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NON-CONFORMABLE FRACTIONAL LAPLACE TRANSFORM

FRANCISCO MARTÍNEZ1, PSHTIWAN OTHMAN MOHAMMED2,
AND JUAN E. NÁPOLES VALDÉS3

Abstract. In this paper we present an extension of Fractional Laplace Transform in
the framework of the non-conformable local fractional derivative. Its main properties
are studied and it is applied to the resolution of fractional differential equations.

1. Preliminaries

In mathematics, the Laplace transform is an integral transform n, it takes a function
of a real variable t (often time) to a function of a complex variable s (complex
frequency). Laplace transforms are usually restricted to functions of t with t ≥
0, consequently of this restriction is that the Laplace transform of a function is a
holomorphic function of the variable s. As a holomorphic function, the Laplace
transform has a power series representation. This power series expresses a function as
a linear superposition of moments of the function. The Laplace transform is invertible
on a large class of functions. The inverse Laplace transform takes a function of a
complex variable s (often frequency) and yields a function of a real variable t (often
time). Given a simple mathematical or functional description of an input or output
to a system, the Laplace transform provides an alternative functional description that
often simplifies the process of analyzing the behavior of the system, or in synthesizing
a new system based on a set of specifications. So, for example, Laplace transformation
from the time domain to the frequency domain transforms differential equations into
algebraic equations and convolution into multiplication.

Regarding the birth of the fractional calculus, all historians agree on the dating
of the date and how it was produced. This fact took place after a publication of
Leibniz where he introduced the notation of the differential calculus, in particular of
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the expression known today as dny
dxn that makes reference to the derivative of order n

of the function and, with n ∈ N. But did it make sense to extend the values of n to
the set of rational, irrational, or complex numbers in that expression?

We know that the fractional derivative of a non-integer function can be conceived
in two branches: global (classical) and local. The former are often defined by means
of integral transforms, Fourier or Mellin, which means in particular that their nature
is not local, has “memory”, in the second case, they are defined locally by a certain
incremental quotients. The first are associated with the emergence of the Fractional
Calculation itself, with the pioneering works of Euler, Laplace, Lacroix, Fourier, Abel,
Liouville,... until the establishment of the classical definitions of Riemann-Liouville
and Caputo. Recent extensions and applications of these notions to various fields can
be found in [2–4, 7, 13, 18, 21, 21]. There are some attempts to extend the classical
notion of Laplace Transform to the non-integer case, we recommend consult [20].

Recently, in [8] Khalil et al. defined a new local fractional derivative called the
conformable fractional derivative, based on the limit definition of the derivative.
Namely, for a function h : [0, ∞) → R, the non-conformable fractional derivative of h
of order α of h at t is defined by

Dα(h)(t) = lim
ϵ→0

h (t + ϵt1−α) − h(t)
ϵ

, α ∈ (0, 1), t > 0.

In [1], Abdeljaward improve this new theory. For instance, definitions of left and
right conformable derivatives and fractional integrals of higher order (i.e., of order
α > 1), Taylor power series, fractional integration by parts formulas and chain rule
are provided by him.

Now, we give the definition of the non-conformable fractional derivative with its
important properties which are useful in order to obtain our main results, which is
explained in the following definition [5].

Definition 1.1. Given a function h : [0, ∞) → R. Then, the non-conformable
fractional derivative Nα

3 (h)(t) of order α of h at t is defined by

Nα
3 (h)(t) = lim

ϵ→0

h (t + ϵt−α) − h(t)
ϵ

, α ∈ (0, 1), t > 0.

If h is α-differentiable in some (0, α), α > 0, limt→0+ h(α)(t) exist, then define

h(α)(0) = lim
t→0+

h(α)(t).

Remark 1.1. Additionally, note that if h is differentiable, then

Nα
3 (h)(t) = t−αh′(t), where h′(t) = lim

ϵ→0

h (t + ϵ) − h(t)
ϵ

.

We can write h(α)(t) for Dα(h)(t) or dα

dαt
(h(t)) to denote the non-conformable frac-

tional derivatives of h of order α at t. In addition, if the non-conformable fractional
derivative Nα

3 of h of order α exists, then we simply say h is N -differentiable.
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In [5, 14], we can see that the chain rule is valid for non-conformable fractional
derivatives.

