed spaces.
We shall make an effort to study some interesting algebraic and topological properties
of concerning sequence spaces. Also, we examine some interrelations between these
sequence spaces.
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2. Main Results

Theorem 2.1. Suppose f = (fν) be a sequence of modulus functions, ∆(γ̃) be a

fractional difference operator, µ = (µν) be a sequence of positive real numbers and

q = (qν) be a bounded sequence of positive real numbers. Then the sequence spaces

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0, [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] and [R, θ, f,∆(γ̃), µ,
p, q,A, ∥·, . . . , ·∥]∞ are linear spaces over the field R of real numbers.

Proof. Consider x = (xν), y = (yν) ∈ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 and α, β ∈ R.
Since f is additive and by using inequality (1.7), we have

1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)(αxν + βyν), z1, . . . , zn−1

∥

∥

∥

qν


≤
1

Hr

∑

ν∈Ir

pν



anν



fν



♣α♣
∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν


+
1

Hr

∑

ν∈Ir

pν



anν



fν



♣β♣
∥

∥

∥µν∆(γ̃)yν , z1, · · · , zn−1

∥

∥

∥

qν


≤C
1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, . . . , zn−1

∥

∥

∥

qν


+ C
1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)yν , z1, . . . , zn−1

∥

∥

∥

qν


→0 as r → ∞.

Hence, [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 is a linear space. Similarly, we can prove
others. □

Theorem 2.2. Let f = (fν) be a sequence of modulus functions and q = (qν)
be a bounded sequence of strictly positive real numbers. Then the sequence space

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 is a paranormed space with respect to the paranorm

ψ(x) = sup
r



1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, · · · , zn−1

∥

∥

∥

qν



1

M

,

where M = max¶1, supν qν < ∞♢.

Proof. Consider x = (xν), y = (yν) ∈ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0. Clearly,
ψ(x) ≥ 0 and ψ(0) = 0. Now, by using MinkowskiŠs inequality, we get



1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)(xν + yν), z1, · · · , zn−1

∥

∥

∥

qν



1

M

≤



1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν , z1, · · · , zn−1

∥

∥

∥

qν



1

M



RIESZ LACUNARY SEQUENCE SPACES 289

+



1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)yν , z1, · · · , zn−1

∥

∥

∥

qν



1

M

.

Hence, ψ(x+ y) ≤ ψ(x) + ψ(y).
Finally, we prove that the scalar multiplication is continuous. Let γ be any complex

number. Then

ψ(γx) = sup
r



1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)γxν , z1, · · · , zn−1

∥

∥

∥

qν



1

M

≤ K
D
M
γ ψ(x),

where Kγ is a positive integer such that γ ≤ Kγ. Now, let γ → 0 for any Ąxed x with
ψ(x) ̸= 0. So, by using deĄnition of f for ♣γ♣ < 1, we have

(2.1)
1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)γxν , z1, . . . , zn−1

∥

∥

∥

qν

< ϵ, for r > r0(ϵ).

Since f is continuous and taking γ small enough, for 1 ≤ r ≤ r0, we have

(2.2)
1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)γxν , z1, . . . , zn−1

∥

∥

∥

qν

< ϵ.

Now, by combining (2.1) and (2.2) implies that ψ(γx) → 0 as γ → 0. Thus, the space
[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 is a paranormed space with respect to the paranorm
ψ(·). □

Theorem 2.3. Suppose f = (fν) be a sequence of modulus functions, q = (qν) be a

bounded sequence of positive real numbers, µ = (µν) be a sequence of positive real

numbers and θ = (νr) be a lacunary sequence such that lim supr Qr < ∞. Then

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊆ [R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Proof. Let x = (xν) ∈ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. Then for every ϵ > 0 there
exists i0 such that for every i > i0

(2.3) Ai =
1

Hi

∑

ν∈Ii

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


< ϵ.

Then, there is some positive constant N such that

(2.4) Ai ≤ N, for all i.

Now, lim supr Qr < ∞. Then, there exists some positive number K such that

(2.5) Qr ≤ K, for all r ≥ 1.

Therefore, for νr−1 < n ≤ νr and by (2.3), (2.4) and (2.5), we have

1

Pn

n
∑

ν=1

pνyν ≤
1

Pνr−1

νr
∑

ν=1

pνyν

=
1

Pνr−1



∑

ν∈I1

pνyν +
∑

ν∈I2

pνyν + · · · +
∑

ν∈Ii0

pνyν +
∑

ν∈Ii0+1

pνyν+
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· · · +
∑

ν∈Ir

pνyν



=
1

Pνr−1

(A1H1 + A2H2 + · · · + Ai0Hi0 + Ai0+1Hi0+1 + · · · + ArHr)

≤
N

Pνr−1

(H1 +H2 + · · · +Hi0) +
ϵ

Pνr−1

(Hi0+1 +Hi0+2 + · · · +Hr)

=
N

Pνr−1



Pν1 − Pν0 + Pν2 − Pν1 + · · · + Pνi0
− Pνi0−1



+
ϵ

Pνr−1



Pνi0+1
− Pνi0

+ Pνi0+2
− Pνi0+1

· · · + Pνr
− Pνr−1



=
NPνi0

Pνr−1

+
ϵ(Pνr

− Pνi0
)

Pνr−1

≤
NPνi0

Pνr−1

+ ϵK,

where yν = anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν

. Now, Pνr−1 → ∞ as r → ∞,

then we have x ∈ [R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the proof. □

Corollary 2.1. Let (pν) be sequence of positive numbers. If 1 < lim infr Qr ≤
lim supr Qr < ∞. Then

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] = [R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Theorem 2.4. The following inclusions are true.

(i) If pν < 1 for all ν ∈ N, then

[Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥] ⊂ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥],

with [Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]− lim x = [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]− lim x =

L.
(ii) If pν > 1 for all ν ∈ N and Hr

hr
be upper bounded. Then

[R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂ [Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥],

with [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]−lim x = [Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]−lim x =

L.

Proof. (i) Let pν < 1 for all ν ∈ N, then Hr < hr for all r ∈ N. So, there exists a
constant M1 such that 0 < M1 ≤ Hr

hr
< 1 for all r ∈ N. Let x = (xν) be a sequence

which converges to the limit L in [Cθr
, f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]. Then for ϵ > 0 we get

1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


<
1

M1hr

∑

ν∈Ir

anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν

.



RIESZ LACUNARY SEQUENCE SPACES 291

Now, we get the desired result by taking the limit as r → ∞.
(ii) It is easy so we omit it. □

Theorem 2.5. Suppose f and f′ be two sequences of modulus functions. Then the

following inclusions hold:

(i) [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂ [R, f ◦ f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥];
(ii) [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ∩ [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂

R, f + f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Proof. Suppose x = (xν) ∈ [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. For given ϵ > 0, choose
ρ ∈ (0, 1) such that fν(t) < ϵ for all 0 < t < ρ. Then we have

1

Hr

∑

ν∈Ir

pν



anν



fν ◦ f′ν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


=
1

Hr

∑

ν∈Ir,



f′ν



∥

∥

∥µν∆(γ̃)xν−L,z1,...,zn−1

∥

∥

∥

qν

<ρ

pν



anν



fν ◦ f′ν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . ,

zn−1

∥

∥

∥

qν


+
1

Hr

∑

ν∈Ir,



f′ν



∥

∥

∥µν∆(γ̃)xν−L,z1,...,zn−1

∥

∥

∥

qν

≥ρ

pν



anν



fν ◦ f′ν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . ,

zn−1

∥

∥

∥

qν


≤(ϵ)D + max

{

1,



2fν(1)

ρ

}

1

Hr

∑

ν∈Ir

pν



anν



f′ν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


.

Thus, we get x = (xν) ∈ [R, f ◦ f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the
proof.

(ii) Let

x = (xν) ∈ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ∩ [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Then, we have

1

Hr

∑

ν∈Ir

pν



anν



fν + f′ν



∥

∥

∥µν∆(γ̃)xν − L, z1, · · · , zn−1

∥

∥

∥

qν


≤C
1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, · · · , zn−1

∥

∥

∥

qν


+ C
1

Hr

∑

ν∈Ir

pν



anν



f′ν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


→0 as r → ∞.

Therefore, (xν) ∈ [R, f + f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the proof. □
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3. Statistical Convergence

The concept of statistical convergence was introduced independently by Fast [9] and
Steinhaus [28]. Statistical convergence has been further studied by Connor [8], Fridy
([11], [12]), Miller [18], Balcerzak et al. [2], Y. Q. Cao and Xiaofei Qu [7] and others.
In this section, we introduce some inclusion relation between S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]

and [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Definition 3.1. A sequence x = (xν) is said to be S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]-convergent
to L if for every ϵ > 0,

1

Hr

∣

∣

∣¶ν ∈ Ir : pν(∥µν∆(γ̃)xν − L, z1, . . . , zn−1∥) ≥ ϵ♢
∣

∣

∣ = 0.

In this case, we write S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]−lim x = L or xν → LS[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥].

Theorem 3.1. Let f = (fν) be a sequence of modulus functions and 0 < infν qν ≤ qν ≤
supν qν = D < ∞. Then [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂ S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥].

Proof. Consider x = (xν) ∈ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] and given ϵ > 0. Then
for each z1, . . . , zn−1, we have

1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


=
1

Hr

∑

ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


+
1

Hr

∑

ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥<ϵ

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


≥
1

Hr

∑

ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


≥
1

Hr

∑

ν∈Ir

[fν(ϵ)]qν

≥
1

Hr

∑

ν∈Ir

min
{

[fν(ϵ)]inf qν , [fν(ϵ)]D
}

≥R
1

Hr

∣

∣

∣¶ν ∈ Ir : pν(∥µν∆(γ̃)xν − L, z1, . . . , zn−1∥) ≥ ϵ♢
∣

∣

∣,

where R = min
{

[fν(ϵ)]inf qν , [fν(ϵ)]D
}

. Thus, (xν) ∈ S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]. □

Theorem 3.2. Let f = (fν) be a bounded sequence of modulus functions and q = (qν) be

a bounded sequence of positive real numbers. If 0 < infν qν ≤ qν ≤ supν qν = D < ∞,

then S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥] ⊂ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].
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Proof. Suppose x = (xν) ∈ S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥] and ϵ > 0 be given. Since f is
bounded, then there exists an integer J such that f(x) < J for all x > 0, then we have

1

Hr

∑

ν∈Ir

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


=
1

Hr

∑

ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


+
1

Hr

∑

ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥<ϵ

pν



anν



fν



∥

∥

∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥

∥

∥

qν


≤
1

Hr

∑

ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

max
{

J inf qν , JD
}

+
1

Hr

∑

ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥<ϵ

[f(ϵ)]qν

≤ max
{

J inf qν , JD
} 1

Hr

∣

∣

∣¶ν ∈ Ir : pν(∥µν∆(γ̃)xν − L, z1, . . . , zn−1∥) ≥ ϵ♢
∣

∣

∣

+ max
{

[fν(ϵ)]inf qν , [fν(ϵ)]D
}

.

Thus, (xν) ∈ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the proof. □
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GENERALIZED AVERAGED GAUSSIAN FORMULAS FOR

CERTAIN WEIGHT FUNCTIONS

RADA M. MUTAVDŽIĆ1

Abstract. In this paper we analyze the generalized averaged Gaussian quadrature
formulas and the simplest truncated variant for one of them for some weight func-
tions on the interval [0, 1] considered by Milovanović in [10]. We shall investigate
internality of these formulas for the equivalents of the Jacobi polynomials on this
interval and, in some special cases, show the existence of the Gauss-Kronrod quad-
rature formula. We also include some examples showing the corresponding error
estimates for some non-classical orthogonal polynomials.

1. Introduction

Consider the l-point Gauss quadrature formula

QG
l (f) =

l
∑

i=1

w
(l)
i f(x

(l)
i )

on the interval [a, b] with respect to a weight function w for the integral

I(f) =
∫ b

a
f(x)w(x)dx.

It has the highest possible degree of exactness, 2l − 1, and

QG
l (p) = I(p), p ∈ P

2l−1,

where P
m denotes the space of polynomials of degree up to m.

Key words and phrases. Gauss quadrature, Gauss-Kronrod quadrature, averaged Gaussian formu-
las, truncations of averaged Gaussian formulas.
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To estimate the error (I −QG
l )(f), one can use the difference (A−QG

l )(f), where A
is some quadrature formula of degree greater than 2l−1. Any such quadrature formula
A requires at least l + 1 additional nodes, so it will have at least 2l + 1 nodes. One
classical way for constructing a (2l + 1)-node formula A for certain weight functions is
Gauss-Kronrod quadrature formula with degree of exactness at least 3l+1. The Gauss-
Kronrod formulas are of optimal degree, given that the nodes of G(l)

w are included.
For some weight functions on compact intervals, such as the Legendre weight function
w(x) = 1 on [−1, 1], the Gauss-Kronrod formulas have real zeros inside the interval
that interlace with the nodes of the Gauss formula and have positive weights. The
polynomials of degree l +1 that vanish in the l +1 additional nodes are called Stieltjes
polynomials. However, a real Gauss-Kronrod extension of a Gauss formula may not
exist in general. This happens e.g. for the Gauss-Laguerre and Gauss-Hermite cases
(see [6]), as well as for the Jacobi weights wα,β(t) = (1 − t)α(1 + t)β for min¶α, β♢ ⩾ 0
and max¶α, β♢ > 5/2 if l is large enough (see [13]).

