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NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM

FRANCISCO MARTINEZ!, PSHTIWAN OTHMAN MOHAMMED?,
AND JUAN E. NAPOLES VALDES3

ABSTRACT. In this paper we present an extension of Fractional Laplace Transform in
the framework of the non-conformable local fractional derivative. Its main properties
are studied and it is applied to the resolution of fractional differential equations.

1. PRELIMINARIES

In mathematics, the Laplace transform is an integral transform n, it takes a function
of a real variable t (often time) to a function of a complex variable s (complex
frequency). Laplace transforms are usually restricted to functions of ¢ with ¢ >
0, consequently of this restriction is that the Laplace transform of a function is a
holomorphic function of the variable s. As a holomorphic function, the Laplace
transform has a power series representation. This power series expresses a function as
a linear superposition of moments of the function. The Laplace transform is invertible
on a large class of functions. The inverse Laplace transform takes a function of a
complex variable s (often frequency) and yields a function of a real variable ¢ (often
time). Given a simple mathematical or functional description of an input or output
to a system, the Laplace transform provides an alternative functional description that
often simplifies the process of analyzing the behavior of the system, or in synthesizing
a new system based on a set of specifications. So, for example, Laplace transformation
from the time domain to the frequency domain transforms differential equations into
algebraic equations and convolution into multiplication.

Regarding the birth of the fractional calculus, all historians agree on the dating
of the date and how it was produced. This fact took place after a publication of
Leibniz where he introduced the notation of the differential calculus, in particular of
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the expression known today as g;—ff that makes reference to the derivative of order n
of the function and, with n € N. But did it make sense to extend the values of n to
the set of rational, irrational, or complex numbers in that expression?

We know that the fractional derivative of a non-integer function can be conceived
in two branches: global (classical) and local. The former are often defined by means
of integral transforms, Fourier or Mellin, which means in particular that their nature
is not local, has “memory”, in the second case, they are defined locally by a certain
incremental quotients. The first are associated with the emergence of the Fractional
Calculation itself, with the pioneering works of Euler, Laplace, Lacroix, Fourier, Abel,
Liouville,... until the establishment of the classical definitions of Riemann-Liouville
and Caputo. Recent extensions and applications of these notions to various fields can
be found in [2-4,7,13,18,21,21]. There are some attempts to extend the classical
notion of Laplace Transform to the non-integer case, we recommend consult [20].

Recently, in [8] Khalil et al. defined a new local fractional derivative called the
conformable fractional derivative, based on the limit definition of the derivative.
Namely, for a function A : [0,00) — R, the non-conformable fractional derivative of h
of order a of h at t is defined by

h(t+et'=®) — h(t)

D (h)(t) = lim - . ac(0,1),t>0.

In [1], Abdeljaward improve this new theory. For instance, definitions of left and
right conformable derivatives and fractional integrals of higher order (i.e., of order
a > 1), Taylor power series, fractional integration by parts formulas and chain rule
are provided by him.

Now, we give the definition of the non-conformable fractional derivative with its
important properties which are useful in order to obtain our main results, which is
explained in the following definition [5].

Definition 1.1. Given a function h : [0,00) — R. Then, the non-conformable
fractional derivative N$'(h)(t) of order a of h at t is defined by
h(t+et=*) —h(t
N3g'(h)(t) = lim (t+et™) (), a € (0,1),t>0.

e—0 €

If h is a-differentiable in some (0, @), a > 0, lim;_,o+ h{®(t) exist, then define

@) = 1 (o)
Rt (0) t1_1>1(])r1+ R\ (t).
Remark 1.1. Additionally, note that if h is differentiable, then

NO(R)(E) = +-°K/(),  where H/(£) = lim L) = RE)

e—0 €

We can write h(®)(t) for Dy (h)(t) or %(h(t)) to denote the non-conformable frac-

tional derivatives of h of order a at ¢. In addition, if the non-conformable fractional
derivative NS of h of order « exists, then we simply say h is /N-differentiable.
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In [5,14], we can see that the chain rule is valid for non-conformable fractional
derivatives.

Theorem 1.1. Let o € (0, 1], g a N-differentiable function att > 0, f be differentiable
in the range of g(t). Then

Ny (f o g)(t) = f'(g(t)) N5 (9(t))-

Proof. We prove the result following a standard limit-approach. First case, if the
function g is constant in a neighborhood of a > 0 then N$'(f o g)(t) = 0. If g is not a
constant in a neighborhood of @ > 0 we can find and ¢y > 0 such that g(x;) # g(z2)
for any xq, x5 € (a—tg,a+1ty). Now, since g is continuous at a, for e sufficiently small,
we have

N&(f 0 g)(a) i J9(E+ea”)) — flg(a))

i 9lateam) = f(g(a)) gla+ca™) — g(a)
=0 gla+ea®) —g(a) c
:hmf(g(a ftea™)) — f(g(a))l mg(a +ea™®) — g(a)
=0  gla+ea=®)—gla) =0 €
flgla+ 6@‘“)) - f(g(@))1 g(a+ea=) — g(a)

Making €; = g(a + ea=*) — g(a) in the first factor we have

i F00 207 ) = (g(a@)) _ - Flala) +21) — flgla)
M glarea) —gla)  a e |
and from here

NE(F o 0)a) — i L0 +20) = Fa(@) | gfa+ 207 — gla)

e1—0 €1 e—0 £
=f"(9(a)) N5 g(a). U

The following function will play an important role in our work.

Definition 1.2. Let a € (0,1) and ¢ a real number. We define the fractional
exponential in the following way

ta+l
EM(c,t) = exp (c ) :

a+1
Following the ideas presented in [5,14] we can easily prove the next result.

Theorem 1.2. Let a € (0,1] and h, g be a-differentiable at a point t > 0. Then
(a) N§'(uf +vg) = uNg(h)+vN$(g) for all u,v € R;

) N“(hg) N5 (g) + gNg'(h);

) hY _ hNg‘f‘(g);gN?(h).

) N,

)

g
( ) = 0 for all constant function h(t) = ¢;

(b
(c
(d
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((lltlJra) — 17.
(h) N. (Si?l (ctllgr:;)) = cCoS (ctlti)a;
(i) N¢ (cos (ctHa)) = —csin (ctlm).

Proof. (a) Let H(t) = (af + bg)(t). Then N{H(t) = limw and from this

e—0

we have the desired result.
(b) From definition we have

NE (o) (t) —timd (S Dgt+ 27 = F(Dg(0)

i L et )g(t+et™) — f)g(t +et™) + f(t)g(t +et™) — f(t)g(t)
e—0 c

AT = f@) gt et™) | (gt +et) = 9(1)) F(2)
e—0 g e—0 g

=[N3 (9)(8) + gNg (f)(#).

(c) In a similar way to the previous one we have

flt+et=™)  f(®)
Ne (L) (1) = tim 2D 0
3 q e—0 £ '

g(t)g(t + et=)
(fE+et™) = f(£) g(t) — (g(t +et™*) —g(t)) f(t)
g9(t)g(t + et=) '
From this last expression we obtain the expected result.
(d) Easily follows from definition.

(e) Is a particular case of the previous one.
(f) From Remark 1.1 we have

1

N ( t1+a) =t
1+ o

g) From Remark 1.1 and the chain rule we have

5o )] o o ) 425

() =1




NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM 345

=cE"(c,1).

To prove cases (h) and (i) it is sufficient to proceed as in the previous case, taking
into account the Remark 1.1 and using the chain rule. 0

Now, we give the definition of non-conformable fractional integral.

Definition 1.3. Let a € (0,1] and 0 < u < v. We say that a function A : [u,v] — R
is a-fractional integrable on [u, v], if the integral

soh(@) = [

exists and is finite.

The following statement is analogous to the one known from the ordinary calculus
(see [15]).

Theorem 1.3. Let f be N-differentiable function in (to,00) with o € (0,1]. Then for
all t >ty we have

a) if f is differentiable, then n,Ji (NS f(t)) = f(t) — f(to);

b) N§ (T3 f(8)) = F(2).

Proof. a) From definition we have

sy N 5(0) = [ g = [T g gy i)
b) Analogously we have
3 (i f0) = | [ 2| = g0, a

An important property, and necessary, in our work is that established in the follow-
ing result.

Theorem 1.4 (Integration by parts). Let functions u,v be N-differentiable functions
in (tg,00), with a € (0,1]. Then for all t >ty we have

N3 Iy (uN50)(t)) = [uv(t) — uolto)] —n, Jig ((0N5'w)(1)) -
Proof. 1t is sufficient to use Theorem 1.2 and Theorem 1.3. U

In short time, many studies about theory and applications of the fractional differ-
ential equations which based on these new fractional derivative definitions [6,11,15,
16,19].

In this paper we establish the first results to formalize a new version of a Laplace
transform, in this case non-conformable, which will allow its application to a wide
class of fractional differential equations. In the conformable case, there are some
attempts that can be consulted in [6,9-12,19].
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2. RESULTS

Definition 2.1 (Exponential order). A function f is said to be of generalized ex-
ponential order if there exist constants M and a such that |f(t)| < ME"(a,t) for
sufficiently large t.

We are now in a position to define the non-conformable fractional Laplace transform.
Definition 2.2. Let « € (0,1) and ¢ a real number. Let f be a real function defined
for t > 0 and consider s € C, if the integral

VTP (s 0f W) (r00) = [ ER(-s. = [ ECEOI0
converge for the given value of s, you can define the function F' given by the expression
(2.1) F(s) =n; Jo Eg*(=s,1) f(t)(+00),
and we will write F' = Ln(f).

dt

To the operator £ we will call it the N-transformed of Laplace and we will say
that F'is the N-transformed of f. In turn, f is the N-inverse transform function of F
and we will write it as f = L' {F}, where £ is the N-transformed inverse Laplace
operator.

As in the classic case, we must impose conditions to (2.1), so that the previous
definition makes sense. If f satisfies the following two conditions:

(a) fis a piecewise continuous in the interval (0, 7] for any T € (0, 400);

(b) f is of generalized exponential order; that is, there are positive constants M
and a, satisfying Definition 2.1 with Re(a —¢) < 0 and |f(t)| < M E(a,t)
for all ¢ and a € (0, 1].

Then the N-transformed of Laplace F(s) of f exists for s > a. In effect, since
f is of generalized exponential order, there exists constants 7' > 0, K > 0 and
a € R such that |f(t)| < KE(a,t) for all ¢t > T and a € (0,1]. Now we write
I =, JOED (=5,8) f(£)(+00) =y JEED (=5, F(£)(T) 4, JEE (—s,8) f(£)(+00) =
I, + I,. Since f is a piecewise continuous, [; exists. For the second integral I;, we
note that for t > T we have |El3(—s,t)f(t)] < KE!3(—(s —a),t). Thus,

K
W B (=5, ) (0)(+00) < K JEER (—(s = a),t)(+00) = ——, s> 0.

Since the integral I, converges absolutely for s > a, I, converges for s > a. Thus,
both I; and Iy exist and hence [ exists for s > a. Then we have that f is an
N-transformable function.

Theorem 2.1. Let « € (0,1]. So, we have
(a) Ln(1) =2, from here we have Ly(c) = cLy(1) for any c € R;
b
(I4a)THaD(14 12
(b) Ly(th) = LI )

[t temtdt, T'(a,0) :==T(a) and b > —1;

, where the gamma function ' is defined by I'(a, x) =
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(c) Ly(E™(c,t)) = ==, ¢ any real number and s — ¢ > 0;

(d) Ln(f(t)E"(c, t)s;c F(s —¢), with Ln(f(t)) = F(s), ¢ any real number and
s—c>0;
. 14+« c
(e) Ly(sin (ctl;> vt

Proof. (a) From definition directly.
(b) Through a change of variables we have

(1+a)T=

OB (—u)uTie (+00),
st s

N3 ‘](?EZB <_S7 t)tb(+oo) -

where the desired result is obtained.
(c) Consider f(t) = E"(c,t), with ¢ € R. Then

1

s—c

Ng Jo B (=8, ) EQ? (e, 1) (00) =ng Jg By (= (s = ¢), 1) (+00) =

(d) Suppose Ly f(t) = F(s) for s > k. So, we have

N3 Jo B (=5, 0) Eg? (e, 1) f (1) (+00) =N, Jg Eg? (= (s — ¢), 1) f () (+00)
=F(s—¢), s—c>k.

(e) Using n, J*E23(b,t)sin (aﬁ:) = i‘%i(lz,f) {b sin (a%) — acos (a%)} we ob-
tain the expected result.
(f) Similar to previous one, using

R e E%(b,t) e _ thte
Ny JYER (b, t) cos <a1+a> = oy {bcos <a1+a + asin ol (-

(g) As Ly(sinh (ctllj;)) = 1 {LnEB(c,t) — LNER (—c,t)} it is easy to get the

required conclusion.

(h) From Ly(cosh (c5=)) = L{LnEmN(c,t) + LyER(—c,1)} it is obtained di-

1+« - 2
rectly. 0

Anallogously, the following propositions can be proved from the definition of N-
transformed and the non-conformable integral.

Proposition 2.1. If the functions f and g are transformable, then there is the
transform of the sum and is equal to the sum of the transforms, that is

Ln(f+9)=Ln(f)+Ln(g).
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Proposition 2.2. If the function f is transformable and X is a real number, then
there is the transform of product of X by f and is equal to product of A by the transform
of f, that is

Ln(Af) = AMn(f).

Remark 2.1. Taking into account the two previous propositions, we say that £y is a
linear operator.

Proposition 2.3. If f is a transformable function, then so is its N-derivative and
you have

(2.2) Ln(Ng'f) = sLn(f) — f(0).

Proof. Already L (NS f) exists, because f is of non-conformable exponential order
and continuous. On an interval [a, b] where N f is continuous, integrating by parts
in (2.2), gives

b ENs(—s, t) NS f(t b ENs(—s, t) NS f(t
[ DN 4y ) 0 s, b= @B (s, [ E DN,
On any interval [0, K| there are finitely many intervals [a, b] on each of which N§ f
is continuous. Add above equality across these finitely many intervals [a,b]. The
boundary values on adjacent intervals match and the integrals add to give

t.

/ o’ ( i—o)l 5 f() 5, _ FK)EN (—s,b) — £(0) —|—s/ o ( 82—) IO
; 0
Taking the limit A — 400 across this equality, we obtain the desired result. O

Analogously we have the following.

Proposition 2.4. If the k consecutive derivatives N§(N§(--- (N f))) are N-transfo-
rmable, then we have

Ln [Ng'(Ng'(--- (N3'f)))]
= Ly (f) = s 1 f(0)=s" 2N f(0) — s* NG (NG £(0)) == NE(Ng'( - (N5 £(0))))-

Proposition 2.5. Let g be of non-conformable exponential order and continuous for
t>0. Then

CC—OL

Ly ( X g(x)dx) - iLN {g(0)}.

Proof. Let f(t) = ( ¢ Md;z:). Then f is of exponential order and continuous then

0 T
we have Ly (ft %dm) = Ly by definition and Ly = 1L (N§ f(t)) because f(0) = 0.
From here we reach the conclusion without difficulty. 0

The following result establishes the relationship between the classic Laplace Trans-
form and the N-transform defined above.
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Theorem 2.2. Let « € (0,1) and f be a N-transformable function, then we have

Ln(f) =L[f ((1+)2)™)],
where L is the classical Laplace transform defined by L(g) = [;7 e~%tg(t)dt.

Proof. Simply make the change of the variables z = t:; 0

One of the most important results of the classic Laplace transform is the convolution
product of two L-transformable functions, we are already in a position to provide an
analogous result for the N-transform defined in (2.1).

