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EXISTENCE THEOREMS FOR A COUPLED SYSTEM OF
NONLINEAR MULTI-TERM FRACTIONAL DIFFERENTIAL
EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

BASHIR AHMAD!, AHMED ALSAEDI!, NAJLA ALGHAMDI?!,
AND SOTIRIS K. NTOUYAS?1

ABSTRACT. We discuss the existence and uniqueness of solutions for a coupled
system of nonlinear multi-term fractional differential equations complemented with
coupled nonlocal boundary conditions by applying the methods of modern func-
tional analysis. An example illustrating the uniqueness result is presented. Some
interesting observations are also described.

1. INTRODUCTION

The topic of boundary value problems has been fascinating due to its extensive
applications in applied and technical sciences. In recent years, an overwhelming
interest has been shown in the study of fractional differential equations and inclusions
equipped with a variety of boundary conditions, for instance, see [1,2,25,26,28,30] and
the references cited therein. Coupled systems of fractional-order differential equations
also constitute an important area of investigation in view of occurrence of such systems
in disease models [9,10], chaos [31], ecology [16] and so forth. Some recent theoretical
work on the topic can be found in the articles [3,4,6,7,12,29].

On the other hand, coupled systems involving more than one fractional order
differential operators need to be addressed further to strengthen the hot topic of
boundary value problems. Examples include Bagley-Torvik [27] and Basset [20]
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equations. For some recent results on multi-term (sequential) fractional differential
equations, see [5,8,18,19].

The nonlocal nature of fractional order operators is the key factor in the popularity
of fractional calculus, which has extended the scope of the existing integer-order
models by providing their fractional order counterparts. Examples include fractional
reaction-diffusion systems [13], anomalous diffusion [15], chaotic neuron model [23],
groundwater hydrology [24] and so forth. For more details, we refer the reader to
texts [14,21, 22].

Motivated by recent work on fractional order coupled systems, we introduce and
study a coupled system of multi-term fractional differential equations:

Lyu(t) = f(t,u(t),v(t), 0<r<l,
Lyv(t) = g(t,u(t),v(t)), 0<p<l1,

(1.1)

complemented with nonlocal multi-point coupled boundary conditions:

uw(0) =0, «'(0)=0, wu(l)= iaw(m),
12)
v(0) =0, 2'(0)=0, v(l)= Eﬁju(ﬁj)a ni <&, foralli,j,

where

L" = ag CDT+2 “+ ay C1)T+1 “+ ag CDT, Li = b2 Cl)er2 + bl chJrl + bOCDp’

aq

¢D1 is the Caputo-type fractional derivative of order ¢ = r,p, f,g € C([0, 1] x Rx R, R)
and a;,b;, i = 0,1,2, are real constants such that a? = 4agas, b3 = 4boby with
as # 0 # by. The existence and uniqueness results for the problem (1.1)—(1.2) are
derived via Leray-Schauder alternative and Banach fixed point theorem respectively.

The rest of the paper is arranged as follows. In Section 2, we recall some preliminary
concepts of fractional calculus and present an auxiliary lemma. The main results and
an illustrative are presented in Section 3. The paper concludes with some interesting
observations.

2. BAsIiC RESULTS

We begin this section with some preliminary concepts of fractional calculus [17,32].

Definition 2.1. The Riemann-Liouville fractional integral of order a € R, a > 0, for
a locally integrable real-valued function y on —oo < a <t < b < 400 is defined by

1) = gy [ =9 x (s

where I is the Euler gamma function.
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Definition 2.2. Let y, x™ € L'[a,b] for —0o < a <t < b < +00. The Riemann-
Liouville fractional derivative of x of order a € (m — 1, m|, m € N, is defined as

t
am 1 dm
Do — 7[17(1 — 77/ _ \m—l-a
X () =2 L x () T —a) dim J (t—s) X (s)ds,

while the Caputo fractional derivative x of order o € (m — 1, m], m € N, is defined by
(t—a) (m_1) ; (L=a)™!
1! X (m—-1! |’

Remark 2.1. If x € C™]a, b, then the Caputo fractional derivative D2 of order o € R,
m—1<a<m,meN, is defined as

‘Dgx (t) =Dy |x(t) —x(a) = X (a)

1 t

DR = BN 0) = g [ s (o)

['(m

In our analysis, I* and D® respectively denote Riemann-Liouville fractional integral
and Caputo fractional derivative, with a = 0.