Another approach (see [7, 8, 11]) is to construct a new quadrature formula Ql+1 for
the functional

Iθ(f) =
∫ b

a
f(x)w(x)dx − θQG

l (f),

for a given θ ∈ R, and then use the stratiĄed quadrature formulas Q2l+1 = θQG
n +Ql+1

to estimate the error QG
n . As a special case, Laurie in [8] introduced the anti-Gaussian

quadrature formula QA
l+1

(I − QA
l+1)(p) = −(I − QG

l )(p), p ∈ P
2l+1.

The averaged formula

QL
2l+1 =

1

2
(QG

l + QA
l+1),

also introduced in [8], is of the stratiĄed type and has the degree of exactness at least
2l+1. In the case of the Laguerre and Hermite weight functions, more general averaged
formulas 1

2+γ
((1+γ)QG

n +QA
l+1) with γ > −1 were considered in [4]. Here γ is chosen so

that the degree of exactness is as large as possible. These modiĄed formulas, denoted
by QGF

2l+1, are also stratiĄed extensions. Moreover, among all stratiĄed extensions,
these are the unique formulas with the maximum degree of exactness.

Recently, by following the results in [12] which characterize positive quadrature
formulas, Spalević [16] introduced a new (2l + 1)-node quadrature formula, called
generalized averaged Gaussian quadrature formula. Here we denote it by QS

2l+1. In
the cases of Laguerre and Hermite weight functions, this formula turns out to coincide
with QGF

2l+1. The generalized averaged Gaussian formula has a degree of exactness at
least 2l + 2, but for one class of weight functions the degree of exactness is 3n + 1
and hence the formula coincides with Gauss-Kronrod formula (see [18]). Further,

the truncated generalized averaged Gauss formulas Q
(l−r)
2l−r+1 are introduced in [14],

where l ⩾ 2 and r = 1, 2, . . . , l − 1. These formulas have fewer nodes and the same
degree of exactness as the generalized averaged Gauss formulas. Hence, the truncated
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generalized averaged Gauss formulas can be useful as substitutes when (real) Gauss-
Kronrod formula do not exist.

According to [8,16] and [1], the generalized averaged Gaussian formulas and trun-
cated variant for one of them have real nodes with positive weights, and only the two
outermost nodes may be exterior. Thus it remains to analyze when these formulas are
internal, i.e., all nodes are interior. This property is important when the integrand f
is deĄned only on the interval [a, b] and has also been investigated in [1, 2] and [3].

In this paper, we are analyzing mentioned averaged formulas for some weight func-
tions recently considered by Milovanović in [10]. In two of these cases the orthogonal
polynomials can be expressed in terms of the Jacobi polynomials on [0, 1]. For these,
we will consider internality of the averaged formulas. In some simple cases of these
polynomials, the generalized averaged Gaussian formulas coincide with the Gauss-
Kronrod formula. The other two cases yield non-classical polynomials on [0, 1], and in
these cases we will give examples showing the error estimates for the Gauss formula.

2. The Extraction of Orthogonal Polynomials from Generating
Function for Reciprocal of Odd Numbers

Let ¶πl(x)♢∞
l=0 be a sequence of monic polynomials orthogonal on [a, b] with respect

to the weight function w(x). These polynomials satisfy the three-term recurrence
relation

(2.1) πl+1(x) = (x − αl)πl(x) − βlπl−1(x), l = 0, 1, . . . ,

with π0(x) = 1 and π−1(x) = 0. Here αl and βl are the recurrence coefficients and it
is convenient to deĄne β0 =

∫ b
a w(x)dx. The same recurrence coefficients occur in the

Jacobi continued fraction associated with the weight function w(x),

F (x) =
∫ b

a

w(t)

x − t
dt ∼ β0

x − α0−
β1

x − α1−
. . . ,

which is known as the Stieltjes transform of the weight function w(x). The l-th
convergent of this continued fraction is

β0

x − α0−
β1

x − α1−
. . .

βl−1

x − αl−1

=
σl(x)

πl(x)
,

where σl(x) are the associated polynomials,

σl(x) =
∫ b

a

πl(x) − πl(t)

x − t
w(t)dt, l ⩾ 0.

These polynomials satisfy the same recurrence relation (2.1), where σ0 = 0 and
σ−1 = −1 (see [9, pp. 111Ű114]).

Recently Shashikala [15] considered the series

T (x) = 1 +
1

3
x +

1

5
x2 + · · · +

1

2l + 1
xl + · · · .
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Using the regular continued fraction,

(2.2) T (x) =
1

1+

−1
3
x

1+

− 4
15

x

1+
· · ·

− l2

4l2−1
x

1+
· · · ,

and taking even and odd convergents, he obtained four sequences of monic orthogonal

polynomials ¶Q
(ν)
l (x)♢∞

l=0, ν = 1, 2, 3, 4. These polynomials satisfy the three-term

recurrence relation (2.1), with Q
(ν)
0 (x) = 1 and Q

(1)
1 (x) = x − 1

3
, Q

(2)
1 (x) = x − 3

5
,

Q
(3)
1 (x) = x − 4

15
, Q

(4)
1 (x) = x − 11

21
. The Ąrst two polynomials, extracted from the

denominators of (2.2), are classical orthogonal polynomials (cf. [9, pp. 121Ű146]),
whereas the other two, extracted from the numerators, are non-classical polynomials.

Let us consider the polynomials p
(1)
l (x) and p

(2)
l (x) orthogonal on [0, 1] with respect

to the weight functions

(2.3) w(1)(x) = (1 − x)λ−1/2/
√

x and w(2)(x) =
√

x(1 − x)λ−1/2, λ > −1/2.

These polynomials satisfy the relation (2.1) with the recurrence coefficients (see [10])

a
(1)
0 =

1

2(λ + 1)
, a

(1)
l =

4l2 + 4λl + λ − 1

2(λ + 2l − 1)(λ + 2l + 1)
,

b
(1)
0 =

√
πΓ(λ + 1/2)

Γ(λ + 1)
, b

(1)
l =

l(2l − 1)(λ + l − 1)(2λ + 2l − 1)

4(λ + 2l − 2)(λ + 2l − 1)2(λ + 2l)
,(2.4)

and

a
(2)
0 =

3

2(λ + 2)
, a

(2)
l =

3λ + 4l2 + 4(λ + 1)l

2(λ + 2l)(λ + 2l + 2)
,

b
(2)
0 =

√
πΓ(λ + 1/2)

2Γ(λ + 2)
, b

(2)
l =

l(2l + 1)(λ + l)(2λ + 2l − 1)

4(λ + 2l − 1)(λ + 2l)2(λ + 2l + 1)
.(2.5)

Actually, these polynomials are the (monic) Jacobi polynomials transformed to the
interval [0, 1], with parameters (λ − 1/2, ∓1/2), i.e.,

(2.6) p
(1)
l (x) =

1

2l
p

(λ−1/2,−1/2)
l (2x − 1), p

(2)
l (x) =

1

2l
p

(λ−1/2,1/2)
l (2x − 1),

where p
(α,β)
l are the monic Jacobi polynomials with respect to the weight function

(1 − x)α(1 + x)β on the interval [−1, 1] (see [9, pp. 131Ű140]).
Milovanović in [10] showed that, for λ = 1/2, the coefficients (2.4) and (2.5) reduce

to the ones for the polynomials Q(1)(x) and Q(2)(x), respectively.

Let a
(α,β)
l and b

(α,β)
l be the recurrence coefficients for the monic Jacobi polynomials

p
(α,β)
l . It is easy to see that for l ⩾ 1 we have

a
(1)
l =

a
(λ−1/2,−1/2)
l + 1

2
, b

(1)
l =

b
(λ−1/2,−1/2)
l

4
,(2.7)

a
(2)
l =

a
(λ−1/2,1/2)
l + 1

2
, b

(2)
l =

b
(λ−1/2,1/2)
l

4
.(2.8)



GENERALIZED AVERAGED GAUSSIAN FORMULAS FOR CERTAIN WEIGHT FUNCTIONS299

We may also be interested in the cases λ = 0 and λ = 1. Let Tl(x), Ul(x), Vl(x)
and Wl(x) be the Chebyshev polynomials of Ąrst, second, third and fourth kinds,

respectively. For λ = 0 we get p
(1)
l (x) = 1

2l Tl(2x − 1) and p
(2)
l (x) = 1

2l Vl(2x − 1).

Similarly, for λ = 1 we obtain p
(1)
l (x) = 1

2l Wl(2x − 1) and p
(2)
l (x) = 1

2l Ul(2x − 1). In
each of these cases, the generalized averaged Gaussian quadrature formula coincides
with the Gauss-Kronrod quadrature formula.

It was also proved in [10] that the polynomials Q(3)(x) and Q(4)(x) are orthogonal
on [0, 1] with respect to the weight functions

(2.9) w(3)(x) =
2/

√
x

4(tanh−1 √
x)2 + π2

and w(4)(x) =
2
√

x

4(tanh−1 √
x)2 + π2

,

respectively. The corresponding orthogonal polynomials are non-classical on [0, 1] and
their respective recurrence coefficients are

a
(3)
0 =

4

15
, a

(3)
l =

8l2 + 12l + 3

(4l + 1)(4l + 5)
, b

(3)
l =

(2l)2(2l + 1)2

(4l − 1)(4l + 1)2(4l + 3)
,

and

a
(4)
0 =

11

21
, a

(4)
l =

8l2 + 20l + 11

(4l + 3)(4l + 7)
, b

(4)
l =

(2l + 1)2(2l + 2)2

(4l + 1)(4l + 3)2(4l + 5)
.

Later on we will present some examples showing the error estimates for the Gauss
quadrature with respect to these weights using the mentioned averaged formulas.

3. The Generalized Averaged Gaussian Formula QL
2l+1

The generalized averaged Gaussian formula QL
2l+1, introduced in [8], is internal if

the smallest zero xπ
1 and the largest zero xπ

l+1 of the polynomial

πl+1(x) = pl+1(x) − βlpl−1(x)

belong to the interval [0, 1] (see [8]). Here pj, j = 0, 1, . . ., are the orthogonal
polynomials and βj, j = 1, 2, . . ., the recurrence coefficients corresponding to the
original weight function. The largest zero xπ

l+1 belongs to [0, 1] if and only if

pl+1(1)

βlpl−1(1)
⩾ 1.

Similarly, the smallest zero xπ
1 belongs to [0, 1] if and only if

pl+1(0)

βlpl−1(0)
⩾ 1.

Obviously, the previous conditions are equivalent to the conditions for the Jacobi
polynomials with the same parameters. Indeed, using (2.6)Ű(2.8), these conditions
reduce to

p
(λ−1/2,∓1/2)
l+1 (x)

β
(λ−1/2,∓1/2)
l p

(λ−1/2,∓1/2)
l−1 (x)

⩾ 1,
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where x ∈ ¶−1, 1♢. Hence, Theorem 3 from [7] can be applied.

For the weight function w(1)(x), the conditions (18) and (19) from [7] reduce to

2λ3 + (8l − 1)λ2 + (8l2 − 1)λ ⩾ 0 and λ2 − λ ⩾ 0,

respectively. The Ąrst condition obviously holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0)
and sufficiently large l (the leading coefficient in l in the latter case is negative). The
second condition holds for λ ∈ (−1/2, 0] ∪ [1, ∞).

Similarly, for the weight function w(2)(x), the conditions (18) and (19) from [7]
reduce to

2λ3 + (8l + 3)λ2 + (8l2 + 8l + 1)λ ⩾ 0 and 8l2 + (8λ + 8)l + 3λ2 + 3λ ⩾ 0,

respectively. The Ąrst condition holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0) and
sufficiently large l. The second condition holds for λ > −1/2.

Thus we have the following result.

Theorem 3.1. The generalized averaged Gaussian formula QL
2l+1 for the weight func-

tions w(1)(x) and w(2)(x) is internal when λ ⩾ 1 and λ ⩾ 0, respectively.

4. The Generalized Averaged Gaussian Formula QS
2l+1

Consider the generalized averaged formula QS
2l+1 introduced in [16]. This formula

is internal if the smallest zero xF
1 and the largest zero xF

l+1 of the polynomial

Fl+1(x) = pl+1(x) − βl+1pl−1(x)

belong to the interval [0, 1] (see [16]). Here pj, j = 0, 1, . . ., are the orthogonal
polynomials and βj, j = 2, 3, . . ., the recurrence coefficients corresponding to the
original weight function. The largest zero xF

l+1 belongs to [0, 1] if and only if

pl+1(1)

βl+1pl−1(1)
⩾ 1.

Similarly, the smallest zero xF
1 belongs to [0, 1] if and only if

pl+1(0)

βl+1pl−1(0)
⩾ 1.

As for the formula QL
2l+1, the previous conditions reduce to ones for the correspond-

ing Jacobi polynomials. So we use Theorem 3.1 from [17].

For the weight function w(1)(x), the conditions (3.5) and (3.6) from [17] reduce to

2λ3 + (8l + 3)λ2 + (8l2 − 5)λ ⩾ 0 and λ − λ2
⩾ 0.

The Ąrst condition holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0) and sufficiently large l.
On the other hand, the second condition holds for λ ∈ [0, 1].