Theorem 1.1. Let α ∈ (0, 1], g a N -differentiable function at t > 0, f be differentiable
in the range of g(t). Then

Nα
3 (f ◦ g)(t) = f ′(g(t))Nα

3 (g(t)).

Proof. We prove the result following a standard limit-approach. First case, if the
function g is constant in a neighborhood of a > 0 then Nα

3 (f ◦ g)(t) = 0. If g is not a
constant in a neighborhood of a > 0 we can find and ε0 > 0 such that g(x1) ̸= g(x2)
for any x1, x2 ∈ (a− t0, a+ t0). Now, since g is continuous at a, for ε sufficiently small,
we have

Nα
3 (f ◦ g)(a) =lim

ε→0

fg((t + εa−α)) − f(g(a))
ε

=lim
ε→0

f(g(a + εa−α)) − f(g(a))
g(a + εa−α) − g(a)

g(a + εa−α) − g(a)
ε

=lim
ε→0

f(g(a + εa−α)) − f(g(a))
g(a + εa−α) − g(a) lim

ε→0

g(a + εa−α) − g(a)
ε

=lim
k→0

f(g(a + εa−α)) − f(g(a))
g(a + εa−α) − g(a) lim

ε→0

g(a + εa−α) − g(a)
ε

.

Making ε1 = g(a + εa−α) − g(a) in the first factor we have

lim
ε→0

f(g(a + εa−α)) − f(g(a))
g(a + εa−α) − g(a) = lim

ε1→0

f(g(a) + ε1) − f(g(a))
ε1

,

and from here

Nα
3 (f ◦ g)(a) = lim

ε1→0

f(g(a) + ε1) − f(g(a))
ε1

lim
ε→0

g(a + εa−α) − g(a)
ε

=f ′(g(a))Nα
3 g(a). □

The following function will play an important role in our work.

Definition 1.2. Let α ∈ (0, 1) and c a real number. We define the fractional
exponential in the following way

En3
α (c, t) = exp

(
c

tα+1

α + 1

)
.

Following the ideas presented in [5, 14] we can easily prove the next result.

Theorem 1.2. Let α ∈ (0, 1] and h, g be α-differentiable at a point t > 0. Then
(a) Nα

3 (uf + vg) = uNα
3 (h) + vNα

3 (g) for all u, v ∈ R;
(b) Nα

3 (hg) = Nα
3 (g) + gNα

3 (h);
(c) Nα

3

(
h
g

)
= hNα

3 (g)−gNα
3 (h)

g2 ;
(d) Nα

3 (c) = 0 for all constant function h(t) = c;
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(e) Nα
3 (1) = 0;

(f) Nα
3

(
1

1+α
t1+α

)
= 1;

(g) Nα
3 (En3

α (c, t)) = cEn3
α (c, t);

(h) Nα
3

(
sin

(
c t1+α

1+α

))
= c cos

(
c t1+α

1+α

)
;

(i) Nα
3

(
cos

(
c t1+α

1+α

))
= −c sin

(
c t1+α

1+α

)
.

Proof. (a) Let H(t) = (af + bg)(t). Then Nα
3 H(t) = lim

ε→0
H(t+εt−α)−H(t)

ε
and from this

we have the desired result.
(b) From definition we have

Nα
3 (fg)(t) =lim

ε→0

f(t + εt−α)g(t + εt−α) − f(t)g(t)
ε

=lim
ε→0

f(t + εt−α)g(t + εt−α) − f(t)g(t + εt−α) + f(t)g(t + εt−α) − f(t)g(t)
ε

=lim
ε→0

(f(t + εt−α) − f(t)) g(t + εt−α)
ε

+ lim
ε→0

(g(t + εt−α) − g(t)) f(t)
ε

=fNα
3 (g)(t) + gNα

3 (f)(t).
(c) In a similar way to the previous one we have

Nα
3

(
f

g

)
(t) = lim

ε→0

f(t+εt−α)
g(t+εt−α) − f(t)

g(t)

ε
.

But
f(t + εt−α)
g(t + εt−α) − f(t)

g(t) =f(t + εt−α)
g(t + εt−α) − f(t)

g(t)
g(t + εt−α)
g(t + εt−α)

=f(t + εt−α)g(t) − f(t)g(t + εt−α)
g(t)g(t + εt−α)

=f(t + εt−α)g(t) − f(t)g(t + εt−α) − f(t)g(t) + f(t)g(t)
g(t)g(t + εt−α)

=(f(t + εt−α) − f(t)) g(t) − (g(t + εt−α) − g(t)) f(t)
g(t)g(t + εt−α) .