Lemma 2.1 ([17]). For ¢ € C(0,1) N L(0,1) holds:
I“D(t)) = ¢(t) —co—crt — - —cpqt™', t>0,n—1<a<n,
where ¢;, 1 =1,...,n— 1, are arbitrary constants.
Definition 2.3. A pair of functions u,v € C([0, 1], R) satisfying the equations (1.1)
and the boundary conditions (1.2) is called a solution of the problem (1.1)—(1.2),

where it is assumed that u, v possess the Caputo fractional derivative of order r + 2
and p + 2 respectively on (0, 1).

We need the following auxiliary lemma, which concerns the linear variant of problem
(1.1)—(1.2).
Lemma 2.2. Let a? —4asag = 0, b? —4dbyby = 0, as # 0, by # 0 and w, z € C([0, 1], R).
Then the solution (u,v) (in the sense of Definition 2.3) of the system of linear fractional
differential equations

(2.1) {mw@%ﬂwm 0<7r<1,

Lyv(t) =z(t), 0<p<l,
supplemented with the boundary conditions (1.2) is given by
1 st s (s —6)—1
t) =— t)———~—w(0)dbd
u() =, [ [ o0y w()dsds

£ () Fb“ [ et S s oana

_;2/01 /0 p)E =" ;(i);_lw(e)deds]
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(2.2) + ot [“@/5}/ ()" F(r w(0)dods

_bz/o /0 C(l)amz(ﬁ)dﬁdsl
[ [T W_lz(e)deds

+ [ “@/57/ o16) T —u(e)ss
& / / oy (G)dedsl

(23) ‘() [Z“ / " / <<m>(5;(">flz<e>deds

b
e
where

o(k) =(k — s)em(”_s), (k)= (k— s)e”(”_s), k=t1,n and¢;,

and

1

(Q)deds] ,

_ _b t mt __ ,mt 1 n __ ,n 1
o a17 Y )\l(t):(me e+ 1)(ne” —e" + )’
2@2 262 2
Na(t) = (mte™ — ™ 4 1)(n Y0 agme™ — 37 cye™ 4300 O‘i)’
i
(2.4)
1 (t) _ (nte™ —e™ 4 1)(me™ — ™ + 1)
1 - )
i
(t) =P DT B — T 5™ + K By)
H(t) =

I
p=(me™ —e™ +1)(ne" —e" + 1)

p P P h h h
—(TLZ a;me"™ — Zaiem + Zaz)(mz 5j€jem£j — Z 6jem£j + Z ﬁ]) 7& "
i=1 i=1 i=1 j=1 j=1 j=1

Proof. Applying the integral operators I” and I? respectively on the first and second
equations of (2.1) and then using Lemma 2.1, we get

(2.5) (aaD* + a1 D + ag)u(t) = /Ot (t;(sr);_w(s)ds + 1,
(26) (b2D2 + le + bo)U(t) = /Ot (t;(t;))p_l,Z(S)dS + dl,
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where ¢; and d; are arbitrary constants. Using the method of variation of parameters
to solve (2.5) and (2.6), we get

1 t s _ r—1
(2.7)  u(t) = ce™ + cgte™ + — [ (t — 5)e™E) / &ww)dQ +c | ds
as Jo o I'(r)
and
s (s —0)P1

(2.8)  v(t) = doe™ + dyte™ + le /t(t — S)e”(t—S) (/0 )

where m and n are given by (2.4). Using u(0) = 0, «'(0) = 0 and v(0) = 0, v/(0) = 0 in
(2.7) and (2.8) respectively, we find that ¢ = ¢3 = 0 and dy = d3 = 0 and consequently,
we have

(2.9)

u(t) =e, [mtema;nf: - 1] + ;2 [ [t = sjeme ( [ese ;(f};_ w(e)cw) ds] ,
(2.10)

o(t) =ds lntem[;;m“] 1912 V (t — 5)eni= (/Os“;g_lz(e)w) ds].

On the other hand, using the conditions u(1) = >7_; ayv(n;) and v(1) = Z?=1 Biu(&;)
n (2.9) and (2.10), respectively, we get the system:

z(0)do + d1> ds,

(2.11) Ajcy — Bidy = Vi, —DBsci + Agdy = Vs,
where
Alzmem—em—|—1’ AZ:ne”—e”—l—l7
a9m? bon?

S ai(nme™ — e 4 1) Zglzl Bi(m&;emsi — e™si + 1)

B, =

By =

byn? ’ asm? ’
(2 12)
Y 1% /n/ m i))p ' +(6) d&ds——/ / i)) - w(6)dods,
v, —2i=1di 15] /5/ o(65) 9); " w(6)ddds — 52/ / ?)p " 2(0)dods.

