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NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM

FRANCISCO MARTÍNEZ1, PSHTIWAN OTHMAN MOHAMMED2,
AND JUAN E. NÁPOLES VALDÉS3

Abstract. In this paper we present an extension of Fractional Laplace Transform in
the framework of the non-conformable local fractional derivative. Its main properties
are studied and it is applied to the resolution of fractional differential equations.

1. Preliminaries

In mathematics, the Laplace transform is an integral transform n, it takes a function
of a real variable t (often time) to a function of a complex variable s (complex
frequency). Laplace transforms are usually restricted to functions of t with t ≥
0, consequently of this restriction is that the Laplace transform of a function is a
holomorphic function of the variable s. As a holomorphic function, the Laplace
transform has a power series representation. This power series expresses a function as
a linear superposition of moments of the function. The Laplace transform is invertible
on a large class of functions. The inverse Laplace transform takes a function of a
complex variable s (often frequency) and yields a function of a real variable t (often
time). Given a simple mathematical or functional description of an input or output
to a system, the Laplace transform provides an alternative functional description that
often simplifies the process of analyzing the behavior of the system, or in synthesizing
a new system based on a set of specifications. So, for example, Laplace transformation
from the time domain to the frequency domain transforms differential equations into
algebraic equations and convolution into multiplication.

Regarding the birth of the fractional calculus, all historians agree on the dating
of the date and how it was produced. This fact took place after a publication of
Leibniz where he introduced the notation of the differential calculus, in particular of

Key words and phrases. Laplace fractional transform, fractional calculus.
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the expression known today as dny

dxn that makes reference to the derivative of order n

of the function and, with n ∈ N. But did it make sense to extend the values of n to
the set of rational, irrational, or complex numbers in that expression?

We know that the fractional derivative of a non-integer function can be conceived
in two branches: global (classical) and local. The former are often defined by means
of integral transforms, Fourier or Mellin, which means in particular that their nature
is not local, has “memory”, in the second case, they are defined locally by a certain
incremental quotients. The first are associated with the emergence of the Fractional
Calculation itself, with the pioneering works of Euler, Laplace, Lacroix, Fourier, Abel,
Liouville,... until the establishment of the classical definitions of Riemann-Liouville
and Caputo. Recent extensions and applications of these notions to various fields can
be found in [2–4, 7, 13, 18, 21, 21]. There are some attempts to extend the classical
notion of Laplace Transform to the non-integer case, we recommend consult [20].

Recently, in [8] Khalil et al. defined a new local fractional derivative called the
conformable fractional derivative, based on the limit definition of the derivative.
Namely, for a function h : [0, ∞) → R, the non-conformable fractional derivative of h

of order α of h at t is defined by

Dα(h)(t) = lim
ϵ→0

h (t + ϵt1−α) − h(t)

ϵ
, α ∈ (0, 1), t > 0.

In [1], Abdeljaward improve this new theory. For instance, definitions of left and
right conformable derivatives and fractional integrals of higher order (i.e., of order
α > 1), Taylor power series, fractional integration by parts formulas and chain rule
are provided by him.

Now, we give the definition of the non-conformable fractional derivative with its
important properties which are useful in order to obtain our main results, which is
explained in the following definition [5].

Definition 1.1. Given a function h : [0, ∞) → R. Then, the non-conformable
fractional derivative Nα

3 (h)(t) of order α of h at t is defined by

Nα
3 (h)(t) = lim

ϵ→0

h (t + ϵt−α) − h(t)

ϵ
, α ∈ (0, 1), t > 0.

If h is α-differentiable in some (0, α), α > 0, limt→0+ h(α)(t) exist, then define

h(α)(0) = lim
t→0+

h(α)(t).

Remark 1.1. Additionally, note that if h is differentiable, then

Nα
3 (h)(t) = t−αh′(t), where h′(t) = lim

ϵ→0

h (t + ϵ) − h(t)

ϵ
.

We can write h(α)(t) for Dα(h)(t) or dα

dαt
(h(t)) to denote the non-conformable frac-

tional derivatives of h of order α at t. In addition, if the non-conformable fractional
derivative Nα

3 of h of order α exists, then we simply say h is N -differentiable.
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In [5, 14], we can see that the chain rule is valid for non-conformable fractional
derivatives.

Theorem 1.1. Let α ∈ (0, 1], g a N -differentiable function at t > 0, f be differentiable

in the range of g(t). Then

Nα
3 (f ◦ g)(t) = f ′(g(t))Nα

3 (g(t)).

Proof. We prove the result following a standard limit-approach. First case, if the
function g is constant in a neighborhood of a > 0 then Nα

3 (f ◦ g)(t) = 0. If g is not a
constant in a neighborhood of a > 0 we can find and ε0 > 0 such that g(x1) ̸= g(x2)
for any x1, x2 ∈ (a− t0, a+ t0). Now, since g is continuous at a, for ε sufficiently small,
we have

Nα
3 (f ◦ g)(a) =lim

ε→0

fg((t + εa−α)) − f(g(a))

ε

=lim
ε→0

f(g(a + εa−α)) − f(g(a))

g(a + εa−α) − g(a)

g(a + εa−α) − g(a)

ε

=lim
ε→0

f(g(a + εa−α)) − f(g(a))

g(a + εa−α) − g(a)
lim
ε→0

g(a + εa−α) − g(a)

ε

=lim
k→0

f(g(a + εa−α)) − f(g(a))

g(a + εa−α) − g(a)
lim
ε→0

g(a + εa−α) − g(a)

ε
.

Making ε1 = g(a + εa−α) − g(a) in the first factor we have

lim
ε→0

f(g(a + εa−α)) − f(g(a))

g(a + εa−α) − g(a)
= lim

ε1→0

f(g(a) + ε1) − f(g(a))

ε1

,

and from here

Nα
3 (f ◦ g)(a) = lim

ε1→0

f(g(a) + ε1) − f(g(a))

ε1

lim
ε→0

g(a + εa−α) − g(a)

ε

=f ′(g(a))Nα
3 g(a). □

The following function will play an important role in our work.

Definition 1.2. Let α ∈ (0, 1) and c a real number. We define the fractional
exponential in the following way

En3
α (c, t) = exp



c
tα+1

α + 1



.

Following the ideas presented in [5, 14] we can easily prove the next result.

Theorem 1.2. Let α ∈ (0, 1] and h, g be α-differentiable at a point t > 0. Then

(a) Nα
3 (uf + vg) = uNα

3 (h) + vNα
3 (g) for all u, v ∈ R;

(b) Nα
3 (hg) = Nα

3 (g) + gNα
3 (h);

(c) Nα
3



h
g



=
hNα

3 (g)−gNα

3 (h)

g2 ;

(d) Nα
3 (c) = 0 for all constant function h(t) = c;
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(e) Nα
3 (1) = 0;

(f) Nα
3



1
1+α

t1+α


= 1;

(g) Nα
3 (En3

α (c, t)) = cEn3
α (c, t);

(h) Nα
3



sin


c t1+α

1+α



= c cos


c t1+α

1+α



;

(i) Nα
3



cos


c t1+α

1+α



= −c sin


c t1+α

1+α



.

Proof. (a) Let H(t) = (af + bg)(t). Then Nα
3 H(t) = lim

ε→0

H(t+εt−α)−H(t)
ε

and from this

we have the desired result.
(b) From definition we have

Nα
3 (fg)(t) =lim

ε→0

f(t + εt−α)g(t + εt−α) − f(t)g(t)

ε

=lim
ε→0

f(t + εt−α)g(t + εt−α) − f(t)g(t + εt−α) + f(t)g(t + εt−α) − f(t)g(t)

ε

=lim
ε→0

(f(t + εt−α) − f(t)) g(t + εt−α)

ε
+ lim

ε→0

(g(t + εt−α) − g(t)) f(t)

ε
=fNα

3 (g)(t) + gNα
3 (f)(t).

(c) In a similar way to the previous one we have

Nα
3



f

g



(t) = lim
ε→0

f(t+εt−α)
g(t+εt−α)

− f(t)
g(t)

ε
.

But

f(t + εt−α)

g(t + εt−α)
− f(t)

g(t)
=

f(t + εt−α)

g(t + εt−α)
− f(t)

g(t)

g(t + εt−α)

g(t + εt−α)

=
f(t + εt−α)g(t) − f(t)g(t + εt−α)

g(t)g(t + εt−α)

=
f(t + εt−α)g(t) − f(t)g(t + εt−α) − f(t)g(t) + f(t)g(t)

g(t)g(t + εt−α)

=
(f(t + εt−α) − f(t)) g(t) − (g(t + εt−α) − g(t)) f(t)

g(t)g(t + εt−α)
.

From this last expression we obtain the expected result.
(d) Easily follows from definition.
(e) Is a particular case of the previous one.
(f) From Remark 1.1 we have

Nα
3



1

1 + α
t1+α



= t−α 1

1 + α
((1 + α)tα) = 1.

g) From Remark 1.1 and the chain rule we have

Nα
3 (En3

α (c, t)) =Nα
3



exp



c
tα+1

α + 1

]

= t−α



exp



c
tα+1

α + 1

]

c
(α + 1)tα

(α + 1)


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=cEn3
α (c, t).

To prove cases (h) and (i) it is sufficient to proceed as in the previous case, taking
into account the Remark 1.1 and using the chain rule. □

Now, we give the definition of non-conformable fractional integral.

Definition 1.3. Let α ∈ (0, 1] and 0 ≤ u ≤ v. We say that a function h : [u, v] → R

is α-fractional integrable on [u, v], if the integral

N3Jα
u h(x) =

∫ x

u

h(t)

t−α
dt

exists and is finite.

The following statement is analogous to the one known from the ordinary calculus
(see [15]).

Theorem 1.3. Let f be N -differentiable function in (t0, ∞) with α ∈ (0, 1]. Then for

all t > t0 we have

a) if f is differentiable, then N3Jα
t0

(Nα
3 f(t)) = f(t) − f(t0);

b) Nα
3



N3Jα
t0

f(t)


= f(t).

Proof. a) From definition we have

N3Jα
t0

(Nα
3 f(t)) =

∫ t

t0

Nα
3 f(s)

s−α
ds =

∫ t

t0

f ′(s)s−α

s−α
ds = f(t) − f(t0).

b) Analogously we have

Nα
3



N3Jα
t0

f(t)


= t−α d

dt



∫ t

t0

f(s)

s−α
ds

]

= f(t). □

An important property, and necessary, in our work is that established in the follow-
ing result.

Theorem 1.4 (Integration by parts). Let functions u, v be N -differentiable functions

in (t0, ∞), with α ∈ (0, 1]. Then for all t > t0 we have

N3Jα
t0

((uNα
3 v)(t)) = [uv(t) − uv(t0)] −N3 Jα

t0
((vNα

3 u)(t)) .

Proof. It is sufficient to use Theorem 1.2 and Theorem 1.3. □

In short time, many studies about theory and applications of the fractional differ-
ential equations which based on these new fractional derivative definitions [6, 11, 15,
16,19].

In this paper we establish the first results to formalize a new version of a Laplace
transform, in this case non-conformable, which will allow its application to a wide
class of fractional differential equations. In the conformable case, there are some
attempts that can be consulted in [6, 9–12,19].
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2. Results

Definition 2.1 (Exponential order). A function f is said to be of generalized ex-
ponential order if there exist constants M and a such that ♣f(t)♣ ≤ MEn3

α (a, t) for
sufficiently large t.

We are now in a position to define the non-conformable fractional Laplace transform.

Definition 2.2. Let α ∈ (0, 1) and c a real number. Let f be a real function defined
for t ≥ 0 and consider s ∈ C, if the integral

N3Jα
0 En3

α (−s, t)f(t)(+∞) =
∫ +∞

0
En3

α (−s, t)f(t)dαt =
∫ +∞

0

En3
α (−s, t)f(t)

t−α
dt

converge for the given value of s, you can define the function F given by the expression

(2.1) F (s) =N3 Jα
0 En3

α (−s, t)f(t)(+∞),

and we will write F = LN(f).

To the operator LN we will call it the N -transformed of Laplace and we will say
that F is the N -transformed of f . In turn, f is the N -inverse transform function of F

and we will write it as f = L
−1
N ¶F♢, where L

−1
N is the N-transformed inverse Laplace

operator.
As in the classic case, we must impose conditions to (2.1), so that the previous

definition makes sense. If f satisfies the following two conditions:

(a) f is a piecewise continuous in the interval (0, T ] for any T ∈ (0, +∞);
(b) f is of generalized exponential order; that is, there are positive constants M

and a, satisfying Definition 2.1 with Re (a − c) < 0 and ♣f(t)♣ ≤ MEn3
α (a, t)

for all t and α ∈ (0, 1].

Then the N -transformed of Laplace F (s) of f exists for s > a. In effect, since
f is of generalized exponential order, there exists constants T > 0, K > 0 and
a ∈ R such that ♣f(t)♣ ≤ KEn3

α (a, t) for all t ≥ T and α ∈ (0, 1]. Now we write
I =N3 Jα

0 En3
α (−s, t)f(t)(+∞) =N3 Jα

0 En3
α (−s, t)f(t)(T )+N3 Jα

T En3
α (−s, t)f(t)(+∞) =

I1 + I2. Since f is a piecewise continuous, I1 exists. For the second integral I1, we
note that for t ≥ T we have ♣En3

α (−s, t)f(t)♣ ≤ KEn3
α (−(s − a), t). Thus,

N3Jα
T En3

α (−s, t)f(t)(+∞) ≤ KN3Jα
T En3

α (−(s − a), t)(+∞) =
K

s − a
, s > a.

Since the integral I2 converges absolutely for s > a, I2 converges for s > a. Thus,
both I1 and I2 exist and hence I exists for s > a. Then we have that f is an
N -transformable function.

Theorem 2.1. Let α ∈ (0, 1]. So, we have

(a) LN(1) = 1
s
, from here we have LN(c) = cLN(1) for any c ∈ R;

(b) LN(tb) =
(1+α)

b
1+α Γ(1+ b

1+α)

s
1+ b

1+α

, where the gamma function Γ is defined by Γ(a, x) =
∫

∞

x ta−1e−tdt, Γ(a, 0) := Γ(a) and b > −1;
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(c) LN(En3
α (c, t)) = 1

s−c
, c any real number and s − c > 0;

(d) LN(f(t)En3
α (c, t) = F (s − c), with LN(f(t)) = F (s), c any real number and

s − c > 0;

(e) LN(sin


c t1+α

1+α



= c
s2+c2 ;

(f) LN(cos


c t1+α

1+α



= s
s2+c2 ;

(g) LN(sinh


c t1+α

1+α



= c
s2−c2 ;

(h) LN(cosh


c t1+α

1+α



= s
s2−c2 .

Proof. (a) From definition directly.
(b) Through a change of variables we have

N3Jα
0 En3

α (−s, t)tb(+∞) =
(1 + α)

b

1+α

s1+ b

1+α

N3Jα
0 En3

α (−u)u
b

1+α (+∞),

where the desired result is obtained.
(c) Consider f(t) = En3

α (c, t), with c ∈ R. Then

N3Jα
0 En3

α (−s, t)En3
α (c, t)(+∞) =N3 Jα

0 En3
α (−(s − c), t)(+∞) =

1

s − c
.

(d) Suppose LNf(t) = F (s) for s > k. So, we have

N3Jα
0 En3

α (−s, t)En3
α (c, t)f(t)(+∞) =N3Jα

0 En3
α (−(s − c), t)f(t)(+∞)

=F (s − c), s − c > k.

(e) Using N3JαEn3
α (b, t) sin



a t1+α

1+α



= E
n3
α (b,t)
a2+b2

{

b sin


a t1+α

1+α



− a cos


a t1+α

1+α

}

we ob-

tain the expected result.
(f) Similar to previous one, using

N3JαEn3
α (b, t) cos



a
t1+α

1 + α



=
En3

α (b, t)

a2 + b2

{

b cos



a
t1+α

1 + α



+ a sin



a
t1+α

1 + α

}

.

(g) As LN(sinh


c t1+α

1+α



) = 1
2

¶LNEn3
α (c, t) − LNEn3

α (−c, t)♢ it is easy to get the

required conclusion.

(h) From LN(cosh


c t1+α

1+α



) = 1
2

¶LNEn3
α (c, t) + LNEn3

α (−c, t)♢ it is obtained di-

rectly. □

Anallogously, the following propositions can be proved from the definition of N -
transformed and the non-conformable integral.

Proposition 2.1. If the functions f and g are transformable, then there is the

transform of the sum and is equal to the sum of the transforms, that is

LN(f + g) = LN(f) + LN(g).
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Proposition 2.2. If the function f is transformable and λ is a real number, then

there is the transform of product of λ by f and is equal to product of λ by the transform

of f , that is

LN(λf) = λLN(f).

Remark 2.1. Taking into account the two previous propositions, we say that LN is a
linear operator.

Proposition 2.3. If f is a transformable function, then so is its N-derivative and

you have

(2.2) LN(Nα
3 f) = sLN(f) − f(0).

Proof. Already LN(Nα
3 f) exists, because f is of non-conformable exponential order

and continuous. On an interval [a, b] where Nα
3 f is continuous, integrating by parts

in (2.2), gives
∫ b

a

EN3
α (−s, t)Nα

3 f(t)

t−α
dt=f(b)EN3

α (−s, b)−f(a)EN3
α (−s, a)+s

∫ b

a

EN3
α (−s, t)Nα

3 f(t)

t−α
dt.

On any interval [0, K] there are finitely many intervals [a, b] on each of which Nα
3 f

is continuous. Add above equality across these finitely many intervals [a, b]. The
boundary values on adjacent intervals match and the integrals add to give
∫ K

0

EN3
α (−s, t)Nα

3 f(t)

t−α
dt = f(K)EN3

α (−s, b) − f(0) + s

∫ K

0

EN3
α (−s, t)Nα

3 f(t)

t−α
dt.

Taking the limit K → +∞ across this equality, we obtain the desired result. □

Analogously we have the following.

Proposition 2.4. If the k consecutive derivatives Nα
3 (Nα

3 (· · · (Nα
3 f))) are N -transfo-

rmable, then we have

LN [Nα
3 (Nα

3 (· · · (Nα
3 f)))]

=sk
LN(f) − sk−1f(0)−sk−2Nα

3 f(0) − sk−3Nα
3 (Nα

3 f(0)) −· · ·− Nα
3 (Nα

3 (· · ·(Nα
3 f(0)))).

Proposition 2.5. Let g be of non-conformable exponential order and continuous for

t ≥ 0. Then

LN



∫ x

0

g(x)

x−α
dx



=
1

s
LN ¶g(t)♢ .

Proof. Let f(t) =


∫ t
0

g(x)
x−α dx



. Then f is of exponential order and continuous then

we have LN



∫ t
0

g(x)
x−α dx



= LN by definition and LN = 1
s
L (Nα

3 f(t)) because f(0) = 0.

From here we reach the conclusion without difficulty. □

The following result establishes the relationship between the classic Laplace Trans-
form and the N -transform defined above.
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Theorem 2.2. Let α ∈ (0, 1) and f be a N-transformable function, then we have

LN(f) = L
[

f


((1 + α)z)
1

1+α

]

,

where L is the classical Laplace transform defined by L(g) =
∫+∞

0 e−stg(t)dt.

Proof. Simply make the change of the variables z = t1+α

1+α
. □

One of the most important results of the classic Laplace transform is the convolution
product of two L-transformable functions, we are already in a position to provide an
analogous result for the N -transform defined in (2.1).

Theorem 2.3. Let α ∈ (0, 1] and f, g : [0, +∞] → R be real functions. If Fα(s) =
LN [f (t1+α)] (s) and Gα(s) = LN [g (t)] (s), then the next equality is satisfied

LN(f ∗ g)(s) = Fα(s)Gα(s),

where

(f ∗ g)(t) =
∫ t

0

[

f


t1+α − τ 1+α
]

g(τ)dατ .

Proof. It is sufficient to change the variables u1+α = t1+α − τ 1+α and apply the
properties of the LN operator. □

2.1. Existence of non-conformable Laplace transform. In this subsection, the
bounded and existence of non-conformable Laplace transform are presented.

Theorem 2.4. Let f be piecewise continuous on [0, ∞) and non-conformable expo-

nentially bounded, then

lim
s→∞

Fα(s) = 0,

where Fα(s) = Lα[f(t)](s).

Proof. Since f is generalized order exponential, there exist t0, M1, c such that ♣f(t)♣ ≤
M1E

n3
α (c, t) for t ≥ t0. Also, f is piecewise continuous on [0, t0] and hence f is bounded,

so there exists M2 such that ♣f(t)♣ ≤ M2 for t ∈ [0, t0]. Choosing M = max¶M1, M2♢,
we have ♣f(t)♣ ≤ MEn3

α (c, t) for t ≥ 0. Now, we have‘
∣

∣

∣

∣

∫ τ

0
En3

α (−s, t)f(t)dαt

∣

∣

∣

∣

≤
∫ τ

0
♣En3

α (−s, t)f(t)♣ dαt

≤ M

∫ τ

0
En3

α (−s + c, t)dαt

=
M

s − c
− En3

α (−s + c, t)

s − c
.

This gives

lim
τ→∞

∣

∣

∣

∣

∫ τ

0
En3

α (−s, t)f(t)dαt

∣

∣

∣

∣

≤ M

s − c
.

This completes the proof. □
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3. Examples and Applications

Example 3.1. Consider the non-conformable differential equation:

Nα
3 x(t) = λx(t), x(0) = x0, α ∈ (0, 1].(3.1)

Clearly, if α = 1 the equation above is just one of the simplest classical ordinary
differential equations which is defined by the hypothesis that the rate of growth of
a given function x(t) is proportional to the current value (e.g. Maltius’s population
model), i.e., x′(t) = λx(t), x(0) = x0 the exact solution of this is x(t) = x0e

λt.
Applying the non-conformable Laplace Transform to both sides of equation (3.1),

we get

LN (Nα
3 x(t)) =λLN (x(t)) ,

s Xα(s) − x0 =λXα(s).

Simplifying this we get

Xα(s) =
x0

s + 1
.(3.2)

Taking the inverse non-conformable Laplace transform to (3.2), we get

x(t) = x0E
N3
α (−1, t) = − x0

α + 1
tα+1.

The solution of (3.1), obtained from non-conformable Laplace transformation method,
are shown in Figure 1 for different values of α.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

=0.25

=0.50

=0.75

=1.00

Figure 1. Non-conformable Laplace solution of (3.1) for different val-
ues of α.

Example 3.2. Consider the non-conformable fractional Bertalanffy-logistic differential
equation

(3.3) Nα
3 x(t) = x

2
3 (t) − x(t), x(0) = x0, α ∈ (0, 1).
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The solution of the classic Bertalanffy-logistic differential equation x′(t) = x
2
3 (t)−x(t),

x(0) = x0 is x(t) =


1 +


x
2
3
0 − 1



e−
t

3

3

. By using the change of variable z = 3x
1
3 in

(3.3), we find

(3.4) Nα
3 z(t) = 1 − 2

3
z(t), z0 = 3x

1
3
0 .

Applying the non-conformable Laplace transform L to both sides of equation (3.4)
we obtain

LN(z(t)) =
3

s
+

z0 − 3

s + 1
3

.

Finally, applying the inverse Laplace transform we have the solution of (3.3) in the

form x(t) =


1 +


x
2
3
0 − 1



e
−

t
1+α

3(1+α)

3

.

With α = 0.25, 0.50, 0.75, 1.00, the non-conformable Laplace transformation so-
lution of (3.3) are shown in Figures 2 and 3 for x0 = 2 and x0 = 4, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

=0.25

=0.50

=0.75

=1.00

x
0
=2

Figure 2. Non-conformable Laplace solution of (3.2) for x0 = 2 and
different values of α.

Example 3.3. Consider the non-conformable fractional differential equation

(3.5) Nα
3 (Nα

3 x(t)) + cx(t) = 0, α ∈ (0, 1],

with the initial conditions x(0) = x0, Nα
3 x(0) = 0. Clearly, if α = 1 the previous differ-

ential equation approximates the characterization of small oscillations of a pendulum,
i.e., x′′(t) + cx(t) = 0, x(0) = x0, x′(0) = 0, where c = g

L
, with g the gravity acceler-

ation and L the length of the pendulum rod. The exact solution to this problem is

x(t) = x0 cos
√

ct = x0 cos
√

g

L
t. Applying the non-conformable Laplace transform to
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Figure 3. Non-conformable Laplace solution of (3.2) for x0 = 4 and
different values of α.

the both hand sides of (3.5), we get (s2 +c)X(s)−sx0 = 0, thus X(s) = sx0

(s2+c)
. Taking

the inverse non-conformable Laplace transform we obtain x(t) = x0 cos
√

g

L
tα+1

α+1



.

Example 3.4. Now consider the circuit consisting of a voltage source v(t) in series
with a resistor (R), a capacitor (C) and an inductor (L), as well as a switch that
can be in the open or closed position. The circuit equation in the time domain is
Rx(t) + 1

c

∫ t
0 x(u)du + vC(0) + Lx′(t) = v(t), we assume that x(0) = 0 (i.e., the switch

is open until t = 0, allowing the capacitor to maintain its initial condition vC(t)
before that moment) and v(t) = A. The corresponding non-conformable fractional
differential equation is

Rx(t) +
1

c NJα
0 (x)(t) + vC(0) + LNα

3 x(t) = A, α ∈ (0, 1].

Applying the non-conformable Laplace transform to both sides of above equation,
we get X(s) = A−vC(0)

L(s2+ R

L
s+ 1

LC
)
. The poles of the characteristic equation can be obtained

as s = − R
2L

± i

√

1
LC

−


R
2C

2
= −σ ± iw assuming the radicand is positive we have

X(s) = A−vC(0)

L((s+σ)2+w2)
. After taking inverse N -transform and reorder you get

x(t) =
A − vC(0)

wL
EN3

α (−σ, t) sin



w
tα+1

α + 1



.

4. Epilogue

The fundamental goal of this work has been to generalize the main theorems of the
classical Laplace transform into the non-conformable Laplace transform. The goal
has been achieved, whereby the non-conformable derivative definition has been used
to construct some of these theorems and relations. We calculate the non-conformable



NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM 353

Laplace transform from some elementary functions and establish the non-conformable
version of the transform of the successive derivative, the integral of a function and the
convolution of the fractional functions. In addition, the bounded and the existence
of the non-conformable Laplace transform are presented. The findings of this study
indicate that the results obtained in the fractional case are adjusted to the results
obtained in the ordinary case. Finally, we show the application of the N -transform
to the resolution of fractional differential equations.
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AI-STATISTICAL APPROXIMATION OF CONTINUOUS

FUNCTIONS BY SEQUENCE OF CONVOLUTION OPERATORS

SUDIPTA DUTTA1 AND RIMA GHOSH2

Abstract. In this paper, following the concept of AI-statistical convergence for real
sequences introduced by Savas et al. [22], we deal with Korovkin type approximation
theory for a sequence of positive convolution operators deĄned on C[a, b], the space
of all real valued continuous functions on [a, b], in the line of Duman [6]. In the
Section 3, we study the rate of AI-statistical convergence.

1. Introduction and Background

Throughout the paper N will denote the set of all positive integers and C[a, b]
denotes the space of all real valued continuous functions deĄned on [a, b], endowed
with the supremum norm ♣♣f ♣♣ = supx∈[a,b] ♣f(x)♣ for f ∈ C[a, b]. For a sequence
¶Tn♢n∈N of positive linear operators on C(X), the space of real valued continuous
functions on a compact subset X of real numbers, Korovkin [14] Ąrst established the
necessary and sufficient conditions for the uniform convergence of ¶Tn(f)♢n∈N to a
function f by using the test functions e1 = 1, e2 = x, e3 = x2 (see [1]). The study of
the Korovkin type approximation theory has a long history and is a well-established
area of research (see [4, 5, 7Ű11]).

Our primary interest, in this paper is to obtain a general Korovkin type approxi-
mation theorem for a sequence of positive convolution operators deĄned on C[a, b], in
AI-statistical sense. In the section 3, we study the rate of AI-statistical convergence.

The concept of statistical convergence of a sequence of real numbers was Ąrst
introduced by Fast [12]. This is a generalization of usual convergence. Further investi-
gations started in this area after the works of Šalát [19] and Fridy [13]. Consequently,

Key words and phrases. Ideal, AI-statistical convergence, positive linear operator, convolution
operator, Korovkin type approximation theorem, rate of convergence.
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the notion of I-convergence of real sequences was introduced by Kostyrko et al. [17].
On the other hand statistical convergence was generalized to A-statistical convergence
by Kolk ([15, 16]). Later a lot of works have been done on matrix summability and
A-statistical convergence (see [2, 3, 15, 16, 18, 20]). In particular, in [21, 22] the very
general notion of AI-statistical convergence was introduced.

Recall that a family I ⊂ 2Y of subsets of a nonempty set Y is said to be an ideal
in Y if (i) A,B ∈ I implies A ∪ B ∈ I; (ii) A ∈ I, B ⊂ A implies B ∈ I, while an
admissible ideal I of Y further satisĄes ¶x♢ ∈ I for each x ∈ Y . If I is a non-trivial
proper ideal in Y (i.e., Y /∈ I, I ≠ ¶∅♢) then the family of sets F (I) = ¶M ⊂ Y : there
exists A ∈ I : M = Y \ A♢ is a Ąlter in Y . It is called the Ąlter associated with the
ideal I. The real number sequence ¶xk♢k∈N

is said to be I-convergent to L provided
that for every ε > 0, the set ¶k ∈ N : ♣xk − L♣ ≥ ε♢ ∈ I.

If ¶xk♢k∈N
is a sequence of real numbers and A = (ank) is an inĄnite matrix, then

Ax is the sequence whose n-th term is given by

An(x) =
∞
∑

k=1

ankxk.

We say that x is A-summable to L if limn→∞ An(x) = L. A matrix A is called regular
if A ∈ (c, c) and limk→∞ Ak (x) = limk→∞xk for all x = ¶xk♢k∈N ∈ c, when c, as usual,
stands for the set of all convergent sequences. It is well-known that the necessary and
sufficient conditions for A to be regular are

I) ♣♣A♣♣ = sup
n

∑

k

♣ank♣ < ∞;

II) lim
n
ank = 0, for each k;

III) lim
n

∑

k

ank = 1.

For a non-negative regular matrix A = (ank) following [15], a set K is said to have
A-density if δA(K) = limn

∑

k∈K ank exists.
The real number sequence ¶xk♢k∈N

is A-statistically convergent to L provided that
for every ε > 0, the set K(ε) = ¶k ∈ N : ♣xk − L♣ ≥ ε♢ has A-density zero (see [15]).
Throughout the paper I will denote the non-trivial admissible ideal on N.

2. AI-Statistical Approximation for a Sequence of Convolution
Operators

We Ąrst recall the deĄnition.

Definition 2.1 ([21, 22]). Let A = (ank) be a non-negative regular matrix. For an
ideal I of N, a sequence ¶xn♢n∈N is said to be AI-statistically convergent to L if for
any ε > 0 and δ > 0







n ∈ N :
∑

k∈K(ε)

ank ≥ δ







∈ I

where K(ε) = ¶k ∈ N : ♣xk − L♣ ≥ ε♢. In this case we write AI-st- limn xn = L.
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Note that for I = Ifin, the ideal of all Ąnite subsets of N, AI-statistical convergence
becomes A-statistical convergence [15].

We consider the Banach space C[a, b] endowed with the supremum norm ♣♣f ♣♣ =
supx∈[a,b] ♣f(x)♣ for f ∈ C[a, b]. Let L be a positive linear operator. Then L(f) ≥ 0
for any positive function f. Also, we denote the value of L(f) at a point x ∈ [a, b] by
L(f ;x).

Theorem 2.1. Let ¶Ln♢n∈N be a sequence of positive linear operators from C[a, b]
into C[a, b]. If AI-st- limn ∥Ln(fi) − fi∥ = 0, with fi = ti, i = 0, 1, 2, then for all

f ∈ C[a, b] we have AI-st- limn ∥Ln(f) − f∥ = 0.

Proof. Our objective is to show that for given ε > 0 there exist constants C0, C1, C2

(depending on ε > 0) such that

∥Ln(f) − f∥ ≤ ε+ C2∥Ln(f2) − f2∥ + C1∥Ln(f1) − f1∥ + C0∥Ln(f0) − f0∥.
If this is done then our hypothesis implies that for ε > 0, δ > 0







n ∈ N :
∑

k∈K(ε)

ank ≥ δ







∈ I,

where K(ε) = ¶k ∈ N : ∥Lk(f) − f∥ ≥ ε♢.
To this end, start by observing that for each x ∈ [a, b] the function 0 ≤ Ψ ∈ C[a, b]

deĄned by Ψ(t) = (t− x)2. Since each Ln is positive, Ln(Ψ;x) is a positive function.
In particular, we have

0 ≤ Ln(Ψ;x) =Ln(t2;x) − 2xLn(t;x) + x2Ln(1;x)

=(Ln(t2;x) − t2(x)) − 2x(Ln(t;x) − t(x)) + x2(Ln(1;x) − 1(x))

≤∥Ln(t2) − t2∥ + 2b∥Ln(t) − t∥ + b2∥Ln(1) − 1∥,
for each x ∈ [a, b]. Let M = ∥f∥. Since f is bounded on the whole real axis, we can
write

♣f(t) − f(x)♣ < 2M, −∞ < t, x < ∞.

Also, since f is continuous on [a, b], we have

♣f(t) − f(x)♣ < ε,

for all t, x satisfying ♣t− x♣ ≤ δ.
On the other hand, if ♣t− x♣ ≥ δ, then it follows that

−2M
δ2

(t− x)2 ≤ −2M ≤ f(t) − f(x) ≤ 2M ≤ 2M
δ2

(t− x)2.

Therefore, for all t ∈ (−∞,∞) and all x ∈ [a, b] we get

♣f(t) − f(x)♣ < ε+
2M
δ2

(t− x)2,

where δ is a Ąxed real number.
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Since each Ln is positive, we have

−εLn(f0;x) − 2M
δ2

Ln(Ψ;x) ≤Ln(f(t);x) − f(x)Ln(f0;x)

≤εLn(f0;x) +
2M
δ2

Ln(Ψ;x).

Next, let K = 2M
δ2 and we get

♣Ln(f(t);x) − f(x)Ln(f0;x)♣ ≤εLn(f0;x) +
2M
δ2

Ln(Ψ;x)

=ε+ ε[Ln(f0;x) − f0(x)] +KLn(Ψ;x)

≤ε+ ε♣Ln(f0;x) − f0(x)♣ +KLn(Ψ;x).

In particular,

♣Ln(f(t);x) − f(x)♣ ≤♣Ln(f(t);x) − f(x)Ln(f0;x)♣ + ♣f(x)♣♣Ln(f0;x) − f0(x)♣
≤ε+KLn(Ψ;x) + (M + ε)♣Ln(f0;x) − f0(x)♣,

which implies

∥Ln(f) − f∥ ≤ ε+ C2∥Ln(f2) − f2∥ + C1∥Ln(f1) − f1∥ + C0∥Ln(f0) − f0∥,
where C2 = K, C1 = 2bK and C0 = (ε+ b2K +M), i.e.,

∥Ln(f) − f∥ ≤ ε+ C
2
∑

i=0

∥Ln(fi) − fi∥, i = 0, 1, 2,

where C = max¶C0, C1, C2♢. For a given ε′ > 0, choose ε > 0 such that ε < ε′ and let
us deĄne the following sets

D = ¶n : ∥Ln(f) − f∥ ≥ ε′♢ ,

D1 =

{

n : ∥Ln(f0) − f0∥ ≥ ε′ − ε

3C

}

,

D2 =

{

n : ∥Ln(f1) − f1∥ ≥ ε′ − ε

3C

}

,

D3 =

{

n : ∥Ln(f2) − f2∥ ≥ ε′ − ε

3C

}

.

It follows that D ⊆ D1 ∪D2 ∪D3 and consequently for all n ∈ N

∑

k∈D

ank ≤
∑

k∈D1

ank +
∑

k∈D2

ank +
∑

k∈D3

ank,

which implies that for any σ > 0






n ∈ N :
∑

k∈D

ank ≥ σ







⊆
3
⋃

i=1







n ∈ N :
∑

k∈Di

ank ≥ σ

3







.
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Therefore, from hypothesis,






n ∈ N :
∑

k∈D

ank ≥ σ







∈ I.

Hence, we have the proof. □

We now consider the following convolution operators deĄned on C[a, b] by

(2.1) Ln(f ;x) =
∫ b

a
f(y)Kn(y − x)dy, n ∈ N, x ∈ [a, b] and f ∈ C[a, b],

where a and b are two real numbers such that a < b. Throughout the paper we assume
that Kn is a continuous function on [a − b, b − a] and also that Kn(u) ≥ 0 for all
n ∈ N and for every u ∈ [a − b, b − a]. Consider the function Ψ on [a, b] deĄned by
Ψ(y) = (y − x)2 for each x ∈ [a, b].

Theorem 2.2. Let A = (aij) be a non-negative regular summability matrix and

let ¶Ln♢n∈N be a sequence of convolution operators from C[a, b] into C[a, b]. If

AI-st- limn ∥Ln(f0) − f0∥ = 0, with f0(y) = 1 and AI-st- limn ∥Ln(Ψ)∥ = 0, then

for all f ∈ C[a, b] we have

AI-st- lim
n

∥Ln(f) − f∥ = 0.

Proof. Let Ψ(y) := (y − x)2 be a function on [a, b], where x ∈ [a, b] and Ln(f ;x) =
∫ b

a f(y)Kn(y−x)dy, n ∈ N, x ∈ [a, b] and f ∈ C[a, b], where a, b are two real numbers
such that a < b. Since Ln is a positive linear operator then Ln(Ψ;x) ≥ 0.

Let M = ∥f∥ and ε > 0. By the uniform continuity of f ∈ C[a, b] and x ∈ [a, b]
there exists a δ > 0 such that

♣f(y) − f(x)♣ < ε, whenever ♣y − x♣ ≤ δ.

Let Iδ = [x− δ, x+ δ] ∩ [a, b]. So,

♣f(y) − f(x)♣ =♣f(y) − f(x)♣ΨIδ
(y) + ♣f(y) − f(x)♣Ψ[a,b]−Iδ

(y)

≤ε+ 2Mδ−2(y − x)2.

Since Ln’s are positive and linear so we have,

♣Ln(f ;x) − f(x)♣ =

∣

∣

∣

∣

∣

∫ b

a
f(y)Kn(y − x)dy − f(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ b

a
(f(y) − f(x))Kn(y − x)dy + f(x)

∫ b

a
Kn(y − x)dy − f(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ b

a
(f(y) − f(x))Kn(y − x)dy

∣

∣

∣

∣

∣

+ ♣f(x)♣ ·
∣

∣

∣

∣

∣

∫ b

a
Kn(y − x)dy − 1

∣

∣

∣

∣

∣

≤
∫ b

a
♣f(y) − f(x)♣ · ♣Kn(y − x)dy♣ + ♣f(x)♣ · ♣Ln(f0;x) − f0(x)♣

≤
∫ b

a
(ε+ 2Mδ−2(y − x)2)Kn(y − x)dy +M ♣Ln(f0;x) − f0(x)♣
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=ε+ (ε+M)♣Ln(f0;x) − f0(x)♣ + 2Mδ−2 ♣ Ln(Ψ;x) ♣
≤ε+ α¶♣Ln(f0;x) − f0(x)♣ + ♣Ln(Ψ;x)♣♢,

where α = max¶ε+M, 2M
δ2 ♢. Therefore,

∥Ln(f) − f∥ ≤ ε+ α¶∥Ln(f0) − f0∥ + ∥Ln(Ψ)∥♢.
For given r > 0, choose ε > 0 such that 0 < ε < r and deĄne the following sets

D = ¶n : ∥Ln(f) − f∥ ≥ r♢ ,

D1 =
{

n : ∥Ln(f0) − f0∥ ≥ r − ε

2α

}

,

D2 =
{

n : ∥Ln(Ψ)∥ ≥ r − ε

2α

}

.

