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NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM

FRANCISCO MARTINEZ *, PSHTIWAN OTHMAN MOHAMMED 2
AND JUAN E. NAPOLES VALDES 3

Abstract.  In this paper we present an extension of Fractional Laplace Transform in
the framework of the non-conformable local fractional derivative. Its main properties
are studied and it is applied to the resolution of fractional di erential equations.

1. Preliminaries

In mathematics, the Laplace transform is an integral transformm, it takes a function
of a real variablet (often time) to a function of a complex variable s (complex
frequency). Laplace transforms are usually restricted to functions df with t
0, consequently of this restriction is that the Laplace transform of a function is a
holomorphic function of the variables. As a holomorphic function, the Laplace
transform has a power series representation. This power series expresses a function as
a linear superposition of moments of the function. The Laplace transform is invertible
on a large class of functions. The inverse Laplace transform takes a function of a
complex variable s (often frequency) and yields a function of a real variakligoften
time). Given a simple mathematical or functional description of an input or output
to a system, the Laplace transform provides an alternative functional description that
often simpli es the process of analyzing the behavior of the system, or in synthesizing
a new system based on a set of speci cations. So, for example, Laplace transformation
from the time domain to the frequency domain transforms di erential equations into
algebraic equations and convolution into multiplication.

Regarding the birth of the fractional calculus, all historians agree on the dating
of the date and how it was produced. This fact took place after a publication of
Leibniz where he introduced the notation of the di erential calculus, in particular of
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the expression known today aﬁ% that makes reference to the derivative of orden
of the function and, with n 2 N. But did it make sense to extend the values ai to
the set of rational, irrational, or complex numbers in that expression?

We know that the fractional derivative of a non-integer function can be conceived
in two branches: global (classical) and local. The former are often de ned by means
of integral transforms, Fourier or Mellin, which means in particular that their nature
is not local, has memory , in the second case, they are de ned locally by a certain
incremental quotients. The rst are associated with the emergence of the Fractional
Calculation itself, with the pioneering works of Euler, Laplace, Lacroix, Fourier, Abel,
Liouville,... until the establishment of the classical de nitions of Riemann-Liouville
and Caputo. Recent extensions and applications of these notions to various elds can
be found in [2 4,7,13,18,21,21]. There are some attempts to extend the classical
notion of Laplace Transform to the non-integer case, we recommend consult [20].

Recently, in [8] Khalil et al. de ned a new local fractional derivative called the
conformable fractional derivative, based on the limit de nition of the derivative.
Namely, for a functionh : [0;1 ) ! R, the non-conformable fractional derivative oh
of order ofh att is de ned by

D (h)(t):"[“oh(t+ ©) h(t): 2 (0;1);t> O

In [1], Abdeljaward improve this new theory. For instance, de nitions of left and
right conformable derivatives and fractional integrals of higher order (i.e., of order

> 1), Taylor power series, fractional integration by parts formulas and chain rule
are provided by him.

Now, we give the de nition of the non-conformable fractional derivative with its
important properties which are useful in order to obtain our main results, which is
explained in the following de nition [5].

De nition 1.1. Given a functionh : [0;1) ! R. Then, the non-conformable
fractional derivative N5 (h)(t) of order of h at t is de ned by

h(t+1t ) h(@),

N, (h)(t) = lim_ 2 (0;1):t> O

If his -dierentiable in some (G ), > 0, limy o h{)(t) exist, then de ne
h( )(O) = Hrr(]y h( )(t):

Remark 1.1 Additionally, note that if h is di erentiable, then
h(t+ ) h(t),

Ny (h)(1) =t hYt); wherehdt) = lim_

We can write h( )(t) for D (h)(t) or %(h(t)) to denote the non-conformable frac-
tional derivatives of h of order at t. In addition, if the non-conformable fractional
derivative N5 of h of order exists, then we simply sayh is N -di erentiable.
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In [5, 14], we can see that the chain rule is valid for non-conformable fractional
derivatives.

Theorem 1.1. Let 2 (0;1], g a N-di erentiable function at t > O, f be di erentiable
in the range ofg(t). Then

N3 (f g)(t) = f{a(t)) N3 (9(t)):

Proof. We prove the result following a standard limit-approach. First case, if the
function g is constant in a neighborhood o& > 0 then N5 (f g)(t) =0. If gis nota
constant in a neighborhood ok > 0 we can nd and"y > O such thatg(x;) 6 g(x»)
forany x;;x, 2 (a tg;a+ tg). Now, sinceg is continuous ata, for " su ciently small,
we have

N3 (f g)(a) =lim_

Limf@@+"a ) f(g@)g@+"a ) g
"o gla+t'a ) o) '
f(ga+"a ) f(g@), g@+"a ) o@)

"o gla+"a ) g@ "o !

_im 0@+ "a ) f(g@) . ga+'a ) ga)
o glat'a ) g@ "o !
Making "1 = g(a+ "a ) g(a) in the rst factor we have
imf@@+a ) (@) _, fe@+ ") fg@).
o glat'a ) g@@ o ito )
and from here
No(f g)@ =im (@@ ") @), 0@ )o@

"1 0

=fYg(a)N; g(a):
The following function will play an important role in our work.

fg((t+"a )) f(9(a)

De nition 1.2. Let 2 (0;1) and c a real number. We de ne the fractional

exponential in the following way |
+1

ns . —
E"(c;t)=exp c 1

Following the ideas presented in [5,14] we can easily prove the next result.

Theorem 1.2. Let 2 (0;1] and h;g be -dierentiable at a point t > 0. Then
(@) N3 (uf + vg) = uNj (h)+ VN (g) for all u;v 2 R;

(b) N3 (hg) = N;(g) + gNs (h);
(© N, D = "Na(@ oN;h),

g
(d) N3 (c) =0 for all constant function h(t) = c;
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(e) N5 (1) =0;

f) Ny £t =1,

(@ Ng (E™(c:0) = cE™(cit);

(h) N3 sin ¢z— = ccos ¢t

(i) N; cos ctlli— = csin c‘;— .

Proof. (a) Let H(t) = (af + bg(t). Then N3 H(t) = lim Rt ) H® and from this
we have the desired result. .
(b) From de nition we have

N3 (fg)(1) :Ij.gnof(”"t o+t ) 1w

:”mf(t+"t agt+ "t ) f(gt+"t )+ f)glt+"t ) f(t)g(t)
"o "

=|-i.m0(f (t+"t ) T'(t)) glt+"t ) +|j!mo(9(t+"t ) g(t) f (1)

=N 5 (@)(t) + gNs (F)(1):

(c) In a similar way to the previous one we have

! f+mt ) f()

(t) = lim gt+"t ) g(t) .
||! 0 n .

N

g

But
f@+"t ) f(@) f@+"t ) f{)ogt+"t )
gt+"t ) o() ot+"t ) ogt)glt+"t )
_f+t )gt) f(Hglt+ "t )
g(t)g(t+ "t )
_f@+"t o) fglt+"t ) f0)gt)+ f(t)g(t)
g(t)g(t+ "t )
_(E@+"t ) f@®)glt) (glt+"t ) g®)f(),
gt + "t ) '
From this last expression we obtain the expected result.
(d) Easily follows from de nition.

(e) Is a particular case of the previous one.
(f) From Remark 1.1 we have

1 ... _ 1 .
g) From Remark 1.1 and the chain rule we have
" I# " # !
t +1 t +1 ( + 1)t

N3(c: = = A A
N; (E™(c;t)) =N; exp ¢ 1 t exp c 71 c( 1)
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=cE™(c;1):

To prove cases (h) and (i) it is su cient to proceed as in the previous case, taking
into account the Remark 1.1 and using the chain rule.

Now, we give the de nition of hon-conformable fractional integral.

De nition 1.3. Let 2 (0;1]and 0 u v. We say that a functionh: [u;v]! R
is -fractional integrable on [;v], if the integral

Zx h(t
N3Ju h(X) = . t()dt

exists and is nite.

The following statement is analogous to the one known from the ordinary calculus
(see [15]).
Theorem 1.3. Letf beN-di erentiable function in (to;1 ) with 2 (0;1]. Then for
allt>t, we have
a) if f is di erentiable, then n,J, (N3 f (1)) = f(t) f(to);
b) N3 n,Jd,f (1) = f (1)

Proof. a) From de nition we have

Z, Z 4
Mds: fo(ids= f(t) f(to):

NsJtq (N3 f (1) = i t s
0 0

b) Analogously we have
" #

d “6(8) 40 _ ¢

a . S—ds = f(b):

An important property, and necessary, in our work is that established in the follow-
ing result.

Ny nodif (8) =t

Theorem 1.4 (Integration by parts). Let functions u;v be N -di erentiable functions
in (to;1 ), with 2 (0;1]. Then for all t>ty we have

NsJt, ((UN3gV)(1)) = [uv(t) uv(to)] n;Jy, ((VNguU)(t)):
Proof. It is su cient to use Theorem 1.2 and Theorem 1.3.

In short time, many studies about theory and applications of the fractional di er-
ential equations which based on these new fractional derivative de nitions [6,11, 15,
16,19].

In this paper we establish the rst results to formalize a new version of a Laplace
transform, in this case non-conformable, which will allow its application to a wide
class of fractional di erential equations. In the conformable case, there are some
attempts that can be consulted in [6,9 12,19].
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2. Results

De nition 2.1  (Exponential order). A function f is said to be of generalized ex-
ponential order if there exist constantdvl and a such that jf (t)j ME "3(a;t) for
su ciently large t.

We are now in a position to de ne the non-conformable fractional Laplace transform.

De nition 2.2. Let 2 (0;1) andc a real number. Letf be a real function de ned
fort 0 and considers 2 C, if the integral

Z,q Zi1 Ens( g t)f
NaJo EM( s;i)f ()(+ 1) = E™( s;t)f (H)d t= ( ts,t) (t)dt
0 0

converge for the given value o, you can de ne the functionF given by the expression
(2.1) F(S)=ns JoE™( sif (t)(+1);
and we will write F = Ly ().

To the operator Ly we will call it the N-transformed of Laplace and we will say
that F is the N -transformed off . In turn, f is the N -inverse transform function offF
and we will write it as f = L *f Fg, whereL ! is the N-transformed inverse Laplace
operator.

As in the classic case, we must impose conditions (8.1), so that the previous
de nition makes sense. Iff satis es the following two conditions:

(a) f is a piecewise continuous in the interval (Or] forany T 2 (0;+1 );

(b) f is of generalized exponential order; that is, there are positive constariit
and a, satisfying De nition 2.1 with Re(a c¢) < 0 andjf (t)j ME"(a;t)
foralltand 2 (0;1].

Then the N-transformed of LaplaceF (s) of f exists fors > a. In e ect, since

f is of generalized exponential order, there exists constanis > 0, K > 0 and
a2 Rsuch thatjf (t)] KE™(a;t)forallt T and 2 (0;1]. Now we write
| =ny JE™( SiOF()(+ 1) =, JoE™( s;0F ((T)+n, IrE™( sif ()(+ 1) =
I, + I,. Sincef is a piecewise continuoud,; exists. For the second integral ;, we
note that fort T we have]E"3( s;t)f (1)) KE"( (s a);t). Thus,

WIERC SIDfED)  KdiE™( (s aiEr1)= s s>a

Since the integrall, converges absolutely fos > a, |, converges fors > a. Thus,
both 1, and I, exist and hencel exists fors > a. Then we have thatf is an
N -transformable function.
Theorem 2.1. Let 2 (0;1]. So, we have

@ Ln(1) = % from here we havd.\ (c) = cLy (1) for any c2 R;

+ )T (14 b
(b) Ln(tP) = ar ) - El 72 where the gamma function is de ned by ( a;x) =
R S 1+
+ t2letdt; (a0):=(aandb> 1
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(c) Ln(EM3(ct) = S—lc c any real number ands ¢ > 0;
(d) Lny(F()E™(c;t) = F(s ¢©), with Ly (f (1)) = F(s), c any real number and

s ¢c>0;
(€) Ln(sin ¢t = 5%,
(f) Ln(cos ¢t = 555,
(@) Ln(sinh ¢ = 5%,
(h) Ln(cosh ¢t = 5.

Proof. (a) From de nition directly.
(b) Through a change of variables we have

b
1+ )&
WREC SO = T IR w1,

where the desired result is obtained.
(c) Considerf (t) = E"3(c;t), with c2 R. Then

1
s C

NeJo E™( SIDE™(Ci(+ 1 ) =n; JoE™( (s o)it)(+ 1) =

(d) SupposeLf (t) = F(s) for s> k. So, we have

NeJo E™( SIDE™ (G )f ()(+ 1 ) =n,JoE™( (s oi)f (1)(+1)
=F(s ¢; s c>k:

n - n + +

(e) Using n,d E™(b;sin ali— = EZ®D phsin al™  acos al—  we ob-
tain the expected result.
(f) Similar to previous one, using
! ( ! )|
it E"s(b; 1) it . i
ns . - 4 +
neJd EM(b;t)cos a1+ 2+ bcos a1+ asin a1+

tl+
1+

(g) As Ln(sinh ¢
required conclusion.

(h) From Ly (cosh ¢
rectly.

) = 2fLNEM™(cit) LNE™( cit)g it is easy to get the

t1+
1+

) = FfLNE™(c;t)+ LNE™( c;t)g it is obtained di-

Anallogously, the following propositions can be proved from the de nition oN -
transformed and the non-conformable integral.

Proposition 2.1. If the functions f and g are transformable, then there is the
transform of the sum and is equal to the sum of the transforms, that is

Ln(f+9)= La(f)+ Ln(9):
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Proposition 2.2. If the function f is transformable and is a real number, then
there is the transform of product of byf and is equal to product of by the transform
of f, that is

Ln(F )= Lan():

Remark 2.1 Taking into account the two previous propositions, we say thak  is a
linear operator.

Proposition 2.3. If f is a transformable function, then so is itd\ -derivative and
you have

(2.2) Ln(Ngf)=sLy(f)  f(0):

Proof. Already L (N5 f) exists, becausd is of non-conformable exponential order
and continuous. On an interval &; d whereN; f is continuous, integrating by parts
in (2.2), gives

ZhENs( s ZhENs
" St’t)N3f(t)dt=f(b)EN3( S F@EM( siars ot i’t)NSf(t)dt:

On any interval [0; K] there are nitely many intervals [a; b on each of whichN, f
is continuous. Add above equality across these nitely many intervalsafb. The
boundary values on adjacent intervals match and the integrals add to give

VA 3 . z 3 .
OK ENs( St’t)N3f(t)dt: FIOEY( B F(0)+ s OK ENs( st,t)Ngf(t)dt

Taking the limit K ! +1 across this equality, we obtain the desired result.

Analogously we have the following.

Proposition 2.4. If the k consecutive derivativedN; (N;(  (N5f))) are N -transfo-
rmable, then we have

Ln [Ng(Ng (- (N3 f)))]
=s‘Ln(f) s (0) s 2N3f(0) s* °Nj(N;f(0) N3 (N3 (- (N3 (0)):
Proposition 2.5. Let g be of non-conformable exponential order and continuous for
t 0. Then |

Z, :
Ly de

1
0 X = gLNfg(t)g-

R
Proof. Let f(t) = ¢ %*dx . Thenf is of exponential order and continuous then
R g
we haveLy ¢ %dx = Ly by denition and Ly = 1L (N5f (t)) becausef (0) = 0.

T s

From here we reach the conclusion without di culty.

The following result establishes the relationship between the classic Laplace Trans-
form and the N -transform de ned above.
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Theorem 2.2. Let 2 (0;1) andf be aN -transformable function, then we have
h [

La(f)=L f ((L+ )T ;

R
whereL is the classical Laplace transform de ned by (g) = 4 * e Stg(t)dt.

t1+
1+ -

One of the most important results of the classic Laplace transform is the convolution

product of two L -transformable functions, we are already in a position to provide an
analogous result for theN -transform de ned in (2.1).

Theorem 2.3. Let 2 (0;1]andf;g :[0;+1 ]! R be real functions. IfF (s) =
Ly [f (12 )] (s) and G (s) = Ly [g(t)](s), then the next equality is satis ed

Ln(f o 9)(s) = F ()G (s);
where Z.h i
f am= f ¢ 7 g()d

Proof. It is sucient to change the variables u* = t!* I+ and apply the
properties of theL y operator.

Proof. Simply make the change of the variables =

2.1. Existence of non-conformable Laplace transform. In this subsection, the
bounded and existence of non-conformable Laplace transform are presented.

Theorem 2.4. Letf be piecewise continuous ofD;1 ) and non-conformable expo-
nentially bounded, then

SI!ilm F (s)=0;
whereF (s) = L [f (1)](s).

Proof. Sincef is generalized order exponential, there exisg; M1; ¢ such that jf (t)]
M.EM(c;t)fort to. Also,f is piecewise continuous on [@] and hencd is bounded,
so there existsM, such that jf (t)] M, fort 2 [0;tg]. ChoosingM = maxf Mq; Mg,

we havejf (t)j ME"3(c;t) fort 0. Now, we have’
z z

E™( s;t)f (tH)d t JE™( s;t)f (t)jd t
0 0 7
M E™( s+c;t)d t
0

M E™( s+ c;t).
s ¢ S C '

This gives
z M
li E" O)f (H)d t —
im . ( s;of(t)d P—
This completes the proof.
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3. Examples and Applications

Example3.1 Consider the non-conformable di erential equation:
(3.1) N;x(t) = x (t); X(0) = Xo; 2 (0; 1]:

Clearly, if =1 the equation above is just one of the simplest classical ordinary
di erential equations which is de ned by the hypothesis that the rate of growth of
a given function x(t) is proportional to the current value (e.g. Maltius's population
model), i.e.,xYt) = x (1), x(0) = X, the exact solution of this isx(t) = xee' .

Applying the non-conformable Laplace Transform to both sides of equatidid.1),
we get

Ln (Ngx(t) = Ly (x(1));
sX (s) Xo=X (9):
Simplifying this we get

(3.2) X (s) = S’i"l:

Taking the inverse non-conformable Laplace transform to (3.2), we get

X
X(t) = xoEN3( 1;t) = Tolt 1

The solution of (3.1), obtained from non-conformable Laplace transformation method,
are shown in Figure 1 for di erent values of .

Figure 1. Non-conformable Laplace solution of3.1) for di erent val-
ues of .

Example 3.2 Consider the non-conformable fractional Bertalan y-logistic di erential
eguation

(3.3) Nax(®) = x3(t)  x(¥); x(0)=xo; 2 (0;1):
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The solution of the classic Bertalan y-logistic di erential equationx{t) = x%(t) x(t),

2 g 3 1.
x(0) = xpisx(t)= 1+ x§ 1 e s . By using the change of variable = 3x3 in
(3.3), we nd

(3.4) N;z(t)=1 gz(t); Z = 3x§:
Applying the non-conformable Laplace transforni to both sides of equation(3.4)

we obtain 3 3
z
Ln(z)= c+ ot

o
s+ 1

Finally, applying the inverse Laplace transform we have the solution ¢B.3) in the

2 ll+ 3
formx(t)= 1+ x§ 1 e 3@

With = 0:25,0:50;0:75; 1.00, the non-conformable Laplace transformation so-
lution of (3.3) are shown in Figures 2 and 3 fokg = 2 and Xg = 4, respectively.

«=0.25
~ ; ...... = = ==0.50
3.5+ S SNDe L 2=0.75 |1

N «=1.00

Figure 2. Non-conformable Laplace solution 0f3.2) for x, = 2 and
di erent values of

Example 3.3, Consider the non-conformable fractional di erential equation

(3.5) N3 (N3 x(t)) + cx(t) =0; 2 (0;1];

with the initial conditions x(0) = Xo, N3 x(0) = 0. Clearly, if =1 the previous di er-
ential equation approximates the characterization of small oscillations of a pendulum,
i.e., xt) + cx(t) =0, x(0) = Xo, xY0) = 0, where c = 2, with g the gravity acceler-
ation and L the length ofqtfle pendulum rod. The exact solution to this problem is
X(t) = Xocos™ ct= xgcos t. Applying the non-conformable Laplace transform to
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Figure 3. Non-conformable Laplace solution of3.2) for x, = 4 and
di erent values of

the both hand sides 0f(3.5), we get(s®+ c)X (S) sXo = 0, thus X (s) = (?i%) Taking
q

. . [+ 1
the inverse non-conformable Laplace transform we obtak(t) = X, cos %tTl

Example 3.4. Now consider the circuit consisting of a voltage sourcgt) in series
with a resistor (R), a capacitor (C) and an inductor (L), as well as a switch that
can be inRthe open or closed position. The circuit equation in the time domain is
Rx(t) + % o X(u)du + v (0) + Lxqt) = v(t), we assume thax(0) = O (i.e., the switch

is open until t = 0, allowing the capacitor to maintain its initial condition vc(t)
before that moment) andv(t) = A. The corresponding non-conformable fractional
di erential equation is

Rx(t) + iNJO(x)(t)+ Vc(0) + LNz x(t) = A; 2 (0; 1]

Applying the non-conformable Laplace transform to both sides of above equation,

we getX (s) = Hgﬁ%' The poles of the characteristic equation can be obtained
L LC
ass= 5 i & s = iw assuming the radicand is positive we have
X(s) = %2&0)72)- After taking inverse N -transform and reorder you get
!
X(t)= ———=E™3( ;t)sin w
(==~ (it) .l
4. Epilogue

The fundamental goal of this work has been to generalize the main theorems of the
classical Laplace transform into the non-conformable Laplace transform. The goal
has been achieved, whereby the non-conformable derivative de nition has been used
to construct some of these theorems and relations. We calculate the non-conformable
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Laplace transform from some elementary functions and establish the non-conformable
version of the transform of the successive derivative, the integral of a function and the
convolution of the fractional functions. In addition, the bounded and the existence
of the non-conformable Laplace transform are presented. The ndings of this study
indicate that the results obtained in the fractional case are adjusted to the results
obtained in the ordinary case. Finally, we show the application of thal -transform

to the resolution of fractional di erential equations.
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A!-STATISTICAL APPROXIMATION OF CONTINUOUS
FUNCTIONS BY SEQUENCE OF CONVOLUTION OPERATORS

SUDIPTA DUTTA ! AND RIMA GHOSH 2

Abstract.  In this paper, following the concept of A' -statistical convergence for real
sequences introduced by Savas et al. [22], we deal with Korovkin type approximation
theory for a sequence of positive convolution operators de ned orC[a; b, the space
of all real valued continuous functions on[a; b, in the line of Duman [6]. In the
Section 3, we study the rate ofA'-statistical convergence.

1. Introduction and Background

Throughout the paper N will denote the set of all positive integers andC[a;
denotes the space of all real valued continuous functions de ned cex fj, endowed
with the supremum norm jjf jj = sup, .y if (X)j for f 2 Cla;b: For a sequence
f Thon2n Of positive linear operators onC(X), the space of real valued continuous
functions on a compact subseX of real numbers, Korovkin [14] rst established the
necessary and su cient conditions for the uniform convergence &fT,(f )g,.n t0 @
function f by using the test functionse; = 1; & = X; e; = x? (see [1]). The study of
the Korovkin type approximation theory has a long history and is a well-established
area of research (see [4,5,7 11)).

Our primary interest, in this paper is to obtain a general Korovkin type approxi-
mation theorem for a sequence of positive convolution operators de ned @ja; b, in
A'-statistical sense. In the section 3, we study the rate @&'-statistical convergence.

The concept of statistical convergence of a sequence of real humbers was rst
introduced by Fast [12]. This is a generalization of usual convergence. Further investi-
gations started in this area after the works of 'alat [19] and Fridy [13]. Consequently,

Key words and phrases.ldeal, A' -statistical convergence, positive linear operator, convolution
operator, Korovkin type approximation theorem, rate of convergence.
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the notion of I-convergence of real sequences was introduced by Kostyrko et al. [17].
On the other hand statistical convergence was generalizedAostatistical convergence
by Kolk ([15,16]). Later a lot of works have been done on matrix summability and
A-statistical convergence (see [2, 3,15, 16,18, 20]). In particular, in [21,22] the very
general notion ofA'-statistical convergence was introduced.

Recall that a family | 2" of subsets of a nonempty seY is said to be an ideal
inY if (i) A;B 21 impliesA[ B 21; (i) A21;B A impliesB 2 I, while an
admissible ideall of Y further satises fxg 2 | for eachx 2 Y. If | is a non-trivial
proper ideal inY (i.e., Y 21,1 6 f;g ) then the family of setsF (1) = fM Y : there
existsA 21 :M =Y nAgisa lterin Y. Itis called the Iter associated with the
ideal I. The real number sequencéxyg,,, is said to bel-convergent toL provided
that for every "> 0, the setfk 2 N:jxx Lj "g2I:

If fxk0,,y IS @ sequence of real numbers amdl = (ay) is an in nite matrix, then
AX is the sequence whose-th term is given by

*
An(x) = Ank Xk-
k=1
We say that x is A-summable toL if lim,; An(X) = L: A matrix A is called regular
if A2 (c;0 andlimyg;  Ax(X) = limygy  Xx¢ for all x = fXkQan 2 €, Whenc, as usual,
stands for the set of all convergent sequences. It is well-known that the necessary and
su cient conditigns for A to be regular are
) jjAj =sup” jawd < 1;
k
) Iirrp ay(k = 0; for eachk;
)] Iirp an =1:
k
For a non-negative regLHar matrixA = (ay) following [15], a setK is said to have

A-density if A(K)=Ilim, .k ax exists.

The real number sequencéx,g,,,, is A-statistically convergent toL provided that
for every” > 0, the setK (") = fk2 N:jxx Lj "ghasA-density zero (see [15]).
Throughout the paper| will denote the non-trivial admissible ideal onN:

2. A'-Statistical Approximation for a Sequence of Convolution
Operators

We rst recall the de nition.

De nition 2.1 ([21,22]) Let A = (a\) be a non-negative regular matrix. For an
ideal | of N; a sequencd x,gn,n is Said to beA'-statistically convergent to L if for

any"> 0Oand > 0 8 9

< X =
n2N: Ank 21
' k2K (") '

whereK (") = fk 2 N:jxx, Lj "g. In this case we writeA'-st-lim, x,, = L:
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Note that for | = Iy, , the ideal of all nite subsets ofN, A'-statistical convergence
becomesA-statistical convergence [15].

We consider the Banach spac€[a;j endowed with the supremum nornjjf jj =
SUP2 e T (X)) for f 2 Cla;b: Let L be a positive linear operator. ThenL(f) 0
for any positive functionf: Also, we denote the value of (f ) at a point x 2 [a; by
L(f;x):

Theorem 2.1. Let fL,gron be a sequence of positive linear operators fro@[a; b
into Cl[a; . If Al-st-lim,kL,(f;) fik =0, with f; = t'; i = 0;1;2, then for all
f 2 C[a; we haveA'-st-lim, kL,(f) fk=0:

Proof. Our objective is to show that for given" > 0 there exist constantsCy, C4, C,
(depending on" > 0) such that
KL,(f) fk "+ CykL,(fo) fok+ CikL,(f1) fik+ CokL,(fo) fok:
If this is done then our hypsothesis implies that fog' >0 >0
< X =
"nN2N: Ank 210
' k2K (") '

whereK (") = fk 2 N :kLy(f) fk "g:

To this end, start by observing that for eachx 2 [a;  the function O 2 Cla;
dened by ( t)=(t x)2. Since each_, is positive, L,(; X) is a positive function.
In particular, we have

0 Ln(; X)=Ln(t%x)  2XLa(t;x) + x2L,(1;X)
=(La(t%%x)  t2(x))  2x(La(t;x)  t(x)) + x*(La(L;x)  1(x))
K Lo(t?)  t2%k+2bkL,(t) tk+ BPkL,(1) 1k;

for eachx 2 [a;: Let M = kf k. Sincef is bounded on the whole real axis, we can
write

f@) f(x)j<a2M; 1 <tx< 1:
Also, sincef is continuous on §; 4, we have

i 1<

for all t;x satisfyingjt xj
On the other hand, ifjt x| , then it follows that

2M 2M
=t x)? 2M  f(t) f(x) 2M = (t x)*
Therefore, forallt2 (1 ;1 ) and all x 2 [a;J we get
O Te0i<"+ 0t w3

where is a xed real number.
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Since eachL, is positive, we have

Lo(fox)  2olo(; 0 La(f (%) f(OLa(fox)

2M
"Ln(fo;x)+ —-Ln(; X):

Next, let K = 21 and we get

La(f (00 FOOLa(Foi] "Lafo)+ —aLo(; X)

="+ "[La(fo;x)  fo(X)]+ KLn(; X)
"+ "Ln(fo;x)  fo(X)j+ KLa(; X):
In particular,
JLa(f(); %) F005 T La(F(t);x)  FO)Ln(fo;x)j + jf (X)iikn(fo;x)  fo(X)]
"+ KLa(G X))+ (M + ")jka(fo;x)  fo(X)i;
which implies
KLo(f) fk "+ CokL,(f2) fok+ CikLn(f1) fik+ CokLn(fo) fok;
whereC, = K, C; =2bK and Cy = (" + PPK + M), i.e.,
X2

KLo(f) fk "+ C° KLo(f;) fik i=0:12

i=0
whereC = maxf Cy; C,; C,g: For a given"°> 0, choose' > 0 such that" <" ®and let
us de ne the following sets

D :lzn:kLn(f) fk "%;

wo )

D, = n:kl_n(fo) fok 3C ;

( w0 )
D,= n :kLn(fl) flk 3C ;
( nQ u)
D3: n:kLn(fz) fzk 3C .
It follows that D D[ D,[ Dz and consequently for alih 2 N
X X X X
ank ank t ank + ank;
k2D k2D, k2D, k2D3
which implies that forany > 0
8 9 8 9
< X = [3 < X =
~n2N: Ank ) ~n2N: Ak

k2D ’ i=1 " k2D; 3
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Therefore, from hypothesis,8

Il ©

< X
n2N: Ank 21
' k2D ’

Hence, we have the proof.

We now consider the following convolution operators de ned o€[a; j by
z

(2.1) Lo(f;x)= IOf (Y)Kn(y x)dy; n2N;x2[a;gandf 2 Cla;1;

wherea and b are two real numbers such that < b: Throughout the paper we assume
that K, is a continuous function on§ b;b a] and also thatK,(u) 0 for all
n 2 N and for everyu 2 [a b;b a]: Consider the function on [a;l de ned by
(y)=(y x)?foreachx 2 [a;H.