Solving the system (2.11), we find that
AV + BiVa ByVi + AV,

T A A, — BB, T AA,— BB,
Substituting the values of ¢; and d; in (2.9) and (2.10) respectively together with the
notations (2.12) leads to the solution (2.2) and (2.3). The converse can be proven by
direct computation. The proof is completed. O
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3. EXISTENCE AND UNIQUENESS RESULTS

Define by M = {u | v € C([0,1],R)} the Banach space endowed with norm ||u|x
= SUPse(pq] |u(t)]. Then the product space (M x M, || - [laxn) is a Banach space
equipped with the norm ||(w, v)||asn = ||ullve + [[v]|n for (u,v) € M x M.

In view of Lemma 2.2, we introduce an operator Q : M x M — M x M as

Qu, v)(t) == (Q(u, v)(t), Q(u, v)(1)),

where
0w )t) = [ [ o) 16, u(0).v(6) b
a0 |5 [ [ L (0.0, o))
oS s o) e asa
h . j s s — r—1
o) |[ZE [ (o) LD 106, u0). 0060 a0

1t ogs (s — @)t
—62/0 /0 C(l)wg(&u((‘)),v(ﬁ))dﬁds]

and
Qo)) =, [ [ <05 al6.u(0).v(6) b
h . i ors S — r—1
*‘ﬁ“(t)lEZf;iﬁgllf / ¢(fj)(l,é2)jTG,u(H),v(G))des
—bt/ol /OSC(l)(SI:(i))pg(@,u(@),v(&))d@ds}
iz i [T [0 G
+m@[®A&AQMF@9@MQW@MWS

—;/01 /08¢(1)<S;<?;_f(e,u(e),vw))deds].

For the sake of brevity, we set the following notations:

(3.1)
1 - M : .
A, = L+ M) |me™ — €™ + 1]+ A 3 Bi&, [méjem™ — ™ +1
C P P R B (1 4+ A1)|me e + 1| + szIEJSJ Imé;e emsi 4+ 1|,
(3.2)

1 P
Ag=—— (147 "1+ i lnme™ — e 41| b
2 “anp+n{<+uome A+ o Y cn e e @
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(3.3)
A . 3‘ X ; p n n
- @ OO n _ n 1 i ; nn, __  nmn; 1 7
1 \bzlnzl“(er 1) { 2|7”L6 e+ |+ 1;0477 ’mye e + ‘}
(3.4)
1 h . .
A = I m _ ,m 1 ~ cr omé&; _ _mé&; 1
* 7 Jagm?T(r + 1) fia|me™ — e + |+”1;BJ§J Im&;e e+ 1] ¢,

At = max [A(B)], Ao = mmax [A2()], = mnax [ ()], iz = mmax |2 (t)].

Our first result, dealing with the existence of solutions for the problem (1.1)-(1.2), is
based on Leray-Schauder alternative.

Lemma 3.1. (Leray-Schauder alternative [11]). Let F : € — & be a completely
continuous operator and that A(F) ={z € € |z =vF(z) for some 0 < v < 1}. Then
either the set A(F) is unbounded or F has at least one fized point.

Theorem 3.1. Assume that
(H,) there exist real constants 0;,7; >0, i = 1,2, and §g > 0, o > 0 such that

| f(t,ur, u2)| < 0o + b1 |ua| + daus)
and
lg(t, ur, ua)| < vo + mlur| +2lue|,  forallu; €R,i=1,2.
(Hy) max {wy,ws} < 1, where
(3.5) wi = 01(A1 +Ao) +71(Ag + Ay),  wa=0(A1 4+ As) +72(Ay + Ay),
Ay, Ay, Ay, Ay are respectively given by (3.1), (3.2), (3.3) and (3.4).
Then the problem (1.1)~(1.2) has at least one solution on [0, 1].

Proof. We first show that the operator Q : M x M — M x M is completely continuous.
The operators Q; and Qs are continuous since the functions f and g are continuous,
and thus the operator Q is continuous. Let 2 C M x M be a bounded set. Then
|f(t,u(t),v(t)] < Ly, |g(t,u(t),v(t))] < Ly for all (u,v) € Q, where Ly and Lo are
positive constants. In consequence for any (u,v) € Q, we get

191, v)|lac = sup_[Q(u, v)(2)]
te[0,1]

< L
lag|m2T(r + 1)

{(1 + A1) |me™ — ™ + 1|
N h
o ) Bi& Im&ie™ — e+ 1
j=1

Lo ~ ~ & _ , }
+ < Nne" —e" + 1|+ A a;n¥|nne™m — e 4+ 1
i [+ g candlo |
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(36) :LlAl + L2A1.
Similarly, it can be shown that
(37) ||Q2(U, U)HM S LQAQ + LlAQ.