Theorem 2.3. Let a € (0,1] and f,qg : [0,+00] — R be real functions. If F,(s) =

Ly [f (") (s) and Gu(s) = Ly [g (t)] (s), then the next equality is satisfied
Ln(f*g)(s) = Fa(s)Gals),

where

(Fro)t) = [ [7 (8 =) g(r)dar.

Proof. It is sufficient to change the variables u!*® = t'*® — 71+ and apply the
properties of the £y operator. O

2.1. Existence of non-conformable Laplace transform. In this subsection, the
bounded and existence of non-conformable Laplace transform are presented.

Theorem 2.4. Let [ be piecewise continuous on [0,00) and non-conformable expo-
nentially bounded, then

lim F,(s) =0,

S§— 00

where Fu(s) = La[f(D)](s).

Proof. Since f is generalized order exponential, there exist ¢y, M, ¢ such that | f(t)] <
M,E"(c,t) fort > to. Also, f is piecewise continuous on [0, ¢y] and hence f is bounded,
so there exists M, such that | f(t)] < Ms for ¢ € [0,p]. Choosing M = max{M;, M},
we have |f(t)| < ME!3(c,t) for t > 0. Now, we have’

[ s ] < 18 s 050

< M/ E(—s+c,t)d,t
0
M El(—s+c,t)

s—c s—c
This gives
M

S —C

<

lim
T—00

| Bz (s ) f(t)dat
0
This completes the proof. O
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3. EXAMPLES AND APPLICATIONS

FExample 3.1. Consider the non-conformable differential equation:
(3.1) Ngtw(t) = Ax(t), x(0) =z, « € (0,1].

Clearly, if a = 1 the equation above is just one of the simplest classical ordinary
differential equations which is defined by the hypothesis that the rate of growth of
a given function x(t) is proportional to the current value (e.g. Maltius’s population
model), i.e., ’(t) = Mz (t), (0) = z the exact solution of this is z(t) = xee.

Applying the non-conformable Laplace Transform to both sides of equation (3.1),
we get

Ly (N5 (t)) =MLy (2(t)) ,
s Xa(s) — o =AX4(s).
Simplifying this we get

(3.2) Xo(s) = S”fl.

Taking the inverse non-conformable Laplace transform to (3.2), we get

2(t) = 2BV (—1,t) = —%t““.
(6%

The solution of (3.1), obtained from non-conformable Laplace transformation method,
are shown in Figure 1 for different values of a.

FIGURE 1. Non-conformable Laplace solution of (3.1) for different val-
ues of a.

Example 3.2. Consider the non-conformable fractional Bertalanffy-logistic differential
equation

(3.3) New(t) = 25 (t) — x(t), z(0) ==z, a€(0,1).
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The solution of the classic Bertalanffy-logistic differential equation 2/(t) = x5 (t) —z(t),

2 13 1
x(0) = xo is x(t) = {1 + (asg — 1) 63} . By using the change of variable z = 323 in
(3.3), we find

1

2 1
(3.4) N§z(t)=1-— §Z<t>’ 29 = 3z .

Applying the non-conformable Laplace transform £ to both sides of equation (3.4)
we obtain

3 zZ20 — 3
L t) =—+ .
V)= 24
Finally, applying the inverse Laplace transform we have the solution of (3.3) in the

2 _ tlta 3
form x(t) = [1 + <x§’ — 1>€ 3(1Ta)

With a = 0.25,0.50,0.75,1.00, the non-conformable Laplace transformation so-
lution of (3.3) are shown in Figures 2 and 3 for zy = 2 and xy = 4, respectively.

FIGURE 2. Non-conformable Laplace solution of (3.2) for zp = 2 and
different values of .

FExample 3.3. Consider the non-conformable fractional differential equation

(3.5) N§(Ngx(t)) + cx(t) =0, «€(0,1],

with the initial conditions z(0) = zo, N$z(0) = 0. Clearly, if & = 1 the previous differ-
ential equation approximates the characterization of small oscillations of a pendulum,
ie., 2(t) + cx(t) = 0, £(0) = x0, 2/(0) = 0, where ¢ = 4, with g the gravity acceler-
ation and L the length of the pendulum rod. The exact solution to this problem is

x(t) = xgcos/ct = xgcos \/%t. Applying the non-conformable Laplace transform to
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FIGURE 3. Non-conformable Laplace solution of (3.2) for zy = 4 and
different values of a.

the both hand sides of (3.5), we get (s*+¢) X (s) —szo = 0, thus X (s) = (szfc). Taking

the inverse non-conformable Laplace transform we obtain z(t) = x( cos (\/% t:: )

Ezample 3.4. Now consider the circuit consisting of a voltage source v(t) in series
with a resistor (R), a capacitor (C) and an inductor (L), as well as a switch that
can be in the open or closed position. The circuit equation in the time domain is
Ra(t)+2 [§ x(u)du + ve(0) + La'(t) = v(t), we assume that z(0) = 0 (i.e., the switch
is open until ¢ = 0, allowing the capacitor to maintain its initial condition v(t)
before that moment) and v(¢t) = A. The corresponding non-conformable fractional
differential equation is

Rx(t) + iNJS“(x)(t) +vc(0) + LNSz(t) = A, a€(0,1].

Applying the non-conformable Laplace transform to both sides of above equation,

we get X (s) = L(;;:%i%' The poles of the characteristic equation can be obtained
2
as s = —% +1 % — (%) = —o + 1w assuming the radicand is positive we have
X(s) = L((A%%. After taking inverse N-transform and reorder you get
A— Uc(O) ta+1
z(t) = ———2 EN3(—g,t)sin | w :
(0) = = B (o, sin (w0

4. EPILOGUE

The fundamental goal of this work has been to generalize the main theorems of the
classical Laplace transform into the non-conformable Laplace transform. The goal
has been achieved, whereby the non-conformable derivative definition has been used
to construct some of these theorems and relations. We calculate the non-conformable
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Laplace transform from some elementary functions and establish the non-conformable
version of the transform of the successive derivative, the integral of a function and the
convolution of the fractional functions. In addition, the bounded and the existence
of the non-conformable Laplace transform are presented. The findings of this study
indicate that the results obtained in the fractional case are adjusted to the results
obtained in the ordinary case. Finally, we show the application of the N-transform
to the resolution of fractional differential equations.
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AJ-STATISTICAL APPROXIMATION OF CONTINUOUS
FUNCTIONS BY SEQUENCE OF CONVOLUTION OPERATORS

SUDIPTA DUTTA! AND RIMA GHOSH?

ABSTRACT. In this paper, following the concept of A”-statistical convergence for real
sequences introduced by Savas et al. [22], we deal with Korovkin type approximation
theory for a sequence of positive convolution operators defined on C|a, b], the space
of all real valued continuous functions on [a,b], in the line of Duman [6]. In the
Section 3, we study the rate of A’-statistical convergence.

1. Introduction and Background

Throughout the paper N will denote the set of all positive integers and C|a, b]
denotes the space of all real valued continuous functions defined on [a, b], endowed
with the supremum norm [[f|| = sup,c(,4 [f(2)] for f € Cla,b]. For a sequence
{T, }nen of positive linear operators on C'(X), the space of real valued continuous
functions on a compact subset X of real numbers, Korovkin [14] first established the
necessary and sufficient conditions for the uniform convergence of {7T,,(f)}nen to a
function f by using the test functions e; = 1, e = x, e = 2 (see [1]). The study of
the Korovkin type approximation theory has a long history and is a well-established
area of research (see [4,5,7-11]).

Our primary interest, in this paper is to obtain a general Korovkin type approxi-
mation theorem for a sequence of positive convolution operators defined on C|a, b], in
Al-statistical sense. In the section 3, we study the rate of A’-statistical convergence.

The concept of statistical convergence of a sequence of real numbers was first
introduced by Fast [12]. This is a generalization of usual convergence. Further investi-
gations started in this area after the works of Saldt [19] and Fridy [13]. Consequently,

Key words and phrases. Ideal, A’-statistical convergence, positive linear operator, convolution
operator, Korovkin type approximation theorem, rate of convergence.
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the notion of J-convergence of real sequences was introduced by Kostyrko et al. [17].
On the other hand statistical convergence was generalized to A-statistical convergence
by Kolk ([15,16]). Later a lot of works have been done on matrix summability and
A-statistical convergence (see [2,3,15,16,18,20]). In particular, in [21,22] the very
general notion of A’-statistical convergence was introduced.

Recall that a family J C 2¥ of subsets of a nonempty set Y is said to be an ideal
in Y if (i) A,B € J implies AUB € J; (ii)) A € 3, B C A implies B € J, while an
admissible ideal J of Y further satisfies {x} € J for each z € Y. If J is a non-trivial
proper ideal in Y (i.e., Y ¢ J, T # {0}) then the family of sets F'(J) = {M C Y : there
exists A€ J: M =Y \ A} is a filter in Y. It is called the filter associated with the
ideal J. The real number sequence {xy},y is said to be J-convergent to L provided
that for every ¢ > 0, the set {k € N: |z, — L| > ¢} € J.

If {x1},cy 15 @ sequence of real numbers and A = (a,) is an infinite matrix, then
Ax is the sequence whose n-th term is given by

An(x) =) ankws.
k=1

We say that = is A-summable to L if lim,, ., A,(x) = L. A matrix A is called regular
if A€ (¢,c) and limy_,o Ay (2) = limg_oory, for all x = {xy }ren € ¢, when ¢, as usual,
stands for the set of all convergent sequences. It is well-known that the necessary and
sufficient conditions for A to be regular are

D) [JA]| = sup ) _lank| < oo;
"ok
II) lign an, = 0, for each k;
I11) lirlgn Zank =1
k

For a non-negative regular matrix A = (a,;) following [15], a set K is said to have
A-density if d4(K) = lim,, > jc g Gni €xists.

The real number sequence {w;}, oy is A-statistically convergent to L provided that
for every e > 0, the set K(¢) = {k € N: |xy — L| > ¢} has A-density zero (see [15]).
Throughout the paper J will denote the non-trivial admissible ideal on N.

2. AT-STATISTICAL APPROXIMATION FOR A SEQUENCE OF CONVOLUTION
OPERATORS

We first recall the definition.

Definition 2.1 ([21,22]). Let A = (a,x) be a non-negative regular matrix. For an
ideal J of N, a sequence {z, },cn is said to be A’-statistically convergent to L if for
any € > 0 and § > 0

{nGN: Z ankzc?}ej

keK (e)
where K(¢) = {k € N: |z, — L| > ¢}. In this case we write A’-st-lim, x, = L.
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Note that for J = Jp;,, the ideal of all finite subsets of N, A’-statistical convergence
becomes A-statistical convergence [15].

We consider the Banach space C[a,b] endowed with the supremum norm ||f|| =
SUP,ejop |f(2)| for f € Cla,b]. Let L be a positive linear operator. Then L(f) > 0
for any positive function f. Also, we denote the value of L(f) at a point = € [a, b] by

L(f; ).

Theorem 2.1. Let {L,},en be a sequence of positive linear operators from Cla,b]
into Cla,b]. If A’-st-lim, ||L.(f;) — fill = 0, with f; = t', i = 0,1,2, then for all
f € Cla,b] we have A’-st-lim,, || L, (f) — f|| = 0.

Proof. Our objective is to show that for given € > 0 there exist constants Cy, Cy, Cy
(depending on € > 0) such that

ILn(f) = fIl < e+ Col|Ln(fo) = foll + CullLn(f1) = full + CollLn(fo) — foll-
If this is done then our hypothesis implies that for e > 0, 6 > 0

{nEN: Z ank25}63,

keK(e)
where K () ={k € N : ||Li(f) — f|l > €}

To this end, start by observing that for each x € [a, b] the function 0 < ¥ € Cla, b
defined by ¥(t) = (¢t — x)?. Since each L, is positive, L,(¥;x) is a positive function.
In particular, we have

0< L,(V;2) =L, (t*;2) — 22L,(t;x) + 2°L,(1; 2)
=(La(t* ) — t*(2)) — 22(La(t; 2) — t(2)) + 2*(Lu(l;2) — 1(z))
< La(t?) = €[] + 2|| Lo (t) — ]| + 0" Lo (1) — 1],
for each = € [a,b]. Let M = ||f||. Since f is bounded on the whole real axis, we can
write

If(t) — f(2)| < 2M, —oo0 <t x < co.

Also, since f is continuous on [a, b], we have

[f(t) = f(@)| <e,

for all ¢, x satisfying |t — z| < 4.

On the other hand, if |t — 2| > §, then it follows that

2M 2M
—?(t —x)? < —2M < f(t) — f(z) < 2M < ?(t — )2
Therefore, for all t € (—o00,00) and all x € [a, b] we get
2M
7))l < <+ 2t =

where ¢ is a fixed real number.
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Since each L,, is positive, we have

oL (i) — S L(Wi) <L(f(0): ) (@)Ll foca)

M
+ —L,(V;z).

2

Next, let K = 2 and we get

|Ln(f(t); ) — f(z)Ln(foi 2)| <eLn(fo;x) + Q;LJL“(\I!; )
=¢ +&[Ln(fo; ) — fo(2)] + KL, (V;2)
<e+e¢|L,(fo;x) — fo(x)| + KL, (¥;z).

In particular,

Lo (f(t);2) — f(2)] <ILn(f(t);2) — f(2)Ln(fo; 2)| + [f(2)|| Ln(fo; ¥) — fo(w)]
<e + KLn(¥;2) + (M + )| Ln(fo; ) — folz)],

which implies
[Ln(f) = FIl < &+ Col|La(f2) = ol + Cill La(f1) = fill + Coll Ln(fo) = foll,
where Cy = K, C; = 2bK and Cy = (¢ + b*K + M), i.e

2
1Ln(f) = fIl < e+ O |ILa(fi) — fil L i=0,1,2,
1=0

where C' = max{Cy, C1, Cy}. For a given ¢’ > 0, choose € > 0 such that ¢ < ¢’ and let
us define the following sets

D={n: |La(f) = Il = <1},
zmz{mumuw—ﬁu>5‘g

ot
i

—{nﬂwdﬁ%—ﬁH_

/
Ds = Ly, )
3 {” [ Ln(f2) = foll = 50 }
It follows that D C D; U Dy U D3 and consequently for all n € N

Sk <D et Y Gup+ Y Gk,

keD keDy keDay keDs

which implies that for any o > 0

3
{nEN:ZankZU}QU{nEN: Zankzg}.
i=1

keD keD;
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Therefore, from hypothesis,

{nEN:ZankEJ}EJ.

keD

Hence, we have the proof. O

We now consider the following convolution operators defined on C|[a, b] by

(2.1) L,(f;x) = /bf(y)Kn(y —xz)dy, n €N x€la,bl and f € Cla,b],

where a and b are two real numbers such that a < b. Throughout the paper we assume
that K, is a continuous function on [a — b,b — a] and also that K,(u) > 0 for all
n € N and for every u € [a — b,b — a]. Consider the function ¥ on [a,b] defined by
U(y) = (y — x)? for each = € [a, b].

Theorem 2.2. Let A = (a;;) be a non-negative regqular summability matriz and
let {L,}nen be a sequence of convolution operators from Cla,b] into Cla,b]. If
Al-st-lim,, | L. (fo) — foll = 0, with foly) = 1 and A’-st-lim,, || L,(P)| = 0, then
for all f € Cla,b] we have
A-stlim [[Lo(f) — f]] = 0.

Proof. Let ¥(y) := (y — z)? be a function on [a,b], where z € [a,b] and L,(f;z) =
[P f(y)Kn(y —)dy, n €N, z € [a,b] and f € C[a,b], where a, b are two real numbers
such that a < b. Since L,, is a positive linear operator then L, (V;xz) > 0.