For the weight function w(2)(x), the conditions (3.5) and (3.6) from [17] reduce to

2λ3 + (8l + 7)λ2 + (8l2 + 8l − 3)λ ⩾ 0 and 8l2 + (8λ + 8)l + 7λ − λ2
⩾ 0.
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The Ąrst condition obviously holds for λ ⩾ 0, but not for λ ∈ (−1/2, 0) and sufficiently
large l. The second condition holds for λ ∈ (−1/2, 7), whereas for λ ⩾ 7 we have

8l2 + (8λ + 8)l + 7λ − λ2 > 8l2 + 8λl − λ2
⩾ 0, for l ⩾

√
6 − 2

4
λ.

Hence, we have the following result.

Theorem 4.1. The generalized averaged Gaussian formula QS
2l+1 for the weight func-

tion w(1)(x) is internal when λ ∈ [0, 1]. In the case of the weight function w(2)(x), that

formula is internal when λ ∈ [0, 7). For λ ⩾ 7, internality occurs when l ⩾
√

6−2
4

λ.

Now let us consider the cases λ = 0 and λ = 1, i.e., the polynomials 1
2l Tl(2x − 1),

1
2l Vl(2x − 1), 1

2l Wl(2x − 1) and 1
2l Ul(2x − 1). We have αl = α and βl = β > 0 for

l ⩾ r, where r = 2 for the polynomial 1
2l Tl(2x − 1) and r = 1 for the polynomials

1
2l Vl(2x − 1), 1

2l Wl(2x − 1) and 1
2l Ul(2x − 1). Hence, Theorem 3.1 from [18] can be

applied and we have the following result.

Theorem 4.2. For the weight function w(1)(x) with λ = 0 and l ⩾ 3, the quadrature

formulas QL
2l+1 and QS

2l+1 have the algebraic degree of exactness at least 3l + 1. Hence,

these formulas coincide with the corresponding Gauss-Kronrod quadrature formula and

the monic polynomials πl+1 ≡ Fl+1 coincide with the corresponding monic Stieltjes

polynomials. The same results hold for the the weight function w(1)(x), when λ = 1
and weight function w(2)(x) when λ ∈ ¶0, 1♢ and l ⩾ 1.

Using the previous fact, one has a simple method to compute the Gauss-Kronrod
quadrature formula. The computation of the latter formula is more complicated in
general (see [5]).

5. Truncated Generalized Averaged Gaussian Formulas

Let us consider the truncated generalized averaged Gaussian formulas Q
(l−r)
2l−r+1

(l ⩾ 2) introduced in [14] for r = l − 1. This formula is internal if the smallest zero τ1

and the largest zero τl+2 of the polynomial

(5.1) tl+2(x) = (x − αl−1)pl+1(x) − βl+1pl(x)

belong to the interval [0, 1] (see [1]). Here pj, j = 2, 3, . . ., are the orthogonal
polynomials and αj, j = 1, 2, . . ., and βj, j = 3, 4, . . ., the recurrence coefficients
corresponding to the original weight function.

Obviously, in the case of the weight functions given in (2.3), the polynomials (5.1)
have two outermost zeros inside the interval [0, 1] if and only if the corresponding
polynomials for the Jacobi weight functions with the same parameters have two
outermost zeros inside the interval [−1, 1]. Using Theorem 3.4 from [1], we have that
internality holds for l ⩾ 3.
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Let l = 2. In the case of the weight function w(1)(x), the conditions (3.12) and
(3.13) from [1] reduce to

−λ3 + 19λ2 + 105λ + 45 ⩾ 0 and 2λ4 + 25λ3 + 81λ + 63λ + 45 ⩾ 0.

The Ąrst condition holds for λ ∈ [λ1, λ2], where λ1 ≈ −0.46943 and λ2 ≈ 23.54142 are
the largest two zeros of the polynomial −x3 + 19x2 + 105x + 45. The second condition
holds for λ > −1/2.

Similarly, for the weight function w(2)(x), this formula is internal if and only if

λ3 + 48λ2 + 260λ + 216 ⩾ 0 and 2λ4 + 31λ3 + 136λ2 + 188λ + 168 ⩾ 0.

These conditions hold for λ > −1/2.

Theorem 5.1. The truncated generalized averaged Gaussian formula for the weight

function w(1)(x) is internal when λ > −1/2 and l ⩾ 3. For l = 2 internality holds

when λ ∈ [λ1, λ2], where λ1 ≈ −0.46943 and λ2 ≈ 23.54142 are the largest two zeros

of the polynomial −x3 +19x2 +105x+45. For the weight function w(2)(x) this formula

is internal when λ > −1/2.

6. Numerical Results

Example 6.1. We illustrate Theorems 3.1, 4.1 and 5.1 through some computations in
the case of the weight function w(2) for some values of l and λ. In the considered
cases, the corresponding averaged formulas are internal.

Table 1 displays the values of the nodes xπ
1 and xπ

l+1 for the formula QL
2l+1.

Table 2 displays the values of the nodes xF
1 and xF

l+1 for the formula QS
2l+1. Note

that for λ = 1 this formula coincides with the previous one, and also with the Gauss-
Kronrod quadrature formula (see Theorem 4.2).

Table 3 displays the values of the nodes τ1 and τl+2 for the formula Q
(1)
l+2.

Table 1: The values of xπ
1 and xπ

l+1 for w(2) and some l and λ.

λ l xπ
1 xπ

l+1

0.5 5 1.84918630347802(−2) 9.93315648803352(−1)
10 5.32426071493249(−3) 9.98085997371715(−1)
15 2.48373203616388(−3) 9.99108179903793(−1)
20 1.43168514326074(−3) 9.99486155846300(−1)

1 5 1.70370868554659(−2) 9.82962913144534(−1)
10 5.08927905953363(−3) 9.94910720940466(−1)
15 2.40763666390156(−3) 9.97592363336098(−1)
20 1.39810140940993(−3) 9.98601898590590(−1)
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Table 2: The values of xF
1 and xF

l+1 for w(2) and some l and λ.

λ l xF
1 xF

l+1

0.5 5 1.85485046684558(−2) 9.93270563061661(−1)
10 5.32892821283948(−3) 9.98082336550544(−1)
15 2.48474645373049(−3) 9.99107386760496(−1)
20 1.43202203935648(−3) 9.99485892741121(−1)

1 5 1.70370868554659(−2) 9.82962913144534(−1)
10 5.08927905953363(−3) 9.94910720940466(−1)
15 2.40763666390156(−3) 9.97592363336098(−1)
20 1.39810140940993(−3) 9.98601898590590(−1)

Table 3: The values of τ1 and τl+2 for w(2) and some l and λ.

λ l τ1 τl+2

0.5 5 4.05074383379349(−2) 9.76146311190531(−1)
10 1.50966909367400(−2) 9.91134246875255(−1)
15 7.80960712033176(−3) 9.95418464436467(−1)
20 4.75922686471797(−3) 9.97209253940011(−1)

1 5 3.80602337443566(−2) 9.61939766255643(−1)
10 1.45290912869740(−2) 9.85470908713026(−1)
15 7.59612349389597(−3) 9.92403876506104(−1)
20 4.65702698183462(−3) 9.95342973018165(−1)

Example 6.2. We Ąnd the outermost nodes in the case of the weight function w(1) for
the formula QL

2l+1 with λ = 0.5 (Table 4) and for the formula QS
2l+1 with λ = −0.2

(Table 5) for some l. Here these formulas have exterior node(s).

Table 4: The values of xπ
1 and xπ

l+1 for w(1), λ = 0.5 and some l.

λ l xπ
1 xπ

l+1

0.5 5 −1.03583467673738(−5) 9.91983668229218(−1)
10 −7.09110640371522(−7) 9.97894782375997(−1)
15 −1.44570778097492(−7) 9.99048751274800(−1)
20 −4.64835853269242(−8) 9.99460470025489(−1)

Table 5: The values of xF
1 and xF

l+1 for w(2), λ = −0.2 and some l.

λ l xF
1 xF

l+1

−0.2 5 −4.13229856738924(−5) 1.00140197341566
10 −2.37471751038235(−6) 1.00033417984287
15 −4.59266799101858(−7) 1.00014681665572
20 −1.43959966526914(−7) 1.00008217031089
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Example 6.3. Consider the integral

I(f) =
∫ 1

0
f(t)w(t)dt,

where f(t) = 999.1log10(ε+t), ε = 10−6 and w(t) = w(2)(t). In Table 6, the estimation
of the errors ♣I(f) − QG

l (f)♣ for Gauss quadrature formula are obtained by means

of the quantities ELG =
∣

∣

∣QL
2l+1(f) − QG

l (f)
∣

∣

∣, ESG = ♣QS
2l+1(f) − QG

l (f)♣ and ET SG =

♣Q(1)
l+2(f) − QG

l (f)♣, for some l and λ. As in the previous example, QL
2l+1 ≡ QS

2l+1 for
λ = 1. The sharp errors are denoted by Error.

Table 6: The estimates ELG, ESG, ET SG and the sharp errors Error for some l and λ.

λ l ELG ESG ET SG Error

0.5 5 1.5198(−10) 1.5192(−10) 1.4323(−10) 1.5219(−10)
10 4.3114(−13) 4.3106(−13) 3.4123(−13) 4.3190(−13)
15 1.3219(−14) 1.3218(−14) 8.7665(−15) 1.3244(−14)
20 1.0866(−15) 1.0865(−15) 6.1493(−16) 1.0886(−15)

1 5 1.1092(−10) 1.1092(−10) 1.0410(−10) 1.1108(−10)
10 3.5846(−13) 3.5846(−13) 2.8175(−13) 3.5911(−13)
15 1.1599(−14) 1.1599(−14) 7.6384(−15) 1.1621(−14)
20 9.8190(−16) 9.8190(−16) 5.5211(−16) 9.8378(−16)

Note that the integrand in the previous example is not deĄned for some nodes in
Example 6.2.

Example 6.4. The next table displays the same estimations as in the previous example
for the integrand f(t) = e3t sin 10t and the weight function w(t) = w(3)(t) from
(2.9). Note that for the weight functions given in (2.9), the corresponding orthogonal
polynomials are non-classical. Thus there is no analytical expression for the orthogonal
polynomials. Consequently, there is no general claim for internality of the averaged
formulas.

Table 7: The estimates ELG, ESG, ET SG and the sharp errors Error for some l.

l ELG ESG ET SG Error

5 3.4273(−3) 3.4276(−3) 3.4209(−3) 3.4276(−3)
10 8.4359(−11) 8.4359(−11) 8.4340(−11) 8.4359(−11)
15 9.6941(−21) 9.6941(−21) 9.6934(−21) 9.6941(−21)
20 3.1798(−32) 3.1798(−32) 3.1797(−32) 3.1798(−32)
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(m, n)-HYPERFILTERS IN ORDERED SEMIHYPERGROUPS

AHSAN MAHBOOB1 AND NOOR MOHAMMAD KHAN2

Abstract. First, we generalize concepts of left hyperfilters, right hyperfilters
and hyperfilters of an ordered semihypergroup by introducing concepts of left-m-
hyperfilters, right-n-hyperfilters and (m, n)-hyperfilters of an ordered semihyper-
group. Then, some properties of these generalized hyperfilters have been stud-
ied. Finally, left-m-hyperfilters (resp. right-n-hyperfilters, (m, n)-hyperfilters) of
(m, 0)-regular (resp. (0, n)-regular, (m, n)-regular) ordered semihypergroups char-
acterize in terms of their completely prime generalized (m, 0)-hyperideals (resp.
(0, n)-hyperideals, (m, n)-hyperideals).

1. Introduction and Preliminaries

In 1934, Marty [12] introduced the concept of hyperstructure and defined the notion
of hypergroup. The beauty of hyperstructure is that in hyperstructures multiplication
of two elements is a set while in classical algebraic structures, the multiplication of
two elements is an element which is the main reason for the researcher to attract
towards such type of algebraic structures. Thus, the notion of algebraic hyperstruc-
tures is a generalization of classical notion of algebraic structures. The concept of
ordered semihypergroup is a generalization of the concept of ordered semigroup and
was introduced by Heidari and Davvaz in [6]. Thereafter it was studied by several au-
thors. Davvaz et al. [1, 2, 6, 13] studied some properties of hyperideals, bi-hyperideals
and quasi-hyperideals in ordered semihypergroups. The notion of (m, n)-ideals of
semigroups was introduced by Lajos [10] as a generalization of the notion of bi-ideals
in semigroups. In [9], authors introduced the notion of an (m, n)-quasi-hyperideal

Key words and phrases. Ordered semihypergroups, left-m-hyperfilters, right-n-hyperfilters, (m, n)-
hyperfilters.
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and proved different characterizations of (m, n)-quasi-hyperideals and minimal (m, n)-
quasi-hyperideals in semihypergroups.

In 1987, Kehayopulu [7] introduced the concept of filter on poe-semigroups. Later
on in 1990, Kehayopulu [8] defined the relation N on po-semigroup. The study of
left(right)-filter on po-semigroup initiated by S. K. Lee and S. S. Lee [11], and gave
some characterizations of the left(right)-filter of po-semigroup in term of the right(left)
prime ideals. In 2015, the notion of left hyperfilters, right hyperfilters and hyperfilters
of ordered semihypergroups introduced by Tang et al. [14] and also investigated
their related properties and characterized hyperfilters in terms of completely prime
hyperideals in ordered semihypergroups. In 2016, Omidi and Davvaz [13] defined
an equivalence relation N as follows. Let H be an ordered semihypergroup. Then,
N = ¶(a, b) ∈ H × H ♣ N(a) = N(b)♢, where N(a) denote the hyperfiter of H
generated by an element a of H, and also shown that N is the intersection of the
semilattice equivalence relation σP = ¶(a, b) ∈ H × H ♣ a, b ∈ P or a, b /∈ P♢, where
P is completely prime hyperideal of H. Recently, Gu and Tang [4] constructed a
strongly ordered regular equivalence relation on an ordered semihypergroup by using
the concept of hyperfilter and shown that the corresponding quotient structure is a
semilattice.