From (3.6) and (3.7), we deduce that Q; and Q, are uniformly bounded, and hence
the operator Q is uniformly bounded.

Next, we show that Q is equicontinuous. Let t1,t5 € [0, 1], with ¢; < t5. Then we
have

IQl(u v)(t2) = Qi (u, v)(t)]

= {/ /|¢> ty) — |( d9ds+/tl / 6(ts)] 97« ldeds}

L o _
+\)\1(t2)—>\1(t1)!{ 2%‘10‘ /"/ =2 gas

|a2| / 16(1) deds}

+ Dalt) — Aolt) {” [ [ 1N =2 aoas

I'(r)
\bzl/ / (1) des}

Ly
tT’ o tT‘ t — 1 m(t1—t2) o m(t1—t2) 1
] {< [~ (s — ta)ema—) — gnit=t) 4 1]
+t mt ™ — ™ 1|}
L2 Zz a;1); . nn;
+\)\1(t2)—>\1(t1)’{w(1p+)’ nne"" — " + 1]

+ Ly
|ag|m?2T(r + 1)
£ Dalta) = Maltr) {

Ly
el p 1 1)

independently of (u,v) € 2. Analogously, we have

|me™ — e™ + 1|}

h
12] I/BJ 7

eMEi _ e™ME 4]
‘ | 21—\(7,,_|_1)|| f]e € + |

]ne"—e*l\H—H) as ty—t; — 0,

|QQ(U,7 U)(tg) — Qg(u,v)(t1)| —0 as ty—t; — O,

independently of (u,v) € 2. Hence, the operators Q; and Q, are equicontinuous and
thus the operator Q is equicontinuous. By Arzeld-Ascoli’s theorem, we deduce that
the operator Q is completely continuous.
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Lastly, we consider a set ©(Q) = {(u,v) € M x M | (u,v) = vQ(u,v); 0 <v < 1}
and show that it is bounded. Let (u,v) € ©. Then (u,v) = vQ(u,v). For any ¢ € [0, 1],
we have u(t) = vQ; (u,v)(t), v(t) = vQa(u,v)(t). Thus,

Ju(t)] =[vQu (u, v)(£)] < Qi (u, v)(1)]

<o L o0 S o). oo lasas
+ o) |2 7b21“@/”1/ )= lg(0,ut6). o0 s

L'(p)

o [ o 2 0.u0), <>>|ded5]
+ | A (t) l j= 153/ / () (s—6 1|f(9’u(9)’v(9))|d9d8

Ibz\/ / \ (6, u(0), v (0 ))\déds]

(50 + (51‘U| —+ (52‘U|
= |ag|m?T'(r 4+ 1)

{(1+X1)|mem — ™+ 1

h
Ao > Bi&)ImE e — e + 1l}

j=1

|b2|n?*I'(p + 1) i=1
=(do + 01ful + da|v) A1 + (Y0 + M lul + 1elv])As,
which, on taking the norm for ¢ € [0, 1], yields

R o
(0 + y1[ul + 72v]) {)\g\ne" — "+ 1|4+ A D>l |nae™ — ™ 4 1]}

(3:8)  Mullwe < (do + drllullae + daf[vlla) Ar + (30 + llullae + v2llvlle) Ax

Likewise, we can obtain

(3-9) vl < (vo + mllullae +72llvllve) Az + (30 + G flullae + d2f|v]lae) Az
From (3.8) and (3.9), we find that

[[wllae + [[v]lae <o(A1 + Az) + v0(Ag + Ay)
+ [Jullac (61 (A1 + A2) +71(A2 + A1)
+ [[vlla (92(A1 + Az) +72(A2 + A1)
(3.10) <wo + max {wr, wa } || (u, v)][aexa,
where wg = 0o(A1 + Az) + Y0(A2 + A1) and wy, wy are given by (3.5).

In view of the definition ||(u, v)||nxnm = ||l + [|v]|ac, (3.10) leads to
wo

< .
[[(2; V) [laexn < 1 — max {wy,ws}
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Consequently, the set ©(Q) is bounded. By Lemma 3.1, the operator Q has at least
one fixed point. Therefore, the problem (1.1)—(1.2) has at least one solution on [0, 1],
which finish the proof. O

In the following result, we prove the uniqueness of solutions for the problem at
hand by means of Banach fixed point theorem.