Let M = ||f]] and € > 0. By the uniform continuity of f € Cla,b] and z € [a, b]
there exists a ¢ > 0 such that

|f(y) — f(z)| <&, whenever |y — x| <.
Let Is =[x — 0,2 + 6] N [a, b]. So,
1f () = f@)| =f () = f@) Vi, (y) + [f(y) = f(@)[Vap-15(y)
<e+2Mi?(y —x)*

Since L,’s are positive and linear so we have,

La(f50) — £ =| [ ) Faly — 2)dy — 5 (2)

=| [~ F@Eay )y + 7@ [ Ky — )y — f(a)

b
<| [ = renm - ] + 1160

/ab K,y —z)dy — 1‘

< [ 17) = 5@ Kty = 2)dy] + | F@)] 1L 2) = o)
b

< / (e +2M62(y — 2)>) Kn(y — 2)dy + M|Ln(fo;2) — fo()]
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= + (e + M)|Ln(fo; ) — fol(@)] +2M67% | L(¥;2) |

<e + of{|Ln(fo; 2) = fo(2)| + |Ln(¥; 2)[},
where o = max{e + M, 2/ }. Therefore,

1Ln(f) = fII < & 4+ o{[[Ln(fo) = foll + [ La(W)]]}-

For given r > 0, choose € > 0 such that 0 < ¢ < r and define the following sets
D ={n:|Ln(f) = fll =7},
r—e
Dy ={n: 1 La(fo) = foll 2 "},

2x

Dy — {n L ()] > 7"2_&5} .

It follows that D C Dy U Dy and consequently for all n € N

S <D ae+ D an,

keD keDy k€D>

which implies that for any ¢ > 0

{nEN:ZankZU}QU{nGN: Zankzg}.

keD 1=1 keD;

Therefore, from hypothesis

{neN:ZankZU}eﬂ.

keD

Hence, we have the proof. 0

Let & be a positive real number so that § < 2% and let || f||s = sup, s<a<p_s |/ (2)],
f e Cla,b].

In order to give our main result we need the following lemmas.

Lemma 2.1. Let A = (a;;) be a non negative reqular summability matriz. Assume
that 0 is a fixed positive number such that § < ”_T“ If the conditions

5
(2.2) Ag—st—lim/ K,(y)dy =1,
nJos
(2.3) A’ -st-lim(sup K,(y)) = 0
" lyl=6

hold, then for the operators Ly, where L,(f:x) = [° f(y)Kn(y—x)dy, n € N, x € [a, D],
f € Cla,b] and a,b are real numbers a < b, we have

Aj—st—l%n | Ln(fo) = folls =0, with fo(y) = 1.
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Proof. Let 0 < § < ¢ and let « € [a + 6,b — 6]. Then
<zr—a<b—a=—(b—a)<a—z<-§
and
0<b—z<b—a.
Now L, (fo;x) = f;’Kn(y—m)dy: fb:; K, (y)dy. Then we have

a

6 b—a
[ Ky < Lfsx) < [ K.
Therefore,

| Ln(fo) = folls < un,

where u,, = max {’ffé K,(y)dy — 1 fffba_a) K, (y)dy — 1‘} .
Therefore, A’-st-lim,, u,, = 0 for all § > 0 such that § < b’T“. Now for given ¢ > 0
define the following sets

I

D:={neN:|Ln(fo) = folls = €},
D':={neN:u,>c¢e}.

So D C D'. Then for all n € N we have,

Z apg < Z QAnk-

keD keD’

Then for any o > 0

{nGN:ZankEU}Q{nEN: ZankZU}.

keD keD’

From hypothesis

{nEN: Zankza}ej.

keD’
Hence,
neN: ZankZa el
keD
So , we have the proof. O

Lemma 2.2. Let A = (a;;) be a non negative reqular summability matriz. If conditions

(2.2) and (2.3) hold for a fixzed 6 > 0 such that § < b_T“, then for all convolution
operators L, defined by L,(f;z) = [° f(y)K,(y — x)dy, n € N, x € [a,b] and f €

Cla,b], where a, b are two real numbers such that a < b, we have

A-st- lim | L, (0)||s =0, with ¥(y) = (y — x)*.
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Proof. For a fixed 0 < § < %% let z € [a+d,b—4]. Since ¥(y) = y?—2zy+a?, then U €
Cla,b] for all z € [a+6,b—0]. Now L, (V;z) = L,(fo; x) — 22 L, (f1;2) + 2L, (fo; ),
with fi(y) =%’ i =0, 1,2. Then for all n € N

Ln(V;1) = /b(y — )’ K,(y — x)dy = /

a a—I

b—x

b—a
Y Ka(y)dy < /_(b_a) Y Kn(y)dy.

Since the function f5 is continuous at y = 0 for given € > 0 exists n > 0 such that

y? < ¢ for all y satisfying |y| < n. We have two cases such that n > b—a or n < b—a.

Case 1. Let n > b — a. Therefore, 0 < L, (¥;z) < 5ff(_b“_a) K,(y)dy. By condition
(2.3),0 < L,(V;2) < e and Al-st- lifrln | Ly, (¥)||s = 0 for n > b — a.

Case 2: Let n < b — a. Therefore, L,(U;2) < [i,15, V> Kn(y)dy + Jiy1<, > Kn(y)dy

and hence we obtain
¢ 9 (b—a)’—7n’
L)l <o [ oy +e [ Ky = a0

n lyl<n 3

+ by,

where a, = supy,>, Kn(y) and b, = [,,,<, Kn(y)dy. Also we have from hypotheses

y|<n
Alst-lima, =0
n

and
Al-st-lim b, = 1.

Taking, M = max {W, 5} we have for all n € N
| L, ()]s < e+ M(an + b, — 1]).
For given r > 0, choose € > 0 such that ¢ < r. Let
D={neN:|L,(V)|s>r},

r—e¢
Dlz{nEN:anz QM}’

r—e
Dgz{nEN:|bn—1]2 — }
Therefore, D C D; U Ds. Hence, for all n € N we have,

S <D a+ Y an,

keD keDy keDay

which implies that for any ¢ > 0

{nGN:ZankZJ}QU{TLEN: Zankzg}.

keD =1 keD;

Therefore, from the hypothesis

{nEN:ZankZJ}EJ.

keD

Hence, we have the proof. O
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Now the following main result follows from Theorem 2.2 and Lemma 2.1, 2.2.

Theorem 2.3. Let A = (a;;) be a non negative reqular summability matriz and let
{Ly}nen be a sequence of convolution operators on Cla, b given by (2.1). If conditions
(2.2) and (2.3) hold for a fized 6 > 0 such that § < I’_Ta, then for all f € Cla,b] we
have

Al-st-lim || L, (f) — flls = 0.
If we take J = Jy;,, the ideal of all finite subsets of N, we get the following result.

Corollary 2.1. ([6, Corollary 2.5]). Let A = (a;;) be a non negative regular summa-
bility matriz and let { L, }nen be a sequence of convolution operators on Cla,b] given

by
Lafi) = [ F0)Ealy — ),

neN, z € la,b] and f € Cla,b], where a and b are two real numbers such that a < b.
If conditions

0
sty — lim/ K,(y)dy =1
no s

and
sty — lim sup K, (y) =0

" Jyl>6

hold for a fixed 6 > 0 such that § < b_Ta, then for all f € Cla,b] we have
sta =t | La(f) — flls = 0.

Remark 2.1. We now exhibit a sequence of positive convolution operators for which
Corollary 2.1 does not apply but Theorem 2.3 does. Let

1, for n even,
Up = .
0, otherwise.

Let J be a non-trivial admissible ideal of N. Choose an infinite subset C' = {p; < py <
ps - -} from I\ J4, where J,; denotes the set of all subsets of N with natural density
Z€ero.

Let A = (a,x) be given by

1, ifn=p;, k=2p; for some i € N,
any, =1, ifn#p; forany i,k =2n+ 1,
0, otherwise.

Now for 0 < e < 1, K(¢) = {k € N : |uy, — 0] > €} is the set of all even integers.
Observe that

Z 1, if n = p; for some ¢ € N,
Ang = . .
g 0, if n # p; for any ¢ € N.
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Thus, for any § > 0, {n € N Y hek(e)nk = 5} = C € J\ J4 which shows that
{up, hren is A’-statistically convergent to 0 though x is not A-statistically convergent.

Now let the operators L,, on Cla,b] be defined by

Lo(f;2) = W /ab fly)e ™= dy.

If we choose K, (y) = %6_”2‘1’2, then

~n(l4uy,)

Ln(f;l') - \/E

Now for every § > 0 such that § < b_T“ we have

4 _n(l + un) © —n2y? —n2y2
/_5 K, (y)dy 7 </_OO6 dy—/ywe dy
) ([ gy [ o)
= </0 e Y dy - e Vdy).

[ f@Eay = 2)ay

Since [;* e*dey = YT < 00, it is clear that h,{n e_dey = 0.

)
én
A-st-lim,, (1 + u,) = 1, we immediately get

5
A'-st- lim /—5 K, (y)dy = 1.

On the other hand, we have
n(1+ uy) a2z (14 uy,)
sup K,,(y) = ————supe Y < —— 2
sup (y) NG p e
Since lim,, —55 = 0 and A’-st- lim(1 4+ u,) = 1, we conclude that
A’-st-lim sup K, (y) = 0.
" lyl>s

Therefore, from Theorem 2.3,

Al-st-lim || L, (f) = flls =0, forall f € Cla,b].

Also since

However note that, as {uy}ren is not A-statistically convergent to zero so K, do not

satisfy the hypotheses of Corollary 2.1.

3. RATE OF A’-STATISTICAL CONVERGENCE

In this section we study the rates of A’-statistical convergence in Theorem 2.3 using
the modulus of continuity. Let f € C[a,b]. The modulus of continuity denoted by

w(f,a) is defined to be
w(f,a) = sup [f(y) — f(2)].

ly—z|<a
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The modulus of continuity of the function f in Cfa,b] gives the maximum oscillation
of f in any interval of length not exceeding o > 0. It is well-known that if f € C|a, b,
then

lii%w(f, a) =w(f,0)=0,
and that for any constants ¢ > 0, a > 0,

w(f,ca) < (1+[dJw(f, @),
where [c] is the greatest integer less than or equal to c.

Next we introduce the following definition.

Definition 3.1. Let A = (a;,) be a non-negative regular summability matrix and
let {¢, }nen be a positive non-increasing sequence of real numbers. Then a sequence
2 = {Z, }nen is said to be A’-statistically convergent to a number L with the rate of
o(cy) if for every € > 0, there exists § > 0 such that

1
{jeN: > ajnza}ej.
S {nifen—L|>e)
In this case we write A’-st-o(c,)-lim, z,, = L.
We establish the following theorem.

Theorem 3.1. Let A = (aj,) be a non-negative regular summability matriz and let
{L,}nen be a sequence of convolution operators given by (2.1). Assume further that
{cn}nen and {d, }nen are two positive non-increasing sequences. If for a fixred § > 0
such that § < b_T“

Aj-st-o(cn)-lirrln | Ln(fo) = folls =0

and

Al-st-o(d,)-limw(f, a,) =0,
where oy, = /|| Ln ()]s, then for all f € Cla,b] we have
A-sto(py)-lim | La(f) — flls = 0,
where p, := max{c,,d,}.

Proof. Let 0 < § < I’_T“, f € Cla,b] and = € [a+ d,b — ¢]. By positivity and linearity
of the operators L,, and using the inequalities for any o > 0 we get

LalF52) — F@)] <EallF) — F@)]0) + 1)1l ) — o)
<o (o (£l Z0) i)+ 1 i) = o)

<t (14 (2 o) 4 7@ i) - oo
<iolf. ) { Lalfosa) + 5 Lals) | + @) 1Enlfos o) = o)
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Therefore, for all n € N
I£0(8) = Fls < wCFs0) {IEaCls + 5 1La(@) 5} + Ml Lalfo) = folls

where M; := || f]|s. Now let o := v, = /|| Ln(V)]|s. Then we have

1Ln(f) = Flls <w(f, an){lI Lafo)lls + 13 + Mil| La(fo) — folls
<2w(f, an) +w(f, an) [ La(fo) = folls + Ml Ln(fo) — folls-
Let M = max{2, M;}. Then we can write for all n € N that

1L (f) = flls < M{w(f, an) + [ Ln(fo) = folls} + w(f; an)l[Ln(fo) = folls-

Given € > 0, define the following sets:
D i={n:|[La(f) = flls = €},
€
Dy :=4n: > —
1 {TL w(f7an)—3M}7
3
Dy i={n s wlf.an) ILalfo) = folls = 5
£
D5 = Ly, - > —— 5.
= {n s ILalho) = folls = 557}
Then D C Dy U Dy U D3. Also, we define

Dy ={nwlf.an) 2 2},
Dy ={n: I1Lah) — flls = /5 }.

Therefore, Dy C D) U Dg. Hence, we get D C Dy U D} U D;’ U Djs. Since p, =
max {¢,, d,} we obtain for all j € N that

1 1 1 1 1
*Z%nﬁj > jn + o > jn + — > jn + — Y G

D; neD J neD; J neD) J nEDlz/ J neD3
As
A’-st-o(c,,)- lm || Ly (fo) = folls =0
and
A’-st-o(d,,)- lim w(f,a,) = 0.
Therefore,
1
{jGN:Zajnzé}GJ,
J neD
ie.,

Aj—st—o(pn)—lign N\ Ln(f) = flls =0, forall fe Cla,b],

where p,, ;== max {c,,d,}. Hence, the result follows. O
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4. CONCLUSIONS

Following the concept of A’-statistical convergence for real sequences, we have
encountered a Korovkin type approximation theory (Theorem 2.3) for a sequence
of positive convolution operators defined on Cla,b]. We have exhibited an example
which shows that Theorem 2.3 is stronger than its A-statistical version [6, Corollary
2.5]. The third section states about the rates of the A’-statistical convergence.

We are very much interested whether the results of this paper are valid for the
function f with two variables. Again we are interested whether the results are relevant
on infinite interval.
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SPECTRA OF THE LOWER TRIANGULAR MATRIX
B(ry,...,7;81,...,50) OVER ¢

SANJAY KUMAR MAHTO!2, ARNAB PATRA!, AND P. D. SRIVASTAVA?

ABSTRACT. The infinite lower triangular matrix B(ry,...,7;81,...,8y) is consid-
ered over the sequence space ¢y, where [ and I’ are positive integers. The diag-
onal and sub-diagonal entries of the matrix consist of the oscillatory sequences
7 = (Pk(mod 1)+1) and 8 = (Sk(mod 1)+1), respectively. The rest of the entries of the
matrix are zero. It is shown that the matrix represents a bounded linear operator.
Then the spectrum of the matrix is evaluated and partitioned into its fine structures:
point spectrum, continuous spectrum, residual spectrum, etc. In particular, the
spectra of the matrix B(ry,...,74;81,...,86) are determined. Finally, an example
is taken in support of the results.

1. INTRODUCTION

The study of the spectrum of a bounded linear operator has received much attention
in recent years due to its wide application in functional analysis, classical quantum
mechanics, etc. Let A be an infinite matrix that is bounded and linear in a Banach
space U. Then many dynamical systems can be reformulated as the system of linear
equations Axr = Ax, where ) is a complex number and x is a nonzero vector in U.
The stability of this system can be explained by the spectrum of A. In this course,
spectrum localization of an infinite matrix over a sequence space is viewed as an
important problem by many authors [10,14-16,23,26]. An extensive study of most of
the research done in this direction can be found in the review articles [25] and [17].