It follows that D ⊆ D1 ∪D2 and consequently for all n ∈ N

∑

k∈D

ank ≤
∑

k∈D1

ank +
∑

k∈D2

ank,

which implies that for any σ > 0






n ∈ N :
∑

k∈D

ank ≥ σ







⊆
2
⋃

i=1







n ∈ N :
∑

k∈Di

ank ≥ σ

2







.

Therefore, from hypothesis






n ∈ N :
∑

k∈D

ank ≥ σ







∈ I.

Hence, we have the proof. □

Let δ be a positive real number so that δ < b−a
2

and let ∥f∥δ = supa+δ≤x≤b−δ ♣f(x)♣,
f ∈ C[a, b].

In order to give our main result we need the following lemmas.

Lemma 2.1. Let A = (aij) be a non negative regular summability matrix. Assume

that δ is a fixed positive number such that δ < b−a
2

. If the conditions

(2.2) AI-st- lim
n

∫ δ

−δ
Kn(y)dy = 1,

(2.3) AI-st- lim
n

(sup
♣y♣≥δ

Kn(y)) = 0

hold, then for the operators Ln, where Ln(f ;x) =
∫ b

a f(y)Kn(y−x)dy, n ∈ N, x ∈ [a, b],
f ∈ C[a, b] and a, b are real numbers a < b, we have

AI-st- lim
n

∥Ln(f0) − f0∥δ = 0, with f0(y) = 1.
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Proof. Let 0 < δ < b−a
2

and let x ∈ [a+ δ, b− δ]. Then

δ ≤ x− a ≤ b− a ⇒ −(b− a) ≤ a− x ≤ −δ
and

δ ≤ b− x ≤ b− a.

Now Ln(f0;x) =
∫ b

a Kn(y − x)dy =
∫ b−x

a−x Kn(y)dy. Then we have
∫ δ

−δ
Kn(y)dy ≤ Ln(f0;x) ≤

∫ b−a

−(b−a)
Kn(y)dy.

Therefore,

∥Ln(f0) − f0∥δ ≤ un,

where un = max
{
∣

∣

∣

∫ δ
−δ Kn(y)dy − 1

∣

∣

∣ ,
∣

∣

∣

∫ b−a
−(b−a) Kn(y)dy − 1

∣

∣

∣

}

.

Therefore, AI-st- limn un = 0 for all δ > 0 such that δ < b−a
2
. Now for given ε > 0

deĄne the following sets

D := ¶n ∈ N : ∥Ln(f0) − f0∥δ ≥ ε♢ ,
D′ := ¶n ∈ N : un ≥ ε♢ .

So D ⊆ D′. Then for all n ∈ N we have,
∑

k∈D

ank ≤
∑

k∈D′

ank.

Then for any σ > 0






n ∈ N :
∑

k∈D

ank ≥ σ







⊆






n ∈ N :
∑

k∈D′

ank ≥ σ







.

From hypothesis






n ∈ N :
∑

k∈D′

ank ≥ σ







∈ I.

Hence,






n ∈ N :
∑

k∈D

ank ≥ σ







∈ I.

So , we have the proof. □

Lemma 2.2. Let A = (aij) be a non negative regular summability matrix. If conditions

(2.2) and (2.3) hold for a fixed δ > 0 such that δ < b−a
2

, then for all convolution

operators Ln defined by Ln(f ;x) =
∫ b

a f(y)Kn(y − x)dy, n ∈ N, x ∈ [a, b] and f ∈
C[a, b], where a, b are two real numbers such that a < b, we have

AI-st- lim
n

∥Ln(Ψ)∥δ = 0, with Ψ(y) = (y − x)2.
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Proof. For a Ąxed 0 < δ < b−a
2

, let x ∈ [a+δ, b−δ]. Since Ψ(y) = y2−2xy+x2, then Ψ ∈
C[a, b] for all x ∈ [a+ δ, b− δ]. Now Ln(Ψ;x) = Ln(f2;x) − 2xLn(f1;x) + x2Ln(f0;x),
with fi(y) = yi, i = 0, 1 , 2. Then for all n ∈ N

Ln(Ψ;x) =
∫ b

a
(y − x)2Kn(y − x)dy =

∫ b−x

a−x
y2Kn(y)dy ≤

∫ b−a

−(b−a)
y2Kn(y)dy.

Since the function f2 is continuous at y = 0 for given ε > 0 exists η > 0 such that
y2 < ε for all y satisfying ♣y♣ ≤ η. We have two cases such that η ≥ b− a or η < b− a.

Case 1. Let η ≥ b − a. Therefore, 0 ≤ Ln(Ψ;x) ≤ ε
∫ b−a

−(b−a) Kn(y)dy. By condition
(2.3), 0 ≤ Ln(Ψ;x) ≤ ε and AI-st- lim

n
∥Ln(Ψ)∥δ = 0 for η ≥ b− a.

Case 2: Let η < b − a. Therefore, Ln(Ψ;x) ≤ ∫

♣y♣≥η y
2Kn(y)dy +

∫

♣y♣≤η y
2Kn(y)dy

and hence we obtain

∥Ln(Ψ;x)∥δ ≤an

∫ b−a

η
y2dy + ε

∫

♣y♣≤η
Kn(y)dy = an

(b− a)3 − η3

3
+ εbn,

where an = sup♣y♣≥η Kn(y) and bn =
∫

♣y♣≤η Kn(y)dy. Also we have from hypotheses

AI-st- lim
n
an = 0

and
AI-st- lim

n
bn = 1.

Taking, M = max
{

(b−a)3−η3

3
, ε
}

we have for all n ∈ N

∥Ln(Ψ)∥δ ≤ ε+M(an + ♣bn − 1♣).
For given r > 0, choose ε > 0 such that ε < r. Let

D = ¶n ∈ N : ∥Ln(Ψ)∥δ ≥ r♢ ,

D1 =
{

n ∈ N : an ≥ r − ε

2M

}

,

D2 =
{

n ∈ N : ♣bn − 1♣ ≥ r − ε

2M

}

.

Therefore, D ⊆ D1 ∪D2. Hence, for all n ∈ N we have,
∑

k∈D

ank ≤
∑

k∈D1

ank +
∑

k∈D2

ank,

which implies that for any σ > 0






n ∈ N :
∑

k∈D

ank ≥ σ







⊆
2
⋃

i=1







n ∈ N :
∑

k∈Di

ank ≥ σ

2







.

Therefore, from the hypothesis






n ∈ N :
∑

k∈D

ank ≥ σ







∈ I.

Hence, we have the proof. □
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Now the following main result follows from Theorem 2.2 and Lemma 2.1, 2.2.

Theorem 2.3. Let A = (aij) be a non negative regular summability matrix and let

¶Ln♢n∈N be a sequence of convolution operators on C[a, b] given by (2.1). If conditions

(2.2) and (2.3) hold for a fixed δ > 0 such that δ < b−a
2

, then for all f ∈ C[a, b] we

have

AI-st- lim
n

∥Ln(f) − f∥δ = 0.

If we take I = Ifin, the ideal of all Ąnite subsets of N, we get the following result.

Corollary 2.1. ([6, Corollary 2.5]). Let A = (aij) be a non negative regular summa-

bility matrix and let ¶Ln♢n∈N be a sequence of convolution operators on C[a, b] given

by

Ln(f ;x) =
∫ b

a
f(y)Kn(y − x)dy,

n ∈ N, x ∈ [a, b] and f ∈ C[a, b], where a and b are two real numbers such that a < b.
If conditions

stA − lim
n

∫ δ

−δ
Kn(y)dy = 1

and

stA − lim
n

sup
♣y♣≥δ

Kn(y) = 0

hold for a fixed δ > 0 such that δ < b−a
2

, then for all f ∈ C[a, b] we have

stA − lim
n

∥Ln(f) − f∥δ = 0.

Remark 2.1. We now exhibit a sequence of positive convolution operators for which
Corollary 2.1 does not apply but Theorem 2.3 does. Let

un =







1, for n even,

0, otherwise.

Let I be a non-trivial admissible ideal of N. Choose an inĄnite subset C = ¶p1 < p2 <
p3 · · · ♢ from I \ Id, where Id denotes the set of all subsets of N with natural density
zero.

Let A = (ank) be given by

ank =















1, if n = pi, k = 2pi for some i ∈ N,

1, if n ̸= pi for any i, k = 2n+ 1,

0, otherwise.

Now for 0 < ε < 1, K(ε) = ¶k ∈ N : ♣uk − 0♣ ≥ ε♢ is the set of all even integers.
Observe that

∑

k∈K(ε)

ank =







1, if n = pi for some i ∈ N,

0, if n ̸= pi for any i ∈ N.
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Thus, for any δ > 0,
{

n ∈ N :
∑

k∈K(ε)ank ≥ δ
}

= C ∈ I \ Id which shows that

¶uk♢k∈N is AI-statistically convergent to 0 though x is not A-statistically convergent.
Now let the operators Ln on C[a, b] be deĄned by

Ln(f ;x) =
n(1 + un)√

π

∫ b

a
f(y)e−n2(y−x)2

dy.

If we choose Kn(y) = n(1+un)√
π

e−n2y2

, then

Ln(f ;x) =
n(1 + un)√

π

∫ b

a
f(y)Kn(y − x)dy.

Now for every δ > 0 such that δ < b−a
2

we have
∫ δ

−δ
Kn(y)dy =

n(1 + un)√
π



∫ ∞

−∞
e−n2y2

dy −
∫

♣y♣≥δ
e−n2y2

dy



=
2(1 + un)√

π


∫ ∞

0
e−y2

dy −
∫ ∞

δ.n
e−y2

dy


.

Since
∫∞

0 e−y2

dy =
√

π

2
< ∞, it is clear that lim

n

∫ ∞

δ.n
e−y2

dy = 0. Also since

AI-st- limn(1 + un) = 1, we immediately get

AI-st- lim
n

∫ δ

−δ
Kn(y)dy = 1.

On the other hand, we have

sup
♣y♣≥δ

Kn(y) =
n(1 + un)√

π
sup
♣y♣≥δ

e−n2y2 ≤ n(1 + un)
en2δ2

.

Since limn
n

en2δ2 = 0 and AI-st- lim
n

(1 + un) = 1, we conclude that

AI-st- lim
n

sup
♣y♣≥δ

Kn(y) = 0.

Therefore, from Theorem 2.3,

AI-st- lim
n

∥Ln(f) − f∥δ = 0, for all f ∈ C[a, b].

However note that, as ¶uk♢k∈N is not A-statistically convergent to zero so Kn do not
satisfy the hypotheses of Corollary 2.1.

3. Rate of AI-Statistical Convergence

In this section we study the rates of AI-statistical convergence in Theorem 2.3 using
the modulus of continuity. Let f ∈ C[a, b]. The modulus of continuity denoted by
ω(f, α) is deĄned to be

ω(f, α) = sup
♣y−x♣≤α

♣f(y) − f(x)♣.
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The modulus of continuity of the function f in C[a, b] gives the maximum oscillation
of f in any interval of length not exceeding α > 0. It is well-known that if f ∈ C[a, b],
then

lim
α→0

ω(f, α) = ω(f, 0) = 0,

and that for any constants c > 0, α > 0,

ω(f, cα) ≤ (1 + [c])ω(f, α),

where [c] is the greatest integer less than or equal to c.
Next we introduce the following deĄnition.

Definition 3.1. Let A = (ajn) be a non-negative regular summability matrix and
let ¶cn♢n∈N be a positive non-increasing sequence of real numbers. Then a sequence
x = ¶xn♢n∈N is said to be AI-statistically convergent to a number L with the rate of
o(cn) if for every ε > 0, there exists δ > 0 such that







j ∈ N :
1
cj

∑

¶n:♣xn−L♣≥ε♢
ajn ≥ δ







∈ I.

In this case we write AI-st-o(cn)- limn xn = L.

We establish the following theorem.

Theorem 3.1. Let A = (ajn) be a non-negative regular summability matrix and let

¶Ln♢n∈N be a sequence of convolution operators given by (2.1). Assume further that

¶cn♢n∈N and ¶dn♢n∈N are two positive non-increasing sequences. If for a fixed δ > 0
such that δ < b−a

2

AI-st-o(cn)- lim
n

∥Ln(f0) − f0∥δ = 0

and

AI-st-o(dn)- lim
n
ω(f, αn) = 0,

where αn :=
√

∥Ln(Ψ)∥δ, then for all f ∈ C[a, b] we have

AI-st-o(pn)- lim
n

∥Ln(f) − f∥δ = 0,

where pn := max¶cn, dn♢.

Proof. Let 0 < δ < b−a
2
, f ∈ C[a, b] and x ∈ [a+ δ, b− δ]. By positivity and linearity

of the operators Ln and using the inequalities for any α > 0 we get

♣Ln(f ;x) − f(x)♣ ≤Ln(♣f(y) − f(x)♣;x) + ♣f(x)♣ · ♣Ln(f0;x) − f0(x)♣

≤Ln



ω



f, α
♣y − x♣
α



;x



+ ♣f(x)♣ · ♣Ln(f0;x) − f0(x)♣

≤ω(f, α)Ln



1 +



♣y − x♣
α

]

;x



+ ♣f(x)♣ · ♣Ln(f0;x) − f0(x)♣

≤ω(f, α)
{

Ln(f0;x) +
1
α2
Ln(ψ;x)

}

+ ♣f(x)♣ · ♣Ln(f0;x) − f0(x)♣.
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Therefore, for all n ∈ N

∥Ln(f) − f∥δ ≤ ω(f, α)
{

∥Ln(f0)∥δ +
1
α2

∥Ln(Ψ)∥δ

}

+M1∥Ln(f0) − f0∥δ,

where M1 := ∥f∥δ. Now let α := αn =
√

∥Ln(Ψ)∥δ. Then we have

∥Ln(f) − f∥δ ≤ω(f, αn)¶∥Ln(f0)∥δ + 1♢ +M1∥Ln(f0) − f0∥δ

≤2ω(f, αn) + ω(f, αn)∥Ln(f0) − f0∥δ +M1∥Ln(f0) − f0∥δ.

Let M = max¶2,M1♢. Then we can write for all n ∈ N that

∥Ln(f) − f∥δ ≤ M¶ω(f, αn) + ∥Ln(f0) − f0∥δ♢ + ω(f, αn)∥Ln(f0) − f0∥δ.

Given ε > 0, deĄne the following sets:

D := ¶n : ∥Ln(f) − f∥δ ≥ ε♢ ,

D1 :=
{

n : ω(f, αn) ≥ ε

3M

}

,

D2 :=
{

n : ω(f, αn)∥Ln(f0) − f0∥δ ≥ ε

3

}

,

D3 :=
{

n : ∥Ln(f0) − f0∥δ ≥ ε

3M

}

.

Then D ⊆ D1 ∪D2 ∪D3. Also, we deĄne

D′
2 =

{

n : ω(f, αn) ≥
√

ε

3

}

,

D
′′

2 =
{

n : ∥Ln(f0) − f0∥δ ≥
√

ε

3

}

.

Therefore, D2 ⊆ D′
2 ∪ D

′′

2 . Hence, we get D ⊆ D1 ∪ D′
2 ∪ D

′′

2 ∪ D3. Since pn =
max ¶cn, dn♢ we obtain for all j ∈ N that

1
pj

∑

n∈D

ajn ≤ 1
dj

∑

n∈D1

ajn +
1
dj

∑

n∈D′

2

ajn +
1
cj

∑

n∈D
′′

2

ajn +
1
cj

∑

n∈D3

ajn.

As
AI-st-o(cn)- lim

n
∥Ln(f0) − f0∥δ = 0

and
AI-st-o(dn)- lim

n
ω(f, αn) = 0.

Therefore,
{

j ∈ N :
1
pj

∑

n∈D

ajn ≥ δ

}

∈ I,

i.e.,
AI-st-o(pn)- lim

n
∥Ln(f) − f∥δ = 0, for all f ∈ C[a, b],

where pn := max ¶cn, dn♢. Hence, the result follows. □
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4. Conclusions

Following the concept of AI-statistical convergence for real sequences, we have
encountered a Korovkin type approximation theory (Theorem 2.3) for a sequence
of positive convolution operators deĄned on C[a, b]. We have exhibited an example
which shows that Theorem 2.3 is stronger than its A-statistical version [6, Corollary
2.5]. The third section states about the rates of the AI-statistical convergence.

We are very much interested whether the results of this paper are valid for the
function f with two variables. Again we are interested whether the results are relevant
on inĄnite interval.

Acknowledgements. The authors gratefully acknowledge to the referees for their
valuable suggestions and comments. The authors are indebted to Prof. Pratulananda
Das, Department of Mathematics, Jadavpur University, for his valuable suggestions
in better presentation of this paper.
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SPECTRA OF THE LOWER TRIANGULAR MATRIX

B(r1, . . . , rl; s1, . . . , sl′) OVER c0

SANJAY KUMAR MAHTO1,2, ARNAB PATRA1, AND P. D. SRIVASTAVA3

Abstract. The inĄnite lower triangular matrix B(r1, . . . , rl; s1, . . . , sl′) is consid-
ered over the sequence space c0, where l and l′ are positive integers. The diag-
onal and sub-diagonal entries of the matrix consist of the oscillatory sequences
r = (rk(mod l)+1) and s = (sk(mod l′)+1), respectively. The rest of the entries of the
matrix are zero. It is shown that the matrix represents a bounded linear operator.
Then the spectrum of the matrix is evaluated and partitioned into its Ąne structures:
point spectrum, continuous spectrum, residual spectrum, etc. In particular, the
spectra of the matrix B(r1, . . . , r4; s1, . . . , s6) are determined. Finally, an example
is taken in support of the results.

1. Introduction

The study of the spectrum of a bounded linear operator has received much attention
in recent years due to its wide application in functional analysis, classical quantum
mechanics, etc. Let A be an inĄnite matrix that is bounded and linear in a Banach
space U . Then many dynamical systems can be reformulated as the system of linear
equations Ax = λx, where λ is a complex number and x is a nonzero vector in U .
The stability of this system can be explained by the spectrum of A. In this course,
spectrum localization of an inĄnite matrix over a sequence space is viewed as an
important problem by many authors [10,14Ű16,23,26]. An extensive study of most of
the research done in this direction can be found in the review articles [25] and [17].

Key words and phrases. Fine spectra, sequence space, lower triangular inĄnite matrix, point
spectrum, continuous spectrum, residual spectrum.
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For a sequence x = (xk), the backward difference operator ∆ is deĄned by ∆x =
xk − xk−1, where x−1 = 0. The matrix representation of this operator is as follows:

∆ =




1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
...

...
...

...
. . .




.

In short, ∆ is an inĄnite matrix whose diagonal entries and subdiagonal entries are the
constant sequences (1, 1, . . . ) and (−1, −1, . . . ), respectively. Akhmedov and Başar
[1] determined the spectral decompositions of this operator over bvp (1 ≤ p < ∞),
whereas Altay and Başar [3] evaluated the spectra of the same operator over the spaces
c and c0. Altay and Başar [4] then considered the difference operator B(r, s) over c0

and c, which is a generalization of the operator ∆. The diagonal and subdiagonal
entries of B(r, s) contain the sequences (r, r, . . . ) and (s, s, . . . ), where r and s ≠ 0 are
real numbers. Furkan and Bilgiç studied B(r, s) in the same direction over ℓp and bvp

in [6]. For more study, we refer [2, 7, 8,12,13,18,19,22,24] etc. Now if one considers
the more generalized difference matrix whose diagonal and subdiagonal entries are
the oscillatry sequences (r1, r2, . . . , rl, r1, . . . ) and (s1, s2, . . . , sl′ , s1, . . . ), where l and
l′ are some positive integers, then the number of limit points of both the sequences
will be different and it will be interesting to study the spectral property of the matrix.

In this paper, we have determined the spectra and Ąne spectra of the generalized
difference matrix B(r1, . . . , rl; s1, . . . , sl′) in which the diagonal entries consist of a
sequence whose terms are oscillating between the points r1, r2, . . . , rl and the sub-
diagonal entries consist of an oscillatory sequence whose terms are oscillating between
the points s1, s2, . . . , sl′ . Furthermore, the spectra and Ąne spectra of the matrix
B(r1, . . . , r4; s1, . . . , s6) are also discussed.

2. Preliminaries

Let U and V be Banach spaces. Then the space of all bounded linear operators
from U into V is denoted by B(U, V ). If U = V , then the space is denoted by B(U).
Let L ∈ B(U) and U∗ be dual of U . Then the adjoint L∗ ∈ B(U∗) of L is deĄned by
(L∗f)(t) = f(Lt) for all f ∈ U∗. Let J : D(J) → U be a linear operator deĄned over
a subset D(J) of U . Then the operator (J − λI)−1 is called the resolvent operator of
J , where λ is a complex number and I is the identity operator.

A complex number λ is said to be a regular value [11] of a linear operator J :
D(J) → U if and only if the operator (J − λI)−1 exists, bounded and is deĄned on a
set which is dense in U . The set of all regular values of the linear operator J is called
resolvent set and is denoted by ρ(J). The complement σ(J) = C − ρ(J) is called
the spectrum of J . The spectrum σ(J) is further partitioned into the following three
disjoint sets.
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(a) σp(J) = ¶λ ∈ C : (J − λI)−1 does not exist♢. This set is called the point

spectrum (discrete spectrum) of the operator J . The members of this set are
called eigenvalues of J .

(b) σc(T ), which is deĄned as the set of all complex numbers λ for which (J −λI)−1

exists and deĄned on a set which is dense in U, but it is not a bounded operator
in U. This set is called continuous spectrum of J .

(c) σr(T ), which contains all those complex numbers for which (J − λI)−1 exists,
deĄned on a set which is not dense in U . This set is called the residual spectrum

of J .

Let R(J − λI) denotes the range of the operator J − λI. Goldberg [9] has classiĄed
the spectrum using the following six properties of R(J − λI) and (J − λI)−1:

(I) R(J − λI) = U ;
(II) R(J − λI) ̸= U but R(J − λI) = U ;

(III) R(J − λI) ̸= U

and

(1) (J − λI)−1 exists and it is bounded;
(2) (J − λI)−1 exists but it is not bounded;
(3) (J − λI)−1 does not exist.

Based on the above six properties, the GoldbergŠs classiĄcation of the spectrum can
be given as shown in the Table 1.

Table 1. Subdivisions of spectrum of a bounded linear operator

(I) (II) (III)
1 ρ(J, U) Ů σr(J, U)
2 σc(J, U) σc(J, U) σr(J, U)
3 σp(J, U) σp(J, U) σp(J, U)

Theorem 2.1 ([21]). Let L be a bounded linear operator on a normed linear space U .

Then L has a bounded inverse if and only if L∗ is onto.

Lemma 2.1 ([20]). An infinite matrix A = (ank) ∈ B(c0) if and only if

(a) (ank)k ∈ ℓ1 for all n and supn

∑
k ♣ank♣ < ∞;

(b) (ank)n ∈ c0 for all k.

Moreover, the norm ∥A∥ = supn

∑
k ♣ank♣.

Throughout the paper, we denote the set of natural numbers by N, the set of
complex numbers by C and N0 = N ∪ ¶0♢. We assume that x−n = 0 for all n ∈ N.

3. Main Results

Let l and l′ be two natural numbers. Suppose that H is the least common multiple
of l and l′. Let ri, i = 1, . . . , l, and si ̸= 0, i = 1, . . . , l′, be complex numbers. Then



372 S. K. MAHTO, A. PATRA, AND P. D. SRIVASTAVA

the matrix B(r1, . . . , rl; s1, . . . , sl′) is deĄned as B = (bij)i,j≥0, where

(3.1) bij =





rj(mod l)+1, when i = j,

sj(mod l′)+1, when i = j + 1,

0, otherwise.

That is

B =




r1

s1
. . . 0
. . . rl

sl′
. . .

0 . . .




.

If the matrix B transforms a sequence x = (xk) into y = (yk), then

yk =
∞∑

j=0

bkjxj = bk,k−1xk−1 + bkkxk = s(k−1)(mod l′)+1xk−1 + rk(mod l)+1xk,(3.2)

for all k ∈ N0.

Theorem 3.1. B ∈ B(c0) and ∥B∥c0 ≤ max
i,j

¶♣ri♣ + ♣sj♣: 1 ≤ i ≤ l, 1 ≤ j ≤ l′♢.

Suppose that a is an integer and n is a natural number. We denote, by [an], the set
of all non-negative integers x for which n divides x − a. Then a(mod n) is the least
member of [an]. Let α and β be the mappings which are deĄned on the set of integers
as follows:

α(k) = k(mod l) + 1

and

β(k) = k(mod l′) + 1.

Without loss of generality, we assume that sβ(k)sβ(k+1) · · · sβ(k+j) = 1 and (rα(k) −
λ)(rα(k+1) − λ) · · · (rα(k+j) − λ) = 1, when k + j < k. If λ is a complex number such
that (B − λI)−1 exists, then the entries of the matrix (B − λI)−1 = (znk), n ≥ 0, and
k ≥ 0, are given by

znk =





(−1)n−ksβ(k) · · · sβ(k+ζ′′−1)

(rα(k) − λ) · · · (rα(k+ζ′) − λ)
·

(s1 . . . sl′)
m′′

¶(r1 − λ) · · · (rl − λ)♢m′

×





(s1 · · · sl′)
H

l′

¶(r1 − λ) · · · (rl − λ)♢
H

l





m

, when n > k,

1

rα(k) − λ
, when n = k,

0, otherwise,

(3.3)

where ζ, ζ ′ and ζ ′′ are the least non-negative integers such that
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



n − k = mH + ζ,

ζ = m′l + ζ ′,

ζ = m′′l′ + ζ ′′,

(3.4)

for some non-negative integers m, m′ and m′′.

Lemma 3.1. If (♣λ − r1♣ · · · ♣λ − rl♣)
1/l > (♣s1♣ · · · ♣sl′♣)

1/l′, then (B − λI)−1 ∈ B(c0).

Proof. Since (♣λ − r1♣ · · · ♣λ − rl♣)
1/l > (♣s1♣ · · · ♣sl′♣)

1/l′ and s1, s2, . . . , sl′ are non-zero,
therefore λ ≠ ri for all i = 1, 2, . . . , l. Then the matrix B − λI is a triangle and
hence (B − λI)−1 = (znk) exists, which is given by (3.3). We Ąrst consider a row
of (B − λI)−1 which is a multiple of H, that is n = m̃H for some m̃ ∈ N0. Now,
let k = m̂H for m̂ = 0, 1, . . . , m̃. Then (3.4) implies that n − k = (m̃ − m̂)H and
m′ = m′′ = ζ = ζ ′ = ζ ′′ = 0. Thus, from (3.3), we have

znk =
(−1)n−k

rα(k) − λ





(s1 · · · sl′)
H

l′

¶(r1 − λ) · · · (rl − λ)♢
H

l





m̃−m̂

,

for all m̂ = 0, 1, . . . , m̃. Therefore,

∑

k∈[0H ]

♣znk♣ =
1

♣rα(k) − λ♣

m̃∑

j=0





(♣s1♣ · · · ♣sl′♣)
H

l′

¶♣r1 − λ♣ · · · ♣rl − λ♣♢
H

l





j

,

where [0H ] denotes the set of all non-negative integers which are multiple of H. For
the same row, if we consider k = m̂H + 1 for m̂ = 0, 1, . . . , m̃ − 1, then n − k =
(m̃ − m̂ − 1)H + H − 1. Let m′

1 and m′′
1 be quotients and ζ ′

1 and ζ ′′
1 be remainders

when H − 1 is divided by l and l′ respectively, that is

H − 1 = m′
1l + ζ ′

1,

H − 1 = m′′
1l′ + ζ ′′

1 .

Then, from (3.3), we obtain that

znk =
(−1)n−ksβ(k) · · · sβ(k+ζ′′

1 −1)

(rα(k) − λ) · · · (rα(k+ζ′

1) − λ)
·

(s1 · · · sl′)
m′′

1

¶(r1 − λ) · · · (rl − λ)♢m′

1

×





(s1 · · · sl′)
H

l′

¶(r1 − λ) · · · (rl − λ)♢
H

l





m̃−m̂−1

,

for all m̂ = 0, 1, . . . , m̃ − 1. Hence,

∑

k∈[1H ]

♣znk♣ =
♣sβ(k)♣ · · · ♣sβ(k+ζ′′

1 −1)♣

♣rα(k) − λ♣ · · · ♣rα(k+ζ′

1) − λ♣
·

(♣s1♣ · · · ♣sl′♣)
m′′

1

¶♣r1 − λ♣ · · · ♣rl − λ♣♢m′

1

×
m̃−1∑

j=0





(♣s1♣ · · · ♣sl′♣)
H

l′

¶♣r1 − λ♣ · · · ♣rl − λ♣♢
H

l





j

,
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where [1H ] denotes the set of all nonnegative integers x such that H divides x − 1.
Similarly, for k = m̂H + 2, . . . , m̂H + H − 1, we have

∑

k∈[2L]

♣znk♣ =
♣sβ(k)♣ · · · ♣sβ(k+ζ′′

2 −1)♣

♣rα(k) − λ♣ · · · ♣rα(k+ζ′

2) − λ♣
·

(♣s1♣ . . . ♣sl′♣)
m′′

2

¶♣r1 − λ♣ · · · ♣rl − λ♣♢m′

2

×
m̃−1∑

j=0





(♣s1♣ · · · ♣sl′♣)
H

l′

¶♣r1 − λ♣ · · · ♣rl − λ♣♢
H

l





j

,

...

∑

k∈[(H−1)L]

♣znk♣ =
♣sβ(k)♣ · · · ♣sβ(k+ζ′′

H−1−1)♣

♣rα(k) − λ♣ · · · ♣rα(k+ζ′

H−1) − λ♣
·

(♣s1♣ · · · ♣sl′♣)
m′′

H−1

¶♣r1 − λ♣ · · · ♣rl − λ♣♢m′

H−1

×
m̃−1∑

j=0





(♣s1♣ · · · ♣sl′♣)
H

l′

¶♣r1 − λ♣ · · · ♣rl − λ♣♢
H

l





j

,

for some integers ζ ′
i, ζ ′′

i , m′
i and m′′

i for all i ∈ ¶2, 3, . . . , H − 1♢. Thus,

∞∑

k=0

♣znk♣ =
1

♣rα(k) − λ♣

m̃∑

j=0





(♣s1♣ · · · ♣sl′♣)
H

l′

¶♣r1 − λ♣ · · · ♣rl − λ♣♢
H

l





j

+ M
m̃−1∑

j=0





(♣s1♣ · · · ♣sl′♣)
H

l′

¶♣r1 − λ♣ · · · ♣rl − λ♣♢
H

l





j

,(3.5)

where

M =
♣sβ(k)♣ · · · ♣sβ(k+ζ′′

1 −1)♣

♣rα(k) − λ♣ · · · ♣rα(k+ζ′

1) − λ♣
·

(♣s1♣ · · · ♣sl′♣)
m′′

1

¶♣r1 − λ♣ · · · ♣rl − λ♣♢m′

1

+ · · · +
♣sβ(k)♣ · · · ♣sβ(k+ζ′′

L−1−1)♣

♣rα(k) − λ♣ · · · ♣rα(k+ζ′

L−1) − λ♣
·

(♣s1♣ · · · ♣sl′♣)
m′′

H−1

¶♣r1 − λ♣ · · · ♣rl − λ♣♢m′
H−1

.

Let M0 = max
{

1
♣rα(k)−λ♣

, M
}

. Then

∞∑

k=0

♣znk♣ ≤
2M0(♣r1 − λ♣♣r2 − λ♣ · · · ♣rl − λ♣)

H

l

(♣r1 − λ♣♣r2 − λ♣ · · · ♣rl − λ♣)
H

l − (♣s1♣♣s2♣ · · · ♣sl′♣)
H

l′

.

Therefore, supn∈[0H ]

∑∞
k=0 ♣znk♣ < ∞. Similarly, we prove that

sup
n∈[1H ]

∞∑

k=0

♣znk♣ <∞,

sup
n∈[2H ]

∞∑

k=0

♣znk♣ <∞,

...
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sup
n∈[(H−1)H ]

∞∑

k=0

♣znk♣ <∞.

Thus,

sup
n

∞∑

k=0

♣znk♣ = max

{
sup

n∈[0H ]

∞∑

k=0

♣znk♣, sup
n∈[1H ]

∞∑

k=0

♣znk♣, . . . , sup
n∈[(H−1)H ]

∞∑

k=0

♣znk♣

}
.

This implies that supn

∑∞
k=0 ♣znk♣ < ∞. Likewise, for an arbitrary column of (B −

λI)−1, adding the entries separately whose rows n belong to [0H ], [1H ], . . . , [(H − 1)H ]
respectively, we get

∑∞
n=0 ♣znk♣ < ∞. Therefore, limn→∞ ♣znk♣ = 0 for all k ∈ N0.

Hence, by Lemma 2.1, the matrix (B − λI)−1 ∈ B(c0). □

Consider the set S =
{
λ ∈ C : (♣λ − r1♣ · · · ♣λ − rl♣)

1
l ≤ (♣s1♣ · · · ♣sl′♣)

1
l′

}
. Then we

have the following theorem.

Theorem 3.2. σ(B, c0) = S.

Proof. First, we prove that σ(B, c0) ⊆ S. Let λ be a complex number that does not
belong to S. Then (♣λ−r1♣ · · · ♣λ−rl♣)

1/l > (♣s1♣ · · · ♣sl′♣)
1/l′ . In that case, from Lemma

3.1, it follows that (B − λI)−1 ∈ B(c0). That is, λ /∈ σ(B, c0). Hence, σ(B, c0) ⊆ S.
Next, we show that S ⊆ σ(B, c0). Let λ ∈ S. Then, (♣λ − r1♣ · · · ♣λ − rl♣)

1/l ≤
(♣s1♣ · · · ♣sl′♣)

1/l′ . If λ equals any of the ri for all i ∈ ¶1, 2, . . . , l♢, then the range of the
operator B− λI is not dense in c0, and hence λ ∈ σ(B, c0). Therefore, we assume that
λ ̸= ri for all i ∈ ¶1, 2, . . . , l♢. In that case, B−λI is a triangle and (B−λI)−1 = (znk)
exists, which is given by (3.3). Let y = (1, 0, 0, . . . ) ∈ c0 and let x = (xk) be the
sequence such that (B − λI)−1y = x. It follows, from (3.3), that

(3.6) xnH = znH,0 =
(−1)nH

r1 − λ





(s1s2 · · · sl′)
H

l′

¶(r1 − λ) · · · (rl − λ)♢
H

l





n

,

for all n ∈ N0. Since ¶(r1 − λ) · · · (rl − λ)♢1/l ≤ (s1 · · · sl′)
1
l′ , the subsequence (xnH)

of x does not converge to 0. Consequently, the sequence x = (xk) /∈ c0. Therefore,
(B − λI)−1 /∈ B(c0). Thus, λ ∈ σ(B, c0) and hence S ⊆ σ(B, c0). This proves the
theorem. □

Theorem 3.3. σp(B, c0) = ∅.

Proof. Let λ ∈ σp(B, c0). Then there exists a nonzero sequence x = (xk) such that
Bx = λx. This implies that

(3.7) s(k−1)(mod l′)+1xk−1 + rk(mod l)+1xk = λxk.

Let xk0 be the Ąrst non-zero term of the sequence x = (xk). Then from the relation
(3.7), we Ąnd that λ = rk0(mod l)+1. Next, for k = k0 + l, (3.7) becomes

s(k0+l−1)(mod l′)+1xk0+l−1 + r(k0+l)(mod l)+1xk0+l = λxk0+l.
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That is,

(3.8) s(k0+l−1)(mod l′)+1xk0+l−1 + rk0(mod l)+1xk0+l = λxk0+l.

Putting λ = rk0(mod l)+1 in (3.8), we Ąnd that

s(k0+l−1)(mod l′)+1xk0+l−1 = 0.

As s(k0+l−1)(mod l′)+1 ̸= 0, therefore xk0+l−1 = 0. Similarly, using (3.7) for k = k0 + l−1
and putting the value xk0+l−1 = 0, we obtain xk0+l−2 = 0. Repeating the same step for
k = k0 + l − 2, k0 + l − 3, . . . , k0 + 1, we deduce that xk0 = 0, which is a contradiction.
Hence, σp(B, c0) = ∅. □

Let B∗ = (b∗
ij) denote the adjoint of the operator B. Then the matrix representation

of B∗ is equal to the transpose of the matrix B. It follows that

(3.9) b∗
ij =





ri(mod l)+1, when i = j,

si(mod l′)+1, when i + 1 = j,

0, otherwise.

That is,

B
∗ =




r1 s1

r2
. . . 0
. . . sl′

r1
. . .

0 . . . . . .




.

The next theorem gives the point spectrum of the operator B∗.

Theorem 3.4. σp(B∗, c∗
0) =

{
λ ∈ C : (♣λ − r1♣ · · · ♣λ − rl♣)

1
l < (♣s1♣ · · · ♣sl′♣)

1
l′

}
.

Proof. Let λ ∈ σp(B
∗, c∗

0
∼= ℓ1). Then there exists a nonzero sequence x = (xk) ∈

ℓ1 such that B
∗x = λx. From this relation, the subsequences (xkH), (xkH+1), . . . ,

(xkH+H−1) of x = (xk) are given by

xkH =





((λ − r1) · · · (λ − rl))
H

l

(s1 · · · sl′)
H

l′





k

x0

xkH+1 =
(λ − r1)

s1





((λ − r1) · · · (λ − rl))
H

l

(s1 · · · sl′)
H

l′





k

x0

...

xkH+H−1 =
(λ − r1)

H

l · · · (λ − rl−1)
H

l (λ − rl)
H

l
−1

s
H

l′

1 · · · s
H

l′

l′−1s
H

l′
−1

l′
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×





((λ − r1) · · · (λ − rl))
H

l

(s1 · · · sl′)
H

l′





k

x0.

Thus,
∞∑

k=0

♣xk♣ =
∞∑

k=0

♣xkH ♣ +
∞∑

k=0

♣xkH+1♣ + · · · +
∞∑

n=0

♣xkH+H−1♣

=


1 +

∣∣∣∣∣
λ − r1

s1

∣∣∣∣∣ + · · · +

∣∣∣∣∣∣∣

(λ − r1)
H

l · · · (λ − rl−1)
H

l (λ − rl)
H

l
−1

s
H

l′

1 · · · s
H

l′

l′−1s
H

l′
−1

l′

∣∣∣∣∣∣∣




×
∞∑

k=0

∣∣∣∣∣∣
((λ − r1) · · · (λ − rl))

H

l

(s1 · · · sl′)
H

l′

∣∣∣∣∣∣

k

♣x0♣.

Clearly, the sequence x = (xk) ∈ ℓ1 if and only if (♣λ−r1♣ · · · ♣λ−rl♣)
1
l < (♣s1♣ · · · ♣sl′♣)

1
l′ .

This proves the theorem. □

Theorem 3.5. σr(B, c0) =
{
λ ∈ C : (♣λ − r1♣ · · · ♣λ − rl♣)

1
l < (♣s1♣ · · · ♣sl′♣)

1
l′

}
.

Proof. The residual spectrum of a bounded linear operator L on a Banach space
U is given by the relation σr(L, U) = σp(L

∗, U∗) \ σp(L, U). Therefore, σr(B, c0) =
σp(B

∗, c∗
0) \ σp(B, c0). Then the proof of this theorem is an easy consequence of the

Theorems 3.3 and 3.4. □

Theorem 3.6. σc(B, c0) =
{
λ ∈ C : (♣λ − r1♣ · · · ♣λ − rl♣)

1
l = (♣s1♣ · · · ♣sl′♣)

1
l′

}
.