Theorem 3.2. Assume that:
(H3) for allt € [0,1] and u;,v; € R, i = 1,2, there exist positive constants {1 and lo
such that
|f(taU17U2) - f(t7U1,UQ)| < 51(|U1 - U1| + |U2 - U2|)7
|9(t, w1, uz) — g(t,v1,v2)| < Lo(fur — vif + Juz — vel).
Then there ezists a unique solution for the problem (1.1)=(1.2) on [0, 1] if
where Ay, Ay, Ay, Ay are given by (3.1)—(3.4).
Proof. Let us consider a closed ball B« = {(u,v) € M x M | ||(u,v)||axae < 7*} and
show that QB,« C B,+, where
M (A + A My(Ay + A
> 1A+ Ag) + Ma(Agy + Ay) M, = sup |f(t,0,0)],
L —0(Ay+ Ag) — la(Ag + Ay) t€[0,1]

M = sup |g<t7070)|
t€(0,1]

For (u,v) € B,, t € [0, 1], using (Hs), we get
|f(tu(t),v(t)] < |f(tu(t),v(t)) — f(£,0,0) + f(¢,0,0)]
< b (Ju@®)] + [o(t)]) + My
(3.12) < O (lullae + [[v]lae) + M
< || (u, ) || + My < br* + M.

*

In a similar manner, we can find that
(3.13) lg(t,u(t),v(t))] < lor* + M.
Then, using (3.12) and (3.13), we obtain
11 (w; v) |l = sup_[Q (u, v)(2)]
t€(0,1]

o L A w u S
Ste[oﬁ]{\aﬂ/ / o(t) £(0,u(0), v(0))|dod
+ A (1)) [Zz 1%/ / () 5;59);| (0. u(0), v(0))|dds

1

|a2|// z (0, u(0),v(0))|dbds
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+ a(t) l = 15]/ / ()" ) =0 10, (6), 0(0))|dbds
o [ BT .o, <»uw4}

smemmmmr+M1[ [ et
|a2] s ALED ‘r(rsﬂ)d
ﬁ%|2@/) ”M&“rf D

_l_
|)\1 P us . sP

E 7 M / _ n("h s) 7d

+( 2||(U U)HMXM+ 2 [ |b2 z:l 0 |(TI 8)6 |F(p+1) s

[A2(2)] / -5y 5" ]
+ (1 —s9)e" " |——<ds
bl o 1R
G (s v) e + My
lag|m?T(r 4+ 1)

{(1 + A1) |me™ — ™ + 1|

h
Ao Y B [mEjem — e 4 1|}
=1

(£l (1, ) oo + M)
[ban?T(p + 1)

{:\2|ne” —e"+ 1]

P
+ A Y e — e 4 1|}

i=1
(314) §(€17“* + Ml)Al -+ (627’* -+ Mg)Al.
Similarly, we have
(3.15) 190 (1, ) I¢ < (€7 + Ma)Ag + (€1 + My)As.

From the inequalities (3.14) and (3.15), we get
19w, v) [[avexae = [|Q1(w, v) lae + [[Q2(w, v)[|ae < 77,
which implies that OB, C B,«. Now we will prove that the operator Q is a contraction.
For u;,v; € By, 1 = 1,2, and for each ¢ € [0, 1], we have
191 (w1, v1) — Qu(uz, v2)[n

= sup (01 (u,02)(t) ~ Q1 (uz. v2) ()
t€[0,1]
9 r—1
< sup {w [ 605 156,010),010) ~ 70, ua(6), a6 s

te[0,1]
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Ni —1
+ ) [ =10 / / B (0, (0), v1(8)) — g(0, us(6), vs(6))|dOds

S _ r 1
|a2\ / / (1) 5—1f(0,u1(0),v1(0)) —f(9,uz(9),vg(9))|d9d51

+ A2 (t) [ = 153/ /MJ @ O 0, 01(9),01(0)) — (6, ua(6), va(6))|d0ds
(s — P!
|b2|/ / C) =gy l9(0, ur(0), 01(9))—9(9,@(9),@2(9))|d9d5”

)em(t=s) up — v1| + |ug — v2|)ds
< [ 1= geme) (H)(\l 1+ Juz = val)

bad i /m o n(mi—s) sP B B
+ [A1(2)] [’bg‘ ; |(ni — s)e ’F(p+1)(|u1 v1| + [ug — v2|)ds