Key words and phrases. Fine spectra, sequence space, lower triangular infinite matrix, point
spectrum, continuous spectrum, residual spectrum.
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For a sequence x = (xy), the backward difference operator A is defined by Ax =
T — Tp_1, where x_; = 0. The matrix representation of this operator is as follows:

1 0 0
1 0
A=1¢9 -1 1

O OO

In short, A is an infinite matrix whose diagonal entries and subdiagonal entries are the
constant sequences (1,1,...) and (—1,—1,...), respectively. Akhmedov and Bagar
[1] determined the spectral decompositions of this operator over bu, (1 < p < 00),
whereas Altay and Bagar [3] evaluated the spectra of the same operator over the spaces
c and ¢p. Altay and Bagar [4] then considered the difference operator B(r, s) over ¢
and ¢, which is a generalization of the operator A. The diagonal and subdiagonal
entries of B(r, s) contain the sequences (r,r,...) and (s, s,...), where r and s # 0 are
real numbers. Furkan and Bilgic studied B(r, s) in the same direction over ¢, and bu,
in [6]. For more study, we refer [2,7,8,12,13,18,19,22,24] etc. Now if one considers
the more generalized difference matrix whose diagonal and subdiagonal entries are
the oscillatry sequences (71,72, ...,7,71,...) and ($1, S, ..., Sy, S1,...), where [ and
I are some positive integers, then the number of limit points of both the sequences
will be different and it will be interesting to study the spectral property of the matrix.

In this paper, we have determined the spectra and fine spectra of the generalized
difference matrix B(ry,...,7;81,...,sr) in which the diagonal entries consist of a
sequence whose terms are oscillating between the points r1,7s,...,7; and the sub-
diagonal entries consist of an oscillatory sequence whose terms are oscillating between
the points sq, s9,...,sy. Furthermore, the spectra and fine spectra of the matrix
B(r1,...,74;81,...,5) are also discussed.

2. PRELIMINARIES

Let U and V be Banach spaces. Then the space of all bounded linear operators
from U into V is denoted by B(U,V). If U =V, then the space is denoted by B(U).
Let L € B(U) and U* be dual of U. Then the adjoint L* € B(U*) of L is defined by
(L*f)(t) = f(Lt) for all f € U*. Let J: D(J) — U be a linear operator defined over
a subset D(J) of U. Then the operator (J — AI)~! is called the resolvent operator of
J, where X is a complex number and [ is the identity operator.

A complex number X is said to be a regular value [11] of a linear operator J :
D(J) — U if and only if the operator (J — AI)~! exists, bounded and is defined on a
set which is dense in U. The set of all regular values of the linear operator J is called
resolvent set and is denoted by p(J). The complement o(J) = C — p(J) is called
the spectrum of J. The spectrum o(J) is further partitioned into the following three
disjoint sets.
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(a) o,(J) = {\ € C: (J — X)~! does not exist}. This set is called the point
spectrum (discrete spectrum) of the operator J. The members of this set are
called eigenvalues of J.

(b) o.(T), which is defined as the set of all complex numbers X for which (J—AI)~*
exists and defined on a set which is dense in U, but it is not a bounded operator
in U. This set is called continuous spectrum of J.

(¢) 0.(T), which contains all those complex numbers for which (J — AI)~! exists,

defined on a set which is not dense in U. This set is called the residual spectrum
of J.

Let R(J — AI) denotes the range of the operator J — AI. Goldberg [9] has classified
the spectrum using the following six properties of R(J — AI) and (J — A\I)~%:
(1) R(J — M) = U;

(I1) R(J — M) # U but R(J — M) = U;

(ITl) R(J —XI) #U
and
(1) (J — AM)~! exists and it is bounded:;
(2) (J — M)~! exists but it is not bounded;
(3) (J — AI)~! does not exist.
Based on the above six properties, the Goldberg’s classification of the spectrum can
be given as shown in the Table 1.

TABLE 1. Subdivisions of spectrum of a bounded linear operator

(@ (1) (I11)

1 p(J, U) — JT(Ju U)
2| 0.(J,U) o(J,U) o.(J,U)
310,(L,U) o,(J,U) 0,(J,U)

Theorem 2.1 ([21]). Let L be a bounded linear operator on a normed linear space U.
Then L has a bounded inverse if and only if L* is onto.

Lemma 2.1 ([20]). An infinite matriv A = (an) € B(co) if and only if

(@) (ank)x € €1 for all n and sup,, >y |ank| < 00;
(0) (ank)n € co for all k.

Moreover, the norm ||A|| = sup,, >k |@nk]-

Throughout the paper, we denote the set of natural numbers by N, the set of
complex numbers by C and Ny = NU {0}. We assume that z_,, = 0 for all n € N.

3. MAIN RESULTS

Let [ and I’ be two natural numbers. Suppose that H is the least common multiple
of land I'. Let r;, 1 =1,...,l,and s; 20,7 =1,...,I', be complex numbers. Then
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the matrix B(r,...,7;81,...,s¢) is defined as B = (b;;); j>0, where

Tj(mod 1)+1, When i = j,

(3.1) bij = Sj(mod 1')+1, Wheni=j+1,
0, otherwise.
That is
o -
S1 - O
B = ' s
O Sy

If the matrix B transforms a sequence = = (xy) into y = (yx), then

o0

(32)  yp = bejm; = bpr—1Zk—1 + bkrTr = S(k—1)(mod 1)+1Tk—1 + Th(mod 1)-+1Tk»
=0

for all k£ € Ny.

Theorem 3.1. B € B(c) and ||Bll,, < max{|r;| +[s;[: 1 <i<[,1<j <!}
i.j

Suppose that a is an integer and n is a natural number. We denote, by [a,], the set
of all non-negative integers x for which n divides x — a. Then a(mod n) is the least
member of [a,]. Let @ and § be the mappings which are defined on the set of integers
as follows:

a(k) = k(mod 1) + 1
and
B(k) = k(mod I') + 1.

Without loss of generality, we assume that sgu)sgi1) - Sg+s) = 1 and (ra(k) —
A (Tat1) = A) -+ (Tagtj) — A) = 1, when k + j < k. If X is a complex number such
that (B — AJ)~! exists, then the entries of the matrix (B — A)™' = (z,4), n > 0, and
k > 0, are given by

)m/l

(=D "spek) - Spkrcr—1) (51...80
(g~ M-ty ~ N {1 =N+ (e~ 0F

m

(sl .. .Sl,)l/

X , when n > k,
(3.3) znk = {(ri= N (rp = AT
1
_ when n = k,
Ta(k) - A
0, otherwise,

where (, (" and (" are the least non-negative integers such that
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n—k=mH+(,
(3.4) (=m'l+(,
C — ml/l/ ‘l’ C”
for some non-negative integers m, m’ and m”.
Lemma 3.1. If (X —r|--- A = )Y > (|sy]| -+« [sp|)VY, then (B — M)~ € B(cy).

Proof. Since (XA — |- |A=r )Y > (|s1] -+ [sy])" and sy, Sg, ..., sy are non-zero,
therefore A # r; for all ¢ = 1,2,...,l. Then the matrix B — A/ is a triangle and
hence (B — AI)™! = (z,:) exists, which is given by (3.3). We first consider a row
of (B — AI)~! which is a multiple of H, that is n = mH for some m € Ny. Now,
let k = mH for m = 0,1,...,m. Then (3.4) implies that n — k = (m — 7m)H and
m'=m" == =({"=0. Thus, from (3.3), we have

(= { (51 s0)F }mm
Znk = H )

Ta) = A [ {lrs = A) -+ (n = A)}T
for all m =0,1,..., m. Therefore,
H J
(Is1--- [se )7
Z |an| Z{ H )
kE[0] |7"a (k) — {Ire = Al = A}

where [0g] denotes the set of all non-negative integers which are multiple of H. For
the same row, if we consider k£ = mH+ 1 form =0,1,...,m —1, then n — k =

(m — 1 — 1)H + H — 1. Let m} and mf] be quotients and (] and ¢} be remainders
when H — 1 is divided by [ and I’ respectlvely, that is

H—1=mil+(,
H—-1=mll'+¢.
Then, from (3.3), we obtain that

"

i (=1)" " sp0) -~ Sp0+cr-1) (s1---sp)™
T (ramy = A ey — A {lr = A) - (= AP

" { (s1-- sz')bf . }%ml,
{0 =2 (= )7

forall m =0,1,...,m — 1. Hence,
ozl = |36(k)| “|8pkrcy—1)] (Is1]- -« su])™
heliu] Taty = Al Irageacy = Al {lre = Al = A}

~ H J
S sl dse?
H )
35 U = Al = AR
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where [14] denotes the set of all nonnegative integers x such that H divides x — 1.
Similarly, for k =mH + 2,...,mH + H — 1, we have

S o] = sl -~ Issaercy—n| — (sa]-.-[su])™
kel2L] Ty = Al [Tagerey = Al {lre = Al fre = A[F™
m e J
% Zl (Isa]---Ise])7
H )
im0 (lr = Al = Al}T
S ] ol b0l (sl sl
kel(H-1)L] Patk) = Al [ageacy,_) = AL {lre = A=+ Jre = A}

~ J
S B L) L
=0 [lre = Al [ = AT

for some integers ¢/, ¢!, m; and m! for all i € {2,3,..., H — 1}. Thus,

(st 1se®
> el = Z{{m Az }

= Al

. ] S

{lre = Al--- o = Al

where

[ssel -~ [ssgercr—n| — (sa] - [sw])™
Tatk) = Al [Pagey — AL {lre = Al fre = A}

|sa)] -+ [98kecy—1)] . (|sq] - -« sy |) ™o
Pamy = Al ragegy_ = Al {lre = Al fro = AP

M =

Let My = max{ —X—, M ¢. Then
7o (ky = Al

oo 2Mo(|r1 — MJra — A+ | — AT
k=0 (Jre = AMlra = Al |re = AT — (|sa]|s2] - - - |sr])

Therefore, sup,,c(o,,] 5o |2nk| < 00. Similarly, we prove that

q -
G

o
sup Z |2nk| <00,
n€(lu] k=0

o
sup Z |2nk| <00,
n€2u] k=0
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o0

sup Y |zak] <oo.
ne€[(H-1)u] k=0

Thus,
o0
sup Z |znk| = max{ sup Z |Znk |5 sup Z |Znkl, .-, sup Z |an|}
" k=0 n€[0n] k=0 n€[ly] =0 n€[(H-1)u] k=0

This implies that sup,, Y52 |2nk| < 00. Likewise, for an arbitrary column of (B —

A)~!) adding the entries separately whose rows n belong to [0g], [1x],...,[(H —1)#]
respectively, we get Y00 |z < 0o. Therefore, lim, o |2,x] = 0 for all & € Np.
Hence, by Lemma 2.1, the matrix (B — A\I)~! € B(c). O

Consider the set § = {A€C: (]A=r|--+|A=r|)T < (|si| -+ |sy|)7}. Then we

have the following theorem.
Theorem 3.2. o(B,¢y) = S.

Proof. First, we prove that o(B,cy) C S. Let A be a complex number that does not
belong to S. Then (|A—ry|--- [A—=r|)"/* > (|s1] - - |s¢|)"/". In that case, from Lemma
3.1, it follows that (B — AI)~! € B(cp). That is, A ¢ o(B, cy). Hence, o(B,cy) C S.

Next, we show that S C o(B,cg). Let A € S. Then, (J]A\ —ry| - - |A =)/t <
(|s1] - - [se|)/Y. If X equals any of the r; for all 4 € {1,2,...,1}, then the range of the
operator B — AI is not dense in ¢y, and hence A € o(B, ¢y). Therefore, we assume that
A # 7 foralli € {1,2,...,1}. In that case, B— A is a triangle and (B—\)™! = (z,x)
exists, which is given by (3.3). Let y = (1,0,0,...) € ¢y and let = (z) be the
sequence such that (B — AI)~'y = z. Tt follows, from (3.3), that

(—1) (5182 50) 7 '
3.6 TnH = ZnH,0 = H 5
(3.6) : 7“1—)\{{(7’1—)\)---(77—)\)}1}

for all n € Ny. Since {(r; — A)--- (r; — A}/ < (51 sl/) the subsequence ()
of x does not converge to 0. Consequently, the sequence x = (xy) ¢ ¢o. Therefore,
(B—X)™' ¢ B(cg). Thus, A € 0(B,cy) and hence S C o(B,cy). This proves the
theorem. O

Theorem 3.3. 0,(B, cy) = 0.

Proof. Let A\ € 0,(B,cp). Then there exists a nonzero sequence z = (x) such that
Bx = Az. This implies that

(3.7) S(k—1)(mod 1) +1Tk—1 + Th(mod 1)+1Tk = AT}

Let xy, be the first non-zero term of the sequence x = (x}). Then from the relation
(3.7), we find that X = rymod 1y+1. Next, for k = ko + [, (3.7) becomes

S(ko+1—1)(mod 1) +1Tko+1—1 F T(ko-+1)(mod 1)+1Tko+1 = ATkot1-
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That is,
(3.8) S (ko+1—1)(mod 1")+1Tko+1—1 T Tko(mod 1)+1Tko+l = ATkoti-

Putting A = 7 (mod 141 in (3.8), we find that

S(ko+1—1)(mod 1)+1Tko+1—-1 = 0.

AS S(ky+1-1)(mod 1y+1 7 0, therefore xy, ;1 = 0. Similarly, using (3.7) for k = ko +1—1
and putting the value xy, ;-1 = 0, we obtain xy,4;—2 = 0. Repeating the same step for
kE=ko+1—2ko+1—-3,...,ko+ 1, we deduce that xp, = 0, which is a contradiction.
Hence, 0,(B, co) = 0. O

Let B* = (bj;) denote the adjoint of the operator B. Then the matrix representation
of B* is equal to the transpose of the matrix B. It follows that

Ti(mod 1)+1, ~When i = j,
(3.9) bij = { Simod 1)+1, When i+ 1 =7,
0, otherwise.
That is,
sy -
re . O
B* = sy
0

The next theorem gives the point spectrum of the operator B*.
Theorem 3.4. 0,(B*, ;) = {\ € C: (A =7y [A = )T < (|ss] -+ |sw])7}.

Proof. Let A € 0,(B*, ¢ = £1). Then there exists a nonzero sequence x = (x;) €
¢y such that B*z = Az. From this relation, the subsequences (zrg), (Trms1),-- -,
(xkmirm—1) of x = (xy) are given by

(31 e Sl,) I

ka:{(()\—rl)...()\;m)zl{ }kxo

(h—n) {((An»--(meﬂ}’“%

TkH+1 =
1 S1 (Sl...sl,)T/
A=) =) =)
TrkH4+H-1 = H H  H_,
Sll/ . Sll/l_lsll//
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) {((A—ﬁ)m()\;n))?}kmo_

(Sl . .Sl,>T/

Thus,
oo oo [oe) o0
Z|$k| =Z|9€kH| + Z|ka+1| + -+ Z|$kH+H—1|
k=0 k=0 k=0 n=0
A—r A=r)T A=) T(A=p) T
_ 1+‘ I (Gt L el 12,1 )
81 Sll/ 'Sl/l 18111,

(A=r)-—-(A=m))T

(81 sp)1

00
<D
k=0
v

Clearly, the sequence = = (xy) € ¢; if and only if (|A—r|--- \)\—n])% < (|s1] - |se])7.
This proves the theorem. 0]

Theorem 3.5. 0,(B, o) = {\ € C: (A= 71|+ [\ = )T < (|ss] -+ |su])7}.