Proof. Since spectrum of an operator on a Banach space is disjoint union of point,
residual and continuous spectrum, therefore from Theorems 3.2, 3.3 and 3.5, we deduce
that

σc(B, c0) =
{
λ ∈ C : (♣λ − r1♣ · · · ♣λ − rl♣)

1
l = (♣s1♣ · · · ♣sl′♣)

1
l′

}
. □

Theorem 3.7. ¶r1, r2, . . . , rl♢ ⊆ III1(B, c0).

Proof. Theorem 3.5 shows that r1 ∈ σr(B, c0). However, σr(B, c0) = III1(B, c0) ∪
III2(B, c0). Therefore, to prove r1 ∈ III1σ(B, c0), we shall show that the matrix
B − r1I has bounded inverse and from Theorem 2.1, it will be sufficient to show that
(B − r1I)∗ is onto. For this, let y = (yk) ∈ ℓ1. Then (B − r1I)∗x = y implies that

(3.10) (ri(mod l)+1 − r1)xi + si(mod l′)+1xi+1 = yi,

for all i ∈ N0. Solving (3.10) for x = (xi), we obtain that

(3.11) xmH+k =
k−2∑

j=0

1

sj(mod l′)+1

k−1∏

i=j+1

r1 − ri(mod l)+1

si(mod l′)+1

ymH+j +
ymH+k−1

s(k−1)(mod l′)+1

,

for k = 1, . . . , H, and m = 0, . . . , ∞. Let

Cj =
1

sj(mod l′)+1

k−1∏

i=j+1

r1 − ri(mod l)+1

si(mod l′)+1

,
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for j = 0, . . . , k − 2, and

Ck−1 =
1

s(k−1)(mod l′)+1

.

Then (3.11) can be written as

(3.12) xmH+k = C0ymH + C1ymH+1 + · · · + Ck−1ymH+k−1.

Taking summation from m = 0 to ∞ of the absolute values of xmH+k, we obtain

(3.13)
∞∑

m=0

♣xmH+k♣ ≤ ♣C0♣
∞∑

m=0

♣ymH ♣ + ♣C1♣
∞∑

m=0

♣ymH+1♣ + · · · + ♣Ck−1♣
∞∑

m=0

♣ymH+k−1♣.

Since y = (yk) ∈ ℓ1, therefore the right hand side of the inequality (3.13) is a sum of
k Ąnite terms. Thus,

∑∞
m=0 ♣xmH+k♣ < ∞ for k ∈ ¶1, 2, . . . , H♢. This implies that the

series

(3.14)
∑

i

♣xi♣ = ♣x0♣ +
∞∑

m=0

♣xmH+1♣ +
∞∑

m=0

♣xmH+2♣ + · · · +
∞∑

m=0

♣xmH+H ♣

is a sum of H + 1 Ąnite terms. Hence, x = (xi) ∈ ℓ1. We have shown that for every
y = (yi) ∈ ℓ1 there exists a sequence x = (xi) ∈ ℓ1 such that (B− r1I)∗x = y. That is,
(B − r1I)∗ is onto. Similarly, we can show that ri ∈ III1(B, c0) for i = 2, . . . , l. This
proves the theorem. □

Theorem 3.8. σr(B, c0) \ ¶r1, r2, . . . , rl♢ ⊆ III2(B, c0).

Proof. Let λ belongs to the set σr(B, c0)\¶r1, r2, . . . , rl♢. Then (♣λ−r1♣ · · · ♣λ−rl♣)
1
l <

(♣s1♣ . . . ♣sl′♣)
1
l′ and λ /∈ ri for all i ∈ ¶1, 2, . . . , l♢. This inequality shows that the series∑∞

k=0 ♣znk♣ in (3.5) is not convergent when n goes to inĄnity. In that case, B− λI does
not have bounded inverse. Then from Table 1, we Ąnd that λ ∈ III2(B, c0). Hence
σr(B, c0) \ ¶r1, r2, . . . , rl♢ ⊆ III2(B, c0). □

Theorem 3.9. III1(B, c0) = ¶r1, r2, . . . , rl♢.

Proof. From Table 1, we have σr(B, c0) = III1(B, c0) ∪ III2(, c0) and the union is
disjoint. Then taking complement of the inclusion of Theorem 3.8 in σr(B, c0),
we obtain that σr(B, c0) \ III2(B, c0) ⊆ ¶r1, r2, . . . , rl♢. That is, III1(B, c0) ⊆
¶r1, r2, . . . , rl♢. This inclusion together with Theorem 3.7 implies that III1(B, c0) =
¶r1, r2, . . . , rl♢. □

Theorem 3.10. III2(B, c0) = σr(B, c0) \ ¶r1, r2, . . . , rl♢.

Proof. Taking complement of the result of Theorem 3.9 in σr(B, c0), we obtain that
III2(B, c0) = σr(B, c0) \ ¶r1, r2, . . . , rl♢. □
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4. Fine Spectra of the Matrix B(r1, . . . , r4; s1, . . . , s6)

We consider the matrix

B(r1, . . . , r4; s1, . . . , s6)

=




r1 0 0 0 0 0 0 0 0 . . .
s1 r2 0 0 0 0 0 0 0 . . .
0 s2 r3 0 0 0 0 0 0 . . .
0 0 s3 r4 0 0 0 0 0 . . .
0 0 0 s4 r1 0 0 0 0 . . .
0 0 0 0 s5 r2 0 0 0 . . .
0 0 0 0 0 s6 r3 0 0 . . .
0 0 0 0 0 0 s1 r4 0 . . .
0 0 0 0 0 0 0 s2 r1 . . .
...

...
...

...
...

...
...

...
. . . . . .




.

Now, consider the following sets:

D =
{
λ ∈ C : (♣λ − r1♣♣λ − r2♣♣λ − r3♣♣λ − r4♣)

1
4 ≤ (♣s1♣♣s2♣♣s3♣♣s4♣♣s5♣♣s6♣)

1
6

}
,

D1 =
{
λ ∈ C : (♣λ − r1♣♣λ − r2♣♣λ − r3♣♣λ − r4♣)

1
4 < (♣s1♣♣s2♣♣s3♣♣s4♣♣s5♣♣s6♣)

1
6

}
,

D2 =
{
λ ∈ C : (♣λ − r1♣♣λ − r2♣♣λ − r3♣♣λ − r4♣)

1
4 = (♣s1♣♣s2♣♣s3♣♣s4♣♣s5♣♣s6♣)

1
6

}
.

From the discussion of the previous section, we deduce the following results:

(a) B(r1, . . . , r4; s1, . . . , s6) ∈ B(c0);
(b) ∥B(r1, . . . , r4; s1, . . . , s6)∥c0 ≤ max

i,j
¶♣ri♣ + ♣sj♣: 1 ≤ i ≤ 4, 1 ≤ j ≤ 6♢;

(c) σ(B(r1, . . . , r4; s1, . . . , s6), c0) = D;
(d) σp(B(r1, . . . , r4; s1, . . . , s6), c0) = ∅;
(e) σp(B(r1, . . . , r4; s1, . . . , s6)

∗, c∗
0

∼= ℓ1) = D1;
(f) σr(B(r1, . . . , r4; s1, . . . , s6), c0) = D1;
(g) σc(B(r1, . . . , r4; s1, . . . , s6), c0) = D2;
(h) III1σ(B(r1, . . . , r4; s1, . . . , s6), c0) = ¶r1, r2, r3, r4♢;
(i) III2σ(B(r1, . . . , r4; s1, . . . , s6), c0) = D1 \ ¶r1, r2, r3, r4♢.

In particular, if we take r1 = 1 − i, r2 = −i, r3 = −1.5, r4 = −i and s1 = i,
s2 = 1 + i, s3 = −2, s4 = −1.5, s5 = 1 − i, s6 = −1, then the spectrum is given by

σ(B(r1, . . . , r4; s1, . . . , s6), c0) =
{
λ ∈ C : (♣λ − 1 + i♣♣λ + i♣2♣λ + 1.5♣)

1
4 ≤ 6

1
6

}
,

which is shown by the shaded region in Figure 1.

5. Conclusions

We have studied the spectral decomposition of the matrix B(r1, . . . , rl; s1, . . . , sl′),
which generalizes the following matrices.

• The backward difference operator ∆ [3] for l = 1, l′ = 1, r1 = 1 and s1 = −1.
• The Right shift operator for l = 1, l′ = 1, r1 = 0 and s1 = 1.
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Figure 1. Spectrum of B(r1, . . . , r4; s1, . . . , s6).

• The Zweier matrix [5] for l = 1, l′ = 1, r1 = s and s1 = 1 − s for some complex
numbers s ̸= 0, 1.

• The generalized difference operator B(r, s) [4] for l = 1, l′ = 1, r1 = r and
s1 = s for some complex numbers r and s ̸= 0.
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CHAOS AND SHADOWING IN GENERAL SYSTEMS

M. FATEHI NIA1 AND A. ZAMANI BAHABADI2

Abstract. In this paper we describe some basic notions of topological dynamical
systems for maps of type f : X × X → X named general systems. This is proved
that every uniformly expansive general system has the shadowing property and every
uniformly contractive general system has the (asymptotic) average shadowing and
shadowing properties. In the rest, Devaney chaos for general systems is considered.
Also, we show that topological transitivity and density of periodic points of a general
systems imply topological ergodicity. We also obtain some results on the topological
mixing and sensitivity for general systems.

1. Introduction

Shadowing and ergodic properties in discrete dynamical systems have received
increasing attention in recent years [4–7]. Many authors investigated the relation
between shadowing properties and other ergodic properties such as mixing and tran-
sitivity [10, 12,14]. In [2] Blank introduced the notion of average-shadowing property
and Gu [9] followed the same scheme to introduce the notion of the asymptotic av-
erage shadowing property. In [14] Sakai considered various shadowing properties for
positively expansive maps on compact metric spaces and prove that for a positively
expansive map; Lipschitz shadowing property, the s-limit shadowing property and
the strong shadowing property are all equivalent to the shadowing property. He also
prove that average shadowing property and topological transitivity are equivalent for
every positively expansive map on a compact metric space. Theorem B in [3] shows
that the two-sided limit shadowing property implies topological mixing. In [5,6] the
author introduce uniformly contractive (expansive) iterated function systems (IFS)
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and prove that every uniformly expansive IFS has shadowing property and every uni-
formly contractive IFS has shadowing and (asymptotic) average shadowing properties.
R. Gu [9,11] prove that every onto continuous map on a compact metric space with
(asymptotic) average shadowing property is chain transitive. Also, in [5,6] the author
prove similar results for iterated function systems.

The relationship between chaos and shadowing is an interesting topic for many
researchers in the recent years. There are different definitions of chaos. One of the
popular definition is Devaney chaos. Indeed a map f is chaotic in the case of Devaney
if the periodic points of f is dense, f is topologically transitive and is sensitive. This
is well known that the density of periodic points and topological transitivity imply
sensitivity. Sanz-Serna [15] devised a method to simulate chaos by use of shadowing
lemma. In [1], the authors introduced the notion of P -chaos by changing the condition
of transitivity in the definition of Devaney chaos to the shadowing property, and they
proved that every P -chaotic systems on a connected space is Devaney chaotic with
positive topological entropy.

In this paper we consider a generalization for discrete dynamical systems which
introduced in [13]. The main idea of this generalization is based on considering maps
f : X × X → X instead of maps f : X → X, as discrete dynamical systems. Firstly,
we define basic notions, such as, orbit, periodic orbit, shadowing and ergodic properties
which we need in the following. Section 3 is devoted to shadowing properties, the
main result of this section is Theorem 3.1 which shows that in generalized dynamics
uniformly expansivity implies shadowing property. Then two examples of general
systems on symbolic space and unit circle are given which have shadowing properties.
In section 4, we study the chaotic properties of a general dynamical system. We show
that similar original maps and non-autonomous discrete systems [16], the density
of periodic points and topological transitivity imply sensitivity in general systems.
Finally, we obtain some notions such as topological ergodicity, topological mixing and
sensitivity for general systems.

2. preliminaries

Let (X, d) be a complete metric space and f : X × X → X be a continuous map.
For x ∈ X, define the orbit of x as follows: O(x) = ¶xn♢∞

n=0, where x1 = x0 = x and
xn+1 = f(xn−1, xn) for all n ≥ 1.

We say that x ∈ X is a periodic point of period m if xkm+i = xi for every k ∈ N

and 0 ≤ i ≤ n.
The map f is called to be sensitive if there is e > 0 such that for every x ∈ X and

every open subset U of X containing x, there is a point y ∈ U and n ∈ N such that
d(xn, yn) > e.

We say that f is topologically transitive if for every nonempty open sets U , V , if
there is z ∈ U such that for some m ∈ N, zm ∈ V . We say that f is chaotic in the
sense of Devaney on X if:

1. f is topologically transitive in X;
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2. the set of all periodic point of f is dense in X;
3. f is sensitive.

Definition 2.1. The map f : X × X → X is said to be contractive if there is a
constant 0 < α < 1, called a contractive constant, such that for every disjoint points
(x, y), (z, w) ∈ X × X then d(f(x, y), f(z, w)) < α max¶d(x, z), d(y, w)♢.

3. Shadowing and Expanding

For given δ > 0, a sequence ¶xn♢n≥0 in X is said to be a δ-pseudo orbit of f :
X × X → X if x1 = x0 and for every n ≥ 1 we have d(xn+1, f(xn−1, xn)) < δ.

One says that the map f : X × X → X has the shadowing property if for given
ϵ > 0 there exists δ > 0 such that for any δ-pseudo orbit ¶xn♢n≥0 there exists y0 ∈ X
such that d(x0, y0) < ϵ and d(xn, f(yn−2, yn−1)) ≤ ϵ for all n ≥ 2. In this case one
says that the orbit ¶yn♢n≥0 or the point y0, ϵ-shadows the δ-pseudo orbit ¶xn♢n≥0.

Definition 3.1. The map f : X × X → X is said to be uniformly expansive if there
exists constants 0 < λ < 1 such that for x, y ∈ X × X

d(f(x), f(y)) > λ−1d′(x, y),

where x = (x1, x2), y = (y1, y2) and d′((x1, x2), (y1, y2)) = max¶d(x1, y1), d(x2, y2)♢.

Definition 3.2. A sequence ¶xi♢i≥0 of points in X is called an asymptotic average
pseudo orbit of f if

lim
n→∞

1

n

n−1∑

i=1

d(f(xi−1, xi), xi+1) = 0.

A sequence ¶xi♢i≥0 in X is said to be asymptotically shadowed in average by a point
z in X if

lim
n→∞

1

n

n−1∑

i=0

d(zi, xi) = 0,

where ¶zi♢i≥0 is orbit of the point z.

Definition 3.3. Let f : X × X → X be a continuous map. For δ > 0, a sequence
¶xi♢i≥0 of points in X is called a δ-average-pseudo-orbit of f if there is a number
N = N(δ) such that for all n ≥ N

1

n

n−1∑

i=1

d(f(xi−1, xi), xi+1) < δ.

We say that f has the average shadowing property if for every ϵ > 0 there is δ > 0
such that every δ-average-pseudo-orbit ¶xi♢i≥0 is ϵ-shadowed in average by some point
y ∈ X, that is,

lim sup
n→∞

1

n

n−1∑

i=0

d(yi, xi) < ϵ,

where ¶yi♢i≥0 is orbit of the point y.
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In the next theorem whose proof is based on [8, Theorem 2.2], we provide some
coefficient conditions for a general system to have the shadowing property.

Theorem 3.1. Let f : X × X → X be an uniformly expansive map and for every

x ∈ X the restricted functions f : ¶x♢ × X → X and f : X × ¶x♢ → X be surjective,

then f has the shadowing property.

Proof. The main idea of the proof is to find a Cauchy sequence which converges to a
point that ϵ-traced our considered δ-pseudo orbit. Assume that for every x ∈ X the
orbit of x, denoted by ¶xf,n♢n≥0, as xf,0 = x, xf,1 = x and xf,n+1 = f(xf,n−1, xf,n) for
all n ≥ 1. For given ϵ > 0 take δ = (λ − 1)ϵ, where 0 < λ < 1 is expansivity constant
and let ¶xn♢ be a δ-pseudo orbit of f . Consider the sequence ¶zn♢n≥0 in X defined
as follows: z0 = x0, z1 = x1 = x0 and z2 be a point that x2 = f(z1, z2) and for every
n > 2, zn be a point that xn = zf,n

n . Given n ≥ 1 and 0 ≤ k ≤ n − 1, denote

zn,k = zf,k
n .(3.1)

This implies that for any n ≥ 1 and 2 ≤ k ≤ n − 1 we have:

zn,k = f(zf,k−2
n , zf,k−1

n ), xn = f(zn,n−2, zn,n−1).(3.2)

Claim. The sequence ¶zn♢n≥0 in X is a Cauchy sequence.
Proof of Claim. Consider the function φ : (X × X) × (X × X) → R defined by

φ(s, t) =







λ, s = t,
d(f(s), f(t))

d′(s, t)
, s ̸= t,

where 0 < λ < 1 is the expansivity ratio number. This implies that for every
(a, b) ̸= (c, d) ∈ X × X, we have that

(3.3) d(a, c) ≤
d(f(a, b), f(c, d))

λ
and d(b, d) ≤

d(f(a, b), f(c, d))

λ
.

Firstly, fixing n ≥ 1 and m ≥ 1, by using (3.1), (3.2) and above inequalities we obtain:

d(zn, zn+m) ≤
d(zn,1, zn+m,1)

λ
≤

d(zn,2, zn+m,2)

λ2
≤ · · · ≤

d(xn, zn+m,n−1)

λn−1
.

Secondly, by induction on m ≥ 1 we show that the following inequality holds uniformly
with respect to n ≥ 1:

(3.4) d(xn, zn+m,n−1) ≤ δ
m∑

k=1

λ−k.

Indeed, for m = 1 the inequality (3.4) follows from (3.2) and (3.3):

d(xn, zn+1,n−1) ≤
d(f(xn−1, xn), f(zn+1,n−2, zn,n−1))

λ
=

d(f(xn−1, xn), xn+1)

λ
≤

δ

λ
.
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Assume that (3.4) holds for some m = p ≥ 1 uniformly on n ≥ 1. Taking into account
this assumption, as well as (3.2), (3.3) and (3.4) for m = p + 1:

d(xn, zn+p+1,n−1) ≤
d(f(xn−1, xn), f(zn+p+1,n−2, zn+p,n−1))

λ

=
d(f(xn−1, xn), zn+p+1,n)

λ

≤
d(f(xn−1, xn), xn+1) + d(xn+1, zn+p+1,n)

λ

≤
1

λ



δ + δ
p
∑

k=1

λ−k



≤ δ
p+1
∑

k=1

λ−k.

Then (3.4) holds for any m ≥ 1 and any n ≥ 1.
So, we have the following relation:

d(zn, zn+m) ≤
1

λn
δ

m∑

k=1

λ−k ≤
1

λn
·

δ

λ − 1
=

ϵ

λn
·

δ

λ − 1
≤ ϵλ−n.(3.5)

Hence, ¶zn♢n≥0 in X is a Cauchy sequence.
Now, we continue the proof of the theorem.
Let y denote its limit and consider the sequence ¶yf,n♢ as orbit of y. From (3.1)

one has for any k ≥ 0
lim

n→∞
z

n,k
= yf,k.

Letting m → ∞ in (3.5) implies d(zn, y) ≤ ϵλ−n, and consequently

d(xn, yf,n) ≤ λn(λ−nϵ) = ϵ.

Therefore, the orbit ¶yf,n♢n≥0 ϵ-shadows the δ-pseudo orbit ¶xn♢n≥0. □

Theorem 3.2. If f : X × X → X is uniformly contracting, then it has shadowing

property.

Proof. Assume that 0 < β < 1 is the contracting ratio of f . Given ϵ > 0 take δ = (1−α)ϵ
2

and suppose that ¶xi♢i≥0 is a δ-pseudo orbit for f . So, d(f(xi−1, xi), xi+1) < δ for all
i ≥ 1. Put βi = d(f(xi−1, xi), xi+1) for all i ≥ 1. Consider an orbit ¶yi♢i≥0 such that
d(y0, x0) < ϵ

2
and yi+1 = f(yi−1, yi) for all i ≥ 1.

Now we will show that d(yi, xi) < ϵ for all i ≥ 0. Put M = d(x0, y0). Obviously,

d(x1, y1) ≤ d(x1, f(x0, x0)) + d(f(x0, x0), f(y0, y0)) ≤ β0 + αM.

Similarly,

d(x2, y2) ≤d(x2, f(x0, x1)) + d(f(x0, x1), f(y0, y1))

≤β1 + αd(x1, y1)

≤β1 + α(β0 + αM)
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and

d(x3, y3) ≤d(x3, f(x1, x2)) + d(f(x1, x2), f(y1, y2))

≤β2 + αd(x2, y2)

≤β2 + α(β1 + αd(x1, y1))

≤β2 + α(β1 + α(β0 + αM))

=β2 + αβ1 + α2β0 + α3M.

By induction, one can prove that for each i > 2

d(xi, yi) ≤ βi−1 + αβi−2 + · · · + αi−1β0 + αiM.

This implies that any

d(xn, yn) ≤δ(1 + α + · · · + αn−1) ≤
1

1 − β
+ M <

ϵ

2
+

ϵ

2
,

and so, the proof is complete. □

In [5, 6], Fatehi Nia proved that every uniformly contractive IFS has average shad-
owing property and asymptotic average shadowing property. The next theorems show
that similar results are established for general systems.

Theorem 3.3. If f : X × X → X is contracting, then it has the average shadowing

property.

Proof. Assume that β < 1 is the contracting ratio of f . For given ϵ > 0, take
δ = (1−β)ϵ

2
≤ ϵ

2
and suppose ¶xi♢i≥0 is a δ-pseudo orbit for f . So, there exists a

natural number N = N(δ) such that 1
n

∑n−1
i=0 d(f(xi, xi+1), xi+2) < δ for all n ≥ N(δ).

Put αi = d(f(xi, xi+1), , xi+2) for all i ≥ 0. Consider an orbit ¶yi♢i≥0 such that
d(x0, y0) < δ ≤ ϵ

2
and yi+2 = f(yi, yi+1) for all i ≥ 0.

Now we will show that lim supn→∞
1
n

∑n−1
i=0 d(yi, xi) < ϵ.

Take M = d(x0, y0). Similarly,

d(x2, y2) ≤d(x2, f(x0, x1)) + d(f(x0, x1), f(y0, y1))

≤α1 + βd(x1, y1)

≤α1 + β(α0 + βM)

and

d(x3, y3) ≤d(x3, f(x1x2)) + d(f(x1, x2), f(y1, y2))

≤α2 + βd(x2, y2)

≤α2 + β(α1 + βd(x1, y1))

≤α2 + β(α1 + β(α0 + βM))

=α2 + βα1 + β2α0 + β3M.
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By induction, one can prove that for each i > 2

d(xi, yi) ≤ αi−1 + βαi−2 + · · · + βi−1α0 + βiM.

This implies that

n−1∑

i=0

d(yi, xi) =M(1 + β + · · · + βn−1) + α0(1 + β + · · · + βn−2)

+ α1(1 + β + · · · + βn−3) + · · · + αn−2

≤
1

1 − β



M +
n−2∑

i=0

αi



.

Therefore,

lim sup
n→∞

1

n

n−1∑

i=0

d(yi, xi) ≤
1

1 − β



M + lim sup
n→∞

1

n

n−2∑

i=0

αi



<
1

1 − β
(M + δ)

≤
ϵ

2
+

ϵ

2
= ϵ.

So, the proof is complete. □

Theorem 3.4. If a map f : X × X → X is uniformly contracting, then it has the

asymptotic average shadowing property.

Proof. Assume that 0 < β < 1 is the contracting ratio of f and suppose ¶xi♢i≥0 is
an asymptotic average pseudo orbit for f . So, limn→∞

1
n

∑n−1
i=0 d(f(xi, xi+1), xi+2) = 0.

Put αi = d(f(xi, xi+1), , xi+2), for all i ≥ 0. Consider an orbit ¶yi♢i≥0 such that
y0 ∈ X, y1 = f(y0, y0) and yi+2 = f(yi, yi+1), for all i ≥ 0.

Now, we will show that limn→∞
1
n

∑n−1
i=0 d(yi, xi) = 0.

Put M = d(x0, y0). Obviously,

d(x2, y2) ≤ d(x2, f(x0, x0)) + d(f(x0, x0), f(y0, y1)) ≤ α0 + βM.

Similarly,

d(x3, y3) ≤d(x3, f(x1, x2)) + d(f(x1, x2), f(y1, y2))

≤α2 + βd(x2, y2)

≤α2 + β(α1 + βd(x1, y1))

≤α2 + β(α1 + β(α0 + βM))

=α2 + βα1 + β2α0 + β3M.

By induction, one can prove that for each i > 2

d(xi, yi) ≤ αi−1 + βαi−2 + · · · + βi−1α0 + βiM.
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This implies that

n−1∑

i=0

d(yi, xi) ≤M(1 + β + · · · + βn−1)

+ α0(1 + β + · · · + βn−2)

+ α1(1 + β + · · · + βn−3) + · · · + αn−2

≤
1

1 − β



M +
n−2∑

i=0

αi



.

Therefore,

lim
n→∞

1

n

n−1∑

i=0

d(yi, xi) ≤ lim
n→∞

1

n



1

1 − β



M +
n−2∑

i=0

αi



= 0,

and so, the proof is complete. □

In the following, we introduce some non trivial examples of general systems on real
line, symbolic space and unit circle, that have shadowing properties.

Example 3.1. Consider the following maps f1, f2 : R → R given by

f1(x) =
1

2
x, f2(x) = 2x.

Take the map f : R × R → R defined by f(x, y) = f1(x)+f2(y)
3

. So, for every disjoint

points (x, y), (z, w) ∈ R × R then d(f(x, y), f(z, w)) < 2
3

max¶d(x, z), d(y, w)♢. Then
this general system is contracting and has the shadowing properties.

Example 3.2. Let Σ denote the set of all infinite sequence x = (x0, x1, x2, . . . ), where
xn = 0 or 1. The set Σ becomes a compact metric space if we define the distance
between two points x, y by ρ(x, y) =

∑∞
i=0

♣xi−yi♣

2♣i♣ .
Now, consider the map f : Σ × Σ → Σ defined by

f(¶xi♢i≥0¶yi♢i≥0) = (x0, y0, x1, y1, . . . ).

Please note that if the sequences ¶xi♢i≥0 and ¶zi♢i≥0 are equal in n initial elements
and ¶yi♢i≥0 and ¶wi♢i≥0 are equal in m initial elements, then f(¶xi♢i≥0, ¶yi♢i≥0) and
f(¶zi♢i≥0¶wi♢i≥0) are equal in m + n initial elements. This implies that

ρ(f(¶xi♢i≥0, ¶yi♢i≥0), f(¶zi♢i≥0, ¶wi♢i≥0))

<
1

2
max ¶ρ(¶xi♢i≥0, ¶zi♢i≥0), ρ(¶yi♢i≥0, ¶wi♢i≥0)♢ .

Consequently, the map f : Σ×Σ → Σ is contracting and has the shadowing properties
mentioned above.

Example 3.3. Consider the unit circle S1 = R/Z. The natural distance on R induces
a distance, d, on S1. Let f : S1 × S1 → S1 be a map defined by f(x, y) = (2x + 3y)
(mod 1). This is clear that this is an uniformly expanding map and for every x, y ∈ S1
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the maps f : ¶x♢×S1 → S1 and f : S1 ×¶y♢ → S1 are surjective. Then, Theorem 3.1
implies that the function f : S1 × S1 → S1 as a general system has the shadowing
property.

4. Chaos

In this section, we consider the notion of Devaney’s chaos for general systems and
prove some results about the relations between this notion and some main properties
in general systems.

Theorem 4.1. Let X be an unbounded metric space with no isolated points. If

f : X × X → X is topologically transitive and the set of all periodic points is dense

in X, then it is sensitive.

Proof. Let x ∈ X be an arbitrary point and U be any neighborhood of x. We will
show that there exist z ∈ U and m > 0 such that d(xm, zm) > 1

4
. Since there are

not isolated points and by density of the periodic points, there exists a periodic point
y ∈ U such that y ̸= x. Put c := max¶d(x, z) > 0 : z ∈ O(y)♢. Let c > 1

2
. Since X

is unbounded, X \ B2c(x) is a nonempty open subset. Topological transitivity of f

implies that there is y′ ∈ U and m′ > 0 such that y′
m′ ∈ X \ B2c(x).

On the other hand O(y) ⊂ Bc(x), therefore

d(ym′ , y′
m′) ≥ d(x, y′

m′) − d(x, ym′) > 2c − c = c >
1

2
.

So, we have either d(xm′ , y′
m′) > 1

4
or d(xm′ , ym′) > 1

4
.

The above result is once c > 1
2
. Now, suppose that c ≤ 1

2
. By transitivity,

there exists y′′ ∈ U and m′′ > 0 such that y′′
m′′ ∈ X \ B1(x). Also we have that

ym′′ ∈ Bc(x) ⊂ B 1

2

(x). Hence,

d(ym′′ , y′′
m′′) ≥ d(x, y′′

m′′) − d(x, ym′′) > 1 −
1

2
=

1

2
.

Thus, either d(xm′′ , y′′
m′′) > 1

4
or d(xm′′ , ym′′) > 1

4
.

So, the proof is complete. □

Corollary 4.1. Let X be an unbounded metric space with no isolated points. If

f : X × X → X is topologically transitive and the set of all periodic points is dense

in X, then it is chaotic in the sense of Devaney.

Remark 4.1. If f : X → X (X is a complete metric space) and O(x) = ¶xn♢∞
n=0,

where xn+1 = f(xn), then we have O(xk) ⊆ O(x) for every k ≥ 1. In this case f
is topological transitive if and only if it is transitive (f has a dense orbit). But, for
a general system f : X × X → X may the above fact is not true. For example for
x ∈ X

O(x) =¶x = x0, x1 = f(x, x), x2 = f(x0, x1), . . . ♢,

O(x1) =¶x1 = (x1)0, (x1)1 = f(x1, x1), (x1)2 = f((x1)0, (x1)1), . . . ♢,
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and may f(x1, x1) /∈ O(x). In this case the density of an orbit of a point may be does
not show topological transitivity. Indeed if U and V are two nonempty open subsets of
X, then the density of an orbit of a point z implies there are positive integers n > m
such that zm ∈ U and zn ∈ V . But this does not show the topological transitivity,
because zn may be not in the orbit of zm.

The above remark motivated us to define “strong dense orbit” of x as follows.
We say that the orbit of x ∈ X is strong dense orbit if the orbit of x is dense and

every element of the orbit of x is also dense in X. We say that the map f : X×X → X
is strong transitive if it has a strong dense orbit.

Theorem 4.2. Let X be a complete metric space. If the map f : X × X → X is

strong transitive, then it is topological transitive. If the map f : X × X → X is

topological transitive, then it is transitive (f has a dense orbit).

Proof. Let the orbit of z be strong dense orbit and U and V be two nonempty open
subsets of X. Then the density of the orbit of point z implies there is a positive integer
n such that zn ∈ U . The strong density of the orbit z implies the orbit of zn meets V .
This shows that f is topological transitive. Suppose that f is topological transitive and
Ui, i = 1, 2, . . . , are a countable basis of X. Put O−(Ui) = ¶x ∈ X : O(x) ∩ Ui ≠ ∅♢.
Since f is continuous and topological transitive, so O−(Ui) is open and dense in X.
Since X is complete, so

⋂
Ui ≠ ∅. The orbit of every x ∈

⋂
Ui is dense in X. This

implies f is transitive. □

We say that the map f : X × X → X is topologically ergodic if for every two
nonempty open sets U, V ⊂ X there exist an increasing sequence of positive integers
¶nk♢∞

k=0 and an integer l ≥ 1 such that for every k ≥ 1, nk+1 − nk ≤ l, there is z ∈ U
such that znk

∈ V .

Theorem 4.3. Let X be a compact metric space and f : X × X → X be a continuous

map. If f is topologically transitive and the periodic points of f are dense in X, then

f is topologically ergodic.

Proof. Let U and V be two nonempty open subsets of X. Since f is topologically
transitive, there is x ∈ U and n > 0 such that xn ∈ V . Consider ϵ > 0 such that
Bϵ(xn) ⊂ V . By continuity of f , there exists open neighborhood W of x such that
Wn ⊂ V is as follows:

W = W0, W1 = f(W0, W0), W2 = f(W0, W1), . . . , Wn = f(Wn−2, Wn−1).

We can see that xn ∈ Wn. Since the set of all periodic points is dense in X, there
exists a periodic point q ∈ W with period m. Therefore, qn ∈ Wn ⊂ V . So, for
each k ≥ 0 we have qn+km = qn ∈ V . Hence, for each k ≥ 0, qkm = q ∈ U and
qn+km = qn ∈ V . So, f is topologically ergodic. □

Let f : X × X → X be a continuous map. For x, y ∈ X and ϵ ≥ 0 given, an
ϵ-chain from x o y of length n + 1 is a sequence ¶x = x0, x1, x2, . . . , xn = y♢ for which
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d(xi+1, f(xi−1, xi)) < ϵ for each 1 ≤ i ≤ n − 1. f is said to be topologically chain
transitive if for every x, y ∈ X, there exists an ϵ-chain from x to y for every ϵ > 0.

We say that f is topologically chain mixing if for every ϵ > 0 and x, y ∈ X there is
N ∈ N such that for each n ≥ N , there exists an ϵ-chain from x to y of length n.

Lemma 4.1. If f is topologically chain mixing and has the shadowing property then

f is topologically mixing.

Proof. The proof is clear. □

Theorem 4.4. Let f : X × X → X be an open continuous map with a fixed point a,

f(a, a) = a. If f is topologically transitive, then f is chain mixing.

Proof. Let x, y ∈ X and ϵ ≥ 0 be given. Since f is topologically transitive there exist
z, z′ ∈ X and m, m′ ∈ N such that

d(x1 = f(x, x), z) <ϵ,

d(zm, a) <ϵ,

d(z′, a) <ϵ,

d(z′
m, y) <ϵ.

Put N = m + m′ + 1. So, for each n ≥ N sequence ¶x = x0, z, . . . , zm−1, a, a, . . . , a
︸ ︷︷ ︸

, z′,

. . . , z′
m′−1, y♢ is an ϵ-chain of length n. Hence, f is chain mixing. □

Theorem 4.5. By assumption of previous theorem, if f has the shadowing property,

then f is topologically mixing.

Proof. By previous theorem and lemma proof is complete. □

Definition 4.1. We say that f : X × X → X is n-sensitive if there is integer e > 0
such that for every non empty open subset U ⊂ X, there exist pairwise disjoint points
x1, . . . , xn ∈ U and k ∈ N such that

min
1≤i̸=j≤n

d((xi)k, (xj)k) > e.

Theorem 4.6. Let f : X ×X → X be a continuous transitive map with n fixed points

p1, . . . , pn. If f has the shadowing property, then f is n-sensitive.

Proof. Suppose e = 1
2

min¶d(pi, pj) : i ≠ j♢ and U be an open subset of X. Let
x0 ∈ U and 0 < ϵ < e

2
such that Bϵ(x0) ⊂ U . By assumption of theorem and previous

theorem, f is topologically mixing. So for every 1 ≤ i ≤ n, there exists ki such that
there is δ-chain of length l from x0 to pi for every l ≥ ki. Where δ > 0 is in the
definition of shadowing property for ϵ > 0.

Hence, for every 1 ≤ i ≤ n there exists zi ∈ U such that d(zi, x0) < ϵ and
d((zi)l, pi) < ϵ. Put k = max¶ki : 1 ≤ i ≤ n♢. Therefore, ¶z1, z2, . . . , zn♢ ⊂ U and
d((zi)k, pi) < ϵ.
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Hence, we have

min
1≤i̸=j≤n

d((zi)k, (zj)k) >
e

4
.

This prove the theorem. □
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COEFFICIENT ESTIMATES FOR SUBCLASS OF m-FOLD

SYMMETRIC BI-UNIVALENT FUNCTIONS

A. MOTAMEDNEZHAD1, S. SALEHIAN2, AND N. MAGESH3

Abstract. In the present paper, a general subclass M
h,p

Σm

(λ, γ) of the m-Fold
symmetric bi-univalent functions is deĄned. Also, the estimates of the Taylor-
Maclaurin coefficients |am+1|, |a2m+1| and Fekete-Szegö problems are obtained for
functions in this new subclass. The results presented in this paper would generalize
and improve some recent works of several earlier authors.

1. Introduction

Let A be a class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}
of the form

(1.1) f(z) = z +
∞
∑

n=2

anzn.

Denote by S the class of all functions in the normalized analytic function class A

which are univalent in U (see details in [2, 3]).
Since univalent functions are one-to-one, they are invertible and the inverse functions

need not be defined on the entire unit disk U. In fact, the Koebe one-quarter theorem
[3] ensures that the image of U under every univalent function f ∈ S contains a
disk of radius 1/4. Therefore, every function f ∈ S has an inverse f−1 satisfying
f−1(f(z)) = z (z ∈ U) and

f(f−1(w)) = w


|w| < r0(f), r0(f) ≥ 1

4



.

Key words and phrases. Bi-univalent functions, m-fold symmetric univalent functions, m-fold
symmetric bi-univalent functions, coefficient estimates, Fekete-Szegö problem.
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In fact, the inverse function f−1 is given by

(1.2) f−1(w) = w − a2w
2 + (2a2

2 − a3)w
3 − (5a3

2 − 5a2a3 + a4)w
4 + · · · .

A function f ∈ A is said to be bi-univalent in U, if both f and f−1 are univalent in U

(see [10]). We denote σB the class of bi-univalent functions in U given by (1.1). For
examples the functions z

1−z
and − log(1 − z) belong to the class σB.

The first time in 1967, Lewin [4] introduced the class σB and proved that the bound
for the second coefficients of every f ∈ σB satisfies the inequality |a2| < 1.51. Also,
Smith [5] showed that |a2| < 2/

√
27 and |a3| < 4/27 for bi-univalent polynomial

f(z) = z + a2z
2 + a3z

3 with real coefficients.
Recently many researchers introduced subclasses of bi-univalent functions and ob-

tain non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|.
For example, we refer the reader to Srivastava et al. [6, 8, 10] and others [13,14]. The
coefficient estimate problem, i.e., bound of |an| (n ∈ N − {2, 3}) for each f ∈ σB, is
still an open problem.

Let m be a positive integer. A domain E is known as m-Fold symmetric if a rotation
of E around origin with an angle 2π/ maps E on itself. A function f(z) analytic in
U is said to be m-Fold symmetric if

f


ei 2π

m z


= ei 2π

m f(z).

For each function f ∈ S, function

(1.3) h(z) = m

√

f(zm)

is univalent and maps unit disk U into a region with m-Fold symmetry.
We denote by Sm the class of m-Fold symmetric univalent functions in U and clearly

S1 = S. Every f ∈ Sm has a series expansion of the form

(1.4) f(z) = z +
∞
∑

k=1

amk+1z
mk+1 (z ∈ U, m ∈ N).

Srivastava et al. [11], introduced a natural extensions of m-Fold symmetric univalent
functions and defined the class Σm of symmetric bi-univalent functions. They obtained
the series expansion for g = f−1 as:

f−1(w) =w − am+1w
m+1 + [(m + 1)a2

m+1 − a2m+1]w
2m+1

−


1

2
(m + 1)(3m + 2)a3

m+1 − (3m + 2)am+1a2m+1 + a3m+1



w3m+1 + · · · .(1.5)

For m = 1 formula (1.5) coincides with formula (1.2) of the class σB.
In fact, this widely-cited work by Srivastava et al. [7] actually revived the study of

m-Fold bi-univalent functions in recent years and that it has led to a flood of papers
on the subject by (for example) Srivastava et al. [7, 9, 11,12].