From this last expression we obtain the expected result.
(d) Easily follows from definition.
(e) Is a particular case of the previous one.
(f) From Remark 1.1 we have

Nα
3

( 1
1 + α

t1+α
)

= t−α 1
1 + α

((1 + α)tα) = 1.

g) From Remark 1.1 and the chain rule we have

Nα
3 (En3

α (c, t)) =Nα
3

[
exp

(
c

tα+1

α + 1

)]
= t−α

[
exp

(
c

tα+1

α + 1

)](
c
(α + 1)tα

(α + 1)

)
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=cEn3
α (c, t).

To prove cases (h) and (i) it is sufficient to proceed as in the previous case, taking
into account the Remark 1.1 and using the chain rule. □

Now, we give the definition of non-conformable fractional integral.

Definition 1.3. Let α ∈ (0, 1] and 0 ≤ u ≤ v. We say that a function h : [u, v] → R
is α-fractional integrable on [u, v], if the integral

N3Jα
u h(x) =

∫ x

u

h(t)
t−α

dt

exists and is finite.

The following statement is analogous to the one known from the ordinary calculus
(see [15]).

Theorem 1.3. Let f be N -differentiable function in (t0, ∞) with α ∈ (0, 1]. Then for
all t > t0 we have

a) if f is differentiable, then N3Jα
t0 (Nα

3 f(t)) = f(t) − f(t0);
b) Nα

3

(
N3Jα

t0f(t)
)

= f(t).

Proof. a) From definition we have

N3Jα
t0 (Nα

3 f(t)) =
∫ t

t0

Nα
3 f(s)
s−α

ds =
∫ t

t0

f ′(s)s−α

s−α
ds = f(t) − f(t0).

b) Analogously we have

Nα
3

(
N3Jα

t0f(t)
)

= t−α d

dt

[∫ t

t0

f(s)
s−α

ds

]
= f(t). □

An important property, and necessary, in our work is that established in the follow-
ing result.

Theorem 1.4 (Integration by parts). Let functions u, v be N -differentiable functions
in (t0, ∞), with α ∈ (0, 1]. Then for all t > t0 we have

N3Jα
t0 ((uNα

3 v)(t)) = [uv(t) − uv(t0)] −N3 Jα
t0 ((vNα

3 u)(t)) .

Proof. It is sufficient to use Theorem 1.2 and Theorem 1.3. □

In short time, many studies about theory and applications of the fractional differ-
ential equations which based on these new fractional derivative definitions [6, 11, 15,
16,19].

In this paper we establish the first results to formalize a new version of a Laplace
transform, in this case non-conformable, which will allow its application to a wide
class of fractional differential equations. In the conformable case, there are some
attempts that can be consulted in [6, 9–12,19].
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2. Results

Definition 2.1 (Exponential order). A function f is said to be of generalized ex-
ponential order if there exist constants M and a such that |f(t)| ≤ MEn3

α (a, t) for
sufficiently large t.

We are now in a position to define the non-conformable fractional Laplace transform.

Definition 2.2. Let α ∈ (0, 1) and c a real number. Let f be a real function defined
for t ≥ 0 and consider s ∈ C, if the integral

N3Jα
0 En3

α (−s, t)f(t)(+∞) =
∫ +∞

0
En3

α (−s, t)f(t)dαt =
∫ +∞

0

En3
α (−s, t)f(t)

t−α
dt

converge for the given value of s, you can define the function F given by the expression
(2.1) F (s) =N3 Jα

0 En3
α (−s, t)f(t)(+∞),

and we will write F = LN(f).