Proof. The residual spectrum of a bounded linear operator L on a Banach space
U is given by the relation o,(L,U) = 0,(L*,U*) \ 0,(L,U). Therefore, o,(B,cy) =
o,(B*, ¢) \ 0,(B, cp). Then the proof of this theorem is an easy consequence of the
Theorems 3.3 and 3.4. U

Theorem 3.6. 0.(B,co) = {A € C: (A =ri|---[A=n|)T = (|si| - |su|)7 }.

Proof. Since spectrum of an operator on a Banach space is disjoint union of point,
residual and continuous spectrum, therefore from Theorems 3.2, 3.3 and 3.5, we deduce
that

1
[

0e(B,co) = {A€C: (A=r|---|A =)
Theorem 3.7. {ry,ra,..., 7} CIIL(B,c).

Proof. Theorem 3.5 shows that r; € 0,(B,¢y). However, 0,(B,cy) = I11;(B,cy) U
I115,(B,¢p). Therefore, to prove r; € I11,0(B,¢y), we shall show that the matrix
B — r1I has bounded inverse and from Theorem 2.1, it will be sufficient to show that
(B —ryI)* is onto. For this, let y = (y) € ¢1. Then (B — r1I)*x = y implies that

= (|sa| - |su))7} . O

(3.10) (Titmod )41 — 1) + Si(mod 1N+1Tit1 = Yi
for all 7 € Ny. Solving (3.10) for x = (x;), we obtain that
0 g )
k—2 k—1
1 1 — Ti(mo ' H ko

(3.11) BBk = Z 1 (mod z)+1ymH+j 4 YmH+k—1 ’

=0 Sj(mod I)+1 i=j+1 Si(mod 1")+1 S(k—1)(mod 1")+1
fork=1,...,H,and m =0,...,00. Let

1 o — Ti(mod 1)+1
Cj = ,

Sj(mod 1")4+1 i=j+1 Si(mod 1")4+1
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for 7=0,...,k—2, and

1
Chor=———"—.
S(k—1)(mod 1")+1
Then (3.11) can be written as
(3.12) Tmi+k = CoYma + Cr¥Ymus1 + -+ + Com1YmH k-1

Taking summation from m = 0 to oo of the absolute values of x,,5.x, we obtain

(3-13> Z |9UmH+k:| < |Co| Z |ymH| + |Cl| Z |ymH+1| + -+ |Ck:—1| Z |ymH+k:—1|-
m=0 m=0 m=0 m=0

Since y = (yx) € {1, therefore the right hand side of the inequality (3.13) is a sum of
k finite terms. Thus, >0 o |Zmmk| < 0o for k € {1,2,..., H}. This implies that the
series

(3.14) D lwil = lzol + Y2 [wmmal + D [wmmse + 0+ Y [Tmnn]
( m=0 m=0

m=0

is a sum of H + 1 finite terms. Hence, x = (z;) € ¢;. We have shown that for every
y = (y;) € {4 there exists a sequence x = (x;) € ¢; such that (B —rI)*z = y. That is,
(B —rI)* is onto. Similarly, we can show that r; € I11(B, cy) for i = 2,... 1. This
proves the theorem. 0

Theorem 3.8. 0,(B,cy) \ {r1,72,...,7} C I11(B, ).

Proof. Let X belongs to the set o,.(B, ¢o) \{r1, 72, ..., }. Then (|A=ry|---[A=r|)T <
(Is1] - - \sl/\)%’ and A & r; for all ¢ € {1,2,...,1}. This inequality shows that the series
> 2o |znk| in (3.5) is not convergent when n goes to infinity. In that case, B — AI does
not have bounded inverse. Then from Table 1, we find that A\ € I115(B,¢y). Hence
(B, co) \ {r1,7a,...,m} CII1(B,c). O

Theorem 3.9. I11,(B,co) = {ri,re,..., 71}

Proof. From Table 1, we have 0,.(B,cy) = I11;(B,co) U I115(,cy) and the union is
disjoint. Then taking complement of the inclusion of Theorem 3.8 in o,(B,¢),
we obtain that o,.(B,co) \ I11:(B,co) € {ri,re,...,r}. That is, IT(B,co) C
{ry,r2,...,7}. This inclusion together with Theorem 3.7 implies that I11;(B, cy) =
{ri,ra, ..., 1} O

Theorem 3.10. I115(B, cy) = 0,(B, co) \ {r1,r2,.... 7}

Proof. Taking complement of the result of Theorem 3.9 in 0,(B, ¢y), we obtain that
I11(B,co) = 0,.(B,co) \ {r1,72,...,11} O
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4. FINE SPECTRA OF THE MATRIX B(7,...,74;81,..., S¢)

We consider the matrix

B(ry,...,74;81,--.,56)
[+ O 0 0O O O O O O 1
s; . 0 0 0O O O 0 O
0 s, 3 0 0 0 O O O
0O 0 s3 4, 0O 0 O O O
0O 0 0 s, m 0 O O O
=10 0 0 0 s5 1 0 0 O
0O 0 0 0 0 s¢ r3 0 0
0 0 0 0 0 0 S1 T4 0
0O 0 0 0 0 0 0 s nm

Now, consider the following sets:
D={xeC: (A= ril|]A=ral|A = rs|]A = 7a)7 < (Isullsol[ssll5al 53] 56])7 }
Dy ={AeC:(JA=ri|[A=ral|A = rsl[A = ra)¥ < (Is1]ls2llssllsallssllsa])? } .
D, = {/\ € C: (|A = ral[A = ral[]A = rsl|]A = ru])5 = (|sal]sal[ss]]alls5]Is6]) }

From the discussion of the previous section, we deduce the following results:
(a B(T‘l, ooy T4y 81, 756) S B(C()),

PN

o=

)
)
(c) o(B(ry,...,74;81,...,86),¢c0) = D;
(d) op(B(rey...,7ra581,..,86),¢0) = 0;
(€) op(B(r1,...,7ra;81,...,86)%, ¢y = 1) = Dy;
(f) op(B(r1,...,74;81,...,86),¢0) = D1;
(g) oc(B(r1,...,74;51,...,56),C0) = Da;
(h)

)
I[[lU(B(Tl, vy T4y 81, .,86),C0) = {7’1,7”2,7’3,7”4};
(1) I[[QO'(B(?H, vy T4y 81, . .,86),C0) = D1 \ {7’1,?”2,7"3,7’4}.
In particular, if we take ry = 1 —14, ro = —i, r3 = —1.5, r, = —i and s; = 1,
so =141, 83=—2,8 =—15, s5 =1—1, ss = —1, then the spectrum is given by
o(B(ry,...,ra351, - 56),c0) = {A € C: (A= 1+il|]A+i*[A+ 15])7 <63},

which is shown by the shaded region in Figure 1.

5. CONCLUSIONS

We have studied the spectral decomposition of the matrix B(ry, ..., r;s1,...,8y),
which generalizes the following matrices.

e The backward difference operator A [3] for [ =1,0'=1,r; =1 and s; = —1.
e The Right shift operator for [ =1,1'=1,r; =0 and s; = 1.
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0.5 ]

00

FIGURE 1. Spectrum of B(rq,...,7r4; 81, ..., 56)-

e The Zweier matrix [5] for [ =1,1'" =1, r; = s and s; = 1 — s for some complex
numbers s # 0, 1.

e The generalized difference operator B(r,s) [4] for { =1, ' =1, ry = r and
s1 = s for some complex numbers r and s # 0.
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CHAOS AND SHADOWING IN GENERAL SYSTEMS
M. FATEHI NIA! AND A. ZAMANI BAHABADI?

ABSTRACT. In this paper we describe some basic notions of topological dynamical
systems for maps of type f : X x X — X named general systems. This is proved
that every uniformly expansive general system has the shadowing property and every
uniformly contractive general system has the (asymptotic) average shadowing and
shadowing properties. In the rest, Devaney chaos for general systems is considered.
Also, we show that topological transitivity and density of periodic points of a general
systems imply topological ergodicity. We also obtain some results on the topological
mixing and sensitivity for general systems.

1. INTRODUCTION

Shadowing and ergodic properties in discrete dynamical systems have received
increasing attention in recent years [4-7]. Many authors investigated the relation
between shadowing properties and other ergodic properties such as mixing and tran-
sitivity [10,12,14]. In [2] Blank introduced the notion of average-shadowing property
and Gu [9] followed the same scheme to introduce the notion of the asymptotic av-
erage shadowing property. In [14] Sakai considered various shadowing properties for
positively expansive maps on compact metric spaces and prove that for a positively
expansive map; Lipschitz shadowing property, the s-limit shadowing property and
the strong shadowing property are all equivalent to the shadowing property. He also
prove that average shadowing property and topological transitivity are equivalent for
every positively expansive map on a compact metric space. Theorem B in [3] shows
that the two-sided limit shadowing property implies topological mixing. In [5,6] the
author introduce uniformly contractive (expansive) iterated function systems (IFS)
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and prove that every uniformly expansive IFS has shadowing property and every uni-
formly contractive IFS has shadowing and (asymptotic) average shadowing properties.
R. Gu [9,11] prove that every onto continuous map on a compact metric space with
(asymptotic) average shadowing property is chain transitive. Also, in [5,6] the author
prove similar results for iterated function systems.

The relationship between chaos and shadowing is an interesting topic for many
researchers in the recent years. There are different definitions of chaos. One of the
popular definition is Devaney chaos. Indeed a map f is chaotic in the case of Devaney
if the periodic points of f is dense, f is topologically transitive and is sensitive. This
is well known that the density of periodic points and topological transitivity imply
sensitivity. Sanz-Serna [15] devised a method to simulate chaos by use of shadowing
lemma. In [1], the authors introduced the notion of P-chaos by changing the condition
of transitivity in the definition of Devaney chaos to the shadowing property, and they
proved that every P-chaotic systems on a connected space is Devaney chaotic with
positive topological entropy.

In this paper we consider a generalization for discrete dynamical systems which
introduced in [13]. The main idea of this generalization is based on considering maps
f: X x X — X instead of maps f: X — X, as discrete dynamical systems. Firstly,
we define basic notions, such as, orbit, periodic orbit, shadowing and ergodic properties
which we need in the following. Section 3 is devoted to shadowing properties, the
main result of this section is Theorem 3.1 which shows that in generalized dynamics
uniformly expansivity implies shadowing property. Then two examples of general
systems on symbolic space and unit circle are given which have shadowing properties.
In section 4, we study the chaotic properties of a general dynamical system. We show
that similar original maps and non-autonomous discrete systems [16], the density
of periodic points and topological transitivity imply sensitivity in general systems.
Finally, we obtain some notions such as topological ergodicity, topological mixing and
sensitivity for general systems.

2. PRELIMINARIES

Let (X, d) be a complete metric space and f: X x X — X be a continuous map.
For x € X, define the orbit of x as follows: O(z) = {x,}°°,, where ;1 = 2y = = and
Tpr1 = f(xp_1,x,) for all n > 1.

We say that © € X is a periodic point of period m if xy;,+; = x; for every k € N
and 0 <34 <n.

The map f is called to be sensitive if there is e > 0 such that for every x € X and
every open subset U of X containing x, there is a point y € U and n € N such that
d(xn, yn) > e.

We say that f is topologically transitive if for every nonempty open sets U, V, if
there is z € U such that for some m € N, z,, € V. We say that f is chaotic in the
sense of Devaney on X if:

1. f is topologically transitive in X;
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2. the set of all periodic point of f is dense in X;
3. f is sensitive.

Definition 2.1. The map f : X x X — X is said to be contractive if there is a
constant 0 < o < 1, called a contractive constant, such that for every disjoint points
(z,y), (z,w) € X x X then d(f(x,y), f(z,w)) < amax{d(z,z),d(y,w)}.

3. SHADOWING AND EXPANDING

For given § > 0, a sequence {z,},>0 in X is said to be a d-pseudo orbit of f :
X x X = X if 21 = 2 and for every n > 1 we have d(x,.1, f(x,_1,2,)) <.

One says that the map f : X x X — X has the shadowing property if for given
€ > 0 there exists § > 0 such that for any d-pseudo orbit {z,},>0 there exists yo € X
such that d(xg,y0) < € and d(zy,, f(Yn—2,Yn—1)) < € for all n > 2. In this case one
says that the orbit {y,}n>0 or the point yo, e-shadows the d-pseudo orbit {z;, },>0-

Definition 3.1. The map f: X x X — X is said to be uniformly expansive if there
exists constants 0 < A < 1 such that for x,y € X x X

d(f(x), f(y)) > A (x,y),
where x = (21, 22), ¥y = (y1,%2) and d'((z1, 22), (y1,y2)) = max{d(z1,y1), d(za, y2)}.

Definition 3.2. A sequence {z;};>0 of points in X is called an asymptotic average

pseudo orbit of f if
' 1 n—1
Jim - ; d(f(wi1,2i),vi1) = 0.
A sequence {z;};>0 in X is said to be asymptotically shadowed in average by a point
zin X if

n—1

where {z;};>0 is orbit of the point z.

Definition 3.3. Let f : X x X — X be a continuous map. For § > 0, a sequence
{z;}i>0 of points in X is called a d-average-pseudo-orbit of f if there is a number
N = N(J) such that for all n > N

1 n—1

. Z d(f(zi—1, ), 1) < 6.
iz

We say that f has the average shadowing property if for every € > 0 there is 6 > 0
such that every d-average-pseudo-orbit {x;};>¢ is e-shadowed in average by some point
y € X, that is,

n—1

1
limsup — > d(y;, z;) < e,

n—oo M i—0

where {y; }i>0 is orbit of the point y.
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In the next theorem whose proof is based on [8, Theorem 2.2], we provide some
coefficient conditions for a general system to have the shadowing property.

Theorem 3.1. Let f : X x X — X be an uniformly expansive map and for every
x € X the restricted functions f: {x} x X — X and f : X x {z} — X be surjective,
then f has the shadowing property.

Proof. The main idea of the proof is to find a Cauchy sequence which converges to a
point that e-traced our considered d-pseudo orbit. Assume that for every x € X the
orbit of z, denoted by {z/"},>¢, as /0 =z, 2/t = x and /"t = f(zF 2P for
all n > 1. For given € > 0 take 6 = (A — 1)e, where 0 < A < 1 is expansivity constant
and let {x,} be a d-pseudo orbit of f. Consider the sequence {z,},>0 in X defined
as follows: zyg = xg, 21 = ¥1 = 2o and 23 be a point that zo = f(z1, 29) and for every
n > 2, z, be a point that z,, = zrf’”. Givenn > 1 and 0 < k <n —1, denote

(3.1) g = 20",
This implies that for any n > 1 and 2 < k < n — 1 we have:
(32) Znk = f(Zg’k_27 Z£7k_1)7 Tp = f(Zn,n—Qa Zn,n—l)'

Claim. The sequence {z,},>0 in X is a Cauchy sequence.
Proof of Claim. Consider the function ¢ : (X x X) x (X x X) — R defined by

A, s =1,
p(s,t) =1 df(s), f(1))
d'(s,t)

where 0 < A < 1 is the expansivity ratio number. This implies that for every

(a,b) # (c,d) € X x X, we have that

df(ab), fled) (f(a,b), f(c.d)
A A

Firstly, fixing n > 1 and m > 1, by using (3.1), (3.2) and above inequalities we obtain:

(3.3) d(a,c) < d(b,d) <

d(zn,laszrm,l) < d(zn,Qa Zn+m,2) << d('xn72n+m,nfl>

A = A2 — — A1
Secondly, by induction on m > 1 we show that the following inequality holds uniformly
with respect to n > 1:

d(Zn, Zn—i—m) S

(3.4) d(Tn, Zpsmmn—1) <90 Z AR,
k=1

Indeed, for m = 1 the inequality (3.4) follows from (3.2) and (3.3):

d(&?n, Zn+17n71) < d(f(xn—lu l‘n)a f()\zn+l,n—2; Zn,n—l)) _ d(f(xn_17>\xn)7 xn—l—l) <

> o
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Assume that (3.4) holds for some m = p > 1 uniformly on n > 1. Taking into account
this assumption, as well as (3.2), (3.3) and (3.4) for m = p + 1:

d(f(xn—la xn)7 f(zn-l—p-i-l,n—% Zn+p,n—1))

d<xn7 Zn—l—p—l—l,n—l) S

A
— d(f(xn—la xn)a Zn+p+1,n>
A
< d(f(xn—h xn)7 xn—i—l) + d(xn+17 Zn+p+1,n)
- A
1 p
<< (6 +0y A’“)
A k=1
p+1
<85> AR
k=1
Then (3.4) holds for any m > 1 and any n > 1.
So, we have the following relation:
1 & 1 o € )
. dn nm<7(5 )\7R<7'7:7‘7< AT
(3:5) <Z’Z+)—Ank§ S3 A1 a1

Hence, {z,}n>0 in X is a Cauchy sequence.