Theorem 2.2. Let A = (&) be a non-negative regular summability matrix and
let fL,gnon be a sequence of convolution operators fro@[a; into Cla; . If
Al-st-lim, KL, (fo) fok = 0, with fo(y) = 1 and A'-st-lim,kL,() k = 0, then
for all f 2 C[a;J we have

A'-st-linm KL,(f) fk=0:
roof. Let ( y):=(y x)? be a function on p;H, wherex 2 [a;l and L,(f ;x) =
;’f (YKn(y x)dy,n2 N, x 2 [a;jandf 2 C[a;H, wherea, bare two real numbers
such that a < b: SinceL, is a positive linear operator thenL,(; x) O:

Let M = kf k and" > 0. By the uniform continuity of f 2 C[a;j and x 2 [a;
there exists a > 0 such that

if(y) f(xX)j<"; wheneverjy Xxj
Letl =[x ;x+ ]\ [a;b: So,
ifly) fi=if(y) fj WM+ify) ] @n 1 (¥)
"+2M Ay x)%
Sincel,'s are positive and linear so we have,

Zy
jLa(fix)  f(X)i= . f(Y)Kn(y x)dy f(x)

Zy Zy

= (f@y) fNOKa(y x)dy+ f(x) R Kn(y x)dy f(x)
Zy Zy
. (f@y) f)Kaly x)dy + jf(x)] . Kn(y x)dy 1
Z
abjf () F0I JKaly x)dyj+ jf (X)j jLn(fo;x)  fo(X)]
Z

CeaaM Ay 09Kaly 0dy* MiLa(fox) o]
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="+ ("+ M)jLa(fox)  fo()j+2M  2jLa(; X) ]
"+ fila(fo;x)  fo(X)j+iLn(; X)ig;
where = maxf" + M; 24g: Therefore,
KL,(f) fk "+ fkLn(fo) fok+ kLn() ko:
For givenr > 0, choosé' > 0 such that 0<" <r and de ne the following sets

D=fn:kL,(f) fk rg;
;

> ;

D= n:kL,(fg) fok
r "
2
It follows that D D;[ D, and consequently for alin 2 N
X X X

ank ank + ank ;
k2D k2D k2D,

D>

n:kLa() k

which implies that forany > 0
8

1l ©
[o¢]
11 ©

< X
~n2N: Ank ) ~n2N: ank
' k2D ' i=1" k2D;
Therefore, from hypothesis
8
<
~n2N: Ank 21

Hence, we have the proof.

Let be a positive real number so that < b—za and letkfk = sup, , , If(X)j;
f 2 Cla; b
In order to give our main result we need the following lemmas.

Lemma 2.1. Let A = (a;) be a non negative regular summability matrix. Assume
that is a xed positive number such that < b—z"" If the conditions
z

(2.2) A'-st-linm Kn(y)dy =1;

(2.3) A'-st-linm(sup Kn(y) =0
1y
R
hold, then for the operatord. ,, whereL,(f ;x) = ;’f (YKn(y x)dy,n2 N, x 2 [a;h,
f 2 C[a;j and a; bare real numbersa < b, we have

A'-st-linkan(fo) fok =0; with fo(y)=1:
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Proof. Let0< < 22andletx2[a+ ;b ] Then

x a b a) (b a a x

and
b x b a
R R
Now Lo(fo;X) = 2Kn(y x)dy= 2 ¥K,(y)dy. Then we have
z Zp s
Kn(y)dy Ln(fo;x) b a) Kn(y)dy:
Therefore,

kLn(fO) fok Un;
n

R R 0
whereu, = max Kn(y)dy 1; b(ba a Kn(y)dy 1 :
Therefore, A'-st-lim, u, = 0 for all > 0 such that < b—za: Now for given" > 0
de ne the following sets

D:=fn2 N:kL,(fo) fok "g;
D%=fn2N:u, "g:

SoD D@ Then for all n 2 N we have,

X X
Ank Ank
k2D k2DO
Then forany > 0
8 9 8 9
< X = < X =
~n2N: Ank ) N2 N: Ank
' k2D ’ ’ k2D?0
From hypothesis 8 9
< X =
. n 2 N: Ank . 21:
’ k2D?0 ’
Hence, 8 9
< X =
~n2N: Ank 21
) k2D ’

So , we have the proof.

Lemma 2.2. Let A = (&;) be a non negative regular summability matrix. If conditions
(22) and (2:3) hold for a xed > RO such that < bTa then for all convolution
operatorsL,, de ned by L,(f;x) = abf (Y)Kn(y x)dy, n2 N, x 2 [a;g andf 2
Cla; b, wherea, b are two real numbers such thaa < b, we have

A'-st-linm KLo() k =0; with (y)=(y x)Z
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Proof. Fora xed0 < < 22 letx 2 [a+ ;b ]:Since (y)= y? 2xy+x?then 2
Cla;dforallx2 [a+ ;b ]. NowL,(; X)= La(f2;x)  2XL,(f1;%)+ X2Ln(fo;X),
with fi(y)=y"; i=0; 1;2: Thenforalln2 N

z Z, z,

b a
La(; X)= (Y X)’Ka(y x)dy= y2Kn (y)dy y2K o (y)dy:
a a x (b a)

Since the functionf, is continuous aty = O for given " > 0 exists > 0 such that
y2 <" for all y satisfyingjyj : We have two cases suchthat b aor <b a.
Case 1. Let b a: Therefore, 0 L,(; x) " b(ba a) Kn(y)dy: By condition
(2:3),0 Ln(; x) "and A'-st-lign kKLn() k :8 for b a: .
Case 2: Let <b a: Therefore,Ln(; x) ,; YKa(y)dy+ j,; y?Kn(y)dy
and hence we obtain

L P (b a° °
kLa(; X)k & y“dy+ " Y Kn(y)dy = an———2——+ "bn;
R
wherea, =sup;,; Kn(y)and b, = ;; Kn(y)dy: Also we have from hypotheses
A'-st- lima, =0
and
A'-st-lirm b, =1:

n [0}
(b a)3 3 . n
3

Taking, M = max ;" we have for alln 2 N

kLn() kK "+ M(a, +jbn  1j):
For givenr > 0, choosé' > 0 such that" <r: Let
D=fn2N:kL,() k rg;
r. n

Di= n2N:a, oM X

. A
D,= n2N: 1
2 jbn J M
Therefore,D D;[ Dj,: Hence, for alln 2 N we have,
X X X
ank ank + Ank ;
k2D k2D k2D>
which implies that forany > 0
8 9 8 9
< X = [2 < X =
.N2N: 8nk . .N2N: ank 5.
) k2D ’ i=1 " k2D; 2
Therefore, from the hypothessis o
< X =
- n2N: ank 21
' k2D ’

Hence, we have the proof.
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Now the following main result follows from Theorem 2.2 and Lemma 2.1, 2.2.

Theorem 2.3. Let A = (&;) be a non negative regular summability matrix and let
fLnOn2n be a sequence of convolution operators @fa; b given by(2:1). If conditions
(22) and (2:3) hold for a xed > 0 such that < bza, then for all f 2 C[a;j we
have

A'-st-linm kL,(f) fk =0:
If we take | = Iy, , the ideal of all nite subsets ofN, we get the following result.

Corollary 2.1. ([6, Corollary 2.5]). Let A = (&; ) be a non negative regular summa-
bility matrix and let fL,gn,n be a sequence of convolution operators @fa; ld given

by z,

La(f;x) = af(y)Kn(y x)dy;

n2N;x2J[alandf 2 C[a;, wherea and b are two real numbers such thaa < b.

If conditions 5

Sta Iinm Kn(y)dy=1

and
sta  lim supK,(y) =0
" jyi
hold for a xed > 0 such that < % then for all f 2 C[a;j we have
Sty Iinm kL,(f) fk =0:

Remark 2.1 We now exhibit a sequence of positive convolution operators for which
Corollary 2.1 does not apply but Tgeorem 2.3 does. Let

U = <1; forn even
"0 otherwise.
Let | be a non-trivial admissible ideal oN. Choose an in nite subsetC = fp; <p, <
ps g froml nly, wherely denotes the set of all subsets & with natural density
zero.

Let A = (an) be given by
8

31, ifn=p; k=2p for somei 2 N;
ank:31; ifné p foranyi;k =2n+1;
©0; otherwise.

Now for 0<" < 1,K(")=fk2 N:juc 0O "gis the set of all even integers.
Observe that 8
X _ <1, if n=p for somei 2 N;

kZK(..)ank ~ 10, ifn6pforanyi2N:
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n [0}
Thus, forany > 0; n2 N: P k2K (") @nk = C 2 | nlg which shows that

fugeon is Al-statistically convergent to 0 thoughx is not A-statistically convergent.
Now let the operatorsL, on C[a;  be de ned by

Lot ix) = MU “ (e " Wy:

If we chooseK (y) = 2&un)e n%? then

Lo i) = ") “ CHKay x)dy:

Now for every > 0 such that < % we have

Z z z !

1 2,,2 2,2
Kn(y)dy=L(19+_ui”) e "Ydy e "Vdy
1 iyi
Zl Zl
:M e Ydy e Ydy :

n
. Rl 2 p— . . . Zl 2 .
Since ; eYdy = — < 1, itis clear that Ilnm e Ydy = 0. Also since
n
Al-st-lim, (1 + uy) = 1, we immediately get
Z

A'-st-lirm Kn(y)dy =1:

On the other hand, we have

n(1+u
supKn(y) = ") gpe nv W:
iyj iyj
Since lim, 3> =0 and Al-st- lim(1 + un) = 1, we conclude that
A'-st- lim supK,(y) =0:
iyi

Therefore, from Theorem 2.3,
A'-st-lirrp kKL,(f) fk =0; forallf 2 C[a;h:

However note that, asf ucgk2n IS not A-statistically convergent to zero s&K,, do not
satisfy the hypotheses of Corollary 2.1.

3. Rate of A'-Statistical Convergence

In this section we study the rates ofA'-statistical convergence in Theorem 2.3 using
the modulus of continuity. Letf 2 C[a;lj. The modulus of continuity denoted by
I (f; )is de ned to be

L )= sup jf(y) f(x)i:

y xj
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The modulus of continuity of the functionf in C[a; gives the maximum oscillation
of f in any interval of length not exceeding > 0. It is well-known that if f 2 C[a;H,
then

IiImO! (f;, )=1(f;0)=0;
and that for any constantsc > 0, > 0;

P(f;c ) (@+[cht (5 )
where [] is the greatest integer less than or equal to
Next we introduce the following de nition.

De nition 3.1. Let A = (&, ) be a non-negative regular summability matrix and

let fc,0n2n bDe a positive non-increasing sequence of real numbers. Then a sequence
X = fXnOn2n IS said to beA'-statistically convergent to a numberL with the rate of

o(c,) if for every " > 0, Etghere exists > 0 such that

9
<. 1 X =
' i fnijxn Lj "g '
In this case we writeA'-st-o(c,)- lim, X, = L:
We establish the following theorem.

Theorem 3.1. Let A = (&,) be a non-negative regular summability matrix and let
fLngnon be a sequence of convolution operators given (&y1). Assume further that
fcaonon and fd,gn2n are two positive non-increasing sequences. If for a xed> 0

such that < LZ’"

A'-st-o(cn)-linm KLn(fo) fok =0
and
A'-st-o(d,)- lim! (f; n)=0;
where , := ! m; then for all f 2 C[a; i we have
A'-st-o(pn)-linm kL.(f) fk =0;
wherep, = maxfc,; d,g.

Proof. Let0< < %; f 2Cla;gandx 2 [a+ ;b ]. By positivity and linearity
of the operatorsL,, and using the inequalities for any > 0 we get
iLa(f5x) FO01 La(fQy)  TOEX)+ T 001 jLa(foix)  To(X)]
Lot 6 i i (0) jLa(foin) fo(x)
H#
X . - .
()L 1+ Tk i) jLa(forx)  fo(x)]

L) La(forx) + ian( X)) +JEX)) jLa(foix)  fo(X)j:
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Therefore, for alln 2 N

kL (f) fk I'(f; ) kLo(fo)k + i2kLn() kK + MikL,(fg) fok;

whereM := kfk : Now let = = | m Then we have
KLo(f) fk I (f; n)fkL,(fo)k +1g+ MikL(fo) fok
20 (f; )+ ' (f; n)kLa(fo) fok + MikLn(fo) fok:
Let M = maxf2;M;g. Then we can write for alln 2 N that
KL,(f) fk MfU(f; )+ kLno(fo) fokg+ ! (f; n)kLn(fo) fok:
Given " > 0, de ne the following sets:
D:=fn:kL,(f) fk "g;

Dy:= n:!(f; ) M :

Do:= n:t(f; n)kLn(fo) fok =

D; = n:kLn(fo) fok M
ThenD D;[ D,[ Djs: Also, we de ne
rw
D= n:t(f; ) 3

Dy = n:kLn(fo) fok 3
Therefore, D, DY[ D3 Hence, we getD  D;[ DJ[ D[ Ds: Sincep, =
maxf ¢,; d,g we obtain for allj 2 N that

1X 1 X 1 X 1 X 1 X
— @ o @t @t @t @
B n2p " g n2D; " g n2DY " Cjnwgo " G n2p, "
As
A'-st-o(cn)-lim KL (fo) fok =0
and
A'-st-o(dn)-lim L(f; n)=0:
Therefore,
( 1 X )
] 2 N:— ajn 2 1;
I n2D
ie.,

A'-st-o(pn)-lim kKL.(f) fk =0; forallf 2 C[a;H;
wherep, := max f¢,; d,g. Hence, the result follows.



A'-STATISTICAL APPROXIMATION FOR A SEQUENCE OF CONVOLUTION OPERATORS367

4. Conclusions

Following the concept ofA'-statistical convergence for real sequences, we have
encountered a Korovkin type approximation theory (Theorem 2.3) for a sequence
of positive convolution operators de ned ornC[a;J. We have exhibited an example
which shows that Theorem 2.3 is stronger than ité\-statistical version [6, Corollary
2.5]. The third section states about the rates of thé\'-statistical convergence.

We are very much interested whether the results of this paper are valid for the
function f with two variables. Again we are interested whether the results are relevant
on in nite interval.
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SPECTRA OF THE LOWER TRIANGULAR MATRIX

Abstract. The in nite lower triangular matrix B(rqi;:::;ry;S1;:::;S0) is consid-
ered over the sequence spacg, where | and 1° are positive integers. The diag-
onal and sub-diagonal entries of the matrix consist of the oscillatory sequences
r'=(Tkmod 1y+1) @nd s = (Skmod 19+1 ), respectively. The rest of the entries of the
matrix are zero. It is shown that the matrix represents a bounded linear operator.
Then the spectrum of the matrix is evaluated and partitioned into its ne structures:
point spectrum, continuous spectrum, residual spectrum, etc. In particular, the

is taken in support of the results.

1. Introduction

The study of the spectrum of a bounded linear operator has received much attention
in recent years due to its wide application in functional analysis, classical quantum
mechanics, etc. LetA be an in nite matrix that is bounded and linear in a Banach
spaceU. Then many dynamical systems can be reformulated as the system of linear
equationsAx = X, where is a complex number andx is a nonzero vector inU.
The stability of this system can be explained by the spectrum dk. In this course,
spectrum localization of an in nite matrix over a sequence space is viewed as an
important problem by many authors [10,1416,23,26]. An extensive study of most of
the research done in this direction can be found in the review articles [25] and [17].

Key words and phrases.Fine spectra, sequence space, lower triangular in nite matrix, point
spectrum, continuous spectrum, residual spectrum.
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For a sequence = ( Xg), the backward di erence operator is dened by x =
Xk Xk 1, Wherex ; =0. The matrix representation of this operator is as follows:

2 3
1 0 0O

1100 _
=80 110 :

In short, is an in nite matrix whose diagonal entries and subdiagonal entries are the
constant sequences (1;:::) and ( 1, 1;:::), respectively. Akhmedov and Ba3ar

[1] determined the spectral decompositions of this operator over, (1 p < 1),
whereas Altay and Ba3ar [3] evaluated the spectra of the same operator over the spaces
c and ¢y. Altay and Ba3ar [4] then considered the di erence operatoB (r; s) over ¢y

and c, which is a generalization of the operator . The diagonal and subdiagonal
entries of B (r; s) contain the sequencesr{r;::: ) and (s;s;:::), wherer ands 6 0 are

real numbers. Furkan and Bilgi¢ studiedB (r; s) in the same direction over , and by,

in [6]. For more study, we refer [2,7,8,12,13,18,19,22,24] etc. Now if one considers
the more generalized di erence matrix whose diagonal and subdiagonal entries are

I°are some positive integers, then the number of limit points of both the sequences
will be di erent and it will be interesting to study the spectral property of the matrix.
In this paper, we have determined the spectra and ne spectra of the generalized

2. Preliminaries

Let U and V be Banach spaces. Then the space of all bounded linear operators
from U into V is denoted byB (U; V). If U = V, then the space is denoted b (U).
Let L 2 B(U) and U be dual ofU. Then the adjoint L 2 B(U ) of L is de ned by
(Lf)t)y=f(Lt)forallf 2U . LetJ :D(J)! U be a linear operator de ned over
a subsetD (J) of U. Then the operator @ | ) !is called the resolvent operator of
J, where is a complex number and is the identity operator.

A complex number is said to be aregular value[11] of a linear operatorJ :
D(J)! U if and only if the operator (3 | ) ! exists, bounded and is de ned on a
set which is dense ifJ. The set of all regular values of the linear operatad is called
resolvent setand is denoted by (J). The complement (J) = C (J) is called
the spectrumof J. The spectrum (J) is further partitioned into the following three
disjoint sets.
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@ pJ)y=f 2C:(@J | ) ! does not exist). This set is called thepoint
spectrum (discrete spectrum of the operatorJ. The members of this set are
called eigenvaluesof J.

(b) <(T), which is de ned as the set of all complex numbers for which (3 1) !
exists and de ned on a set which is dense in U, but it is not a bounded operator
in U. This set is calledcontinuous spectrumof J.

(¢) (T), which contains all those complex numbers for whichJ( | ) ! exists,
de ned on a set which is not dense itJ. This set is called theresidual spectrum

of J.
Let R(J 1) denotes the range of the operatad | . Goldberg [9] has classi ed
the spectrum using the following six propertiesoR(J | )and (3 | ) %
I R I)=U;
() RQ 1)8UbutRJ 1)=U;
(I R@ 1)6U

and

(1) (3 1) !exists and it is bounded;
(2) (3 1) !exists but it is not bounded;
(3) (3 1) !does not exist.

Based on the above six properties, the Goldberg's classi cation of the spectrum can
be given as shown in the Table 1.

Table 1. Subdivisions of spectrum of a bounded linear operator

() (1) {n
11 (V) (J;U)
2| (JU)  (U) ((JV)
3] p(BU)  H(FU) H(JU)

Theorem 2.1 ([21]). Let L be a bounded linear operator on a normed linear spalce
Then L has a bounded inverse if and only [f is onto.
Lemma 2.1 ([20]). An innite matrix A = (an) 2 B(c) if and only if

(@) (ak)k 2 "1 for all nandsup, (jaxj < 1;
(b (ank)n 2 ¢ for all k. 5
Moreover, the normkAk = sup,, | jank]-

Throughout the paper, we denote the set of natural numbers b, the set of
complex numbers byC and Ng = N[f Og. We assume thatx , =0 for all n 2 N.

3. Main Results

Let | and I°be two natural numbers. Suppose thaH is the least common multiple
ofland!I® Letr;,i=1;:::;l,ands; 80;i=1;:::;1% be complex numbers. Then
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the matrix B(rq;:::5r5815:::;50) is de ned asB = (b )ij o, where
8
E I'j(mod 1)+1 wheni = j;
(3.1) b; = BSJ' (mod 19+1; Wheni=j +1;
0 otherwise
That is
2 3
M
S]_ O
B = r
Sjo

If the matrix B transforms a sequencg = ( xi) into y = (yx), then

R
(3.2) W= bgX; = bek 1 Xk 1+ BXk = Sk 1)mod 1941 Xk 1+ Tkmod 1)+1 Xk;
i=0

for all k 2 No.
Theorem 3.1. B 2 B(cy) and kBkq, ni1'jaxfj nj+isicl i L1 o) 1%

Suppose thata is an integer andn is a natural number. We denote, byd,], the set
of all non-negative integerx for which n dividesx a. Then a(mod n) is the least
member of f,]. Let and be the mappings which are de ned on the set of integers
as follows:

(k) = k(mod 1) + 1

and
(k) = k(mod 19 +1:
Without loss of generality, we assume thas oS «+1) S «+j) = 1 and (r ¢
I (k) ) (r e+ )=1,whenk+ j<k.If isacomplex number such
that (B 1) ! exists, then the entries of the matrix 8 1 ) *=(zx), n 0, and
k 0, are given by
8
( 1)n ks (k) S (k+ 00 1) (Sl o ZS|o)m00
% (rgey ) (r @+ 9 )gl:n(fl ) (n )g™
< H =
— . (s so)? . i whenn > k;
B3 z=y ti0r ) )gh
§ ! ; whenn = k;
()
- 0 otherwise

where , %and ®are the least non-negative integers such that
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gn k=mH + ;
(3.4) =mi+ G
3 = mopo4+ 00

for some non-negative integersr, m°and m®
Lemma 3.1 If( ry j r)d¥™> (s jse) then(B 1) 2 B(c).

Proof. Since {  ryj j ) > (jsij  jsij)¥" and si;sp; 00 S0 are non-zero,
therefore 6 r; foralli =1;2;:::;1. Then the matrix B | is a triangle and
hence 8 | ) ! = (zx) exists, which is given by(3.3). We rst consider a row
of (B 1) ! which is a multiple of H, that is n = mH for somem 2 Ny. Now,
let k = mH for h = 0;1;:::;Mm. Then (3.4) implies thatn k =(Mm rM)H and

ml= m®= = 0= 0=0, Thus, from (3.3), we have
8 ., 98 m
o= )" k< (1 ST =
k — . H ’
Morw tf(rn ) (nm)gv
forall m=0;1;:::;Mm. Therefore,
8
X 1 X< (s jsa)P
jZuj= ——— . - — —
k2 [0y ] I Jj=o fjra j jr jgre

where [y ] denotes the set of all non-negative integers which are multiple Bif. For
the same row, if we considek = mH +1 for i = 0;1;:::;m 1, thenn Kk =

(m m 1H+H 1. Let m and m%be quotients and ? and %be remainders
whenH 1 is divided by and I° respectively, that is

H 1=mjl+ J
H 1=mj+ °

Then, from (3.3), we obtain that

o (D" *s @ S (1 so)™F

. =

N (O T (R o ) f(ra ) (n )gms
8 9% m 1
< (Sl S|0)|% =

Cf(re ) (n gt
forallm=0:;1;::::Mm 1. Hence,
X Swi ISk P (s Jsef)m?
jZnk] = - — - = — —
K2[14] INe 1 Iraey 1 fire j jrn jg™
8 ) 9,
X 1< (jsaij  jsij)™ -

iz fire join gt
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where [} ] denotes the set of all nonnegative integers such that H divides x
Similarly, for k = mH +2;:::;MH + H 1, we have
X ISl ISk p (isa 1 :jsif)™e
k2[2.] faw b irtwey J fire ) ojn jgm?
8 ., 9,
X< (s jse)e =

iz fira j jn gty

X sl IS+ @, (i jse)™ t
jZoj = - —— - - — —3
K2[(H 1).] N 1 e gp 1 firn j o jghns
8 9.
XIS (s jsa) =

o fire jojn jgts
for some integers &, % m?and m®for all i 2f 2;3;:::;H 1g. Thus,

8 ) 9,
oo 1 e < (jsij  Jsij)m -
JZok) =7 N . . . H -
k=0 Irw  Jj=o fire j g jgme
& 12 .. . . H gi
(3.5) emo o Usd JsE T
=0~ firy Jon g
where
M = ISl IS (k+ © 1] (is1j  jsi)™
rew b drwy J firn jon jgm
sl S e o, (s jsi))™ 1

=+

rw 0 drweey 0 firn o jogn jgmkoa

Let Mp=max —r—:M . Then
I w

o Mo(irs  jirz j jn DT
1Znk] B .. . ] \H . ... NG
k=0 P(Jrl irzj jn )7 (sdisg jsief)
Therefore, sup; o, o JZnkj < 1 . Similarly, we prove that
oo
sup  Jznk) <1
n2[1y k=0
*

sup  jzuj <1
n2[2y ] k=0
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%
sup  jzu <1
n2[(H 1ulk=0
Thus,
A O w0 %)
SUD  jZwj=max Sup  jzwj; SUP  jZwjiiii;  Sup §Znk]
N k=0 n2[04 1 k=0 n2[14 1 k=0 n2[(H D lk=0

This implies that sup, P roJznkj < 1 . Likewise, for an arbitrary column of 8
| ) 1, adding the engies separately whose rowsbelong to [Q4]; [1x];:::;[(H  DR]
respectively, we get *_,jzwxj < 1. Therefore,limn; jzwj = 0 for all k 2 No.
Hence, by Lemma 2.1, the matrix B | ) 12 B(c).
n 0
Consider the setS = 2C:(j rg j r|j)|l (jsi) js|oj)ﬂlJ . Then we
have the following theorem.

Theorem 3.2. (B;c) = S.

Proof. First, we prove that (B;c) S. Let be a complex number that does not
belongtoS. Then( rij | nj)™ > (jsij jsio)*. Inthat case, from Lemma
3.1,itfollowsthat (B | ) 2 B(g). Thatis, 2 (B;c). Hence, (B;g) S.
Next, we show that S (B;c). Let 2 S. Then, ( ry | rnjp
(Gsi  jso)=". If equals any of ther; for all i 2 f 1;2;:::;1g, then the range of the

operatorB | is not dense incy, and hence 2 (B;cy). Therefore, we assume that
6 riforalli2f1,2:::;lg. Inthatcase,B | isatriangleand® | ) !=(zx)
exists, which is given by(3.3). Lety = (1;0;0;:::) 2 ¢ and let x = (x,) be the
sequence such that | ) y = x. It follows, from (3.3), that
8 9
nH < % =N
(3.6) XnH = ZnH:0 = (1) . (1% So)! .
f1 i) (n )9

for all n 2 Ngy. Sincef(r; ) (n gt (se S|o)l%, the subsequencexqy )
of x does not converge to 0. Consequently, the sequence ( xx) Z ¢. Therefore,
(B 1) !'2B(g). Thus, 2 (B;c) and henceS (B; c). This proves the
theorem.

Theorem 3.3. ,(B;c) = ;.

Proof. Let 2 ,(B;G). Then there exists a nonzero sequenoce= (Xx) such that
Bx = x . This implies that

(3.7) Stk 1)(mod 19+1 Xk 1t lk(mod 1)+1 Xk = X k!

Let xx, be the rst non-zero term of the sequence& = (Xx). Then from the relation
(3.7), we ndthat = ry,mod 1y+1- Next, for k = ko + |, (3.7) becomes

S(ko+! 1)(mod 19+1 Xko+1 1 F I(ko+1)mod 1)+1 Xko+1 = X ko+1*
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That is,

(3.8) S(ko+1 1)(mod 19+1 Xko+1 1 F Tko(mod 1)+1 Xko+1 = X ko+1*

Putting = rymod 1y+1 iN (3.8), we nd that

S(ko+! 1)(mod 19+1 Xko+1 1 = 0:

AS Sko+1 1)mod 19+1 6 0, therefore x,,+ 1 = 0. Similarly, using (3.7) fork = ko+1 1

and putting the value xy,+; 1 = 0, we obtain xy,+; 2 = 0. Repeating the same step for
k=ko+!| 2ko+ | 3;:::;ko+1, we deduce thatx,, = 0, which is a contradiction.

Hence, ,(B; ) = ;.

Let B = (b ) denote the adjoint of the operatorB. Then the matrix representation
of B is equal to the transpose of the matrixXB. It follows that

8
3limod 1)+1; Wheni = j;
(3-9) hj = gsi(mod |0)+1; wheni +1= j;
0 otherwise
That is,
3
rh $
ro . O
B = . S
i

0

The next theorem gives the point spectrum of the operatdB .
n 1 [0}
Theorem 3.4. ,(B;g)= 2C:( ri j M)t < (sy  jsief)® .

Proof. Let 2 (B ;¢ = "1). Then there exists a nonzero sequence= (Xy) 2
"1 such that B x = x . From this relation, the subsequencesxfy ); (Xkn+1);:::;
(Xkn+H 1) Of X = (Xg) are given by

8 9
< HZk
s = (C r) ( n)
kH = . i . Xo
' (s1 S
8 H gk
G £ (G 7 I G 1)) R
XkH+1 = : o Xo
S1 ) (Sl S|0)W
H H H
_( ror  ( ro1)7( )+ *
XkH+H 1= H H H 1
s{” Sl Sb
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8 Ik
S r) (on)TT "
R L
Thus,
oo R R . - .
Xe) = Xkn]+t JXiH+a] T +  XkH+n 1)
k=0 k=0 k=0 n=0 1
Bys o T, o, Ot ConwfC ot te
S1 s’ s st

A r) ( ompt”

k=0 (s1 SlO)'qU

JXoj:

Clearly, the sequence = (xx) 2 pifandonlyif(j rq | r|j)|l < (jsy] jS|oj)l%.

This proves the theorem.
n (0]
Theorem 35. ((Bi)= 2C:(j rij j ni)t<(sy jsd)r .

Proof. The residual spectrum of a bounded linear operatdr on a Banach space
U is given by the relation ,(L;U) = ,(L ;U )n p(L;U). Therefore, (B;cy) =
p(B ;c) N p(B;co). Then the proof of this theorem is an easy consequence of the

Theorems 3.3 and 3.4.
n 0

Theorem 3.6. ((B;cg)= 2C:(j ri j n)t = (i jse) .

Proof. Since spectrum of an operator on a Banach space is disjoint union of point,
residual and continuous spectrum, therefore from Theorems 3.2, 3.3 and 3.5, we deduce

that n . 0
o(Bic)= 2C:( rg J o ondT=(jsd  jse)e :
Theorem 3.7. frq;ry;:i5ng 1 1(B; ).
Proof. Theorem 3.5 shows thatr; 2 (B;c). However, (B;c) = Il (B;c) [

1l »(B;c). Therefore, to prover; 2 11l ; (B; ), we shall show that the matrix
B r4l has bounded inverse and from Theorem 2.1, it will be su cient to show that
(B rql) is onto. For this, lety = (yx) 2 1. Then (B r4l) x = y implies that
(3.10) (Figmod 1y+1 T1)Xi + Sigmod 19+1 Xi+1 = VYi;

for all i 2 No. Solving (3.10) forx = (x;), we obtain that

(3.11)  Xmu+k = K 2 1 "I Timod - C YmHk 1
j=0 SJ (mod 19+1 i=j+1 Si(mod 10)+1 : S(k 1)(mod 19+1
fork=1;:::;H,andm =0;:::;1 . Let
C = 1 Y1 rL Timod e .
J - )

Sj (mod 19+1 i=j+1 Si(mod 19+1
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1

Ck 1= —
Stk 1)(mod 19+1

Then (3.11) can be written as

(3.12) Xma+k = Co¥mu + CiYmu+1 + + Ck 1Ymu+k 1°

Taking summation fromm =0 to 1 of the absolute values ok +k, We obtain

* R R : R .
(313)  Xmm+wd J Col  JYmm]tiCh Ymueit  FJCk 4 [YmHek 4
m=0 m=0 m=0 m=0
Sincey = (yk) 2 "1, ttrgerefore the right hand side of the inequality(3.13) is a sum of
k nite terms. Thus, 1_jjXmn+kj < 1 fork 2f1;2;:::;Hg. This implies that the
series

X R R _ % _
(3.14) Xij= X+ Xmhen)t o Xmme2] ot Xme ]

i m=0 m=0 m=0
is a sum ofH + 1 nite terms. Hence, x = (X;) 2 ;. We have shown that for every
y =(Yy;) 2 1 there exists a sequence = (X;) 2 ; suchthat (B ril) x=y. That is,
(B ril) is onto. Similarly, we can show thatr; 2 111 1(B;c) fori =2;:::;1. This
proves the theorem.