1 o
= 1— m(l—s) B B p :|
*aat y 10— 9 gy =l o = el

h_ B: &
a0 | ZE2 [ e

(lur — v1] + |ug — va])ds

laz] (7“—i— 1)

S Sp
|b2|/ |(1—s)e™ n(1- | e Jr1)(|ul—1)1|—|-|uz—vg|)ds}

1

SWM{O + A1) |me™ —e™ + 1]

h
+ X2 BiE g e™ — e 4 1}<|u1 — v1] + |ug — )
Jj=1

lo

. X n__n 1
+|bzrn2r<p+1>{ 2fne” =41l

p
+ A1y aimP e — e 1\}(|u1 —v1| + [uz — v2)
=1

<(O Ay 4 L) ([Jur — ual|v + [|vr — vallv)-

Similarly, one can find that

Qo (1, v1) — Qa(ug, v2)|lwe = sup |Qa(ur, v1)(t) — Qa(ug, v2)(t)]

t€[0,1]
< (As + G Az)([lur — ualne + [lor — vaflw)-
Thus,
1Q(u1, v1) — Qluz, v2)|aixar
=[1Q1 (w1, v1) — Qu(ua, v2) e + [[Q2(ur, v1) — Qa(uz, v2)|Ine
< (G(A1+Ag) + 6(As + A1) ([Jur — uaflae + [Jor — valne)
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which, in view of the assumption (3.11), implies that Q is a contraction. Consequently,
by Banach’s contraction mapping principle, the operator Q has a unique fixed point,
which is indeed the unique solution of the problem (1.1)—(1.2). This completes the
proof. O

FExample 3.1. Consider the coupled system of multi-term fractional differential equa-
tions:

(2 epr2/5 4 4¢P/ 49 CD2/5) u(t) = t21+ = {cosu(t) + |v(t)| 4+ tan~' t},
(3.16) 17/7 10/7 3/7 t2 lo(t)]?
D 2D ‘D t) = )+ ———2— +sint
( * * )v(®) t+6{|u()|+1+!v(t)|3+sm}’

equipped with boundary conditions
(3.17) { w(0) =0, «(0)=0, wu(l)=20(1/6)4v(1/5)+ 2v(1/4),
' v(0) =0, 2'(0)=0, wv(1)=23u(1/2)+u(3/4).

Here, q =2/5, p=3/7,m =1/6, 12 =1/5,n3 =1/4, & =1/2, & = 3/4, ag = 2,
OZQZ]_, ()é3:2, 51:3, ﬁgzl,a%—llagaozo, b%—4b260:0and

ft,ut),v(t)) = \/152:_725{008 u(t) + [v(t)| + tan~* ¢}

and

T t+6 + o(t)
Clearly ¢, = 1/5 and ¢, = 1/6 as

[t ua(E), w1 () = f(E, ua(t), va(t))] < ;{Iul(t) —ua(t)] + |vi(t) = va(D)[},

l9(t, ua (t), v1(£)) — g(t, ua(t), va(t))] < é{lul(t) — up(t)] + [0a(t) — 0a(2)[}-

Using the given data, we find that A; ~ 0.71336, Ay ~ 1.3058, A; ~ 0.70297, and
Ay = 1.2161. Further

Hence we deduce by Theorem 3.2 that the problem (3.16)—(3.17) has a unique solution
on [0, 1].

g(t,u(t),v(t)) ! {|u(t)| + 1|U(t)||3 + sin t} .

4. CONCLUSIONS

We have analyzed a fully coupled boundary value problem of nonlinear multi-term
fractional differential equations and nonlocal multi-point boundary conditions under
the assumption that a? = 4agasy, b3 = 4byby. Though the tools of fixed point theory
employed in the present analysis are the standard ones, yet their exposition to the
problem at hand enhances the scope of the literature on fractional order boundary
value problems. The cases a? > 4agas, b3 > 4boby and a3 < 4agay, b3 < 4byby for
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the problem (1.1)—(1.2) can be handled in a manner similar to that of a? = 4agas,
b% - 4b0b2.

As a special case, the results for a coupled system of nonlinear multi-term fractional
differential equations equipped with the two-point boundary conditions: «(0) = 0,
uw'(0) = 0, u(l) = 0, v(0) = 0, v'(0) = 0, v(1) = 0 follow by taking all a; = 0,
t=1,...,p,and §; =0, j =1,...,h, in the results of this paper.
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