Now, we continue the proof of the theorem.

Let y denote its limit and consider the sequence {y"} as orbit of y. From (3.1)
one has for any k£ > 0

] — f:k
Jim =, =

Letting m — oo in (3.5) implies d(z,,y) < eA™", and consequently
d(zn, y"™) < A" (A7) = €.
Therefore, the orbit {y/"},>¢ e-shadows the §-pseudo orbit {z, },>o. d

Theorem 3.2. If f : X x X — X is uniformly contracting, then it has shadowing
property.
Proof. Assume that 0 < § < 11is the contracting ratio of f. Given e > 0 take § = (1_270‘)6
and suppose that {z;};>0 is a d-pseudo orbit for f. So, d(f(zi—1,2;),xi+1) < 0 for all
i>1. Put g; = d(f(zi—1, i), x41) for all i > 1. Consider an orbit {y;};>0 such that
d(yo,iCo) < % and Yi+1 = f(yl',l, y1> for all 7+ > 1.

Now we will show that d(y;, x;) < € for all i > 0. Put M = d(z¢,yo). Obviously,

d(xy,y1) < d(21, f(0,70)) + d(f(20,20), f (Y0, %0)) < Bo + oM.
Similarly,

d(x2,y2) <d(x2, f(20, 1)) + d(f (20, 71), [ (Y0, ¥1))
<pi + ad(z1,y1)
<B1 + a(Bo +aM)
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and
d(z3,y3) <d(x3, f(z1,22)) + d(f(21,22), f(y1,2))
<By + ad(xs,ys)

<Bo + a(By + ad(x1, 1))
<Py + a(By + By + aM))

=f2 4+ afy + o fo + @’ M.
By induction, one can prove that for each i > 2
d(zi,yi) < Bici +afia+ -+ + 0/;160 + o' M.

This implies that any

Ly
1-§

and so, the proof is complete. 0

d(zp,yn) <61+ +---+a" 1) < M< -+

Y

DN
DN

In [5,6], Fatehi Nia proved that every uniformly contractive IFS has average shad-
owing property and asymptotic average shadowing property. The next theorems show
that similar results are established for general systems.

Theorem 3.3. If f: X x X — X is contracting, then it has the average shadowing
property.
Proof. Assume that § < 1 is the contracting ratio of f. For given € > 0, take

0 = (1_726)6 < § and suppose {z;};> is a d-pseudo orbit for f. So, there exists a

natural number N = N(§) such that £ "0 d(f (i, zi41), Tig2) < 6 for all n > N(9).
Put o; = d(f(zi, Tis1),,xire) for all @ > 0. Consider an orbit {y;};>0 such that
d(xo,10) <6 < 5 and yipo = f(ys, yiy1) for all 4 > 0.
Now we will show that limsup,,_,., £ Y0 d(y;, z;) < €.
Take M = d(zg,yo). Similarly,
d(l’g, y?) Sd(x27 f(an 1‘1)) + d(f(x(h xl)v f(y07 yl))
<ai + Bd(z1, 1)
<ai + fB(ao + M)

and

d(x3,y3) <d(zs, [(2122)) + d(f (21, 22), f(Y1,92))
<oy + Bd(x2, o)
<oy + B(ar + Bd(z1,y1))
<as + B(ar + B(ag + BM))
=ay + By + BPap + B2 M.
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By induction, one can prove that for each i > 2
d(x,y;) < Qi1 + By + -+ 7 ag + M.
This implies that

n—1

> dlyixi) =MA+ B+ + ") +ao(l+ B+ + 5772
1=0

tar(L+ B4+ ")+ s

1 n—2
Sm <M+ZO&¢>.

i=0
Therefore,
i sup - S d(yss ) <—— (M + Hmsup = 5
im sup — i ) <—— imsup — » «y
n%oop n i=0 4 1-— 6 n%oop n i=0
1
<—— M+
=5+ 9)
=2 7"
So, the proof is complete. O

Theorem 3.4. If a map f : X x X — X is uniformly contracting, then it has the
asymptotic average shadowing property.

Proof. Assume that 0 < § < 1 is the contracting ratio of f and suppose {z;};>0 is

an asymptotic average pseudo orbit for f. So, lim, % S d(f (i Tig), Tige) = 0.

Put o; = d(f(zi,xis1),,xit2), for all @ > 0. Consider an orbit {y;}i>o such that

Yo € X, y1 = [(y0,%0) and yiro = f(¥i, Yiy1), for all i > 0.
Now, we will show that lim,,_,, % St d(ys, @) = 0.
Put M = d(xg,yo). Obviously,

d(2,y2) < d(za, f(20,20)) + d(f (70, %0), [ (Y0, 1)) < o + BM.
Similarly,
d(z3,ys) <d(zs, f(21,22)) + d(f (21, 22), f(11,92))
<ay + Bd(zs, y2)
<ay + B(ag + Bd(x1, 1))
<ap + Blan + Blag + M)
=ay + o + 2o + B7M.

By induction, one can prove that for each ¢ > 2

d(zs,y:) < aiq + Bay_g+ -+ 7 ag + M.
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This implies that
n—1

Zd(yiaxi) SM(1+ﬁ+...+5n—1)

=0
+ag(l+ B+ + "7
ton(L4 B4+ 77) 4+

1 n—2
Sm <M+ZOéi>.

i=0
Therefore,
n—1 1 n—2
lim — ) d(y;,z;) < 1 —|— (M =0,
ngngonz (yi, x;) m ( _5< +§a>>
and so, the proof is complete. O

In the following, we introduce some non trivial examples of general systems on real
line, symbolic space and unit circle, that have shadowing properties.

Fzxample 3.1. Consider the following maps fi, fo : R — R given by
1
filz) =

3% fo(z) = 2.
Take the map f : R x R — R defined by f(z,y) = M So, for every disjoint
points (z,y), (z,w) € R x R then d(f(x,y), f(z,w)) < £ max{d(x,z), d(y,w)}. Then
this general system is contracting and has the shadowing properties.

Ezample 3.2. Let ¥ denote the set of all infinite sequence = = (xq, 1, z2, ... ), where
r, = 0 or 1. The set ¥ becomes a compact metric space if we define the distance
oo |zi—yil

between two points x,y by p(z,y) = 32, “5
Now, consider the map f : ¥ x ¥ — ¥ defined by

f{zitizo{yitizo) = (o, Yo, ¥1, Y1, - - )
Please note that if the sequences {z;};>0 and {z;};>0 are equal in n initial elements
and {y; };>0 and {w; }i>¢ are equal in m initial elements, then f({z;}i>0, {¥i}i>0) and
f({zi}iso{wi}is0) are equal in m + n initial elements. This implies that

p(f({zitizo, {yitizo), f({zitizo, {witizo))
1
<§ max {p({Zi }iz0, {zi }iz0), P({¥i }iz0, {witizo)} -
Consequently, the map f : ¥ x> — X is contracting and has the shadowing properties
mentioned above.

Example 3.3. Consider the unit circle S = R/Z. The natural distance on R induces
a distance, d, on S'. Let f: S! x S' — S! be a map defined by f(x,y) = (22 + 3y)
(mod 1). This is clear that this is an uniformly expanding map and for every z,y € S*



CHAOS AND SHADOWING IN GENERAL SYSTEMS 391

the maps f: {x} x ST — St and f: S* x {y} — S! are surjective. Then, Theorem 3.1
implies that the function f : S! x S' — S' as a general system has the shadowing

property.
4. CHAOS

In this section, we consider the notion of Devaney’s chaos for general systems and
prove some results about the relations between this notion and some main properties
in general systems.

Theorem 4.1. Let X be an unbounded metric space with no isolated points. If
f: X x X — X is topologically transitive and the set of all periodic points is dense
in X, then it is sensitive.

Proof. Let x € X be an arbitrary point and U be any neighborhood of x. We will

show that there exist z € U and m > 0 such that d(x,, zp,) > i. Since there are
not isolated points and by density of the periodic points, there exists a periodic point

y € U such that y # z. Put ¢ := max{d(z,z) > 0: z € O(y)}. Let ¢ > . Since X
is unbounded, X \ By.(z) is a nonempty open subset. Topological transitivity of f
implies that there is ¥’ € U and m’ > 0 such that y,,, € X \ Ba.(2).

On the other hand O(y) C B.(z), therefore

1
d(Qm’ay;n’) > d(x,y;n/) - d<x>ym’) >2c—c=c> 5

So, we have either d(z,,,.,,) > L or d(x, Y ) > i.

4
The above result is once ¢ > % Now, suppose that ¢ < % By transitivity,
there exists ¢y € U and m” > 0 such that ¢/, € X \ Bj(z). Also we have that

Ymr € Be(x) C By (x). Hence,

1 1
A Y, yorn) = d(x, 90 0) — d(x, ypr) > 1 — 5= 5
Thus, either d(aﬁm//,y;/nu) > % or d($m//,ym//) > %
So, the proof is complete. O

Corollary 4.1. Let X be an unbounded metric space with no isolated points. If
f: X x X — X is topologically transitive and the set of all periodic points is dense
in X, then it is chaotic in the sense of Devaney.

Remark 4.1. If f : X — X (X is a complete metric space) and O(x) = {x,}22,,
where 2,41 = f(x,), then we have O(z) C O(z) for every k > 1. In this case f
is topological transitive if and only if it is transitive (f has a dense orbit). But, for
a general system f : X x X — X may the above fact is not true. For example for

re X
O(z) ={z = w0, 11 = f(7,2), 22 = f(x0,71),...},
O(xy) ={z1 = (71)0, (¥1)1 = f(21,21), (21)2 = f((21)0, (L)1), -+ },
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and may f(z1,21) ¢ O(x). In this case the density of an orbit of a point may be does
not show topological transitivity. Indeed if U and V' are two nonempty open subsets of
X, then the density of an orbit of a point z implies there are positive integers n > m
such that z, € U and z, € V. But this does not show the topological transitivity,
because z, may be not in the orbit of z,,.

The above remark motivated us to define “strong dense orbit” of x as follows.

We say that the orbit of x € X is strong dense orbit if the orbit of x is dense and
every element of the orbit of z is also dense in X. We say that the map f: X xX — X
is strong transitive if it has a strong dense orbit.

Theorem 4.2. Let X be a complete metric space. If the map f: X x X — X is
strong transitive, then it is topological transitive. If the map f : X x X — X s
topological transitive, then it is transitive (f has a dense orbit).

Proof. Let the orbit of z be strong dense orbit and U and V' be two nonempty open
subsets of X. Then the density of the orbit of point z implies there is a positive integer
n such that z, € U. The strong density of the orbit z implies the orbit of z, meets V.
This shows that f is topological transitive. Suppose that f is topological transitive and
U, 1 =1,2,..., are a countable basis of X. Put O~ (U;) = {x € X : O(z) N U; # 0}.
Since f is continuous and topological transitive, so O~ (U;) is open and dense in X.
Since X is complete, so NU; # (. The orbit of every x € NU; is dense in X. This
implies f is transitive. U

We say that the map f : X x X — X is topologically ergodic if for every two
nonempty open sets U,V C X there exist an increasing sequence of positive integers
{n}2, and an integer [ > 1 such that for every k > 1, ngy1 — ng <, thereis z € U
such that z, € V.

Theorem 4.3. Let X be a compact metric space and f: X x X — X be a continuous
map. If f is topologically transitive and the periodic points of f are dense in X, then
f s topologically ergodic.

Proof. Let U and V' be two nonempty open subsets of X. Since f is topologically
transitive, there is x € U and n > 0 such that z,, € V. Consider ¢ > 0 such that
B.(x,) C V. By continuity of f, there exists open neighborhood W of = such that
W, C V is as follows:

W:W07 Wl :f(W07WU)7 W2 = f(W07W1)7"'7Wn = f(anZ:anl)-

We can see that x,, € W,. Since the set of all periodic points is dense in X, there
exists a periodic point ¢ € W with period m. Therefore, ¢, € W, C V. So, for
each £ > 0 we have ¢i1m = ¢n € V. Hence, for each £ > 0, g, = ¢ € U and
Qnikm = qn € V. So, f is topologically ergodic. 0

Let f: X x X — X be a continuous map. For x,y € X and € > 0 given, an
e-chain from = o y of length n+ 1 is a sequence {z = xg, z1, 29, ..., x, = y} for which
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d(xis1, f(zi21,7;)) < e for each 1 < i < n—1. f is said to be topologically chain
transitive if for every z,y € X, there exists an e-chain from x to y for every e > 0.

We say that f is topologically chain mixing if for every ¢ > 0 and z,y € X there is
N € N such that for each n > N, there exists an e-chain from x to y of length n.

Lemma 4.1. If f is topologically chain mixing and has the shadowing property then
f s topologically mixing.

Proof. The proof is clear. 0

Theorem 4.4. Let f : X x X — X be an open continuous map with a fixed point a,
fla,a) = a. If f is topologically transitive, then f is chain mixing.

Proof. Let x,y € X and € > 0 be given. Since f is topologically transitive there exist
2,7 € X and m,m’ € N such that

d(zy = f(z,2), 2) <e
d(zm,a) <e,
<€

m
d(,a)
d(z.,y) <e.
Put N =m+m/+1. So, for each n > N sequence {z = z¢,2,...,2m_1,0,a,...,a,z2
—_————
..y 2h i 1,y} is an e-chain of length n. Hence, f is chain mixing. 0

Theorem 4.5. By assumption of previous theorem, if f has the shadowing property,
then f is topologically mixing.

Proof. By previous theorem and lemma proof is complete. 0

Definition 4.1. We say that f : X x X — X is n-sensitive if there is integer e > 0
such that for every non empty open subset U C X, there exist pairwise disjoint points
r1,...,T, € U and k € N such that

(Jin d((@i)k; (25)k) > e
Theorem 4.6. Let f : X x X — X be a continuous transitive map with n fized points
P1y- -y Pn- If [ has the shadowing property, then [ is n-sensitive.

Proof. Suppose e = %min{d(pi,pj) :i # j} and U be an open subset of X. Let
1o € U and 0 < € < § such that B.(x¢) C U. By assumption of theorem and previous
theorem, f is topologically mixing. So for every 1 < ¢ < n, there exists k; such that
there is d-chain of length [ from zy to p; for every [ > k;. Where § > 0 is in the
definition of shadowing property for € > 0.