Theorem 3.8. (B;c) nfryroi:iiing 1l »(B; ).

Proof. Let belongs to the set ,(B;co)nfry;ro;::i;ng. Then(  rqj r,j)ll <

gslj i :js|oj)ﬂl) and 2 r;foralli2f1;2;:::;lg. This inequality shows that the series
o izakj in (3.5) is not convergent whem goes to in nity. In that case, B | does

not have bounded inverse. Then from Table 1, we nd that 2 Il ,(B;c). Hence
r(Bico) nfry;ro;iiing 1 o(B;c).

Proof. From Table 1, we have ,(B;c) = 11l 1(B;c) [ Il 2(;c) and the union is
disjoint. Then taking complement of the inclusion of Theorem 3.8 in(B; ),
we obtain that (B;c) nlll 2(B;c) f rq;ro;:ii;ng. That is, 1 1(B;c)

Theorem 3.10. Il »(B; ) = (B;c) nfryry:::;na.
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4. Fine Spectra of the Matrix B(rq;:::;r4;S1;:::;Se)

We consider the matrix

' 3
rr 0O 0O OOO O O O :::
ss; r, 0 0O 0OO 0O O O0:
0O s, ;; 0 0 0 O 0O O°:
0O 0 s3r, OO O O O :
0O 0 0s,r; 0O O O :
a0 0 0 0ssr, OO O
0O 0 0 0 O0sg rz 0 O
0O 0 0 0 0O Os; rg O
0O 0 00O 0O O O0sy, g
Now, consider the following sets:
n 1 . .. . . . . . lo
D= 2C:( raj rai rajj ra)*  (jsijsaliszjisaliSsiisel)
n (0]
D, = 2C:(] r1] rojj rajj r4j)% < (js1lis2li s3liSalj Ssij S6j)% ;
0

n 1 . .. .. . .. .. N1
D= 2C:( rai raj  rajj ra)* = (jsujjszlissjisajjSsjiSe))® -

From the discussion of the previous section, we deduce the following results:

41 | 6g;

(@) o(B(ry;:::;r4;81;::::%);Co) = Dy;

In particular, if we take ry =1 i;rp,= i;rz3= 15 r,= 1iands; = i
S, =1+ i;s3= 2,54= 15's5=1 i, s¢= 1, then the spectrum is given by
n (0]

(B(ri;::ilaisiiiniSe)ic)=  2C:(  1+if +ijf +1:5)F 66 ;
which is shown by the shaded region in Figure 1.

5. Conclusions

which generalizes the following matrices.
The backward di erence operator [3]for =1, 1°=1, r;=1ands; =
The Right shift operator for1 =1, 1°=1, r; =0 and s; = 1.

1.
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Figure 1. Spectrum ofB(rq;:::;r4;S1;:::; Ss).

The Zweier matrix [5] forl =1, [°=1, r; = sands; =1 s for some complex
numberss 6 0; 1.

The generalized di erence operatoB(r;s) [4] for | =1, I°=1, r; = r and
s; = s for some complex numbers and s 6 O.
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CHAOS AND SHADOWING IN GENERAL SYSTEMS
M. FATEHI NIA 1 AND A. ZAMANI BAHABADI 2

Abstract.  In this paper we describe some basic notions of topological dynamical
systems for maps of typef : X X ! X named general systems. This is proved
that every uniformly expansive general system has the shadowing property and every
uniformly contractive general system has the (asymptotic) average shadowing and
shadowing properties. In the rest, Devaney chaos for general systems is considered.
Also, we show that topological transitivity and density of periodic points of a general
systems imply topological ergodicity. We also obtain some results on the topological
mixing and sensitivity for general systems.

1. Introduction

Shadowing and ergodic properties in discrete dynamical systems have received
increasing attention in recent years [47]. Many authors investigated the relation
between shadowing properties and other ergodic properties such as mixing and tran-
sitivity [10,12,14]. In [2] Blank introduced the notion of average-shadowing property
and Gu [9] followed the same scheme to introduce the notion of the asymptotic av-
erage shadowing property. In [14] Sakai considered various shadowing properties for
positively expansive maps on compact metric spaces and prove that for a positively
expansive map; Lipschitz shadowing property, the-limit shadowing property and
the strong shadowing property are all equivalent to the shadowing property. He also
prove that average shadowing property and topological transitivity are equivalent for
every positively expansive map on a compact metric space. Theorem B in [3] shows
that the two-sided limit shadowing property implies topological mixing. In [5, 6] the
author introduce uniformly contractive (expansive) iterated function systems (IFS)

Key words and phrases.Chaos, general system, shadowing, transitive.
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and prove that every uniformly expansive IFS has shadowing property and every uni-
formly contractive IFS has shadowing and (asymptotic) average shadowing properties.
R. Gu [9, 11] prove that every onto continuous map on a compact metric space with
(asymptotic) average shadowing property is chain transitive. Also, in [5, 6] the author
prove similar results for iterated function systems.

The relationship between chaos and shadowing is an interesting topic for many
researchers in the recent years. There are di erent de nitions of chaos. One of the
popular de nition is Devaney chaos. Indeed a map is chaotic in the case of Devaney
if the periodic points off is densef is topologically transitive and is sensitive. This
is well known that the density of periodic points and topological transitivity imply
sensitivity. Sanz-Serna [15] devised a method to simulate chaos by use of shadowing
lemma. In [1], the authors introduced the notion oP -chaos by changing the condition
of transitivity in the de nition of Devaney chaos to the shadowing property, and they
proved that every P-chaotic systems on a connected space is Devaney chaotic with
positive topological entropy.

In this paper we consider a generalization for discrete dynamical systems which
introduced in [13]. The main idea of this generalization is based on considering maps
f:X X! X instead of mapsf : X | X, as discrete dynamical systems. Firstly,
we de ne basic notions, such as, orbit, periodic orbit, shadowing and ergodic properties
which we need in the following. Section 3 is devoted to shadowing properties, the
main result of this section is Theorem 3.1 which shows that in generalized dynamics
uniformly expansivity implies shadowing property. Then two examples of general
systems on symbolic space and unit circle are given which have shadowing properties.
In section 4, we study the chaotic properties of a general dynamical system. We show
that similar original maps and non-autonomous discrete systems [16], the density
of periodic points and topological transitivity imply sensitivity in general systems.
Finally, we obtain some notions such as topological ergodicity, topological mixing and
sensitivity for general systems.

2. preliminaries

Let (X;d) be a complete metric space anfl : X X ! X be a continuous map.
For x 2 X, de ne the orbit of x as follows:O(x) = fx,gl.,, wherex; = xo = x and
Xn+1 = F(Xn 1;%n) foralln 1.

We say that x 2 X is a periodic point of periodm if Xyn+; = X; for everyk 2 N
and0 i n.

The mapf is called to be sensitive if there i® > 0 such that for everyx 2 X and
every open subset) of X containing x, there is a pointy 2 U and n 2 N such that
d(Xn;yn) > €.

We say thatf is topologically transitive if for every nonempty open setd), V, if
there isz 2 U such that for somem 2 N, z,, 2 V. We say thatf is chaotic in the
sense of Devaney oX if:

1. f is topologically transitive in X ;
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2: the set of all periodic point off is dense inX;
3. f is sensitive.

Denition 2.1. The mapf : X X ! X is said to be contractive if there is a
constant 0< < 1, called a contractive constant, such that for every disjoint points
(x;y);(z;w) 2 X X thend(f (x;y);f(z;w)) <  maxfd(x;z);d(y;w)g.

3. Shadowing and Expanding

For given > 0, a sequencéx,g, o in X is said to be a -pseudo orbit off :
X X1 X if Xy = Xg and for everyn 1 we haved(Xn+1;f (Xn 1;Xn)) <
One says that the mapf : X X ! X has theshadowing property if for given
> 0 there exists > 0 such that for any -pseudo orbitf x,g, o there existsy, 2 X
such that d(xo;Y¥o) < and d(Xn;f (Yn 2;¥n 1)) for all n 2. In this case one
says that the orbit fy,g, o or the point yy, -shadows the -pseudo orbitf x,gn o.

Denition 3.1. Themapf : X X ! X is said to be uniformly expansive if there
exists constants < < 1 suchthatforxy 2 X X

d(f 09:f(y) > dUxy);
where x = (X1;X2), Y = (Y1;¥2) and d¥{(x1; X2); (Y1; ¥2)) = max f d(xq; y1); d(X2; y2)o:

De nition 3.2. A sequencd x;g; o of points in X is called an asymptotic average
pseudo orbit off if
li L 1d f ' Xi); =0:
am - B (F(Xi 15%i);Xiv1) = 0:
A sequencd Xxjg, o in X is said to be asymptotically shadowed in average by a point
zin X if
. o1x!
lim = d(z;x;)=0;
nll n i=0
wheref z,g; ¢ is orbit of the point z.

De nition 3.3. Letf : X X ! X be a continuous map. For > 0, a sequence
fXigi o of points in X is called a -average-pseudo-orbit of if there is a number
N = N( )suchthatforalln N

1%1

= d(f (X 15%)i Xi+1) < -

Nz

We say thatf has the average shadowing property if for every> 0 thereis > 0
such that every -average-pseudo-orbitx;g; ois -shadowed in average by some point
y 2 X, that is,

. 1%t
limsup=—  d(y;xi) < ;
n'1 n._
wherefy;g ¢ is orbit of the point y.
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In the next theorem whose proof is based on [8, Theorem 2.2], we provide some
coe cient conditions for a general system to have the shadowing property.

Theorem 3.1. Letf : X X ! X be an uniformly expansive map and for every
x 2 X the restricted functionsf :fxg X ! X andf : X f xg! X be surjective,
thenf has the shadowing property.

Proof. The main idea of the proof is to nd a Cauchy sequence which converges to a
point that -traced our considered -pseudo orbit. Assume that for everyi 2 X the
orbit of x, denoted byfx™" g, o, asx"%= x; x"1 = x andx""** = f (x"n 1;x"") for
alln 1. For given > Otake =( 1) , where O< < 1 is expansivity constant
and let fx,g be a -pseudo orbit off . Consider the sequencéz,g, o in X de ned

as follows: zy = Xo, Z; = X3 = Xg and z, be a point that x, = f (z;; z,) and for every
n> 2,z, be apointthat x, = zf". Givenn 1and0 k n 1, denote

(3.1) Zox = Z3K:
This implies that foranyn l1and2 k n 1 we have:
(3.2) Znk = f(ZL;k 2; Z;;k 1); Xn = f(Zan 21Zan 1):

Claim. The sequencd z,g, o in X is a Cauchy sequence.
Proof of Claim. Consider the function' : (X X) (X X)! R dened by

g ; SR
sn=, OO o

dqs;t) '

where 0< < 1 is the expansivity ratio number. This implies that for every
(a;b 6 (c;d 2 X X, we have that

(3.3) dag @EDICD oy g @DTED).

Firstly, xing n landm 1, by using(3.1), (3.2) and above inequalities we obtain:

d(zn: Zns m) d(zn:1; Znsm:1) d(zn.2; 22n+ m:2) d(xn; er]1+21;n 1) :

Secondly, by induction onrm 1 we show that the following inequality holds uniformly
with respectton  1:

(3.4) d(Xn , Zn+ m;n 1) k
k=1

Indeed, form = 1 the inequality (3.4) follows from (3.2) and (3.3):

X Znssn 1) d(f (Xn 15%n)if (Zn+1n 2Znn 1)) _ d(f (X0 1Xn); Xn+1)
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Assume that(3.4) holds for somem = p 1 uniformly onn 1. Taking into account
this assumption, as well as (3.2), (3.3) and (3.4) fan = p+ 1:

dif (Xn 1:X0):f(Znspsin 2. Zns o
d(xn;zn+p+1;n 1) ((n 1 n) (n p+l;n 2;4n+p;n 1))

_ d(f (Xn_1;Xn); Zn+priin)

d(f (Xn 1 Xn); Xn+1) + d(xn+1 s Zn+ p+l ;n)

|
O

k=1

S

k=1
Then (3.4) holds for anym 1 and anyn 1.
So, we have the following relation:
. 1 X k 1
(35) d(Zn,Zn+ m) -y - -y 1 n 1
Hence,fz,g, o in X is a Cauchy sequence.
Now, we continue the proof of the theorem.

Let y denote its limit and consider the sequencky™ g as orbit of y. From (3.1)
one has for anyk 0O

H — hk.
I 2., =y

Letting m!1 in (3.5) impliesd(z,;y) ", and consequently
dixa;y™) (") =
Therefore, the orbitfy"™" g, o -shadows the -pseudo orbitf x,g, o.
Theorem 3.2. If f : X X ! X is uniformly contracting, then it has shadowing
property.

Proof. AssumethatO< < 1isthe contracting ratio off . Given > Otake = %
and suppose thatf Xjg, o is a -pseudo orbit forf. So,d(f (Xj 1;X;);Xj+1) < for all
i 1. Put ; =d(f(xi 1;%i);Xj+1) forall i 1. Consider an orbitfy;g, o such that
d(Yo; Xo) < 3 andyixa = f(yi 1;yi) foralli 1.
Now we will show thatd(y;;xj) < foralli 0. Put M = d(Xo;Yo). Obviously,
d(x1;y1)  d(Xa;f (Xo;X0)) + d(f (Xo;X0); T (Yo;¥0)) ot M:
Similarly,
d(Xz;y2)  d(X2;f (Xo;X1)) + d(f (Xo; X1); T (Yo Y1)
1+ d (X1, y1)
1+ (o+ M)
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and
d(xs;ys) d(xs;f (X1;%2)) + d(f (X1;%2); f (Y1;Y2))

2+ d (X2;¥2)

2+ (1t d(X1iy1))

2+t (1+ (ot M)

= 2+ 1+ %o+ M
By induction, one can prove that for each > 2
dixi;yi) i1+ 2+ o+ o+ M

This implies that any

dowiyn) (@4 + o+ " oM<

N
NI

and so, the proof is complete.

In [5, 6], Fatehi Nia proved that every uniformly contractive IFS has average shad-
owing property and asymptotic average shadowing property. The next theorems show
that similar results are established for general systems.

Theorem 3.3. If f : X X ! X is contracting, then it has the average shadowing
property.

Proof. Assume that < 1 is the contracting ratio of f. For given > 0, take

= ¢ 2) > and supposefx;g o is a -pseudo orbit forf. So, there exists a
natural number N = N( ) such that 2 Lo d(f (Xi; Xi+1);Xis2) < foralln  N().
Put i = d(f (Xi;Xi+1);;Xi+2) for all i 0. Consider an orbitfy;g, o such that

Now we will show that lim sup,,; ot d(yi;xi) <
Take M = d(Xo;Yo). Similarly,
d(xz;y2) d(x2;f (Xo;X1)) + d(f (Xo; X1); T (Yo; ¥1))
1+ d(X1;y1)
1+ (ot M)

d(Xo; Yo) < 5 andyiro = f(Yi;yis1) Lor alli 0.
1
n

and

d(xs;ys) d(xs;f (Xax2)) + d(f (X1;X2); f (Y1;Y2))
2+ d(X2;¥2)
2+ (1t d(Xi;y1))
2+t (1t (ot M))
= o+ 1+ %o+ 3M:
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By induction, one can prove that for each > 2
d(xi; yi) PR P S LI S Y 5
This implies that
K 1
dyix) =ML+ + o+ T hE ol+ 4+ "7
i=0

+ 1+ + o+ "H+ o+,
|

X 2
1 M + |
1 i=0
Therefore,
|
. 1%X1 1 . 1%x2 -
limsup—  d(yi;Xj)) —— M +limsup — i
ni N 1 nto N
1
< M+ )
2 2

So, the proof is complete.

Theorem 3.4. Ifamapf : X X ! X is uniformly contracting, then it has the
asymptotic average shadowing property.

Proof. Assume that 0< < 1 is the contracting ratio off and supposef x;g; o is

an asymptotic average pseudo orbit fof . So, limp; % N omd(f (Xi;Xi41); Xis2) = 0.

Put = d(f (Xi;Xj+1);;Xi+2), for all i 0. Consider an orbitfy;g, o such that
Yo 2 X, y1=f (Yo ¥o) and Yisz = f (yiyisa), forall i 0.
Now, we will show that lim,; 2" L td(yi; ;) = 0.
Put M = d(Xo; Yo). Obviously,
d(x2;y2)  d(Xz;f (Xo;X0)) + d(f (Xo; Xo); T (Yo; Y1) ot M:

Similarly,
d(Xs;ys) d(xs;f (X1;%2)) + d(f (X1;%X2);  (Y1;Y2))
2+ d(X27Y2)
2+ (1t d(Xi;y1))
2+ (1t (ot M))
= o+ 1+ %o+ M
By induction, one can prove that for each > 2

dxi;yi) i1+t 2+ o+ P+ M
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This implies that
K 1
diyi;x) M@+ + o+ "1
i=0
+ o1+ + + "3

+ 1+ + o+ "3+ 4

Therefore,

_o1xt o .
n'}{n ﬁi:o d(yi; xi) n'}{n

and so, the proof is complete.

In the following, we introduce some non trivial examples of general systems on real
line, symbolic space and unit circle, that have shadowing properties.

Example 3.1 Consider the following mapds,;f, : R! R given by
f1(x) = ;x; fo(x)=2x:

Take the mapf : R R! R dened by f(xy) = B&L0) g0, for every disjoint
points (x;y);(z;w) 2 R R then d(f (x;y);f (z;w)) < %maxf d(x; z); d(y; w)g. Then
this general system is contracting and has the shadowing properties.

Example3.2 Let denote the set of all in nite sequence x = ( Xo; X1; X2;:::), where
X, =0 or 1. The set becomes a&ompact metric space if we de ne the distance
between two pointsx;y by (x;y) =y X5
Now, consider the magf : I de ned by
f(EXig of ViGi o) = (Xo:Yoi X1;Y1;:00):
Please note that if the sequencelx;g; o and fzg, o are equal inn initial elements
andfy;gi o andfw;g o are equal inm initial elements, thenf (fx;gi o;fyig o) and

f(fzigi of Wig o) are equal inm + n initial elements. This implies that
(F(xig o fyig 0):f(fzg o fwag o))

1
<émaxf (fxigi 0:fzg o); (fyig o;fwWig 0)9g:

Consequently, the mag I is contracting and has the shadowing properties
mentioned above.

Example 3.3. Consider the unit circleS! = R=Z. The natural distance onR induces
a distance,d, on St. Letf : S! S!'! S! be a map de ned byf (x;y) = (2x + 3y)
(mod 1). This is clear that this is an uniformly expanding map and for everyx;y 2 St
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the mapsf :fxg S'! Standf :S! f yg! S?are surjective. Then, Theorem 3.1
implies that the function f : S S!! S! as a general system has the shadowing

property.
4. Chaos

In this section, we consider the notion of Devaney's chaos for general systems and
prove some results about the relations between this notion and some main properties
in general systems.

Theorem 4.1. Let X be an unbounded metric space with no isolated points. If
f: X X! X is topologically transitive and the set of all periodic points is dense
in X, then it is sensitive.

Proof. Let x 2 X be an arbitrary point and U be any neighborhood ok. We will

show that there existz 2 U and m > 0 such thatd(Xy; zn) > %. Since there are

not isolated points and by density of the periodic points, there exists a periodic point

y 2 U such thaty 6 x. Put c:= maxfd(x;z) > 0:z 2 O(y)g. Letc > % SinceX

is unbounded,X nB,(x) is a nonempty open subset. Topological transitivity of
implies that there isy°2 U and m®> 0 such thaty%, 2 X nB(X).
On the other handO(y) Bc(x), therefore

diymo %)  d(X;y%s) d(X;ymo) > 2¢ c=c>

NI

So, we have eithed(Xmo; y20) > % O d(Xmo; Ymo) > 5.
The above result is oncec > 1. Now, suppose thatc 1. By transitivity,

there existsy®®2 U and m%> 0 such that y%% 2 X nBi(x). Also we have that
Ymoo 2 B¢(X) B%(x). Hence,

l\)_\_l—‘

d(Ymos; Yoo A0 yme)  d(X; Ymed) > 1

NI =

Thus, either d(Xmos, y3b) > 3 or d(Xmoo, Ymod) > 3.
So, the proof is complete.

Corollary 4.1. Let X be an unbounded metric space with no isolated points. If
f:X X! X is topologically transitive and the set of all periodic points is dense
in X, then it is chaotic in the sense of Devaney.

Remark 4.1 If f : X I X (X is a complete metric space) an®(x) = fx g,
wherex,+1 = f(Xp), then we haveO(xx) O(x) for every k 1. In this casef
is topological transitive if and only if it is transitive (f has a dense orbit). But, for
a general systenf : X X ! X may the above fact is not true. For example for
x2 X

O(X) =fx = Xg; X1 = T (X;X); X2 = f (Xo; X1);:::0;
O(x1) =fx1 = (X1)o; (X1)1 = f (X1;X1); (X1)2 = f ((X1)o; (X1)1); 111G
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and mayf (x1;X1) 2 O(x). In this case the density of an orbit of a point may be does
not show topological transitivity. Indeed ifU andV are two nonempty open subsets of
X, then the density of an orbit of a pointz implies there are positive integers > m
such that z,, 2 U and z, 2 V. But this does not show the topological transitivity,
becausez, may be not in the orbit of z,.

The above remark motivated us to de ne strong dense orbitof x as follows.

We say that the orbit of x 2 X is strong dense orbit if the orbit ofx is dense and
every element of the orbit of is also dense itX . We say thatthe mapf : X X ! X
is strong transitive if it has a strong dense orbit.
is

Theorem 4.2. Let X be a complete metric space. If the map: X X !
X IS

strong transitive, then it is topological transitive. If the mapf : X !
topological transitive, then it is transitive (f has a dense orbjt

X
X

Proof. Let the orbit of z be strong dense orbit andJ and V be two nonempty open
subsets ofX . Then the density of the orbit of pointz implies there is a positive integer
n such that z, 2 U. The strong density of the orbitz implies the orbit of z, meetsV.

This shows thatf is topological transitive. Suppose that is topological transitive and
U,i=1;2:::, are a countable basis oK. Put O (U)=fx2 X :0(x)\ U; 6 ;9.

Sincef is continuous anrd topological transitive, s® (Ui)Tis open and dense irX..

SinceX is complete, so U; 6 ;. The orbit of everyx 2 ~ U; is dense inX . This

impliesf is transitive.

We say that the mapf : X X I X is topologically ergodic if for every two
nonempty open setdJ;V X there exist an increasing sequence of positive integers
fnkgi-, and an integerl 1 such that for everyk  1,n;  ng |, thereisz2 U
such thatz, 2 V.

Theorem 4.3. Let X be a compact metric space and: X X ! X be a continuous
map. If f is topologically transitive and the periodic points of are dense inX, then
f is topologically ergodic.

Proof. Let U and V be two nonempty open subsets oK. Sincef is topologically
transitive, there isx 2 U and n > 0 such thatx,, 2 V. Consider > 0 such that
B (xn) V. By continuity of f, there exists open neighborhootlv of x such that
W, V is as follows:

W = Wo; Wiy =f(Wo;Wo); W= (Wo;Wy);iii; Wy = (W 2, Wy g):
We can see thatx, 2 W,. Since the set of all periodic points is dense X, there
exists a periodic pointqg 2 W with period m. Therefore,¢, 2 W,, V. So, for

eachk 0 we havety+km = ¢, 2 V. Hence, for eactkk 0, gm = q2 U and
Gh+km = Gh 2 V. So,f is topologically ergodic.

Letf : X X ! X be a continuous map. Forx;y 2 X and 0 given, an
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d(Xi+1;f(Xi 1;%)) < foreach1l 1 n 1. f is said to be topologically chain
transitive if for every x;y 2 X, there exists an -chain fromx to y for every > 0.

We say thatf is topologically chain mixing if for every > 0 andx;y 2 X there is
N 2 N such that for eachn N, there exists an -chain from x to y of length n.

Lemma 4.1. If f is topologically chain mixing and has the shadowing property then
f is topologically mixing.

Proof. The proof is clear.

Theorem 4.4. Letf : X X ! X be an open continuous map with a xed poirs,
f(a;a) = a. If f is topologically transitive, thenf is chain mixing.

Proof. Let x;y 2 X and 0 be given. Sincd is topologically transitive there exist
z;2°2 X and m;m°2 N such that

d(xy = f(x;x);2) <;

d(zm;a) <;

d(z%a) <;

d(zm:y) <:
Put N = m+ m%1. So, foreachn N sequencd x = Xo;Z;:::;Zn 1;?;a;:::;}a‘z",
::2;2% 1;ygis an -chain of lengthn. Hence,f is chain mixing.
Theorem 4.5. By assumption of previous theorem, if has the shadowing property,
thenf is topologically mixing.
Proof. By previous theorem and lemma proof is complete.

Denition 4.1. We say thatf : X X I X is n-sensitive if there is integere > 0
such that for every non empty open subsdil X, there exist pairwise disjoint points

1 I}T;ijn . d((Xi)k; (Xj )k) >e.

Theorem 4.6. Letf : X X I X be a continuous transitive map wittn xed points

Proof. Supposee = ;minfd(p;p) : i 6 jg and U be an open subset oK. Let
Xo2 Uand 0< < $suchthatB (xo) U. By assumption of theorem and previous
theorem, f is topologically mixing. So for every 1 i n, there existsk; such that
there is -chain of length| from x, to p; for everyl k. Where > 0 is in the
de nition of shadowing property for > 0.

Hence, for every 1 i n there existsz; 2 U such that d(z;xo) < and
d((z);p) < . Put k= maxftk; : 1 i ng: Therefore,fz;;z;:::;z,g U and
d((z)k: pi) < :
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Hence, we have o
. rigljn ] d((zi)«: (z)) > 2
This prove the theorem.

References

[1] T. Arai and N. Chinen, P-chaos implies distributional chaos and chaos in the sense of devaney
with positive topological entropy Topology Appl. 154 (2007), 1254 1262.
[2] M. Blank, Deterministic properties of stochastically perturbed dynamical systemsTeor. Veroyatn.
Primen. 33 (1988), 659 671.
[3] B. Carvalho and D. Kwietniak, On homeomorphisms with the two-sided limit shadowing property
J. Math. Anal. Appl. 420 (2014), 801 813.
[4] A. Fakhari and F. Ghane, On shadowing: ordinary and ergodi¢ J. Math. Anal. Appl. 364
(2010), 151 155.
[5] M. Fatehi Nia, Iterated function systems with the average shadowing propertyfopology Proc.
48 (2016), 261 275.
[6] M. Fatehi Nia, Parameterized ifs with the asymptotic average shadowing propert@ual. Theory
Dyn. Syst. 15 (2016), 367 381.
[7] M. Fatehi Nia, Adding machine maps and minimal sets for iterated function systemsJ. Dyn.
Syst. Geom. Theor.15 (2017), 71 83.
[8] V. Glavan and V. Gutu, Shadowing in parameterized ifsFixed Point Theory 7 (2006), 263 274.
[9] R. Gu, The asymptotic average shadowing property and transitivityNonlinear Anal. 67 (2007),
1680 1689.
[10] R. Gu, The average-shadowing property and topological ergodicity). Comput. Appl. Math. 206
(2007), 796 800.
[11] R. Gu, On ergodicity of systems with the asymptotic average-shadowing propesty. Dyn. Syst.
Geom. Theor. 55 (2008), 1137 1141.
[12] P. Koscielniak and M. Mazur, Chaos and the shadowing propertyd. Dyn. Syst. Geom. Theor.
154 (2007), 2553 2557.
[13] A. Mihail, Recurrent iterated function systems Rev. Roumaine Math. Pures. Appl. 53 (2008),
43 53.
[14] K. Sakai, Various shadowing properties for positively expansive mapsTopology Appl. 131
(1993), 15 31.
[15] J. Sanz-SernaShadows, chaos, and saddlgesppl. Numer. Math. 13 (1993), 181 190.
[16] H. Zhu, Y. Shi and H. Shao, Devaney chaos in non-autonomous discrete systemBiternat. J.
Bifur. Chaos Appl. Sci. Engrg. 26(11) (2016), Paper ID 16501901.

!Department of Mathematics,

Yazd University,

Yazd, Iran

Email address fatehiniam@yazd.ac.ir

2Department of Mathematics,
Ferdowsi University of Mashhad,
Mashhad, Iran

Email address zamany@um.ac.ir



Kragujevac Journal of Mathematics
Volume 46(3) (2022), Pages 395 406.

COEFFICIENT ESTIMATES FOR SUBCLASS OF m-FOLD
SYMMETRIC BI-UNIVALENT FUNCTIONS

A. MOTAMEDNEZHAD 1!, S. SALEHIAN?, AND N. MAGESH 3

Abstract.  In the present paper, a general subclasM h:g (; ) of the m-Fold
symmetric bi-univalent functions is de ned. Also, the estimates of the Taylor-
Maclaurin coe cients jam+1j, jazm+1 j and Fekete-Szegd problems are obtained for
functions in this new subclass. The results presented in this paper would generalize
and improve some recent works of several earlier authors.

1. Introduction

Let A be a class of analytic functions in the open unit diskl = fz2 C:jzj < 1g
of the form

(1.1) f(z)=z+ ? a,z":

n=2
Denote by S the class of all functions in the normalized analytic function clasa
which are univalent in U (see details in [2, 3]).

Since univalent functions are one-to-one, they are invertible and the inverse functions
need not be de ned on the entire unit diskU: In fact, the Koebe one-quarter theorem
[3] ensures that the image ofJ under every univalent functionf 2 S contains a
disk of radius ¥4: Therefore, every functionf 2 S has an inversef ! satisfying
f Yf(z)=z(z2 V) and

()= w  jwi<roft);rolf)
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symmetric bi-univalent functions, coe cient estimates, Fekete-Szeg6 problem.
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In fact, the inverse functionf 1! is given by
(1.2) f Ywy=w aw?+(2a; agw® (5a5 Sayaz+ a;)wt+

A function f 2 A is said to be bi-univalent inU, if both f andf * are univalent in U
(see [10]). We denote g the class of bi-univalent functions inU given by (1:1). For
examples the functions;*; and log(1 z) belong to the class g.

The rst time in 1967, Lewin [4] introduced the class g and proved that the bound
for the second coe cients of everyf 2 g satis es the inequality jayj < 1:51. Also,
Smith [5] showed thatja,j < 2= 27 and jasj < 4=27 for bi-univalent polynomial
f (z) = z+ a,z? + a3z® with real coe cients.

Recently many researchers introduced subclasses of bi-univalent functions and ob-
tain non-sharp estimates on the rst two Taylor-Maclaurin coe cients ja,j and jag;j.
For example, we refer the reader to Srivastava et al. [6,8,10] and others [13,14]. The
coe cient estimate problem, i.e., bound ofja,j (n 2 N f 2;3g) for eachf 2 g, is
still an open problem.