A hyperoperation on a non-empty set H is a map ◦ : H × H → P
∗(H), where

P
∗(H) = P(H) \ ¶∅♢ (the set of all non-empty subsets of H). In such case, the H

is called a hypergroupoid. Let H be a hypergroupoid, A and B be any non-empty
subsets of H. Then

A ◦ B =
⋃

a∈A,b∈B

a ◦ b.

We shall write, in whatever follows, A ◦ x instead of A ◦ ¶x♢ and x ◦ A instead
of ¶x♢ ◦ A for any x ∈ H. Also, for simplicity, throughout the paper, we denote
a ◦ a ◦ · · · ◦ a (m-copies of a) with am for all a ∈ H and m ∈ Z. Moreover, the
hypergroupoid H is called a semihypergroup if, for all x, y, z ∈ H,

(x ◦ y) ◦ z = x ◦ (y ◦ z),

i.e.,
⋃

u∈x◦y
u ◦ z =

⋃

v∈y◦z
x ◦ v.

A non-empty subset T of semihypergroup H is called a subsemihypergroup of H if
T ◦ T ⊆ T .

Definition 1.1 ([14]). Let H be a non-empty set. The triplet (H, ◦, ≤) is called
an ordered semihypergroup if (H, ◦) is a semihypergroup and (H, ≤) is a partially
ordered set such that

x ≤ y ⇒ x ◦ z ≤ y ◦ z and z ◦ x ≤ z ◦ y,

for all x, y, z ∈ H. Here, if A and B are non-empty subsets of H, then we say that
A ≤ B if for every a ∈ A there exists b ∈ B such that a ≤ b.
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Let H be an ordered semihypergroup. For a non-empty subset T of H, we denote
(T ] = ¶x ∈ H ♣ x ≤ a for some a ∈ T♢.

Definition 1.2. Let H be an ordered semihypergroup and A be a non-empty subset
of H. Then, A is called a left (resp. right) hyperideal [2] of H if

(1) H ◦ A ⊆ A (resp. A ◦ H ⊆ A);
(2) (A] ⊆ A.

A is called hyperideal of H if A is both left hyperideal and right hyperideal of H.

A subsemihypergroup F of ordered semihypergroup H is called left hyperflter (resp.
right hyperfilter) [14] if for any a, b ∈ H, a ◦ b ∩ F ̸= ∅ implies a ∈ F (resp. b ∈ F )
and for any a ∈ F, b ∈ H such that a ≤ b implies b ∈ F. If F is both left-hyperflter
and right-hyperflter of H, then F is said to be hyperfilter of H.

An ordered semihypergroup H is called regular (left regular, right regular) [2] if for
each x ∈ H, x ∈ (x ◦ H ◦ x] (x ∈ (H ◦ x ◦ x], x ∈ (x ◦ x ◦ H]).

Lemma 1.1 ([2]). Let H be an ordered semihypergroup and A, B be any non-empty

subsets of H. Then the following hold:

(1) A ⊆ (A];
(2) A ⊆ B (A] ⊆ (B];
(3) (A] ◦ (B] ⊆ (A ◦ B];
(4) ((A] ◦ (B]] = (A ◦ B];
(5) (A] ∪ (B] = (A ∪ B].

Throughout this paper, H always denotes an ordered semihypergroup and m, n
denote positive integers, unless otherwise specified.

2. Main Results

Definition 2.1. A subsemihypergroup F of ordered semihypergroup H is called
left-m-hyperfilter (resp. right-n-hyperfilter) if

(1) for any a, b ∈ S, a ◦ b ∩ F ̸= ∅ implies am ⊆ F (resp. bn ⊆ F );
(2) a ∈ F , a ≤ b ∈ S implies b ∈ F .

If F is both left-m-hyperfilter and right-n-hyperfilter of H, then F is called (m, n)-
hyperfilter.

Remark 2.1. In particular for m = 1 (resp. n = 1), F is a left hyperfilter (resp.
right hyperfilter). Clearly, each left hyperfilter (resp. right hyperfilter, hyperfilter) of
an ordered semihypergroup H is left-m-hyperfilter (resp. right-n-hyperfilter, (m, n)-
hyperfilter) for each positive integers m and n. Indeed let F be any hyperfilter of H
and a, b ∈ H such that a ◦ b ∩ F ̸= ∅. As F is left hyperfilter, a ∈ F . Since F is
left hyperfilter, F is subsemihypergroup, and thus am ⊆ F . Therefore, the concept of
a left-m-hyperfilter (resp. right-n-hyperfilter, (m, n)-hyperfilter) is the generalization
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of a left hyperfilter (resp. right hyperfilter, hyperfilter). Conversely, each left-m-
hyperfilter (resp. right-n-hyperfilter, (m, n)-hyperfilter) need not be a left hyperfilter
(resp. right hyperfilter, hyperfilter).

Example 2.1. Let H = ¶a, b, c, d♢. Define hyperoperation ◦ and order ≤ on H as
follows:

◦ a b c d
a ¶a, b♢ ¶a, b♢ ¶a, b♢ ¶a, b♢
b ¶a, b♢ ¶a, b♢ ¶a, b♢ ¶a, b♢
c ¶a, b♢ ¶a, b♢ ¶a, b♢ ¶b♢
d ¶a, b♢ ¶a, b♢ ¶b♢ ¶c♢

,

≤:= ¶(a, a), (b, b), (c, c), (d, d), (a, b)♢.

Then H is an ordered semihypergroup. Let F = ¶a, b♢. Since d ◦ c ∩ F ̸= ∅ but d /∈ F
while d3 ⊆ F . Therefore, F is a left-3-hyperfilter of H but not a left hyperfilter of H.

Lemma 2.1. Let H be an ordered semihypergroup and T be a subsemihypergroup

of H. Then, for every left-m-hyperfilter (resp. right-n-hyperfilter) F of H, either

F ∩ T = ∅ or F ∩ T is a left-m-hyperfilter (resp. right-n-hyperfilter) of T .

Proof. Let F ∩ T ̸= ∅ and x, y ∈ F ∩ T . Then, x, y ∈ F, T . As F and T are left-m-
hyperfilter and subsemihypergroup of H, respectively. So x ◦ y ⊆ F and x ◦ y ⊆ T .
Thus, x ◦ y ⊆ F ∩ T . Next, we assume that for any x, y ∈ T , x ◦ y ∩ (F ∩ T ) ̸= ∅.
Therefore, x ◦ y ∩ F ≠ ∅. Since x, y ∈ H and F is left-m-hyperfilter of H, xm ⊆ F .
Also xm ⊆ T . Thus, xm ⊆ (F ∩T ). Finally, take an element x ∈ T ∩F and y ∈ T such
that x ≤ y. As F is left-m-hyperfilter of H and F ∋ x ≤ y ∈ H, y ∈ F . Therefore,
y ∈ T ∩ F . Hence, F ∩ T is a left-m-hyperfilter of T . □

Corollary 2.1. Let H be an ordered semihypergroup and T be a subsemihypergroup

of H. Then for every (m, n)-hyperfilter F of H, either F ∩ T = ∅ or F ∩ T is an

(m, n)-hyperfilter of T .

Lemma 2.2. Let H be an ordered semihypergroup and ¶Fi ♣ i ∈ I♢ be a family of

left-m-hyperfilters (resp. right-n-hyperfilters) of H. If
⋂

i∈I Fi ≠ ∅, then
⋂

i∈I Fi is a

left-m-hyperfilter (resp. right-n-hyperfilter) of H.

Proof. Assume that
⋂

i∈I Fi ≠ ∅ and x, y ∈
⋂

i∈I Fi. Then x, y ∈ Fi for each i ∈ I. As
for each i ∈ I, Fi is left-m-hyperfilter, x ◦ y ⊆ Fi. Therefore, x ◦ y ⊆

⋂
i∈I Fi. Thus,

⋂
i∈I Fi is a subsemihypergroup of H. Now, let x, y ∈ H and x◦y ⊆

⋂
i∈I Fi. Therefore,

x ◦ y ⊆ Fi for each i ∈ I. As Fi’s are left-m-hyperfilters, xm ⊆ Fi for each i ∈ I. So,
xm ⊆

⋂
i∈I Fi. Now take an element a ∈

⋂
i∈I Fi and b ∈ H such that a ≤ b. Then

a ∈ Fi for each i ∈ I. Since Fi’s are left-m-hyperfilters, b ∈
⋂

i∈I Fi. Hence,
⋂

i∈I Fi is
a left-m-hyperfilter. □

Corollary 2.2. Let H be an ordered semihypergroup and ¶Fi ♣ i ∈ I♢ be a family of

(m, n)-hyperfilters of H. If
⋂

i∈I Fi ̸= ∅, then
⋂

i∈I Fi is an (m, n)-hyperfilter of H.
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Remark 2.2. Union of any family of left-m-hyperfilters (resp. right-n-hyperfilters,
(m, n)-hyperfilters) of ordered semihypergroup H is not a left-m-hyperfilter (resp.
right-n-hyperfilter, (m, n)-hyperfilter) in general.

Following example shows that in general union of any family of left-m-hyperfilters
(resp. right-n-hyperfilters, (m, n)-hyperfilters) of ordered semihypergroup H is not a
left-m-hyperfilter (resp. right-n-hyperfilter, (m, n)-hyperfilter).

Example 2.2. Let H = ¶a, b, c, d, e♢. Define hyperoperation ◦ and an order ≤ on H
as follows:

◦ a b c d e
a ¶b♢ ¶b♢ ¶d♢ ¶d♢ ¶d♢
b ¶b♢ ¶b♢ ¶d♢ ¶d♢ ¶d♢
c ¶d♢ ¶d♢ ¶c, e♢ ¶d♢ ¶c, e♢
d ¶d♢ ¶d♢ ¶d♢ ¶d♢ ¶d♢
e ¶d♢ ¶d♢ ¶c, e♢ ¶d♢ ¶c, e♢

,

≤:= ¶(a, a), (b, b), (c, c), (d, d), (a, b), (c, e)♢.

Then H is an ordered semihypergroup. Here F1 = ¶b♢ is left-2-hyperfilter because
F1 ◦ F1 ⊆ F1 and a ◦ a ∩ F1 ̸= ∅ implies a2 ⊆ F1. Thus F1 is left-2-hyperfilter but not
a hyperfilter. Similarly, F2 = ¶c, e♢ is left-2-hyperfilter. Now F1 ∪ F2 = ¶b, c, e♢, since
b ◦ c = ¶d♢ ⊈ F1 ∪ F2, therefore F1 ∪ F2 is not a subsemihypergroup of H, and hence
F1 ∪ F2 is not a left-2-hyperfilter.

Let (H, •, ≤H) and (T, ◦, ≤T ) be two ordered semihypergroups. Under the coordi-
natewise multiplication

(h1, t1) ⋄ (h2, t2) = h1 • h2 × t1 ◦ t2,

where (s1, t1), (s2, t2) ∈ H × T the cartesian product H × T of H and T forms a
semihypergroup. Define a partial order ≤ on H × T by (h1, t1) ≤ (h2, t2) if and only
if h1 ≤H h2 and t1 ≤T t2, where (h1, t1), (h2, t2) ∈ H × T . Then, (H × T, ⋄, ≤) is an
ordered semihypergroup [4].

Lemma 2.3. Let (H, •, ≤H) and (T, ◦, ≤T ) be two ordered semihypergroups, F1 and

F2 be two left-m-hyperfilter (resp. right-n-hyperfilter) of H and T, respectively. Then

F1 × F2 is a left-m-hyperfilter (resp. right-n-hyperfilter) of H × T .

Proof. Let (a, b), (c, d) ∈ F1×F2. Now (a, b)⋄(c, d) = a•c×b◦d. As a, c ∈ F1, b, d ∈ F2

and F1, F2 are left-m-hyperfilters of H and T respectively, a • c ⊆ F1, b ◦ d ⊆ F2.
Therefore, a•c×b◦d ⊆ F1×F2, it follows that F1×F2 is a subsemihypergroup of H1×H2.
Next, we assume that (a, b), (c, d) ∈ H1 × H2 such that (a, b) ⋄ (c, d) ∩ F1 × F2 ̸= ∅.
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Now, we have

(a, b) ⋄ (c, d) ∩ F1 × F2 ̸= ∅

⇒a • c × b ◦ d ∩ F1 × F2 ̸= ∅

⇒a • c ∩ F1 ̸= ∅ and b ◦ d ∩ F2 ̸= ∅

⇒am ⊆ F1 and bm ⊆ F2

⇒(am, bm) ⊆ F1 × F2

⇒(a, b)m ⊆ F1 × F2.

Finally, we consider an element (a, b) ∈ F1 × F2 and (c, d) ∈ H × T such that
(a, b) ≤ (c, d). Therefore, a ≤H c and b ≤T d. Since F1 and F2 are left-m-hyperfilters
of H and T , c ∈ F1 and d ∈ F2. Thus, (c, d) ∈ F1 × F2. Hence, F1 × F2 is a
left-m-hyperfilter of H × T . □

Corollary 2.3. Let (H, •, ≤H) and (T, ◦, ≤T ) be two ordered semihypergroups, F1

and F2 be two (m, n)-hyperfilters of H and T , respectively. Then F1 × F2 is an

(m, n)-hyperfilter of H × T .