To the operator LN we will call it the N -transformed of Laplace and we will say
that F is the N -transformed of f . In turn, f is the N -inverse transform function of F
and we will write it as f = L−1

N {F}, where L−1
N is the N-transformed inverse Laplace

operator.
As in the classic case, we must impose conditions to (2.1), so that the previous

definition makes sense. If f satisfies the following two conditions:
(a) f is a piecewise continuous in the interval (0, T ] for any T ∈ (0, +∞);
(b) f is of generalized exponential order; that is, there are positive constants M

and a, satisfying Definition 2.1 with Re (a − c) < 0 and |f(t)| ≤ MEn3
α (a, t)

for all t and α ∈ (0, 1].
Then the N -transformed of Laplace F (s) of f exists for s > a. In effect, since

f is of generalized exponential order, there exists constants T > 0, K > 0 and
a ∈ R such that |f(t)| ≤ KEn3

α (a, t) for all t ≥ T and α ∈ (0, 1]. Now we write
I =N3 Jα

0 En3
α (−s, t)f(t)(+∞) =N3 Jα

0 En3
α (−s, t)f(t)(T )+N3 Jα

T En3
α (−s, t)f(t)(+∞) =

I1 + I2. Since f is a piecewise continuous, I1 exists. For the second integral I1, we
note that for t ≥ T we have |En3

α (−s, t)f(t)| ≤ KEn3
α (−(s − a), t). Thus,

N3Jα
T En3

α (−s, t)f(t)(+∞) ≤ KN3Jα
T En3

α (−(s − a), t)(+∞) = K

s − a
, s > a.

Since the integral I2 converges absolutely for s > a, I2 converges for s > a. Thus,
both I1 and I2 exist and hence I exists for s > a. Then we have that f is an
N -transformable function.

Theorem 2.1. Let α ∈ (0, 1]. So, we have
(a) LN(1) = 1

s
, from here we have LN(c) = cLN(1) for any c ∈ R;

(b) LN(tb) = (1+α)
b

1+α Γ(1+ b
1+α)

s
1+ b

1+α
, where the gamma function Γ is defined by Γ(a, x) =∫∞

x ta−1e−tdt, Γ(a, 0) := Γ(a) and b > −1;
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(c) LN(En3
α (c, t)) = 1

s−c
, c any real number and s − c > 0;

(d) LN(f(t)En3
α (c, t) = F (s − c), with LN(f(t)) = F (s), c any real number and

s − c > 0;
(e) LN(sin

(
c t1+α

1+α

)
= c

s2+c2 ;
(f) LN(cos

(
c t1+α

1+α

)
= s

s2+c2 ;
(g) LN(sinh

(
c t1+α

1+α

)
= c

s2−c2 ;
(h) LN(cosh

(
c t1+α

1+α

)
= s

s2−c2 .

Proof. (a) From definition directly.
(b) Through a change of variables we have

N3Jα
0 En3

α (−s, t)tb(+∞) = (1 + α)
b

1+α

s1+ b
1+α

N3Jα
0 En3

α (−u)u
b

1+α (+∞),

where the desired result is obtained.
(c) Consider f(t) = En3

α (c, t), with c ∈ R. Then

N3Jα
0 En3

α (−s, t)En3
α (c, t)(+∞) =N3 Jα

0 En3
α (−(s − c), t)(+∞) = 1

s − c
.

(d) Suppose LNf(t) = F (s) for s > k. So, we have

N3Jα
0 En3

α (−s, t)En3
α (c, t)f(t)(+∞) =N3Jα

0 En3
α (−(s − c), t)f(t)(+∞)

=F (s − c), s − c > k.

(e) Using N3JαEn3
α (b, t) sin

(
a t1+α

1+α

)
= E

n3
α (b,t)
a2+b2

{
b sin

(
a t1+α

1+α

)
− a cos

(
a t1+α

1+α

)}
we ob-

tain the expected result.
(f) Similar to previous one, using

N3JαEn3
α (b, t) cos

(
a

t1+α

1 + α

)
= En3

α (b, t)
a2 + b2

{
b cos

(
a

t1+α

1 + α

)
+ a sin

(
a

t1+α

1 + α

)}
.

(g) As LN(sinh
(
c t1+α

1+α

)
) = 1

2 {LNEn3
α (c, t) − LNEn3

α (−c, t)} it is easy to get the
required conclusion.

(h) From LN(cosh
(
c t1+α

1+α

)
) = 1

2 {LNEn3
α (c, t) + LNEn3

α (−c, t)} it is obtained di-
rectly. □

Anallogously, the following propositions can be proved from the definition of N -
transformed and the non-conformable integral.