The aim of the this paper is to introduce new subclass M
h,p
Σm

(λ, γ) of the m-Fold
symmetric bi-univalent functions class Σm. Moreover, we obtain estimates on initial
coefficients |am+1|, |a2m+1| and Fekete-Szegö problems for functions in this subclass.
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The results presented in this paper would generalize and improve some recent works
of Altinkaya et al. [1] and Li et al. [13].

2. Subclass M
h,p
Σm

(λ, γ)

In this section, we introduce and consider the subclass M
h,p
Σm

(λ, γ).

Definition 2.1. Assume that h : U → C and p : U → C, are analytic functions of
the form

h(z) =1 + hmzm + h2mz2m + h3mz3m + · · · ,

p(w) =1 + pmwm + p2mw2m + p3mw3m + · · · ,

such that
min{Re((h(z)), Re (p(z))} > 0 (z ∈ U).

Let λ ≥ 0 and γ ∈ C− {0}. We say that a function f given by (1.4) is in the subclass

M
h,p
Σm

(λ, γ), if the following conditions are satisfied:

(2.1) 1 +
1

γ



(1 − λ)
zf ′(z)

f(z)
+ λ



1 +
zf

′′

(z)

f ′(z)



− 1


∈ h(U) (z ∈ U)

and

(2.2) 1 +
1

γ



(1 − λ)
wg′(w)

g(w)
+ λ



1 +
wg

′′

(w)

g′(w)



− 1


∈ p(U) (w ∈ U),

where g is the extension of f−1 to U.

Definition 2.2. A function f ∈ Σm given by (1.4) is said to be in the subclass CΣm
(β)

(0 ≤ β < 1), if two following conditions are satisfied:

Re



1 +
zf

′′

(z)

f ′(z)



> β and Re



1 +
wg

′′

(w)

g′(w)



> β (z, w ∈ U),

where g is the extension of f−1 to U.

Remark 2.1. There are many selections of the functions h(z) and p(z) which would pro-
vide interesting classes of m-Fold symmetric bi-univalent functions Σm. For example,
if we let

h(z) = p(z) =


1 + zm

1 − zm

α

= 1 + 2αzm + 2α2z2m + · · · (0 < α ≤ 1),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition

2.1. If f ∈ M
h,p
Σm

(λ, γ), then
∣

∣

∣

∣

∣

arg



1 +
1

γ



(1 − λ)
zf ′(z)

f(z)
+ λ



1 +
zf

′′

(z)

f ′(z)



− 1



∣

∣

∣

∣

∣

<
απ

2

and
∣

∣

∣

∣

∣

arg



1 +
1

γ



(1 − λ)
wg′(w)

g(w)
+ λ



1 +
wg

′′

(w)

g′(w)



− 1


∣

∣

∣

∣

∣

<
απ

2
.
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In this case we say that f belongs to the subclass MΣm
(α, λ, γ).

Also, for h(z) = p(z) =


1+zm

1−zm

α
, γ = 1 and λ = 0, the subclass M

h,p
Σm

(λ, γ) reduces

to the subclass Sα
Σm

which was considered by Altinkaya and Yalcin [1].
If we let

h(z) = p(z) =
1 + (1 − 2β)zm

1 − zm
= 1 + 2(1 − β)zm + 2(1 − β)z2m + · · · (0 ≤ β < 1),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition

2.1. If f ∈ M
h,p
Σm

(λ, γ), then

Re



1 +
1

γ



(1 − λ)
zf ′(z)

f(z)
+ λ



1 +
zf

′′

(z)

f ′(z)



− 1




> β

and

Re



1 +
1

γ



(1 − λ)
wg′(w)

g(w)
+ λ



1 +
wg

′′

(w)

g′(w)



− 1




> β.

In this case we say that f belongs to the subclass MΣm
(β, λ, γ).

Also, for h(z) = p(z) = 1+(1−2β)zm

1−zm
, γ = 1 and λ = 0, the subclass M

h,p
Σm

(λ, γ)

reduces to the subclass S
β
Σm

considered by Altinkaya and Yalcin [1].

Furthermore, for h(z) = p(z) = 1+(1−2β)zm

1−zm
, γ = 1 and λ = 1, the subclass Mh,p

Σm

(λ, γ)
reduces to Definition 2.2.

Remark 2.2. For one-fold symmetric bi-univalent functions, we denote the subclass
M

h,p
Σ1

(λ, γ) = M
h,p
Σ (λ, γ). Special cases of this subclass are illustrated below.

(i) By putting h(z) = p(z) =


1+z
1−z

α
and γ = 1, the subclass M

h,p
Σ (λ, γ) reduces

to the subclass MΣ(α, λ) studied by Li and Wang [13].

(ii) By putting h(z) = p(z) =


1+z
1−z

α
, γ = 1 and λ = 0, the subclass M

h,p
Σ (λ, γ)

reduces to the subclass Sα
σB

of strongly bi-starlike functions of order α (0 <
α ≤ 1).

(iii) By putting h(z) = p(z) = 1+(1−2β)z
1−z

and γ = 1, the subclass M
h,p
Σ (λ, γ) reduces

to the subclass BΣ(β, λ) studied by Li and Wang [13].

(iv) By putting h(z) = p(z) = 1+(1−2β)z
1−z

, γ = 1 and λ = 0, the subclass M
h,p
Σ (λ, γ)

reduces to the subclass SσB
(β) of bi-starlike functions of order β (0 ≤ β < 1).

(v) By putting h(z) = p(z) = 1+(1−2β)z
1−z

and λ = γ = 1, the subclass M
h,p
Σ (λ, γ)

reduces to the subclass CσB
(β) of bi-convev functions of order β (0 ≤ β < 1).

Theorem 2.1. Let f given by (1.4) be in the subclass M
h,p
Σm

(λ, γ) (λ ≥ 0, γ ∈ C−{0}).
Then

|am+1| ≤ min







|γ||hm|
m(1 + λm)

,

√

√

√

√

|γ|(|h2m| + |p2m|)
2m2(1 + λm)






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and

|a2m+1| ≤ min

{

|γ|(|h2m| + |p2m|)
4m(1 + 2λm)

+
(m + 1)|γ|2(|hm|2 + |pm|2)

4m2(1 + λm)2
,

(3λm2 + 2λm + 2m + 1)|γ||h2m| + (λm2 + 2λm + 1)|γ||p2m|
4m2(1 + 2λm)(1 + λm)

}

.

Proof. The main idea in the proof of Theorem 2.1 is to get the desired bounds for the
coefficient |am+1| and |a2m+1|. Indeed, by considering the relations (2.1) and (2.2), we
have

(2.3) 1 +
1

γ



(1 − λ)
zf ′(z)

f(z)
+ λ



1 +
zf

′′

(z)

f ′(z)



− 1


= h(z) (z ∈ U)

and

(2.4) 1 +
1

γ



(1 − λ)
wg′(w)

g(w)
+ λ



1 +
wg

′′

(w)

g′(w)



− 1

]

= p(w) (w ∈ U),

where each of the functions h and p satisfies the conditions of Definition 2.1. For
precise comparison of the coefficients of the above equations, in the following we
obtain Taylor-Maclaurin series expansions each side of the equations

1 +
1

γ



(1 − λ)
zf ′(z)

f(z)
+ λ



1 +
zf

′′

(z)

f ′(z)



− 1

]

(2.5)

=1 +
m(1 + λm)

γ
am+1z

m +

{

2m(1 + 2λm)

γ
a2m+1 − m(1 + 2λm + λm2)

γ
a2

m+1

}

z2m

+ · · · ,

and

1 +
1

γ



(1 − λ)
wg′(w)

g(w)
+ λ



1 +
wg

′′

(w)

g′(w)



− 1

]

(2.6)

=1 − m(1 + λm)

γ
am+1w

m +

{

−2m(1 + 2λm)

γ
a2m+1

+
m(1 + 2m + 2λm + 3λm2)

γ
a2

m+1

}

w2m + · · · .

Also from the Definition 2.1, the analytic functions h and p have the following Taylor-
Maclaurin series expansions

(2.7) h(z) = 1 + hmzm + h2mz2m + h3mz3m + · · ·
and

(2.8) p(w) = 1 + pmwm + p2mw2m + p3mw3m + · · · .
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By comparing the coefficients of the equations (2.5), (2.7), (2.6) and (2.8), respectively,
we get

m(1 + λm)

γ
am+1 =hm,(2.9)

2m(1 + 2λm)

γ
a2m+1 − m(1 + 2λm + λm2)

γ
a2

m+1 =h2m,(2.10)

−m(1 + λm)

γ
am+1 =pm(2.11)

and

(2.12) − 2m(1 + 2λm)

γ
a2m+1 +

m(1 + 2m + 2λm + 3λm2)

γ
a2

m+1 = p2m.

From (2.9) and (2.11), we get

(2.13) hm = −pm

and

(2.14) a2
m+1 =

γ2(h2
m + p2

m)

2m2(1 + λm)2
.

Adding (2.10) and (2.12), we get

(2.15) a2
m+1 =

γ(h2m + p2m)

2m2(1 + λm)
.

Therefore, we find from the equations (2.13), (2.14) and (2.15) that

|am+1| ≤ |γ||hm|
m(1 + λm)

and |am+1| ≤
√

√

√

√

|γ|(|h2m| + |p2m|)
2m2(1 + λm)

,

respectively. So, we get the desired estimate on the coefficient |am+1|.
The proof is completed by finding the bound on the coefficient |a2m+1|. Upon

subtracting (2.12) from (2.10), we get

(2.16) a2m+1 =
γ(h2m − p2m)

4m(1 + 2λm)
+

(m + 1)

2
a2

m+1.

Putting the value of a2
m+1 from (2.14) into (2.16), it follows that

(2.17) a2m+1 =
γ(h2m − p2m)

4m(1 + 2λm)
+

(m + 1)γ2(h2
m + p2

m)

4m2(1 + λm)2
.

By substituting the value of a2
m+1 from (2.15) into (2.16), we obtain

(2.18) a2m+1 =
γ(h2m − p2m)

4m(1 + 2λm)
+

(m + 1)γ(h2m + p2m)

4m2(1 + λm)
.
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Therefore, from the equations (2.17) and (2.18), we get

|a2m+1| ≤ |γ|(|h2m| + |p2m|)
4m(1 + 2λm)

+
(m + 1)|γ|2(|hm|2 + |pm|2)

4m2(1 + λm)2

and

|a2m+1| ≤ (3λm2 + 2λm + 2m + 1)|γ||h2m| + (λm2 + 2λm + 1)|γ||p2m|
4m2(1 + 2λm)(1 + λm)

. □

Theorem 2.2. Let f given by (1.4) be in the subclass M
h,p
Σm

(λ, γ) (λ ≥ 0, γ ∈ C−{0}).
Also let ρ be real number. Then

|a2m+1−ρa2
m+1|≤























|γ|
4m(1 + 2λm)

{(1 + T (ρ)) |h2m| + (1 − T (ρ)) |p2m|} , |T (ρ)| ≤ 1,

|γ|
4m(1 + 2λm)

{∣

∣

∣1 + T (ρ)
∣

∣

∣|h2m| +
∣

∣

∣T (ρ) − 1
∣

∣

∣|p2m|
}

, |T (ρ)| ≥ 1,

where

T (ρ) =
(m − 2ρ + 1)(1 + 2λm)

m(1 + λm)
.

Proof. From the equation (2.16), we get

(2.19) a2m+1 − ρa2
m+1 =

γ(h2m − p2m)

4m(1 + 2λm)
+

m − 2ρ + 1

2
a2

m+1.

From the equation (2.15) and (2.19), we have

a2m+1 − ρa2
m+1 =

|γ|
4m(1 + 2λm)

{

1 +
(m − 2ρ + 1)(1 + 2λm)

m (1 + λm)

]

h2m

+



(m − 2ρ + 1)(1 + 2λm)

m(1 + λm)
− 1

]

p2m

}

.

Next, taking the absolute values we obtain

|a2m+1 − ρa2
m+1| ≤ |γ|

4m(1 + 2λm)

{
∣

∣

∣

∣

∣

1 +
(m − 2ρ + 1)(1 + 2λm)

m (1 + λm)

∣

∣

∣

∣

∣

|h2m|

+

∣

∣

∣

∣

∣

(m − 2ρ + 1)(1 + 2λm)

m(1 + λm)
− 1

∣

∣

∣

∣

∣

|p2m|
}

.

Then, we conclude that

|a2m+1−ρa2
m+1|≤























|γ|
4m(1 + 2λm)

{(1 + T (ρ)) |h2m| + (1 − T (ρ)) |p2m|} , |T (ρ)| ≤ 1,

|γ|
4m(1 + 2λm)

{
∣

∣

∣1 + T (ρ)
∣

∣

∣|h2m| +
∣

∣

∣T (ρ) − 1
∣

∣

∣|p2m|
}

, |T (ρ)| ≥ 1.

□
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3. Corollaries and Consequences

By setting

h(z) = p(z) =


1 + zm

1 − zm

α

= 1 + 2αzm + 2α2z2m + · · · (0 < α ≤ 1, z ∈ U),

in Theorem 2.1, we conclude the following result.

Corollary 3.1. Let f given by (1.4) be in the subclass MΣm
(α, λ, γ) (0 < α ≤ 1,

λ ≥ 0, γ ∈ C − {0}). Then

|am+1| ≤ min







2α|γ|
m(1 + λm)

,
α

m

√

2|γ|
1 + λm







and

|a2m+1| ≤ min

{

α2|γ|
m(1 + 2λm)

+
2α2(m + 1)|γ|2
m2(1 + λm)2

,
α2|γ|(m + 1)

m2(1 + λm)

}

.

By setting h(z) = p(z) =


1+zm

1−zm

α
(0 < α ≤ 1) in Theorem 2.2, we conclude the

following result.

Corollary 3.2. Let f given by (1.4) be in the subclass MΣm
(α, λ, γ) (0 < α ≤ 1,

λ ≥ 0, γ ∈ C − {0}). Also let ρ be real number. Then

|a2m+1 − ρa2
m+1| ≤























α2|γ|
m(1 + 2λm)

, |T (ρ)| ≤ 1,

α2|T (ρ)||γ|
m(1 + 2λm)

, |T (ρ)| ≥ 1,

where

T (ρ) =
(m − 2ρ + 1)(1 + 2λm)

m(1 + λm)
.

By setting γ = 1 and λ = 0 in Corollary 3.1, we conclude the following result.

Corollary 3.3. Let f given by (1.4) be in the subclass Sα
Σm

(0 < α ≤ 1). Then

|am+1| ≤
√

2α

m
and

|a2m+1| ≤ min

{

α2

m
+

2(m + 1)α2

m2
,
(m + 1)α2

m2

}

=
(m + 1)α2

m2
.

Remark 3.1. The bounds on |am+1| and |a2m+1| given in Corollary 3.3 are better than
those given in [1, Corolary 6], because of

√
2α

m
≤ 2α

m
√

α + 1

and
(m + 1)α2

m2
≤ α2

m
+

2(m + 1)α2

m2
≤ α

m
+

2(m + 1)α2

m2
.
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By setting m = 1 and γ = 1 in Corollary 3.1, we conclude the following result.

Corollary 3.4. Let f given by (1.1) be in the subclass MΣ(α, λ) (0 < α ≤ 1, λ ≥ 0).
Then

|a2| ≤























α

√

2

1 + λ
, 0 ≤ λ ≤ 1,

2α

1 + λ
, λ ≥ 1,

and

|a3| ≤























2α2

1 + λ
, 0 ≤ λ ≤ 2 +

√
13

3
,

α2

1 + 2λ
+

4α2

(1 + λ)2
, λ ≥ 2 +

√
13

3
.

Remark 3.2. The bounds on |a2| and |a3| given in Corollary 3.4 are better than those
given in [13, Theorem 2.2].

By setting m = 1 in Corollary 3.3, we conclude the following result.

Corollary 3.5. Let f given by (1.1) be in the subclass Sα
σB

of strongly bi-starlike

functions of order α (0 < α ≤ 1). Then

|a2| ≤
√

2α and |a3| ≤ 2α2.

By setting

h(z) =p(z) =
1 + (1 − 2β)zm

1 − zm

=1 + 2(1 − β)zm + 2(1 − β)z2m + · · · (0 ≤ β < 1, z ∈ U),

in Theorem 2.1, we conclude the following result.

Corollary 3.6. Let f given by (1.4) be in the subclass MΣm
(β, λ, γ) (0 ≤ β < 1,

λ ≥ 0, γ ∈ C − {0}). Then

|am+1| ≤ min







2(1 − β)|γ|
m(1 + λm)

,

√

√

√

√

2(1 − β)|γ|
m2(1 + λm)







and

|a2m+1| ≤ min

{

(1 − β)|γ|
m(1 + 2λm)

+
2(1 − β)2(m + 1)|γ|2

m2(1 + λm)2
,
(1 − β)(m + 1)|γ|

m2(1 + λm)

}

.

By setting h(z) = p(z) = 1+(1−2β)zm

1−zm
(0 ≤ β < 1) in Theorem 2.2, we conclude the

following result.
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Corollary 3.7. Let f given by (1.4) be in the subclass MΣm
(β, λ, γ) (0 ≤ β < 1,

λ ≥ 0, γ ∈ C − {0}). Also let ρ be real number. Then

|a2m+1 − ρa2
m+1| ≤























(1 − β)|γ|
m(1 + 2λm)

, |T (ρ)| ≤ 1,

(1 − β)|γ||T (ρ)|
m(1 + 2λm)

, |T (ρ)| ≥ 1,

where

T (ρ) =
(m − 2ρ + 1)(1 + 2λm)

m(1 + λm)
.

By setting γ = 1 and λ = 0 in Corollary 3.6, we conclude the following result.

Corollary 3.8. Let f given by (1.4) be in the subclass S
β
Σm

(0 ≤ β < 1). Then

|am+1| ≤























√

2(1 − β)

m
, 0 ≤ β ≤ 1

2
,

2(1 − β)

m
,

1

2
≤ β < 1,

and

|a2m+1| ≤























(m + 1)(1 − β)

m2
, 0 ≤ β ≤ 1 + 2m

2(1 + m)
,

2(m + 1)(1 − β)2

m2
+

1 − β

m
,

1 + 2m

2(1 + m)
≤ β < 1.

Remark 3.3. The bounds on |am+1| and |a2m+1| given in Corollary 3.8 are better than
those given in [1, Corolary 7].

By setting γ = 1 and λ = 1 in Corollary 3.6, we conclude the following result.

Corollary 3.9. Let f given by (1.4) be in the subclass CΣm
(β) (0 ≤ β < 1). Then

|am+1| ≤























1

m

√

2(1−β)
(1+m)

, 2β + m ≤ 1,

2(1 − β)

m(1 + m)
, 2β + m ≥ 1,

and

|a2m+1| ≤























1 − β

m2
, 0 ≤ β ≤ 1 + 2m − m2

2(1 + 2m)
,

1 − β

m(1 + 2m)
+

2(1 − β)2

m2(1 + m)
,

1 + 2m − m2

2(1 + 2m)
≤ β < 1.

By setting m = 1 and γ = 1 in Corollary 3.6, we conclude the following result.
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Corollary 3.10. Let f given by (1.1) be in the subclass BΣ(β, λ) (0 ≤ β < 1, λ ≥ 0).
Then

|a2| ≤























√

2(1 − β)

1 + λ
, λ + 2β ≤ 1,

2(1 − β)

1 + λ
, λ + 2β ≥ 1,

and

|a3| ≤























2(1 − β)

1 + λ
, 0 ≤ β ≤ 3 + 4λ − 3λ2

4(1 + 2λ)
,

1 − β

1 + 2λ
+

4(1 − β)2

(1 + λ)2
,

3 + 4λ − 3λ2

4(1 + 2λ)
≤ β < 1.

Remark 3.4. The bounds on |a2| and |a3| given in Corollary 3.10 are better than those
given in [13, Theorem 3.2].

By setting m = 1 in Corollary 3.8, we conclude the following result.

Corollary 3.11. Let f given by (1.1) be in the subclass SσB
(β) of bi-starlike functions

of order β (0 ≤ β < 1). Then

|a2| ≤



















√

2(1 − β), 0 ≤ β ≤ 1

2
,

2(1 − β),
1

2
≤ β < 1,

and

|a3| ≤



















2(1 − β), 0 ≤ β ≤ 3

4
,

4(1 − β)2 + (1 − β),
3

4
≤ β < 1.

By setting m = 1 in Corollary 3.9, we conclude the following result.

Corollary 3.12. Let f given by (1.1) be in the subclass CσB
(β) of bi-convex functions

of order β (0 ≤ β < 1). Then

|a2| ≤ 1 − β and |a3| ≤



















1 − β, 0 ≤ β ≤ 1

3
,

1 − β

3
+ (1 − β)2,

1

3
≤ β < 1.
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ON THE REVERSE MINKOWSKI’S INTEGRAL INEQUALITY

BOUHARKET BENAISSA1,2

Abstract. The aim of this work is to obtain the reverse Minkowski integral in-
equality. For this aim, we Ąrst give a proposition which is important for our main
results. Then we establish some reverse Minkowski integral inequalities for parame-
ters 0 < p < 1 and p < 0, respectively.

1. Introduction

In recent years, inequalities are playing a very significant role in all fields of mathe-
matics and present a very active and attractive field of research. As example, let us
cite the field of integration which is dominated by inequalities involving functions and
their integrals ([2, 3]). One of the famous integral inequalities is Minkowski’s integral
inequality. In particular the following statement was proved for p ≥ 1 (for details to
see [1]).

Theorem 1.1. Let 1 ≤ p ≤ +∞, Ω ⊂ R
n and A ⊂ R

m be a measurable sets. Suppose

that f is measurable on Ω × A and f(·, y) ∈ Lp(Ω) for almost all y ∈ A. Then

(1.1)
∥

∥

∥

∥

∫

A
f(·, y)dy

∥

∥

∥

∥

Lp(Ω)
≤
∫

A
∥f(·, y)∥Lp(Ω)dy,

if the right-hand side is finite.

Remark 1.1. If 0 < p < 1, mes A > 0 and mes Ω > 0 inequality (1.1) is not valid (to
see [1]).

In this paper we obtain some integral inequalities which are reverse versions of the
inequality (1.1).

Key words and phrases. HölderŠs inequality, MinkowskiŠs integral inequality.
2010 Mathematics Subject Classification. Primary: 26D15. Secondary: 26D10.
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2. Preliminaries

2.1. Reverse Young’s and Holder’s Inequalities. The following inequalities are
well-known Young inequalities. Let a > 0, b > 0 and 1

p
+ 1

p′
= 1, then

ab ≤ap

p
+

bp ′

p ′
, for p ≥ 1,(2.1)

ab ≥ap

p
+

bp ′

p ′
, for 0 < p < 1.(2.2)

Corollary 2.1 (Reverse Young’s inequality). Let a > 0, b > 0 and 1
p

+ 1
p′

= 1, then

(2.3) ab ≥ ap

p
+

bp ′

p ′
, for p < 0.

Proof. We have p′−1
p′

= 1
p
, (p − 1)(p′ − 1) = 1 and inequality (2.3) is equivalent to

ap−1

bp
+

bp ′−1

ap ′
≤ 1.

We take t = ap−1

b
, then

bp ′−1

ap ′
=

a(p−1)(p ′−1)

t(p ′−1)ap′
=

1

t(p ′−1)p ′
=

t−(p ′−1)

p ′
.

We obtain
ap−1

bp
+

bp ′−1

ap ′
=

t

p
+

t−(p ′−1)

p ′
= f(t), t > 0.

For all t > 0, we have

f ′(t) =
1

p
− p ′ − 1

p ′
t−p ′

=
1

p
− 1

p
t−p ′

=
1

p
(1 − t−p ′

),

for all p < 0 and 0 < p′ < 1, we get

f ′(t) =0 ⇔ 1 − t−p ′

= 0 ⇔ t = 1,

f ′(t) >0 ⇔ 1 − t−p ′

< 0 ⇔ 0 < t < 1.

Hence, the function f is majored with f(1) = 1 for all t ∈ (0, ∞).
We deduce that

ap−1

bp
+

bp ′−1

ap ′
≤ 1 ⇔ ab ≥ ap

p
+

bp ′

p ′
, for p < 0. □

Corollary 2.2 (Reverse Hölder’s inequality). Let Ω ⊂ R
n be a measurable set and

p < 0, we suppose that f , g are measurable on Ω.

If f ∈ Lp(Ω) and g ∈ Lp′(Ω) (p′ is the conjugate parameter), then

(2.4)
∫

Ω
♣fg♣dt ≥ ∥f∥Lp

∥g∥Lp ′
.
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Proof. Choose a = ♣f ♣
∥f∥Lp

, b = ♣g♣
∥g∥L

p ′

and by using reverse Young’s inequality (2.3), we

write
♣fg♣

∥f∥Lp
· ∥g∥Lp ′

≥ ♣f ♣p
p∥f∥p

Lp

+
♣g♣p ′

p ′∥g∥p ′

Lp ′

,

by integrand the above inequality we obtain
∫

Ω

♣f(t)g(t)♣
∥f∥Lp

· ∥g∥Lp ′

dt ≥
∫

Ω

♣f(t)♣p
p∥f∥p

Lp

dt +
∫

Ω

♣g(t)♣p ′

p ′∥g∥p ′

Lp ′

dt = 1,

and thus
∫

Ω
♣f(t)g(t)♣dt ≥ ∥f∥Lp

∥g∥Lp ′
, for p < 0. □

Remark 2.1. We can write
∫

Ω
♣f(t)g(t)♣dt ≥

(∫

Ω
♣f(t)♣pdt

)
1

p
(∫

Ω
♣g(t)♣p ′

dt

)
1

p ′

,

hence
(∫

Ω
♣f(t)g(t)♣dt

)p

≤
(∫

Ω
♣f(t)♣pdt

)(∫

Ω
♣g(t)♣p ′

dt

)p−1

(see [4]).

Now we give a proposition which will be used frequently in the proof of main
theorems.

Let −∞ < a < b < +∞ and −∞ < c < d < +∞ and we defined the set E by

E = ¶f ♣ f : (a, b) × (c, d) → R, f ≥ 0 or f ≤ 0♢.

Suppose H : (a, b) × (c, d) → C a measurable function defined by

H(x, y) = f1(x, y) + i f2(x, y),

where f1, f2 ∈ E.

Proposition 2.1. (i) If f1 = 0 or f2 = 0, then

(2.5)

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

.

(ii) If f1 ̸= 0 and f2 ̸= 0, then

(2.6)

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

≤
√

2

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

.

Proof. (i) If f2 = 0, then
∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
♣f1(x, y)♣ dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
f1(x, y)dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

.

If f1 = 0, then
∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
♣if2(x, y)♣ dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
♣f2(x, y)♣dy

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∫ d

c
f2(x, y)dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
if2(x, y)dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

.

(ii) If f1 ̸= 0 and f2 ̸= 0, then

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣dy

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫ d

c

[

f 2
1 (x, y) + f 2

2 (x, y)
]

1

2

dy

∣

∣

∣

∣

∣

2

=

(

∫ d

c

∣

∣

∣f 2
1 + f 2

2

∣

∣

∣

1

2 (x, y)dy

2

=
∥

∥

∥f 2
1 + f 2

2

∥

∥

∥

Lp(c,d)
, with p =

1

2
,

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫ d

c
f1(x, y)dy + i

∫ d

c
f2(x, y)dy

∣

∣

∣

∣

∣

2

=

(

∫ d

c
f1(x, y)dy

2

+

(

∫ d

c
f2(x, y)dy

2

=

(

∫ d

c
♣f1(x, y)♣dy

2

+

(

∫ d

c
♣f2(x, y)♣dy

2

=
∥

∥

∥f 2
1

∥

∥

∥

Lp(c,d)
+
∥

∥

∥f 2
2

∥

∥

∥

Lp(c,d)
, with p =

1

2
.

For all 0 < p < 1 we have

∥

∥

∥f 2
1 + f 2

2

∥

∥

∥

Lp(c,d)
≤ 2

1

p
−1
(

∥

∥

∥f 2
1

∥

∥

∥

Lp(c,d)
+
∥

∥

∥f 2
2

∥

∥

∥

Lp(c,d)

)

,

for p = 1
2

we obtain

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

2

≤ 2

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

2

.

Then
∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

≤
√

2

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

. □

In this work we consider the reverse inequality of (1.1), with 0 < p < 1 and p < 0
for f : (a, b) × (c, d) → K, with K is C, E or iE.

3. Main Results

In this section we obtain some reverse Minkowski type inequalities.
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Theorem 3.1. Let 0 < p < 1, −∞ < a < b < +∞ and −∞ < c < d < +∞. Suppose

that H : (a, b) × (c, d) → C is measurable with Re(H), Im(H) ∈ E, Re(H)Im(H) ̸= 0
and H(x, y) ∈ Lp,x(a, b) for almost all y ∈ (c, d). Then

(3.1)

∥

∥

∥

∥

∥

∫ d

c
H(·, y)dy

∥

∥

∥

∥

∥

Lp(a,b)

≥ (
√

2)p−2
∫ d

c
∥H(·, y)∥Lp(a,b)dy,

if left-hand side is finite.

Proof. We have
∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

≤
∫ d

c
♣H(x, y)♣ dy.

Then for p − 1 < 0 we get
∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p−1

≥
(

∫ d

c
♣H(x, y)♣ dy

p−1

.

By Proposition 2.1, we obtain
∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p−1 ∣
∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

≥
(

∫ d

c
♣H(x, y)♣ dy

p−1 ∣
∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

≥
(

∫ d

c
♣H(x, y)♣ dy

p−1

(
√

2)−1

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣dy

∣

∣

∣

∣

∣

= (
√

2)−1

(

∫ d

c
♣H(x, y)♣ dy

p−1 ∣
∣

∣

∣

∣

∫ d

c
♣H(x, y)♣dy

∣

∣

∣

∣

∣

.

By integrating the last inequality, we establish

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx ≥ (
√

2)−1
∫ b

a

(

∫ d

c
♣H(x, t)♣ dt

p−1 ∣
∣

∣

∣

∣

∫ d

c
♣H(x, y)♣dy

∣

∣

∣

∣

∣

dx

= (
√

2)−1
∫ b

a

∣

∣

∣

∣

∣

∣

∫ d

c

(

∫ d

c
♣H(x, t)♣ dt

p−1

♣H(x, y)♣dy

∣

∣

∣

∣

∣

∣

dx

≥ (
√

2)−1

∣

∣

∣

∣

∣

∣

∫ b

a







∫ d

c

(

∫ d

c
♣H(x, t)♣ dt

p−1

♣H(x, y)♣dy







dx

∣

∣

∣

∣

∣

∣

= (
√

2)−1

∣

∣

∣

∣

∣

∣

∫ d

c







∫ b

a

(

∫ d

c
♣H(x, t)♣ dt

p−1

♣H(x, y)♣dx







dy

∣

∣

∣

∣

∣

∣

.

Let

R1 =
∫ b

a

(

∫ d

c
♣H(x, t)♣ dt

p−1

♣H(x, y)♣dx
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and suppose that G(x) =

(

∫ d

c
♣H(x, y)♣ dy

p−1

.

Therefore, we get

∥G(x)∥Lp′ ((a,b)) =





∫ b

a

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

p′(p−1)

dx





1

p′

=

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

p

dx



p−1

p

=







(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
♣H(x, y)♣ dy

∣

∣

∣

∣

∣

p

dx


1

p







p−1

=

∥

∥

∥

∥

∥

∫ d

c
♣H(x, y)♣ dy

∥

∥

∥

∥

∥

p−1

Lp((a,b))

.

The last expression is finite (see hypothoses of theorem) then G(x) ∈ Lp′((a, b)). By
applying the reverse Hölder’s inequality and using Proposition 2.1, we obtain

R1 ≥




∫ b

a

∣

∣

∣

∣

∣

∫ d

c
♣H(x, t)♣ dt

∣

∣

∣

∣

∣

p′(p−1)

dx





1

p′
(

∫ b

a
♣H(x, y)♣pdx


1

p

=

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
♣H(x, t)♣ dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

≥
(

∫ b

a

(√
2
)p
∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

=
(√

2
)p−1

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

= R2.

Then we get
∫ d

c
R1dy ≥

∫ d

c
R2dy,

R2 > 0 →
∣

∣

∣

∣

∣

∫ d

c
R1dy

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∫ d

c
R2dy

∣

∣

∣

∣

∣

=
∫ d

c
R2dy.

Thus, we conclude that
∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx ≥
(√

2
)−1

∣

∣

∣

∣

∣

∫ d

c
R1dy

∣

∣

∣

∣

∣

≥
(√

2
)−1

∫ d

c
R2dy

=
(√

2
)p−2

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

dy.
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Therefore, we get

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx

− 1

p′

≥
(√

2
)p−2

∫ d

c

(

∫ b

a
♣H(x, y)♣pdx


1

p

dy,

then
(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx

1− 1

p′

≥
(√

2
)p−2

∫ d

c

(

∫ b

a
♣H(x, y)♣pdx


1

p

dy.

Finally, we conclude that

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx


1

p

≥
(√

2
)p−2

∫ d

c

(

∫ b

a
♣H(x, y)♣pdx


1

p

dy,

which completes the proof. □

Theorem 3.2. Let 0 < p < 1, −∞ < a < b < +∞ and −∞ < c < d < +∞. Suppose

that H : (a, b) × (c, d) → E is measurable and H(x, y) ∈ Lp,x(a, b) for almost all

y ∈ (c, d). Then

(3.2)

∥

∥

∥

∥

∥

∫ d

c
H(·, y)dy

∥

∥

∥

∥

∥

Lp(a,b)

≥
∫ d

c
∥H(·, y)∥Lp(a,b)dy,

if left-hand side is finite.

Theorem 3.3. Let 0 < p < 1, −∞ < a < b < +∞ and −∞ < c < d < +∞. Suppose

that H : (a, b) × (c, d) → iE is measurable and H(x, y) ∈ Lp,x(a, b) for almost all

y ∈ (c, d). Then

(3.3)

∥

∥

∥

∥

∥

∫ d

c
H(·, y)dy

∥

∥

∥

∥

∥

Lp(a,b)

≥
∫ d

c
∥H(·, y)∥Lp(a,b)dy,

if left-hand side is finite.

Proof. The proof of Theorem 3.2 and Theorem 3.3 is similar to Theorem 3.1. □

Theorem 3.4. Let p < 0, −∞ < a < b < +∞ and −∞ < c < d < +∞. Suppose

that H : (a, b) × (c, d) → C is measurable with Re(H), Im(H) ∈ E, Re(H)Im(H) ̸= 0
and H(x, y) ∈ Lp,x(a, b) for almost all y ∈ (c, d). Then

(3.4)

∥

∥

∥

∥

∥

∫ d

c
H(·, y)dy

∥

∥

∥

∥

∥

Lp(a,b)

≥ (
√

2)p−2
∫ d

c
∥H(·, y)∥Lp(a,b)dy,

if left-hand side is finite.
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Proof. By using the inequality
∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

≤
∫ d

c
♣H(x, y)♣ dy,

we get
∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

≥
(

∫ d

c
♣H(x, y)♣ dy

p

, for p < 0.

By integrating the last inequality, we get
∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx ≥
∫ b

a

(

∫ d

c
♣H(x, y)♣ dy

p

dx

=
∫ b

a





(

∫ d

c
♣H(x, t)♣ dt

p−1 (
∫ d

c
♣H(x, y)♣ dy





 dx

=
∫ b

a





∫ d

c

(

∫ d

c
♣H(x, t)♣ dt

p−1

♣H(x, y)♣ dy



 dx

=
∫ d

c







∫ b

a

(

∫ d

c
♣H(x, t)♣ dt

p−1

♣H(x, y)♣ dx







dy.

Let

R3 =
∫ b

a

(

∫ d

c
♣H(x, t)♣ dt

p−1

♣H(x, y)♣ dx.

By the reverse Hölder’s inequality and Proposition 2.1, we obtain

R3 ≥




∫ b

a

∣

∣

∣

∣

∣

∫ d

c
♣H(x, t)♣ dt

∣

∣

∣

∣

∣

p′(p−1)

dx





1

p′
(

∫ b

a
♣H(x, y)♣pdx


1

p

=

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
♣H(x, t)♣ dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

≥
(

∫ b

a

(√
2
)p
∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

=
(√

2
)p−1

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

= R4.

That is, we get
∫ d

c
R3dy ≥

∫ d

c
R4dy.

Therefore, we obtain
∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx ≥
∫ d

c
R3dy ≥

∫ d

c
R4dy
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and

∫ d

c
R4dy =

(√
2
)p−1

∫ d

c

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx


1

p′

(

∫ b

a
♣H(x, y)♣pdx


1

p

dy

=
(√

2
)p−1

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx


1

p′ ∫ d

c

(

∫ b

a
♣H(x, y)♣pdx


1

p

dy.

It follows that
(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx

(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, t)dt

∣

∣

∣

∣

∣

p

dx

− 1

p′

≥
(√

2
)p−1

∫ d

c

(

∫ b

a
♣H(x, y)♣pdx


1

p

dy.

Consequently, we get
(

∫ b

a

∣

∣

∣

∣

∣

∫ d

c
H(x, y)dy

∣

∣

∣

∣

∣

p

dx


1

p

≥
(√

2
)p−1

∫ d

c

(

∫ b

a
♣H(x, y)♣pdx


1

p

≥
(√

2
)p−2

∫ d

c

(

∫ b

a
♣H(x, y)♣pdx


1

p

.

This completes the proof. □

Theorem 3.5. Let p < 0, −∞ < a < b < +∞ and −∞ < c < d < +∞. Suppose

that H : (a, b) × (c, d) → E is measurable and H(x, y) ∈ Lp,x(a, b) for almost all

y ∈ (c, d). Then

(3.5)

∥

∥

∥

∥

∥

∫ d

c
H(·, y)dy

∥

∥

∥

∥

∥

Lp(a,b)

≥
∫ d

c
∥H(·, y)∥Lp(a,b)dy,

if left-hand side is finite.

Theorem 3.6. Let p < 0, −∞ < a < b < +∞ and −∞ < c < d < +∞. Suppose

that H : (a, b) × (c, d) → iE is measurable and H(x, y) ∈ Lp,x(a, b) for almost all

y ∈ (c, d). Then

(3.6)

∥

∥

∥

∥

∥

∫ d

c
H(·, y)dy

∥

∥

∥

∥

∥

Lp(a,b)

≥
∫ d

c
∥H(·, y)∥Lp(a,b)dy,

if left-hand side is finite.

Proof. The proof of Theorem 3.5 and Theorem 3.6 is similar to Theorem 3.4. □
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LIST COLORING UNDER SOME GRAPH OPERATIONS

KINKAR CHANDRA DAS1, SAMANE BAKAEIN2, MOSTAFA TAVAKOLI2∗,
FREYDOON RAHBARNIA2, AND ALIREZA ASHRAFI3

Abstract. The list coloring of a graph G = G(V, E) is to color each vertex v ∈
V (G) from its color set L(v). If any two adjacent vertices have different colors, then
G is properly colored. The aim of this paper is to study the list coloring of some
graph operations.

1. Introduction

Throughout this paper, our notations are standard and can be taken from the
famous book of West [16]. The set of all positive integers is denoted by N, and for a
set X, the power set of X is denoted by P (X). All graphs are assumed to be simple
and Ąnite, and if G is such a graph, then its vertex and edge sets are denoted by V (G)
and E(G), respectively.