Hence, for every 1 < i < n there exists z; € U such that d(z;,zy) < € and
d((zi)i,pi) < €. Put k = max{k; : 1 < i < n}. Therefore, {21, 29,...,2,} C U and
d((zi)k, pi) < €.
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Hence, we have

1§2§2£§n¢1((zi)k,(2&)k) >

A~ ®

This prove the theorem. 0
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COEFFICIENT ESTIMATES FOR SUBCLASS OF m-FOLD
SYMMETRIC BI-UNIVALENT FUNCTIONS

A. MOTAMEDNEZHAD!, S. SALEHIAN?, AND N. MAGESH?3

ABSTRACT. In the present paper, a general subclass M%’f:()\,ﬂy) of the m-Fold
symmetric bi-univalent functions is defined. Also, the estimates of the Taylor-
Maclaurin coefficients |am, 11|, |a2m+1| and Fekete-Szegd problems are obtained for
functions in this new subclass. The results presented in this paper would generalize
and improve some recent works of several earlier authors.

1. INTRODUCTION

Let A be a class of analytic functions in the open unit disk U= {z € C: |z] < 1}
of the form

(1.1) flz) =2+ ianz".

Denote by & the class of all functions in the normalized analytic function class A
which are univalent in U (see details in [2,3]).

Since univalent functions are one-to-one, they are invertible and the inverse functions
need not be defined on the entire unit disk U. In fact, the Koebe one-quarter theorem
[3] ensures that the image of U under every univalent function f € 8 contains a
disk of radius 1/4. Therefore, every function f € 8 has an inverse f~! satisfying

fHf(2) =2 (2 €U) and
1

Pt ) = (ol <o) o) = ).
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In fact, the inverse function f~! is given by
(1.2) fHw) = w — ayw?® + (2a3 — az)w® — (5a3 — bagas + ag)w* + - - - .

A function f € A is said to be bi-univalent in U, if both f and f~! are univalent in U
(see [10]). We denote o3 the class of bi-univalent functions in U given by (1.1). For
examples the functions ;% and —log(1 — z) belong to the class 0.

The first time in 1967, Lewin [4] introduced the class o5 and proved that the bound
for the second coefficients of every f € og satisfies the inequality |as| < 1.51. Also,
Smith [5] showed that |as| < 2/v/27 and |as| < 4/27 for bi-univalent polynomial
f(2) = z + az2* + a3z with real coefficients.

Recently many researchers introduced subclasses of bi-univalent functions and ob-
tain non-sharp estimates on the first two Taylor-Maclaurin coefficients |as| and |as|.
For example, we refer the reader to Srivastava et al. [6,8,10] and others [13,14]. The
coefficient estimate problem, i.e., bound of |a,| (n € N — {2,3}) for each f € o3, is
still an open problem.

Let m be a positive integer. A domain E is known as m-Fold symmetric if a rotation
of F around origin with an angle 27/ maps E on itself. A function f(z) analytic in
U is said to be m-Fold symmetric if

f (ei%z> = ei%f(z).

For each function f € 8, function

(1.3) h(z) = §/f(z")

is univalent and maps unit disk U into a region with m-Fold symmetry.
We denote by 8, the class of m-Fold symmetric univalent functions in U and clearly
81 = 8. Every f € §,, has a series expansion of the form

(1.4) f(2) =24+ app1z2™ (2 €U, meN).
k=1

Srivastava et al. [11], introduced a natural extensions of m-Fold symmetric univalent
functions and defined the class >, of symmetric bi-univalent functions. They obtained
the series expansion for g = f~! as:

F7Hw) =0 = g™+ [(m 4 1)a ;= o]
1

(15) — i(m -+ 1)(3m + 2)a;+1 - (3m + 2)am+1a2m+1 + aA3m+1 w?’mH + e

For m = 1 formula (1.5) coincides with formula (1.2) of the class og.

In fact, this widely-cited work by Srivastava et al. [7] actually revived the study of
m-Fold bi-univalent functions in recent years and that it has led to a flood of papers
on the subject by (for example) Srivastava et al. [7,9,11,12].

The aim of the this paper is to introduce new subclass Mgfi (A7) of the m-Fold
symmetric bi-univalent functions class >.,,,. Moreover, we obtain estimates on initial
coefficients |a,,11|, |a2m+1| and Fekete-Szegd problems for functions in this subclass.
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The results presented in this paper would generalize and improve some recent works
of Altinkaya et al. [1] and Li et al. [13].

2. SUBCLASS ME” (), 7)
In this section, we introduce and consider the subclass M}ELT‘Z (A, 7).

Definition 2.1. Assume that A : U — C and p : U — C, are analytic functions of
the form

h(2) =1 4 hpz™ 4 hom2®™ 4 hap 2™ 4 -+
p(w) =1+ ppaw™ + poyw™™ + Pamw™ + -+,
such that
min{Re((h(z)),Re (p(z))} >0 (2 € U).
Let A > 0 and v € C—{0}. We say that a function f given by (1.4) is in the subclass
Jvt’gf; (A, ), if the following conditions are satisfied:

1, ) )Y )
(2.1) 1+7[(1 N +)\(1+ f,(z)> 1]eh(U) (z € U)
and

1 wy' (w) wg' (w)
(2.2) 1+7[(1—>\) os +)\<1+ jon )-1} € p(U) (weU),

where g is the extension of f~! to U.

Definition 2.2. A function f € %, given by (1.4) is said to be in the subclass Cx,_ (5)
(0 < B < 1), if two following conditions are satisfied:

2f"(2)
f'(2)

where ¢ is the extension of f~! to U.

Re<1+ >>6 and Re<1+wg//(w>>>6 (z,w € U),

g (w)

Remark 2.1. There are many selections of the functions h(z) and p(z) which would pro-
vide interesting classes of m-Fold symmetric bi-univalent functions ,,. For example,
if we let
1+ 2™
h=) =) = (7o
it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition
21. If f € MQ’Z(A,V), then

el o ) )

> =1+2az"+2a%2"" +-.. (0<a<]l),

and
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In this case we say that f belongs to the subclass My, (a, A, 7).
Also, for h(z) = p(z) = (Hzm)a, v =1and A = 0, the subclass J\/[%Z(A,’y) reduces

1—2zm

to the subclass 8% ~which was considered by Altinkaya and Yalcin [1].
If we let

h(z) = p(2)

1+ (1—-2p)2m
N 1—2zm

=1+2(1—=p)2"+2(1-B)*"+--- (0<B<1),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition
2.1. If f € ME” (), 7), then

Re (1 4 H(l - )\)Z}C;S) A (1 + ZJ{(S)> - 1]) > 8

and

1 / "
Re (1 o= N2 w) ) (1 + 2 (w)> - 1D > 8.
gl g(w) g'(w)

In this case we say that f belongs to the subclass My, (3, A, 7).

Also, for h(z) = p(z) = %, v = 1and A = 0, the subclass M%Z(A,y)
reduces to the subclass ng considered by Altinkaya and Yalcin [1].

Furthermore, for h(z) = p(z) = %, v = 1land X\ = 1, the subclass Mg’i()\, v)
reduces to Definition 2.2.

Remark 2.2. For one-fold symmetric bi-univalent functions, we denote the subclass
Mgf’ (A, 7) = MEP(X, 7). Special cases of this subclass are illustrated below.

(i) By putting h(z) = p(z) = (}“_Lj)a and v = 1, the subclass M%?(), ) reduces
to the subclass My(a, \) studied by Li and Wang [13].

(ii) By putting h(z) = p(z) = Gfi)a, v =1 and A = 0, the subclass M%P(X, )
reduces to the subclass 8 of strongly bi-starlike functions of order a (0 <
a<1).

(iii) By putting h(z) = p(z) = % and v = 1, the subclass M%P(\, ) reduces
to the subclass By (3, A) studied by Li and Wang [13].

(iv) By putting h(z) = p(z) = %, v =1 and XA = 0, the subclass ME?(\,~)
reduces to the subclass 8,, () of bi-starlike functions of order 5 (0 < g < 1).

(v) By putting h(z) = p(z) = % and A = y = 1, the subclass MEP(X,7)
reduces to the subclass C,,(5) of bi-convev functions of order 5 (0 < g < 1).

Theorem 2.1. Let f given by (1.4) be in the subclass Mg’i()\,v) (A>0,ve C—-{0}).
Then

][] J|v|<|h2m|+|p2m|>}

o
[ | < min { m(L+xm)’\ 2m2(1+ \m)
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and
Y(h2m| + [p2ml) | (m A+ DY (hnl® + [p]?)
4m(1+ 2 m) 4m?2(1 4+ Am)? ’
(BAm?2 + 2 m + 2m + 1) ||| ham| + (Am? + 2 m + 1)|7||pam|
4m2(1 + 2Am)(1 + Am) ‘

|agm+1| < min {

Proof. The main idea in the proof of Theorem 2.1 is to get the desired bounds for the
coefficient |a,, 11| and |agy,11]. Indeed, by considering the relations (2.1) and (2.2), we
have

2f'(2)
f'(2)

2f'(2)
f(2)

(2.3) 1+1B1—M

+A<1+
»

)—&]:h@)(zeU)

and

1l wg(w) wg @)\ 1w
(2.4) 1+7k1/mgw)+A<H-gm)> q—p()( e ),

where each of the functions h and p satisfies the conditions of Definition 2.1. For
precise comparison of the coefficients of the above equations, in the following we
obtain Taylor-Maclaurin series expansions each side of the equations

(2.5)

1 2f'(2) 2f (%)
1+§ [(1—>\) 8 +)\<1+ 70 ) —1]
—1 4+ Mam+lzm + {WMG/Qm+1 . m(l + 2Am + /\m2>a12n+1} z2m
ol Y
+ - )
and
1 _)\wg’(w) A( wg (w))_ ]
(2.6) 1+ v [(1 ) g(w) * - g9'(w)
m(1+ Am) m { 2m(1 +2Am)
=l—-—ap W+ Q2m+1
v Y
m(1 + 2m + 2xm + 3 Am?) 9 } om
+ 5 Uppgr (W7 F 000

Also from the Definition 2.1, the analytic functions h and p have the following Taylor-
Maclaurin series expansions

(2.7) h(2) = 1+ hp2™ + Ropm2®™ + hgpn2®™ + - -
and

(2.8) p(w) = 14 ppw™ + popw®™ 4 pamw®™ + -+ - .
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By comparing the coefficients of the equations (2.5), (2.7), (2.6) and (2.8), respectively,
we get

m(1+ Am)

(29) Am+1 :hm;
Y
2m(1 + 2\ 1+2A Am?
(210) Man-&-l - m< Feam ey Am )a72’n+1 :h2m>
Y Y
m(l 4+ Am
(2.11) _gam—l—l =DPm
Y
and
2m(1 + 2Am m(1 + 2m + 2Am + 3Am?
(212) — (fy)angrl + ( ~ )a72n+l = Po2m-
From (2.9) and (2.11), we get
(2.13) hm = —Pm
and

Gmt1 = 2m?(1 4+ Am)?’
Adding (2.10) and (2.12), we get

V(th +p2m)
2.1 2 = e
(2.15) 1 2m2(1 + Am)

Therefore, we find from the equations (2.13), (2.14) and (2.15) that

V]| [7[([P2m| + |p2ml)
< " ' <
[am1| < m(1+ Am) and am 1| < 2m2(1+ Am) ’

respectively. So, we get the desired estimate on the coefficient |a,,+1]-
The proof is completed by finding the bound on the coefficient |ag,,+1|. Upon
subtracting (2.12) from (2.10), we get

7(h2m - me) (m + 1)a2
4m(1 4 2xm) 2 Mt

Putting the value of a2, from (2.14) into (2.16), it follows that

V(hom — pam) | (m+1)7*(h3, + pr)
4m(1 + 2Am) Am2(1 + Am)?

(2.16) A2m+y1 =

(217) Ao2m+1 =

By substituting the value of a2, from (2.15) into (2.16), we obtain

2.18 oy =
(2.18) am+1 Am(1 + 2 m) 4m2(1 + Am)
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Therefore, from the equations (2.17) and (2.18), we get

M (h2m] + [p2m)) | (m 4 Dy m]* + pml)
4m(1 4 2 m) 4m2(1 4+ Am)?

|a2m+1’ S

and

(3xm? + 2Xm + 2m + 1)|y|[hom| + (Am? + 2Xm + 1)[7]|pam|

U
4m?(1 4 2Am)(1 4+ Am)

|agm1] <

Theorem 2.2. Let f given by (1.4) be in the subclass M}ZL’Z()\,’y) (A >0,y e C—-{0}).
Also let p be real number. Then

il
s pa [ < T+ 2 L+ T zm| + (1= T(0) Ipanl}» [T(p)| < 1,
4171(1|—Z’2)\7n){‘1+T(p)“h2m’+’T(p)_1‘|p2m|}, T(p)| > 1,
where
T(p) = (m = 2p+ 1)(1+ 2m)

m(1+ Am)
Proof. From the equation (2.16), we get

Y(hom — pom) | m—2p+1 2
+ am+1‘
4m(1 + 2Am) 2

From the equation (2.15) and (2.19), we have

(2.19) Gami1 — Py =

9 el (m—2p+1)(1+2\m)
- =—— ¢ |1 h
@2m+1 7 Plm+1 dm(1 + 2)\m){ [ m (14 Am) 2m
(m—2p+1)(1 4 2\m)
— 1| pom ¢
* [ m(1 4+ Am) b2
Next, taking the absolute values we obtain
—2p+1)(1 + 2\m)
2 < el (m P h
@m0 = ~4m(1 + 2 m) m (14 Am) [hom|
(m—2p+1)(1+42Am)
m(1+ Am)

Then, we conclude that

v
|Gam i1 —pa2, 4| < 4m(1+2xm) {(1+T(p)) [ham| + (1 = T(p)) [p2ml}, 1T (p)| <1,
4771(1|_7_|2>\Tn){‘1+T(p>“h2m’+’T(p)—1‘|p2m|}’ (o) > 1.

O
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3. COROLLARIES AND CONSEQUENCES
By setting
14 2™
h pum— = (
() =) = (1
in Theorem 2.1, we conclude the following result.

Corollary 3.1. Let f given by (1.4) be in the subclass My, (a, A\,7y) (0 < a < 1,
A>0,v€C—{0}). Then

|ams1| < min LME‘/M
= m(l 4+ m) " m\ 1+ m

o’ 202 (m+ 1)y a®y|(m+1)
L+2xm)  m2(14+Am)? " m?(1+ Am)

By setting h(z) = p(z) = (Hzm)a (0 < a < 1) in Theorem 2.2, we conclude the

1—2zm

> =1+2a2™+22%2"" 4. (0<a<l1,zel),

and

|agm41] < min{
m(

following result.

Corollary 3.2. Let f given by (1.4) be in the subclass My, (a, A\,y) (0 < a < 1,
A>0,ve€C—{0}). Also let p be real number. Then

el
- <1
s Tl <L
|@2mi1 — Pa72n+1‘ < 2
TP > 1
m(1+ 2 m)’ -

where

(m—2p+1)(1+2Am)
m(1+ Am) ‘
By setting v =1 and A = 0 in Corollary 3.1, we conclude the following result.
Corollary 3.3. Let f given by (1.4) be in the subclass 8% (0 < <1). Then

V2a

|ami1| < ——
m

T(p) =

and

© L2 1)a? 1)a? a2
|@2m 11| < min Y4 (m+1)a ’ (m+1)a M.
m m2

m2 m2

Remark 3.1. The bounds on |a,,+1| and |ag,+1| given in Corollary 3.3 are better than
those given in [1, Corolary 6], because of

V2a 2c
m mya+1
and (m+1eo® o 2m+1)a* o  2(m+1)a?
< — 4 <=
m2 - m m2 - m m2
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By setting m = 1 and v = 1 in Corollary 3.1, we conclude the following result.