Proposition 2.1. If the functions f and g are transformable, then there is the
transform of the sum and is equal to the sum of the transforms, that is

LN(f + g) = LN(f) + LN(g).
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Proposition 2.2. If the function f is transformable and λ is a real number, then
there is the transform of product of λ by f and is equal to product of λ by the transform
of f , that is

LN(λf) = λLN(f).

Remark 2.1. Taking into account the two previous propositions, we say that LN is a
linear operator.

Proposition 2.3. If f is a transformable function, then so is its N-derivative and
you have

(2.2) LN(Nα
3 f) = sLN(f) − f(0).

Proof. Already LN(Nα
3 f) exists, because f is of non-conformable exponential order

and continuous. On an interval [a, b] where Nα
3 f is continuous, integrating by parts

in (2.2), gives∫ b

a

EN3
α (−s, t)Nα

3 f(t)
t−α

dt=f(b)EN3
α (−s, b)−f(a)EN3

α (−s, a)+s
∫ b

a

EN3
α (−s, t)Nα

3 f(t)
t−α

dt.

On any interval [0, K] there are finitely many intervals [a, b] on each of which Nα
3 f

is continuous. Add above equality across these finitely many intervals [a, b]. The
boundary values on adjacent intervals match and the integrals add to give∫ K

0

EN3
α (−s, t)Nα

3 f(t)
t−α

dt = f(K)EN3
α (−s, b) − f(0) + s

∫ K

0

EN3
α (−s, t)Nα

3 f(t)
t−α

dt.

Taking the limit K → +∞ across this equality, we obtain the desired result. □

Analogously we have the following.

Proposition 2.4. If the k consecutive derivatives Nα
3 (Nα

3 (· · · (Nα
3 f))) are N -transfo-

rmable, then we have

LN [Nα
3 (Nα

3 (· · · (Nα
3 f)))]

=skLN(f) − sk−1f(0)−sk−2Nα
3 f(0) − sk−3Nα

3 (Nα
3 f(0)) −· · ·− Nα

3 (Nα
3 (· · ·(Nα

3 f(0)))).

Proposition 2.5. Let g be of non-conformable exponential order and continuous for
t ≥ 0. Then

LN

(∫ x

0

g(x)
x−α

dx

)
= 1

s
LN {g(t)} .

Proof. Let f(t) =
(∫ t

0
g(x)
x−α dx

)
. Then f is of exponential order and continuous then

we have LN

(∫ t
0

g(x)
x−α dx

)
= LN by definition and LN = 1

s
L (Nα

3 f(t)) because f(0) = 0.
From here we reach the conclusion without difficulty. □

The following result establishes the relationship between the classic Laplace Trans-
form and the N -transform defined above.
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Theorem 2.2. Let α ∈ (0, 1) and f be a N-transformable function, then we have

LN(f) = L
[
f
(
((1 + α)z)

1
1+α

)]
,

where L is the classical Laplace transform defined by L(g) =
∫+∞

0 e−stg(t)dt.

Proof. Simply make the change of the variables z = t1+α

1+α
. □

One of the most important results of the classic Laplace transform is the convolution
product of two L-transformable functions, we are already in a position to provide an
analogous result for the N -transform defined in (2.1).

Theorem 2.3. Let α ∈ (0, 1] and f, g : [0, +∞] → R be real functions. If Fα(s) =
LN [f (t1+α)] (s) and Gα(s) = LN [g (t)] (s), then the next equality is satisfied

LN(f ∗ g)(s) = Fα(s)Gα(s),
where

(f ∗ g)(t) =
∫ t

0

[
f
(
t1+α − τ 1+α

)]
g(τ)dατ .

Proof. It is sufficient to change the variables u1+α = t1+α − τ 1+α and apply the
properties of the LN operator. □

2.1. Existence of non-conformable Laplace transform. In this subsection, the
bounded and existence of non-conformable Laplace transform are presented.

Theorem 2.4. Let f be piecewise continuous on [0, ∞) and non-conformable expo-
nentially bounded, then

lim
s→∞

Fα(s) = 0,

where Fα(s) = Lα[f(t)](s).