The graph coloring is an important concept in modern graph theory with many
applications in computer science. A function α : V (G) → N is called a coloring for
G. The coloring α is said to be proper, if for each edge uv ∈ E(G), α(u) ̸= α(v). If
the coloring α uses only the colors [k] = ¶1, 2, . . . , k}, then α is called a k-coloring for
G, and if such a proper k-coloring exists, then the graph G is said to be k-colorable.
The smallest possible number k for which the graph G is k-colorable is the chromatic
number of G and is denoted by χ(G).

The list coloring of graphs is a generalization of the classical notion of graph
coloring, which was introduced independently by Erdős, Rubin and Taylor [7] and
Vizing [15]. In the list coloring of a graph G, a list L(v) of colors is assigned to
each vertex v ∈ V (G), and we have to Ąnd a proper coloring c for G in such a
way that c(v) ∈ L(v), for any vertex v in G. Concretely, we assume that there is a

Key words and phrases. Coloring, list coloring, graph operation.
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function L : V (G) → P (N) that assigns a set of colors to each vertex of G. A coloring
c : V (G) → N is called an L-coloring if for all v ∈ V (G), c(v) ∈ L(v). This coloring is
said to be proper if c(u) ̸= c(v), when uv ∈ E(G). The graph G is called L-colorable
if such an L-coloring exists. This graph is k-choosable if it is L-colorable for every
assignment L that satisĄes ♣L(v)♣ ≥ k, for all v ∈ V (G). The list chromatic number
χL(G) of G is the smallest k such that G is k-choosable. In [9], Isaak showed that

the list chromatic number of the Cartesian product K2 and Kn is equal to n2 +
⌈

5n
3

⌉

.

One year later, Axenovich [2] proved that if each vertex x ∈ V (G) \ P is assigned a
list of colors of size ∆ and each vertex x ∈ P is assigned a list of colors of size 1, then
it is possible to color V (G) such that adjacent vertices receive different colors and
each vertex has a color from its list, where G is a non-complete graph with maximum
degree ∆ ≥ 3 and P is a subset of vertices with pairwise distance d(P ) between them
at least 8. After that, in 2009, Rackham [12] studied on the list coloring of K∆-free
graphs. We encourage potential readers to consult the interesting thesis of Lastrina
[10] and TuzaŠs survey [14] for more information on this topic.

By a well-known result of Nordhaus and Gaddum [11], if G is an n-vertex graph,
then χ(G) + χ(G) ≤ n + 1, where G is the complement of a graph G.

Erdös, Rubin and Taylor [7] extended this inequality to the list coloring of graphs
and proved that for every n-vertex graph G, χL(G) + χL(G) ≤ n + 1. Thus, it is
natural to study the list coloring of graphs under some other graph operations, which
is the main topic of this paper.

Suppose ¶Gi = (Vi, Ei)}
N
i=1 is a family of graphs having a root vertex 0. Following

Barrière, Comellas, Dalfó, Fiol, and Mitjana [3, 4], the hierarchical product H =
GN ⊓ · · · ⊓ G2 ⊓ G1 is the graph with vertices as N -tuples xN . . . x3x2x1, for xi ∈ Vi,
and edges deĄned as follows:

xN . . . x3x2x1 ∼































xN . . . x3x2y1 if y1 ∼ x1 in G1,
xN . . . x3y2x1, if y2 ∼ x2 in G2 and x1 = 0,
xN . . . y3x2x1, if y3 ∼ x3 in G3 and x1 = x2 = 0,

...
...

yN . . . x3x2x1, if yN ∼ xN in GN and x1 = x2 = · · · = xN−1 = 0.

In [13], Tavakoli, Rahbarnia and AshraĄ obtained exact formulas for some graph
invariants under the hierarchical product, and some applications in chemistry were
presented by Arezoomand and Taeri in [1].

Suppose G is a connected graph. Following Cvetković, Doob, Sachs, Yan, Yang and
Yeh [6,17], we deĄne four types of graphs resulting from edge subdivision.

(a) S(G) is the graph obtained by inserting an additional vertex in each edge of
G. Equivalently, each edge of G is replaced by a path of length 2.

(b) R(G) is obtained from G by adding a new vertex corresponding to each edge
of G, then joining each new vertex to the end vertices of the corresponding
edge. Another way to describe R(G) is to replace each edge of G by a triangle.

(c) Q(G) is obtained from G by inserting a new vertex into each edge of G, then
joining with edges those pairs of new vertices on adjacent edges of G.
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(d) The graph T (G) of a graph G has a vertex for each edge and vertex of G and
an edge in T (G) for every edge-edge, vertex-edge, and vertex-vertex adjacency
in G.

The graphs S(G) and T (G) are called the subdivision and total graphs of G, respec-
tively.

Q(G) T (G)

G S(G) R(G)

Figure 1. Subdivision graphs of G.

Let G and H be two graphs. The corona product GoH is obtained by taking one
copy of G and ♣V (G)♣ copies of H, and by joining each vertex of the i-th copy of H to
the i-th vertex of G, where 1 ≤ i ≤ ♣V (G)♣, see Yeh and Gutman [19]. In Yarahmadi
and AshraĄ [18], the authors obtained exact formulas for some graph invariant under
the corona product of graphs. The edge corona product of two graphs G and H,
G♢H, is obtained in a similar way by taking one copy of G and ♣E(G)♣ copies of H

and joining each end vertices of the i-th edge of G to every vertex in the i-th copy
of H, see Chithra, Germina, Sudev, Hou and Shiu [5, 8]. If the graphs G and H

have disjoint vertex sets, then G + H will be the graph obtained from G and H by
connecting all vertices of G with all vertices of H.

2. Main Results

Suppose G is a simple graph. The suspension of a graph G is another graph G′

constructed from G by adding a new vertex u and connecting u to all vertices of G.

2.1. Relationship between the coloring and the list coloring of graphs. It
is clear that the list chromatic number χL(G) of a graph G is at least its chromatic
number χ(G), but it can be strictly larger, in other words χ(G) < χL(G). We consider
the following cases for showing the difference between the list coloring and the coloring
of a given graph G.
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o =

P3 P2 P3oP2

♢ =

P3 P2 P3♢P2

Figure 2. The corona and edge corona products of two graphs P3 and
P2.

• Suppose χL(G) − χ(G) = 1. In this case, if we color the graph with lists of
length χ(G), then in each coloring of this graph there will be at least one vertex
x such that all adjacent vertices of x can be colored, and there is no edge that
its end vertices cannot be colored.

• Suppose χL(G) − χ(G) = 2. In this case, if we color the graph with lists of
length χ(G), then in each coloring of this graph there will be at least two
vertices x and y such that xy ∈ E(G), all adjacent vertices of x, y can be
colored, and there is no triangle in G that its vertices cannot be colored.

Note that the above statements cannot be generalized to the case that χL(G) −

χ(G) > 2. To show this, we deĄne r =


2k−1
k



. Then, the complete bipartite graph

Kr,r is not k-choosable and so χL(Kr,r) > k. If G has a list coloring of length m in
such a way that we can Ąnd a coloring in which there is a k-vertex graph without a
possible color, then χL(G) = m + k. Finally, if the graph G can be colored with lists
of length χL(G) − 1 then there will be lists of length χL(G) − 1, in which for every
coloring of these lists there exists a vertex that all its adjacent vertices are colored
and there is no edge that its end vertices cannot be colored.

2.2. List chromatic numbers of the suspension graph and the corona prod-

uct. The aim of this section is to compute the list chromatic number of the suspension
graph and the corona product of graphs. We start this section by the following crucial
result:

Theorem 2.1. Let G be a graph with G′ = G + K1. Then χL(G′) = χL(G) or

χL(G) + 1.
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Proof. Let V (K1) = ¶u}. It is clear that χ(G′) = χ(G) + 1. Suppose χL(G) = χ(G).
Then, χL(G) + 1 = χ(G) + 1 = χ(G′) ≤ χL(G′). We claim that χL(G′) = χL(G) + 1.
To prove it, we assign lists of length χL(G) + 1 to the vertices of G′. We color u with
a color t in L(u). In the worst case, t ∈

⋂

v∈V (G′) L(v) and since G has a coloring with
lists of length χL(G), we will Ąnd an appropriate coloring for G′.

We now assume that χL(G) = χ(G)+1. Since χ(G′) ≤ χL(G′), χ(G)+1 = χL(G) ≤
χL(G′). For the list coloring of G′ we have the following two cases.

(a) After coloring of G with lists of length χL(G) − 1, we will have at most two
vertices without a possible color: χL(G′) = χL(G). We assign lists of length χL(G) to
all vertices of G′. We Ąrst consider the case that we cannot color only one vertex of
G′. There are two cases for L(u) as follows.

a.1 There is a color a ∈ L(u) such that for each v ̸= a ∈ V (G′), a ̸∈ L(v). In this
case, we assign a to the vertex u. By our hypothesis, the problem is changed to the
list coloring of G by χL(G) colors, which is possible by deĄnition.

a.2 For each color a ∈ L(u), there exists a vertex u ̸= v ∈ V (G′) such that a ∈ L(v).
Suppose V (G) = ¶v1, . . . , vn} and assign a list Li to each vertex vi for 1 ≤ i ≤ n. We
consider the following two cases.

(i) L(u) ⊆
⋂n

i=1 Li. In this case, all vertices have the same list of colors. Since
χL(G) = χ(G) + 1 = χ(G′), the vertices of G can be colored with χ(G) colors and it
remains a color for u. Hence, χL(G′) = χL(G).

(ii) L(u) ̸⊆
⋂n

i=1 Li. In this case, there exist a color a ∈ L(u) and an integer i for
1 ≤ i ≤ n, such that a ∈ Li and a ̸∈

⋂n
j=1 Lj. We assign the color a to the vertex u

and remove a from the list of other vertices. This shows that there exists a list Lj

such that a ̸∈ Lj. Therefore, the length of some lists is χ(G) or χ(G) + 1. By the
hypothesis, there is only one vertex without a feasible color when a list has length
χL(G) − 1. It is clear that, in all cases, we will have an appropriate coloring for the
graph.

We now assume that after the coloring of the graph with lists of length χL(G) − 1
there are two vertices without assigning a color. If we have a color a ∈ L(u) such
that a ̸∈ ∪v ̸=uL(v), then by a similar argument as above, we will have an appropriate
coloring for the graph. So, we can assume that every color in L(u) will appear in at
least one list of colors. We have again the following two cases.

(i) L(u) ⊆
⋂n

i=1 Li. A similar argument as above shows that we have an appropriate
coloring of the graph.

(ii) L(u) ̸⊆
⋂n

i=1 Li. In this case, there exist a color a ∈ L(u) and an integer i, for
1 ≤ i ≤ n, such that a ∈ Li and a ̸∈

⋂n
j=1 Lj. We prove that it is possible to Ąnd

an appropriate coloring with lists of length χL(G). To do this, we show that there
exists at least one color c in L(u), such that c is outside of at least two other lists.
On the contrary, we assume that there is at most one list L(v) with c ̸∈ L(v). If c is
outside of all the other lists, then clearly we will Ąnd an appropriate coloring for the
graph. Hence, we can assume that there is a unique v such that c ̸∈ L(v). Therefore,
all lists except one of them are equal and we have an appropriate coloring with lists
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of length χL(G) − 1, which is impossible. Therefore, G′ can be colored with lists of
length χL(G).

(b) After the coloring of G with lists of length χL(G) − 1, we will have more than
two vertices without a possible color: In this case, we will prove χL(G′) = χL(G) + 1.
Suppose χL(G) − χ(G) = m. We prove that the graph G′ does not have a list coloring
with lists of length χL(G) − 1. We assign lists of length χL(G) − 1 in such a way
that there is no appropriate coloring for the graph. Consider the χL(G) copies of the
graph G with the same lists and add a1 to all lists of the Ąrst copy of G, a2 to all
lists of the second copy of G, . . . , aχL(G) to all lists of the χL(G)-copy of G. We also
assign the list ¶1, 2, . . . , χL(G)} to the vertex u. Note that by assigning each of ai to
the vertex u, we will not have an appropriate coloring for the i-th copy of G. Thus,
we cannot Ąnd a feasible coloring for the graph. Therefore, an appropriate coloring
of G′ needs lists of length χL(G) + 1, see Figure 3.

This completes the proof. □

Lemma 2.1. Suppose G is a graph containing disjoint subgraphs G1, . . . , GχL(G) such

that for each subgraph we can find lists of length χL(G)−1 in which at least one vertex

does not have a color. If u is an isolated vertex, then χL(G′) = χL(G) + 1.

Proof. On the contrary, we assume that χL(G′) = χL(G). We deĄne the lists of the
graph G′ as follows:

• assign lists of length χL(G) − 1 to the vertices of G1 from the set ¶2, 3, . . . ,

χL(G) + 1};
• assign lists of length χL(G) − 1 to the vertices of G2 from the set ¶1, 3, . . . ,

χL(G) + 1};
• assign lists of length χL(G) − 1 to the vertices of Gi from the set ¶1, 2, . . . , i −

1, i + 1, . . . , χL(G) + 1};
• assign lists of length χL(G) − 1 to the vertices of GχL(G) from the set ¶1, 2,

. . . , χL(G) − 1, χL(G) + 1}.

We now add the color i to all lists corresponding to the subgraph Gi for 1 ≤ i ≤
χL(G), and assign the set ¶1, 2, . . . , χL(G)} to the vertex u. If we assign a color, say
i, to the vertex u, then the subgraph Gi cannot be colored, and so G does not have
an appropriate coloring, a contradiction. Thus, χL(G′) = χL(G) + 1. □

Corollary 2.1. Suppose G and H are two graphs. Then,

χL(GoH)























= max¶χL(G), χL(H)}, χL(H) ̸= χ(H) and in the coloring of H

with lists of length χL(H) − 1 at most

two vertices cannot be colored,

≤ max¶χL(G), χL(H) + 1}, otherwise.

2.3. List chromatic number of the edge corona product. Suppose G is a
simple graph, e = uv and u, v ̸∈ V (G). Let G′′ = G + K2, where V (K2) = ¶u, v}
and E(K2) = ¶e}. It is easy to see that G′′ = G′ + K1, where V (K1) = ¶v} with
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¶1, 2, a3} ¶1, 3, a3} ¶2, 3, a3}

¶1, 2, a3} ¶1, 3, a3} ¶2, 3, a3}

¶1, 2, a2} ¶1, 3, a2} ¶2, 3, a2}

¶1, 2, a2} ¶1, 3, a2} ¶2, 3, a2}

¶2, 3, a1} ¶1, 3, a1} ¶1, 2, a1}

¶1, 2, a1} ¶1, 3, a1} ¶2, 3, a1}

Three copies of G

¶a1, a2, a3}
u

+

Figure 3. Adding the vertex u to a graph G that after coloring with
lists of length χL(G)−1, the vertex u will be without an assigned color.

G′ = G + K1, where V (K1) = ¶u}. It is clear that χ(G′′) = χ(G) + 2. By Corollary
2.1,

χL(G′′)























= χL(G′), χL(G′) ̸= χ(G′) and in the coloring of the graph with
llists of ength χL(G′) − 1 at most two vertices cannot
be colored,

≤ χL(G′′) + 1, otherwise.

We now apply this inequality to prove the following lemma.
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Lemma 2.2. The list chromatic number of G′′ is given by the following formula:

χL(G′′) =















































χL(G), χL(G) ̸= χ(G) and in the coloring of the graph with lists

length χL(G) − 1 of exactly one vertex cannot be colored,

χL(G) + 1, χL(G) ̸= χ(G) and in the coloring of the graph with lists

length χL(G) − 1 of exactly two vertices cannot be

colored,

χL(G) + 2, otherwise.

Theorem 2.2. Suppose G and H are two graphs. The list chromatic number of G♢H

is given by the following formula:

χL(G♢H)























































= max¶χ(G), χ(H)}, χL(G) ̸= χ(G) and in the coloring of the

graph with lists of length χL(G) − 1exactly

one vertex cannot be colored,

≤ max¶χ(G), χ(H) + 1}, χL(G) ̸= χ(G) and in the coloring of the

graph with lists of length χL(G) − 1
exactly two vertices cannot be colored,

≤ max¶χ(G), χ(H) + 2}, otherwise.

2.4. List chromatic number of the join of two graphs. The aim of this subsection
is to investigate under which conditions χL(G+H) = χL(G)+χL(H). If χL(G) = χ(G)
and χL(H) = χ(H), then χ(G + H) = χ(G) + χ(H), and so χL(G + H) = χL(G) +
χL(H). On the other hand, if one of G or H is a complete graph, then by Corollary
2.1, χL(G + H) = χL(G) + χL(H). In Figures 4 and 5, some examples are given,
which show that the quantities χL(G + H) and χL(G) + χL(H) can be non-equal.

G

Figure 4. Graphs G and H ∼= G that χL(G + H) ̸= χL(G) + χL(H).

Theorem 2.3. Suppose G and H are graphs such that the following holds.

• χL(H) ≤ χL(G) (or χL(G) ≤ χL(H)).
• The graph G (H) has subgraphs G1, . . . , GχL(G)+1 (H1, . . . , HχL(H)+1) such that

for each subgraph Gi for 1 ≤ i ≤ χL(G) + 1, (or Hi for 1 ≤ i ≤ χL(H) + 1)
there exist lists of length χL(G) + 1 (or χL(H) + 1) in such a way that in each

subgraph there exists at least one vertex that cannot be colored.
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G G + H

Figure 5. Graphs G and H ∼= K1 with χL(G + H) ̸= χL(G) + χL(H).

Then, χL(G + H) = χL(G) + χL(H).

Proof. On the contrary, we assume that χL(G + H) = χL(G) + χL(H) − 1. We assign
lists of length χL(H) − 1 to the graph H in such a way that H does not have an
appropriate coloring related to these lists. Similarly to Lemma 2.1, we assign lists to
the subgraphs G1, . . . , GχL(G)+1 as follows:

• assign lists of length χL(G) − 1 to the vertices of G1 from the set ¶2, 3, . . . ,

χL(G) + 1};
• assign lists of length χL(G) − 1 to the vertices of G2 from the set ¶1, 3, . . . ,

χL(G) + 1};
• assign lists of length χL(G) − 1 to the vertices of Gi from the set ¶1, 2, . . . , i −

1, i + 1, . . . , χL(G) + 1};
• assign lists of length χL(G) − 1 to the vertices of GχL(G)+1 from the set

¶1, 2, . . . , χL(G) − 1, χL(G) + 1}.

By our hypothesis, there exists a vertex xi ∈ V (Gi), for 1 ≤ i ≤ χL(G) + 1, such
that in the process of the coloring for vertices of Hi, xi cannot be colored. We now
add the color i to all lists corresponding to the subgraph Gi, for 1 ≤ i ≤ χL(G) + 1.
We also assign the lists of the graph H to the subgraphs of G in such a way that we
assign different lists to at least two vertices of a given subgraph, and at least three
lists of each subgraphs are different. Note that the smallest subgraph with these
properties has at least six vertices. Next, we assign lists of length χL(G) from the set
¶1, 2, . . . , χL(G) + 1} to the vertices of H such that at least two vertices of the graph
have different lists and if ♣V (H)♣ ≥ 3, then at least three lists of vertices in H are
different. We assign numbers to the lists of G and letters to the lists of H. Our main
proof will consider the following three separate cases.
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(a) In the coloring of H we use only letters. By our hypothesis, there will be one
vertex that cannot be colored, and we assign the number i to this vertex. So, the
subgraph Gi cannot be colored, as desired.

(b) In the coloring of H we use only numbers. In this case, we will have a list
of letters for a subgraph (vertices of G which are colored with numbers) and since
χL(H) − 1 ≤ χL(H) ≤ χL(G), the graph cannot be colored.

(c) In the coloring of H we use a combination of letters and numbers. By our
hypothesis, there will be one vertex that cannot be colored, and we assign the number
i to this vertex. So, the subgraph Gi cannot be colored, as desired. In this case, we
use numbers instead of letters. For example, we use 1 as a. Again, we will have a
vertex that cannot be colored by letters and the number 1. We assign the number
i to this vertex. Consider a list L in Gi containing number 1. If a ̸∈ L, then the
graph obviously cannot be colored. If a ∈ L, then we lead to a contradiction with
our substitution. So, the graph cannot be colored. In the case that more than one
letter is substituted by a number, we lead to a similar contradiction, and so the graph
cannot be colored.

This proves that χL(G + H) = χL(G) + χL(H). □

2.5. List chromatic number of the subdivision graphs. In this subsection, the
list chromatic number of four types of edge subdivision of a graph G containing
R(G), S(G), Q(G) and T (G) are computed.

Theorem 2.4. χL(R(G)) = max¶χL(G), 3}.

Proof. The subdivision graph R(G) is isomorphic to the edge corona product of G

and H, where H = K1. Since χL(H) = χ(H) = 1, by Theorem 2.2, χL(R(G)) =
max¶χL(G), 3}. □

Theorem 2.5. Suppose G has at least one edge. Then χL(S(G)) = 2 or 3 and all

cases can occur.

Proof. Suppose ♣V (G)♣ = n, ♣E(G)♣ = m and V (G) = ¶v1, . . . , vn}. In the graph
S(G), the additional vertices of each edge of G are labeled by u1, . . . , um. It is
clear that all cycles of S(G) have even length and so S(G) is a bipartite graph
with bipartite classes (U1, U2), where U1 = V (G) and U2 = ¶u1, . . . , um}. Therefore,
χL(S(G)) ≥ χ(S(G)) = 2. In Figures 6 and 7, two graphs G1 and G2 are presented,
such that χL(S(G1)) = 2 and χL(S(G2)) = 2.

To complete the proof, we assign a color to all vertices of V (G) and the other
vertices can be colored with two other colors. This proves that χL(S(G)) ≤ 3, which
completes the proof. □

Theorem 2.6. χL(Q(G)) = ∆(G) + 1.

Proof. We use the labeling of the vertices in S(G) given in the proof of Theorem 2.5
for the graph Q(G). By deĄnition of Q(G), each vertex vi together with all vertices
uj adjacent to vi constitutes a complete graph of order deg(vi) + 1 and each ui is a
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G1

Figure 6. The graph G1 with χL(S(G1)) = 2.

¶2, 3} ¶1, 2} ¶1, 3} ¶1, 2} ¶2, 3}

¶1, 3} ¶1, 3} ¶1, 3}

¶1, 2} ¶1, 2} ¶1, 3} ¶2, 3} ¶2, 3}

G2

Figure 7. The graph G2 with χL(S(G2)) = 3.

common vertex of exactly two complete subgraphs. So, the graph Q(G) has ♣V (G)♣
such complete graphs. It is obvious that for each triangle in G, some of the vertices
in A = ¶ui ♣ 1 ≤ i ≤ m} induces a triangle in Q(G) and in the other case, the vertices
in A can not construct a triangle in Q(G). Since G has a vertex of degree ∆(G),
Q(G) has a complete subgraph of order ∆(G) + 1, and so χ(Q(G)) ≥ ∆(G) + 1. We
will prove that it is possible to color the graph Q(G) by lists of length ∆(G) + 1. To
prove it, we assign lists of length ∆(G) + 1 to all vertices of Q(G). Since Q(G) can be
constructed from complete graphs of minimum order 3 and maximum order ∆(G) + 1,
each vertex of V (G) is a vertex of exactly one complete graph, each vertex ui is a
common vertex of exactly two complete subgraphs, and each complete graph of order
n has n distinct colorings with lists of length n, the graph Q(G) has an appropriate
coloring. This proves the theorem. □

Theorem 2.7. ∆(G) + 1 ≤ χL(T (G)) ≤ ∆(G) + 2.
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Proof. Since the graphs G and Q(G) are subgraphs of T (G), max¶χL(G), χL(Q(G))}
≤ χL(T (G)). On the other hand, χL(G) ≥ ∆(G)+1 and so ∆(G)+1 ≤ χL(T (G)). To
prove χL(T (G)) ≤ ∆(G) + 2, we assign the lists of length ∆(G) + 2 to each vertex of
the graph. We Ąrst color all vertices of G. Since each vertex of A = ¶ui ♣ 1 ≤ i ≤ m}
are adjacent to two vertices of G, which are adjacent in T (G), the length of lists
corresponding to vertices in A is at least ∆(G). Therefore, χL(T (G)) ≤ ∆(G)+2. □

2.6. List chromatic number of the hierarchical product of graphs. In this
section, the list chromatic number of the hierarchical product of graphs is computed.
We Ąrst compute this number for the case of two graphs.

Theorem 2.8. The list chromatic number of the hierarchical product of two graphs

G and H is given by the following formula:

χL(G⊓H) =























































3, χL(G) = χL(H) = 2, G has a cycle of even

length and the root is a vertex of an even

cycle,

2, χL(G) = χL(H) = 2, G does not have an

even cycle or G has an even cycle but

the root is not a vertex of an even cycle,

max¶χL(G), χL(H)}, otherwise.

Proof. It is easy to see that χ(G ⊓ H) = max¶χ(G), χ(H)}. Moreover, if χL(G) =
χL(H) = 2, G has a cycle of even length and the root is a vertex of an even cycle,
then χL(G ⊓ H) = 3, see Figure 8. If χL(G) = χL(H) = 2, G does not have an
even cycle or G has an even cycle, but the root is not a vertex of an even cycle, then
χL(G ⊓ H) = 2. On the other hand, if χL(G) > χL(H), then clearly the graph G ⊓ H

can be colored by lists of length χL(G) and if χL(G) < χL(H), then the graph G ⊓ H

can be colored by lists of length χL(H). So, it is enough to consider the case that
χL(G) = χL(H). In this case, we Ąrst color the graph G by χL(G) colors. In this
coloring, for the coloring of each vertex in G, a vertex in H will be colored and if
χL(H) ≥ 3, then the graph will have an appropriate coloring. □

Corollary 2.2. Suppose G1, G2, . . . , Gk are k simple graphs. Then,

χL(Gk ⊓· · ·⊓G2 ⊓G1) =



























































3, χL(G1) = · · · = χL(Gk) = 2, Gk

has an even cycle and the root

is a vertex of an even cycle,

2, χL(G1) = · · · = χL(Gk) = 2,

the root is not a vertex of an

even cycle or Gk does not have

a cycle of even length,

max¶χL(G1), . . . , χL(Gk)}, otherwise.
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¶1, 3} ¶2, 3}

¶2, 3} ¶1, 2} ¶1, 3}

¶1, 2} ¶2, 3}

¶1, 3} ¶1, 2}

¶2, 3}
¶1, 2}

¶2, 3} ¶1, 3}

¶1, 3}

¶2, 3} ¶1, 2}

C4 ⊓ C4

Figure 8. The hierarchical product of C4 and C4 with the list chro-
matic number 3.

Proof. We proceed by induction. In Theorem 2.8, we proved the case of k = 2.
Suppose k = m − 1 and H = Gk ⊓ · · · ⊓ G2 ⊓ G1. To prove the case of k = m, we Ąrst
assume that χL(G1) = · · · = χL(Gk) = 2. Then, the following four cases can occur.

(a) Let Gm be a tree and there are no even cycles in other graphs. Since the other
m − 1 graphs do not have even cycles, the graph H does not have an even cycle, and
so χL(Gm ⊓ H) = 2.

(b) Let Gm be a tree and there exists at least one even cycle in the other graphs.

Since in the other m − 1 graphs we have at least one even cycle, the graph H has an
even cycle. If χL(H) ≥ 3, then χL(Gm ⊓ H) = max¶2, 3} = 3. If χL(H) = 2, then
χL(Gm ⊓ H) = 2, as desired.

(c) Gm has an even cycle and there are no even cycles in other graphs. A similar
argument as in the Ąrst case shows that χL(Gm ⊓ H) = 2.

(d) Gm has an even cycle and there exists at least one even cycle in the other

graphs. In this case, the graph H has at least one even cycle. If χL(H) ≥ 3, then
χL(Gm ⊓ H) = max¶2, 3} = 3. Suppose χL(H) = 2. If the root vertex is in a cycle,
then χL(H) = 3, and otherwise χL(H) = 2.

Next we assume that there exists i such that χL(Gi) > 2. Then

max
1≤i≤m

¶χL(Gi)} = max


χL(Gm), max
1≤i≤m−1

¶χL(Gi)}
}

= max¶χL(Gm), χL(H)}.

This shows that the problem for the case of k = m can be reduced to the case of
k = 2 such that one of the graphs has the list chromatic number greater than 2. By
induction hypothesis, this is feasible, and so the proof is complete. □
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ON THE ENUMERATION OF THE SET OF ELEMENTARY

NUMERICAL SEMIGROUPS WITH FIXED MULTIPLICITY,

FROBENIUS NUMBER OR GENUS

J. C. ROSALES1 AND M. B. BRANCO2

Abstract. In this paper we give algorithms that allow to compute the set of
every elementary numerical semigroups with given genus, Frobenius number and
multiplicity. As a consequence we obtain formulas for the cardinality of these sets.

1. Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a subset S of
N which is closed under addition, 0 ∈ S and N\S has finitely many elements. The
cardinality of the set N\S is called the genus of S and it is denoted by g(S).

Given a positive integer g, we denote by S(g) the set of all numerical semigroups
with genus g. The problem of determining the cardinality of S(g) has been widely
treated in the literature (see for example [2, 4–7] and [13]). Some of these works were
motivated by Amorós’s conjecture [5], which says that the sequence of cardinals of
S(g) for g = 1, 2, . . . has a Fibonacci behavior. It is still not known in general if for a
fixed positive integer g there are more numerical semigroups with genus g + 1 than
numerical semigroups with genus g.

An algorithm that allows us to compute the set of numerical semigroups with
genus g is provided in [3], where elementary numerical semigroups play an important
role. In fact, in [3] an equivalence binary relation R is defined over S(g) such that
S(g)

R
= ¶[S] ♣ S is a elementary numerical semigroup with genus g♢. Moreover, it is

proved that if S and T are elementary numerical semigroups with genus g then
[S] = [T ] if and only if S = T . The main idea of the algorithm in [3] is to compute

Key words and phrases. Elementary numerical semigroups, Fibonacci sequence, genus, Frobenius
number and multiplicity.

2010 Mathematics Subject Classification. Primary: 20M14. Secondary: 05E99.
DOI 10.46793/KgJMat2203.433R
Received: June 17, 2019.
Accepted: January 07, 2020.

433



434 J. C. ROSALES AND M. B. BRANCO

every elementary numerical semigroups S with genus g and, then, to enumerate the
elements in [S] for each S.

For any numerical semigroup S, the smallest positive integer belonging to S (respec-
tively, the greatest that does not belong to S) is called the multiplicity (respectively
Frobenius number) of S and it is denoted by m(S) (respectively F(S)) (see [9]).

We say that a numerical semigroup S is elementary if F(S) < 2m(S). This type
of numerical semigroups were also studied in [8] and [13]. We denote by E(m, F, g)
the set of elementary numerical semigroups with multiplicity m, Frobenius number
F and genus g (when one of the parameters to E(m, F, g) is replaced by the symbol
−, it represents the set of elementary numerical semigroups in which no restrictions
are placed on that parameter).

For any finite set A, #A denotes the cardinal of A. Given a rational number q we
denote by ⌈q⌉ = min ¶z ∈ Z ♣ q ≤ z♢.

In Section 2, we review the results of Y. Zhao in [13] which give formulas for
#E(m, −, −), #E(m, −, g) and #E(−, −, g), and state that #E(−, −, g + 1) =
#E(−, −, g) + #E(−, −, g − 1). Therefore, we get that ¶#E(−, −, g)♢g∈N

is a Fi-
bonacci sequence.

In Section 3, we study the sets E(m, F, −) and E(−, F, −), find formulas for their
cardinality, and describe the behavior of the sequence of cardinals of E(−, F, −).

In Section 4, we present algorithms for calculating E(−, F, g) and E(m, F, g). From
these algorithms, we can derive the cardinality of these sets.

Finally, in Section 5 we show that the set of all elementary numerical semigroups
E is a Frobenius variety. This fact, together with the results of [11], allows us to
construct recursively the set E .

2. Multiplicity and Genus

Our aim in this section is to see that ¶#E(−, −, g)♢g∈N
is a Fibonacci sequence.

The next result is easy to prove and appears in [13, Proposition 2.1].

Lemma 2.1. Let m be an integer such that m ≥ 2 and let A be a subset of

¶m + 1, . . . , 2m − 1♢. Then ¶0, m♢ ∪ A ∪ ¶2m, →♢ is an elementary numerical semi-

group with multiplicity m. Moreover, every elementary numerical semigroup with

multiplicity m is of this form.

As consequence of the above lemma we have that #E(m, −, −) is equal to the
number of subsets of a set with m − 1 elements.

Corollary 2.1. If m is a positive integer, then #E(m, −, −) = 2m−1.

The following result is easy to prove and gives conditions imposed on two positive
integers m and g so that there exists at least one elementary numerical semigroup
with multiplicity m and genus g.

Proposition 2.1. Let m and g be nonnegative integers with m ≠ 0. Then

E(m, −, g) ̸= ∅ if and only if m − 1 ≤ g ≤ 2 (m − 1).
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From Lemma 2.1, we know that S ∈ E(m, −, g) if and only if S = ¶0, m♢ ∪ A ∪
¶2m, →♢, where A is a subset of ¶m + 1, . . . , 2m − 1♢ and #A = 2(m − 1) − g. So
we have the following result, which is also in [13, Corollary 2.2].

Corollary 2.2. Let m and g be positive integers such that m − 1 ≤ g ≤ 2 (m − 1).

Then #E(m, −, g) =


m−1
g−(m−1)



.

From the results above we get

E(−, −, g) =
g+1
⋃

m=⌈ g

2
⌉+1

E(m, −, g).

Thus we have the following algorithm.

Algorithm 2.1. Input: g positive integer. Output: E(−, −, g).

1) For all m ∈
{

⌈g

2
⌉ + 1, . . . , g + 1

}

compute the set E(m, −, g).

2) Return
⋃g+1

m=⌈ g

2
⌉+1 E(m, −, g).

Clearly, we get

#E(−, −, g) =
g+1
∑

m=⌈ g

2
⌉+1

#E(m, −, g).

By applying Corollary 2.2, we obtain the following result.

Corollary 2.3. If g is a positive integer, then #E(−, −, g) =
∑g

i=⌈ g

2
⌉



i

g−i



.

The Fibonacci sequence is the sequence of positive integers defined by the linear
recurrence equation an+1 = an + an−1, with a0 = a1 = 1.

It is clear that E(−, −, 0) = ¶N♢ and E(−, −, 1) = ¶¶0, 2, →♢♢ and so #E(−, −, 0) =
#E(−, −, 1) = 1. By using Corollary 2.3, we can obtain [13, Proposition 2.3], which
states that ¶#E(−, −, g)♢g∈N

is a Fibonacci sequence.

Theorem 2.1. If g is a positive integer, then #E(−, −, g + 1) = #E(−, −, g) +
#E(−, −, g − 1).

3. Multiplicity and Frobenius Number

Our first goal in this section is to describe sufficient conditions for two positive
integers m and F so that there exists at least one elementary numerical semigroups
with multiplicity m and Frobenius number F .

Lemma 3.1. If S is an elementary numerical semigroup such that S ≠ N, then
F(S)+1

2
≤ m(S) ≤ F(S) + 1 and m(S) ̸= F(S).

Proof. Since S ̸= N, then m(S) ≥ 2 and m(S) − 1 ̸∈ S. Therefore, we have that
m(S) − 1 ≤ F(S). In addition, as S is an elementary numerical semigroup then
F(S) < 2 (m(S)) and thus F(S) + 1 ≤ 2 (m(S)). □
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From the previous lemma we obtain the following result.

Proposition 3.1. Let m and F be positive integers. Then E(m, F, −) ̸= ∅ if and only

if F +1
2

≤ m ≤ F + 1 and m ̸= F .

It is clear that E(F + 1, F, −) = ¶¶0, F + 1, →♢♢ and E(F − 1, F, −) =
¶¶0, F − 1, F + 1, →♢♢. Hence, we can assume that F = m + i, where i ∈
¶2, . . . , m − 1♢. By applying Lemma 2.1, we deduce that S ∈ E(m, F, −) if and only
if there exists A ⊆ ¶m + 1, . . . , m + i − 1♢ such that S = ¶0, m♢ ∪ A ∪ ¶F + 1, →♢.
As a consequence we have the following algorithm.

Algorithm 3.1. Input: m and F positive integers such that F +1
2

≤ m ≤ F + 1 and
m ̸= F .

Output: E(m, F, −).

1) If m = F + 1, then return ¶¶0, F + 1, →♢♢.
2) If m = F − 1, then return ¶¶0, F − 1, F + 1, →♢♢.
3) Compute the set C = ¶A ♣ A ⊆ ¶m + 1, . . . , F − 1♢♢.
4) Return ¶¶0, m♢ ∪ A ∪ ¶F + 1, →♢ ♣ A ∈ C♢.

Gathering all this information, we obtain the following result which can also be
deduced from equation (6) of [1].

Corollary 3.1. Let m and F be positive integers such that F +1
2

≤ m ≤ F + 1 and

m ̸= F . Then

#E(m, F, −) =

{

1, if m = F + 1,

2F −m−1, otherwise.

Next we obtain an algorithm that allows us to compute every elementary numerical
semigroup with a given Frobenius number. As a consequence of Proposition 3.1, we
have

E(−, F, −) =
⋃

m∈¶⌈ F +1

2
⌉,...,F +1♢\¶F ♢

E(m, F, −).

Algorithm 3.2. Input: F positive integer.
Output: E(−, F, −).

1) For all m ∈
{

⌈F +1
2

⌉, . . . , F + 1
}

\¶F♢ compute (using Algorithm 3.1) the set

E(m, F, −).
2) Return E(−, F, −) =

⋃

m∈¶⌈ F +1

2
⌉,...,F +1♢\¶F ♢ E(m, F, −).

Therefore, we have #E(−, F, −) =
∑

m∈¶⌈ F +1

2
⌉,...,F +1♢\¶F ♢ #E(m, F, −). From Corol-

lary 3.1 we obtain the following result.

Corollary 3.2. If F is a positive integer, then #E(−, F−) = 2F −⌈ F +1

2
⌉.

We finish this section by describing the behavior of the sequence of cardinalities of
E(−, F, −) for F = 1, 2, . . . Observe that #E(−, 1, −) = #E(−, 2, −) = 1.
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Proposition 3.2. Let F be an integer greater than or equal to 2.

1) If F is odd, then #E(−, F + 1, −) = #E(−, F, −).
2) If F is even, then #E(−, F + 1, −) = #E(−, F, −) + #E(−, F − 1, −).

Proof. 1) From Corollary 3.2 it is guaranteed that #E(−, F, −) = 2F −⌈F +1

2 ⌉ =

2F − F +1

2 = 2
F −1

2 . By repeating this argument we obtain #E(−, F + 1, −) = 2
F −1

2 .
Therefore, we have #E(−, F + 1, −) = #E(−, F, −).

2) Again, by Corollary 3.2, we know that #E(−, F, −) + #E(−, F − 1, −) =

2F −⌈F +1

2 ⌉ + 2F −1−⌈ F
2

⌉ = 2F − F +2

2 + 2F −1− F
2 = 2

F
2 . We obtain #E(−, F + 1, −) =

2F +1−⌈ F +2

2
⌉ = 2F +1− F +2

2 = 2
F
2 . Consequently, #E(−, F + 1, −) = #E(−, F, −) +

#E(−, F − 1, −) □

4. Multiplicity, Frobenius Number and Genus

In this section, we aim to find conditions for m, F and g positive integers so that
there exists at least one elementary numerical semigroup with a given multiplicity m,
Frobenius number F and genus g. The next results are a consequence of the results
given in [3, Proposition 2 and Corollary 3].