Definition 2.2 ([9]). Let H be an ordered semihypergroup, m and n be the positive
integers. Then, a subsemihypergroup A of H is called an (m, n)-hyperideal of H if

(1) Am ◦ H ◦ An ⊆ A and
(2) (A] ⊆ A.

Dually, we may define (m, 0)-hyperideal and (0, n)-hyperideal of H.
If we drop the subsemihypergroup condition from the above definition, then A is

called a generalized (m, n)-hyperideal of H. Similarly, a generalized (m, 0)-hyperideal
and a generalized (0, n)-hyperideal are defined.

Remark 2.3. It is easy to check that each (m, n)-hyperideal (resp. (m, 0)-hyperideal,
(0, n)-hyperideal) of any ordered semihypergroup is always a generalized (m, n)-
hyperideal (resp. (m, 0)-hyerideal, (0, n)-hyperideal), but the converse is not true
in general. This has been shown by the following example.

Example 2.3. Let H = ¶a, b, c, d♢. Define hyperoperation ◦ and order ≤ on H as
follows:

◦ a b c d
a ¶a♢ ¶a♢ ¶a♢ ¶a♢
b ¶a♢ ¶a♢ ¶a♢ ¶a♢
c ¶a♢ ¶a♢ ¶a♢ ¶a, b♢
d ¶a♢ ¶a♢ ¶a, b♢ ¶a, b, c♢

,

≤:= ¶(a, a), (b, b), (c, c), (d, d), (a, b)♢.

Then H is an ordered semihypergroup. The subset ¶a, d♢ of H is a generalized
(m, n)-hyperideal of H, for all integers m, n ≥ 2, which is not an (m, n)-hyperideal
of H.
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A generalized (m, 0)-hyperideal (resp. generalized (0, n)-hyperideal, generalized
(m, n)-hyperideal) A of an ordered semihypergroup H is called completely prime if
for any two elements a, b ∈ H such that a ◦ b ∩ A ̸= ∅, then a ∈ A or b ∈ A.

Let H be an ordered semihypergroup and m, n positive integers. Then H is called
an (m, n)-regular (resp. (m, 0)-regular, (0, n)-regular) if for any a ∈ H there exists
x ∈ H such that a ≤ am ◦ x ◦ an (resp. a ≤ am ◦ x, a ≤ x ◦ an) i.e., if a ∈ (am ◦ H ◦ an]
(resp. a ∈ (am ◦ H], a ∈ (H ◦ an]) equivalently for each non-empty subset A of H,
A ⊆ (Am ◦ H ◦ An] (resp. A ⊆ (Am ◦ H], A ⊆ (H ◦ An]).

Lemma 2.4. Let H be an (m, 0)-regular (resp. (0, n)-regular) ordered semihypergroup

and F be a non-empty subset of H. Then the following statements are equivalent:

(1) F is left-m-hyperfilter (resp. right-n-hyperfilter) of H;

(2) H \ F = ∅ or H \ F is completely prime generalized (m, 0)-hyperideal ((0, n)
-hyperideal) of H, where H \ F is the complement of F in H.

Proof. (1) ⇒ (2). Assume that H \ F ≠ ∅. If (H \ F )m ◦ H ⊆ F , then H \ F ⊆
(H \ F )m ◦ H ⊆ F , which is a contradiction. Therefore, (H \ F )m ◦ H ⊆ H \ F. Let
H ∋ a ≤ b ∈ H \ F . If a ∈ F , then, as F is a left-m-hyperfilter, we have b ∈ F ,
which is a contradiction. Thus, a ∈ H \ F . To show that H \ F is completely prime
(m, 0)-hyperideal of H, let a, b ∈ H, a ◦ b ∩ H \ F ≠ ∅. If a ∈ F and b ∈ F , a ◦ b ⊆ F .
Thus, either a ∈ H \ F or b ∈ H \ F .

(2) ⇒ (1). Let H \ F is completely prime generalized (m, 0)-hyperideal of H. Let
a, b ∈ F . If a ◦ b ⊆ H \ F , by hypothesis a ∈ H \ F or b ∈ H \ F , a contradiction.
Thus a ◦ b ⊆ F it follows that F is subsemihypergroup. Now consider for any
a, b ∈ H, a ◦ b ∩ F ≠ ∅. If am ⊆ H \ F , then since H is (m, 0)-regular there exist
s1, s2 ∈ H such that a ◦ b ≤ am ◦ s1 ◦ b ≤ (am)m ◦ s2 ◦ s1 ◦ b ⊆ (H \ F )m ◦ H ⊆ H \ F .
So, a ◦ b ⊆ H \ F , a contradiction. Therefore, am ⊆ F . Now take any element a ∈ F
and b ∈ H such that a ≤ b. If b ∈ H \ F , then a ∈ H \ F which is a contradiction.
Thus, b ∈ F . Hence, F is a left-m-filter of H. □

Corollary 2.4. Let H be an (m, n)-regular ordered semihypergroup and F be a non-

empty subset of H. Then the following statements are equivalent:

(1) F is (m, n)-hyperfilter of H;

(2) H \ F = ∅ or H \ F is completely prime generalized (m, n)-hyperideal of H,

where H \ F is the complement of F in H.

Lemma 2.5. An (m, 0)-regular ((0, n)-regular) ordered semihypergroup H does not

contain proper left-m-hyperfilters (right-n-hyperfilters) if and only if H does not con-

tain proper completely prime generalized (m, 0)-hyperideals ((0, n)-hyperideals).

Proof. Assume that H does not contain a proper left-m-hyperfilter. Let A be any
proper completely prime generalized (m, 0)-hyperideal of H. Then, by Lemma 2.4,
H \ A is proper left-m-hyperfilter of H which is a contradiction. Therefore, H does
not contain any left-m-hyperfilter.
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Conversely, assume that H does not contain proper completely prime (m, 0)-hyper-
ideals. Let F be any proper left-m-hyperfilter of H. Then by Lemma 2.4, H \ F is a
proper completely prime generalized (m, 0)-hyperideal of H which is a contradiction.
Hence, H does not contain proper left-m-hyperfilters. □

Corollary 2.5. An (m, n)-regular ordered semihypergroup H does not contain proper

(m, n)-hyperfilters if and only if H does not contain proper completely prime general-

ized (m, n)-hyperideals.

Let (H, ⋄, ≤H) and (T, ⋆, ≤T ) be two ordered semihypergroups. A mapping ϕ :
H → T is called a normal homomorphism if for each a, b ∈ H, ϕ(x ⋄ y) = ϕ(x) ⋆ ϕ(y)
and ϕ is isotone, i.e., for each x, y ∈ H, x ≤H y implies ϕ(x) ≤T ϕ(y). Further, ϕ is
called reverse isotone if for all x, y ∈ H, ϕ(x) ≤T ϕ(y) implies x ≤H y.

Lemma 2.6. Let (H, ⋆, ≤H) and (T, ⋄, ≤T ) be two ordered semihypergroups and ϕ :
H → T normal homomorphism. If F a left-m-hyperfilter (right-n-hyperfilter) of T ,

then ϕ−1(F ) is a left-m-hyperfilter (right-n-hyperfilter) of H.

Proof. First, we show that ϕ−1(F ) is a subsemihypergroup of H. Let a, b ∈ ϕ−1(F ),
then ϕ(a), ϕ(b) ∈ F . As ϕ is normal homomorphism and F is left-m-hyperfilter of T ,
ϕ(a ⋆ b) = ϕ(a) ⋄ ϕ(b) ⊆ F . So a ⋆ b ⊆ ϕ−1(F ). Next, take any a, b ∈ H such that

(a ⋆ b) ∩ ϕ−1(F ) ̸= ∅ ⇒ ϕ(a ⋆ b) ∩ F ̸= ∅

⇒ (ϕ(a) ⋄ ϕ(b)) ∩ F ̸= ∅

⇒ (ϕ(a))m ⊆ F

⇒ ϕ(a) ⋄ ϕ(a) ⋄ · · · ⋄ ϕ(a) ⊆ F

⇒ ϕ(a ⋆ a ⋆ · · · ⋆ a) ⊆ F

⇒ am ⊆ ϕ−1(F ).

If a ∈ ϕ−1(F ), b ∈ H such that a ≤H b, then ϕ(a) ∈ F and ϕ(a) ≤T ϕ(b). Therefore,
ϕ(b) ∈ F implies b ∈ ϕ−1(F ). Hence, ϕ−1(F ) is an left-m-hyperfilter of H. □

Corollary 2.6. Let (H, ⋆, ≤H) and (T, ⋄, ≤T ) be two ordered semihypergroups and

ϕ : H → T normal homomorphism. If F an (m, n)-hyperfilter of T , then ϕ−1(F ) is

an (m, n)-hyperfilter of H.

3. Conclusion

When we take m = 1 = n, in all results of this paper, then we obtain all results
for left hyperfilters, right hyprerfilters and hyperfilters in an ordered semihypergroup
and some characterizations of regular ordered semihypergroups which is the main
application of results presented in this paper. Also we can extend all the results of
this paper in the setting of ordered Γ-semihypergroup.
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4. Problems

(1) Under what condition a left-m-hyperfilter (right-n-hyperfilter, (m, n)-hyperfilter)
of an ordered semihypergroup coincides with a left hyperfilter (right hyperfilter, hy-
perfilter)?

(2) Under what conditions arbitrary union of left-m-hyperfilters (right-n-hyperfilters,
(m, n)-hyperfilters) of an ordered semihypergroup is a left-m-hyperfilter (right-n-
hyperfilter, (m, n)-hyperfilter)?
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EXISTENCE THEOREMS FOR A COUPLED SYSTEM OF

NONLINEAR MULTI-TERM FRACTIONAL DIFFERENTIAL

EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

BASHIR AHMAD1, AHMED ALSAEDI1, NAJLA ALGHAMDI2,1,
AND SOTIRIS K. NTOUYAS3,1

Abstract. We discuss the existence and uniqueness of solutions for a coupled
system of nonlinear multi-term fractional differential equations complemented with
coupled nonlocal boundary conditions by applying the methods of modern func-
tional analysis. An example illustrating the uniqueness result is presented. Some
interesting observations are also described.

1. Introduction

The topic of boundary value problems has been fascinating due to its extensive
applications in applied and technical sciences. In recent years, an overwhelming
interest has been shown in the study of fractional differential equations and inclusions
equipped with a variety of boundary conditions, for instance, see [1,2,25,26,28,30] and
the references cited therein. Coupled systems of fractional-order differential equations
also constitute an important area of investigation in view of occurrence of such systems
in disease models [9,10], chaos [31], ecology [16] and so forth. Some recent theoretical
work on the topic can be found in the articles [3, 4, 6, 7, 12, 29].

On the other hand, coupled systems involving more than one fractional order
differential operators need to be addressed further to strengthen the hot topic of
boundary value problems. Examples include Bagley-Torvik [27] and Basset [20]

Key words and phrases. Coupled system, multi-term fractional differential equations, Caputo
fractional derivative, nonlocal boundary conditions, existence.
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equations. For some recent results on multi-term (sequential) fractional differential
equations, see [5, 8, 18,19].

The nonlocal nature of fractional order operators is the key factor in the popularity
of fractional calculus, which has extended the scope of the existing integer-order
models by providing their fractional order counterparts. Examples include fractional
reaction-diffusion systems [13], anomalous diffusion [15], chaotic neuron model [23],
groundwater hydrology [24] and so forth. For more details, we refer the reader to
texts [14, 21,22].

Motivated by recent work on fractional order coupled systems, we introduce and
study a coupled system of multi-term fractional differential equations:

(1.1)





Lr
ai

u(t) = f(t, u(t), v(t)), 0 < r < 1,

Lp
bi

v(t) = g(t, u(t), v(t)), 0 < p < 1,

complemented with nonlocal multi-point coupled boundary conditions:

(1.2)





u(0) = 0, u′(0) = 0, u(1) =
ρ∑

i=1

αiv(ηi),

v(0) = 0, v′(0) = 0, v(1) =
h∑

j=1

βju(ξj), ηi < ξj, for all i, j,

where

Lr
ai

= a2
cDr+2 + a1

cDr+1 + a0
cDr, Lp

bi
= b2

cDp+2 + b1
cDp+1 + b0

cDp,

cDq is the Caputo-type fractional derivative of order q = r, p, f, g ∈ C([0, 1]×R×R,R)
and ai, bi, i = 0, 1, 2, are real constants such that a2

1 = 4a0a2, b2
1 = 4b0b2 with

a2 ≠ 0 ̸= b2. The existence and uniqueness results for the problem (1.1)–(1.2) are
derived via Leray-Schauder alternative and Banach fixed point theorem respectively.

The rest of the paper is arranged as follows. In Section 2, we recall some preliminary
concepts of fractional calculus and present an auxiliary lemma. The main results and
an illustrative are presented in Section 3. The paper concludes with some interesting
observations.

2. Basic Results

We begin this section with some preliminary concepts of fractional calculus [17,32].