Corollary 3.4. Let f given by (1.1) be in the subclass Mx(a, A) (0 < a <1, A > 0).
Then

1\ OS/\S]-)
’CL2|§ 1+/\
2o > 1
14+ )\ -
and
2
20 | 0<A<2+\/13’
las] < 14+ A - 3
a
=] @2 , do? 2+ VI3
1+2x  (1+ N - 3

Remark 3.2. The bounds on |ay| and |as| given in Corollary 3.4 are better than those
given in [13, Theorem 2.2].

By setting m = 1 in Corollary 3.3, we conclude the following result.

Corollary 3.5. Let f given by (1.1) be in the subclass 83, of strongly bi-starlike
functions of order o (0 < v <'1). Then

las] < V2a  and |as| < 202

By setting

h(z) =p(z) = 1+ (11_—227nﬁ)zm

=14+2(1-8)2"+2(1 =B +--- (0<p<1,z€),

in Theorem 2.1, we conclude the following result.

Corollary 3.6. Let f given by (1.4) be in the subclass Ms, (5, A,7) (0 < 8 < 1,
A>0,v€C—{0}). Then

] < min {2(1—5>w| 21— B)h| }
= m(1+ Am)’ \ m2(1 4+ Am)

L=B)l | 2(1=B)*(m+ 1) (1—5)(m+1)|7|}
m(1+2Am) m2(1+2xm)2 7 m?(1+ Am) ‘

and

lagm1| < min{

By setting h(z) = p(z) = % (0 < < 1) in Theorem 2.2, we conclude the
following result.
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Corollary 3.7. Let f given by (1.4) be in the subclass My, (8,A,7v) (0 < 8 < 1,
A>0,7€C—{0}). Also let p be real number. Then

(1-8)l
la i | < m(1+2\m)’ T(p)] <1,
2m+1 — ma1l < 1 3 T
(nmfﬂggégﬂv T(p)| > 1,

where
(m—2p+1)(1+2Am)
m(1+ Am) ‘

T(p) =

By setting v =1 and A = 0 in Corollary 3.6, we conclude the following result.

Corollary 3.8. Let f given by (1.4) be in the subclass ng (0< B <1). Then

2(1 —
VAAZH) gL
|am+1|§ m 2
M’ }§ﬁ<1’
m 2
and
(m+ DU = F) 0<p< LM
| < m? (1+m)
a2m =
md 2(m+1)(1—6)2+1—6 Lt2m
m? m  2(1+m) ~ '

Remark 3.3. The bounds on |a,,+1| and |ag,,+1| given in Corollary 3.8 are better than
those given in [1, Corolary 7].

By setting v =1 and A = 1 in Corollary 3.6, we conclude the following result.
Corollary 3.9. Let f given by (1.4) be in the subclass Cx,, () (0 < 3 < 1). Then

L [0-5 26 +m < 1,

| | E (14+m)
Am41 S
2(1 —
M’ 28 +m > 1,
m(1+m)
and
_ 2
1 67 0§6§1—|—2m m7
<l 2(1 + 2m)
am —
2t 1- 5 2(1 — B)? 1+2m—m2<6<1
m(1+2m)  m2(1+m)’ 2(1+2m) — '

By setting m = 1 and v = 1 in Corollary 3.6, we conclude the following result.
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Corollary 3.10. Let f given by (1.1) be in the subclass Bx(8,A) (0 < 8 <1, A >0).
Then

2(1 —
a;ﬁ, A28 <1,
ol £3 50
— A+28>1
1+A’ +/8—7
and )
2(1—5)7 0§5§3+4/\—3)\7
0] < 1+ A 4(1+2))
a
=) 18 41 -p)? 3+4x-w2<5<1
IT4+2X (1427 4(1+42)) — '

Remark 3.4. The bounds on |as| and |as| given in Corollary 3.10 are better than those
given in [13, Theorem 3.2].

By setting m = 1 in Corollary 3.8, we conclude the following result.

Corollary 3.11. Let f given by (1.1) be in the subclass 8,4(3) of bi-starlike functions
of order (0 < < 1). Then

J20-B)., 0<p<y,
2
las| < 1
and 3
2(1-7), 0<B<7,
las| < 5
41-p8)2+(1-7), Z§6<1'

By setting m = 1 in Corollary 3.9, we conclude the following result.

Corollary 3.12. Let f given by (1.1) be in the subclass Coy () of bi-convex functions
of order (0 < g < 1). Then

1
1_5a Ogﬂgga
lag| <1—=0 and lag| <
1_5+(1 B)? 1<5<1
3 ’ 3
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ON THE REVERSE MINKOWSKI'S INTEGRAL INEQUALITY
BOUHARKET BENAISSA!?2

ABSTRACT. The aim of this work is to obtain the reverse Minkowski integral in-
equality. For this aim, we first give a proposition which is important for our main
results. Then we establish some reverse Minkowski integral inequalities for parame-
ters 0 < p < 1 and p < 0, respectively.

1. INTRODUCTION

In recent years, inequalities are playing a very significant role in all fields of mathe-
matics and present a very active and attractive field of research. As example, let us
cite the field of integration which is dominated by inequalities involving functions and
their integrals ([2,3]). One of the famous integral inequalities is Minkowski’s integral
inequality. In particular the following statement was proved for p > 1 (for details to
see [1]).

Theorem 1.1. Let 1 < p < +oo, Q CR"™ and A C R™ be a measurable sets. Suppose
that f is measurable on Q@ x A and f(-,y) € L,(Q2) for almost all y € A. Then

(1) || < Il

if the right-hand side is finite.

Remark 1.1. If 0 < p < 1, mes A > 0 and mes {2 > 0 inequality (1.1) is not valid (to
see [1]).

In this paper we obtain some integral inequalities which are reverse versions of the
inequality (1.1).

Key words and phrases. Holder’s inequality, Minkowski’s integral inequality.
2010 Mathematics Subject Classification. Primary: 26D15. Secondary: 26D10.
DOIT 10.46793/KgJMat2203.407B

Received: July, 04, 2019.

Accepted: January 04, 2020.

407



408 B. BENAISSA

2. PRELIMINARIES

2.1. Reverse Young’s and Holder’s Inequalities. The following inequalities are
well-known Young inequalities. Let a > 0, b > 0 and % + i =1, then

/

popP
(2.1) ab Sa——i-—/, for p > 1,
p p
ppp’
(2.2) >+ for0<p<i.
p p

Corollary 2.1 (Reverse Young’s inequality). Let a >0, b > 0 and % + i =1, then

/

PP
(2.3) ab > a—+—,, forp <.
p p

Proof. We have 252 =1 (p —1)(p/ — 1) = 1 and inequality (2.3) is equivalent to

p p’

ab~l  pp'-1

< 1.
bp * ap’
We take t = “p: , then
=1 q-D’'-1) 1 t—@'-1)
ap/ = t(p’—l)ap/ = t(p’—l)p/ = p/
We obtain o)
art ot g ]
w e T ft),
For all ¢ > 0, we have
1 '—1 ., 1 1 ,
f’(t):f—p : -\ _ 4P :,(1_15*17 )7
p p p D p

forall p<0Oand 0 <p' <1, we get
FO)=0e1—t" =0st=1,
f)>0e1-t7 <0e0<t<l.

Hence, the function f is majored with f(1) =1 for all ¢ € (0, 00).
We deduce that
p—1 =1 P pp’
¢ + §1(:)ab2a——|——, for p < 0. U
bp  ap’ p p
Corollary 2.2 (Reverse Holder’s inequality). Let 2 C R™ be a measurable set and
p < 0, we suppose that [, g are measurable on €.
If f € L,(Q2) and g € Ly(Q) (p' is the conjugate parameter), then

(24) [ 1£gldt = 11£1lz, gz,
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Proof. Choose a = | UL = Hg:f’! and by using reverse Young’s inequality (2.3), we
p/

fol o 1P gl
11z, - llglle,, — PIAIZ, — plloliz,,
by integrand the above inequality we obtain

p p’
[ [k, or
HfHLp HgHL/ o pll fI7, @ pllgllz,,

write

Y

and thus
[ 1r@g®)ldt = 11z, N, for p < 0. 0

Remark 2.1. We can write

[ 1wt = ([ iopa)’ ([ oora)”,
([ 1roanar)” < ([ 1roear) ([ 1oopa)™

Now we give a proposition which will be used frequently in the proof of main
theorems.
Let —00o < a < b< 400 and —o00 < ¢ < d < 400 and we defined the set E by

E={f]/: (b x(cd—R f>0orf<0}.
Suppose H : (a,b) x (¢,d) — C a measurable function defined by
H($7y) = f1<x7y) +if2(l',y),

hence

(see [4]).

where f1, fo € E.
Proposition 2.1. (i) If f{ =0 or fo =0, then

[l = | [ )
(id) If f1 # 0 and fo # 0, then

[ 1)l dy
Proof. (i) It f, = 0, then

d d
el as] =| [ el -
If f{ =0, then

(2.5)

(2.6)

< ﬂ‘-/cdﬂ(m,y)dy‘.

[ s -

/CdH(:E, y)dy‘ :

/Cd |H (z,y) dy’ = ‘/d i f2(, y)] dy‘ = ‘/d Ifz(%y)ldy‘
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- | e -

/dif2(l‘ay>dy’

c

(79) If f1 # 0 and fy # 0, then

2

(z, )Idyrz'/cd [ff(w7y)+f§(x,y)]%dy

-([

Hfl 8], e Withp=

1 2
L+ 37 (w, y)dy)

1

wydyﬂ/ fzxydy

- ( [ nain) + ([ tteonan)
=</cd\f1($,y)\dy> (/ |22, y)|d )
1
2

=2l 0 12

d
/ H(xydy

Ly(c,d) Lp(e,d)’

For all 0 < p < 1 we have

Hf1 + f3

+||£2

Ly(c,d) >

2

<o (|
Ly(cd) — ML, (c,d)

for p = % we obtain

2

d d
/IH(fv,y)ldy 32/c H(z,y)dy

Then

d d
[l < V2 H(x,y)dy‘- .

In this work we consider the reverse inequality of (1.1), with 0 < p <1 and p <0
for f: (a,b) x (¢,d) = K, with K is C, E or iE.

3. MAIN RESULTS

In this section we obtain some reverse Minkowski type inequalities.
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Theorem 3.1. Let 0 <p <1, —co<a<b< 400 and —oco < ¢ < d < +00. Suppose
that H : (a,b) x (¢,d) — C is measurable with Re(H),Im(H) € E, Re(H)Im(H) # 0
and H(z,y) € L, .(a,b) for almost all y € (¢,d). Then

/CdH(',y)dy

if left-hand side is finite.
Proof. We have

(3.1)

d
Z (\/5)2772/ ”H<7 y)HLp(a’b)dy’
(a.) ‘

Ly

[ H vy < [ 1)y

Then for p — 1 < 0 we get

p—1

/Cd H(z,y)dy

By Proposition 2.1, we obtain

s ([ i)

p p—1

/C dH (z,y)dy

_ ’/cdH(x,y)dy /CdH(x,y)dy‘

> ([ tar)

> ([iar) vy

- o ([ it dy)p_l

By integrating the last inequality, we establish

[ ar> (o)t [ (/d [H (. 1) dt) [ G

— o [\ (o) o

> (o [ {/ (/Cdm(a:,t)!dt)p_l
- (V3 /f{/a" (/frmx,wrdt)

Rlz/ab (/cd|H(x,t)|dt> H(zy)lda

/Cd H(z, y)dy|

[ty

[t i)

p p—1

d
/ H(z,y)dy dx

dx

IH(x,y)ldy} dx

p—1

|H (x, y)\dx} dy| .

Let
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p—1
and suppose that G(z (/ |H(x,y) dy> .

Therefore, we get

b| pd
||G($)||Lp/((a,b)):(/a |/C |H(x,y)| dy
( b

-1\ ¥
dx

p

N
d:v)

[ 1) dy

b p % -t
={( ol o] as) }
d p—1
|H(z,y)| dy
¢ Lp((a,b))

The last expression is finite (see hypothoses of theorem) then G(z) € L, ((a,b)). By
applying the reverse Holder’s inequality and using Proposition 2.1, we obtain

b p'(p—1) i b %
Ry > ( dx) ( / |H<x,y>|pdx)

; l
(L

d:v) " ( / b|H(:v,y)|pd:v>p
Gk (

/cd \H (z, )| dt

/|th]dt

v

(a:,t)dt| d;c>p/ (/b |H(m,y)|pdx>p

p i b P

dx) </ |H(x,y)|pdx> = Ry.
d d

| Rudy = [ Rady,

d

d d
dy‘z / Rgdy’:/ Rody.

d
H(x,t)dt

Then we get

Ry >0—

Thus, we conclude that

/ab /CdH(x,y)dypde (\/5)71

_1 /Cd Rudy
)H (/ab /cdH(:c,t)dt

d
Rldy‘

v
—
=

L
o7 1

pd:c) (/ \Hwy)\%lx)p y.

S

=
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» _
dx)

Therefore, we get

e

/CdH(x,y)dy /Cd H(z, t)dt

(LU o) ([
> () ([ 1) a

then

1

pdx>1_pl > (va)"” /cd </b |H(x,y)|pdx>p dy.

|—=

/Cd H(z,y)dy

(/

Finally, we conclude that

([ pdf“); > (v [ ([ 1t pa) a

which completes the proof. 0

-

/Cd H(z,y)dy

Theorem 3.2. Let0 <p <1, —co<a<b< 400 and —oo < ¢ < d < +00. Suppose

that H : (a,b) x (¢,d) — E is measurable and H(x,y) € Ly.(a,b) for almost all

y € (¢,d). Then
d

(3:2) / H(-, y)dy

if left-hand side is finite.

d
Z / ||H('ay)||Lp(a7b)dy7
Lyp(a,b) ¢

Theorem 3.3. Let0 <p <1, —co<a<b< 400 and —0o < ¢ < d < +00. Suppose

that H : (a,b) x (¢,d) — iE is measurable and H(x,y) € L, (a,b) for almost all

y € (¢,d). Then
d

(3.3) / H(,y)dy

if left-hand side is finite.

d
> [CIHC ) ey
Lyp(a,b) ¢

Proof. The proof of Theorem 3.2 and Theorem 3.3 is similar to Theorem 3.1. O

Theorem 3.4. Let p < 0, —co < a < b < 400 and —o0 < ¢ < d < 400. Suppose
that H : (a,b) x (¢,d) — C is measurable with Re(H),Im(H) € E, Re(H)Im(H) # 0
and H(z,y) € L, (a,b) for almost all y € (c,d). Then

(3.4 [ HC vy

d
> (V2P [ ), ey,
a,b) ¢

Lp(a,
if left-hand side is finite.
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Proof. By using the inequality

d d
/c H(z,y)dy S/C |H(z,y)|dy,

we get

d b d p
[l = ([ iela) <o

By integrating the last inequality, we get

lfbldH(xdﬁdypdnzle<AdU¥@;yﬂdy>pdx
- /ab :(/CdIH(x,t)mt)p_l (/cd|H(x,y)|dy>} dx

= /ab /cd (/Cd|H(a:,t)|dt>p_l |H(:)3,y)|dy] dx

— /cd {/ab (/Cd\H(x,t)\ dt)p_l |H(x,y)]dx} dy
Ry = /ab (/d \H (z,1)] dt)p_l \H (z, y)| dz.

By the reverse Holder’s inequality and Proposition 2.1, we obtain

P \V /o 1
R32< dw) (/ \H(x,ynpdx)

. f
(L

dx) ” ( / b|H(x,y)|”dx>p
(V3" (

Let

b d
/ \H (z,1)| dt

/|thym

v

(Lﬂﬁrm>;<LﬂH@yWMap

p ﬁ b P
dw) (/ ]H(w,y)]%x) = Ry.

d d
/ Rdy > / Rady.

d
H(x