Lemma 4.1. Let F and g be two positive integers. Then g ≤ F ≤ 2g − 1 if and only

if E(−, F, g) ̸= ∅.

Lemma 4.2. Let F and g be two positive integers such that g ≤ F ≤ 2g − 1,

and let AF,g =
{

A ♣ A ⊆
{⌈

F +1
2

⌉

, . . . , F − 1
}

and #A = F − g
}

. Then E(−, F, g) =

¶¶0♢ ∪ A ∪ ¶F + 1 →♢ ♣ A ∈ AF,g♢.

As an immediate consequence of Lemmas 4.1 and 4.2 we have the following algo-
rithm.

Algorithm 4.1. Input: F and g positive integers such that g ≤ F ≤ 2g − 1.
Output: E(−, F, g).

1) Compute the set C =
{

A ♣ A ⊆
{⌈

F +1
2

⌉

, . . . , . . . , F − 1
}

and #A = F − g
}

.

2) Return ¶¶0♢ ∪ A ∪ ¶F + 1, →♢ ♣ A ∈ C♢.

As a consequence of the previous algorithm we obtain the following result which
also appears in [3, Corollary 4].

Corollary 4.1. If F and g are positive integers such that g ≤ F ≤ 2g − 1, then

#E(−, F, g) =


⌈ F
2

⌉−1
F −g



.

Lemma 4.3. If m, F and g are three positive integers such that m ≥ 2 and

E(m, F, g) ̸= ∅, then m − 1 ≤ g ≤ F < 2m.

Proof. Since E(m, F, g) ̸= ∅, then E(m, −, g) ̸= ∅ and we have that m − 1 ≤ g. From
Lemma 4.1, we deduce that g ≤ F . Finally, by Proposition 3.1, we conclude that
F +1

2
≤ m and thus F < 2m. □
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Finally, we present the main result of this section.

Proposition 4.1. Let m, F and g be three positive integers such that m ≥ 2. Then

E(m, F, g) ̸= ∅ if and only if one of the following conditions holds:

1) (m, F, g) = (m, m − 1, m − 1);
2) (m, F, g) = (m, F, m) and m < F < 2m;

3) m < g < F < 2m.

Proof. Necessity. If E(m, F, g) ̸= ∅ then by applying Lemma 4.3, we deduce that
m − 1 ≤ g ≤ F < 2m. Assume that S ∈ E(m, F, g). We distinguish the following four
cases.

a) If g = m − 1, then S = ¶0, m, →♢ and so F = m − 1. Hence, (m, F, g) =
(m, m − 1, m − 1).

b) If g = m, then m < F < 2m and S = ¶0, m, →♢ \¶F♢. Whence, (m, F, g) =
(m, F, m) and m < F < 2m.

c) If g = F , then S = ¶0, F + 1, →♢ and thus F + 1 = m. Once again we have
(m, F, g) = (m, m − 1, m − 1).

d) If g ̸∈ ¶m − 1, m, F♢, then as m − 1 ≤ g ≤ F < 2m and we deduce that
m < g < F < 2m.

Sufficiency. It is clear that ¶0, m, →♢ ∈ E(m, m − 1, m − 1) and ¶0, m, →♢ \¶F♢ ∈
E(m, F, m). Suppose that m < g < F < 2m. Let A be a subset of ¶m + 1, . . . , F − 1♢,
with cardinality F − g − 1. Since g(S) = m − 1 + F − 1 − m − 1 + 1 − #A + 1 =
F − 1 − F + g + 1 = g, then S = ¶0, m♢ ∪ A ∪ ¶F + 1, →♢ ∈ E(m, F, g). □

Notice that, by the sufficiency condition of the proof above, we conclude that, if
m < g < F < 2m, knowing an element in E(m, F, g) is the same as knowing a subset
of ¶m + 1, . . . , F − 1♢ with cardinality F − g − 1. So we have the following algorithm.

Algorithm 4.2. Input: m, F and g integers such that 2 ≤ m < g < F < 2m.
Output: E(m, F, g).

1) Compute C = ¶A ♣ A ⊆ ¶m + 1, . . . , F − 1♢ and #A = F − g − 1♢.
2) Return ¶¶0, m♢ ∪ A ∪ ¶F + 1 →♢ such that A ∈ C♢.

Clearly #E(m, m − 1, m − 1) = #E(m, F, m) = 1. For the remaining cases the
following result gives us the cardinality of E(m, F, g).

Corollary 4.2. Let m, F and g be positive integers such that 2 ≤ m < g < F ≤ 2m.

Then #E(m, F, g) =


F −m−1
F −g−1



.

Proof. As a consequence of Algorithm 4.2 we have that S ∈ E(m, F, g) if and only
if there exists A ⊆ ¶m + 1, . . . , F − 1♢, with cardinality F − g − 1 such that S =
¶0, m♢ ∪ A ∪ ¶F + 1, →♢. □

We conclude this section by giving an example that illustrates the previous results.
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Example 4.1. Let us compute E(4, 7, 5). By Corollary 4.2 we have #E(4, 7, 5) =


7−4−1
7−5−1



=


2
1



= 2. Now by using Algorithm 4.2, with m = 4, F =

7 and g = 5 we can conclude that C = ¶¶5♢ , ¶6♢♢ and E(4, 7, 5) =
¶¶0, 4♢ ∪ ¶5♢ ∪ ¶8, →♢ , ¶0, 4♢ ∪ ¶6♢ ∪ ¶8, →♢♢.

5. Frobenius Variety

A Frobenius variety (see for example [11]) is a nonempty set V of numerical semi-
groups fulfilling the following conditions:

1) if S and T are in V , then S ∩ T ∈ V ;
2) if S is in V and S ̸= N, then S ∪ ¶F(S)♢ ∈ V .

Proposition 5.1. E = ¶S ♣ S is an elementary numerical semigroup♢ is a Frobenius

variety.

Proof. If S and T belong to E it is clear that S ∩ T is a numerical semigroup,

F(S ∩ T ) = max ¶F(S), F (T )♢

and

m(S ∩ T ) ≥ max ¶m(S), m(T )♢ .

Therefore, F(S ∩ T ) < 2m(S ∩ T ) and thus S ∩ T ∈ E .
If S is an element in E and S ̸= N, then clearly S = S ∪ ¶F(S)♢ is a numerical

semigroup such that F(S) < F(S) and m(S) is equal to m(S) or F(S). Therefore,
F(S) < 2m(S) and thus S ∈ E . □

We define a directed graph G(E), with edges pointing from T to S, in the following
way: the set of vertices is E and (T, S) ∈ E × E is an edge of G(E) if and only if
S ∪ ¶F(S)♢ = T .

The goal of this section is to see that G(E) is a tree with root equal to N and to
characterize the sons of a vertex. This fact allows us to recursively construct G(E)
and consequently E . To this end we need to introduce some concepts and results.

Given a nonempty subset A of N we will denote by ⟨A⟩ the submonoid of (N, +)
generated by A, that is,

⟨A⟩ = ¶λ1a1 + · · · + λnan ♣ n ∈ N\¶0♢, ai ∈ A, λi ∈ N for all i ∈ ¶1, . . . , n♢♢ .

It is well known (see for instance [12]) that every numerical semigroup S is finitely
generated, and therefore there exists a finite subset A of N such that S = ⟨A⟩.
Furthermore, we say that A is a minimal set of generators of S if no proper subset of A

generates S. Every numerical semigroup admits an unique minimal set of generators
of S and we denote this set by msg(S). It is well known (see for instance [12])
that msg(S) = (S\¶0♢) \ (S\¶0♢ + S\¶0♢) and if x ∈ S then S\¶x♢ is a numerical
semigroup if and only if x ∈ msg(S).

As a consequence of [11, Proposition 24 and Theorem 27] we have the following
result.
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Theorem 5.1. The graph G(E) is a tree with root N. Furthermore, the sons of a

vertex S of G(E) are in ¶S\¶x♢ ♣ x ∈ msg(S), x > F(S) and S\¶x♢ ∈ E♢.

The following result is useful to compute the sons of a vertex of G(E).

Proposition 5.2. Let S be an elementary numerical semigroup and x ∈ msg(S) such

that x > F(S). Then S\¶x♢ is an elementary numerical semigroup if and only if

x < 2m(S).

Proof. Suppose that S = ¶0, m(S), →♢. Then

msg(S) = ¶m(S), m(S) + 1, . . . , 2m(S) − 1♢

and clearly the result is true. If S ≠ ¶0, m(S), →♢ then m(S\¶x♢) = m(S) and
F(S\¶x♢) = x. Therefore, S\¶x♢ is elementary numerical semigroup if and only if
x < 2m(S). □

We illustrate the above results with the following example.

Example 5.1. Let us compute the sons of vertex S = ¶0, 5, 6, 9, →♢ of G(E).
We have msg(S) = ¶5, 6, 9, 13♢, F(S) = 8 and m(S) = 5. Whence
¶x ∈ msg(S) ♣ F(S) < x < 2m(S)♢ = ¶9♢. Using Theorem 5.1 and Proposition 5.2 we
conclude that S has an unique son S\¶9♢ = ⟨5, 6, 13, 14⟩.

Now, we can recursively construct the tree G(E) starting with N and connect-
ing each vertex with their sons. First we construct msg(S\¶x♢) from msg(S),
when x is a minimal generator of S greater than F(S). It is clear that if
msg(S) = ¶m, m + 1, . . . , 2m − 1♢ which is S = ¶0, m, →♢ then msg(S\¶m♢) =
¶m + 1, m + 2, . . . , 2m + 1♢. For the remaining cases, we use the following result that
appears in [10, Corollary 18].

Proposition 5.3. Let S be a numerical semigroup with msg(S) = ¶n1, . . . , np♢. If

m(S) = n1 < np and np > F(S) then

msg(S\¶np♢) =











¶n1, . . . , np−1♢, if exists i ∈ ¶2, . . . , p − 1♢ such that

np + n1 − ni ∈ S,

¶n1, . . . , np−1, np + n1♢, otherwise.

Note that, in the previous proposition, the elements in msg(S) are not necessarily
ordered.

Example 5.2. Let S = ⟨5, 6, 9, 13⟩. Let us compute msg(S\¶9♢). By Proposition 5.3,
as 9 + 5 − 6 ̸∈ S and 9 + 5 − 13 ̸∈ S, we can conclude that ¶5, 6, 13, 14♢ is the minimal
system of generators of S\¶9♢.

Using Theorem 5.1 and Proposition 5.2 and 5.3 we obtain the following:

. ⟨1⟩ has only son ⟨1⟩\¶1♢ = ⟨2, 3⟩;

. ⟨2, 3⟩ has two sons ⟨2, 3⟩\¶2♢ = ⟨3, 4, 5⟩ and ⟨2, 3⟩\¶3♢ = ⟨2, 5⟩;

. ⟨2, 5⟩ has no sons;
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⟨1⟩ = N

✎✎

⟨2, 3⟩

④④ ✢✢

⟨3, 4, 5⟩

③③ ✎✎ ★★

⟨2, 5⟩

⟨4, 5, 6, 7⟩

ss ✈✈ ⑥⑥ ✎✎

⟨3, 5, 7⟩

✎✎

⟨3, 4⟩

⟨5, 6, 7, 8, 9⟩ ⟨4, 6, 7, 9⟩ ⟨4, 5, 7⟩ ⟨4, 5, 6⟩ ⟨3, 7, 8⟩ . . .

. ⟨3, 4, 5⟩ has three sons ⟨3, 4, 5⟩\¶3♢ = ⟨4, 5, 6, 7⟩, ⟨3, 4, 5⟩\¶4♢ = ⟨3, 5, 7⟩ and
⟨3, 4, 5⟩\¶5♢ = ⟨3, 4⟩;

. ⟨3, 4⟩ has no sons;

. ⟨3, 5, 7⟩ has one son ⟨3, 5, 7⟩\¶5♢ = ⟨3, 7, 8⟩;

. ⟨4, 5, 6, 7⟩ has four sons ⟨4, 5, 6, 7⟩\¶4♢ = ⟨5, 6, 7, 8, 9⟩, ⟨4, 5, 6, 7⟩\¶5♢ =
⟨4, 6, 7, 9⟩, ⟨4, 5, 6, 7⟩\¶6♢ = ⟨4, 5, 7⟩ and ⟨4, 5, 6, 7⟩\¶7♢ = ⟨4, 5, 6⟩;

. . . . . . . . . . . . .
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EXISTENCE AND STABILITY OF NONLOCAL INITIAL VALUE

PROBLEMS INVOLVING GENERALIZED KATUGAMPOLA

DERIVATIVE

ARIF S. BAGWAN1 AND DEEPAK B. PACHPATTE2

Abstract. In this paper, the existence results for the solutions to nonlocal initial
value problems involving generalized Katugampola derivative are established. Some
fixed point theorem techniques are used to derive the existence results. In the sequel,
we investigate the generalized Ulam-Hyers-Rassias stability corresponding to our
problem. Some examples are given to illustrate our main results.

1. Introduction

In recent decades, the theory of continuous fractional calculus and their applications
have remains a centre of attraction in many mathematical research. Indeed, fractional
differential equations (FDEs) have grabbed desired attention by many authors. One
can see [1–5, 7–13, 20, 21, 23, 26, 27, 33, 34] and references therein. Several definitions
of fractional derivatives and integrals have been introduced during the theoretical
development of fractional calculus. See [1, 2, 5, 7, 8, 16, 20–22, 25, 27] and references
therein.

Initially, Hilfer et al. [16,17] have proposed linear differential equations involving new
fractional operator. They applied operational method to solve such FDEs. Further,
Furati et al. [14, 15] investigated non-linear problems and discussed existence and
non-existence results for FDEs with Hilfer derivative operator. Benchohra et al. [6,7],
U. N. Katugampola [20,21], D. B. Dhaigude et al. [8, 9], Kou et al. [23], J. Wang et
al. [32, 33] and many more authors, see [1, 2, 5, 19, 29,31] and references therein, have
established the existence results for FDEs with several fractional derivative operators.

Key words and phrases. Generalized Katugampola derivative, nonlocal initial value problem,
Existence, Ulam-Hyers-Rassias stability.
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Recently, D. S. Oliveira et al. [27] in their article proposed a new fractional differ-
ential operator: Hilfer-Katugampola frational derivative (also known as generalized
Katugampola derivative). Further, they established the existence and uniqueness
results for the FDEs with generalized Katugampola derivative.

The theory of Ulam stability is also evolved as one of the most interesting field
of research. Initially, Ulam [30] established the results on the stability of functional
equations. Thereafter, remarkable interest have been shown by authors towards the
study of Ulam-Hyers stability and Ulam-Hyers-Rassias stability for various FDEs, see
[1, 6, 7, 18,24,31,33] and references therein.

In this paper, we studied the existence and stability of nonlocal initial value problem
(IVP) involving generalized Katugampola derivative of the form:

ρDµ,ν
a+ u (t) =f (t, u (t)) , µ ∈ (0, 1) , ν ∈ [0, 1] , t ∈ (a, b] ,(1.1)

ρI1−β
a+ u (a) =

m
∑

i=1

λiu (κi) , µ ≤ β = µ+ ν (1 − µ) < 1, κi ∈ (a, b] ,(1.2)

where f is a given function such that f : (a, b] × R → R, 0 < ρ. The operator ρDµ,ν
a+

is the generalized Katugampola fractional derivative of order µ and type ν and the
operator ρI1−β

a+ u (a) is the Katugampola fractional integral of order 1 − β, with a > 0,
κi, i = 1, 2, . . . ,m, are prefixed points satisfying a < κ1 ≤ κ2 ≤ · · · ≤ κm < b.

Furthermore, the paper is arranged as follows. In Section 2, we recall some basic
definitions, important results and preliminary facts. We establish the equivalent
mixed type Volterra integral equation for the IVP (1.1)–(1.2). In Section 3, we
present existence of solution using the Krasnoselskii fixed point theorem. Further, we
present the generalized Ulam-Hyers-Rassias stability to our problem. An illustrative
example is given at the end of the main results.

2. Preliminary Results

In this section, we provide some basic definitions of generalized fractional integrals
and derivatives, some important results and preliminary facts that are very useful to
us in the sequel.

Let 0 < a < b < ∞ be a finite interval on R
+ and C [a, b] be the Banach space of

all continuous functions h : [a, b] → R with the norm

∥h∥C = max ¶♣h (t)♣ : t ∈ [a, b]♢ .

For 0 ≤ β < 1 and the parameter ρ > 0 we define the weighted space of continuous
functions h on (a, b] by

Cβ,ρ [a, b] =







h : (a, b] → R :



tρ − aρ

ρ

β

h (t) ∈ C [a, b]







,
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with the norm

∥h∥Cβ,ρ
=

∥

∥

∥

∥

∥

∥



tρ − aρ

ρ

β

h (t)

∥

∥

∥

∥

∥

∥

C

= max
t∈[a,b]

∣

∣

∣

∣

∣

∣



tρ − aρ

ρ

β

h (t)

∣

∣

∣

∣

∣

∣

.

It is obvious that C0,ρ [a, b] = C [a, b].

Let δρ =


tρ−1 d
dt

)

. We define the Banach space of continuously differentiable

functions h on [a, b] by

C1
δρ,β [a, b] = ¶h : [a, b] → R : δρh ∈ Cβ,ρ [a, b]♢ ,

with the norms

∥h∥C1
δρ,β

= ∥h∥C + ∥δρh∥Cβ,ρ

and

∥h∥C1
δρ,β

= max ¶♣δρh (t)♣ : t ∈ [a, b]♢ .

Note that C0
δρ,β [a, b] = Cβ,ρ [a, b].

Definition 2.1 (Katugampola fractional integral [20,27]). Let µ, c ∈ R, with µ > 0,
u ∈ Zp

c (a, b), where Zp
c (a, b) is the space of Lebesgue measurable functions with

complex values. The left-sided Katugampola fractional integral of order µ is defined
by

(2.1) (ρIµ
a+u) (t) =

ρ1−µ

Γ (µ)

t
∫

a

xρ−1u (x)

(tρ − xρ)1−µdx, t > a.

Definition 2.2 (Katugampola fractional derivative [21, 27]). Let µ, ρ ∈ R be such
that µ /∈ N, 0 < µ, ρ. The left-sided Katugampola fractional derivative of order µ is
defined by

(ρDµ
a+u) (t) = δn

ρ



ρIn−µ
a+ u

)

(t) =
ρ1−n+µ

Γ (n− µ)



t1−ρ d

dt

n t
∫

a

xρ−1u (x)

(tρ − xρ)1−n+µdx,(2.2)

where n = [µ] + 1 is such that [µ] is the integer part of µ.

Definition 2.3 (Generalized Katugampola fractional derivative [27]). Let 0 < µ ≤ 1
and 0 ≤ ν ≤ 1. The generalized Katugampola fractional derivative (of order µ and
type ν) with respect to t is defined by

(ρDµ,ν
a+ u) (t) =







±ρI
ν(1−µ)
a±



tρ−1 d

dt

1
ρI

(1−ν)(1−µ)
a± u







(t)

=
{

±ρI
ν(1−µ)
a± δρ

ρI
(1−ν)(1−µ)
a± u

}

(t) ,(2.3)

where ρ > 0, u ∈ C1−β,ρ [0, 1] and I is Katugampola fractional integral defined in
(2.1).
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Remark 2.1. ([27]). For β = µ + ν (1 − µ), the generalized Katugampola fractional
derivative operator ρDµ,ν

a+ can be expressed as

(2.4) ρDµ,ν
a+ = ρI

ν(1−µ)
a+ δρ

ρI1−β
a+ = ρI

ν(1−µ)
a+

ρDβ
a+ .

Lemma 2.1 ([27]). Let µ > 0, 0 ≤ β < 1 and u ∈ Cβ,ρ [a, b]. Then

(ρDµ
a+

ρIµ
a+u) (t) = u (t) , for all t ∈ (a, b] .

Lemma 2.2 (Semigroup property [27]). Let µ > 0, ν > 0, 1 ≤ q ≤ ∞, a, b ∈ (0,∞)
such that a < b and ρ, s ∈ R, s ≤ ρ. Then the following property holds true

(ρIµ
a+

ρIν
a+u) (t) =



ρIµ+ν
a+ u

)

(t) ,

for all u ∈ Zq
s (a, b).

Lemma 2.3 ([27]). Let t > a and for µ ≥ 0 and ν > 0, we have




ρDµ
a+



xρ − aρ

ρ

µ−1


 (t) = 0, 0 < µ < 1,





ρIµ
a+



xρ − aρ

ρ

ν−1


 (t) =
Γ (ν)

Γ (µ+ ν)



xρ − aρ

ρ

µ+ν−1

.

Lemma 2.4 ([27]). Let µ > 0, 0 ≤ β < 1 and a, b ∈ (0,∞) such that a < b and

u ∈ Cβ,ρ [a, b]. Then

(ρIµ
a+u) (a) = lim

t→a+
(ρIµ

a+u) (t) = 0,

and ρIµ
a+u is continuous on [a, b] if β < µ.

Lemma 2.5 ([27]). Let µ ∈ (0, 1), ν ∈ [0, 1] and β = µ + ν − µν. If u ∈ Cβ
1−β [a, b]

then
ρIβ

a+
ρDβ

a+u = ρIµ
a+

ρDµ,ν
a+ u

and
ρDβ

a+
ρIµ

a+u = ρD
ν(1−µ)
a+ u.

Lemma 2.6 ([27]). Let µ ∈ (0, 1), 0 ≤ β < 1. If u ∈ Cβ [a, b] and ρI1−µ
a+ u ∈ C1

β [a, b],
then for all t ∈ (a, b]

(ρIµ
a+

ρDµ
a+u) (t) = −



tρ − aρ

ρ

µ−1


ρI1−β
a+ u

)

(a)

Γ (µ)
+ u (t) .

Lemma 2.7 ([27]). Let u ∈ L1 (a, b). If ρD
ν(1−µ)
a+ u exists on L1 (a, b), then

ρDµ,ν
a+

ρIµ
a+u = ρI

ν(1−µ)
a+

ρD
ν(1−µ)
a+ u.
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Lemma 2.8 ([27]). Let f : (a, b] ×R → R be a function where f (·, u (·)) ∈ C1−β [a, b].

A function u ∈ Cβ
1−β [a, b] is a solution of fractional IVP

Dµ,ν
a+ u (t) = f (t, u (t)) , µ ∈ (0, 1) , ν ∈ [0, 1] ,

I1−β
a+ u



a+
)

= u0, β = µ+ ν − µν,

if and only if u satisfies the integral equation of Volterra type:

u (t) =
u0(t− a)β−1

Γ (β)
+

1

Γ (µ)

t
∫

a

(t− x)µ−1f (x, u (x)) dx.

Definition 2.4 (Volterra integral equation). A linear Volterra integral equation of
the second kind has the form of

u (t) = u0 (t) +

t
∫

a

K (t, x)u (x) dx,

where K is a kernel.

Theorem 2.1 (Krasnoselskii fixed point theorem [28]). Let E be a nonempty closed,

bounded and convex subset of a Banach space (B, ∥·∥). Further, assume that F and

G are two operators defined on E which map E into B such that

(a) F (x) +G (y) ∈ E for all x, y ∈ E;

(b) F is a contraction;

(c) G is continuous and compact.

Then F +G has a fixed point in E.

Using the above fundamental results, the following theorem yields the equivalence
between the IVP (1.1)–(1.2) and an improved mixed type Volterra integral equation.

Theorem 2.2. Let f : (a, b] × R → R be a function such that for any u ∈ C1−β [a, b]
f (·, u (·)) ∈ C1−β [a, b], where β = µ+ ν − µν, with 0 < µ ≤ 1, 0 ≤ ν ≤ 1. Function

u ∈ Cβ
1−β [a, b] is a solution of IVP (1.1)–(1.2) if and only if it satisfies the following

mixed type Volterra integral equation

u (t) =
K

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

+
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx,(2.5)

where K =
{

Γ (β) −
m
∑

i=1
λi



κi
ρ−aρ

ρ

)β−1
}−1

.
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Proof. Let u ∈ Cβ
1−β [a, b] be a solution of IVP (1.1)–(1.2). Then by the Lemma 2.8

the solution of IVP (1.1)–(1.2) can be written as

(2.6) u (t) =



tρ − aρ

ρ

β−1


ρI1−β
a+ u

)

(a)

Γ (β)
+

1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.

Now, substitute t = κi in the above equation

u (κi) =



κi
ρ − aρ

ρ

β−1


ρI1−β
a+ u

)

(a)

Γ (β)
+

1

Γ (µ)

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.

Multiplying by λi the both hand sides, we get

λiu (κi) = λi



κi
ρ − aρ

ρ

β−1


ρI1−β
a+ u

)

(a)

Γ (β)
+

λi

Γ (µ)

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.

Thus, we have

ρI1−β
a+ u (a) =

m
∑

i=1

λiu (κi),

=



ρI1−β
a+ u

)

(a)

Γ (β)

m
∑

i=1

λi



κi
ρ − aρ

ρ

β−1

+
1

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx,

which implies

(2.7)


ρI1−β
a+ u

)

(a) =
Γ (β)

Γ (µ)
K

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.

Substituting (2.7) in (2.6) we get (2.5), which proved that u also satisfies integral
equation (2.5) when it satisfies IVP (1.1)–(1.2). This proved the necessity. Now, we

prove the sufficiency by applying ρI1−β
a+ to both hand sides of the integral equation

(2.5), we have

ρI1−β
a+ u (t) =ρI1−β

a+



tρ − aρ

ρ

β−1
K

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

+ ρI1−β
a+

ρIµ
a+f (x, u (x)) .

By using Lemma 2.2, Lemma 2.1 and Lemma 2.3, we have

ρI1−β
a+ u (t) =

Γ (β)

Γ (µ)
K

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx+ ρI
1−ν(1−µ)
a+ f (t, u (t)) .
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Since 1 − ν (1 − µ) > 1 − β, by taking the limit as t → a and using Lemma 2.4, we
have

(2.8)


ρI1−β
a+ u

)

(a) =
Γ (β)

Γ (µ)
K

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.

Now, substituting t = κi in (2.5), we have

u (κi) =



κi
ρ − aρ

ρ

β−1
K

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

+
1

Γ (µ)

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.

Then we have

m
∑

i=1

λiu (κi) =
K

Γ (µ)

m
∑

i=1

λi



κi
ρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

+
1

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

=
1

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

×







K
m
∑

i=1

λi



κi
ρ − aρ

ρ

β−1

+ 1







=
Γ (β)

Γ (µ)
K

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.(2.9)

It follows from (2.8) and (2.9), that

ρI1−β
a+ u (a) =

m
∑

i=1

λiu (κi).

It follows from Lemma 2.3 and Lemma 2.5 and by applying ρDβ
a+ to both hand sides

of (2.5) that

(2.10) ρDβ
a+u (t) = ρD

ν(1−µ)
a+ f (t, u (t)) .

Since u ∈ Cβ
1−β [a, b] and by the definition of Cβ

1−β [a, b], we have ρDβ
a+ u ∈ Cβ

1−β [a, b].

Then ρD
ν(1−µ)
a+ f = ρDρI

1−ν(1−µ)
a+ f ∈ C1−β [a, b]. It is obvious that for any f ∈

C1−β [a, b], ρI
1−ν(1−µ)
a+ f ∈ C1−β [a, b], then ρI

1−ν(1−µ)
a+ f ∈ C1

1−β [a, b]. Thus, f and
ρI

1−ν(1−µ)
a+ f satisfy both the conditions of Lemma 2.6.
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Now, it follows from Lemma 2.6, by applying ρI
ν(1−µ)
a+ on both sides of (2.10), that

(2.11) (ρDµ,ν
a+ u) (t) = −



tρ − aρ

ρ

ν(1−µ)−1 ρI
1−ν(1−µ)
a+ f (a)

Γ (ν (1 − µ))
+ f (t, u (t)) .

By Lemma 2.4, it implies that ρI
1−ν(1−µ)
a+ f (a) = 0. Hence, (2.11) reduces to

(ρDµ,ν
a+ u) (t) = f (t, u (t)) .

This completes the proof. □

3. Main Result

In the sequel, let us introduce the following hypothesis.
[Q1] Let f : (a, b]×R → R be a continuous function such that for any u ∈ C1−β [a, b]

f (·, u (·)) ∈ C
ν(1−µ)
1−β [a, b]. For all u, v ∈ R there exists a positive constant J > 0 such

that

♣f (t, u) − f (t, v)♣ ≤ J ♣u− v♣ .

[Q2] The constant

(3.1) σ :=
JB (µ, β)

Γ (µ)







♣K♣
m
∑

i=1

λi



κi
ρ − aρ

ρ

µ+β−1

+



bρ − aρ

ρ

µ






< 1,

where K is defined in the Theorem 2.2.
Now, we will establish our main existence result for IVP (1.1)–(1.2) using Kras-

noselskii fixed point theorem.

Theorem 3.1. Assume that the hypothesis [Q1] and [Q2] are satisfied. Then IVP

(1.1)–(1.2) has at least one solution in Cβ
1−β [a, b].

Proof. According to Theorem 2.2, it is sufficient to prove the existence result for the
mixed type integral equation (2.5).

Now, define the operator ∆ by

(∆u) (t) =
K

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

+
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.(3.2)

It is obvious that the operator ∆ is well defined and maps C1−β [a, b] into C1−β [a, b].

Let f̂ (x) = f (x, 0) and

(3.3) η :=
B (µ, β)

Γ (µ)







♣K♣
m
∑

i=1

λi



κi
ρ − aρ

ρ

µ+β−1

+



bρ − aρ

ρ

µ






∥

∥

∥f̂
∥

∥

∥

C1−β

.

Consider a ball Bs :=
{

u ∈ C1−β [a, b] : ∥u∥C1−β
≤ s

}

, with η
1−σ

≤ s, σ < 1.
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Now, let us subdivide the operator ∆ into two operators F and G on Bs as follows:

(Fu) (t) =
K

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

and

(Gu) (t) =
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx.

The proof is divided into following steps.
Step I. For every u, v ∈ Bs, Fu+Gv ∈ Bs. For the operator F

(Fu) (t)



tρ − aρ

ρ

1−β

=
K

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx, t ∈ (a, b] ,

we have
∣

∣

∣

∣

∣

∣

(Fu) (t)



tρ − aρ

ρ

1−β
∣

∣

∣

∣

∣

∣

≤
♣K♣

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1 ♣f (x, u (x))♣ dx

≤
♣K♣

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1 (♣f (x, u (x)) − f (x, 0)♣

+ ♣f (x, 0)♣) dx

≤
♣K♣

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1


J ♣u (x)♣ +
∣

∣

∣f̂ (x)
∣

∣

∣

)

dx.

Here we use the fact that

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1 ♣u (x)♣ dx ≤







t
∫

a



tρ − xρ

ρ

µ−1
xρ − aρ

ρ

β−1

xρ−1dx







× ∥u (x)∥C1−β

=



tρ − aρ

ρ

µ+β−1

B (µ, β) ∥u (x)∥C1−β
.(3.4)

Thus, we have
∣

∣

∣

∣

∣

∣

(Fu) (t)



tρ − aρ

ρ

1−β
∣

∣

∣

∣

∣

∣

≤
♣K♣

Γ (µ)

m
∑

i=1

λi









κi
ρ − aρ

ρ

µ+β−1

B (µ, β)

×
(

J∥u (x)∥C1−β
+
∥

∥

∥f̂ (x)
∥

∥

∥

C1−β

)







,
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which gives
(3.5)

∥Fu∥C1−β
≤

♣K♣B (µ, β)

Γ (µ)

m
∑

i=1

λi









κi
ρ − aρ

ρ

µ+β−1 (

J∥u (x)∥C1−β
+
∥

∥

∥f̂ (x)
∥

∥

∥

C1−β

)







.

For t ∈ (a, b] and the operator G

(Gu) (t)



tρ − aρ

ρ

1−β

=
1

Γ (µ)



tρ − aρ

ρ

1−β t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx,

we have
∣

∣

∣

∣

∣

∣

(Gu) (t)



tρ − aρ

ρ

1−β
∣

∣

∣

∣

∣

∣

≤
1

Γ (µ)



tρ − aρ

ρ

1−β t
∫

a



tρ − xρ

ρ

µ−1

xρ−1 ♣f (x, u (x))♣ dx

≤
1

Γ (µ)



tρ − aρ

ρ

1−β

×

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1


J ♣u (x)♣ +
∣

∣

∣f̂ (x)
∣

∣

∣

)

dx.

Again, by using (3.4), we have
∣

∣

∣

∣

∣

∣

(Gu) (t)



tρ − aρ

ρ

1−β
∣

∣

∣

∣

∣

∣

≤
1

Γ (µ)



tρ − aρ

ρ

1−β








tρ − aρ

ρ

µ+β−1

×B (µ, β)
(

J∥u (x)∥C1−β
+
∥

∥

∥f̂ (x)
∥

∥

∥

C1−β

)







≤
B (µ, β)

Γ (µ)



bρ − aρ

ρ

µ (

J∥u (x)∥C1−β
+
∥

∥

∥f̂ (x)
∥

∥

∥

C1−β

)

,

which gives

(3.6) ∥(Gu)∥C1−β
≤
B (µ, β)

Γ (µ)



bρ − aρ

ρ

µ (

J∥u (x)∥C1−β
+
∥

∥

∥f̂ (x)
∥

∥

∥

C1−β

)

.

Combining (3.5) and (3.6) for every u, v ∈ Bs we have

∥Fu+Gv∥C1−β
≤ ∥Fu∥C1−β

+ ∥(Gv)∥C1−β
≤ σs+ η ≤ s,

which implies that Fu+Gv ∈ Bs.
Step II. The operator F is contraction mapping.
For any u, v ∈ Bs and the operator F

¶(Fu) (t) − (Fv) (t)♢



tρ − aρ

ρ

1−β



EXISTENCE AND STABILITY OF NONLOCAL IVP 453

=
K

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1 [f (x, u (x)) − f (x, v (x))] dx

we have
∣

∣

∣

∣

∣

∣

¶(Fu) (t) − (Fv) (t)♢



tρ − aρ

ρ

1−β
∣

∣

∣

∣

∣

∣

≤
♣K♣

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1

× ♣f (x, u (x)) − f (x, v (x))♣ dx

≤
♣K♣

Γ (µ)

m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1

× J ♣u (x) − v (x)♣ dx

≤
J ♣K♣

Γ (µ)
B (µ, β)

m
∑

i=1

λi



κi
ρ − aρ

ρ

µ+β−1

× ∥u− v∥C1−β
,

which gives

∥Fu− Fv∥C1−β
≤
J ♣K♣

Γ (µ)
B (µ, β)

m
∑

i=1

λi



κi
ρ − aρ

ρ

µ+β−1

∥u− v∥C1−β
≤ σ∥u− v∥C1−β

.

Hence, by the hypothesis [Q2] the operator F is a contraction mapping.
Step III. The operator G is compact and continuous.
Since the function f ∈ C1−β [a, b], it is obvious from the definition of C1−β [a, b] that

the operator G is continuous.
From the equation (3.6) of Step I clearly, G is uniformly bounded on Bs. Next we

prove the compactness.
For any a < t1 < t2 ≤ b we have

♣(Gu) (t1) − (Gu) (t2)♣ =

∣

∣

∣

∣

∣

∣

1

Γ (µ)

t1
∫

a



t1
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

−
1

Γ (µ)

t2
∫

a



t2
ρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

∣

∣

∣

∣

∣

∣

≤
∥f∥C1−β

Γ (µ)

∣

∣

∣

∣

∣

∣

t1
∫

a



t1
ρ − xρ

ρ

µ−1
xρ − aρ

ρ

β−1

xρ−1dx

−

t2
∫

a



t2
ρ − xρ

ρ

µ−1
xρ − aρ

ρ

β−1

xρ−1dx

∣

∣

∣

∣

∣

∣

≤
∥f∥C1−β

B (µ, β)

Γ (µ)

∣

∣

∣

∣

∣

∣



t1
ρ − aρ

ρ

µ+β−1

−



t2
ρ − aρ

ρ

µ+β−1
∣

∣

∣

∣

∣

∣
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tending to zero as t2 → t1, whether µ + β − 1 ≥ 0 or µ + β − 1 < 0. Thus, G is
equicontinuous. Hence, by Arzel-Ascoli Theorem, the operator G is compact on Bs.

It follows from Krasnoselskii fixed point theorem that the IVP (1.1)–(1.2) has at
least one solution u ∈ C1−β [a, b]. Using the Lemma 2.7 and repeating the process of

proof in Theorem 2.2, one can show that this solution is actually in Cβ
1−β [a, b] . This

completes the proof. □

3.1. Ulam-Hyers-Rassias stability. In this section, we discuss the Ulam stability
results for the solution of IVP (1.1)–(1.2).

Definition 3.1 ([1]). The solution of IVP (1.1)–(1.2) is said to be Ulam-Hyers stable
if there exists a real number ψ > 0 such that for every ε > 0 and for each solution
u ∈ Cβ,ρ of the inequality

(3.7) ♣(ρDµ,ν
a+ u) (t) − f (t, u (t))♣ ≤ ε, t ∈ (a, b] ,

there exists v ∈ Cβ,ρ, a solution of IVP (1.1)–(1.2) satisfying

♣u (t) − v (t)♣ ≤ εψ, t ∈ (a, b] .

Definition 3.2 ([1]). The solution of IVP (1.1)–(1.2) is said to be generalized Ulam-
Hyers stable if there exists a continuous function ψf : R+ → R+, with ψf (0) = 0 such
that for every solution u ∈ Cβ,ρ of the inequality (3.7) there exists v ∈ Cβ,ρ, a solution
of IVP (1.1)–(1.2) satisfying

♣u (t) − v (t)♣ ≤ ψf (ε) , t ∈ (a, b] .

Definition 3.3 ([1]). The solution of IVP (1.1)–(1.2) is said to be Ulam-Hyers-Rassias
stable with respect to Ψ ∈ Cβ,ρ ((a, b] ,R+) if there exists a real number 0 < ψθ such
that for every 0 < ε and for every solution u ∈ Cβ,ρ of the inequality

(3.8) ♣(ρDµ,ν
a+ u) (t) − f (t, u (t))♣ ≤ εΨ (t) , t ∈ (a, b] ,

there exists v ∈ Cβ,ρ a solution of IVP (1.1)–(1.2) satisfying

♣u (t) − v (t)♣ ≤ εψθΨ (t) , t ∈ (a, b] .

Definition 3.4 ([1]). The solution of IVP (1.1)–(1.2) is said to be generalized Ulam-
Hyers-Rassias stable with respect to Ψ ∈ Cβ,ρ ((a, b] ,R+) if there exists a real number
0 < ψθ such that for every solution u ∈ Cβ,ρ of the inequality

(3.9) ♣(ρDµ,ν
a+ u) (t) − f (t, u (t))♣ ≤ Ψ (t) , t ∈ (a, b] ,

there exists v ∈ Cβ,ρ a solution of IVP (1.1)–(1.2) satisfying

♣u (t) − v (t)♣ ≤ ψθΨ (t) , t ∈ (a, b] .

Remark 3.1 ([1]). Clearly

(a) from Definition 3.1 follows Definition 3.2;
(b) from Definition 3.3 follows Definition 3.4;
(c) from Definition 3.3 for Ψ (·) = 1 follows Definition 3.2.
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Now, we establish the results on generalized Ulam-Hyers-Rassias stability of the
IVP (1.1)–(1.2).

Theorem 3.2. Assume that [Q1] and following hypothesis hold.

[Q3] There exists ωθ > 0 such that for each t ∈ (a, b] we have

ρIµ
a+Ψ (t) ≤ ωθΨ (t) .

[Q4]There exists a function p ∈ C [(a, b] , [0,∞)] such that for each t ∈ (a, b]

♣f (t, u (t))♣ ≤
p (t) Ψ (t)

1 + ♣u♣
♣u♣ .