Definition 2.1. The Riemann-Liouville fractional integral of order α ∈ R, α > 0, for
a locally integrable real-valued function χ on −∞ ≤ a < t < b ≤ +∞ is defined by

Iα
a χ (t) =

1

Γ (α)

t∫

a

(t − s)α−1 χ (s)ds,

where Γ is the Euler gamma function.
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Definition 2.2. Let χ, χ(m) ∈ L1[a, b] for −∞ ≤ a < t < b ≤ +∞. The Riemann-
Liouville fractional derivative of χ of order α ∈ (m − 1, m], m ∈ N, is defined as

Dα
a χ (t) =

dm

dtm
I1−α

a χ (t) =
1

Γ (m − α)

dm

dtm

t∫

a

(t − s)m−1−α χ (s)ds,

while the Caputo fractional derivative χ of order α ∈ (m − 1, m], m ∈ N, is defined by

cDα
a χ (t) = Dα

a


χ (t) − χ (a) − χ′ (a)

(t − a)

1!
− · · · − χ(m−1) (a)

(t − a)m−1

(m − 1)!

]
.

Remark 2.1. If χ ∈ Cm[a, b], then the Caputo fractional derivative cDα
a of order α ∈ R,

m − 1 < α < m, m ∈ N, is defined as

cDα
a χ(t) = I1−α

a χ(m) (t) =
1

Γ (m − α)

t∫

a

(t − s)m−1−α χ(m) (s)ds.

In our analysis, Iα and cDα respectively denote Riemann-Liouville fractional integral
and Caputo fractional derivative, with a = 0.

Lemma 2.1 ([17]). For ϕ ∈ C(0, 1) ∩ L(0, 1) holds:

Iα(cDαφ(t)) = φ(t) − c0 − c1t − · · · − cn−1t
n−1, t > 0, n − 1 < α < n,

where ci, i = 1, . . . , n − 1, are arbitrary constants.

Definition 2.3. A pair of functions u, v ∈ C([0, 1],R) satisfying the equations (1.1)
and the boundary conditions (1.2) is called a solution of the problem (1.1)–(1.2),
where it is assumed that u, v possess the Caputo fractional derivative of order r + 2
and p + 2 respectively on (0, 1).

We need the following auxiliary lemma, which concerns the linear variant of problem
(1.1)–(1.2).

Lemma 2.2. Let a2
1 −4a2a0 = 0, b2

1 −4b2b0 = 0, a2 ̸= 0, b2 ≠ 0 and w, z ∈ C([0, 1],R).
Then the solution (u, v) (in the sense of Definition 2.3) of the system of linear fractional

differential equations

(2.1)





Lr
ai

u(t) = w(t), 0 < r < 1,

Lp
bi

v(t) = z(t), 0 < p < 1,

supplemented with the boundary conditions (1.2) is given by

u(t) =
1

a2

∫ t

0

∫ s

0
ϕ(t)

(s − θ)r−1

Γ(r)
w(θ)dθds

+ λ1(t)

∑r
i=1 αi

b2

∫ ηj

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
z(θ)dθds

− 1

a2

∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
w(θ)dθds

]
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+ λ2(t)

∑h
j=1 βj

a2

∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
w(θ)dθds(2.2)

− 1

b2

∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
z(θ)dθds

]

and

v(t) =
1

b2

∫ t

0

∫ s

0
ζ(t)

(s − θ)p−1

Γ(p)
z(θ)dθds

+ µ1(t)

∑h
j=1 βj

a2

∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
w(θ)dθds

− 1

b2

∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
z(θ)dθds

]

+ µ2(t)

∑r
i=1 αi

b2

∫ ηi

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
z(θ)dθds(2.3)

− 1

a2

∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
w(θ)dθds

]
,

where

ϕ(κ) =(κ − s)em(κ−s), ζ(κ) = (κ − s)en(κ−s), κ = t, 1, ηi and ξj,

m =
−a1

2a2

, n =
−b1

2b2

, λ1(t) =
(mtemt − emt + 1)(nen − en + 1)

µ
,

λ2(t) =
(mtemt − emt + 1)(n

∑ρ
i=1 αiηie

nηi −∑ρ
i=1 αie

ηi +
∑ρ

i=1 αi)

µ
,

µ1(t) =
(ntent − ent + 1)(mem − em + 1)

µ
,

(2.4)

µ2(t) =
(ntent − ent + 1)(m

∑h
j=1 βjξje

mξj −∑h
j=1 βje

mξj +
∑h

j=1 βj)

µ
,

µ =(mem − em + 1)(nen − en + 1)

−

n

ρ∑

i=1

αiηie
nηi −

ρ∑

i=1

αie
ηi +

ρ∑

i=1

αi)(m
h∑

j=1

βjξje
mξj −

h∑

j=1

βje
mξj +

h∑

j=1

βj


 ̸= 0.

Proof. Applying the integral operators Ir and Ip respectively on the first and second
equations of (2.1) and then using Lemma 2.1, we get

(a2D
2 + a1D + a0)u(t) =

∫ t

0

(t − s)r−1

Γ(r)
w(s)ds + c1,(2.5)

(b2D
2 + b1D + b0)v(t) =

∫ t

0

(t − s)p−1

Γ(p)
z(s)ds + d1,(2.6)
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where c1 and d1 are arbitrary constants. Using the method of variation of parameters
to solve (2.5) and (2.6), we get

(2.7) u(t) = c2e
mt + c3te

mt +
1

a2

∫ t

0
(t − s)em(t−s)

(∫ s

0

(s − θ)r−1

Γ(r)
w(θ)dθ + c1


ds

and

(2.8) v(t) = d2e
nt + d3te

nt +
1

b2

∫ t

0
(t − s)en(t−s)

(∫ s

0

(s − θ)p−1

Γ(p)
z(θ)dθ + d1


ds,

where m and n are given by (2.4). Using u(0) = 0, u′(0) = 0 and v(0) = 0, v′(0) = 0 in
(2.7) and (2.8) respectively, we find that c2 = c3 = 0 and d2 = d3 = 0 and consequently,
we have

u(t) =c1


mtemt − emt + 1

a2m2

]
+

1

a2

∫ t

0
(t − s)em(t−s)

(∫ s

0

(s − θ)r−1

Γ(r)
w(θ)dθ


ds

]
,

(2.9)

v(t) =d1


ntent − ent + 1

b2n2

]
+

1

b2

∫ t

0
(t − s)en(t−s)

(∫ s

0

(s − θ)p−1

Γ(p)
z(θ)dθ


ds

]
.

(2.10)

On the other hand, using the conditions u(1) =
∑r

i=1 αiv(ηi) and v(1) =
∑h

j=1 βju(ξj)
in (2.9) and (2.10), respectively, we get the system:

A1c1 − B1d1 = V1, −B2c1 + A2d1 = V2,(2.11)

where

A1 =
mem − em + 1

a2m2
, A2 =

nen − en + 1

b2n2
,

B1 =

∑ρ
i=1 αi(nηie

nηi − enηi + 1)

b2n2
, B2 =

∑h
j=1 βj(mξje

mξj − emξj + 1)

a2m2
,

V1 =

∑ρ
i=1 αi

b2

∫ ηi

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
z(θ)dθds − 1

a2

∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
w(θ)dθds,

(2.12)

V2 =

∑h
j=1 βj

a2

∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
w(θ)dθds − 1

b2

∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
z(θ)dθds.

Solving the system (2.11), we find that

c1 =
A2V1 + B1V2

A1A2 − B1B2

, d1 =
B2V1 + A1V2

A1A2 − B1B2

.

Substituting the values of c1 and d1 in (2.9) and (2.10) respectively together with the
notations (2.12) leads to the solution (2.2) and (2.3). The converse can be proven by
direct computation. The proof is completed. □
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3. Existence and Uniqueness Results

Define by M = ¶u ♣ u ∈ C([0, 1],R)♢ the Banach space endowed with norm ∥u∥M

= supt∈[0,1] ♣u(t)♣. Then the product space (M × M, ∥ · ∥M×M) is a Banach space
equipped with the norm ∥(u, v)∥M×M = ∥u∥M + ∥v∥M for (u, v) ∈ M × M.

In view of Lemma 2.2, we introduce an operator Q : M × M → M × M as

Q(u, v)(t) := (Q1(u, v)(t),Q2(u, v)(t)),

where

Q1(u, v)(t) =
1

a2

∫ t

0

∫ s

0
ϕ(t)

(s − θ)r−1

Γ(r)
f(θ, u(θ), v(θ))dθds

+ λ1(t)

∑r
i=1 αi

b2

∫ ηj

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
g(θ, u(θ), v(θ))dθds

− 1

a2

∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
f(θ, u(θ), v(θ))dθds

]

+ λ2(t)

∑h
j=1 βj

a2

∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
f(θ, u(θ), v(θ))dθds

− 1

b2

∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
g(θ, u(θ), v(θ))dθds

]

and

Q2(u, v)(t) =
1

b2

∫ t

0

∫ s

0
ζ(t)

(s − θ)p−1

Γ(p)
g(θ, u(θ), v(θ))dθds

+ µ1(t)

∑h
j=1 βj

a2

∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
f(θ, u(θ), v(θ))dθds

− 1

b2

∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
g(θ, u(θ), v(θ))dθds

]

+ µ2(t)

∑r
i=1 αi

b2

∫ ηi

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
g(θ, u(θ), v(θ))dθds

− 1

a2

∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
f(θ, u(θ), v(θ))dθds

]
.

For the sake of brevity, we set the following notations:

∆1 =
1

♣a2♣m2Γ(r + 1)



(1 + λ̂1)♣mem − em + 1♣ + λ̂2

h∑

j=1

βjξj
r♣mξje

mξj − emξj + 1♣


 ,

(3.1)

∆2 =
1

♣b2♣n2Γ(p + 1)

{
(1 + µ̂1)♣nen − en + 1♣ + µ̂2

ρ∑

i=1

αiηi
p♣nηie

nηi − enηi + 1♣
}

,

(3.2)
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Λ1 =
1

♣b2♣n2Γ(p + 1)

{
λ̂2♣nen − en + 1♣ + λ̂1

ρ∑

i=1

αiηi
p♣nηie

nηi − enηi + 1♣
}

,

(3.3)

Λ2 =
1

♣a2♣m2Γ(r + 1)



µ̂2♣mem − em + 1♣ + µ̂1

h∑

j=1

βjξj
r♣mξje

mξj − emξj + 1♣


 ,

(3.4)

λ̂1 = max
t∈[0,1]

♣λ1(t)♣, λ̂2 = max
t∈[0,1]

♣λ2(t)♣, µ̂1 = max
t∈[0,1]

♣µ1(t)♣, µ̂2 = max
t∈[0,1]

♣µ2(t)♣.

Our first result, dealing with the existence of solutions for the problem (1.1)–(1.2), is
based on Leray-Schauder alternative.

Lemma 3.1. (Leray-Schauder alternative [11]). Let F : E → E be a completely

continuous operator and that A(F) = ¶x ∈ E ♣ x = νF(x) for some 0 < ν < 1♢. Then

either the set A(F) is unbounded or F has at least one fixed point.

Theorem 3.1. Assume that

(H1) there exist real constants δi, γi > 0, i = 1, 2, and δ0 > 0, γ0 > 0 such that

♣f(t, u1, u2)♣ ≤ δ0 + δ1♣u1♣ + δ2♣u2♣
and

♣g(t, u1, u2)♣ ≤ γ0 + γ1♣u1♣ + γ2♣u2♣, for all ui ∈ R, i = 1, 2.

(H2) max ¶ω1, ω2♢ < 1, where

(3.5) ω1 = δ1(∆1 + Λ2) + γ1(∆2 + Λ1), ω2 = δ2(∆1 + Λ2) + γ2(∆2 + Λ1),

∆1, ∆2, Λ1, Λ2 are respectively given by (3.1), (3.2), (3.3) and (3.4).
Then the problem (1.1)–(1.2) has at least one solution on [0, 1].

Proof. We first show that the operator Q : M×M → M×M is completely continuous.
The operators Q1 and Q2 are continuous since the functions f and g are continuous,
and thus the operator Q is continuous. Let Ω ⊂ M × M be a bounded set. Then
♣f(t, u(t), v(t))♣ ≤ L1, ♣g(t, u(t), v(t))♣ ≤ L2 for all (u, v) ∈ Ω, where L1 and L2 are
positive constants. In consequence for any (u, v) ∈ Ω, we get

∥Q1(u, v)∥M = sup
t∈[0,1]

♣Q1(u, v)(t)♣

≤ L1

♣a2♣m2Γ(r + 1)



(1 + λ̂1)♣mem − em + 1♣

+λ̂2

h∑

j=1

βjξj
r♣mξje

mξj − emξj + 1♣




+
L2

♣b2♣n2Γ(p + 1)

{
λ̂2♣nen − en + 1♣ + λ̂1

ρ∑

i=1

αiηi
p♣nηie

nηi − enηi + 1♣
}
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=L1∆1 + L2Λ1.(3.6)

Similarly, it can be shown that

(3.7) ∥Q2(u, v)∥M ≤ L2∆2 + L1Λ2.

From (3.6) and (3.7), we deduce that Q1 and Q2 are uniformly bounded, and hence
the operator Q is uniformly bounded.