Let m be a positive integer. A domairk is known asm-Fold symmetric if a rotation
of E around origin with an angle 2= mapsE on itself. A function f (z) analytic in
U is said to bem-Fold symmetric if

f iz =&nf(2):
For each functionf 2 S; function
q
(1.3) h(z)= ™ f(z™)

is univalent and maps unit diskU into a region with m-Fold symmetry.
We denote byS, the class ofm-Fold symmetric univalent functions inU and clearly
S =S Everyf 2 S, has a series expansion of the form

*
(1.4) f(z)=z+ am+12™" (z2U; m2N):
k=1
Srivastava et al. [11], introduced a natural extensions ofi-Fold symmetric univalent
functions and de ned the class , of symmetric bi-univalent functions. They obtained
the series expansion fog= f ! as:
f 1(W) =W  am+ Wm+1 + [( m+ 1) a-r?r|+1 Aom+1 ]W2m+1
1
(1.5) E(m +1)Bm+2)ad,; (BM+2)ansdmme + Agmer WM+

For m = 1 formula (1:5) coincides with formula (12) of the class 5.

In fact, this widely-cited work by Srivastava et al. [7] actually revived the study of
m-Fold bi-univalent functions in recent years and that it has led to a ood of papers
on the subject by (for example) Srivastava et al. [7,9,11,12].

The aim of the this paper is to introduce new subclase™ (; ) of the m-Fold
symmetric bi-univalent functions class ,,. Moreover, we obtain estimates on initial
coe cients jam+1j, jaxm+1) and Fekete-Szeg6 problems for functions in this subclass.
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The results presented in this paper would generalize and improve some recent works
of Altinkaya et al. [1] and Li et al. [13].

2. Subclass M™(; )

In this section, we introduce and consider the subclasg™ (; ).

De nition 2.1. Assume thath:U! Candp:U! C, are analytic functions of
the form

h(z) =1+ hpz™ + hpnz®™ + hgnZ®™ +

PW) =1+ pnW™ + PamW™ + pamw T+
such that

minf Re((h(z));Re (p(z))g> 0 (z 2 U):

Let Oand 2 C f 0g. We say that a functionf given by (1:4) is in the subclass
M h;g( ; ), if the following conditions are satis ed:
zf9z) 1+ zf (2)
f(z) fqz)

2.1) 1+ ) 1 2hU) (z2U)

and
00,
wgw) |, Wg (W)
g(w) gqw)
whereg is the extension off ! to U.

22 1+ia ) 1 2 pU) (w2 U);

De nition 2.2.  Afunction f 2 , given by (1:4) is said to be in the subclasE€ _ ( )

(0] < 1), if two following conditions are satis ed:

21°(2) wg(w)
> and Re 1+

fqz) gqw)

whereg is the extension off *to U.

Re 1+ > (z;w2 U);

Remark 2.1 There are many selections of the functions(z) and p(z) which would pro-
vide interesting classes ofn-Fold symmetric bi-univalent functions ,,. For example,
if we let

m

h2)=p2)= o

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of De nition
2.1. Iff 2 M™(; ), then

=1+2zM+2 2z2M+ (0< 1);

22, ,,72@
f(2) fqz) 2
e 1 w) W
wg{(w wg (w )

@ gy T W) 2

arg 1+} @a )
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In this case we say thatf belongs to the subclas _(;; ).

Also, forh(z) = p(z)= ¥4 , =land =0,the subclassMh;n‘j( ;) reduces
to the subclassS _ which was considered by Altinkaya and Yalcin [1].

If we let

h(z) = p(2) =

1+(1 2 )z"

i e S D LU TN P R Y

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of De nition
2.1 1ff 2 M™(; ), then

|
1 zf 4z) zf(2)
Re 1+ - (1 )f(z) + 1+ 1) 1 >
and | |
1 wg{w) wg'(w) '
Re 1+ — (1 + 1+ >
¢ g gw)
In this case we say thatf belongs to the subclas$ _(;; ).
Also, for h(z) = p(z) = Y@ 202" =1 and =0, the subclassM™(; )
reduces to the subclasS§ _ considered by Altinkaya and Yalcin [1].
Furthermore, forh(z) = p(z) = *4-202" =1and =1, the subclassM"™(; )

reduces to De nition 2.2.

Remark 2.2 For one-fold symmetric bi-univalent functions, we denote the subclass
M"™(; )= M™(; ). Special cases of this subclass are illustrated below.

() By putting h(z) = p(z) = 2 and =1, the subclassM h”"( ;) reduces

1z
to the subclassM (; ) studied by Li and Wang [13].
(i) By putting h(z) = p(z) = i*; , =land =0, the subclassMh;p( p)
reduces to the subclas$ | of strongly bi-starlike functions of order (0 <
1).

(i) By putting h(z) = p(z) = *4-222 and =1, the subclassM""(; ) reduces

to the subclassB (; ) studied by Li and Wang [13].
(iv) By putting h(z) = p(z) = ¥&-2)2 =1 and =0, the subclassM™(; )

1z
reduces to the subclas$ _( ) of bi-starlike functions of order (O < 1)
: - — 1+ 2 — — hps .
(v) By putting h(z) = p(z) = ¥&-2)2 and = =1, the subclassM™(; )

reduces to the subclas€ _( ) of bi-convev functions of order (0 < 1)

Theorem 2.1. Letf given by(1:4) be in the subclasm™ (; )( 0, 2 Cf 0g).

Then
< ! -
o J ibmj P ] J(ham] + jPomi)
J8m+1) MmN, ml+ m)’ 2m2(1+ m)
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and (
j i(homi + jpem)) | (M+1)j J(hm® + jpomi?)
dn(l+2m) 4m2(1+ m )2 ’ )
Bm?2+2m +2m+1)j jihomj+(M?+2m +1)j jjpom]
Am2(1+2m )1+ m)

ja2m+1j min

Proof. The main idea in the proof of Theorem 2.1 is to get the desired bounds for the
coe cient jam+1j andjazym+1j. Indeed, by considering the relationsZ:1) and (2:2), we
have

(2.3) 1+ @ )fofg) + o1+ fou(g) 1 =h(z) (z2U)

and

00, ! #
gl 1 W9y ) w2 )

g(w) gqw)
where each of the functions and p satis es the conditions of De nition 2.1. For

precise comparison of the coe cients of the above equations, in the following we
obtain Taylor-Maclaurin series expansions each side of the equations

(2.5)

24) 1+ @ )

|
1 zf 4z) zf “(z)
1+- (1 )f(z) + 1+ f12) |
2
1+ m(1+ m)(j1m+12m+ 2m(1+2m)al2m+1 ml+2m + m )aﬁHl ,2m
+ ;
and ) I
1 wg{w) wg'(w)
2.6 1+- (1 + 1+
(20 ) gw)
1 m(l+ m )am+1wm N 2m(1+2 m )azm+1
)
,Mm@+2m+2m +3 mz)aﬁ]+1 W2 4

Also from the De nition 2.1, the analytic functions h and p have the following Taylor-
Maclaurin series expansions

(2.7) h(z) =1+ hnz™ + homz?™ + hgn2®™ +
and

(2.8) p(W) = 1+ ppyW™ + PonW?™ + pamw™ +
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By comparing the coe cients of the equations £:5), (2:7), (2:6) and (2:8), respectively,
we get

m(l+ m)

(2.9) am+1 = Nim;

(2.10) Mazmﬂ m@+2m + m 2)ar2n+l e

(2.11) MICRELLD PR

and

(2.12) mi+2m) )a2m+1 ,Md#+2m+2m +3m z)afnﬂ = Pom:

From (2:9) and (211), we get
(2.13) hm = Pm

and

2(hi, + ph)

2 —
(214) am+l - 2m2(1+ m )2'

Adding (2:10) and (212), we get

> _  (hom + pom).
(215) a‘m+l - 2m2(1+ m )

Therefore, we nd from the equations (213), (214) and (215) that

\A

u. .,. . . .

Hj j(jhamj + jpam]) .
2m2(1+ m)

J Jihm]
m(l+ m)

jam+1] and  jam+1]

respectively. So, we get the desired estimate on the coe ciefd+1 .
The proof is completed by nding the bound on the coe cient jaynm+1j. Upon
subtracting (2:12) from (2:10), we get

(th p2m) (m+1) 2 .
An(l+2m) 2 dma

Putting the value of a2,,, from (2:14) into (2:16), it follows that

(h2m pZm) + (m + 1) z(hrzn + pﬁw)
dm(1+2m) 4m2(1+ m)2

(2.16) Qm+1 =

(2.17) Qm+1 =

By substituting the value of a2,,, from (2:15) into (2:16), we obtain

(hom  Pom) + (m+1) (hom + Pom).
4m(1+2 m) 4m2(1+ m)

(2.18) m+1 =
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Therefore, from the equations (47) and (218), we get

j j(thmj + jp2mj) + (m + 1)J jz(jhmjz + jpmjz)
dm(1+2m) 4m2(1+ m )32

jaom+1]

and

@m2+2m +2m+1)j jjhomj+ (M 2+2m +1)j jjpaom].
4m2(1+2m)(1+ m)

jaom+1]
Theorem 2.2. Letf given by(1:4) be in the subclas1™ (; )( 0, 2 Cf 0g).
Also let be real number. Then

jaom+1 m+1J

8
3 Wf(u TO)ihmi+@  TO)ipamig: iTOI 1
3

n (0]

m 1+T(C)jhamj+ TC)  Ljpemj 5 JTC) L

where
(m 2 +1)(1+2 m)
m(l+ m)

T()=

Proof. From the equation (216), we get

2 - (h2m p2m) m 2 +1 2 .
(219) Aom+1 Am+r = 4m(1+ 2m ) + 2 A1 -
From the equation (215) and (219), we have
a a2 . = I ¢ (m 2 +1)(1+2 m) h
am1 " Am(l+2m) m (1; m ) 2m
(m 2 +1)1+2m) .
m(l+ m) 1 Pem
Next, taking the absolute values we obtain
- (
. 9 ] (m 2 +1)@A+2m) . .
Jooma - Amal 4m(1+2m) 1+ m(1+ m? Jhzm]
(m 2 +1)(1+2 m) L
Then, we conclude that
; 4m(1+2 dmrzmy @ TN i @ TO) ipanie iTO 3

j@ma anal 3 n

0
4m(1+2m) 1+T()jhamj+ T(C) Lljpamj 3 JT() L
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3. Corollaries and Consequences

By setting
1+27 m 2.2m
h(z) = p(z) = 1 om =14+2z"+2 27"+ (0< 1,z2 V);
in Theorem 2.1, we conclude the following result.
Corollary 3.1. Let f given by(1:4) be in the subclas _ (;; ) (0 < 1,
0, 2C f 0g). Then
. s— 9
. S I
* ‘m@+ m)m 1+ m:;
and (

L 2m+Dj 2 4 jm+D)

J%mt] N m@d+2m) m21+ m)2 m2(1l+ m)

By setting h(z) = p(z) = i*;ﬂ (0< 1) in Theorem 2.2, we conclude the
following result.
Corollary 3.2. Let f given by(1:4) be in the subclas _(;; ) (0 < 1,
0, 2C f 0g). Also let be real number Then
jame a2 % mgrzmy 113
2m+ +
mTm s 4T T L
" m@+2m)’ '

where
(m 2 +1)(1+2 m)

TO)= m(l+ m)
By setting =1and =0 in Corollary 3.1, we conclude the following result.
Corollary 3.3. Letf given by(1:4) be in the subclasS (0 < 1). Then

. . 2

J@m+1] m

and (G 2 5) 2
2m+1) < (m+1) _ (m+1) “
mt T m T e T me

jaom+1]  min

Remark 3.1 The bounds onjany+1j and jaxn+1j given in Corollary 3.3 are better than
those given in [1, Corolary 6], because of

2 2
m m +1
and
(m+1) 2 2 2(m+1) 2 2(m+1) 2
m2 mT m2 mt m2
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By settingm =1 and =1 in Corollary 3.1, we conclude the following result.

Corollary 3.4. Letf given by(1:1) be in the subclas# (; ) (0< 1 0).
Then

8 s
E lf; 0 1
jao]
-E 2 ; 1
1+
and
8 _
E 2 2 0 2+p13_
e T 0 2
3 E 2 . 42 . 2+ E
1+2 1+ )% 3

Remark 3.2 The bounds onja,j and jagj given in Corollary 3.4 are better than those
given in [13, Theorem 2.2].

By setting m =1 in Corollary 3.3, we conclude the following result.

Corollary 3.5. Let f given by(1:1) be in the subclasss  of strongly bi-starlike
functions of order (0< 1). Then

jasj 3 and jasj 2 %

By setting
1+(1 2 )z"
h@ =p@) = L 2)
=1+2(1 )z™+21 )2+ 0 < 1;z2V);

in Theorem 2.1, we conclude the following result.

Corollary 3.6. Let f given by(1:4) be in the subclas#M _(;; ) (O < 1,
0, 2C f 0g). Then

3 T

. 20 g 2@ )i

Jam+1]  mMin. mid+ m) mil+ m);

2

and
(

jaoms1j  min @ )i , 2@ )Pm+1)jjE @ Ym+1)j J')

m(1l+2m) m2(l+ m)2 ' m2{1+ m)

By setting h(z) = p(z) = ¥ 22" (0 < 1) in Theorem 2.2, we conclude the
following result.
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Corollary 3.7. Let f given by(1:4) be in the subclas _(;; ) (O < 1,
0, 2C f 0g). Also let be real number. Then

8
@ )il R
— T 1
jaom+1 az 1] Em(1+2m) T
" m @ )aToN. oy
: m(1l+2m) ' A/
where
T() = (m 2 +1)1+2 m)

m@d+ m)
By setting =1and =0 in Corollary 3.6, we conclude the following result.

Corollary 3.8. Letf given by(1:4) be in the subclasS (0 < 1). Then

8 d o1
jami m 2
221 ) 1
: ; = <1
m 2
and 8
2 (m+1)1 ). 0 1+2m |
o m? ’ 2(L+m)’
JBemal s om+ 10 P,1 . dszm
' m?2 m ' 21+ m) '

Remark 3.3 The bounds onjan+1j and jaxm+1j given in Corollary 3.8 are better than
those given in [1, Corolary 7].

By setting =1and =1 in Corollary 3.6, we conclude the following result.

Corollary 3.9. Letf given by(1:4) be in the subclas€ _( ) (O < 1). Then

8 1r
21 ). :
Jam+1)
72(1 ); 2 +m 1
m(1+ m)
and 8
%1 _ 0 1+2m m?
o m2 ' 2(1+2m)
J@om+1] § 1 .\ 2(1 )2- 1+2m m?2 < 1
m(@d+2m) m2(1+ m)’ 2(1+2m) '

By settingm =1 and =1 in Corollary 3.6, we conclude the following result.
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Corollary 3.10. Letf given by(1:1) be in the subclas® (; ) (O < 1, 0).
Then 8 s

) 4 g
. 1+
. 220 )
: : +2 1;
1+
and 8
52(1 ). 0 3+4 32
" 1+ a1+2) "
SRR 41 )2 3+4 32
+ ; < 1:
1+2 @a+ )2 41+2)

Remark 3.4. The bounds onja,j and jagj given in Corollary 3.10 are better than those
given in [13, Theorem 3.2].

By setting m = 1 in Corollary 3.8, we conclude the following result.

Corollary 3.11. Letf given by(1:1) be in the subclas$ ,( ) of bi-starlike functions
of order (O < 1). Then

8
B BT T -
Jao)
.§2(1 ); ; < 1
and )
3
2(1 ; 0 -,
" 220 ) S
.§4(1 )2+ (1 ); 2 < 1

By setting m = 1 in Corollary 3.9, we conclude the following result.

Corollary 3.12. Letf given by(1:1) be in the subclas€ _( ) of bi-convex functions
of order (0 < 1). Then

8
31 0 1
. .. 3
jasj 1 and jagj
§ 1 +(1 )2. iL < 1
3 3 '
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ON THE REVERSE MINKOWSKI'S INTEGRAL INEQUALITY
BOUHARKET BENAISSA 12

Abstract.  The aim of this work is to obtain the reverse Minkowski integral in-
equality. For this aim, we rst give a proposition which is important for our main
results. Then we establish some reverse Minkowski integral inequalities for parame-
ters 0<p < 1andp < 0, respectively.

1. Introduction

In recent years, inequalities are playing a very signi cant role in all elds of mathe-
matics and present a very active and attractive eld of research. As example, let us
cite the eld of integration which is dominated by inequalities involving functions and
their integrals ([2,3]). One of the famous integral inequalities is Minkowski's integral
inequality. In particular the following statement was proved forp 1 (for details to
see [1]).

Theorem 1.1. Letl p +1; R" and A R™ be a measurable sets. Suppose
that f is measurable on A andf(;y) 2 Ly() for almostally2 A. Then
z z
(1.1) f(y)dy Kf (5 y)ke,() dy;
A L A

if the right-hand side is nite.

p()

Remark 1.1 If 0 <p< 1, mesA> 0 andmes > 0 inequality (1.1) is not valid (to
see [1]).

In this paper we obtain some integral inequalities which are reverse versions of the
inequality (1.1).

Key words and phrases.Hoélder's inequality, Minkowski's integral inequality.
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2. Preliminaries

2.1. Reverse Young's and Holder's Inequalities. The following inequalities are
well-known Young inequalities. Leta > 0; b > 0 and % + é) =1, then
a b’
(2.1) ab —+ —; forp 1,
p p°
a b’
(2.2) ab —+ —; forO<p< L
p p°
Corollary 2.1 (Reverse Young's inequality) Let a> 0; b > 0 and % + é) =1, then
a b’
2.3 ab —+ —; forp<O:
(2.3) o+ 1o p
Proof. We have% = % (p 1(E° 1)=1 and inequality (2.3) is equivalent to
adl pt
bp  ap®

We taket = &, then
e 1 _alk n(p° 1) ~ 1t G
ap®  t° Dap®  t(® Hp0 po

We obtain
al p°l ot t (Y
-+ = —+
bp ap® p p°
For all t > 0, we have
1 p°
ft) = =
1) 5 po
for all p< 0 and 0< p°< 1, we get
fqty=0, 1 tP° =0, t=1;
fq)>0, 1 tP°<0, O<t< 1
Hence, the functionf is majored withf (1) =1 forall t 2 (0;1 ).
We deduce that

=f(t); t>0

1 1 1 1

Tt PP= (1t PY:
D o' )

t P°=

0

a1l Pl a b
—+ 1, ab —+ —; forp<O:
bp  ap® pp° P
Corollary 2.2 (Reverse Hoélder's inequality) Let R" be a measurable set and

p < 0, we suppose that , g are measurable on .
If f 2 Lp() andg2 Lp() ( p°is the conjugate parametér then
z

(2.4) ffgidt Kk ke kgke,o:
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Proof. Choosea = i, b= 9 - and by using reverse Young's inequality (2.3), we
P p

ifg] L [+
kfke, kgki,o PkFkY, = pakgkf’ '
by integrand the above inequality we obtain
SR L O () P | )P 1+ ()
Kfke, kake o pkf kf pkgkf

dt=1;

and thus Z
if (Hg(t)jdt k kapkgkLpo; forp< O:

Remark 2.1 We can write
Z Z 1 Z 1

p

jf (H)g(t)jdt it (OPdt T je)Pdt "
hence 7 o Z 7
jf (H)g(t)jdt jf(OPdt jg(t)iP dt

p 1
(see [4]).

Now we give a proposition which will be used frequently in the proof of main
theorems.
Let 1 <a<b< +1 and 1 <c<d< +1 andwe de ned the setE by

E=ffjf:(a;b (c;d)! R;f Oorf Og:
SupposeH : (a;b (c;d)! C a measurable function de ned by
H(Gy) = fu(xy) + ifa(xy);
wherefq; f, 2 E.
Proposition 2.1. (i) If f; =0 or f, =0, then

Zy Zy
(2.5) . JH(X; y)jdy = . H(x;y)dy :
(i) If f,60 andf, 6 0, then
Zd . p_“4d
(2.6) . JH(x;y)j dy 2 . H(x;y)dy :

Proof. (i) If f, =0, then
Z z Zy z

d d d
) JH(x;y)jdy = . ifi(x;y)jdy = . fi(x;y)dy = . H(x;y)dy :
If f1 =0, then
. JH(X y)jdy = ) jif 2(x;y)jdy = . jif20x;y)jdy
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Z g Zy

. fa(xy)dy = . if o(x; y)dy
Z g

) H(x;y)dy :

(i) If f160and f, 60, then

z

d. 2 Zyghn
CJH(X;Y)de

i1
f20Gy) + f2(xy) *dy
|

(x;y)dy

2

Z 4 2

- 2, ¢2
= fr+1;

N[

2 2
= +
EE Lp(cid)
zZ, 2z, Z 4

3 H(x;y)dy ) f1(x;y)dy + i ] fa(x;y)dy

with p=

o NP

2 Zd 2

= hlaydy + 0 fa(xy)dy

z 2 z

d. . . d - 2
= CJfl(X;y)ldy + Csz(x;y)de

1
— 2 + f2 : ; - -
b Lp(e) 2 Lpcd)’ with p= 5:
Forall 0<p< 1 we have
2 2 13 2 2 .
+ +
fi+ s Lp(c:d) 2¢ fi Lp(c:d) f2 Lo(cid)
— 1 H
for p= 35 we obtain
z 2 Z 2

d d
. JH(xy)jdy 2 . H(x;y)dy :

Then

y4 4

d . p_“d
. JH(x;y)j dy 2 3 H(x;y)dy :

In this work we consider the reverse inequality of1.1), withO <p< landp<0
forf :(a;b (c;d! K,with KisC, EoriE.

3. Main Results

In this section we obtain some reverse Minkowski type inequalities.



ON THE REVERSE MINKOWSKI'S INTEGRAL INEQUALITY 411

Theorem 3.1. LetO<p< 1, 1 <a<b< +1 and1l <c<d< +1 . Suppose
thatH : (a;b (c;d! C is measurable withRe(H);Im(H) 2 E, Re(H)Im(H) 6 0
and H(x;y) 2 Lyx(a;b for almost ally 2 (c;d). Then

z z

d p_ d
(3.1) H(;y)dy (22  KH(;Y)K,(andy;
¢ Lp(ab) ¢
if left-hand side is nite.
Proof. We have
z z

d d
CHEGy)dy HEGy)idy:

Then forp 1< 0 we get
Z g
_ HOGy)dy

p1 A p 1

d
. JH(x;y)j dy

By Proposition 2.1, we obtain
_HEay)dy = H(xy)dy _ Hcy)dy

|

d

CHeayidy  HEay)dy
Z g4 'h1p Zyg
CiHeoyidy (1 2) ! _iHCGy)idy
=2 Hyidy  HEGYidy

By integrating the last inequality, we establish
Z,2Zy4 p p_ . Zbo Zg 'p12zy
HOoGy)dy dx (1 2)* jH(x;t)j dt JH(x;y)jdy dx
C a C C

p_ . %b%d Zd L .
=( 2" L. iHEeenide o jHOGy)idy dx
0. z, 2z, Zg ot _ 2
2t . jHOeDidt  jHEGy)idy, dx
8 | 9

p_ Zd<Zb Zd pl =
=2 HOGH)jdt  jH(X y)jdx. dy :
c - a C ’

Let |

R, = . JH(x; t)j dt jH (x; y)jdx

a
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Z p 1

d
and suppose thatG(x) = jH(x;y)j dy
C
Therefore, we get

0 Y4 b Z d Pp 1) ! P%
KG(X)KL o(aty = @ . JHGY)idy dxA

ZyZy p et
= 3 jH(x;y)jdy dx
gzbzd p !%gpl
= . JH(x;y)jdy dx

Z p 1

d
JH(xy)idy

¢ Lp((aD))

The last expression is nite (see hypothoses of theorem) the&B(x) 2 Lo((a; b). By

applying the reverse Holder's inequality and using Proposition 2.1, we obtain

0 12
szd P%p 1) p0 Zb by

R, @  jH(xtjdt  dxA JH (G y)Pdx
a C a

ZyZy Pk Zy '
jH(x;t)jdt dx jH (x;y)jPdx
a

c

Z, p o Z p 'L oz, !
Poe " YiH o6 y)iPdx

] !
2 H(x;t)dt dx

a Cc a

Tl

1
p

X !
jH(X;y)jPdx = Ry:

a

P_p1 2bZyd Pt h Z
= 2 H(x;t)dt dx
C

a

Then we get z, 2

d
R.dy R.dy;
C C
Z g Z g Z g
R, > 0! Ridy Rody = R,dy:
C (o4

C
Thus, we conclude that
ZpZyg P p_ 1%4d
H(x;y)dy dx 2 R.dy
C C

p 12 d

NI

dey
Cc
Z,2Zy4 p ' h oz '

b P
P H(x;t)dt dx jH (x; y)jPdx i dy:
C a

- "pp2
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Therefore, we get
|

dx

d ZyZ p ! P
. H (x;y)dy

p d :
H(x;t)dt dx
C

_ Ly Zy i
Poe2 iHOGy)Pdx  dy;
C a

then
ZpZyg P 'l p_,.Za Zb '
H(x;y)dy dx 2 jH(X;y)jPdx  dy:
C Cc a
Finally, we conclude that
ZpZg b ' P_p2%2d Zb, _ s
H(x;y)dy dx 2 H(x y)iPdx  dy;
[ C a

which completes the proof.

Theorem 3.2. LetO<p< 1, 1 <a<b< +1 and1l <c<d< +1 . Suppose
that H : (a;b (c;d) ! E is measurable andH (x;y) 2 L,x(a;0 for almost all
y 2 (c;d). Then

z

d Z
(3.2) CHCGy)dy

d
KH (5 Y)KL,(apdy;
Lp(ab) ¢

if left-hand side is nite.

Theorem 3.3. LetO<p< 1, 1 <a<b< +1 and1l <c<d< +1 . Suppose
that H : (a;b (c;d) ! IiE is measurable andH (x;y) 2 Lpx(a;b for almost all
y 2 (c;d). Then

Z g Z g
(3.3) H(;y)dy KH (5 Y)KL,(apdy;

¢ Lp(ab) ¢

if left-hand side is nite.
Proof. The proof of Theorem 3.2 and Theorem 3.3 is similar to Theorem 3.1.

Theorem 3.4. Letp<0, 1 <a<b< +1 and1 <c<d< +1. Suppose
that H : (a;b (c;d)! C is measurable withRe(H);Im(H) 2 E, Re(H)Im(H) 6 0
and H(x;y) 2 Lyx(a;b for almost ally 2 (c;d). Then

Zy p. Z
(3.4) CHCy)dy (2p?

d
KH (5 Y)KL ,apydy;
Lp(ab) ¢

if left-hand side is nite.
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Proof. By using the inequality
Zg Z g
 HOGy)dy  JH(xy))dy;

we get |
H(x;y)dy jH(x;y)jdy ; forp<O:
C C
By integrating the last inequality, we get
Z,2, p Z, Z4 ' p
H(x;y)dy dx JH(xy)jdy dx
a C a C
z,% z, 'p1 oz, 13
= 4 JH(x;t)] dt jH(X;y)jdy S dx
a C C
= 4 jH(x;t)jdt jH (x;y)j dy5 dx
a C C
Z 4 E Zy Zy4 'p1 2
= . JH(x; 1)) dt JH(X;y)jdx. dy:
c - a C ’
Let |

Rs = JHOGH)jdt  JH(Xy)jdx:
a C

By the reverse Hdlder's inequality and Proposition 2.1, we obtain

0 12
Zy,Zy PAp 1) 0 Zy '

R, @ iH (x 1)j dt dxA iH oG y)Pdx
a C a

ZyZy Pt Zy 'l
jH(x;t)jdt dx JH (X y)jPdx
a

c

Z,p o Z p 'Lz, !
Pae " iH g y)iPdx

. !
2 H(x;t)dt dx

a C a
P_p1 ZbZd P !Blozb_ _ 'y

= 2 H(x;t)dt dx JHOGY)jPdx = Ry:

a Cc a

Tl

That is, we get
Zy Z g

Rsdy Rady:
C C
Therefore, we obtain
Z,2Zy p z

d Z
H(x;y)dy dx Rsdy
C C

d
R4dy
c
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and
Zy P_p1Zd ZbvZd Pt Zy s
Rsdy= 2 H(x;t)dt dx jH(X y)jPdx  dy
C C a C a
P_p1 ZbZd P ';Za Zy s
= 2 H(x;t)dt dx jJH(x;y)jPdx  dy:
a C C a
It follows that
ZpZyg b Zp2Zy P
H(x;y)dy dx H(x;t)dt dx
C C
_ Zy Zy i
p2 P jH (x; y)jPdx p dy:
a

Consequently, we get

| |
Zp 2y P % p_p1Zd Zp b

H(x;y)dy dx 2 JH(x; y)jPdx
a C Cc a

1
P_»p 2%d Zp .
2 . H (x;y)jPdx

This completes the proof.

Theorem 3.5. Letp<0, 1 <a<b< +1 and1l <c<d< +1. Suppose
that H : (a;b (c;d) ! E is measurable andH (x;y) 2 Lpx(a;b for almost all
y 2 (c;d). Then

z

d Z
(3.5) . H(:y)dy

d
KH (5 Y)KL,(apdy;
Lp(ab) ¢

if left-hand side is nite.

Theorem 3.6. Letp<0, 1 <a<b< +1 and1l <c<d< +1. Suppose
that H : (a;p (c;d) ! iE is measurable andH(x;y) 2 L,x(a;b for almost all
y 2 (c;d). Then

z

d Y4
(3.6) CHCGy)dy

d
KH (5 Y)KL,apdy;
Lp(ab) ¢

if left-hand side is nite.
Proof. The proof of Theorem 3.5 and Theorem 3.6 is similar to Theorem 3.4.
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LIST COLORING UNDER SOME GRAPH OPERATIONS

KINKAR CHANDRA DAS !, SAMANE BAKAEIN 2, MOSTAFA TAVAKOLI 2,
FREYDOON RAHBARNIA 2, AND ALIREZA ASHRAFI 3

Abstract.  The list coloring of a graph G = G(V;E) is to color each vertexv 2

V (G) from its color set L(v). If any two adjacent vertices have di erent colors, then

G is properly colored. The aim of this paper is to study the list coloring of some
graph operations.

1. Introduction

Throughout this paper, our notations are standard and can be taken from the
famous book of West [16]. The set of all positive integers is denoted Ry and for a
set X, the power set ofX is denoted byP (X). All graphs are assumed to be simple
and nite, and if G is such a graph, then its vertex and edge sets are denoted \byG)
and E(G), respectively.

The graph coloring is an important concept in modern graph theory with many
applications in computer science. A function : V(G)! N is called a coloring for
G. The coloring is said to be proper, if for each edgav 2 E(G), (u) 6 (v). If
the coloring uses only the colorsi] = f1;2;:::;kg, then is called ak-coloring for
G, and if such a properk-coloring exists, then the graphG is said to bek-colorable.
The smallest possible numbek for which the graph G is k-colorable is the chromatic
number of G and is denoted by (G).