Then the solution of IVP (1.1)–(1.2) satisfies the generalized Ulam-Hyers-Rassias

stability with respect to Ψ.

Proof. Let u be a solution of the inequality (3.9) and let v be a solution of IVP
(1.1)–(1.2). Then we have

v (t) =
K

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, v (x)) dx

+
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, v (x)) dx

=Φv +
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, v (x)) dx,

where

Φv =
K

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1f (x, v (x)) dx.

On the other hand, if
m
∑

i=1
λiu (κi) =

m
∑

i=1
λiv (κi) and ρI1−β

a+ u (a) = ρI1−β
a+ v (a), then

Φu = Φv. Indeed,

♣Φu − Φv♣ ≤
♣K♣

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1

× ♣f (x, u (x)) − f (x, v (x))♣ dx

≤
♣K♣

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi

κi
∫

a



κi
ρ − xρ

ρ

µ−1

xρ−1J ♣u− v♣ dx

≤
J ♣K♣

Γ (µ)



tρ − aρ

ρ

β−1 m
∑

i=1

λi
ρI1−β

a+ ♣u (κi) − v (κi)♣

=0.
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Hence, Φu = Φv. Then we have

v (t) = Φu +
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, v (x)) dx.

From inequality (3.9) and [Q3] for each t ∈ (a, b] we have
∣

∣

∣

∣

∣

∣

u (t) − Φu −
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

∣

∣

∣

∣

∣

∣

≤ ρIµ
a+Ψ (t) ≤ ωθΨ (t) .

Set p̃ = supt∈(a,b] p (t). From the hypothesis [Q3] and [Q4] for each t ∈ (a, b] we
have

♣u (t) − v (t)♣ ≤

∣

∣

∣

∣

∣

∣

u (t) − Φu −
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1f (x, u (x)) dx

∣

∣

∣

∣

∣

∣

+
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1 ♣f (x, u (x)) − f (x, v (x))♣ dx

≤ωθΨ (t) +
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−12p̃Ψ (x) dx

≤ωθΨ (t) + 2p̃ (ρIµ
a+Ψ) (t)

≤ (1 + 2p̃)ωθΨ (t)

:=ψθΨ (t) .

Thus, the IVP (1.1)–(1.2) is generalized Ulam-Hyers-Rassias stable with respect
to Ψ. This completes the proof. □

Following theorem will be useful in the progress of our next result.

Theorem 3.3 ([1]). Let (Ω, d) be a generalized complete metric space and a strictly

contractive operator Φ : Ω → Ω, with a Lipschitz constant E < 1. If there exists a non

negative integer j such that d (Φj+1u,Φj+1u) < ∞ for some u ∈ Ω, then the following

propositions hold true:

A: ¶Φju♢n∈N
converges to a fixed point u∗ of Φ;

B: u∗ is a unique fixed point of Φ in Ω∗ = ¶v ∈ Ω : d (Φ∗u, v) < ∞♢;

C: if v ∈ Ω∗, then d (v, u∗) ≤ 1
1−E

d (v,Φu).

Let Z = Z (I,R) be the metric space with the metric

d (u, v) = sup
t∈(a,b]



tρ−aρ

ρ

)1−β
♣u (t) − v (t)♣

Ψ (t)
.

Theorem 3.4. Assume that [Q3] and the following assumption hold.
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[Q5] There exists ϕ ∈ C ((a, b] , [0,∞)) such that for every u, v ∈ R and for each

t ∈ (a, b], we have

♣f (t, u) − f (t, v)♣ ≤



tρ − aρ

ρ

1−β

ϕ (t) Ψ (t) ♣u− v♣ .

If

E :=



Gρ − aρ

ρ

1−β

ϕ∗ωθ < 1,

where ϕ∗ = supt∈(a,b] ϕ (t), then there exists a unique solution u0 of the IVP (1.1)–(1.2)
and IVP (1.1)–(1.2) is generalized Ulam-Hyers-Rassias stable. Moreover,

♣u (t) − u0 (t)♣ ≤
Ψ (t)

1 − E
.

Proof. Let the operator ∆ : Cβ,ρ → Cβ,ρ be defined in (3.2). By using Theorem 3.3,
we have

♣(∆u) (t) − (∆v (t))♣ ≤
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1 ♣f (x, u (x)) − f (x, v (x))♣ dx

≤
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1ϕ (x) Ψ (x)

×

∣

∣

∣

∣

∣

∣



xρ − aρ

ρ

1−β

u (x) −



xρ − aρ

ρ

1−β

v (x)

∣

∣

∣

∣

∣

∣

dx

≤
1

Γ (µ)

t
∫

a



tρ − xρ

ρ

µ−1

xρ−1ϕ∗ (x) Ψ (x) ∥u− v∥C1−β
dx

≤ϕ∗ (ρIµ
a+) Ψ (t) ∥u− v∥C

≤ϕ∗ωθΨ (t) ∥u− v∥C .

Hence,
∣

∣

∣

∣

∣

∣



tρ − xρ

ρ

1−β

(∆u) (t) −



tρ − xρ

ρ

1−β

(∆v (t))

∣

∣

∣

∣

∣

∣

≤



Gρ − aρ

ρ

1−β

ϕ∗ωθ

× Ψ (t) ∥u− v∥C .

Thus, we have

d (∆u,∆v) = sup
t∈(a,b]

∥(∆u) (t) − (∆v (t))∥C

Ψ (t)
≤ E∥u− v∥C .

This completes the theorem. □
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3.2. Examples.

Example 3.1. Consider the following IVP:

ρDµ,ν
0+ u (t) =

♣u (t)♣

50et+5 (1 + ♣u (t)♣)
, t ∈ (0, 1] ,(3.10)

ρI1−β
0+ u (0) =5u

(

1

2

)

+ 3u
(

3

4

)

, β = µ+ ν (1 − µ) ,(3.11)

where µ = 1
2
, ν = 2

3
and β = 5

6
. Set f (t, u) = |u|

50et+5(1+|u|)
, t ∈ (0, 1] .

It is obvious that the function f is continuous. For any u, v ∈ R and t ∈ (0, 1]

♣f (t, u) − f (t, v)♣ ≤
1

50e5
♣u− v♣ .

Thus, the condition [Q1] of Theorem 3.1 is satisfied, with J = 1
50e5 . Moreover, with

some elementary computation for ρ > 0 we have

♣K♣ =

∣

∣

∣

∣

∣

∣

∣







Γ
(

5

6

)

−



5



(1/2)ρ − 0ρ

ρ

−1/6

+ 3



(3/4)ρ − 0ρ

ρ

−1/6









−1
∣

∣

∣

∣

∣

∣

∣

< 1

and

σ =
1

50e5
·
B (1/2, 5/6)

Γ (1/2)







♣K♣



5



(1/2)ρ − 0ρ

ρ

1/3

+ 3



(3/4)ρ − 0ρ

ρ

1/3




+



1ρ − 0ρ

ρ

1/2






< 1.

Hence, the condition [Q2] of Theorem 3.1 is satisfied.
It follows, from Theorem 3.1, that the IVP (3.10)–(3.11) has at least one solution

in C1/6 [0, 1].
Now, let Ψ (t) = 1

t2ρ−4 and p (t) = 1
50et+5 , then

♣f (t, u (t))♣ ⩽
1

50et+5
·

1

t2ρ−4
·

♣u (t)♣

(1 + ♣u (t)♣)
.

Thus, the condition [Q4] of Theorem 3.2 is satisfied and with the obvious elementary
computation, we have

ρIµ
0+Ψ (t) =

ρ1−µ

Γ (µ)

t
∫

a

xρ−1Ψ (x)

(tρ − xρ)1−µdx ≤
1

ρµΓ (µ)
B



µ,
4

ρ
− 1



Ψ (t) ≤ ωθΨ (t) .

Hence, the condition [Q4] of Theorem 3.2 is satisfied with ωθ = 1
ρµΓ(µ)

B


µ, 4
ρ

− 1
)

. It

follows from the Theorem 3.2 that the IVP (3.10)–(3.11) is generalized Ulam-Hyers-
Rassias stable.
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4. Conclusion

We have investigated the sufficient conditions for the existence of solutions to the
nonlocal initial value problems involving generalized Katugampola derivative. We
have used Krasnoselskii fixed point theorem to develop the existence results. Further,
we established some conditions for the generalized Ulam-Hyers-Rassias stability cor-
responding to the considered problem. Finally, as an application, a suitable example
is given to demonstrate our main results.
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AN OPERATIONAL APPROACH TO THE GENERALIZED

RENCONTRES POLYNOMIALS

EMANUELE MUNARINI1

Abstract. In this paper, we study the umbral operators J , M and N associated
with the generalized rencontres polynomials D

(m)
n (x). We obtain their representa-

tions in terms of the differential operator Dx and the shift operator E. Then, by
using these representations, we obtain some combinatorial and differential identities
for the generalized rencontres polynomials. Finally, we extend these results to some
related polynomials and, in particular, to the generalized permutation polynomials
P

(m)
n (x) and the generalized arrangement polynomials A

(m)
n (x).

1. Introduction

1.1. Generalized rencontres polynomials. Let m ∈ N. The generalized rencon-
tres polynomials D(m)

n (x), the generalized permutation polynomials P (m)
n (x) and the

generalized arrangement polynomials A(m)
n (x) are defined by (see [3, 5])

D(m)
n (x) =

n∑

k=0

(
n

k


d

(m)
n−kxk,

P (m)
n (x) =

n∑

k=0

(
n

k


(m + n − k)!xk,

A(m)
n (x) =

n∑

k=0

(
n

k


a

(m)
n−kxk,

where the coefficients

d(m)
n =

n∑

k=0

(
n

k


(−1)n−k(m + k)!
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are the generalized derangement numbers (see [3, 5]), and the coefficients

a(m)
n =

n∑

k=0

(
n

k


(m + k)!

are the generalized arrangement numbers. For m = 0, we have the ordinary derange-
ment numbers dn [4, page 182] and the ordinary arrangement numbers an [4, page
75]. Since

d(m)(t) =
∑

n≥0

d(m)
n

tn

n!
=

m!e−t

(1 − t)m+1
,

p(m)(t) =
∑

n≥0

(m + n)!
tn

n!
=

m!

(1 − t)m+1
,

a(m)(t) =
∑

n≥0

a(m)
n

tn

n!
=

m!et

(1 − t)m+1
,

then we have the exponential generating series

D(m)(x; t) =
∑

n≥0

D(m)
n (x)

tn

n!
= d(m)(t)ext =

m!e(x−1)t

(1 − t)m+1
,(1.1)

P (m)(x; t) =
∑

n≥0

P (m)
n (x)

tn

n!
= p(m)(t)ext =

m!ext

(1 − t)m+1
,(1.2)

A(m)(x; t) =
∑

n≥0

A(m)
n (x)

tn

n!
= a(m)(t)ext =

m!e(x+1)t

(1 − t)m+1
.(1.3)

In particular, from these series, we also have

D(m)
n (x) =

n∑

k=0

(
n

k


(m + k)!(x − 1)n−k,(1.4)

A(m)
n (x) =

n∑

k=0

(
n

k


(m + k)!(x + 1)n−k.

Clearly, the polynomials P (m)
n (x) and A(m)

n (x) can be expressed in terms of the poly-
nomials D(m)

n (x), namely

P (m)
n (x) = D(m)

n (x + 1),

A(m)
n (x) = D(m)

n (x + 2).

1.2. Sheffer sequences and umbral operators. Given any polynomial sequence
¶pn(x)♢n≥0, where each pn(x) is a polynomial with degree n, we can consider the
linear operators J, M, N : Q[x] → Q[x] defined for every n ∈ N, by

Jpn(x) = npn−1(x), Mpn(x) = pn+1(x) and Npn(x) = npn(x),
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where J is the umbral derivative (or lowering operator, or annihilation operator), M

is the umbral shift (or raising operator or creation operator) and N is the umbral
theta operator.

By Sheffer’s theorem [11], every linear operator L : Q[x] → Q[x] can be represented
by means of an exponential series in the derivative Dx with respect to x. More
precisely, there exists a unique polynomial sequence ¶Ln(x)♢n≥0, where Ln(x) ∈ Q[x]
for every n ∈ N, such that

Lp(x) =
∑

k≥0

Lk(x)

k!
D

k
x p(x) =

n∑

k=0

Lk(x)

k!
p(k)(x),

for every polynomial p(x) ∈ Q[x] of degree n. For instance, the shift operator Eλ,
defined by Eλp(x) = p(x + λ), is represented by the exponential series eλDx .

A Sheffer sequence [2, 7–11] with spectrum (g(t), f(t)) is a polynomial sequence
¶sn(x)♢n≥0 having exponential generating series

s(x; t) =
∑

n≥0

sn(x)
tn

n!
= g(t)exf(t),

where g(t) =
∑

n≥0 gn
tn

n!
and f(t) =

∑
n≥0 fn

tn

n!
are two exponential series, with g0 ̸= 0,

f0 = 0 and f1 ≠ 0. The umbral operators J , M and N associated with a Sheffer
sequence ¶sn(x)♢n≥0 with spectrum (g(t), f(t)) are given by [9, page 49, 50]

J = f̂(Dx),

M =
g′(f̂(Dx))

g(f̂(Dx))
+ xf ′(f̂(Dx)),

N = MJ =

(
g′(f̂(Dx))

g(f̂(Dx))
+ xf ′(f̂(Dx))


f̂(Dx),

where f̂(t) is the compositional inverse of f(t). In particular, for an Appell sequence
[1, 7, 9, 10], i.e., a Sheffer sequence ¶an(x)♢n∈N with spectrum (g(t), t) (where f(t) =

f̂(t) = t), we have

J = Dx,(1.5)

M =
g′(Dx)

g(Dx)
+ x,(1.6)

N = MJ =
g′(Dx)

g(Dx)
Dx +xDx .(1.7)

By identity (1.5), we have a′
n(x) = nan−1(x) for every n ∈ N.

By series (1.1), (1.2) and (1.3), the generalized rencontres polynomials D(m)
n (x),

the generalized permutation polynomials P (m)
n (x) and the generalized arrangement
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polynomials A(m)
n (x) form an Appell sequence, respectively with spectrum

(1.8)

(
m!e−t

(1 − t)m+1
, t


,

(
m!

(1 − t)m+1
, t


and

(
m!et

(1 − t)m+1
, t


.

More generally, the shifted polynomials D(m)
n (x + α) form an Appell sequence with

spectrum

(1.9)

(
m!e(α−1)t

(1 − t)m+1
, t


.

In this paper, we will determine the representation of the main umbral operators
associated with the generalized rencontres polynomials and then, by using these repre-
sentations, we obtain some combinatorial and differential identities for the generalized
rencontres polynomials. Finally, we extend these results to the shifted polynomials
D(m)

n (x + α) and, in particular, to the generalized permutation polynomials P (m)
n (x)

and the generalized arrangement polynomials A(m)
n (x).

2. Operators for the Generalized Rencontres Polynomials

Since the generalized rencontres polynomials form an Appell sequence, by identity
(1.5), we have

Dx D(m)
n (x) = nD

(m)
n−1(x), for all n ∈ N,

and, more generally,

D
k
x D(m)

n (x) =

(
n

k


k!D

(m)
n−1(x), for all n, k ∈ N.

For the second operator M , we have the following result.

Theorem 2.1. The operator M is given by

(2.1) M =
m + Dx

1 − Dx

+ x.

Proof. The operator M is given by formula (1.6). By the first spectrum in (1.8), we
have

g(t) =
m!e−t

(1 − t)m+1
, g′(t) =

m + t

1 − t
g(t) and

g′(t)

g(t)
=

m + t

1 − t
.

This implies at once formula (2.1). □

From this theorem, we can obtain the following recurrence (already obtained in [3,
(10)] by using the exponential series techniques).

Theorem 2.2. The generalized rencontres polynomials satisfy the recurrence

(2.2) D
(m)
n+2(x) = (x + m + n + 1)D

(m)
n+1(x) − (n + 1)(x − 1)D(m)

n (x).
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Proof. Since MD(m)
n (x) = D

(m)
n+1(x), by (2.1), we have

D
(m)
n+1(x) =

m + Dx

1 − Dx

D(m)
n (x) + xD(m)

n (x),

that is

(1 − Dx)D
(m)
n+1(x) = (m + Dx)D(m)

n (x) + (1 − Dx)xD(m)
n (x).

Hence, we have

D
(m)
n+1(x)−Dx D

(m)
n+1(x) = mD(m)

n (x)+Dx D(m)
n (x)+xD(m)

n (x)−D(m)
n (x)−xDx D(m)

n (x).

Now, since the generalized rencontres polynomials form an Appell sequence, we have

D
(m)
n+1(x)−(n+1)D(m)

n (x) = mD(m)
n (x)+nD

(m)
n−1(x)+xD(m)

n (x)−D(m)
n (x)−nxD

(m)
n−1(x),

that is

D
(m)
n+1(x) = (x + m + n)D(m)

n (x) − n(x − 1)D
(m)
n−1(x).

Replacing n by n + 1, we obtain recurrence (2.2). □

In a similar way, Theorem 2.1 implies the following result.

Theorem 2.3. The generalized rencontres polynomials satisfy the recurrence

(2.3) D
(m)
n+1(x) = (x − 1)D(m)

n (x) + (m + 1)
n∑

k=0

(
n

k


k!D

(m)
n−k(x).

Proof. Since MD(m)
n (x) = D

(m)
n+1(x), by formula (2.1) we have

D
(m)
n+1(x) =

m + Dx

1 − Dx

D(m)
n (x) + xD(m)

n (x)

= m
1

1 − Dx

D(m)
n (x) +

Dx

1 − Dx

D(m)
n (x) + xD(m)

n (x)

= m
∑

k≥0

D
k
x D(m)

n (x) +
∑

k≥1

D
k
x D(m)

n (x) + xD(m)
n (x).

Since D(m)
n (x) is a polynomial of degree n, we have

D
(m)
n+1(x) = m

n∑

k=0

D
k
x D(m)

n (x) +
n∑

k=1

D
k
x D(m)

n (x) + xD(m)
n (x)

= (x + m)D(m)
n (x) + (m + 1)

n∑

k=1

D
k
x D(m)

n (x)

= (x + m)D(m)
n (x) + (m + 1)

n∑

k=0

D
k
x D(m)

n (x) − (m + 1)D(m)
n (x)

= (x − 1)D(m)
n (x) + (m + 1)

n∑

k=0

D
k
x D(m)

n (x).

Since the generalized rencontres polynomials form an Appell sequence, we have recur-
rence (2.3). □
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Finally, as a direct consequence of (1.7) and Theorem 2.1, we have the following
result for the operator N .

Theorem 2.4. The operator N is given by

(2.4) N =
mDx +D

2
x

1 − Dx

+ xDx .

Theorem 2.4 immediately implies the following differential equation.

Theorem 2.5. The generalized rencontres polynomials satisfy the differential equation

(2.5) (x − 1)D′′
n(x) − (x + m + n − 1)D′

n(x) + nDn(x) = 0,

where, for simplicity, we write Dn(x) = D(m)
n (x).

Proof. Since ND(m)
n (x) = nD(m)

n (x), by formula (2.4), we have

mDx +D
2
x

1 − Dx

D(m)
n (x) + xDx D(m)

n (x) = nD(m)
n (x),

that is

(mDx +D
2
x)D(m)

n (x) + (1 − Dx)xDx D(m)
n (x) = n(1 − Dx)D(m)

n (x).

Hence, setting Dn(x) = D(m)
n (x), we have

(mDx +D
2
x)Dn(x) + (1 − Dx)xD′

n(x) = n(1 − Dx)Dn(x)

or
mD′

n(x) + D′′
n(x) + xD′

n(x) − D′
n(x) − xD′′

n(x) = nDn(x) − nD′
n(x).

This relation simplifies in the differential equation (2.5). □

Notice that, due to the fact that the generalized rencontres polynomials form an
Appell sequence, the differential equation (2.5) is equivalent to recurrence (2.2).

Finally, we have the following theorem.

Theorem 2.6. The generalized rencontres polynomials satisfy the identity

(2.6) (m + n + 1)D(m)
n (x) = (m + 1)

n∑

k=0

(
n

k


k!D

(m)
n−k(x) + n(x − 1)D

(m)
n−1(x).

Proof. Since ND(m)
n (x) = nD(m)

n (x), by (2.4), we have

nD(m)
n (x) =

mDx +D
2
x

1 − Dx

D(m)
n (x) + xDx D(m)

n (x)

=m
∑

k≥1

D
k
x D(m)

n (x) +
∑

k≥2

D
k
x D(m)

n (x) + xDx D(m)
n (x)

=m
n∑

k=1

(
n

k


k!D

(m)
n−k(x) +

n∑

k=2

(
n

k


k!D

(m)
n−k(x) + nxD

(m)
n−1(x)

=m
n∑

k=0

(
n

k


k!D

(m)
n−k(x) − mD(m)

n (x)
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+
n∑

k=0

(
n

k


k!D

(m)
n−k(x) − D(m)

n (x) − nD
(m)
n−1(x) + nxD

(m)
n−1(x)

=(m + 1)
n∑

k=0

(
n

k


k!D

(m)
n−k(x) − (m + 1)D(m)

n (x) + n(x − 1)D
(m)
n−1(x),

and this simplifies in identity (2.6). □

Notice that identities (2.3) and (2.6) imply recurrence (2.2).

3. Rodrigues-Like Formulas

In this section, we find a Rodrigues-like formula for the generalized rencontres
polynomials. We start by proving the following simple result, generalizing identity
(1.4).

Lemma 3.1. We have the identity

(3.1) D(m)
n (x) =

n∑

k=0

(
n

k


D

(m)
k (α)(x − α)n−k.

Proof. By series (1.1), we have

D(m)(x; t) =
m!e(x−1)t

(1 − t)m+1
=

m!e(x−α)te(α−1)t

(1 − t)m+1
=

m!e(α−1)t

(1 − t)m+1
e(x−α)t

or
D(m)(x; t) = D(m)(α; t)e(x−α)t.

This identity is equivalent to identity (3.1). □

Remark 3.1. Since D(m)
n (0) = d(m)

n , D(m)
n (1) = (m + n)! and D(m)

n (2) = a(m)
n for α = 1

identity (3.1) reduces to identity (1.4), while for α = 0 and α = 2 identity (3.1)
becomes

D(m)
n (x) =

n∑

k=0

(
n

k


d

(m)
k xn−k,

D(m)
n (x) =

n∑

k=0

(
n

k


a

(m)
k (x − 2)n−k.

Now we can prove the following result.

Theorem 3.1. For the generalized rencontres polynomials we have the Rodrigues-like

formula

(3.2) D(m)
n (x) = D(m)(α,Dx)(x − α)n.

In particular, we have

D(m)
n (x) = d(m)(Dx)xn,(3.3)

D(m)
n (x) = p(m)(Dx)(x − 1)n,(3.4)

D(m)
n (x) = a(m)(Dx)(x − 2)n.(3.5)
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Proof. From identity (3.1), we have

D(m)
n (x) =

n∑

k=0

(
n

k


D

(m)
k (α)(x − α)n−k =

∑

k≥0

D
(m)
k (α)

k!
D

k
x(x − α)n

=


∑

k≥0

D
(m)
k (α)

D
k
x

k!


 (x − α)n = D(m)(α;Dx)(x − α)n.

This is (3.2). Then, (3.3), (3.4) and (3.5) can be obtained for α = 0, α = 1 and α = 2,
respectively. □

4. Final Remarks

As already noted in the Introduction, the shifted polynomials D(m)
n (x + α) form an

Appell sequence with spectrum (1.9). From this simple observation, it is easy to see
that the associated umbral operators Jα, Mα and Nα are given by

Jα = J, Mα = M + α and Nα = N + αDx .

All the properties obtained for the generalized rencontres polynomials can be reformu-
lated for the shifted polynomials D(m)

n (x + α), and, in particular, for the polynomials
P (m)

n (x) and A(m)
n (x). For instance, from recurrence (2.2), we obtain the recurrences

P
(m)
n+2(x) = (x + m + n + 2)P

(m)
n+1(x) − (n + 1)xP (m)

n (x),

A
(m)
n+2(x) = (x + m + n + 3)A

(m)
n+1(x) − (n + 1)(x + 1)A(m)

n (x)

and from differential equation (2.5), we obtain the differential equations

xP ′′
n (x) − (x + m + n)P ′

n(x) + nPn(x) = 0,

(x + 1)A′′
n(x) − (x + m + n + 1)A′

n(x) + nAn(x) = 0,

where, always for simplicity, we write Pn(x) = P (m)
n (x) and An(x) = A(m)

n (x). Simi-
larly, from recurrence (2.3), we obtain the recurrences

P
(m)
n+1(x) = xP (m)

n (x) + (m + 1)
n∑

k=0

(
n

k


k!P

(m)
n−k(x),

A
(m)
n+1(x) = (x + 1)A(m)

n (x) + (m + 1)
n∑

k=0

(
n

k


k!A

(m)
n−k(x),

and, from identity (2.6), we obtain the identities

(m + n + 1)P (m)
n (x) = (m + 1)

n∑

k=0

(
n

k


k!P

(m)
n−k(x) + nxP

(m)
n−1(x),

(m + n + 1)A(m)
n (x) = (m + 1)

n∑

k=0

(
n

k


k!A

(m)
n−k(x) + n(x + 1)A

(m)
n−1(x).
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Finally, from identity (3.1), we obtain the identities

P (m)
n (x) =

n∑

k=0

(
n

k


P

(m)
k (α)(x − α)n−k,

A(m)
n (x) =

n∑

k=0

(
n

k


A

(m)
k (α)(x − α)n−k.

and, consequently, we have the Rodrigues-like formulas

P (m)
n (x) = P (m)(α,Dx)(x − α)n,

A(m)
n (x) = A(m)(α,Dx)(x − α)n.

As a concluding remark, notice that in [6, 7] we have considered a slight variant of
the polynomials considered in this paper, namely the polynomials D(ν)

n (x) and A(ν)
n (x)

defined by the exponential generating series

D(ν)(x; t) =
∑

n≥0

D(ν)
n (x)

tn

n!
=

e(x−1)t

(1 − t)v+1
,

A(ν)(x; t) =
∑

n≥0

A(ν)
n (x)

tn

n!
=

e(x+1)t

(1 − t)ν+1
,

where ν is an arbitrary symbol. Also these polynomials form Appell sequences and
the umbral operators J , M and N are the same, except for the fact that m is replaced
by ν.
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ON THE LIE CENTRALIZERS OF QUATERNION RINGS

MOHAMMAD ALI BAHMANI1 AND FATEME GHOMANJANI2

Abstract. In this paper, we investigate the problem of describing the form of Lie
centralizers on quaternion rings. We provide some conditions under which a Lie
centralizer on a quaternion ring is the sum of a centralizer and a center valued map.

1. Introduction and Preliminaries

Let R be a ring with the center Z(R). For a, b ∈ R denote the Lie product of a, b

by [a, b] = ab − ba and the Jordan product of a, b by a ◦ b = ab + ba. Let ϕ : R → R

be an additive map. Recall that ϕ is said to be a right (left) centralizer map if
ϕ(ab) = aϕ(b)(ϕ(ab) = ϕ(a)b) for all a, b ∈ R. It is called a centralizer if ϕ is both
a right centralizer and a left centralizer. We say that ϕ is a Jordan centralizer if
ϕ(a ◦ b) = a ◦ ϕ(b) for all a, b ∈ R. An additive map ϕ : R → R is called a Lie
centralizer if

ϕ[a, b] = [ϕ(a), b] (or ϕ[a, b] = [a, ϕ(b)]),

for each a, b ∈ R. We say that ϕ : R → R is a center valued map if ϕ(R) ⊆ Z(R).
In the recently years, the structure of Lie centralizers on rings has been studied by

some authors. An important question that naturally arises in this setting is under
what conditions on a quaternion ring, a Lie centralizer can be decomposed into the
sum of a centralizer and a center valued map. Jing [9] was the Ąrst one who introduced
the concept of Lie centralizer and showed that every Lie centralizer on some triangular
algebras is the sum of a centralizer and a center valued map. The authors [6] proved
that a Lie centralizer under some conditions on some trivial extention algebras is the
sum of a centralizer and a center valued map. Fošner and Jing [3] studied this result
on triangular rings and nest algebras.

Key words and phrases. Centralizer, Lie centralizer, quaternion ring.
2010 Mathematics Subject Classification. Pimary: P15A78. Secondary: 16W25, 47B47.
DOI 10.46793/KgJMat2203.471B
Received: September 24, 2019.
Accepted: January 28, 2020.

471



472 M. A BAHMANI AND F. GHOMANJANI

Let S be a ring with identity. Set

H(S) = ¶s0 + s1i + s2j + s3k : si ∈ S♢ = S ⊕ Si ⊕ Sj ⊕ Sk,

where i2 = j2 = k2 = ijk = −1 and ij = −ji. Then, with the componentwise
addition and multiplication subject to the given relations and the conventions that
i, j, k commute with S elementwise, H(S) is a ring called the quaternion ring over S.

In this paper, we suppose that S be an unital ring in which 2 is invertible. We
describe the Lie centralizers on H(S), we show that if S is commutative or semiprime,
then every Lie centralizer on H(S) decomposes into the sum of a centralizer and
a center valued map. Among the reasons for studying the mappings on quternion
rings, we cite the recently published books and papers ([1,2,8]), in which the authors
have considered the important roles of quaternion algebras in other branches of
mathematics, such as differential geometry, analysis and quantum Ąelds.

2. Lie Centralizers of Quaternion Rings

Our aim is to study a Lie centralizer map on a quaternion ring. We give conditions
under which it is a sum of a centralizer and a center valued map. In the following,
we establish a theorem which will be used to prove the fundamental results. From
now on, we assume that S is a 2-torsion free ring with identity such that 1

2
∈ S and

R = H(S).

Theorem 2.1. Let f : R → R be a Lie centralizer. Then there exists a Lie centralizer

α on S and a Jordan centralizer β on S such that f(t) = α(x)+β(y)i+β(z)j +β(w)k
for every element t = x + yi + zj + wk ∈ R.

Proof. Assume that f(i) = a + bi + cj + dk and f(j) = a′ + b′i + c′j + d′k for some
suitable coefficients in S. Since f is a Lie centralizer, we have

f(k) =
1

2
f [i, j] =

1

2
[f(i), j] = bk − di.

Furthermore,

a + bi + cj + dk = f(i) =
1

2
f [j, k] =

1

2
[f(j), k] = −b′j + c′i.

Therefore, we get a = d = 0, b′ = −c and c′ = b. Hence, f(i) = bi + cj and f(k) = bk.
Since f is a Lie centralizer, we have

f(j) =
1

2
f [k, i] =

1

2
[f(k), i] = bj.

After renaming the constants, we obtain

f(i) = ai + bj, f(j) = aj, f(k) = ak,(2.1)

for suitable a, b, c ∈ S. Now, assume that f(1) = t = x + yi + zj + wk. We have

0 = f [1, i] = ti − it = 2wj − 2zk.
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Thus, w = z = 0. On the other hand, we have

0 = f [1, j] = tj − jt = 2yk − 2wi.

Hence, y = w = 0. Therefore, we have f(1) = x ∈ S. Let s ∈ S, we have

0 = f [1, si] = (xs − sx)i.

Therefore, we get xs = sx. Hence, f(1) ∈ Z(S). Let s ∈ S and set f(si) =
x+yi+zj +wk. Applying f on [si, i] = 0, we get w = z = 0 and hence f(si) = x+yi.
Now, applying f on the identities sk = 1

2
[si, j], sj = 1

2
[sk, i] and si = 1

2
[sj, k], and

putting y = β(s), we obtain

f(si) = β(s)i, f(sj) = β(s)j, f(sk) = β(s)k,(2.2)

where β : S → S is an additive map uniquely determined by f .
Our next aim is to Ąnd f(s) for arbitrary s ∈ S. Set f(s) = x + yi + zj + wk.

Applying f on [s, i] = 0, we obtain −2zk + 2wj = 0. So, z = w = 0. Now, applying
f on [s, j] = 0, we obtain that y = 0. Therefore, we have f(s) = x. Putting x = α(s),
we have

f(s) = α(s),(2.3)

where α : S → S is a map determined by f . Since f is a Lie centralizer, (2.3) implies
that α is a Lie centralizer on S.

Let s1, s2 ∈ S. It is obvious that [s1i, s2j] = (s1 ◦ s2)k, [s1i, s2i] = [s2, s1] and
[s1, s2i] = [s1, s2]i. Now, applying f on this identities and using (2.2) and (2.3), we
Ąnd, respectively, that

β(s1 ◦ s2) =β(s1) ◦ s2,(2.4)

α[s1, s2] =[β(s1), s2],(2.5)

β[s1, s2] =[α(s1), s2].(2.6)

(2.4) shows that β is a Jordan centralizer on S. Now, let t = x + yi + zj + wk be an
arbitrary element in R. By (2.2) and (2.3), we get f(t) = α(x)+β(y)i+β(z)j +β(w)k,
as desired. □

As a consequence of Theorem 2.1, we have the following results.

Corollary 2.1. Let S be a 2-torsion free commutative ring with identity such that
1

2
∈ S. If f : H(S) → H(S) be a Lie centralizer, then f is the sum of a centralizer

and a center valued map.

Proof. Since S is 2-torsion free and commutative, the Jordan centralizer β is a cen-
tralizer on S. Let t = x + yi + zj + wk ∈ H(S). DeĄne Γ : H(S) → H(S) by
Γ(t) = β(x) + β(y)i + β(z)j + β(w)k. It is easily veriĄed that Γ is a centralizer. By
Theorem 2.1, we have f(t) = Γ(t)+α(x)−β(x). It remains to show that the mapping
τ : H(S) → H(S) given by τ(t) = α(x) − β(x) is a center valued map. Obviously,
τ is a well-deĄned additive map such that τ(H(S)) ⊆ S. By [4, Lemma 2.1], we
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have Z(H(S)) = S. Therefore, we have τ(H(S)) ⊆ Z(H(S)). This completes the
proof. □

Corollary 2.2. Let S be a 2-torsion free semiprime ring with identity such that 1

2
∈ S.

If f : H(S) → H(S) be a Lie centralizer, then f is the sum of a centralizer and a

center valued map.

Proof. Since S is a 2-torsion free semiprime ring, the Jordan centralizer β is a cen-
tralizer on S by [10]. Now, let Γ and τ be the mappings deĄned in Corollary 2.1. It
is easily veriĄed that Γ is a centralizer. It remains to show that the mapping τ is a
center valued map. Let s1, s2 ∈ S. Since β is a centralizer on S, from (2.6), we obtain

[τ(s1), s2] = [α(s1) − β(s1), s2] = 0.(2.7)

Let t = x + yi + zj + wk, t′ = x′ + y′i + z′j + w′k ∈ H(S). Using (2.7), we have

[τ(t), t′] =[α(x) − β(x), t′]

=[τ(x), x′] + [τ(x), y′]i + [τ(x), z′]j + [τ(x), w′]k

=0.

Therefore, we have τ(H(S)) ⊆ Z(H(S)). This completes the proof. □
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BASES OF THE PERTURBED SYSTEM OF EXPONENTS IN

WEIGHTED LEBESGUE SPACE WITH A GENERAL WEIGHT

SABINA R. SADIGOVA1,2 AND AYSEL E. GULIYEVA3

Abstract. The weighted Lebesgue and Hardy spaces with a general weight are
considered. Basicity of a part of exponential system is proved in Hardy classes, where
the weight satisfies the Muckenhoupt condition. Using these results the basicity of
the perturbed system of exponents in the weighted Lebesgue space is studied. Some
special cases are considered.

1. Introduction

When solving many problems for equations of mixed type by Fourier method (see
e.g., [11–13,18]), there appear perturbed systems of sines and cosines of the following
form

(1.1) ¶sin (nt + α (t))♢n∈N
, ¶cos (nt + α (t))♢n∈N

,

where α : [0, π] → R is some real function. Verification of the Fourier method requires
to study basis properties (completeness, minimality, basicity and etc.) of system (1.1)
in the appropriate spaces of functions (usually in Lebesgue or Sobolev spaces). In
Lebesgue space Lp ≡ Lp (0, π), 1 < p < +∞, these problems have been well studied
for a wide class of functions α (·) in [1–6, 14, 15, 21, 22]. Basis properties of system
(1.1) are closely related to the analogous properties of the system of exponents of the
form

(1.2)
{

ei(nt+β(t) sgn n)
}

n∈Z
,

Key words and phrases. Weighted space, system of exponents, basicity.
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where β : [−π, π] → R is some function. These problems with respect to the systems
(1.1), (1.2) in weighted Lebesgue spaces with a power weight have been studied in
[9, 16,17,20].

In this work, the basicity of system (1.2) is studied in weighted Lebesgue space
Lp,ν ≡ Lp,ν (−π, π), with a general weight ν (·). For the basicity of this system in
Lp,ν the sufficient conditions on the function β (·) and weight ν (·) are obtained. For
this, firstly, the weighted Hardy classes H±

p,dρ are defined, the basicity of a part of
exponential system is studied in these classes, and these results are applied to the
basicity of the system (1.2) in Lp,ν .

2. Necessary Facts

Let C be the complex plane and ω = ¶z ∈ C : ♣z♣ < 1♢ be the unit circle on C. The
expression f ∼ g, in M , means that the following inequality is true

exists δ > 0 : δ ≤
f (x)

g (x)
≤ δ−1 for all x ∈ M.

Let us consider the basicity of the following parts of exponential system
{

eint
}

n∈Z+

,(2.1)
{

e−int
}

n≥m
,(2.2)

in weighted spaces H+
p,dρ and mH−

p,dρ, respectively. These facts are needed in the study
of basicity of the perturbed system of exponents with a phase in weighted Lebesgue
spaces Lp,dρ. It should be noted that for the basicity of the exponential system
¶eint♢n∈Z

in Lp,dρ it is necessary that the weight function ρ (·) be absolutely continuous
on [−π, π]. Indeed, in the case of basicity the following conditions (biorthogonality
condition)

∫ π

−π
eintdρ = 0, for all n ≥ 1,

should be fulfilled. And these conditions imply that (see, e.g., I. I. Privalov [19] or I.
I. Danilyuk [7]) ρ (·) is absolutely continuous on [−π, π], and let

ν (t) = ρ′ (t) , t ∈ (−π, π) .

Therefore, in the sequel, we will consider the weighted Lebesgue space Lp,ν ≡
Lp,ν (−π, π), with a norm

∥f∥p,ν =

∫ π

−π
♣f (t)♣p ν (t) dt


1

p

, for all f ∈ Lp,ν .

Based on this norm, weighted Hardy classes H+
p,ν :

H+
p,ν ≡

{

f ∈ H+
1 : f+ ∈ Lp;ν

}

,

are defined, endowed with the norm

∥f∥H+
p,ν

=
∥

∥

∥f+
∥

∥

∥

p,ν
,
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where f+ = f/∂ω is a restriction of the function f on ∂ω.
Similarly we define the weighted Hardy class mH−

p,ν of functions which are analytic
outside the unit circle ω. Let mH−

p be a usual Hardy class of functions that are
analytic outside the unit circle ω and have a pole of order k ≤ m at infinity. Assume

mH−
p,ν ≡

{

f ∈m H−
1 : f− ∈ Lp,ν

}

.

The norm is defined by the expression

∥f∥
mH−

p,ν
=
∥

∥

∥f−
∥

∥

∥

p,ν
,

where f− = f/∂ω is the restriction of function f ∈m H−
p,ν on ∂ω.