Next, we show that Q is equicontinuous. Let t1, t2 ∈ [0, 1], with t1 < t2. Then we
have

♣Q1(u, v)(t2) − Q1(u, v)(t1)♣

≤ L1

♣a2♣

{∫ t1

0

∫ s

0
♣ϕ(t2) − ϕ(t1)♣

(s − θ)r−1

Γ(r)
dθds +

∫ t2

t1

∫ s

0
♣ϕ(t2)♣

(s − θ)r−1

Γ(r)
dθds

}

+ ♣λ1(t2) − λ1(t1)♣
{

L2
∑ρ

i=1 αi

♣b2♣
∫ ηi

0

∫ s

0
♣ζ(ηi)♣

(s − θ)p−1

Γ(p)
dθds

+
L1

♣a2♣
∫ 1

0

∫ s

0
♣ϕ(1)♣(s − θ)r−1

Γ(r)
dθds

}

+ ♣λ2(t2) − λ2(t1)♣
{

L1
∑h

j=1 βj

♣a2♣
∫ ξj

0

∫ s

0
♣ϕ(ξj)♣

(s − θ)r−1

Γ(r)
dθds

+
L2

♣b2♣
∫ 1

0

∫ s

0
♣ζ(1)♣(s − θ)p−1

Γ(p)
dθds

}

≤


L1

♣a2♣m2Γ(r + 1)

{
(tr

1 − tr
2)♣m(t1 − t2)e

m(t1−t2) − em(t1−t2) + 1♣

+tr
1♣mt1e

mt1 − emt1 + 1♣
}

+ ♣λ1(t2) − λ1(t1)♣
{

L2
∑ρ

i=1 αiη
p
i

♣b2♣n2Γ(p + 1)
♣nηie

nηi − enηi + 1♣

+
L1

♣a2♣m2Γ(r + 1)
♣mem − em + 1♣

}

+ ♣λ2(t2) − λ2(t1)♣
{

L1
∑h

j=1 βjξ
r
j

♣a2♣m2Γ(r + 1)
♣♣mξje

mξj − emξj + 1♣

+
L2

♣b2♣n2Γ(p + 1)
♣nen − e+1♣

}]
→ 0 as t2 − t1 → 0,

independently of (u, v) ∈ Ω. Analogously, we have

♣Q2(u, v)(t2) − Q2(u, v)(t1)♣ → 0 as t2 − t1 → 0,

independently of (u, v) ∈ Ω. Hence, the operators Q1 and Q2 are equicontinuous and
thus the operator Q is equicontinuous. By Arzelá-Ascoli’s theorem, we deduce that
the operator Q is completely continuous.
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Lastly, we consider a set Θ(Q) = ¶(u, v) ∈ M × M ♣ (u, v) = νQ(u, v); 0 ≤ ν ≤ 1♢
and show that it is bounded. Let (u, v) ∈ Θ. Then (u, v) = νQ(u, v). For any t ∈ [0, 1],
we have u(t) = νQ1(u, v)(t), v(t) = νQ2(u, v)(t). Thus,

♣u(t)♣ =♣νQ1(u, v)(t)♣ ≤ ♣Q1(u, v)(t)♣

≤ 1

♣a2♣
∫ t

0

∫ s

0
ϕ(t)

(s − θ)r−1

Γ(r)
♣f(θ, u(θ), v(θ))♣dθds

+ ♣λ1(t)♣
∑ρ

i=1 αi

♣b2♣
∫ ηi

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
♣g(θ, u(θ), v(θ))♣dθds

+
1

♣a2♣
∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
♣f(θ, u(θ), v(θ))♣dθds

]

+ ♣λ2(t)♣
∑h

j=1 βj

♣a2♣
∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
♣f(θ, u(θ), v(θ))♣dθds

+
1

♣b2♣
∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
♣g(θ, u(θ), v(θ))♣dθds

]

≤δ0 + δ1♣u♣ + δ2♣v♣
♣a2♣m2Γ(r + 1)



(1 + λ̂1)♣mem − em + 1♣

+λ̂2

h∑

j=1

βjξ
r
j ♣mξje

mξj − emξj + 1♣




+
(γ0 + γ1♣u♣ + γ2♣v♣)

♣b2♣n2Γ(p + 1)

{
λ̂2♣nen − en + 1♣ + λ̂1

ρ∑

i=1

αiη
p
i ♣nηie

nηi − enηi + 1♣
}

=(δ0 + δ1♣u♣ + δ2♣v♣)∆1 + (γ0 + γ1♣u♣ + γ2♣v♣)Λ1,

which, on taking the norm for t ∈ [0, 1], yields

(3.8) ∥u∥M ≤ (δ0 + δ1∥u∥M + δ2∥v∥M)∆1 + (γ0 + γ1∥u∥M + γ2∥v∥M)Λ1.

Likewise, we can obtain

(3.9) ∥v∥M ≤ (γ0 + γ1∥u∥M + γ2∥v∥M)∆2 + (δ0 + δ1∥u∥M + δ2∥v∥M)Λ2.

From (3.8) and (3.9), we find that

∥u∥M + ∥v∥M ≤δ0(∆1 + Λ2) + γ0(∆2 + Λ1)

+ ∥u∥M (δ1(∆1 + Λ2) + γ1(∆2 + Λ1))

+ ∥v∥M (δ2(∆1 + Λ2) + γ2(∆2 + Λ1))

≤ω0 + max ¶ω1, ω2♢∥(u, v)∥M×M,(3.10)

where ω0 = δ0(∆1 + Λ2) + γ0(∆2 + Λ1) and ω1, ω2 are given by (3.5).
In view of the definition ∥(u, v)∥M×M = ∥u∥M + ∥v∥M, (3.10) leads to

∥(u, v)∥M×M ≤ ω0

1 − max ¶ω1, ω2♢
.
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Consequently, the set Θ(Q) is bounded. By Lemma 3.1, the operator Q has at least
one fixed point. Therefore, the problem (1.1)–(1.2) has at least one solution on [0, 1],
which finish the proof. □

In the following result, we prove the uniqueness of solutions for the problem at
hand by means of Banach fixed point theorem.

Theorem 3.2. Assume that:

(H3) for all t ∈ [0, 1] and ui, vi ∈ R, i = 1, 2, there exist positive constants ℓ1 and ℓ2

such that

♣f(t, u1, u2) − f(t, v1, v2)♣ ≤ ℓ1(♣u1 − v1♣ + ♣u2 − v2♣),
♣g(t, u1, u2) − g(t, v1, v2)♣ ≤ ℓ2(♣u1 − v1♣ + ♣u2 − v2♣).

Then there exists a unique solution for the problem (1.1)–(1.2) on [0, 1] if

(3.11) ℓ1(∆1 + Λ2) + ℓ2(∆2 + Λ1) < 1,

where ∆1, ∆2, Λ1, Λ2 are given by (3.1)–(3.4).

Proof. Let us consider a closed ball Br∗ = ¶(u, v) ∈ M × M ♣ ∥(u, v)∥M×M ≤ r∗♢ and
show that QBr∗ ⊂ Br∗ , where

r∗ ≥ M1(∆1 + Λ2) + M2(∆2 + Λ1)

1 − ℓ1(∆1 + Λ2) − ℓ2(∆2 + Λ1)
, M1 = sup

t∈[0,1]
♣f(t, 0, 0)♣,

M2 = sup
t∈[0,1]

♣g(t, 0, 0)♣.

For (u, v) ∈ Br, t ∈ [0, 1], using (H3), we get

♣f(t, u(t), v(t))♣ ≤ ♣f(t, u(t), v(t)) − f(t, 0, 0) + f(t, 0, 0)♣
≤ ℓ1 (♣u(t)♣ + ♣v(t)♣) + M1

≤ ℓ1 (∥u∥M + ∥v∥M) + M1(3.12)

≤ ℓ1∥(u, v)∥M×M + M1 ≤ ℓ1r
∗ + M1.

In a similar manner, we can find that

(3.13) ♣g(t, u(t), v(t))♣ ≤ ℓ2r
∗ + M2.

Then, using (3.12) and (3.13), we obtain

∥Q1(u, v)∥M = sup
t∈[0,1]

♣Q1(u, v)(t)♣

≤ sup
t∈[0,1]

{
1

♣a2♣
∫ t

0

∫ s

0
ϕ(t)

(s − θ)r−1

Γ(r)
♣f(θ, u(θ), v(θ))♣dθds

+ ♣λ1(t)♣
∑r

i=1 αi

♣b2♣
∫ ηi

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
♣g(θ, u(θ), v(θ))♣dθds

+
1

♣a2♣
∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
♣f(θ, u(θ), v(θ))♣dθds

]
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+ ♣λ2(t)♣
∑h

j=1 βj

♣a2♣
∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
♣f(θ, u(θ), v(θ))♣dθds

+
1

♣b2♣
∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
♣g(θ, u(θ), v(θ))♣dθds

]}

≤(ℓ1∥(u, v)∥M×M + M1)


1

♣a2♣
∫ t

0
♣(t − s)em(t−s)♣ sr

Γ(r + 1)
ds

+
♣λ1(t)♣

♣a2♣
∫ 1

0
♣(1 − s)em(1−s)♣ sr

Γ(r + 1)
ds

+
♣λ2(t)♣

♣a2♣
h∑

j=1

βj

∫ ξj

0
♣(ξj − s)em(ξj−s)♣ sr

Γ(r + 1)
ds




+ (ℓ2∥(u, v)∥M×M + M2)


♣λ1(t)♣

♣b2♣
ρ∑

i=1

αi

∫ ηi

0
♣(η − s)en(ηi−s)♣ sp

Γ(p + 1)
ds

+
♣λ2(t)♣

♣b2♣
∫ 1

0
♣(1 − s)en(1−s)♣ sp

Γ(p + 1)
ds

]

≤ℓ1∥(u, v)∥M×M + M1

♣a2♣m2Γ(r + 1)



(1 + λ̂1)♣mem − em + 1♣

+λ̂2

h∑

j=1

βjξj
r♣mξje

mξj − emξj + 1♣




+
(ℓ2∥(u, v)∥M×M + M2)

♣b2♣n2Γ(p + 1)



λ̂2♣nen − en + 1♣

+ λ̂1

ρ∑

i=1

αiηi
p♣nηie

nηi − enηi + 1♣




≤(ℓ1r
∗ + M1)∆1 + (ℓ2r

∗ + M2)Λ1.(3.14)

Similarly, we have

(3.15) ∥Q2(u, v)∥M ≤ (ℓ2r
∗ + M2)∆2 + (ℓ1r

∗ + M1)Λ2.

From the inequalities (3.14) and (3.15), we get

∥Q(u, v)∥M×M = ∥Q1(u, v)∥M + ∥Q2(u, v)∥M ≤ r∗,

which implies that QBr∗ ⊂ Br∗ . Now we will prove that the operator Q is a contraction.
For ui, vi ∈ Br∗ , i = 1, 2, and for each t ∈ [0, 1], we have

∥Q1(u1, v1) − Q1(u2, v2)∥M
= sup

t∈[0,1]
♣Q1(u1, v1)(t) − Q1(u2, v2)(t)♣

≤ sup
t∈[0,1]

{
1

♣a2♣

∫ t

0

∫ s

0
ϕ(t)

(s − θ)r−1

Γ(r)
♣f(θ, u1(θ), v1(θ)) − f(θ, u2(θ), v2(θ))♣dθds
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+ ♣λ1(t)♣
∑r

i=1 αi

♣b2♣

∫ ηi

0

∫ s

0
ζ(ηi)

(s − θ)p−1

Γ(p)
♣g(θ, u1(θ), v1(θ)) − g(θ, u2(θ), v2(θ))♣dθds

+
1

♣a2♣

∫ 1

0

∫ s

0
ϕ(1)

(s − θ)r−1

Γ(r)
♣f(θ, u1(θ), v1(θ)) − f(θ, u2(θ), v2(θ))♣dθds

]

+ ♣λ2(t)♣
∑h

j=1 βj

♣a2♣

∫ ξj

0

∫ s

0
ϕ(ξj)

(s − θ)r−1

Γ(r)
♣f(θ, u1(θ), v1(θ)) − f(θ, u2(θ), v2(θ))♣dθds

+
1

♣b2♣

∫ 1

0

∫ s

0
ζ(1)

(s − θ)p−1

Γ(p)
♣g(θ, u1(θ), v1(θ)) − g(θ, u2(θ), v2(θ))♣dθds

]}

≤ ℓ1

♣a2♣

∫ t

0
♣(t − s)em(t−s)♣ sr

Γ(r + 1)
(♣u1 − v1♣ + ♣u2 − v2♣)ds

+ ♣λ1(t)♣


ℓ2
∑ρ

i=1 αi

♣b2♣

∫ ηi

0
♣(ηi − s)en(ηi−s)♣ sp

Γ(p + 1)
(♣u1 − v1♣ + ♣u2 − v2♣)ds

+
1

♣a2♣

∫ 1

0
♣(1 − s)em(1−s)♣ sr

Γ(r + 1)
(♣u1 − v1♣ + ♣u2 − v2♣)ds



+ ♣λ2(t)♣
∑h

j=1 βj

♣a2♣

∫ ξj

0
♣(ξj − s)em(ξj−s)♣ sr

Γ(r + 1)
(♣u1 − v1♣ + ♣u2 − v2♣)ds

+
ℓ2

♣b2♣

∫ 1

0
♣(1 − s)en(1−s)♣ sp

Γ(p + 1)
(♣u1 − v1♣ + ♣u2 − v2♣)ds



≤ ℓ1

♣a2♣m2Γ(r + 1)

{
(1 + λ̂1)♣mem − em + 1♣

+ λ̂2

h∑

j=1

βjξj
r♣mξjemξj − emξj + 1♣

}
(♣u1 − v1♣ + ♣u2 − v2♣)

+
ℓ2

♣b2♣n2Γ(p + 1)

{
λ̂2♣nen − en + 1♣

+ λ̂1

ρ∑

i=1

αiηi
p♣nηie

nηi − enηi + 1♣
}

(♣u1 − v1♣ + ♣u2 − v2♣)

≤(ℓ1∆1 + ℓ2Λ1)(∥u1 − u2∥M + ∥v1 − v2∥M).