The list coloring of graphs is a generalization of the classical notion of graph
coloring, which was introduced independently by Erd®s, Rubin and Taylor [7] and
Vizing [15]. In the list coloring of a graphG, a list L(v) of colors is assigned to
each vertexv 2 V(G), and we have to nd a proper coloringc for G in such a
way that c(v) 2 L(v), for any vertex v in G. Concretely, we assume that there is a
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function L : V(G) ! P(N) that assigns a set of colors to each vertex @. A coloring
c:V(G)! Nis called anL-coloring if for all v 2 V(G), c(v) 2 L(v). This coloring is
said to be proper ifc(u) 6 c(v), whenuv 2 E(G). The graph G is calledL-colorable
if such anL-coloring exists. This graph isk-choosable if it isL-colorable for every
assignmentL that satis es jL(v)] Kk, for all v2 V(G). The list chromatic number

L(G) of G is the smallestk such that G is k-choosable. In [9], Isaak showgd that
the list chromatic number of the Cartesian productk , and K, is equal ton? + %” .
One year later, Axenovich [2] proved that if each vertex 2 V(G) nP is assigned a
list of colors of size and each vertexx 2 P is assigned a list of colors of size 1, then
it is possible to colorV(G) such that adjacent vertices receive di erent colors and
each vertex has a color from its list, wher& is a non-complete graph with maximum
degree 3 and P is a subset of vertices with pairwise distance(P) between them
at least 8. After that, in 2009, Rackham [12] studied on the list coloring df -free
graphs. We encourage potential readers to consult the interesting thesis of Lastrina
[10] and Tuza's survey [14] for more information on this topic.

By a well-known result of Nordhaus and Gaddum [11], i& is an n-vertex graph,
then (G)+ (G) n+1, whereG isthe complement of a graplG.

Erdes, Rubin and Taylor [7] extended this inequality to the list coloring of graphs
and proved that for everyn-vertex graphG, _(G)+ (G) n+1. Thus,itis
natural to study the list coloring of graphs under some other graph operations, which
is the main topic of this paper.

Supposef G; = (Vi; Ei)dl, is a family of graphs having a root vertex 0. Following
Barriere, Comellas, Dalfo, Fiol, and Mitjana [3, 4], the hierarchical producH =
Gy U U Gyu Gy is the graph with vertices asN -tuples Xy :::X3X2X1, for x; 2 Vi,
and edges de neg as follows:

XN DiiXsXoyr ifyr  Xpoin Gy,
% XN :iiXgYaXy; ify,  Xo in Gy and x; =0,
XN 11IX3X2X1 XN :iiY3XoXy; ifys Xz in Gzand x; = xp =0,

VYN iiiX3XoX1, ifyy Xy in Gy and X1 = X = =Xy 1=0.

In [13], Tavakoli, Rahbarnia and Ashra obtained exact formulas for some graph
invariants under the hierarchical product, and some applications in chemistry were
presented by Arezoomand and Taeri in [1].

SupposeG is a connected graph. Following Cvetkovi¢, Doob, Sachs, Yan, Yang and
Yeh [6,17], we de ne four types of graphs resulting from edge subdivision.

(@) S(G) is the graph obtained by inserting an additional vertex in each edge of
G. Equivalently, each edge ofs is replaced by a path of length 2.

(b) R(G) is obtained from G by adding a new vertex corresponding to each edge
of G, then joining each new vertex to the end vertices of the corresponding
edge. Another way to describ&(G) is to replace each edge @ by a triangle.

(c) Q(G) is obtained from G by inserting a new vertex into each edge d&, then
joining with edges those pairs of new vertices on adjacent edge<of
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(d) The graph T(G) of a graph G has a vertex for each edge and vertex & and
an edge inT (G) for every edge-edge, vertex-edge, and vertex-vertex adjacency
in G.
The graphsS(G) and T(G) are called the subdivision and total graphs o, respec-
tively.

Q(G)

Figure 1. Subdivision graphs ofG.

Let G and H be two graphs. The corona producGoH is obtained by taking one
copy of G and jV (G)j copies ofH, and by joining each vertex of the-th copy of H to
the i-th vertex of G, where 1 i | V(G)j, see Yeh and Gutman [19]. In Yarahmadi
and Ashra [18], the authors obtained exact formulas for some graph invariant under
the corona product of graphs. The edge corona product of two grapl& and H,
G} H, is obtained in a similar way by taking one copy oG and JE(G)j copies ofH
and joining each end vertices of the-th edge of G to every vertex in thei-th copy
of H, see Chithra, Germina, Sudev, Hou and Shiu [5, 8]. If the graplG and H
have disjoint vertex sets, thenG + H will be the graph obtained fromG and H by
connecting all vertices ofG with all vertices of H.

2. Main Results

SupposeG is a simple graph. The suspension of a gragh is another graphG°
constructed fromG by adding a new vertexu and connectingu to all vertices of G.

2.1. Relationship between the coloring and the list coloring of graphs. It

is clear that the list chromatic number | (G) of a graph G is at least its chromatic
number (G), but it can be strictly larger, in other words (G) < [ (G). We consider
the following cases for showing the di erence between the list coloring and the coloring
of a given graphG.
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Figure 2. The corona and edge corona products of two grapRs and
P,.

Suppose (G) (G) = 1. In this case, if we color the graph with lists of
length (G), then in each coloring of this graph there will be at least one vertex
x such that all adjacent vertices ofx can be colored, and there is no edge that
its end vertices cannot be colored.

Suppose (G) (G) = 2. In this case, if we color the graph with lists of
length (G), then in each coloring of this graph there will be at least two
vertices x and y such that xy 2 E(G), all adjacent vertices ofx;y can be
colored, and there is no triangle inG that its vertices cannot be colored.

Note that the above statements cannot be generalized to the case that(G)

(G) > 2. To show this, we de ner = 2"k 1. Then, the complete bipartite graph
K., is not k-choosable and so (K ) > k. If G has a list coloring of lengthm in
such a way that we can nd a coloring in which there is &-vertex graph without a
possible color, then | (G) = m + k. Finally, if the graph G can be colored with lists
of length | (G) 1 then there will be lists of length | (G) 1, in which for every
coloring of these lists there exists a vertex that all its adjacent vertices are colored
and there is no edge that its end vertices cannot be colored.

2.2. List chromatic numbers of the suspension graph and the corona prod-

uct. The aim of this section is to compute the list chromatic number of the suspension
graph and the corona product of graphs. We start this section by the following crucial
result:

Theorem 2.1. Let G be a graph withG°= G + K;. Then _(G% = [(G) or
L(G)+1.
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Proof. Let V(K1) = fug. Itis clear that (G% = (G)+1. Suppose (G)= (G).
Then, (G)+1= (G)+1= (G L(G9. We claim that [ (GY= [(G)+1.
To prove it, we assign lists of length L(1G) + 1 to the vertices of G% We color u with
a colort in L(u). In the worst case,t 2,y (o L(Vv) and sinceG has a coloring with
lists of length | (G), we will nd an appropriate coloring for G°

We now assume that | (G) = (G)+1. Since (G9 L(GY, (G)+1= (G)

L (G9. For the list coloring of G°we have the following two cases.

(a) After coloring of G with lists of length [ (G) 1, we will have at most two
vertices without a possible color: | (G% = | (G). We assign lists of length | (G) to
all vertices of G% We rst consider the case that we cannot color only one vertex of
G% There are two cases fok (u) as follows.

a.1 There is a colora 2 L(u) such that for eachv 6 a2 V(GY, a 62(v). In this
case, we assiga to the vertex u. By our hypothesis, the problem is changed to the
list coloring of G by | (G) colors, which is possible by de nition.

a.2 For each coloa 2 L(u), there exists a vertexu 6 v 2 V(G9 such that a 2 L(v).

SupposeV (G) = fvy;:::;vyg and assign a listL; to each vertexv; forl 1 n. We
consider the fQIIowing two cases.
i L(u) ", Li. In this case, all vertices have the same list of colors. Since

L(G)= (G)+1= (GY, the vertices ofG can be colored with (G) colors and it
remains a colgr foru. Hence, (GY = L(G).

(i) L(u) 6 [, Li. In this case, tlilere exist a coloa 2 L(u) and an integeri for
1 i n,suchthata?2 L; anda®62 j":l L;. We assign the colom to the vertex u
and removea from the list of other vertices. This shows that there exists a lisL;
such that a 62L;. Therefore, the length of some lists is (G) or (G) + 1. By the
hypothesis, there is only one vertex without a feasible color when a list has length

L(G) 1. Itis clear that, in all cases, we will have an appropriate coloring for the
graph.

We now assume that after the coloring of the graph with lists of length, (G) 1
there are two vertices without assigning a color. If we have a colar2 L(u) such
that a 62 [ysyL(Vv), then by a similar argument as above, we will have an appropriate
coloring for the graph. So, we can assume that every color li{u) will appear in at
least one Iierof colors. We have again the following two cases.

@ L(w L, Li. A similar argument as above shows that we have an appropriate
coloring of ther graph.

(i) L(u)6 L, L;. Inthis case, therre exist a colom 2 L(u) and an integeri, for
1 i n,suchthata2 L;anda62 [, L;. We prove that it is possible to nd
an appropriate coloring with lists of length | (G). To do this, we show that there
exists at least one coloc in L(u), such that c is outside of at least two other lists.
On the contrary, we assume that there is at most one lidt (v) with c62(v). If cis
outside of all the other lists, then clearly we will nd an appropriate coloring for the
graph. Hence, we can assume that there is a uniquesuch that c 62_(v). Therefore,
all lists except one of them are equal and we have an appropriate coloring with lists
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of length | (G) 1, which is impossible. ThereforeGG° can be colored with lists of
length [ (G).

(b) After the coloring of G with lists of length | (G) 1, we will have more than
two vertices without a possible color: In this case, we will prove, (G% = [ (G) + 1.
Suppose | (G) (G) = m. We prove that the graphG°does not have a list coloring
with lists of length [ (G) 1. We assign lists of length | (G) 1 in such a way
that there is no appropriate coloring for the graph. Consider the | (G) copies of the
graph G with the same lists and adda; to all lists of the rst copy of G, a, to all
lists of the second copy oG, :::; a  (g) to all lists of the | (G)-copy of G. We also
assign the listf 1;2;:::; | (G)g to the vertex u. Note that by assigning each of; to
the vertex u, we will not have an appropriate coloring for the-th copy of G. Thus,
we cannot nd a feasible coloring for the graph. Therefore, an appropriate coloring
of G needs lists of length  (G) + 1, see Figure 3.

This completes the proof.

that for each subgraph we can nd lists of length_ (G) 1 in which at least one vertex
does not have a color. Ifi is an isolated vertex, then | (GY = [ (G)+1.

Proof. On the contrary, we assume that | (G% = | (G). We de ne the lists of the
graph GP as follows:

assign lists of length  (G) 1 to the vertices ofG; from the setf2;3;:::;

L(G)+1g;
assign lists of length  (G) 1 to the vertices ofG, from the setfl;3;:::;
L(G)+1g;
assign lists of length | (G) 1 to the vertices ofG; from the setfl1;2;:::;i
L+l ((G)+1g;

assign lists of length | (G) 1 to the vertices ofG gy from the setf1;2;
(G L (G +1g
We now add the colori to all lists corresponding to the subgraphs; for 1 i
L(G), and assign the sef 1;2;:::; | (G)g to the vertex u. If we assign a color, say
i, to the vertex u, then the subgraphG; cannot be colored, and s& does not have
an appropriate coloring, a contradiction. Thus, [ (GY = L (G)+1.

Corollary g.l. SupposeG and H are two graphs. Then,

% =maxf [ (G); L(H)g; L(H) 8 (H) and in the coloring of H
with lists of length [ (H) 1 at most

g

L(GoH) two vertices cannot be colored,

maxf | (G); . (H)+1g; otherwise:

2.3. List chromatic number of the edge corona product. SupposeG is a
simple graph,e = uv and u;v 62V (G). Let G®= G+ K,, whereV (K,) = fu;vg
and E(K,) = feg. It is easy to see thatG®= G°+ K,, whereV(K,) = fvg with



LIST COLORING UNDER SOME GRAPH OPERATIONS 423

fL2a10 f1L,3 a9 2319
[+ 9 )

f2,3 a1 f1,3 49 f1,2,a19
fl,2,a9 1,329 2,349

+ o fag;ap a0
u

fl,2,a,9 f1;3;a,g 2 3;a9
f1,2,a3g f1,3;a39 23839
] * * ]

Q * ] Qo
fl,2,a39 f1;3;a3g9 f2;3;a30

Three copies ofG

Figure 3. Adding the vertex u to a graph G that after coloring with
lists of length | (G) 1, the vertexu will be without an assigned color.

G°= G+ K, whereV(K4) = fug. Itis clear that (G% = (G)+ 2. By Corollary
2.1,

8
E = L (GY; L(GY 6 (GY and in the coloring of the graph with
0 llists of ength _(G% 1 at most two vertices cannot
L(G 95 be colored,

L(G% +1; otherwise

We now apply this inequality to prove the following lemma.
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Lemma 2'{32' The list chromatic number ofG%is given by the following formula:

L(G); L(G) 8 (G) and in the coloring of the graph with lists
% length | (G) 1 of exactly one vertex cannot be colored,

(G = L(G)+1; L(G)6 (G) and in the coloring of the graph with lists
L a length | (G) 1 of exactly two vertices cannot be
% colored,

L(G) +2; otherwise

Theorem 2.2. SupposeG andH are two graphs. The list chromatic number o&} H
is given by the following formula:

8
=maxf (G); (H)g; L(G) 6 (G) and in the coloring of the
graph with lists of length | (G) 1lexactly
one vertex cannot be colored,

L(G} H) maxt (G); (H)+1g; _(G)6 (G) and in the coloring of the
graph with lists of length | (G) 1
exactly two vertices cannot be colored,

maxf (G); (H)+2g; otherwise:

2.4. List chromatic number of the join of two graphs. The aim of this subsection
is to investigate under which conditions | (G+H)= [ (G)+ _(H). If (G)= (G)
and (H)= (H),then (G+H)= (G)+ (H),andso (G+H)= [ (G)+
L(H). On the other hand, if one ofG or H is a complete graph, then by Corollary
21, ((G+H)= [(G)+ _(H). In Figures 4 and 5, some examples are given,
which show that the quantities [ (G+ H)and [ (G)+ L (H) can be non-equal.

] - *
Q @ Q
G

Figure 4. GraphsGandH = Gthat (G+H)6 (G)+ L (H).

Theorem 2.3. SupposeG and H are graphs such that the following holds.
L(H)  L(G) (or L(G)  L(H)).

for each subgraplG; for 1 i L(G)+1, (orH; for1 i L(H)+1)
there exist lists of length | (G)+1 (or _(H)+1) in such a way that in each
subgraph there exists at least one vertex that cannot be colored.
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o @ o @ @ o
Q @ Q o @
G G+ H

Figure 5. GraphsG andH = Ky with [(G+H)6 [ (G)+ _(H).

Then, ((G+H)= ((G)+ L(H).
Proof. On the contrary, we assume that | (G+ H)= [(G)+ _(H) 1. We assign

lists of length | (H) 1 to the graphH in such a way thatH does not have an
appropriate coloring related to these lists. Similarly to Lemma 2.1, we assign lists to

assign lists of length | (G) 1 to the vertices ofG; from the setf2;3;:::;

L(G)+1g;
assign lists of length | (G) 1 to the vertices ofG, from the setf1;3;:::;
L(G)+1g;
assign lists of length | (G) 1 to the vertices ofG; from the setf1;2;:::;i
Li+1l;::; ((G)+1g;
assign lists of length ((G) 1 to the vertices of G  (g)«1 from the set
f1,2::0 ((G) 1 L(G)+1g.
By our hypothesis, there exists a vertex; 2 V(G;), for 1 i L(G) +1, such
that in the process of the coloring for vertices ofl;, x; cannot be colored. We now
add the colori to all lists corresponding to the subgrapl;, for 1 i L(G) + 1.

We also assign the lists of the grapk to the subgraphs ofG in such a way that we
assign di erent lists to at least two vertices of a given subgraph, and at least three
lists of each subgraphs are dierent. Note that the smallest subgraph with these
properties has at least six vertices. Next, we assign lists of length (G) from the set
f1,2;:::; L (G)+1gto the vertices ofH such that at least two vertices of the graph
have dierent lists and if jV(H)] 3, then at least three lists of vertices irH are
di erent. We assign numbers to the lists ofG and letters to the lists ofH. Our main
proof will consider the following three separate cases.
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(@) In the coloring of H we use only letters.By our hypothesis, there will be one
vertex that cannot be colored, and we assign the numberto this vertex. So, the
subgraphG; cannot be colored, as desired.

(b) In the coloring of H we use only numbers.In this case, we will have a list
of letters for a subgraph (vertices ofc which are colored with numbers) and since

L(H) 1 L(H) L (G), the graph cannot be colored.

(c) In the coloring of H we use a combination of letters and numbersBy our
hypothesis, there will be one vertex that cannot be colored, and we assign the number
i to this vertex. So, the subgraphG; cannot be colored, as desired. In this case, we
use numbers instead of letters. For example, we use 1asAgain, we will have a
vertex that cannot be colored by letters and the number 1. We assign the number
i to this vertex. Consider a listL in G; containing number 1. Ifa 62L, then the
graph obviously cannot be colored. I& 2 L, then we lead to a contradiction with
our substitution. So, the graph cannot be colored. In the case that more than one
letter is substituted by a number, we lead to a similar contradiction, and so the graph
cannot be colored.

This proves that ((G+ H)= [ (G)+ [ (H).

2.5. List chromatic number of the subdivision graphs. In this subsection, the
list chromatic number of four types of edge subdivision of a grap@ containing
R(G); S(G); Q(G) and T(G) are computed.

Theorem 2.4. | (R(G)) =maxf | (G);3g.

Proof. The subdivision graphR(G) is isomorphic to the edge corona product o
and H, whereH = K;. Since ((H) = (H) =1, by Theorem 2.2, [ (R(G)) =
maxt | (G); 3g.

Theorem 2.5. SupposeG has at least one edge. Then_ (S(G)) =2 or 3 and all
cases can occur.

L(S(G)) (S(G)) = 2. In Figures 6 and 7, two graphsG; and G, are presented,
such that [ (S(Gy))=2and | (S(Gy)) =2.

To complete the proof, we assign a color to all vertices &f(G) and the other
vertices can be colored with two other colors. This proves that, (S(G)) 3, which
completes the proof.

Theorem 2.6. [ (Q(G))=( G)+1.

Proof. We use the labeling of the vertices it5(G) given in the proof of Theorem 2.5
for the graph Q(G). By de nition of Q(G), each vertexv; together with all vertices
u; adjacent tov; constitutes a complete graph of ordedegv;) + 1 and eachu; is a
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] Qo

N
N

//\\0

G:

o

~

o

]

Figure 6. The graph G, with | (S(G,)) = 2.

fl,29g fl;,29 f1,3g f2;3g f23g

o ) o o o
Q@ f1,3g Q@ f1,3g Q@ f1,3g
) Q o
f2,3g fl,29 f1,3g fl,2g f23g
G2

Figure 7. The graph G, with | (S(Gy)) = 3.

common vertex of exactly two complete subgraphs. So, the gra@h(G) hasjV (G)j
such complete graphs. It is obvious that for each triangle i, some of the vertices
inA=1fu jl | mginduces a triangle inQ(G) and in the other case, the vertices
in A can not construct a triangle inQ(G). Since G has a vertex of degree (G),
Q(G) has a complete subgraph of order G)+1,andso (Q(G)) ( G)+1. We
will prove that it is possible to color the graphQ(G) by lists of length ( G)+ 1. To
prove it, we assign lists of length (G) + 1 to all vertices of Q(G). SinceQ(G) can be
constructed from complete graphs of minimum order 3 and maximum order G) + 1,
each vertex ofV(G) is a vertex of exactly one complete graph, each vertax is a
common vertex of exactly two complete subgraphs, and each complete graph of order
n hasn distinct colorings with lists of length n, the graph Q(G) has an appropriate
coloring. This proves the theorem.

Theorem 2.7. ( G)+1 L(T(G)) (G)+2.
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Proof. Since the graphsG and Q(G) are subgraphs ofT (G), maxt | (G); (Q(G))g
L(T(G)). Onthe otherhand, [ (G) ( G)+landso ( G)+1 L(T(G)). To
prove (T(G)) ( G)+ 2, we assign the lists of length (G) + 2 to each vertex of
the graph. We rst color all vertices of G. Since each vertex oA = fu;j1 |1 mg
are adjacent to two vertices ofG, which are adjacent inT(G), the length of lists
corresponding to vertices irA is at least ( G). Therefore, [ (T(G)) ( G)+2.

2.6. List chromatic number of the hierarchical product of graphs. In this
section, the list chromatic number of the hierarchical product of graphs is computed.
We rst compute this number for the case of two graphs.

Theorem 2.8. The list chromatic number of the hierarchical product of two graphs
G and H is given by the following formula:

8
3; L(G)= _(H)=2; G has a cycle of even
length and the root is a vertex of an even
cycle,
L(GuH)= _ 2 L(G)= _(H)=2; G does not have an

even cycle or G has an even cycle but
the root is not a vertex of an even cycle,

maxf ((G); L(H)g; otherwise:

Proof. It is easy to see that (Gu H) = maxf (G); (H)g. Moreover, if | (G) =
L(H) =2, G has a cycle of even length and the root is a vertex of an even cycle,

then [ (GuH) =3, see Figure 8. If [ (G) = [(H) =2, G does not have an

even cycle orG has an even cycle, but the root is not a vertex of an even cycle, then
L(GuH)=2. On the other hand, if | (G)> L(H), then clearly the graphGu H

can be colored by lists of length | (G) and if | (G) < (H), then the graphGuH

can be colored by lists of length | (H). So, it is enough to consider the case that
L(G) = L(H). In this case, we rst color the graphG by | (G) colors. In this

coloring, for the coloring of each vertex irG, a vertex in H will be colored and if
L(H) 3, then the graph will have an appropriate coloring.

Corollary 2.2.  SupposeG;; G,;:::; Gk are k simple graphs. Then,

S 3; L(G1)= = (Gk)=2; Gk

has an even cycle and the root
is a vertex of an even cycle,
_ 2 L(G1)= = (Gk)=2;
L(Gku U GuGy)= the root is not a vertex of an
even cycle orGy does not have
a cycle of even length,

maxf | (G1);:::; L(Gk)g; otherwise:
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f2,3g f1,3g f2,3g fl,2g

T Q Q T
— Qo
f1;2g f1,29 f2;3g f1; 3g
f239 1,29 f1,3g 239
T 0 o T
— Qo

f1,3g 239 f1,3g fl, 29

C4U C4

Figure 8. The hierarchical product ofC4, and C4 with the list chro-
matic number 3.

Proof. We proceed by induction. In Theorem 2.8, we proved the case bf= 2.
Supposek=m l1landH = Gyu u G,u G;. To prove the case ok = m, we rst
assume that | (G;) = = L(Gk) = 2. Then, the following four cases can occur.

(a) Let Gy, be a tree and there are no even cycles in other grapl&nce the other
m 1 graphs do not have even cycles, the grapth does not have an even cycle, and
sO L (GhuH)=2.

(b) Let G, be a tree and there exists at least one even cycle in the other graphs.
Since in the otherm 1 graphs we have at least one even cycle, the graphhas an
even cycle. If | (H) 3,then [ (GhuH)= maxf2,3g=3. If [(H)=2, then

L(Gm u H) =2, as desired.

(c) Gy, has an even cycle and there are no even cycles in other graphsimilar
argument as in the rst case shows that | (G, u H) = 2.

(d) G, has an even cycle and there exists at least one even cycle in the other
graphs. In this case, the graphH has at least one even cycle. If (H) 3, then

L(Gm uH)=maxf2;3g=3. Suppose (H) = 2. If the root vertex is in a cycle,
then | (H) =3, and otherwise [ (H) = 2.

Next we assume that there exists such that | (G;) > 2. Then

lmia>r$1f L (Gi)g = max L(Gm);1 max 1f L(Gi)g =maxf [ (Gn); L(H)g:
This shows that the problem for the case ok = m can be reduced to the case of

k = 2 such that one of the graphs has the list chromatic number greater than 2. By
induction hypothesis, this is feasible, and so the proof is complete.
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ON THE ENUMERATION OF THE SET OF ELEMENTARY
NUMERICAL SEMIGROUPS WITH FIXED MULTIPLICITY,
FROBENIUS NUMBER OR GENUS

J. C. ROSALES! AND M. B. BRANCO ?2

Abstract. In this paper we give algorithms that allow to compute the set of
every elementary numerical semigroups with given genus, Frobenius number and
multiplicity. As a consequence we obtain formulas for the cardinality of these sets.

1. Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a subSeof
N which is closed under addition, @ S and NnS has nitely many elements. The
cardinality of the set NnS is called the genus of and it is denoted by ggS).

Given a positive integerg, we denote byS(g) the set of all numerical semigroups
with genusg. The problem of determining the cardinality ofS(g) has been widely
treated in the literature (see for example [2,47] and [13]). Some of these works were
motivated by Amorés's conjecture [5], which says that the sequence of cardinals of
S(g) for g=1;2;::: has a Fibonacci behavior. It is still not known in general if for a
xed positive integer g there are more numerical semigroups with genygs+ 1 than
numerical semigroups with genus.

An algorithm that allows us to compute the set of numerical semigroups with
genusg is provided in [3], where elementary numerical semigroups play an important
role. In fact, in [3] an equivalence binary relatiorR is de ned over S(g) such that
% = f[S]] S is a elementary numerical semigroup with genugy. Moreover, it is
proved that if S and T are elementary numerical semigroups with genus then
[S] =[T] if and only if S = T. The main idea of the algorithm in [3] is to compute

Key words and phrases.Elementary numerical semigroups, Fibonacci sequence, genus, Frobenius
number and multiplicity.
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every elementary numerical semigroupS with genusg and, then, to enumerate the
elements in B] for eachS.

For any numerical semigrous, the smallest positive integer belonging t& (respec-
tively, the greatest that does not belong tdS) is called the multiplicity (respectively
Frobenius number) ofS and it is denoted by m@E) (respectively F(S)) (see [9]).

We say that a numerical semigrous is elementary if FS) < 2m(S). This type
of numerical semigroups were also studied in [8] and [13]. We denoteHiyn; F; g)
the set of elementary numerical semigroups with multiplicitym, Frobenius number
F and genusg (when one of the parameters td(m; F; g) is replaced by the symbol

, it represents the set of elementary numerical semigroups in which no restrictions
are placed on that parameter).

For any nite set A, # A denotes the cardinal ofA. Given a rational numberq we
denote bydge=minfz2 Zjq zg.

In Section 2, we review the results of Y. Zhao in [13] which give formulas for
#E(m; ; ), #E(m; ;g) and #E( ; ;g), and state that #E( ; ;g+ 1) =
#E( ;5 ;9 +# E( 5 ;9 1). Therefore, we get thatf#E( ; ;0)g,y is a Fi-
bonacci sequence.

In Section 3, we study the set&(m;F; ) and E( ;F; ), nd formulas for their
cardinality, and describe the behavior of the sequence of cardinalsk(f ;F; ).

In Section 4, we present algorithms for calculating( ;F;g) and E(m;F;g). From
these algorithms, we can derive the cardinality of these sets.

Finally, in Section 5 we show that the set of all elementary numerical semigroups
E is a Frobenius variety. This fact, together with the results of [11], allows us to
construct recursively the setE.

2. Multiplicity and Genus

Our aim in this section is to see thatf# E( ; ;g)g,,y is a Fibonacci sequence.
The next result is easy to prove and appears in [13, Propositionl2.

Lemma 2.1. Let m be an integer such thatm 2 and let A be a subset of
fm+1;:::;2m 1g. ThenfO;mg[ A[f 2m;!g is an elementary numerical semi-
group with multiplicity m. Moreover, every elementary numerical semigroup with
multiplicity m is of this form.

As consequence of the above lemma we have thaEfm; ; ) is equal to the
number of subsets of a set witm 1 elements.

Corollary 2.1. If m is a positive integer, ther## E(m; ; )=2" 1,

The following result is easy to prove and gives conditions imposed on two positive
integersm and g so that there exists at least one elementary numerical semigroup
with multiplicity m and genusg.

Proposition 2.1. Let m and g be nonnegative integers withm 6 0. Then
E(m; ;g)6 ; ifandonlyifm 1 g 2(m 1).
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From Lemma 2.1, we know thatS 2 E(m; ;g) ifand only if S=fO,mg[ A
f2m;!g , whereA is a subset of m+1;:::;2m 1lgand #A=2(m 1) g. So
we have the following result, which is also in [13, Corollary:2].

Corollary 2.2. Let m and g be positive integers suchthan 1 g 2(m 1).

Then#E(m; ;9)= T,y -

From the results above we get
g{+l
EC : ;9= E(m; ;9):
m=dJe+1

Thus we have the following algorithm.

Algorithm 2.1 Inpunt: g positive integgr. Output: E( ; ;0).

2) Return Sorl E(m; ;q).

m=dJe+1
Clearly, we get
9@-1
#E( ; ;0= #E(m; ;Q):
m=dde+1
By applying Corollary 2.2, we obtain the following result.
Corollary 2.3. If gis a positive integer, ther# E( ; ;Q) = P d !

2 g oo
i=dje g i

The Fibonacci sequence is the sequence of positive integers de ned by the linear
recurrence equatiora,+; = a, + a5 1, with ag = a; = 1.

Itisclearthat E( ; ;0)=fNgandE( ; ;1)=ff 0;2;!gg andso#E( ; ;0)=
#E( ; ;1)=1. By using Corollary 2.3, we can obtain [13, Proposition 2.3], which
states that f# E( ; ;0)gy,y is a Fibonacci sequence.

Theorem 2.1. If g is a positive integer, then#E( ; ;9+1) =# E( ; ;0 +
#E( ; ;9 D).

3. Multiplicity and Frobenius Number

Our rst goal in this section is to describe su cient conditions for two positive
integersm and F so that there exists at least one elementary numerical semigroups
with multiplicity m and Frobenius numberf .

Lemma 3.1. If S is an elementary numerical semigroup such th& 6 N, then
PO m(S)  F(S)+1 and m(S) 6 F(S).

Proof. SinceS 6 N, then m(S) 2 and m(@) 1 62S. Therefore, we have that
m(S) 1 F(S). In addition, as S is an elementary numerical semigroup then
F(S) < 2(m(S)) and thus F(S)+1 2(m(S)).
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From the previous lemma we obtain the following result.

Proposition 3.1. Let m and F be positive integers. There(m;F; ) 6 ; if and only
if %L m F+landmé F.

It is clear that E(F + 1;F;, ) = ffO;F+1;!gg and E(F LF ) =
ffO,0F 1,F+1;!gg . Hence, we can assume thaF = m + i, wherei 2
f2;:::;m 1g. By applying Lemma 2.1, we deduce that 2 E(m;F; ) if and only
if there existsA f m+1;:::;m+1i 1lgsuchthatS=fOo,mg[ A[f F+1;!g .
As a consequence we have the following algorithm.