3. Basicity of System of Exponents in Lp,ν

Consider the weighted space Lp,ν , 1 < p < +∞, where ν (·) is some weight. Assume
that ν (·) satisfies Muckenhoupt condition (see, e.g., [8])

(3.1) sup
I⊂[−π,π]



1

♣I♣

∫

I
ν (t) dt

 

1

♣I♣

∫

I
♣ν (t)♣−

1

p−1 dt

p−1

< +∞.

Since ν ∈ L1, it is clear that ¶eint♢n∈Z
⊂ Lp,ν . Consider the functionals ¶ϑn♢n∈Z

ϑn (f) =
1

2π

∫ π

−π
f (t) e−intdt, for all n ∈ Z.

We have

(3.2) ♣ϑn (f)♣ =
1

2π

∣

∣

∣

∣

∫ π

−π
f (t) ν

1

p (t) e−intν− 1

p (t) dt

∣

∣

∣

∣

≤
1

2π


∫ π

−π
ν− q

p (t) dt


1

q

∥f∥p,ν ,

where q is the conjugate of a number p, 1
p

+ 1
q

= 1. From the condition (3.1) it directly
follows

∫ π

−π
ν− q

p (t) dt < +∞.

Then from the inequality (3.2) we obtain that the functionals ϑn are continuous in

Lp,ν , for all n ∈ Z, and moreover ϑn



eikt


= δnk for all n, k ∈ Z. As a result the

system ¶eint♢n∈Z
is minimal in Lp,ν . Consider the partial sums

Sm (f) =
m
∑

n=−m

ϑn (f) eint, f ∈ Lp,ν .

We have

Sm (f) =
1

2π

∫ π

−π
f (t) Dm (x − t) dt, m ∈ N,

where Dm (·) denotes the Dirichlet kernel

Dm (t) =
sin



m + 1
2



t

2 sin t
2

, m ∈ N.
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As it known (see, e.g., Dj. Garnett [8]) if ν ∈ Ap, then the Hilbert transformation is
bounded in Lp,ν . Hence, it directly follows that

∥Sm (f)∥p,ν ≤ M ∥f∥p,ν , for all m ∈ N,

holds, where M > 0 is an absolute constant. As a result, it follows from the basis
criterion that the system ¶eint♢n∈Z

forms a basis for Lp,ν . It is easy to see that for
p = 2 it forms a Riesz basis in L2,ν if and only if ν ∼ 1.

Statement 1. Let ν ∈ Ap. Then the system of exponents ¶eint♢n∈Z
forms a basis (for

p = 2 it forms a Riesz basis if and only if ν ∼ 1) in Lp,ν .

In the case p = 2 this fact has been previously established by K. S. Lizorkin, P. I.
Ghazarian [10].

Take an arbitrary f ∈ H+
p,ν and let ν ∈ Ap. As f ∈ H+

1 , it is clear that
∫ π

−π
f+



eit


eintdt = 0, for all n ∈ N,

holds. Then by Statement 1 the function f+ has the following representation in Lp,ν

f+


eit


=
∞
∑

n=0

fneint,

where

fn =
1

2π

∫ π

−π
f+



eit


e−intdt, for all n ∈ Z+.

Consider the functionals ¶H+
n ♢n∈Z+

H+
n (f) =

1

2π

∫ π

−π
f+



eit


e−intdt, n ∈ Z+.

Following (3.2), we have

∣

∣

∣H+
n (f)

∣

∣

∣ ≤
1

2π


∫ π

−π
ν− q

p (t) dt


1

q
∥

∥

∥f+
∥

∥

∥

p,ν
=

1

2π


∫ π

−π
ν− q

p (t) dt


1

q

∥f∥H+
p,ν

,

for all f ∈ H+
p,ν . This implies the inclusion ¶H+

n ♢n∈Z+
⊂


H+
p,ν

∗
and moreover it is

evident that

H+
n



zk


= δnk, for all n, k ∈ Z+,

i.e., the system ¶zn♢n∈Z+
is minimal in H+

p,ν . It is absolutely clear that the expansion

f (z) =
∞
∑

n=0

fnzn,

is true in H+
p,ν . As a result, we obtain the basicity of the system ¶zn♢n∈Z+

in H+
p,ν .

Restrictions of class H+
p,ν (mH−

p,ν) to the unit circle ∂ω will be denoted by L+
p,ν

(mL−
p,ν). It is easy to see that the system ¶eint♢n∈Z+

forms a basis for L+
p,ν .

Similarly, we prove the basicity of the system ¶z−n♢n≥m (¶e−int♢n≥m) in mH−
p,ν

(mL−
p,ν). Thus, the following theorem holds true.
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Theorem 3.1. Let ν ∈ Ap, 1 < p < +∞. Then

i) the system ¶zn♢n∈Z+
(¶eint♢n∈Z+

) forms a basis for H+
p,ν (for L+

p,ν);

ii) the system ¶z−n♢n≥m (¶e−int♢n≥m) forms a basis for mH−
p,ν (mL−

p,ν).
For p = 2 these bases are Riesz bases if and only if ν ∼ 1 on [−π, π].

4. Bases from the Perturbed System of Exponents in Lp,ν

Consider the following system of exponents

(4.1)


ei(nt− 1

2
θ(t) sgn n)



n∈Z

,

where θ (·) is a piecewise Hölder function on [−π, π]. Let ¶sk♢r

1 : −π < s1 < · · · <
sr < π be the points of discontinuity of the function θ (·) and

hk = θ(sk + 0) − θ(sk − 0), k = 1, r,

be the corresponding jumps of θ (·) at these points. Assume h0 = θ(−π) − θ(π). By
ω (·) denote the following weight function

ω (t) ≡
∣

∣

∣

∣

sin
t − π

2

∣

∣

∣

∣

h0
2π

r
∏

k=1

∣

∣

∣

∣

sin
t − sk

2

∣

∣

∣

∣

hk
2π

.

Consider the following non-homogeneous Riemann problem in classes H+
p,ν ×−1 H−

p,ν

(4.2) e−i 1

2
θ(t)F +



eit


− ei 1

2
θ(t)F −



eit


= f (t) , t ∈ (−π, π) ,

where f ∈ Lp,ν is an arbitrary function. Suppose that the following conditions hold

(4.3) ω−pν ∈ Ap,
hk

2π
< 1, k = 0, r.

Then the problem (4.2) has a unique solution of the form

(4.4) F (z) =
Z (z)

2π

∫ π

−π

f (t)

Z+ (eit)
·

dt

1 − ze−it
,

where Z (·) is the canonical solution of the corresponding homogeneous problem

e−i 1

2
θ(t)Z+



eit


− ei 1

2
θ(t)Z−



eit


= 0, t ∈ (−π, π) ,

which is defined by the following expressions

Z (z) ≡

{

X (z) , ♣z♣ < 1,
X−1 (z) , ♣z♣ > 1,

X (z) ≡ exp

{

i

4π

∫ π

−π
θ (t)

eit + z

eit − z
dt

}

.
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Applying Sokhotski-Plemelj formulas to (4.4) we get

F +


eit


=
1

2
f (t) −

Z+ (eit)

2π

∫ π

−π

f (s)

Z+ (eis)
·

ds

1 − ei(t−s)
≡


S+f


(t) ,

F −


eit


= −
1

2
·

Z− (eit)

Z+ (eit)
f (t) −

Z− (eit)

2π

∫ π

−π

f (s)

Z+ (eis)
·

ds

1 − ei(t−s)

= −
e−iθ(t)

2
f (t) −

Z− (eit)

2π

∫ π

−π

f (s)

Z+ (eis)
·

ds

1 − ei(t−s)
≡


S−f


(t) .

Let us assume that ν ∈ Ap. Then, by Theorem 3.1, the system ¶eint♢n∈Z+
(¶e−int♢n∈N

)

forms a basis for L+
p,ν (for −1L

−
p,ν). As

♣Z (0)♣±1 < +∞, ♣Z (∞)♣±1 < +∞ ,

it is clear that the inclusions

F +


eit


∈ L+
p,ν , F −



eit


∈−1 L−
p,ν ,

hold. By ¶H−
n ♢n∈N

⊂


−1L
−
p,ν

∗
(¶H+

n ♢n∈Z+
⊂


L+
p,ν

∗
) denote the system biorthogo-

nal to ¶e−int♢n∈N
(¶eint♢n∈Z+

). We expand the functions F ± (eit) with respect to these
bases

F +


eit


=
∞
∑

n=0

H+
n



S+f


eint,(4.5)

F −


eit


=
∞
∑

n=1

H−
n



S−f


e−int.

Substituting these expansions into (4.2) we obtain that the function f (·) can be
expanded in series by the system (4.1) in Lp,ν . Let us show that such a decomposition

is unique. Take the function f (t) = e−i 1

2
θ(t)eikt in (4.2), where k ∈ Z+ is some number.

The following functions

F + (z) ≡ zk, F − (z) ≡ 0,

are also the solutions of this problem. Comparing this solution with (4.5), from the
uniqueness of the solution of the problem (4.2) we obtain

H+
n



S+


ei(kt− 1

2
θ(t))



=δnk, for all n, k ∈ Z+,(4.6)

H−
n



S−


ei(kt− 1

2
θ(t))



=0, for all n ∈ N, k ∈ Z+.(4.7)

From similar considerations it follows

H+
n



S+


e−i(kt− 1

2
θ(t))



=0, for all n ∈ Z+, k ∈ N,(4.8)

H−
n



S−


e−i(kt− 1

2
θ(t))



=δnk, for all n, k ∈ N.
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Operators S± boundedly act in Lp,ν . Indeed, it suffices to prove that the integral
operator

(Sf) (t) = Z+


eit


∫ π

−π

f (s)

Z+ (eis)
·

ds

1 − ei(t−s)

is bounded in Lp,ν . The condition f ∈ Lp,ν implies the inclusion g = fν
1

p ∈ Lp. We
have

(Sf) (t) =Z+


eit


∫ π

−π

g (s)

Z+ (eis) ν
1

p (s)
·

ds

1 − ei(t−s)

=ν− 1

p (t)
[

Z+


eit


ν
1

p (t)
]

∫ π

−π

g (s)

Z+ (eis) ν
1

p (s)
·

ds

1 − ei(t−s)
.(4.9)

It is easy to see that
∣

∣

∣Z+


eis
∣

∣

∣ ∼ ω (s) , s ∈ [−π, π] .

So, ω−pν ∈ Ap, it follows from (4.9) that
∥

∥

∥(Sf) ν
1

p

∥

∥

∥

p
≤ M ∥g∥p = M

∥

∥

∥fν
1

p

∥

∥

∥

p
= M ∥f∥p,ν ,

i.e.,

∥Sf∥p,ν ≤ M ∥f∥p,ν ,

where M > 0 is a constant independent of f . This means that the operator S is
acting boundedly in Lp,ν .

Thus, we have proved that ¶H±
n ◦ S±♢ ⊂ (Lp,ν)∗. Then (4.6), (4.8) imply the

minimality of the system (4.1) in Lp,ν . The following theorem is true.

Theorem 4.1. Let the following inequalities be satisfied

(4.10)
{

ν; ω−pν
}

⊂ Ap, hk < 2π, k = 0, r,

where the weight function ω (·) is defined by the expression

ω (t) =
r
∏

k=0

∣

∣

∣

∣

sin
t − sk

2

∣

∣

∣

∣

hk
2π

, s0 = π,

hk, k = 1, r are jumps of the function θ (·) at points −π < s1 < · · · < sr < π,

h0 = θ(−π) − θ(π). Then the system of exponents (4.1) forms a basis for Lp,ν ,
1 < p < +∞. For p = 2 it forms a Riesz basis for L2,ν if and only if ν ∼ 1 on [−π, π].

Let us consider some special cases of this theorem. Let the weight function ν (·)
have the form

(4.11) ν (t) =
m
∏

k=1

♣t − tk♣αk ,

where ¶tk♢m

1 ⊂ (−π, π) are distinct points. Suppose that the condition

(4.12) ¶sk♢r

1

⋂

¶tk♢m

1 = ∅
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holds. In this case, the product ω−pν has the representation

ω−p (t) ν (t) =
m
∏

k=1

♣t − tk♣αk

r
∏

k=0

∣

∣

∣

∣

sin
t − sk

2

∣

∣

∣

∣

−
phk
2π

.

It is easy to see that ω−pν ∈ Ap is true if and only if the following inequalities are
satisfied (see, e.g., J. Garnett [20])

−1 < −
phk

2π
< p − 1, k = 0, r,

−1 <αk < p − 1, k = 1, m.

Thus, the following corollary is true.

Corollary 4.1. Let the condition (4.12) hold and the inequalities

−
1

q
<

hk

2π
<

1

p
, k = 0, r,

−1 <αk < p − 1, k = 1, m,

be fulfilled. Then the system of exponents (4.1) forms a basis in Lp,ν, 1 < p < +∞.

Consider the particular case for the functions θ (·) and ν (·)

θ (t) = α t + β sgn t, t ∈ [−π, π] , ν (t) = ♣t♣γ .

The function θ (·) has a unique point of discontinuity s1 = 0. We have

h1 = θ (+0) − θ (−0) = 2β, h0 = θ (−π) − θ (π) = −2απ − 2β.

As a result ω (·) is of the form

ω (t) =
∣

∣

∣

∣

sin
t − π

2

∣

∣

∣

∣

− απ+β

π
∣

∣

∣

∣

sin
t

2

∣

∣

∣

∣

β

π

∼ ♣t♣
β

π ♣t − π♣−(α+ β

π ) ♣t + π♣−(α+ β

π ) , t ∈ [−π, π] .

Consequently,

ω−p (t) ν (t) ∼ ♣t♣
−pβ

π
+γ ♣t − π♣(α+ β

π )p ♣t + π♣(α+ β

π )p .

Applying Theorem 4.1, we obtain the following.

Corollary 4.2. Let the inequality

−1 < γ < p − 1, −1 < γ −
pβ

π
< p − 1, −

1

p
< α +

β

π
<

1

q
,

be fulfilled. Then the system of exponents
{

ei[(n+α sgn n)t+β sgn t sgn n]
}

n∈Z
,

forms a basis for Lp,♣t♣γ , 1 < p < +∞.
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HYPERGROUPS DEFINED ON HYPERGRAPHS AND THEIR

REGULAR RELATIONS

MADELEINE AL-TAHAN1 AND BIJAN DAVVAZ2

Abstract. The notion of hypergraphs, introduced around 1960, is a generalization
of that of graphs and one of the initial concerns was to extend some classical results
of graph theory. In this paper, we present some connections between hypergraph
theory and hypergroup theory. In this regard, we construct two hypergroupoids by
defining two new hyperoperations on H, the set of all hypergraphs. We prove that
our defined hypergroupoids are commutative hypergroups and we define hyperrings
on H by using the two defined hyperoperations. Moreover, we study the fundamental
group, complete parts, automorphism group and strongly regular relations of one of
our hypergroups.

1. Introduction

Hypergraphs generalize standard graphs by defining edges between multiple vertices
instead of only two vertices. Hence some properties must be a generalization of graph
properties. Formally, a hypergraph is a pair Γ = (X, E), where X is a finite set of
vertices and E = ¶E1, . . . , En♢ is a set of hyperedges, which are non-empty subsets of
X. The term hypergraph was coined by Berge [2,4], following a remark by Jean-Marie
Pal who had used the word hyperedge in a seminar. In 1976, Berge enriched the field
once more with his lecture notes [5], also see [3]. The hyperstructure theory was born
in 1934, when Marty introduced the notion of a hypergroup [16]. Since then, many
papers and several books have been written on this topic (see, for instance [6,8–10,18]).
Algebraic hyperstructures are a suitable generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements is an element, while
in an algebraic hyperstructure, the composition of two elements is a set. After that,
many researchers in the field of hyperstructure theory tried to make connections

Key words and phrases. Hypergraph, hypergroup, fundamental relation.
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between hypergraphs and hyperstructures, for example see [7, 12–14]. Corsini in [7]
associated to every hypergraph Γ a commutative quasihypergroup HΓ and found a
necessary and sufficient condition on Γ so that HΓ is associative. In this paper we
continue the study between hypergraphs and algebraic hyperstructures.

Our paper is organized as follows. After an introduction, Section 2 presents some
basic definitions concerning hypergroups and hypergraphs that are used throughout
this paper. Section 3 defines a new hyperoperation (⋆) on H, the set of all hypergraphs
and proves some interesting results about (H, ⋆). Section 4 presents the fundamental
group of our defined hypergroup (H, ⋆) and studies its regular relations, complete
parts and its automorphism group. Section 5 defines another new hyperoperation (◦)
on H, studies homomorphisms between (H, ⋆) and (H, ◦) and defines hyperrings on
H.

2. Basic Definitions

In this section, we present some definitions related to hypergroups and hypergraphs
that are used throughout the paper.

Let H be a non-empty set. Then, a mapping ◦ : H × H → P
∗(H) is called a

hyperoperation on H, where P
∗(H) is the family of all non-empty subsets of H. The

couple (H, ◦) is called a hypergroupoid. In the above definition, if A and B are two
non-empty subsets of H and x ∈ H, then we define:

A ◦ B =
⋃

a∈A

b∈B

a ◦ b, x ◦ A = ¶x♢ ◦ A and A ◦ x = A ◦ ¶x♢.

An element e ∈ H is called an identity of (H, ◦) if x ∈ x ◦ e ∩ e ◦ x for all x ∈ H
and it is called a scalar identity of (H, ◦) if x ◦ e = e ◦ x = ¶x♢, for all x ∈ H. If
e is a scalar identity of (H, ◦), then e is the unique identity of (H, ◦). An element
x ∈ H is called idempotent if x ◦ x = x. An element y ∈ H is said to be an inverse

of x ∈ H if e ∈ x ◦ y ∩ y ◦ x, where e is an identity in (H, ◦). The hypergroupoid
(H, ◦) is said to be commutative if x ◦ y = y ◦ x for all x, y ∈ H. A hypergroupoid
(H, ◦) is called a semihypergroup if it is associative, i.e., if for every x, y, z ∈ H, we
have x ◦ (y ◦ z) = (x ◦ y) ◦ z and is called a quasihypergroup if for every x ∈ H,
x ◦ H = H = H ◦ x. This condition is called the reproduction axiom. The couple
(H, ◦) is called a hypergroup if it is a semihypergroup and a quasihypergroup. A subset
S of a hypergroup (H, ◦) is called subhypergroup of H if it is a hypergroup under ◦.
A subhypergroup K of a hypergroup (H, ◦) is normal if a ◦ K = K ◦ a for all a ∈ H.
A hypergroup (H, ◦) is called a regular hypergroup if it has at least one identity and
each of its elements admit at least one inverse. A subset I of H is called a hyperideal

of H if IH ⊆ H. A hypergroup H is said to be simple if H has no proper hyperideals.
Cyclic semihypergroups have been studied by Desalvo and Freni [11], Vougiouklis

[19], Leoreanu [15]. Cyclic semihypergroups are important not only in the sphere of
finitely generated semihypergroups but also for interesting combinatorial implications.
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A hypergroup (H, ◦) is cyclic if there exists h ∈ H such that

H = h ∪ h2 ∪ · · · ∪ hi ∪ · · · .

If there exists s ∈ N such that H = h ∪ h2 ∪ · · · ∪ hs then H is cyclic hypergroup with
finite period. Otherwise, H is called cyclic hypergroup with infinite period. Here,
hi = h ◦ h ◦ · · · ◦ h

︸ ︷︷ ︸

i times

. It is a single-power cyclic hypergroup if there exists h ∈ H such

that

H = h ∪ h2 ∪ · · · ∪ hi ∪ · · · and h ∪ h2 ∪ · · · ∪ hi−1 ⊂ hi, for all i ∈ N.

Let (H, ⋆) and (H ′, ⋆′) be two hypergroups. A function f : (H, ⋆) → (H ′, ⋆′) is said
to be a weak homomorphism if f(x1 ⋆ x2) ∩ f(x1) ⋆′ f(x2) ̸= ∅ for all x1, x2 ∈ H. It is
called homomorphism if f(x1 ⋆ x2) ⊆ f(x1) ⋆′ f(x2) for all x1, x2 ∈ H. And it is called
a good homomorphism if f(x1 ⋆ x2) = f(x1) ⋆′ f(x2) for all x1, x2 ∈ H.

Two hypergroups are said to be isomorphic if there exists a bijective good homomor-
phism between them. An isomorphism from (H, ⋆) to itself is called an automorphism.
The set of all automorphisms of (H, ⋆) is written as Aut(H, ⋆).

3. Hypergroup (H, ⋆) Associated to hypergraphs

In this section, we define a new hyperoperation (⋆) on the set of all hypergraphs
H and we study some properties of (H, ⋆).

A partial hypergraph is a hypergraph with some edges removed.

Definition 3.1. Let H be the set of all hypergraphs and define ⋆ as follows. For all
H1, H2 ∈ H,

H1 ⋆ H2 =
⋃

¶K ∈ H : K is a partial hypergraph of H1 ∪ H2♢.

H1 ∪ H2 is the union of all hyperedges from H1 and H2. If the same hyperedge
corresponding to the same set of vertices occur in both H1 and H2 then we consider
it once in H1 ∪ H2.

Example 3.1. We present an example on the union of two hypergraphs illustrated in
Figures 1, 2 and 3.

Proposition 3.1. Let H1, H2 ∈ H. Then ¶H1, H2♢ ⊆ H1 ⋆ H2.

Proof. The proof results from having H1, H2 partial hypergraphs of H1 ∪ H2. □

Proposition 3.2. Let H ∈ H. Then Hm = H2 for all m ≥ 2.

Proof. For m ≥ 2, we have that

Hm = ¶K ∈ H : K is a partial hypergraph of H ∪ H · · · ∪ H
︸ ︷︷ ︸

m times

♢

= ¶K ∈ H : K is a partial hypergraph of H♢

= H2.

Therefore, Hm = H2 for all m ≥ 2. □
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Figure 1. Hypergraph H1

Figure 2. Hypergraph H2

Figure 3. Hypergraph H1 ∪ H2

Theorem 3.1. (H, ⋆) is a commutative hypergroup.

Proof. Let H1, H2, H3 ∈ H. It is easy to see that H1 ⋆ H2 = H2 ⋆ H1 as H1 ∪ H2 =
H2 ∪ H1. Thus, ⋆ is a commutative hyperoperation.

It is clear that H1 ⋆ H ⊆ H. We need to show now that H ⊆ H1 ⋆ H. Let H2 ∈ H,
then H2 ∈ H1 ⋆ H2 ⊆ H1 ⋆ H by Proposition 3.1. Thus, (H, ⋆) is a quasihypergroup.
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We have that

H1 ⋆ (H2 ⋆ H3) =H1 ⋆
⋃

¶K : K is a partial hypergraph of H2 ∪ H3♢

=
⋃

¶H1 ⋆ K : K is a partial hypergraph of H2 ∪ H3♢

=
⋃

¶M : M is partial hypergraph of H1 ∪ K,

K is partial hypergraph of H2 ∪ H3♢

=
⋃

¶M : M is a partial hypergraph of H1 ∪ H2 ∪ H3♢

=partial hypergraphs of H1 ∪ H2 ∪ H3.

On the other hand, we have that

(H1 ⋆ H2) ⋆ H3 =
⋃

¶K : K is a partial hypergraph of H1 ∪ H2♢ ⋆ H3

=
⋃

¶K ⋆ H3 : K is a partial hypergraph of H1 ∪ H2♢

=
⋃

¶M : M is partial hypergraph of K ∪ H3,

K is partial hypergraph of H1 ∪ H2♢

=
⋃

¶M : M is a partial hypergraph of H1 ∪ H2 ∪ H3♢

=partial hypergraphs of H1 ∪ H2 ∪ H3.

Therefore, (H, ⋆) is a commutative hypergroup. □

Proposition 3.3. The only idempotent elements in (H, ⋆) are hypergraphs with one

hyperedge.

Proof. A hypergraph with exactly one hyperedge has only one partial hypergraph
(which is itself) and hence it is idempotent.

If H is an idempotent in (H, ⋆), then

H ⋆ H =
⋃

¶K : K is a partial hypergraph of H♢ = H.

The latter implies that H has only one partial hypergraph. Thus, H has one hyperedge.
□

Proposition 3.4. (H, ⋆) is a regular hypergroup.

Proof. Proposition 3.1 implies that every element in H is an identity as H1 ∈ H1 ⋆ H2

for all H1, H2 ∈ H. Let I(H1) be the set of all inverses of H1 in H. It is clear that
I(H1) = H. □

Definition 3.2. A nonempty subset M of a hypergroup (H, ⋆) is linear if α ⋆ β ⊆ M
and α/β ⊆ M for all α, β ∈ M . Here, α/β = ¶x ∈ H ♣ α ∈ x ⋆ β♢.

Proposition 3.5. (H, ⋆) has no proper linear subsets.

Proof. Let M be a linear subset of (H, ⋆) and H1 ∈ M . Having M a linear subset of
(H, ⋆) implies that H1/H1 ⊆ M . We have that

H1/H1 = ¶K ∈ H : H1 ∈ K ⋆ H1♢.
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The latter and Proposition 3.1 imply that H1/H1 = H ⊆ M . □

Proposition 3.6. (H, ⋆) has no proper normal subhypergroups.

Proof. For contradiction, suppose that N is a proper normal subhypergroup of (H, ⋆).
Then there exists k ∈ H that is not in N . Having that k ∈ k ⋆ N (by Proposition 3.1)
implies that N ̸= k ⋆ N . □

Proposition 3.7. (H, ⋆) is a single power cyclic hypergroup with one generator and

period two.

Proof. Let α =
⋃

Hi∈H Hi ∈ H. It is clear that α is a generator of H of period two.
Moreover, α ∈ α2 = H. □

Proposition 3.8. Let M be any non-empty set of hypergraphs and

KM =

{

λ : λ is a partial hypergraph of
⋃

K∈M

K

}

.

Then (KM , ⋆) is a cyclic subhypergroup of (H, ⋆).

Proof. The proof is straightforward. □

Proposition 3.9. A subset A of H is a proper subhypergroup of (H, ⋆) if and only if

A = KM for some non-empty set M of hypergraphs.

Proof. Let A be a proper subhypergroup of (H, ⋆) and suppose, for contradiction, that
A ≠ KM . Then there exists K, a partial hypergraph of

⋃

α∈A α that is not in A. The
latter implies that K is in the hyperproduct of all elements of A. □

Proposition 3.10. (H, ⋆) is a simple hypergroup.

Proof. Let I be a proper hyperideal of (H, ⋆). Then IH ⊆ I and there exists H ∈ H

such that H is not an element in I. Having H ∈ IH implies that H ∈ I which
contradicts our hypothesis that H is not in I. □

Corollary 3.1. The only subhypergroups of (H, ⋆) are (KM , ⋆) and they are cyclic.

Proof. The proof results from Propositions 3.8 and 3.9. □

4. Fundamental Relation, Automorphism Group and Complete Parts
of (H, ⋆)

In this section, we present some results related to fundamental relation, automor-
phism group, strongly regular relations and complete parts of (H, ⋆).

Definition 4.1. Let (H, ◦) be a semihypergroup and R be an equivalence relation on
H. If A and B are non-empty subsets of H, then

(a) ARB means that for every a ∈ A there exists b ∈ B such that aRb and for
every b′ ∈ B there exists a′ ∈ A such that a′Rb′;

(b) ARB means that for every a ∈ A and b ∈ B, we have aRb.
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The equivalence relation R is called

(a) regular on the right (on the left) if for all x ∈ H, from aRb, it follows that
(a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively);

(b) strongly regular on the right (on the left) if for all x ∈ H, from aRb, it follows

that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively);
(c) regular (strongly regular) if it is regular (strongly regular) on the right and on

the left.

Theorem 4.1 ([9]). Let (H, ◦) be a hypergroup and R an equivalence relation on H.

Then R is strongly regular if and only if (H/R, ⊗), the set of all equivalence classes,

is a group. Here, x ⊗ y = ¶z : x ∈ x ◦ y♢ for all x, y ∈ H/R.

The fundamental relation has an important role in the study of semihypergroups
and especially of hypergroups.

Definition 4.2 ([9]). For all n ≥ 1, we define the relation βn on a semihypergroup
H, as follows: β1 is the diagonal relation and, if n > 1, then

aβnb ⇔ ∃(x1, . . . , xn) ∈ Hn : ¶a, b♢ ⊆
n∏

i=1

xi,

β =
⋃

n≥1 βn and β⋆ is the transitive closure of β.

β⋆ is called the fundamental equivalence relation on H and H/β⋆ is called the
fundamental group.

β⋆ is the smallest strongly regular relation on H and if H is a hypergroup then
β = β⋆.

Proposition 4.1. (H, ⋆) has trivial fundamental group.

Proof. Let H1, H2 ∈ H. Proposition 3.1 asserts that ¶H1, H2♢ ⊂ H1 ⋆ H2. The latter
implies that H1β2H2. We get now that H1βH2. Since (H, ⋆) is a hypergroup, it follows
that β = β⋆. Consequently, H/β⋆ has only one equivalence class. □

Proposition 4.2. Let R be an equivalence relation on H. Then R is strongly regular

relation on H if and only if H/R is the trivial group.

Proof. Theorem 4.1 asserts that if H/R is the trivial group then R is strongly regular
relation on H.

Let R be a strongly regular relation on H. For all x ∈ H, if aRb then (a ⋆ x)R(b ⋆ x).
The latter and having x ∈ b ⋆ x, a ∈ a ⋆ x imply that aRx. Thus, H/R contains only
one equivalence class. □

Definition 4.3. Let (H, ◦) be an Hv- group and A be a nonempty subset of H. A is a
complete part of H if for any natural number n and for all hyperproducts P ∈ HH(n),
the following implication holds:

A ∩ P ̸= ∅ ⇒ P ⊆ A.
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Proposition 4.3. The complete part of (H, ⋆) is H.

Proof. Let A be a complete part of (H, ⋆) and a ∈ A. Proposition 3.1 asserts that
for all b ∈ H, a ∈ A ∩ (a ⋆ b) ̸= ∅. Having A a complete part of H implies that
b ∈ a ⋆ b ⊆ A. □

Proposition 4.4. Let f ∈ Aut(H, ⋆) and α ∈ H. If λ is a partial hypergraph of α,

then f(λ) is a partial hypergraph of f(α). Moreover, α and f(α) have same number

of partial hypergraphs.

Proof. Let f ∈ Aut(H, ⋆) and α ∈ H. Having f(α ⋆ α) = f(α) ⋆ f(α) implies that
¶f(λ) : λ is partial of α♢ = ¶δ : δ is partial of f(α)♢. The latter implies that if λ is a
partial hypergraph of α then f(λ) is a partial hypergraph of f(α). Since f is bijective,
it follows that α and f(α) have same number of partial hypergraphs. □

Theorem 4.2. Let f be a bijective function. Then f ∈ Aut(H, ⋆) if and only if for

all α, β ∈ H the following conditions are satisfied:

1. if λ is a partial hypergraph of α then f(λ) is a partial hypergraph of f(α), and

2. f(α ⋆ β) ⊆ f(α) ⋆ f(β).

Proof. Let f ∈ Aut(H, ⋆) and α ∈ H. Then f(α ⋆ β) = f(α) ⋆ f(β). The latter and
Proposition 4.4 imply that conditions 1. and 2. are satisfied.

Let f be any bijective function satisfying conditions 1. and 2. and let α, β ∈ H.
Since α, β are partial hypergraphs of α ∪ β, it follows by condition 1. that f(α), f(β)
are partial hypergraphs of f(α ∪ β). The latter implies that f(α) ∪ f(β) is a partial
hypergraph of f(α∪β). Moreover, every partial hypergraph of f(α)∪f(β) is a partial
hypergraph of f(α ∪ β). We get now that

f(α) ⋆ f(β) = ¶δ ∈ H : δ is partial hypergraph of f(α) ∪ f(β)♢

⊆ ¶λ ∈ H : λ is partial hypergraph of f(α ∪ β)♢.

Consequently, we get that f(α) ⋆ f(β) ⊆ f(α ⋆ β). Thus, f is a good homomorphism
by condition 2. □

Remark 4.1. It is easy to see that the identity function satisfies conditions 1. and 2.
of Theorem 4.2.

Example 4.1. Let H ∈ H, α be the hypergraph with vertex v1 having only one
hyperedge and β be the hypergraph with vertex v2 having only one hyperedge. We
define f : (H, ⋆) → (H, ⋆) as follows:

f(H) =







H, if α ∪ β is a partial hypergraph of H;
H, if neither α nor β are partial hypergraphs of H;
β ∪ (H \ ¶α♢), if α is a partial hypergraph of H;
α ∪ (H \ ¶β♢), if β is a partial hypergraph of H.

Then f ∈ Aut(H, ⋆).
It is clear that f is a bijective function. Also, one can easily show that f satisfies

condition 1. and 2. of Theorem 4.2.
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5. Relation of (H, ⋆) to Another Hypergroup (H, ◦)

In this section, we define a new hyperoperation (◦) on H and find some relations
between (H, ⋆), defined in Section 3, and (H, ◦).

Definition 5.1. Let H be the set of all hypergraphs and define (H, ◦) as follows. For
all H1, H2 ∈ H

H1 ◦ H2 = ¶H1, H2, H1 ∪ H2♢.

We present some results on (H, ◦) in which their proofs are easy.

Theorem 5.1. (H, ◦) is a regular commutative hypergroup.

Proposition 5.1. Every element in (H, ◦) is idempotent.

Proposition 5.2. (H, ◦) has no nontrivial cyclic subhypergroup.

Proof. Proposition 5.1 asserts that αk = α for all α ∈ H and k ∈ N. □

Definition 5.2. Let (H, ◦) and (H, ⋆) be two hypergroups. We say that ◦ ≤ ⋆ if
there is f ∈ Aut(H, ⋆) such that α ◦ β ⊆ f(α) ⋆ f(β) for all α, β ∈ H.

Proposition 5.3. ◦ ≤ ⋆.

Proof. Let i : (H, ⋆) → (H, ⋆) be the identity map defined by: i(H) = H for all H ∈ H.
It is clear that i ∈ Aut(H, ⋆).

For all H1, H2 ∈ H, we have each element in H1◦H2 = ¶H1, H2, H1∪H2♢ is a partial
hypergraph of H1 ∪ H2. On the other hand, we have that i(H1) ⋆ i(H2) = H1 ⋆ H2 is
the set of all partial hypergraphs of H1 ∪ H2. Thus, H1 ◦ H2 ⊆ i(H1) ⋆ i(H2). □

Definition 5.3. Let R be a nonempty set with two hyperoperations (+ and ·). We
say that (R, +, ·) is a hyperring if (R, +) is a commutative hypergroup, (R, ·) is
a semihypergroup and the hyperoperation · is distributive with respect to +, i.e.,
x · (y + z) = x · y + x · z for all x, y, z ∈ R.

If the hyperoperation · is weak distributive with respect to +, i.e., x · (y + z) ⊆
x · y + x · z for all x, y, z ∈ R, we say (R, +, ·) that is a weak hyperring.

Proposition 5.4. (H, ⋆, ◦) is a weak commutative hyperring.

Proof. Propositions 3.1 and 5.1 imply that (H, ◦) and (H, ⋆) are commutative hyper-
groups. We need to prove that (H, ⋆, ◦) is weak distributive. For all α, β, γ ∈ H we
have

α ◦ (β ⋆ γ) =
⋃

¶α ◦ λ : λ is a partial hypergraph of β ∪ γ♢

=
⋃

¶α, λ, α ∪ λ : λ is a partial hypergraph of β ∪ γ♢.

On the other hand, we have that

(α ◦ β) ⋆ (α ◦ γ) = ¶α, β, α ∪ β♢ ⋆ ¶α, γ, α ∪ γ♢

= partial hypergraphs of ¶α, α ∪ γ, β ∪ α, β ∪ α ∪ γ, β ∪ γ♢

= partial hypergraphs of α ∪ β ∪ γ.
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It is easy to see that α ◦ (β ⋆ γ) ⊆ (α ◦ β) ⋆ (α ◦ γ). □

Proposition 5.5. (H, ◦, ⋆) is a commutative hyperring.

Proof. Propositions 3.1 and 5.1 imply that (H, ◦) and (H, ⋆) are commutative hy-
pergroups. We need to prove that (H, ◦, ⋆) is distributive. For all α, β, γ ∈ H we
have

α ⋆ (β ◦ γ) = α ⋆ ¶β, γ, β ∪ γ♢

= partial hypergraphs of α ∪ β ∪ γ.

On the other hand, we have that

(α ⋆ β) ◦ (α ⋆ γ) =partial hypergraphs of α ∪ β◦ partial hypergraphs of α ∪ γ

=
⋃

¶λ, λ⋆, λ ∪ λ⋆ : λ and λ⋆ are partial hypergraphs

of α ∪ β and α ∪ γ respectively♢

=partial hypergraphs of α ∪ β ∪ γ.

Thus, α ⋆ (β ◦ γ) = (α ⋆ β) ◦ (α ⋆ γ). □

Proposition 5.6. Let f : (H, ◦) → (H, ⋆) be any function. Then f is a weak

homomorphism.

Proof. Let α, β ∈ H. We have that f(α ◦ β) = ¶f(α), f(β), f(α ∪ β)♢. Having f(α),
f(β) partial hypergraphs of f(α) ∪ f(β) implies that

¶f(α), f(β)♢ ⊆ f(α ◦ β) ∩ f(α) ⋆ f(β) ̸= ∅.

□

Proposition 5.7. Let c : (H, ◦) → (H, ⋆) be the constant function defined by: c(H) =
K, where K is the hypergraph defined on any set of vertices with one hyperedge. Then

c is a good homomorphism.

Proof. The proof is straightforward by Proposition 3.3. □

Proposition 5.8. Let f : (H, ◦) → (H, ⋆) be any function that is not equal to that

defined in Proposition 5.7. Then f is not a good homomorphism.

Proof. Let H be a hypergraph such that f(H) has more than two hyperedges (such
an element exists). We have that f(H ◦ H) = f(H) and f(H) ⋆ f(H) is the set of all
partial hypergraphs of f(H). Since f(H) has more than two hyperedges, it follows
that ♣f(H) ⋆ f(H)♣ ≥ 2. Thus, f is not a good homomorphism. □

Proposition 5.9. Let f : (H, ⋆) → (H, ◦) be any function. Then f is a weak

homomorphism.

Proof. It is easy to see that ¶f(α), f(β)♢ ⊆ f(α ⋆ β) ∩ f(α) ◦ f(β) ̸= ∅. □

Proposition 5.10. Let k : (H, ⋆) → (H, ◦) be the function defined by k(α) = H for

all α ∈ H. Then f is a good homomorphism.
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Proof. The proof is straightforward using Proposition 5.1. □

Proposition 5.11. Let f : (H, ⋆) → (H, ◦) be any function other than that defined in

Proposition 5.10. Then f is not a homomorphism.

Proof. Since f is a function other than that defined in Proposition 5.10, it follows
that there exist α, β ∈ H such that f(α) ̸= f(β). Let γ = α ∪ β ∈ H. We have that
f(γ) ◦ f(γ) = f(γ) and f(γ ⋆ γ) = ¶f(λ) : λ is a partial hypergraph of γ♢. Having
that α ̸= β partial hypergraphs of γ and that f(α) ̸= f(β) imply that ♣f(γ ⋆ γ)♣ ≥ 2.
The latter implies that f(γ ⋆ γ) is not a subset of f(γ) ◦ f(γ). □

6. Conclusion

Hypergraph theory, introduced by Berge, is a generalization of graph theory and
it has been considered an important topic in Mathematics due to its applications
to numerous fields of Science. Our paper studied a connection between hypergraph
theory and hypergroup theory. Here we defined hypergroups and hyperrings on the
set of all hypergraphs. Also, we studied the fundamental group and regular relations
of the defined hypergroups. Several results were obtained.

For future research, one may consider hyperfields associated to hypergraphs and
study their properties.
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