Similarly, one can find that

∥Q2(u1, v1) − Q2(u2, v2)∥M = sup
t∈[0,1]

♣Q2(u1, v1)(t) − Q2(u2, v2)(t)♣

≤ (ℓ2∆2 + ℓ1Λ2)(∥u1 − u2∥M + ∥v1 − v2∥M).

Thus,

∥Q(u1, v1) − Q(u2, v2)∥M×M

=∥Q1(u1, v1) − Q1(u2, v2)∥M + ∥Q2(u1, v1) − Q2(u2, v2)∥M

≤ (ℓ1(∆1 + Λ2) + ℓ2(∆2 + Λ1)) (∥u1 − u2∥M + ∥v1 − v2∥M) ,
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which, in view of the assumption (3.11), implies that Q is a contraction. Consequently,
by Banach’s contraction mapping principle, the operator Q has a unique fixed point,
which is indeed the unique solution of the problem (1.1)–(1.2). This completes the
proof. □

Example 3.1. Consider the coupled system of multi-term fractional differential equa-
tions:

(3.16)





(
2 cD12/5 + 4 cD7/5 + 2 cD2/5


u(t) =

1√
t2 + 25

¶cos u(t) + ♣v(t)♣ + tan−1 t♢,

(
cD17/7 + 2 cD10/7 + cD3/7


v(t) =

t2

t + 6

{
♣u(t)♣ +

♣v(t)♣3
1 + ♣v(t)♣3 + sin t

}
,

equipped with boundary conditions

(3.17)

{
u(0) = 0, u′(0) = 0, u(1) = 2v(1/6) + v(1/5) + 2v(1/4),
v(0) = 0, v′(0) = 0, v(1) = 3u(1/2) + u(3/4).

Here, q = 2/5, p = 3/7, η1 = 1/6, η2 = 1/5, η3 = 1/4, ξ1 = 1/2, ξ2 = 3/4, α1 = 2,
α2 = 1, α3 = 2, β1 = 3, β2 = 1, a2

1 − 4a2a0 = 0, b2
1 − 4b2b0 = 0 and

f(t, u(t), v(t)) =
1√

t2 + 25
¶cos u(t) + ♣v(t)♣ + tan−1 t♢

and

g(t, u(t), v(t)) =
t2

t + 6

{
♣u(t)♣ +

♣v(t)♣3
1 + ♣v(t)♣3 + sin t

}
.

Clearly ℓ1 = 1/5 and ℓ2 = 1/6 as

♣f(t, u1(t), v1(t)) − f(t, u2(t), v2(t))♣ ≤ 1

5
¶♣u1(t) − u2(t)♣ + ♣v1(t) − v2(t)♣♢,

♣g(t, u1(t), v1(t)) − g(t, u2(t), v2(t))♣ ≤ 1

6
¶♣u1(t) − u2(t)♣ + ♣v1(t) − v2(t)♣♢.

Using the given data, we find that ∆1 ≈ 0.71336, ∆2 ≈ 1.3058, Λ1 ≈ 0.70297, and
Λ2 ≈ 1.2161. Further

ℓ1(∆1 + Λ2) + ℓ2(∆2 + Λ1) ≈ 0.72069 < 1.

Hence we deduce by Theorem 3.2 that the problem (3.16)–(3.17) has a unique solution
on [0, 1].

4. Conclusions

We have analyzed a fully coupled boundary value problem of nonlinear multi-term
fractional differential equations and nonlocal multi-point boundary conditions under
the assumption that a2

1 = 4a0a2, b2
1 = 4b0b2. Though the tools of fixed point theory

employed in the present analysis are the standard ones, yet their exposition to the
problem at hand enhances the scope of the literature on fractional order boundary
value problems. The cases a2

1 > 4a0a2, b2
1 > 4b0b2 and a2

1 < 4a0a2, b2
1 < 4b0b2 for
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the problem (1.1)–(1.2) can be handled in a manner similar to that of a2
1 = 4a0a2,

b2
1 = 4b0b2.

As a special case, the results for a coupled system of nonlinear multi-term fractional
differential equations equipped with the two-point boundary conditions: u(0) = 0,
u′(0) = 0, u(1) = 0, v(0) = 0, v′(0) = 0, v(1) = 0 follow by taking all αi = 0,
i = 1, . . . , ρ, and βj = 0, j = 1, . . . , h, in the results of this paper.

References

[1] M. S. Abdo and S. K. Panchal, Fractional integro-differential equations involving ζ-Hilfer frac-
tional derivative, Adv. Appl. Math. Mech. 11 (2019), 338Ű359.

[2] R. P. Agarwal, B. Ahmad and A. Alsaedi, Fractional-order differential equations with anti-
periodic boundary conditions: A survey, Bound. Value Probl. (2017), Paper ID 173, 27 pages.

[3] B. Ahmad, A. Alsaedi, D. Hnaien and M. Kirane, On a semi-linear system of nonlocal time and
space reaction diffusion equations with exponential nonlinearities, J. Integral Equations Appl.
30 (2018), 17Ű40.

[4] B. Ahmad and R. Luca, Existence of solutions for a system of fractional differential equations
with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal. 21 (2018), 423Ű441.

[5] B. Ahmad, M. M. Matar and O. M. El-Salmy, Existence of solutions and Ulam stability for
Caputo type sequential fractional differential equations of order α ∈ (2, 3), International Journal
of Nonlinear Analysis and Applications 15 (2017), 86Ű101.

[6] B. Ahmad, S. K. Ntouyas and A. Alsaedi, On a coupled system of fractional differential equations
with coupled nonlocal and integral boundary conditions, Chaos Solitons Fractals 83 (2016), 234Ű
241.

[7] B. Ahmad and S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential
fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput.
266 (2015), 615Ű622.

[8] A. Alsaedi, N. Alghamdi, R. P. Agarwal, S. K. Ntouyas and B. Ahmad, Multi-term fractional-
order boundary-value problems with nonlocal integral boundary conditions, Electron. J. Differen-
tial Equations 87 (2018), 16 pages.

[9] A. A. M. Arafa, S. Z. Rida and M. Khalil, Fractional modeling dynamics of HIV and CD4+
T-cells during primary infection, Nonlinear Biomedical Physics 6(1) (2012), 7 pages.

[10] A. Carvalho and C. M. A. Pinto, A delay fractional order model for the co-infection of malaria
and HIV/AIDS, Int. J. Dyn. Control 5 (2017), 168Ű186.

[11] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[12] J. Henderson, R. Luca and A. Tudorache, On a system of fractional differential equations with

coupled integral boundary conditions, Fract. Calc. Appl. Anal. 18 (2015), 361Ű386.
[13] B. Henry and S. Wearne, Existence of Turing instabilities in a two-species fractional reaction-

diffusion system, SIAM J. Appl. Math. 62 (2002), 870Ű887.
[14] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World ScientiĄc, Singapore,

2011.
[15] R. Hilfer, Threefold introduction to fractional derivatives, in: R. Klages, G. Radons and I. M.

Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim,
2008, 17Ű74.

[16] M. Javidi and B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic
phytoplankton-zooplankton system, Ecological Modelling 318 (2015), 8Ű18.

[17] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differ-
ential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam,
2006.



A COUPLED SYSTEM OF MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS 331

[18] C.-G. Li, M. Kostić and M. Li, Abstract multi-term fractional differential equations, Kragujevac
J. Math. 38 (2014), 51Ű71.

[19] Y. Liu, Boundary value problems of singular multi-term fractional differential equations with
impulse effects, Math. Nachr. 289 (2016), 1526Ű1547.

[20] F. Mainardi, Some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F.
Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Berlin,
1997, 291Ű348.

[21] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticy, World ScientiĄc, Singapore,
2010.

[22] R. L. Magin, Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering
32 (1) (2004), 1Ű104.

[23] T. Matsuzaki and M. Nakagawa, A chaos neuron model with fractional differential equation,
Journal of the Physical Society of Japan 72 (2003), 2678Ű2684.

[24] R. Schumer, D. Benson, M. M. Meerschaert and S. W. Wheatcraft, Eulerian derivative of the
fractional advection-dispersion equation, Journal of Contaminant Hydrology 48 (2001), 69Ű88.

[25] S. Stanek, Periodic problem for two-term fractional differential equations, Fract. Calc. Appl.
Anal. 20 (2017), 662Ű678.

[26] C. Thaiprayoon, S. K. Ntouyas and J. Tariboon, On the nonlocal Katugampola fractional integral
conditions for fractional Langevin equation, Adv. Difference Equ. 2015 (2015), Paper ID 374,
16 pages.

[27] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of
real materials, J. Appl. Mech. 51 (1984), 294Ű298.

[28] G. Wang, B. Ahmad, L. Zhang and R. P. Agarwal, Nonlinear fractional integro-differential
equations on unbounded domains in a Banach space, J. Comput. Appl. Math. 249 (2013),
51Ű56.

[29] J. R. Wang and Y. Zhang, Analysis of fractional order differential coupled systems, Math.
Method. Appl. Sci. 38 (2015), 3322Ű3338.

[30] J. R. Wang, Y. Zhou and M. Feckan, On the nonlocal Cauchy problem for semilinear fractional
order evolution equations, Central European Journal of Mathematics 12 (2014), 911-922.

[31] F. Zhang, G. Chen, C. Li and J. Kurths, Chaos synchronization in fractional differential systems,
Philos. Trans. Roy. Soc. A 371 (2013), 26 pages.

[32] Y. Zhou, Basic Theory of Fractional Differential Equations, World ScientiĄc Publishing Co. Pte.
Ltd., Hackensack, New Jersey, 2014.

1Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group,
Department of Mathematics, Faculty of Science,
King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Email address: bashirahmad

−
qau@yahoo.com

Email address: aalsaedi@hotmail.com

2Department of Mathematics,
Faculty of Science,
University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
Email address: njl-ghamdi@hotmail.com

3Department of Mathematics,
University of Ioannina, 451 10 Ioannina, Greece
Email address: sntouyas@uoi.gr





KRAGUJEVAC JOURNAL

OF MATHEMATICS

About this Journal

The Kragujevac Journal of Mathematics (KJM) is an international journal devoted
to research concerning all aspects of mathematics. The journal’s policy is to motivate
authors to publish original research that represents a significant contribution and is
of broad interest to the fields of pure and applied mathematics. All published papers
are reviewed and final versions are freely available online upon receipt. Volumes are
compiled and published and hard copies are available for purchase. From 2018 the
journal appears in one volume and four issues per annum: in March, June, September
and December. From 2021 the journal appears in one volume and six issues per
annum: in February, April, June, August, October and December.

During the period 1980–1999 (volumes 1–21) the journal appeared under the name
Zbornik radova PrirodnoŰmatematičkog fakulteta Kragujevac (Collection of Scientific
Papers from the Faculty of Science, Kragujevac), after which two separate journals—
the Kragujevac Journal of Mathematics and the Kragujevac Journal of Science—were
formed.

Instructions for Authors

The journal’s acceptance criteria are originality, significance, and clarity of presen-
tation. The submitted contributions must be written in English and be typeset in
TEX or LATEX using the journal’s defined style (please refer to the Information for
Authors section of the journal’s website http://kjm.pmf.kg.ac.rs). Papers should
be submitted using the online system located on the journal’s website by creating
an account and following the submission instructions (the same account allows the
paper’s progress to be monitored). For additional information please contact the
Editorial Board via e-mail (krag_j_math@kg.ac.rs).

http://kjm.pmf.kg.ac.rs
mailto:krag_j_math@kg.ac.rs

	1. Introduction
	2. Riesz Difference Operator of Fractional Order and Sequence Spaces
	3. Schauder Basis
	4. -, - and -duals 
	5. Matrix Transformations
	Conclusion
	Acknowledgements.

	References
	1. Introduction
	2. Shrinkage to Zero
	2.1. Limit of risks ratios
	2.2. Minimaxity

	3. Estimator of Lindley-Type
	3.1. Limit of risks ratios
	3.2. Minimaxity

	4. simulation
	5. Appendix
	References
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Conclusions
	Acknowledgements.

	References
	1. Introduction
	2. Definitions and Notations
	3. Main Results
	Acknowledgements.

	References
	1. introduction
	2. Main Results
	3. Applications
	Acknowledgements.

	References
	1. Introduction
	2. Results
	References
	1. Introduction and Statement
	2. Preliminaries and Main Results
	3. Decay of Solutions
	References
	1. Introduction and Preliminaries
	2. Main Results
	3. Statistical Convergence
	Acknowledgements.

	References
	1. Introduction
	2. The Extraction of Orthogonal Polynomials from Generating Function for Reciprocal of Odd Numbers
	3. The Generalized Averaged Gaussian Formula Q2l+1L
	4. The Generalized Averaged Gaussian Formula Q2l+1S
	5. Truncated Generalized Averaged Gaussian Formulas
	6. Numerical Results
	Acknowledgements.

	References
	1. Introduction and Preliminaries
	2. Main Results
	3. Conclusion
	4. Problems
	References
	1. Introduction
	2. Basic Results
	3. Existence and Uniqueness Results
	4. Conclusions
	References