Algorithm 3.1 Input: m and F positive integers such that% m F+1and
mé6 F.
Output: E(m;F; ).
1) Ifm=F+1, thenreturn ff O;F +1;!gg .
2)Ifm=F 1 thenreturnff O;F 1,F +1;!gg .
3) Compute the setC = fAjJA f m+1;:::;F 190
4) Return ff O,mg[ A[f F+1;!g] A2 Cg.

Gathering all this information, we obtain the following result which can also be
deduced from equation (6) of [1].

Corollary 3.1. Let m and F be positive integers such that;*  m F +1 and
m 6 F. Then (
O fm=F+1;
#EMF )= 2F m 1. otherwise.

Next we obtain an algorithm that allows us to compute every elementary numerical
semigroup with a given Frobenius number. As a consequence of Proposition 3.1, we
have

E( ;F )= E(m;F; ):
m2f d5teuF +1gnfFg

Algorithm 3.2 Input: F positive integer.
Output: E( ;F; n). o
1) Forall m 2 ngl g ::.:;F+1 nfFgcompute (using Algorithm 3.1) the set
E(m;F; ). s
2) Return E( ;F; )= m2f ¢l F+1gangE(m;F; )

P
Therefore, we have #£( | F; )= | ofqrne... F+1gang# E(m;F; ). From Corol-
L
lary 3.1 we obtain the following result.

Corollary 3.2. If F is a positive integer, ther# E( ;F )=2F¢d e,

We nish this section by describing the behavior of the sequence of cardinalities of
E( ;F; )for F=1;2:::Observe that #E( ;1, )=# E( ;2, )=1.
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Proposition 3.2. Let F be an integer greater than or equal ta.
1) If Fisodd, then#E( ;F+1; )=# E( ;F; ).
2) If Fiseven, then# E( ;F+1; )=# E( ;F;, )+# E( ;F 1, ).

Proof. 1) From Corollary 3.2 it is guaranteed that #E( ;F; ) = 2F d=-e -
2F - = 27z . By repeating this argument we obtain #£( ;F +1; ) =2z .
Therefore, we have #£( ;F +1; )=# E( ;F; ).

2) Again, by Corollary 3.2, we know that #E( ;F; )+# E( ;F 1, ) =
2F U5 ey pF 1d5e = pF T 4 pF 15 =25 We obtain #E( F +1; ) =
oF+1d Sfe - oF+l 5% - 2% Consequently, #E( F +1; ) =# E( ;F; )+
#E( ;F 1, )

4. Multiplicity, Frobenius Number and Genus

In this section, we aim to nd conditions form, F and g positive integers so that
there exists at least one elementary numerical semigroup with a given multiplicity,
Frobenius numberF and genusg. The next results are a consequence of the results
given in [3, Proposition 2 and Corollary 3].

Lemma 4.1. Let F and g be two positive integers. They F 2g 1if and only
if E( ;F;Q) 6 ;.

Lemma 4.2. Let F ang g be,two positiye integers such thag F 29 1,
and letAgg = AjA  FL;iiiF 1 and#A=F g . ThenE( ;F;g)=
ffog[ A[f F+11!g] A2Ag40

As an immediate consequence of Lemmas 4.1 and 4.2 we have the following algo-
rithm.

Algorithm 4.1 Input: F and g positive integers suchthatg F 2g 1.
Output: E( ;F;0).
n nl m o] o]
1) Compute the setC = AjA BEL i 1 and#A=F g,
2) Return ff Og[ A[f F+1;!g] A2 Cg.

As a consequence of the previous algorithm we obtain the following result which
also appears in [3, Corollary 4].

Corollary 4.1. If F and g are positive integers suchthagy F 2g 1, then

#E( Fig= 0t

Lemma 4.3. If m, F and g are three positive integers such tham 2 and
E(m;F;g)6 ;,thenm 1 g F < 2m.

Proof. SinceE(m;F;qg) 6 ;, then E(m; ;g) 6 ; and we have thatm 1 g. From
Lemma 4.1, we deduce thag F. Finally, by Proposition 3.1, we conclude that

EL mand thusF < 2m.
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Finally, we present the main result of this section.

Proposition 4.1. Let m, F and g be three positive integers such thah 2. Then
E(m;F;g) 6 ; if and only if one of the following conditions holds:

1) (mFg)=(mm Im 1)

2) (m;F;g)=(m;F;m) andm<F < 2m;

3ym<g<F< 2m.

Proof. Necessity If E(m;F;g) 6 ; then by applying Lemma 4.3, we deduce that
m 1 g F < 2m. Assume thatS 2 E(m;F;g). We distinguish the following four
cases.
a)lfg=m 1,thenS = f0m;!g and soF = m 1. Hence,(m;F;g) =
(mm 1,m 1)
b) If g= m,thenm<F < 2mand S = fO;m;!gnf Fg. Whence,(m;F;g) =
(m;F;m)and m<F < 2m.
c)Ifg=F,thenS=f0;F +1;!g andthusF +1= m. Once again we have
(mFg=(mm Im 1)
dIifge2am 1,m;Fg, thenasm 1 g F < 2m and we deduce that
m<g<F< 2m.

Suciency . Itis clearthat fO;m;Ig2E (m;m 1,m 1)andfO;m;!gnf Fg2
E(m;F; m). Supposethatm<g<F < 2m. Let Abeasubsetofm+1;:::;F 1g,
with cardinality F g 1. Sincegf)=m 1+F 1 m 1+1 #A+1=
F 1 F+g+1=g,thenS=f0Omg[ A[f F+1;lg2E (m;F;Q).

Notice that, by the su ciency condition of the proof above, we conclude that, if
m<g <F < 2m, knowing an element inE(m; F; g) is the same as knowing a subset
offm+1;:::;F 1gwith cardinality F g 1. So we have the following algorithm.

Algorithm 4.2 Input: m;F and g integers suchthat2 m<g<F < 2m.
Output: E(m;F; g).
1) ComputeC=fAjA f m+1;:::;F l1lgand#A=F g 1g.
2) Return ff O;mg[ A[f F+1!g suchthatA 2 Cg.
Clearly #E(m;m 1,m 1) = # E(m;F;m) = 1. For the remaining cases the
following result gives us the cardinality ofg(m; F; g).

Corollary 4.2. Let m, F and g be positive integers suchth&2 m<g<F 2m.
Then# E(m;F;g) = © i L

Proof. As a consequence of Algorithm 4.2 we have th& 2 E(m;F;g) if and only
if there existsA f m+1;:::;F 1g, with cardinality F g 1 such thatS =
foomg[ A[f F+1;lg .

We conclude this section by giving an example that illustrates the previous results.
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Example 4.1 Let us compute E(4;7;5). By Corollary 4.2 we have #:(4;7;5)

7¢1 = % =2 Now by using Algorithm 4.2, with m = 4, F
7 and g = 5 we can conclude that C = ff 5g;f6gg and E(4;7;5)
ff 0;4g[f 59[f 8;!g ;f0;4g[f 6g[f 8;!gg .

5. Frobenius Variety

A Frobenius variety (see for example [11]) is a nonempty s&t of numerical semi-
groups ful lling the following conditions:

1)ifSandT areinV,thenS\ T 2 V;
2)ifSisinV andS6 N, thenS[f F(S)g2 V.

Proposition 5.1. E=fSj S is an elementary numerical semigroupis a Frobenius
variety.

Proof. If S and T belong toE it is clear that S\ T is a numerical semigroup,
F(S\ T)=max fF(S);F(T)g

and
m(S\ T) maxfm(S);m(T)g:
Therefore, FS\ T) < 2m(S\ T)andthusS\ T 2 E.
If Sis an element inE and S 6 N, then clearly S = S[f F(S)g is a numerical
semigroup such that FE) < F(S) and m(S) is equal to m(S) or F(S). Therefore,
F(S) < 2m(S) and thus S 2 E.

We de ne a directed graphG(E), with edges pointing fromT to S, in the following
way: the set of vertices isE and (T;S) 2 E E is an edge ofG(E) if and only if
S[f F(S)g=T.

The goal of this section is to see thaG(E) is a tree with root equal toN and to
characterize the sons of a vertex. This fact allows us to recursively construs{E)
and consequentlyE. To this end we need to introduce some concepts and results.

Given a nonempty subsetA of N we will denote bybAi the submonoid of(N; +)
generated byA, that is,

hAi = f ja; + + ,a, jn2 NnfOg;a 2 A; 2 Nforalli2fl;:::;ngg:

It is well known (see for instance [12]) that every numerical semigroup is nitely
generated, and therefore there exists a nite subseh of N such that S = bAI.
Furthermore, we say thatA is a minimal set of generators o8 if no proper subset ofA
generatesS. Every numerical semigroup admits an unique minimal set of generators
of S and we denote this set bymsdS). It is well known (see for instance [12])
that msgS) = (Snf0g) n(SnfOg+ SnfOg) and if x 2 S then Snfxg is a numerical
semigroup if and only ifx 2 msg(S).

As a consequence of [11, Proposition 24 and Theorem 27] we have the following
result.
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Theorem 5.1. The graphG(E) is a tree with root N. Furthermore, the sons of a
vertex S of G(E) are in f Snfxg jx 2 msg@S); x> F(S) and Snfxg 2 Eg

The following result is useful to compute the sons of a vertex @G(E).

Proposition 5.2. Let S be an elementary numerical semigroup and2 msdS) such
that x > F(S). Then Snfxg is an elementary numerical semigroup if and only if
X < 2m(S).

Proof. Suppose thatS = fO;m(S);!g . Then
msg@) = fm(S);m(S)+1;:::;2m(S) 1g

and clearly the result is true. IfS 6 fO;m(S);!g then m(Snfxg) = m(S) and
F(Snfxg) = x. Therefore, Snfxg is elementary numerical semigroup if and only if
X < 2m(S).

We illustrate the above results with the following example.

Example 5.1 Let us compute the sons of vertexS = f0;5;6;9;!g of G(E).
We have msgS) = 156,913, F(S) = 8 and m(S) = 5. Whence
fx 2 msg@) ) F(S) <x< 2m(S)g= f9g. Using Theorem 5.1 and Proposition 5.2 we
conclude thatS has an unique sorSnf9g = 1b; 6; 13, 14i.

Now, we can recursively construct the treés(E) starting with N and connect-
ing each vertex with their sons. First we constructmsg Snfxg) from msgS),
when x is a minimal generator of S greater than F(S). It is clear that if
msgS) = fmm+1;:::;2m 1g which is S = fO;m;!g then msgSnfmg) =

appears in [10, Corollary 18].

Proposition 5.3. Let S be a numerical semigroup witmsg(S) = fny;:::;npQ. If
m(S) = ny <n, agd N, > F(S) then
2 fngiinng 19 if existsi 2f2;:::;p 1g such that
msg@Snfn,g) = S Np+ Ny N 2S;
- fngiining 15N+ nyg; otherwise.

Note that, in the previous proposition, the elements irmsg S) are not necessarily
ordered.

Example5.2 Let S = 15;6;9; 13 . Let us computemsg Snf9g). By Proposition 5.3,
as9+5 662Sand 9+5 1362S, we can conclude thaff 5; 6;13; 14g is the minimal
system of generators osnf 9g.

Using Theorem 5.1 and Proposition 5.2 and 5.3 we obtain the following:
. hli has only sonhlinf 1g = h2; 3i;
. 2; 3i has two sond?; 3inf 2g = h3;4; 5 and h2; 3inf 3g = h2; 5i;
. 2;5i has no sons;
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/m; Si\

h3; 4; 5i h2; 5i

| N

H; 5; 6; 7i h3; 5; 7i h3; 4i

e

hb;6;7:8:9 h4:6;7:9 h4;57 h456i h3;7:8i

. 13;4;5i has three sond®; 4;5inf 3g = M, 5;6;7i, h3;4;5inf 4g = h3;5;7i and
h3; 4; 5inf 5g = h3; 4i;

. h3;4i has no sons;

. 13;5;7i has one sort3;5; 7inf 5g = h3;7; 8i;

. M;5,6;71 has four sonsh;5;6;7inf4g = 15;6;7;8;9, M;5;6;7inf 5g =
h; 6;7;9, M;5;6;7inf 6g= M;5;7i and M,;5; 6; 7inf 79 = M, 5; 6i;
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EXISTENCE AND STABILITY OF NONLOCAL INITIAL VALUE
PROBLEMS INVOLVING GENERALIZED KATUGAMPOLA
DERIVATIVE

ARIF S. BAGWAN ! AND DEEPAK B. PACHPATTE ?

Abstract.  In this paper, the existence results for the solutions to nonlocal initial
value problems involving generalized Katugampola derivative are established. Some
xed point theorem techniques are used to derive the existence results. In the sequel,
we investigate the generalized Ulam-Hyers-Rassias stability corresponding to our
problem. Some examples are given to illustrate our main results.

1. Introduction

In recent decades, the theory of continuous fractional calculus and their applications
have remains a centre of attraction in many mathematical research. Indeed, fractional
di erential equations (FDEs) have grabbed desired attention by many authors. One
can see [15,7 13,20,21, 23, 26,27,33,34] and references therein. Several de nitions
of fractional derivatives and integrals have been introduced during the theoretical
development of fractional calculus. See [1,2,5,7,8,16,20,25,27] and references
therein.

Initially, Hilfer et al. [16,17] have proposed linear di erential equations involving new
fractional operator. They applied operational method to solve such FDEs. Further,
Furati et al. [14, 15] investigated non-linear problems and discussed existence and
non-existence results for FDEs with Hilfer derivative operator. Benchohra et al. [6,7],
U. N. Katugampola [20,21], D. B. Dhaigude et al. [8,9], Kou et al. [23], J. Wang et
al. [32,33] and many more authors, see [1,2,5,19,29,31] and references therein, have
established the existence results for FDEs with several fractional derivative operators.

Key words and phrases.Generalized Katugampola derivative, nonlocal initial value problem,
Existence, Ulam-Hyers-Rassias stability.
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Recently, D. S. Oliveira et al. [27] in their article proposed a new fractional di er-
ential operator: Hilfer-Katugampola frational derivative (also known as generalized
Katugampola derivative). Further, they established the existence and uniqueness
results for the FDEs with generalized Katugampola derivative.

The theory of Ulam stability is also evolved as one of the most interesting eld
of research. Initially, Ulam [30] established the results on the stability of functional
equations. Thereafter, remarkable interest have been shown by authors towards the
study of Ulam-Hyers stability and Ulam-Hyers-Rassias stability for various FDESs, see
[1,6,7,18,24,31,33] and references therein.

In this paper, we studied the existence and stability of nonlocal initial value problem
(IVP) involving generalized Katugampola derivative of the form:

(1.1) D u®=f (Gu(); 2(©01); 2I[01];t2 (a;H;

(1.2) o u(a):Xn iu(i); = + (1 )<1 ;2(=xH;

i=1

wheref is a given function such thatf : (a;d R! R, 0< . The operator D,
is the generalized Katugampola fractional derivative of order and type and the
operator I; u(a) is the Katugampola fractional integral of order 1, with a > 0,

i, 1 =1;2;:::;m, are pre xed points satisfyinga< 2 m < b.

Furthermore, the paper is arranged as follows. In Section 2, we recall some basic

de nitions, important results and preliminary facts. We establish the equivalent
mixed type Volterra integral equation for the IVP (1.1) (1.2). In Section 3, we
present existence of solution using the Krasnoselskii xed point theorem. Further, we
present the generalized Ulam-Hyers-Rassias stability to our problem. An illustrative
example is given at the end of the main results.

2. Preliminary Results

In this section, we provide some basic de nitions of generalized fractional integrals
and derivatives, some important results and preliminary facts that are very useful to
us in the sequel.

LetO<a<b< 1 be a nite interval on R* and C [a; be the Banach space of
all continuous functionsh : [a; ! R with the norm

khk. = max fj h (t)j : t 2 [a;Hg:

For O < 1 and the parameter > 0 we de ne the weighted space of continuous
functions h on (a; 4 by
8 | 9

C. b= h:@i! R: " h@2Cly
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with the norm
! !
t a t a
khkC; = h(t) = Eg[aa;)é] —— h(t) :

It is obvious that Co. [a;d = C[a;b.
Let = t 1% . We de ne the Banach space of continuously di erentiable

functions h on [a; 4§ by
C'. [ag=fh:[a;H! R: h2C. [aHg;
with the norms
khko: = khke + k hk.
and
khkc:  =maxfi h(t)j:t2 [a;Hg:
Note that C°. [a;H = C, [a;H.

De nition 2.1  (Katugampola fractional integral [20,27]) Let ;c 2 R, with > 0,
u?2 Z2(a;b, wherezpP(a;b is the space of Lebesgue measurable functions with
complex values. The left-sided Katugampola fractional integral of order is de ned

by

12y tu(x)
(), t x)
De nition 2.2 (Katugampola fractional derivative [21,27]) Let ; 2 R be such

that 2 N, 0< ; . The left-sided Katugampola fractional derivative of order is
de ned by

(2.1) (1. u)(t)=

|
Lo d "% x lu(x
u )= — tt = §21+ dx;

(22) (Dpu(H= " | (n ) d(t x)

a+

wheren =[ ]+ 1 is such that [ ] is the integer part of .

De nition 2.3  (Generalized Katugampola fractional derivative [27]) Let 0 < 1
and 0 1. The generalized Katugampola fractional derivative (of order and
type ) with respect tot is de ned by
2 gt 2
(Diwm=, "2t 18 u
2.9 S AN R OF

where > 0,u 2 C; . [0;1] and | is Katugampola fractional integral de ned in
(2.1).
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Remark 2.1 ([27]). For = + (1 ), the generalized Katugampola fractional
derivative operator D_. can be expressed as

(2.4) DL = 1.4 ) L =1, VD,
Lemma 2.1 ([27]). Let > 0,0 < landu2 C. [a;4. Then
(Dy Iu)(t)=u(t);, forallt2 (a;q:

Lemma 2.2 (Semigroup property [27]) Let > O, > 0,1 q 1 ,a;b2(0;1)
such thata<b and ;s 2 R, s . Then the following property holds true

(lpe lpw®)= 1. u (t);
forall u2 zJ(a;b.

Lemma 2.3 ([27]). Lett>a and for Oand > 0, we have
2 | 3
: 1
4p. X% sm=o0; 0< < I
! 13 ! + 1
4 X a 5 (1) = () x a :

( +)

Lemma 2.4 ([27]). Let > 0, 0 < landa;b2 (0;1) such thata < b and
u2C. [a;B. Then

(1o W(@=lim (1,u)()=0;

and 1. uis continuous onfa;  if <

Lemma 2.5 ([27]). Let 2 (0;1), 2 [0;1]and = + .fu2C;, [ah
then

| Dpou= I, D, u
and

- @ )y
D, I,u= D, ‘u

Lemma 2.6 ([27]). Let 2 (0;1), 0 < 1L Ifu2cC [a;h and I; u2 Clla;H,
then for allt 2 (a;

! 1
t a ! la*’ u (a)

()
Lemma 2.7 ([27]). Letu2 L1 (a;b. If D, ’u exists onL!(a;b), then

(l4 Du)(t)= + u(t):

; - @ ) @ )y
Dy lgau= I, D, ‘u
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Lemma 2.8 ([27]). Letf :(a;d R! R be a function wherd (;u()) 2 C; [a;hQ.
A function u2 C, [a;l is a solution of fractional IVP

D, u(®)="f(tu(); 2(©01); 2][01];
|;+ u a = u; = + ;
if and only if u satis es the integral equation of Volterra type:

1 Zt
UO(t(a)) ; (1) t %) Y (xu)dx:

De nition 2.4  (Volterra integral equation). A linear Volterra integral equation of
the second kind has the form of

u(t) =

a

Zt
u(t)= ug(t)+ K (t;x)u(x)dx;

a

whereK is a kernel.

Theorem 2.1 (Krasnoselskii xed point theorem [28]) Let E be a honempty closed,
bounded and convex subset of a Banach spéBek k). Further, assume thatF and
G are two operators de ned onE which mapE into B such that

@ FX)+ G(y) 2 E forall x;y 2 E;
(b) F is a contraction;
(c) G is continuous and compact.

Then F + G has a xed point in E.

Using the above fundamental results, the following theorem yields the equivalence
between the IVP (1.1) (1.2) and an improved mixed type Volterra integral equation.

Theorem 2.2. Letf :(a;d R! R be a function such that for anyu2 C; [a;b
f(;u())2Cy [a;d, where = + , with 0 < 1,0 1. Function
u2 C, [a;His a solution of IVP (1.1) (1.2) if and only if it satis es the following
mixed type Volterra integral equation

: 1 Zi 1
u(t) = Kt a X i X X M (x;u (X)) dx
() =1,
zt b
(2.5) + (1) X % % (xux) dx
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Proof. Let u2 C, [a; [ be a solution of IVP (1.1) (1.2). Then by the Lemma 2.8
the solution of IVP (1.1) (1.2) can be written as

(2.6) u(t) = a’ I;( u) @, (1)2 tox 1 (x: u (x)) dx:
Now, substitutet = ; in the above equation ""

u( )= a ! Ia1+( u) (a)+ (1)Zi X lx 1 (x:u () dx:
Multiplying by ; the both hand sides, we ge:1

u( )= - a' I‘;( u)(a)+ (i)Zi X | lx ' (x;u (x)) dx:

a
Thus, we have
L Xn
I u(a)= iu( i)
i=1

_lhu@x  , oa ¢
B ( ) i=1 |
Zi ! 1
s 20 i X x M (x;u(x)) dx;
(Vi ',
which implies
(), x “ x o
(2.7) 1% u (a)= ( )K i : x M (x;u(x)) dx:
i=1

Substituting (2.7) in (2.6) we get(2.5), which proved that u also satis es integral
equation (2.5) when it satis es IVP (1.1) (1.2). This proved the necessity. Now, we

prove the su ciency by applying I; to both hand sides of the integral equation
(2.5), we have

| 1 |

t a’ K X .Zi i X !
( )|:1 I

+ I; I (x;u(x)):

1
1L

ut)y= 1L

X 1 (x;u(x)) dx

a

By using Lemma 2.2, Lemma 2.1 and Lemma 2.3, we have

Zi ! 1
1L ou@)= (™ X x Hocue))dx+ 1L COf u):

3 () ia
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Sincel (1 )>1 , by taking the limit as t ! a and using Lemma 2.4, we
have
|
0 Zi _ : 1
(2.8) 1L u (a)= E ;K i X x 1 (x;u(x)) dx:
i=1 5
Now, substituting t = ; in (2.5), we have
! 1 Zi ! 1
. Nd .
u(y= 5 55T A M (Gu ) ox
i=1 5
Zi _ ! 1
+ (1) X (xu () dx
a
Then we have
| |
0 _ : 1)(" Zi . : 1
u()=py At C X U ) i
i=1 i=1 =1 a
|
X Zi ) . 1
£t X % (xxu(0) dx
(Via |
N Zi ) . 1
= (1)_ : X x M (x;u(x)) dx
8 i=1 a ! ) 9
< _ =
K™ % 4
i=1
|
0 Zi _ ; 1
(2.9) = E ;K X X Y (xu ) dx:
i=1

It follows from (2.8) and (2.9), that

1 xXn
I u(a)= iu( ):
i=1

It follows from Lemma 2.3 and Lemma 2.5 and by applyingD,. to both hand sides
of (2.5) that

(2.10) D.u()= D" f(tu):

Sinceu 2 C; [a;b and by the de nition of C; [a;ld, we have D_. u2 C, [a;h.
Then D, ’f = DIL ® ’f 2 C; [a4. It is obvious that for any f 2
C, [aH, 1L "% 2cC, [ad, then 1L @ f 2 Cl [aH. Thus, f and

a* a*
12 @ Jf satisfy both the conditions of Lemma 2.6.
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Now, it follows from Lemma 2.6, by applying Iafl ) on both sides 0f(2.10), that

|
t a T 1L @ )5

a+
(@ )
By Lemma 2.4, it implies that 12, © ’f (a) = 0. Hence, (2.11) reduces to

(D u)(t)=f (tu(t):

(2.11) (D u)(t)= +f (tu(b):

This completes the proof.

3. Main Result

In the sequel, let us introduce the following hypothesis.

[Q1]Letf :(a; R'! R beacontinuous function such that foranyu 2 C; [a;Q
f(;u()?2 Cl(l ) [a; . For all u;v 2 R there exists a positive constant] > 0 such
that

if (tbu) f(tv)] Jju vj:
[Q2] The constant
8 | )

JB(; )<. X - b a =~

=380 ) Tt
( ) ' i=1
whereK is de ned in the Theorem 2.2.

Now, we will establish our main existence result for IVR1.1) (1.2) using Kras-

noselskii xed point theorem.

Theorem 3.1. Assume that the hypothesifQ1] and [Q2] are satis ed. Then IVP
(1.1) (1.2) has at least one solution iIrC, [a;b.

(3.1)

Proof. According to Theorem 2.2, it is su cient to prove the existence result for the
mixed type integral equation (2.5).

Now, de ne the operator by

K t a bo 2 i x o

() o

(3.2) + (1) X Y (x;u(x)) dx:
a

It is obvious that the operator is well de ned and maps C; [a;into C; [a;H.
Let f*(x) = f (x; 0) and

_B( ) . :
T () :JKJi=1 ‘ * ; C.

Considera ballBs:= u2C; [a;Q: kukCl s ,with .— s; < L

( w)-= x M (x;u(x)) dx

8 ! 19
(3.3) '
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Now, let us subdivide the operator into two operators F and G on B as follows:

: 1 Zi : 1
Fum= S A X T X T ey (%) dx
) o
and
Zt ! 1
(Gu) (t) = (1) t X X (x;u (x)) dx:

The proof is divided into following steps.
Step I. For everyu;v 2 Bs, Fu+ Gv 2 Bg. For the operator F

by Zi g
X0 .
Fum 2 = (K) X S u)dx t2 (ah;
izl 4
we have
Py . Zi o
a Kj X" i X ) .
(Fu) (1) J(J) i ! x Ljf (x;u (x))j dx
i=1 4 |
iKj X" Zi i X. ! . .
‘(‘) i x LG Gu () f(x0)
i=1 4
+ jf (x; 0)j) dx
|
KoM Zi ) : 1
KT X gjuj+ ) dx
Y
Here we use the fact that
8 9
2t o < Zt Y P =
t X X Lju(x)jdx X x 2 x ldx
a a
k u(X)ke,
t S
a
(3.4) = B(; )ku(ke,
Thus, we have
I 8 I
1 . NG < _ o+ 1
Fuy 2 LS I
( )iz

Jku(ke, + (%) .
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which gives
(3.5) 8 ' ) 9
KiB(; )X < a
KF ukg, e e . Jku(ke, + (%) e
For t 2 (a;d and the operator G
! 1 | 1 Zt | 1
(Gu) (1) t s -1 t a tx X U (x;u(x)) dx;
() .
we have
t a 1 t a t . .
(Gu) (1) ) x Ljf (x;u (x))j dx
| a
1 t a !
()
|
zZt t X 1

Again, by using (3.4), we have

'y ' g by 1
(Gu)(t)t a 1t a t a

() .
B(; ) Jku(ks, + F(x) )

B(; b |

(( )) S dkuok, + 100

which gives
B(; ) b a

(36)  K(Gu)kg, Jku(x)kg, + f“(x)c

()
Combining (3.5) and (3.6) for everyu;v 2 Bs we have

kFu+ Gvke,  k Fuke —+ k(Gv)ke, s + S,

which implies that Fu + Gv 2 Bs.
Step Il. The operator F is contraction mapping.

For any u;v 2 Bs and the operatorF
!

t a °

fF(Fu)(t) (Fv)(tg
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|
X0 Zi ) : 1
= BT X Nt u) v ()] dx
( )ie
we have
'y o Zi L
X .
FRU(  (FY)(hg =2 TL e
( )i
JEOcux)  f(xv(x))jdx
- !
jKjxe 2 xc
i X
( )ia
Jju(x) v(x)jdx
|
JiK ] Xn . a
—B(; i
( ) ( )i:1 I
ku vke
which gives
|
. . NG ) C+ 1
kFu  Fvke, ‘](JK)JB(; ) - a ku vk, ku  vke
i=1

Hence, by the hypothesisQ2] the operatorF is a contraction mapping.
Step I1l. The operator G is compact and continuous.

Since the functionf 2 C; [a; ), it is obvious from the de nition of C; [a;  that
the operator G is continuous.

From the equation (3.6) of Step | clearly, G is uniformly bounded onBs. Next we
prove the compactness.

Foranya<t;<t, bwe have
!

1 21 t X 1
G () (GU)(t)i = = - x M (xu(x)) dx
a
A2 ! 1
1 2 X X (x;u(x)) dx
(),
21 b o
kf ke, t; X X a « ld
()
y.2) o by
t, X X a < ldx
) Py o Py o
kike, B(; ) t; a t, a
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tending to zero ast, ! t;, whether + 1 Oor + 1< 0. Thus, G is
equicontinuous. Hence, by Arzel-Ascoli Theorem, the operat@ is compact onBs.

It follows from Krasnoselskii xed point theorem that the IVP (1.1) (1.2) has at
least one solutionu 2 C; [a; . Using the Lemma 2.7 and repeating the process of
proof in Theorem 2.2, one can show that this solution is actually i€, [a;Q . This
completes the proof.

3.1. Ulam-Hyers-Rassias stability. In this section, we discuss the Ulam stability
results for the solution of IVP (1.1) (1.2).

De nition 3.1  ([1]). The solution of IVP (1.1) (1.2) is said to be Ulam-Hyers stable
if there exists a real number > 0 such that for every” > 0 and for each solution
u2 C. of the inequality

(3.7) j(Dypu)(®) fuu@)i " t2(ah;
there existsv 2 C. , a solution of IVP (1.1) (1.2) satisfying
jut) v(®)i "; t 2(ah:

De nition 3.2  ([1]). The solution of IVP (1.1) (1.2) is said to be generalized Ulam-
Hyers stable if there exists a continuous functions : Ry ! R, with  (0) =0 such
that for every solutionu 2 C. of the inequality (3.7) there existsv 2 C. , a solution
of IVP (1.1) (1.2) satisfying

ju® v o (M) t2(xQ:

De nition 3.3  ([1]). The solution of IVP (1.1) (1.2) is said to be Ulam-Hyers-Rassias
stable with respectto 2 C. ((a;d;R.) if there exists a real number G< such
that for every 0<" and for every solutionu 2 C. of the inequality

(3.8) j(Dau(t)y fu@)i " (t; t2(@&h;
there existsv 2 C. a solution of IVP (1.1) (1.2) satisfying
ju® v " (1); t2(ah:

De nition 3.4  ([1]). The solution of IVP (1.1) (1.2) is said to be generalized Ulam-
Hyers-Rassias stable with respectto 2 C. ((a;H;R:) if there exists a real number
0< such that for every solutionu 2 C. of the inequality

(3.9) j(Dau(t)y fu@) (b, t2(ab;
there existsv 2 C. a solution of IVP (1.1) (1.2) satisfying

ju(t) v()j (; t2(x4:
Remark 3.1 ([1]). Clearly

(a) from De nition 3.1 follows De nition 3.2;
(b) from De nition 3.3 follows De nition 3.4;
(c) from De nition 3.3 for () =1 follows De nition 3.2.
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Now, we establish the results on generalized Ulam-Hyers-Rassias stability of the
IVP (1.1) (1.2).

Theorem 3.2. Assume that[Q1] and following hypothesis hold.
[Q3] There exists! > 0 such that for eacht 2 (a;lj we have

I () ! (t):
[Q4]There exists a functionp 2 C[(a;;[0;1 )] such that for eacht 2 (a; b

it (6 u )] pflfuf)

Then the solution of IVP (1.1) (1.2) satis es the generalized Ulam-Hyers-Rassias
stability with respect to

Proof. Let u be a solution of the inequality (3.9) and let v be a solution of IVP
(2.1) (1.2). Then we have

juj:

! 1 Zi : 1
X0 .
v (t) = (K) t a i X X (x;v (X)) dx
i=1 4
1 2 t x! !
+ ) X 1 (x;v(x)) dx
a
Zt by
=yt (1) LN (v (x) dx
a
where
! 1 Zi ! 1
X .
.= (K) LA T X vy
i=1 a
L P m 1 1
On the other hand, if u( )= iv(i)and I, u(a)= 1, v(a),then
i=1 i=
v = . Indeed,
! . [
. K)ot oa e A
J u vl i X
) o
JEcux)  f(xv(x)]dx
K i t a ! 1)(n Zi _ X ! 1
J(J) : : x Jju  vjdx
JjKj | 1I; )
t a . .
B L U V()
i=1
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Hence, , = . Then we have

Zt b
vt)= 4+ 1 tox x M (x;v(x)) dx:
(),
From inequality (3.9) and [Q3] for eacht 2 (a;d we have
1 2 t X 1

u()

0) x Y (x;u (x)) dx l. (t) ' (1)

Setp = sUP, @ P(t). From the hypothesis[Q3] and [Q4] for eacht 2 (a;j we
have

zt b
ju) v(@®j u@) (l) tox X (x;u(x)) dx

Zt b

; (1) EX i eum) (v (x)]dx

Zt o

b+ (1) t X X 12p( x)dx

(D +2p( 1. )( 1)

@a+2p! (1)

= (1):

Thus, the IVP (1.1) (1.2) is generalized Ulam-Hyers-Rassias stable with respect
to . This completes the proof.

Following theorem will be useful in the progress of our next result.

Theorem 3.3 ([1]). Let ( ;d) be a generalized complete metric space and a strictly
contractive operator : ! |, with a Lipschitz constantE < 1. If there exists a non

negative integerj such thatd( 1**u; *'u) < 1 for someu 2 , then the following
propositions hold true:

A: f lug,,, converges to a xed pointu of ;
B: u is aunique xed pointof in =fv2 : d( uv)<l1g;

C:ifv2 ,thend(v;u) i=d(v; u).

Let Z = Z (I; R) be the metric space with the metric

1
o 2 ju(t) v(t)j
dluv) = tszl(JeE)b] (1) '

Theorem 3.4. Assume that[Q3] and the following assumption hold.



EXISTENCE AND STABILITY OF NONLOCAL IVP 457

[Q5] There exists 2 C((a;H;[0;1 )) such that for everyu;v 2 R and for each
t 2 (a; 4, we have

Py

if (Gu) (V)] (0 v
If |
- G a ! <1
where = sup,,p (), then there exists a unique solutiong of the IVP (1.1) (1.2)
and IVP (1.1) (1.2) is generalized Ulam-Hyers-Rassias stable. Moreover,
U w2

Proof. Let the operator : C. ! C. be denedin(3.2). By using Theorem 3.3,
we have

. . 1 %4t x * . .
jcu@ (v () X it Gu(x) (v (x))jdx
Zt P
(1)a X %1 (%)
X 1 X a 1
u(x) D v (x) dx
zt g
(1) X %1 (0 (ki vk dx
( |:+) ( )ku vk
o(tku  vke
Hence,
My My M1
LX T w0 (v &2
(ku vke:
Thus, we have
d( u; V)= sup kWO ( vke Eku vk.:

t2(a;b] (1)

This completes the theorem.
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3.2. Examples.
Example 3.1 Consider the following IVP:

- ju(t)
1 D¢ = . —; t2(0;1];
$19 o {0 seE @y 2O
(3.11) 13, u(0)=5u ; +3u j o= o+ 1)
where =1, =2Z2and = 2. Setf (tu)= soe= (g L2 (01

It is obvious that the function f is continuous. For anyu;v2 R andt 2 (0; 1]
jEEu) FEV gl Vi

Thus, the condition [Q1] of Theorem 3.1 is satis ed, with) = 5. Moreover, with

some elementary computation for > 0 we have

8 2 ' e | 1/639 1

8 ! ! J
K= 2 ag 120 bg G0 T
and
§ 2 =3 g
_ 1 B@R2ISE) T, (2) 0 T @) 0
50e5 (1/2) :
I 102
N 1 0

o< 1

Hence, the condition Q2] of Theorem 3.1 is satis ed.

It follows, from Theorem 3.1, that the IVP (3.10) (3.11) has at least one solution
in Cys [0; 1].

Now, let ( t)= 7 andp(t) = 5=, then

50675
T
jf (tu(t)))6 505 t2 4 (14 ju(b)j)’

Thus, the condition [Q4] of Theorem 3.2 is satis ed and with the obvious elementary
computation, we have

1 1
X +(x) 1 4
loe ()= dx —B ;- 1 (t)y ! (1):
° (), @t x) ()
Hence, the condition Q4] of Theorem 3.2 is satised withh = —X-B ; %2 1 .1t

()
follows from the Theorem 3.2 that the IVP(3.10) (3.11) is generalized Ulam-Hyers-

Rassias stable.
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4. Conclusion

We have investigated the su cient conditions for the existence of solutions to the
nonlocal initial value problems involving generalized Katugampola derivative. We
have used Krasnoselskii xed point theorem to develop the existence results. Further,
we established some conditions for the generalized Ulam-Hyers-Rassias stability cor-
responding to the considered problem. Finally, as an application, a suitable example
is given to demonstrate our main results.
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AN OPERATIONAL APPROACH TO THE GENERALIZED
RENCONTRES POLYNOMIALS

EMANUELE MUNARINI !

Abstract. In this paper, we study the umbral operatorsJ, M and N associated

with the generalized rencontres polynomiaIsD,ﬁm)(x). We obtain their representa-

tions in terms of the di erential operator Dy and the shift operator E. Then, by

using these representations, we obtain some combinatorial and di erential identities

for the generalized rencontres polynomials. Finally, we extend these results to some

related polynomials and, in particular, to the generalized permutation polynomials
rgm)(x) and the generalized arrangement polynomialsﬁ\ﬁm)(x).

1. Introduction

1.1. Generalized rencontres polynomials. Let m 2 N. The generalized rencon-
tres polynomialsD (™ (x), the generalized permutation polynomiald®®{™ (x) and the
generalized arrangement polynomiala(™ (x) are de ned by (see [3,5])

!

X n
DIV =" A
k=0 I
X n
P{M™(x) = (m+n k)X
k=0 k

|
X n
— (m) k.
AME)= A
k=0
where the coe cients I
dm = Xon n ok k)1
=" (D m k).
k=0
Key words and phrases.Umbral operator, She er sequence, Appell sequence.
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are the generalized derangement numbers (see [3,5]), and the coe cients
|
0 !
am=" " (m+K)

k=0 k
are the generalized arrangement numbers. Fon = 0, we have the ordinary derange-
ment numbersd, [4, page 182] and the ordinary arrangement numbees, [4, page
75]. Since

X tn mle !

d(m)(t) - dm > = :
oMl T @ pme
X " m!

(m) t) = m+nNl—= —— -
X tn m!ée

(m) — (m) — .

a (t) - . + 1
LT T @ o

then we have the exponential generating series

X tn m!e(x 1t
(m)(y- — (m) - = d(m) (R
(1.1) D™ (x;1) n 0Dn (X)n! d'™ (t)e" 1 Hm’
X tn m!e
(m)(y- = (m) - = pm t— Tt .
(1.2) PM(x;1) n OF>n ()5 = P (e 1 pHm’
X tn mlex+1)t
(m)(y - — (m) - = a(m) t - .
(1.3) AM(x;t) n OAn () = a (He" 1@ ymi’
In particular, from these series, we also have
|
0 !
(14 DM =" L mE kxS

k=0 :

o
A (x) = E (m+ K)(x +1)" K
k=0

Clearly, the polynomialsP{™(x) and A{™(x) can be expressed in terms of the poly-
nomials D {™(x), namely

PM(x) = DM (x +1);
AlM(x) = D{M(x +2):
1.2. She er sequences and umbral operators. Given any polynomial sequence

fpn(X)gn o, Where eachp,(x) is a polynomial with degreen, we can consider the
linear operatorsJ; M;N : Q[x]! QIx] de ned for everyn 2 N, by

JIpn(X) = nNpn 1(X);  Mpn(X) = pr+2(X) and  Npy(X) = npn(X);
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whereJ is the umbral derivative (or lowering operator, or annihilation operator),M
is the umbral shift (or raising operator or creation operator) andN is the umbral
theta operator.

By She er's theorem [11], every linear operatoL : Q[x]! Q[x] can be represented
by means of an exponential series in the derivativB, with respect to x. More
precisely, there exists a unique polynomial sequentk,(x)g, o, WwhereL,(x) 2 Q[X]
for everyn 2 N, such that

X
Lp(x) =
k 0

Le(X) ~« _ N Li(x) .
ki Dy p(x) = - Tp(k)(x),

for every polynomial p(x) 2 Q[x] of degreen. For instance, the shift operatorE ,
de ned by E p(x) = p(x + ), is represented by the exponential series .

A She er sequence [2, 711] with spectrum (@Q(t);f (t)) is a polynomial sequence
fsn(X)gn o having exponential generating series

X n
6= (0= ae O
5005

n

whereg(t) = P 0 Ogn% andf (t) = P n Ofn% are two exponential series, withg, 6 0,
fo =0and f; 6 0. The umbral operatorsJ, M and N associated with a She er
sequencd s,(X)g, o with spectrum (g(t);f (t)) are given by [9, page 49, 50]

J = (D,);
_ g{®(Dy)) .
M = m + xf O('b(Dx)), |
gX(Dy)) '
N=MJ= 22X 4 xii(D,)) f(D,):
(D) + xf (D)) (D)

wheref(t) is the compositional inverse of (t). In particular, for an Appell sequence
[1,7,9,10], i.e., a She er sequende&,(X)gn2n With spectrum (g(t);t) (wheref (t) =
(t) = t), we have

(1.5) J=D,:
_dADy) | .
(1.6) = D) + X;
_ _ 94Dy) .
(1.7) N=MJ = 203 D, +XDy:

By identity (1.5), we have a(x) = na, 1(x) for everyn 2 N.
By series (1.1), (1.2) and (1.3), the generalized rencontres polynomi@$™ (x),
the generalized permutation polynomial${™(x) and the generalized arrangement
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polynomials A(™ (x) form an Appell sequence, respectively with spectrum
| | |
mle t m! ' mle '
1.8 —t —t d —t
(1.8) @ ol @ e an @ o
More generally, the shifted polynomialD (™ (x + ) form an Appell sequence with
spectrum
!

mlel Dt
t

(1 t)m+1 )

In this paper, we will determine the representation of the main umbral operators
associated with the generalized rencontres polynomials and then, by using these repre-
sentations, we obtain some combinatorial and di erential identities for the generalized
rencontres polynomials. Finally, we extend these results to the shifted polynomials
DM (x + ) and, in particular, to the generalized permutation polynomials{™ (x)
and the generalized arrangement polynomiak(™ (x).

(1.9)

2. Operators for the Generalized Rencontres Polynomials
Since the generalized rencontres polynomials form an Appell sequence, by identity
(1.5), we have
D,D™M(x)= nD{™,(x); foralln2N;

and, more generally,
|

" kIDI™ (x);  for all n;k 2 N:

k

For the second operatoM , we have the following result.

DX D{™M(x) =

Theorem 2.1. The operatorM is given by
m+ Dy N
1 Dy

Proof. The operator M is given by formula (1.6). By the rst spectrum in (1.8), we
have

(2.1) M =

. mlet o m+t gt)  m+t
g(t) = a om glt) = ﬁg(t) and 9y -1t

This implies at once formula (2.1).

From this theorem, we can obtain the following recurrence (already obtained in [3,
(10)] by using the exponential series techniques).

Theorem 2.2. The generalized rencontres polynomials satisfy the recurrence

(2.2) DIB(X) =(x+m+n+1)D{N(x) (n+1)(x 1DM(X):
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Proof. SinceMD (™ (x) = D{T} (x), by (2.1), we have
m + Dy

DR ()= T
X

D{M(x) + xD{™(x);
that is

(1 DODR () =(m+D)D{M(X)+ (1 D xD{™(x):
Hence, we have
D1 (X) DxDpty (x) = mD{™(x)+ Dx DI (x)+ xD{M(x) D{M(x) xDxD{™(x):
Now, since the generalized rencontres polynomials form an Appell sequence, we have
DI () (n+1)D{M(x) = mD{M(x)+ nD™(x)+xD{M(x) D{M(x) nxD "y (x);

that is
Dt (x) = (x+ m+nD{M(x) n(x 1)D"i(X):
Replacingn by n + 1, we obtain recurrence (2.2).

In a similar way, Theorem 2.1 implies the following result.

Theorem 2.3. The generalized rencontres polynomials 'satisfy the recurrence
o

X
(23) DI () =(x D)+ (m+1) | KID(X):
k=0
Proof. SinceMD (™ (x) = D%} (x), by formula (2.1) we have
+ D
DI (x) = T XD (x) + xD (M (x)
1 Dy
D
=m DIM(x) + 7—5-D{™(x) + xD{™(x)
1 DX 1 DX
= mX DXDM (x) + X DXDM (x) + xD (™ (x):
X n X n n :
k O k 1

SinceD{M(x) is a polynomial of degreen, we have

X‘ x
DM (x) = DXDM(x)+ =~ DXDM(x)+ xD ™ (x)
k=0 k=1

X k
=(x+mD{M(x)+(m+1)  D{DM(x)
k=1
X k
=(x+mD{M(x)+(m+1)  DyD{M(x) (m+1)D{M(x)
k=0
X k
=(x DM(X)+(m+1)  DEDIM(x):
k=0
Since the generalized rencontres polynomials form an Appell sequence, we have recur-
rence (2.3).
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Finally, as a direct consequence of (1.7) and Theorem 2.1, we have the following
result for the operatorN.

Theorem 2.4. The operatorN is given by
mD, + D2
1 Dy
Theorem 2.4 immediately implies the following di erential equation.

(2.4) N = + XDy :

Theorem 2.5. The generalized rencontres polynomials satisfy the di erential equation
(2.5) (x 1DAx) (x+m+n 1)DY(X)+ nD,(x)=0;

where, for simplicity, we writeD,(x) = D{™(x).

Proof. SinceND (™ (x) = nD{™(x), by formula (2.4), we have

D, + D2
M2+ D b1 (x)-+ x D, DY () = MDY ()
X

that is
(MDx+DHDM(x)+ (1 D,)xD,D™(x)= n@@ D,)D{M™(x):
Hence, settingD,(x) = D{™(x), we have
(MDx+ D)Dn(x)+ (1 Dx)XxDa(x) = n(1  Dy)Dn(x)
or
mD7(x) + Da{x) + xDa(x)  DR(x)  xDgtx) = nDa(x) nDR(x):
This relation simpli es in the di erential equation (2.5).
Notice that, due to the fact that the generalized rencontres polynomials form an

Appell sequence, the di erential equation (2.5) is equivalent to recurrence (2.2).
Finally, we have the following theorem.

Theorem 2.6. The generalized rencontres pollynomials satisfy the identity

X' n
(2.6) (m+n+1)DM(x) = (m+1) ‘
k=0
Proof. SinceND (™ (x) = nD{™(x), by (2.4), we have
Dy+ D2
ME* Pxpmx) + x Dy DM (x)
1 Dy

X X
=m  DyD{™(x)+  D{D{M(x)+ xDxD{™(x)

1 k 2
| |

! o o
kID™ (x) + ) kID™ (x) + nxD ™ (x)
k=2

kID{™(x)  mD{M(x)

KID{M () + n(x 1Dy (x):

nD{™ (x) =
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o
+ 7 T kD™ ) DMx)  nD M (x) + nxD ™, (x)

=(m +1) E kD™ (x) (m+1)DM(x)+ n(x 1)D™,(x):
k=0

and this simpli es in identity (2.6).
Notice that identities (2.3) and (2.6) imply recurrence (2.2).

3. Rodrigues-Like Formulas

In this section, we nd a Rodrigues-like formula for the generalized rencontres
polynomials. We start by proving the following simple result, generalizing identity
(1.4).

Lemma 3.1. We have the identity

X n
(3.1) DIV =, DMO)x )"k
k=0
Proof. By series (1.1), we have
migx Dt migx Otgl Dt miegl Dt

— — X )t
(1 t)m+l (1 t)m+l (1 t)m+l

DM (x:t) =

or
DM (x:t)= DM( :t)e*
This identity is equivalent to identity (3.1).

Remark 3.1 SinceD{™(0) = d™, DM (1) =(m+ n)l and DM (2) = ai™ for =1
identity (3.1) reduces to identity (1.4), while for =0 and = 2 identity (3.1)

becomes |

X n'
D{M(x) = dx" K,
k=0 kl
X n
D™ (x) = am(x 2k

=0 K
Now we can prove the following result.

Theorem 3.1. For the generalized rencontres polynomials we have the Rodrigues-like
formula

(3.2) D{™(x)= D™(; D)(x )™
In particular, we have

(3.3) DM (x) = d™ (D, )x"™;

(3.4) DM (x) = pP™(D(x 1)

(3.5) D{M(x) = a™(Dy)(x 2™
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Proof. From identity (3.1), we have
|

n D™
D)= ¢ b k= POy
k=0 k 0 '
0 kl
X
=@ pM()2A =DM DI )
k 0O '

This is (3.2). Then, (3.3), (3.4) and (3.5) can be obtained for =0, =1and =2,
respectively.

4. Final Remarks

As already noted in the Introduction, the shifted polynomialsD (™ (x + ) form an
Appell sequence with spectrum (1.9). From this simple observation, it is easy to see
that the associated umbral operatorsd , M and N are given by

J=J M =M+ and N =N+ Dy:

All the properties obtained for the generalized rencontres polynomials can be reformu-
lated for the shifted polynomialsD (™ (x + ), and, in particular, for the polynomials
P{M(x) and A{™(x). For instance, from recurrence (2.2), we obtain the recurrences

PR () = (x+ m+n+2)P(x)  (n+1)xP{™(x);
AR () = (x+m+n+3)AT(x)  (n+1)(x+1)AM(x)
and from di erential equation (2.5), we obtain the di erential equations
xPXx)  (x+ m+ n)P%x)+ nP,(x)=0;
(x+1)ARX) (x+ m+n+1)A%(x)+ nA,(x)=0;

where, always for simplicity, we writeP,(x) = P{™(x) and A,(x) = A™(x). Simi-
larly, from recurrence (2.3), we obtain the recurrences
|
X n
Pt () = xPM()+(m+1) " KIPM(X);

k=0 I

.
AT 0= (x+ DA +(m+1) KA );
k=0

and, from identity (2.6), we obtain the identities
|

>

(m+n+1)PM(x)=(m+1) KIP{™) (x) + nxP{™)(x);

0

k=
X

~ S _X S

M+ n+1)AM(x)=(m+1) KIAT (x) + n(x + 1) AT™ (x):

k=0
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Finally, from identity (3.1), we obtain th:a identities

X' n

PIME) =" RO )N
k=0 |
X n'

A= ATPOx )k
k=0

and, consequently, we have the Rodrigues-like formulas
PM(x) = PM(; Dy)(x )"
AMX) = AME DY )™

As a concluding remark, notice that in [6, 7] we have considered a slight variant of
the polynomials considered in this paper, namely the polynomia{ ’(x) and A{ )(x)
de ned by the exponential generating series

X tn e(x 1)t
DOX;t)= DUX) ==
( ) - n ( )n| (1 t)v+1

X n gx+1)t
AUt = ADX) — = s

where is an arbitrary symbol. Also these polynomials form Appell sequences and
the umbral operatorsJ, M and N are the same, except for the fact tham is replaced

by
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ON THE LIE CENTRALIZERS OF QUATERNION RINGS
MOHAMMAD ALI BAHMANI ! AND FATEME GHOMANJANI 2

Abstract.  In this paper, we investigate the problem of describing the form of Lie
centralizers on quaternion rings. We provide some conditions under which a Lie
centralizer on a quaternion ring is the sum of a centralizer and a center valued map.

1. Introduction and Preliminaries

Let R be a ring with the centerZ(R). For a;b2 R denote the Lie product ofa; b
by [a;d = ab baand the Jordan product ofa;bby a b= ab+ ba Let :R! R
be an additive map. Recall that is said to be a right (left) centralizer map if

(ab = a (b)( (abh = (a)b) for all a;b2 R. Itis called a centralizer if is both
a right centralizer and a left centralizer. We say that is a Jordan centralizer if

(@ bp=a (b forall a;b2 R. An additive map : R ! R is called a Lie
centralizer if

[a;d=[ (a);bl (or [a;H=[a; (D)]);
for eacha;b2 R. We say that :R! R is a center valued map if (R) Z(R).

In the recently years, the structure of Lie centralizers on rings has been studied by
some authors. An important question that naturally arises in this setting is under
what conditions on a quaternion ring, a Lie centralizer can be decomposed into the
sum of a centralizer and a center valued map. Jing [9] was the rst one who introduced
the concept of Lie centralizer and showed that every Lie centralizer on some triangular
algebras is the sum of a centralizer and a center valued map. The authors [6] proved
that a Lie centralizer under some conditions on some trivial extention algebras is the
sum of a centralizer and a center valued map. Fo2ner and Jing [3] studied this result
on triangular rings and nest algebras.

Key words and phrases.Centralizer, Lie centralizer, quaternion ring.
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Let S be a ring with identity. Set
H(S)= fsp+ sii+ sy +s3k:52Sg=S Si S]] Sk;
wherei? = j2 = k? = ij)k = 1 andij = ji. Then, with the componentwise
addition and multiplication subject to the given relations and the conventions that
i;j;k commute with S elementwise H (S) is a ring called the quaternion ring overs.

In this paper, we suppose thatS be an unital ring in which 2 is invertible. We
describe the Lie centralizers o (S), we show that if S is commutative or semiprime,
then every Lie centralizer onH (S) decomposes into the sum of a centralizer and
a center valued map. Among the reasons for studying the mappings on quternion
rings, we cite the recently published books and papers ([1, 2, 8]), in which the authors
have considered the important roles of quaternion algebras in other branches of
mathematics, such as di erential geometry, analysis and quantum elds.

2. Lie Centralizers of Quaternion Rings

Our aim is to study a Lie centralizer map on a quaternion ring. We give conditions
under which it is a sum of a centralizer and a center valued map. In the following,
we establish a theorem which will be used to prove the fundamental results. From
now on, we assume thas is a 2-torsion free ring with identity such that% 2 S and
R=H(S).

Theorem 2.1. Letf : R! R be a Lie centralizer. Then there exists a Lie centralizer
on S and a Jordan centralizer on S such thatf (t) = (X)+ (y)i+ (2)j+ (w)k
for every elementt = x + yi + zj + wk 2 R.

Proof. Assume thatf (i) = a+ bi+ ¢j + dk andf (j) = a°+ i + § + d% for some
suitable coe cients in S. Sincef is a Lie centralizer, we have

f(k)= 5flii1= 5t (1= bk di
Furthermore,
a+bi+c+dk=f(i)= ;f[j;k]: ;[f(j);k]: ) +

Therefore, we gela= d=0, ’= candc’= b. Hence,f (i) = bi+ ¢j andf (k) = bk
Sincef is a Lie centralizer, we have

R e
FG)= Stk = SIf (k)] = by
After renaming the constants, we obtain
(2.2) f(i)=a+bj; f()=a; f (k)= ak;
for suitable a; b;c2 S. Now, assume thatf (1) = t = x + yi + zj + wk. We have

O=f[Li]l=t it=2wj 2zk:
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Thus, w = z = 0. On the other hand, we have
0o=f[Lj]l=t jt=2yk 2wi:
Hence,y = w = 0. Therefore, we havef (1) = x 2 S. Let s2 S, we have
0=f[L1si]=(xs sx)i

Therefore, we getxs = sx. Hence,f (1) 2 Z(S). Let s 2 S and setf (si) =
X+ vyi+ zj+wk. Applying f on [si;i] =0, we getw = z = 0 and hencef (si) = x+ yi.
Now, applying f on the identities sk = 1[si;j], sj = 3[sk;i] and si = Z[sj;k], and
putting y = (s), we obtain

(2.2) f(siy= (s)i; f(sj)= ()i F(sk)= (9)k;

where :S! Sis an additive map uniquely determined byf .

Our next aim is to nd f (s) for arbitrary s 2 S. Setf(s) = x + yi + zj + wk.
Applying f on [s;i] = 0, we obtain 2zk +2wj =0. So,z = w = 0. Now, applying
f on|[s;j] =0, we obtain that y = 0. Therefore, we havef (s) = x. Putting x = (s),
we have

(2.3) f(s)= (s);

where :S! Sis a map determined byf . Sincef is a Lie centralizer, (2.3) implies
that is a Lie centralizer onS.

Let s;;8, 2 S. It is obvious that [s1i;S2)] = (S1 Sp)K; [S10;S210] = [S2; 1] and
[S1;s20] = [s1;S2]i. Now, applying f on this identities and using (2.2) and (2.3), we
nd, respectively, that

(2.4) (51 S2) = (s1) s2
(2.5) [s1;82] =[ (S1);82];
(2.6) [s1;82] =[ (s1);s2l:

(2.4) shows that is a Jordan centralizer onS. Now, lett = x + yi + zj + wk be an
arbitrary element in R. By (2.2) and (2.3), we geff (t) = (X)+ (y)i+ (2)j+ (w)k,
as desired.

As a consequence of Theorem 2.1, we have the following results.

Corollary 2.1. Let S be aZ2-torsion free commutative ring with identity such that
% 2S.Iff:H(S)! H(S) be a Lie centralizer, thenf is the sum of a centralizer
and a center valued map.

Proof. SinceS is 2-torsion free and commutative, the Jordan centralizer is a cen-
tralizeron S. Lett = x+vyi+zj+wk 2 H(S). Dene : H(S)! H(S) by
()= (X)+ (y)i+ (2 + (w)k. Itis easily veri ed that is a centralizer. By
Theorem 2.1, we havé (t) = ( t)+ (X) (X). It remains to show that the mapping
H(S)! H(S)given by ()= (x) (x) is a center valued map. Obviously,
is a well-de ned additive map such that (H(S)) S: By [4, Lemma 2.1], we
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have Z(H (S)) = S. Therefore, we have (H(S)) Z(H(S)). This completes the
proof.

Corollary 2.2. Let S be a2-torsion free semiprime ring with identity such that% 2 S.
If f : H(S) ! H(S) be a Lie centralizer, thenf is the sum of a centralizer and a
center valued map.

Proof. SinceS is a 2-torsion free semiprime ring, the Jordan centralizer is a cen-
tralizer on S by [10]. Now, let and be the mappings de ned in Corollary 2.1. It
is easily veri ed that is a centralizer. It remains to show that the mapping is a
center valued map. Lets;;s; 2 S. Since is a centralizer onS, from (2.6), we obtain

(2.7) [ (s1);s2]=1[ (s1) (s1);s2] = 0:

Lett= x+vyi+zj+wk, t°= x%°+ y3 + z§ + wk 2 H(S). Using (2.7), we have

[ ;9= (x) (x);t]
=L 00:xA+[ (x);y%i+[ 0;2% +[ (x);wIk
=0:

Therefore, we have (H(S)) Z(H(S)). This completes the proof.
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BASES OF THE PERTURBED SYSTEM OF EXPONENTS IN
WEIGHTED LEBESGUE SPACE WITH A GENERAL WEIGHT

SABINA R. SADIGOVA 12 AND AYSEL E. GULIYEVA 3

Abstract.  The weighted Lebesgue and Hardy spaces with a general weight are
considered. Basicity of a part of exponential system is proved in Hardy classes, where
the weight satis es the Muckenhoupt condition. Using these results the basicity of
the perturbed system of exponents in the weighted Lebesgue space is studied. Some
special cases are considered.

1. Introduction

When solving many problems for equations of mixed type by Fourier method (see
e.g., [1113,18]), there appear perturbed systems of sines and cosines of the following
form

(1.1) fsin(nt+ (1))g,,y; fcost+ (1))g,,n:

where :[0; ]! R s some real function. Veri cation of the Fourier method requires

to study basis properties (completeness, minimality, basicity and etc.) of systefh.1)

in the appropriate spaces of functions (usually in Lebesgue or Sobolev spaces). In
Lebesgue spack, L,(0; ),1<p< +1,these problems have been well studied
for a wide class of functions () in [1 6,14,15,21,22]. Basis properties of system
(1.1) are closely related to the analogous properties of the system of exponents of the
form

n 0
(1_2) e|(nt+ (t)sgnn) :

n2z

Key words and phrases.Weighted space, system of exponents, basicity.
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where :[ ; ]! R is some function. These problems with respect to the systems
(1.1), (1.2) in weighted Lebesgue spaces with a power weight have been studied in
[9,16,17,20].

In this work, the basicity of system(1.2) is studied in weighted Lebesgue space
L. Lo. (5 ), with a general weight (). For the basicity of this system in
L,. the su cient conditions on the function () and weight () are obtained. For
this, rstly, the weighted Hardy classesH ., are de ned, the basicity of a part of
exponential system is studied in these classes, and these results are applied to the
basicity of the system (1.2) inL,. .

2. Necessary Facts

Let C be the complex plane and = fz 2 C: jzj < 1g be the unit circle onC. The
expressionf g, in M, means that the following inequality is true

exists > 0: F(x) 1 forall x 2 M:
g(x)
Let us consider the basicity of the following parts of exponential system
n (0]
int .
(2.1) e" n2z, '
n int ° .
(2.2) e o

in weighted space#d S;d and mH .4 , respectively. These facts are needed in the study
of basicity of the perturbed system of exponents with a phase in weighted Lebesgue
spacesL,q . It should be noted that for the basicity of the exponential system
fe"g.,,,inLyq itis necessary that the weight function () be absolutely continuous
on[ ; ] Indeed, in the case of basicity the following conditions (biorthogonality
condition) 7

e'd =0; foralln 1;

should be ful lled. And these conditions imply that (see, e.g., I. I. Privalov [19] or I.
l. Danilyuk [7]) () is absolutely continuous on [ ; ], and let

M= °t); t2( ; ):
Therefore, in the sequel, we will consider the weighted Lebesgue spage
Lp. (5 ), with a norm
y4 1
kf K, = if )" (t)dt "; forallf 2 Ly :

Based on this norm, weighted Hardy classés,. :
n (0]
Hp. f2H; :f" 2Ly ;

are de ned, endowed with the norm
kf Kk, s = f :
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wheref * = f=g, is a restriction of the functionf on @!.

Similarly we de ne the weighted Hardy class,H,. of functions which are analytic
outside the unit circle! . Let mH, be a usual Hardy class of functions that are
analytic outside the unit circle! and have a pole of ordek m at in nity. Assume

[0}

n
mHp. f2nH, :f 2L,
The norm is de ned by the expression
kf kap; = f p; !
wheref = f=g, is the restriction of functionf 2, Hp on @

3. Basicity of System of Exponents in L.

Consider the weighted spack,. , 1<p< +1 ,where () is some weight. Assume
that () satis es Muckenhoupt condition (see, e.g., [8])
1 Z ! 1 Z L ! p 1
(3.2) sup  — (tydt — j (t) » 1t dt < +1:
b o
Since 2 L,,itis clearthat fé™g ,, Ly . Consider the functionalsf#,g,,,

y
#o(f) = 21 f (t)e "dt; foralln2 Z:

We have
z z

(3.2) j#n(f)j=21 f() (e ™ 7(t)dt 21 Pt)dt Tkfk

Q-

whereq is the conjugate of a numbep, %+ % = 1. From the condition (3.1) it directly
follows z

p(t)dt < +1 :

Then from the inequality (3.2) we obtain that the functionals #, are continuous in
Ly , for all n 2 Z, and moreover#, gkt =  forall njk 2 Z. As a result the
systemfeM g, ,, is minimal in L,. . Consider the partial sums

xn )
Sn(f)= #o(F)em; f2Lp:
n= m
We have 12
Sm(f)=2— f()Dn(x t)dt; m2N;

whereD, () denotes the Dirichlet kernel
i 1
sin m+ 3 t

Dn(t) = >sint ;o m2N:
2
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As it known (see, e.g., Dj. Garnett [8]) if 2 A,, then the Hilbert transformation is
bounded inL,. . Hence, it directly follows that

kSm (k. M kfk, ; forallm2N;

holds, whereM > 0 is an absolute constant. As a result, it follows from the basis
criterion that the system fe™ g, ,, forms a basis forL,. . It is easy to see that for
p = 2 it forms a Riesz basis inL,. if and only if 1.

Statementl. Let 2 A,. Then the system of exponent$e™g, ,, forms a basis (for
p =2 it forms a Riesz basis if and only if 1)in L, .

In the casep = 2 this fact has been previously established by K. S. Lizorkin, P. I.
Ghazarian [10].
Take an arbitrary f 2 Hj. and let 2 Ap. Asf 2 H{, itis clear that
z

f* & eMdt=0; foralln2N;
holds. Then by Statement 1 the functionf * has the following representation irL
f+ eit — * fneint.
n=0

where 7
f,=— f* d eMdt; foralln2 Z,:

Consider the functionalsfH; g,,,,
HY (f)= 212 f* & e™dt; n22z,:
Following (3.2), we have
H (f) 21 ’ p (1) dt g X :21
forall f 2 HJ. . This implies the inclusionfH g,,, Hp,.  and moreover it is
evident that

Z ] 1
p(t)dt K Ky

HY z¢ = . forallnk2z,;

i.e., the systemfz"g,,,. is minimalin H. . Itis absolutely clear that the expansion

*
f (2)= fnz";
n=0
is true in H;. . As a result, we obtain the basicity of the systenfiz"g.,, in H. .
Restrictions of classH;. (mH,. ) to the unit circle @! will be denoted by L.
(mLp: ). Itis easy to see that the systenf gt U2z, forms a basis forL . .
Similarly, we prove the basicity of the systenfz "g, .. (fe ™g, ..)in nH
(mLp; )- Thus, the following theorem holds true.

p;
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Theorem 3.1. Let 2 Ap,, 1<p< +1 . Then
i) the systemf z"g,,,. (fe™g,,, ) forms a basis forH,. (for L. );
i) the systemfz "g, . (fe g, ) forms a basis formH,. (mLp: ).
For p =2 these bases are Riesz bases if and only if 1on[ ; .

4. Bases from the Perturbed System of Exponents in Lp;

Consider the following system of exponents

(4.1) ei(nt 3 (t)sgnn)
n2z

where () is a piecewise Holder function ofi ; 1. Let fscg; : <s ;< <
S < be the points of discontinuity of the function () and

he= (s+0) (s« 05 k=TT

be the corresponding jumps of () at these points. Assuméyg = () (). By
I () denote the following weight function

=2

h
270 Y ot Sk 27k

SIn > .
k=1

I (t) sint >

Consider the following non-homogeneous Riemann problem in clasbgs 1H,,

(4.2) ez OF* g dzOF & =f(): t2( ; );
wheref 2 L. is an arbitrary function. Suppose that the following conditions hold
hy
(4.3) L P2 A 2—< 1, k=0r:
Then the problem (4.2) has a unique solution of the form
z

_Z( f (1) de

(4.4) @)= Z(e) 1 zet’

whereZ () is the canonical solution of the corresponding homogeneous problem
elzlzr & di0z & =0; t2( ; );
which is de ned by the following expressions
" x (2); jg<y
X Y(2); jzj> 1
. Z :
X (z) exp 4|— (1) Sz i 2

Z (2)
)
dt
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Applying Sokhotski-Plemelj formulas to (4.4) we get

pow 1 ARCORR R C) ds e
Frod =2t =5 7 @) 1 a9 ST O
] 1 7 (&) Z (€Y% (s ds
ke 2727y W 3 Z (e 1 et 9
el Z (9% (s ds .
= St = 7 @) 1T a9 ST O

Let us assume that 2 Ap. Then, by Theorem 3.1, the systenfie™ g,,,. (fe ™g,,\)
forms a basis foL;. (for L, ). As

jZ©)j t<+1; jZ(@)jt<+1;

it is clear that the inclusions
it . it .
F* € 2L;;, F e 21L,,;

hold. By fH, 0., ibp (FHY Ghs2, L, ) denote the system biorthogo-

naltofe Mg, (fe"g,,,. ). We expand the functionsF (€") with respect to these
bases

+ it — X_ + + int .
(4.5) F* & = Hy S'f €&,
n=0
. R .
F & = H, Sf e™:
n=1

Substituting these expansions into(4.2) we obtain that the function f () can be
expanded in series by the syster@#.1) in L ,. . Let us show that such a decomposition

is unique. Take the functionf (t) = e 'z Mkt in (4.2), wherek 2 Z. is some number.
The following functions

F'(2 2% F (@ O
are also the solutions of this problem. Comparing this solution witl4.5), from the
unigueness of the solution of the problem (4.2) we obtain

®) = . forallnk2Z,;

[N

(4.6) HY st €k
(4.7) H, s €&l zM) =0: foralln2N;k2Z,:

From similar considerations it follows

(4.8) H s el 20) =0; foralln22z,;k2N;

H, s el z0) = - forallnk2N:
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Operators S boundedly act inL,. . Indeed, it suces to prove that the integral
operator .
f (s) ds
Z+ (e|s) 1 ei(t S)
is bounded inL . . The conditionf 2 L. implies the inclusiong = f b2 Lp,. We
have

(Sf)(t)= z* €

g - 90 ds

Z*(es) #(s) 1 €7

(sf)(m=2z"

i Z g(s) ds

1 h : 1
p(t) ZT et b (t . . :
() () 7+ (elS) E(S) 1 et s

(4.9)

It is easy to see that
AR L (s); s2[ : I:
So,! P 2 A,, it follows from (4.9) that
(Sf) » o Mkgk,= M f b = MKk, ;
i.e.,
kStk,  Mkfk, ;

whereM > 0 is a constant independent of . This means that the operatorS is
acting boundedly inL . .

Thus, we have proved thatfH, S g (Lp ). Then (4.6), (4.8) imply the
minimality of the system (4.1) inL,. . The following theorem is true.

Theorem 4.1. Let the following inequalities be satis ed

n 0 -
(4.10) 1P Ay he<2; k =0r;
where the weight function () is de ned by the expression

y Ny

F(t) = sint S 2 i So= ;

k=0 2
he; k = 1;r are jumps of the function () at points <s,< <s, <
ho = () ( ). Then the system of exponent$4.1) forms a basis forL,,. ;
1<p< +1. For p=2 it forms a Riesz basis fol,. if and only if lon[ ; 1]

Let us consider some special cases of this theorem. Let the weight functiof)
have the form

L :
(4.11) = jt tj*;
k=1
whereftcg;' ( ; ) are distinct points. Suppose that the condition

\
(4.12) fsgy ftegy =;
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holds. In this case, the product P has the representation
o Yty B
PP ()=t tj - sin k2
k=1 k=0 2
It is easy to see that! P 2 A is true if and only if the following inequalities are
satis ed (see, e.g., J. Garnett [20])

phy
1< > <p

1, k=0;r;
1< y<p 1 k=Im:

Thus, the following corollary is true.

Corollary 4.1. Let the condition (4.12) hold and the inequalities
}<&< l; k=0;r;
q 2 p
1< y<p 1, k=Im

be fullled. Then the system of exponent§t.1) forms a basis inL,. , 1<p< +1.
Consider the particular case for the functions () and ()
M= t+ sont; t2[ ; I, ()=t :
The function () has a unique point of discontinuitys; = 0. We have
hy = (+0) (0=2; ho= ( ) ()= 2 2

As a result! () is of the form

sin— )
2

pttjt O 5t 5O w2

| ()= sin

Consequently,

BRI O I T (L TR (A
Applying Theorem 4.1, we obtain the following.
Corollary 4.2. Let the inequality

P 1 1

1< <p 1 1< <p 1 -< +—-< =

be ful lled. Then the system of exponents

n (o]
ei [(n+ sgnn)t+ sgntsgnn]

forms a basis forL;; , 1<p< +1.
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HYPERGROUPS DEFINED ON HYPERGRAPHS AND THEIR
REGULAR RELATIONS

MADELEINE AL-TAHAN ! AND BIJAN DAVVAZ 2

Abstract.  The notion of hypergraphs, introduced around 1960, is a generalization
of that of graphs and one of the initial concerns was to extend some classical results
of graph theory. In this paper, we present some connections between hypergraph
theory and hypergroup theory. In this regard, we construct two hypergroupoids by
de ning two new hyperoperations on H, the set of all hypergraphs. We prove that
our de ned hypergroupoids are commutative hypergroups and we de ne hyperrings
on H by using the two de ned hyperoperations. Moreover, we study the fundamental
group, complete parts, automorphism group and strongly regular relations of one of
our hypergroups.

1. Introduction

Hypergraphs generalize standard graphs by de ning edges between multiple vertices
instead of only two vertices. Hence some properties must be a generalization of graph
properties. Formally, a hypergraph is a pair = (X;E), where X is a nite set of

X . The term hypergraph was coined by Berge [2,4], following a remark by Jean-Marie
Pal who had used the word hyperedge in a seminar. In 1976, Berge enriched the eld
once more with his lecture notes [5], also see [3]. The hyperstructure theory was born
in 1934, when Marty introduced the notion of a hypergroup [16]. Since then, many
papers and several books have been written on this topic (see, for instance [&(818]).
Algebraic hyperstructures are a suitable generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements is an element, while
in an algebraic hyperstructure, the composition of two elements is a set. After that,
many researchers in the eld of hyperstructure theory tried to make connections

Key words and phrases.Hypergraph, hypergroup, fundamental relation.
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between hypergraphs and hyperstructures, for example see [7,14]. Corsini in [7]
associated to every hypergraph a commutative quasihypergroupl and found a
necessary and su cient condition on so that H is associative. In this paper we
continue the study between hypergraphs and algebraic hyperstructures.

Our paper is organized as follows. After an introduction, Section 2 presents some
basic de nitions concerning hypergroups and hypergraphs that are used throughout
this paper. Section 3 de nes a new hyperoperatior?) on H, the set of all hypergraphs
and proves some interesting results about(, ?). Section 4 presents the fundamental
group of our de ned hypergroup H;?) and studies its regular relations, complete
parts and its automorphism group. Section 5 de nes another new hyperoperation)(
on H, studies homomorphisms betweerH(; ?) and (H; ) and de nes hyperrings on
H.

2. Basic Definitions

In this section, we present some de nitions related to hypergroups and hypergraphs
that are used throughout the paper.

Let H be a non-empty set. Then, a mapping :H H ! P (H) is called a
hyperoperationon H, whereP (H) is the family of all non-empty subsets oH. The
couple H; ) is called ahypergroupoid In the above de nition, if A and B are two
non-empty subsets oH and x 2 H, then we de ne:

A B= 3 a b, x A=fxg A and A x=A fxg

azA
b2 B

An elemente 2 H is called anidentity of (H; )if x 2 x e\ e xforallx2H

and it is called ascalar identity of (H; )if x e=e x = fxg,forallx 2 H. If

e is a scalar identity of H; ), then e is the unique identity of (H; ). An element

x 2 H is calledidempotentif x x = x. An elementy 2 H is said to be aninverse

ofx 2 Hife2x y\y x, whereeis an identity in (H; ). The hypergroupoid

(H; ) is said to becommutativeif x y =y x forall x;y 2 H. A hypergroupoid

(H; ) is called asemihypergroupif it is associative, i.e., if for everyx;y;z 2 H, we

havex (y z) =(x vy) z andis called aquasihypergroupf for every x 2 H,

x H=H = H x. This condition is called the reproduction axiom. The couple

(H; ) is called ahypergroupif it is a semihypergroup and a quasihypergroup. A subset

S of a hypergroup {; ) is called subhypergroumf H if it is a hypergroup under .

A subhypergroupK of a hypergroup fH; )isnormalifa K =K aforalla2 H.

A hypergroup (H; ) is called aregular hypergroupif it has at least one identity and

each of its elements admit at least one inverse. A subdef H is called ahyperideal

of Hif IH H. AhypergroupH is said to besimpleif H has no proper hyperideals.
Cyclic semihypergroups have been studied by Desalvo and Freni [11], Vougiouklis

[19], Leoreanu [15]. Cyclic semihypergroups are important not only in the sphere of

nitely generated semihypergroups but also for interesting combinatorial implications.
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A hypergroup (H; ) is cyclic if there existsh 2 H such that
H=h[h*[ [ h]
If there existss 2 N such thatH = h[ h?[ [ hSthenH is cyclic hypergroup with
nite period. Otherwise, H is called cyclic hypergroup with in nite period. Here,
h' = [1 h z I‘}l It is a single-power cyclic hypergrou there existsh 2 H such

i times

that
H=h[h[] [ h and h[ h?[ [ h''! h'; foralli2N:

Let (H;?) and (H%?) be two hypergroups. A functionf : (H;?)! (H%?) is said
to be aweak homomorphisnif f (x; ? Xo) \ f(x1) 2°f (x2) 6 ; forall x;;x, 2 H. Itis
called homomorphismif f (x; ?x,)  f (x1) ?°f (x2) for all x1;%, 2 H. And it is called
a good homomorphisnif f (x; ? x,) = f (x1) 2°f (x2) for all x1;%x, 2 H.

Two hypergroups are said to bésomorphicif there exists a bijective good homomor-
phism between them. An isomorphism fromH; ?) to itself is called anautomorphism
The set of all automorphisms of ifl; ?) is written as Aut(H; ?).

3. Hypergroup (H;?) Associated to hypergraphs

In this section, we de ne a new hyperoperation?) on the set of all hypergraphs
H and we study some properties ofH; ?).
A partial hypergraph is a hypergraph with some edges removed.

De nition 3.1. Let H be the set of all hypergraphs and de n& as follows. For all
Hi:H> 2 H,

Hi?H,= [ fK 2 H: K is a partial hypergraph ofH; [ H.g:

H,: [ H; is the union of all hyperedges fronH,; and H,. If the same hyperedge
corresponding to the same set of vertices occur in botth; and H, then we consider
itonce inH;[ Ha.

Example3.1 We present an example on the union of two hypergraphs illustrated in
Figures 1, 2 and 3.

Proposition 3.1. LetH;;H,2 H. ThenfH;H,g Hi?Ho,.
Proof. The proof results from havingH; H, partial hypergraphs ofH, [ H».
Proposition 3.2. LetH 2 H. ThenH™ = H? forallm 2.
Proof. For m 2, we have that
H™ = fK 2 H:K is a partial hypergraph of’—H_H{ZMg

m times

fK 2 H: K is a partial hypergraph ofHg
= HZ
Therefore,H™ = H? forallm 2.
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Figure 1. HypergraphH;

Figure 2. HypergraphH,

Figure 3. HypergraphH.[ H;

Theorem 3.1. (H;?) is a commutative hypergroup.

Proof. Let H1;Ho;H3 2 H. It is easy to see thatH; ?H, = H, ?H; asH;, [ H, =
H,[ Hi. Thus, ? is a commutative hyperoperation.

It is clear that H; ?H  H. We need to show now thatH H;?H. Let H, 2 H,
thenH, 2 H; ?H, H;?H by Proposition 3.1. Thus, H;?) is a quasihypergroup.
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We have that
Hi?(H,?H3)=H;, ?[ fK : K is a partial hypergraph ofH, [ Hzg
= fH;?K :K is a partial hypergraph ofH, [ Hzg
= [ fM : M is partial hypergraph ofH; [ K,
K is partial hypergraph ofH, [ Hsg
= fM : M is a partial hypergraph ofH; [ H,[ Hsg
=partial hypergraphs of H; [ H,[ Has:
On the other hand, we have that
(Hi?H,) ?Hs = [ fK : K is a partial hypergraph ofH, [ H,g? Hs
= fK?Hj3:K is a partial hypergraph ofH; [ H.g
= [ fM : M is partial hypergraph ofK [ Hg,
K is partial hypergraph ofH, [ Hg
= fM : M is a partial hypergraph ofH; [ H,[ Hsg
=partial hypergraphs of H; [ H,[ Has:
Therefore, H; ?) is a commutative hypergroup.

Proposition 3.3. The only idempotent elements irfH; ?) are hypergraphs with one
hyperedge.

Proof. A hypergraph with exactly one hyperedge has only one partial hypergraph
(which is itself) and hence it is idempotent.
If H is an idempotent in H; ?), then

H?H = K :K is a partial hypergraph ofHg = H:
The latter implies that H has only one partial hypergraph. ThusH has one hyperedge.

Proposition 3.4. (H;?) is a regular hypergroup.

Proof. Proposition 3.1 implies that every element irH is an identity asH; 2 H; ? H,
forall Hy;H, 2 H. Let 1 (H;) be the set of all inverses oH; in H. It is clear that
I (Hy) = H.

De nition 3.2. A nonempty subsetM of a hypergroup H;?) is linear if ? M
and = M forall , 2M.Here,= =fx2H| 2x? g

Proposition 3.5. (H;?) has no proper linear subsets.

Proof. Let M be a linear subset ofl;?) and H; 2 M. Having M a linear subset of
(H;?) implies that H;=H; M. We have that

H]_:Hl:fK 2H:H{2 K’)ng



492 M. AL-TAHAN AND B. DAVVAZ

The latter and Proposition 3.1 imply that H;=H; = H M.
Proposition 3.6. (H;?) has no proper normal subhypergroups.

Proof. For contradiction, suppose thatN is a proper normal subhypergroup ofH; ?).
Then there existsk 2 H that is not in N. Having that k 2 k ? N (by Proposition 3.1)
implies that N 6 k ? N.

Proposition 3.7. (H;?) is a single power cyclic hypergroup with one generator and
period two.

S . . .
Proof. Let = ", ,4Hi 2 H. Itis clear that is a generator ofH of period two.

Moreover, 2 2= H.

Proposition 3.8. Let I\/} be any non-empty set of hypergraph)s and

is a partial hypergraph of [ K
K2M

Kwm

Then (Ky ;?) is a cyclic subhypergroup ofH; ?).
Proof. The proof is straightforward.

Proposition 3.9. A subsetA of H is a proper subhypergroup ofH; ?) if and only if
A = Ky for some non-empty seM of hypergraphs.

Proof. Let A be a proper subhypergroup ofH; ?) and syppose, for contradiction, that
A 6 Ky . Then there existsK , a partial hypergraph of = ,, thatis notin A. The
latter implies that K is in the hyperproduct of all elements ofA.

Proposition 3.10. (H;?) is a simple hypergroup.

Proof. Let | be a proper hyperideal ofld;?). Then IH | and there existsH 2 H
such that H is not an element inl. Having H 2 IH implies that H 2 | which
contradicts our hypothesis thatH is notin |.

Corollary 3.1. The only subhypergroups dfH; ?) are (Ky ;?) and they are cyclic.

Proof. The proof results from Propositions 3.8 and 3.9.

4. Fundamental Relation, Automorphism Group and Complete Parts
of (H;?)

In this section, we present some results related to fundamental relation, automor-
phism group, strongly regular relations and complete parts oH( ?).

De nition 4.1. Let (H; ) be a semihypergroup andR be an equivalence relation on
H. If A and B are non-empty subsets oH, then

(a) ARB means that for everya 2 A there existsb 2 B such that aRb and for
every 2 B there existsa”2 A such that a®Rb’
(b) ARB means that for everya2 A and b2 B, we haveaRh.
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The equivalence relatiorR is called

(a) regular on the right (on the left) if for all x 2 H, from aRb, it follows that
(a x)R(b x) ((x a)R(x b) respectively);

(b) strongly regular on the right (on the left) if for all x 2 H, from aRb, it follows
that (a x)R(b x) ((x a)R(x b) respectively);

(c) regular (strongly regular) if it is regular (strongly regular) on the right and on
the left.

Theorem 4.1 ([9]). Let (H; ) be a hypergroup andR an equivalence relation orH.
Then R is strongly regular if and only if(H=R; ), the set of all equivalence classes,
is a group. Here,x y=1fz:x2x ygforall x;y2 H=R.

The fundamental relation has an important role in the study of semihypergroups
and especially of hypergroups.

De nition 4.2  ([9]). For all n 1, we de ne the relation , on a semihypergroup
H, as follows: ; is the diagonal relation and, ifn > 1, then

S . "
= ", 1 nand ?is the transitive closure of .

? ?

is called the fundamental equivalence relatioon H and H= * is called the
fundamental group

? is the smallest strongly regular relation orH and if H is a hypergroup then

- 7

Proposition 4.1. (H;?) has trivial fundamental group.

Proof. Let Hy;H, 2 H. Proposition 3.1 asserts thatH,;H,g Hj; ?H,. The latter
implies that H,; ,H,. We get now thatH; H ,. Since H; ?) is a hypergroup, it follows
that = 7. Consequently,H= ? has only one equivalence class.

Proposition 4.2. Let R be an equivalence relation oil. Then R is strongly regular
relation on H if and only if H=R is the trivial group.

Proof. Theorem 4.1 asserts that iH=R is the trivial group then R is strongly regular
relation on H. B

Let R be a strongly regular relation orH. For all x 2 H, if aRbthen (a?xX)R(b?X).
The latter and havingx 2 b?x a2 a? x imply that aRx. Thus, H=R contains only
one equivalence class.

De nition 4.3. Let (H; ) be anH,- group andA be a nonempty subsetoH. A is a
complete part ofH if for any natural number n and for all hyperproductsP 2 Hy (n),
the following implication holds:

A\P6;) P A:
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Proposition 4.3. The complete part of(H; ?) is H.

Proof. Let A be a complete part of H;?) and a 2 A. Proposition 3.1 asserts that
forall b2 H,a2 A\ (a?b 6 ;. Having A a complete part ofH implies that
b2a?b A.

Proposition 4.4. Letf 2 Aut(H;?) and 2 H. If is a partial hypergraph of ,
thenf ( ) is a partial hypergraph off ( ). Moreover, andf ( ) have same number
of partial hypergraphs.

Proof. Let f 2 Aut(H;?) and 2 H. Havingf( ? )= f( )?f( ) implies that
ff(): ispartialof g=f : ispartial of f( )g. The latter implies thatif is a
partial hypergraph of thenf ( ) is a partial hypergraph off ( ). Sincef is bijective,
it follows that and f ( ) have same number of partial hypergraphs.

Theorem 4.2. Let f be a bijective function. Thenf 2 Aut(H;?) if and only if for
all ; 2 H the following conditions are satis ed:

1.if is a partial hypergraph of thenf ( ) is a partial hypergraph off ( ), and
2.1(? ) f()?2f().

Proof. Letf 2 Aut(H;?)and 2 H. Thenf(? )= f( )?f( ). The latter and
Proposition 4.4 imply that conditions 1. and 2. are satis ed.

Let f be any bijective function satisfying conditions 1. and 2. and let 2 H.
Since ; are partial hypergraphs of [ , it follows by condition 1. that f ( ), f( )
are partial hypergraphs off ( [ ). The latter implies that f ( )[ f( ) is a partial
hypergraph off ( [ ). Moreover, every partial hypergraph of ( )[ f( ) is a partial
hypergraph off ( [ ). We get now that

f()?f()=f 2H: ispartial hypergraph off ( )[ f( )g
f 2 H: is partial hypergraph off ( [ )g:
Consequently, we getthatf ( )?f( ) f( ? ). Thus, f is a good homomorphism
by condition 2.

Remark 4.1 It is easy to see that the identity function satis es conditions 1. and 2.
of Theorem 4.2.

Example4.1. Let H 2 H, be the hypergraph with vertexv; having only one
hyperedge and be the hypergraph with vertexv, having only one hyperedge. We

denef :(H;?)! (H;?) as follows:
8
5 H; if [ is a partial hypergraph ofH;
H; if neither nor are partial hypergraphs ofH ;
3 [ (Hnf g); if isa partial hypergraph ofH;
[ (Hnf g); if isa partial hypergraph ofH.
Thenf 2 Aut(H;?).

It is clear that f is a bijective function. Also, one can easily show thdt satis es
condition 1. and 2. of Theorem 4.2.

f(H)=
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5. Relation of  (H;?) to Another Hypergroup (H; )
In this section, we de ne a new hyperoperation () on H and nd some relations
between H;?), de ned in Section 3, and H; ).

De nition 5.1. Let H be the set of all hypergraphs and de neH; ) as follows. For
al H;;H, 2 H
Hy Hz=fHiH Hi[ Hag

We present some results onH; ) in which their proofs are easy.
Theorem 5.1. (H; ) is a regular commutative hypergroup.
Proposition 5.1. Every element in(H; ) is idempotent.
Proposition 5.2. (H; ) has no nontrivial cyclic subhypergroup.
Proof. Proposition 5.1 asserts that * = forall 2 Handk 2 N.

De nition 5.2. Let (H; ) and (H;?) be two hypergroups. We say that ?if
there isf 2 Aut(H;?) such that f()?f( )forall ; 2H.

Proposition 5.3. 2.

Proof. Leti: (H;?) ! (H;?) be the identity map de ned by: i(H) = H forallH 2 H.
It is clear that i 2 Aut(H;?).

Forall Hy;H, 2 H, we have each elementinl; H, = fHy; Hy; Hi[ Hogis a partial
hypergraph ofH,; [ H,. On the other hand, we have thati(H;) ?i(H,) = Hy ?H, is
the set of all partial hypergraphs ofH, [ H,. Thus, H; H, i(Hy) ?i(H)).

De nition 5.3. Let R be a nonempty set with two hyperoperations (+ and). We
say that (R;+; ) is a hyperring if (R;+) is a commutative hypergroup, R; ) is
a semihypergroup and the hyperoperation is distributive with respect to +, i.e.,
X (yt+z)=x y+x zforall x;y;z2 R.

If the hyperoperation is weak distributive with respect to +, i.e.,x (y+ 2)
x y+x zforall x;y;z2 R, we say R; +; ) that is a weak hyperring.

Proposition 5.4. (H;?; ) is a weak commutative hyperring.
Proof. Propositions 3.1 and 5.1 imply that H; ) and (H; ?) are commutative hyper-

groups. We need to prove thatif;?; ) is weak distributive. For all ; ; 2 H we
have [
(? )= f . is a partial hypergraph of [ g
= f;; [ : lsapartial hypergraphof [ g:

On the other hand, we have that
( )2 H)=f;: [ g?f;; [ ¢
= partial hypergraphsoff; [ ; [ ; [ [ ; [ 9
= partial hypergraphs of [ |
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Itiseasytoseethat (? ) ( ) ?2( ).
Proposition 5.5. (H; ;?) is a commutative hyperring.

Proof. Propositions 3.1 and 5.1 imply that H; ) and (H;?) are commutative hy-
pergroups. We need to prove thatli; ;?) is distributive. For all ; ; 2 H we
have

?(

~—
1

2t [ 9
partial hypergraphs of [ |

On the other hand, we have that
(? ) (7? )=partial hypergraphs of [ partial hypergraphs of [
| f; % [ ?: and ?are partial hypergraphs
of [ and [ respectivelyg
=partial hypergraphs of [ |
Thus, ? ( )=(? ) (? ).

Proposition 5.6. Letf : (H; ) ! (H;?) be any function. Thenf is a weak
homomorphism.

Proof. Let ; 2 H. We have thatf ( y=1Ff(C );f( );f( [ )g. Havingf( ),
f () partial hypergraphs off ( )[ f( ) implies that

fEC):f(l)g fC HVF()?f()6;:

Proposition 5.7. Letc:(H; )! (H;?) be the constant function de ned byc(H) =
K, whereK is the hypergraph de ned on any set of vertices with one hyperedge. Then
c is a good homomorphism.

Proof. The proof is straightforward by Proposition 3.3.

Proposition 5.8. Letf : (H; )! (H;?) be any function that is not equal to that
de ned in Proposition 5.7. Then f is not a good homomorphism.

Proof. Let H be a hypergraph such thatf (H) has more than two hyperedges (such
an element exists). We have that (H H)= f(H) andf (H) ?f(H) is the set of all
partial hypergraphs off (H). Sincef (H) has more than two hyperedges, it follows
that jf(H) ?f(H)] 2. Thus,f is not a good homomorphism.

Proposition 5.9. Letf : (H;?) ! (H; ) be any function. Thenf is a weak
homomorphism.

Proof. Itis easy to see thatff ( );f( )g f(? )\ f() f()6;.

Proposition 5.10. Letk:(H;?)! (H; ) be the function de ned byk( )= H for
all 2 H. Thenf is a good homomorphism.



HYPERGROUPS DEFINED ON HYPERGRAPHS AND THEIR REGULAR RELATIONS 497

Proof. The proof is straightforward using Proposition 5.1.

Proposition 5.11. Letf :(H;?)! (H; ) be any function other than that de ned in
Proposition 5.10 Then f is not a homomorphism.

Proof. Sincef is a function other than that de ned in Proposition 5.10, it follows
that there exist ; 2 Hsuchthatf( )6 f( ). Let = [ 2 H. We have that
f() f()=f()andf( ? )= 1ff(): isa partial hypergraph of g. Having
that 6 partial hypergraphs of andthatf( )6 f( )implythat jf( ? )j 2.
The latter implies that f ( ? ) is not a subset off ( ) f( ).

6. Conclusion

Hypergraph theory, introduced by Berge, is a generalization of graph theory and
it has been considered an important topic in Mathematics due to its applications
to numerous elds of Science. Our paper studied a connection between hypergraph
theory and hypergroup theory. Here we de ned hypergroups and hyperrings on the
set of all hypergraphs. Also, we studied the fundamental group and regular relations
of the de ned hypergroups. Several results were obtained.

For future research, one may consider hyper elds associated to hypergraphs and
study their properties.
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