Proof. Since f is generalized order exponential, there exist t0, M1, c such that |f(t)| ≤
M1E

n3
α (c, t) for t ≥ t0. Also, f is piecewise continuous on [0, t0] and hence f is bounded,

so there exists M2 such that |f(t)| ≤ M2 for t ∈ [0, t0]. Choosing M = max{M1, M2},
we have |f(t)| ≤ MEn3

α (c, t) for t ≥ 0. Now, we have‘∣∣∣∣∫ τ

0
En3

α (−s, t)f(t)dαt
∣∣∣∣ ≤

∫ τ

0
|En3

α (−s, t)f(t)| dαt

≤ M
∫ τ

0
En3

α (−s + c, t)dαt

= M

s − c
− En3

α (−s + c, t)
s − c

.

This gives

lim
τ→∞

∣∣∣∣∫ τ

0
En3

α (−s, t)f(t)dαt
∣∣∣∣ ≤ M

s − c
.

This completes the proof. □
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3. Examples and Applications

Example 3.1. Consider the non-conformable differential equation:
Nα

3 x(t) = λx(t), x(0) = x0, α ∈ (0, 1].(3.1)
Clearly, if α = 1 the equation above is just one of the simplest classical ordinary

differential equations which is defined by the hypothesis that the rate of growth of
a given function x(t) is proportional to the current value (e.g. Maltius’s population
model), i.e., x′(t) = λx(t), x(0) = x0 the exact solution of this is x(t) = x0e

λt.
Applying the non-conformable Laplace Transform to both sides of equation (3.1),

we get
LN (Nα

3 x(t)) =λLN (x(t)) ,

s Xα(s) − x0 =λXα(s).
Simplifying this we get

Xα(s) = x0

s + 1 .(3.2)

Taking the inverse non-conformable Laplace transform to (3.2), we get

x(t) = x0E
N3
α (−1, t) = − x0

α + 1tα+1.

The solution of (3.1), obtained from non-conformable Laplace transformation method,
are shown in Figure 1 for different values of α.
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Figure 1. Non-conformable Laplace solution of (3.1) for different val-
ues of α.

Example 3.2. Consider the non-conformable fractional Bertalanffy-logistic differential
equation
(3.3) Nα

3 x(t) = x
2
3 (t) − x(t), x(0) = x0, α ∈ (0, 1).
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The solution of the classic Bertalanffy-logistic differential equation x′(t) = x
2
3 (t)−x(t),

x(0) = x0 is x(t) =
[
1 +

(
x

2
3
0 − 1

)
e− t

3

]3
. By using the change of variable z = 3x

1
3 in

(3.3), we find

(3.4) Nα
3 z(t) = 1 − 2

3z(t), z0 = 3x
1
3
0 .

Applying the non-conformable Laplace transform L to both sides of equation (3.4)
we obtain

LN(z(t)) = 3
s

+ z0 − 3
s + 1

3
.

Finally, applying the inverse Laplace transform we have the solution of (3.3) in the

form x(t) =
[
1 +

(
x

2
3
0 − 1

)
e− t1+α

3(1+α)

]3
.

With α = 0.25, 0.50, 0.75, 1.00, the non-conformable Laplace transformation so-
lution of (3.3) are shown in Figures 2 and 3 for x0 = 2 and x0 = 4, respectively.
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Figure 2. Non-conformable Laplace solution of (3.2) for x0 = 2 and
different values of α.

Example 3.3. Consider the non-conformable fractional differential equation

(3.5) Nα
3 (Nα

3 x(t)) + cx(t) = 0, α ∈ (0, 1],
with the initial conditions x(0) = x0, Nα

3 x(0) = 0. Clearly, if α = 1 the previous differ-
ential equation approximates the characterization of small oscillations of a pendulum,
i.e., x′′(t) + cx(t) = 0, x(0) = x0, x′(0) = 0, where c = g

L
, with g the gravity acceler-

ation and L the length of the pendulum rod. The exact solution to this problem is
x(t) = x0 cos

√
ct = x0 cos

√
g
L

t. Applying the non-conformable Laplace transform to
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Figure 3. Non-conformable Laplace solution of (3.2) for x0 = 4 and
different values of α.

the both hand sides of (3.5), we get (s2 +c)X(s)−sx0 = 0, thus X(s) = sx0
(s2+c) . Taking

the inverse non-conformable Laplace transform we obtain x(t) = x0 cos
(√

g
L

tα+1

α+1

)
.

Example 3.4. Now consider the circuit consisting of a voltage source v(t) in series
with a resistor (R), a capacitor (C) and an inductor (L), as well as a switch that
can be in the open or closed position. The circuit equation in the time domain is
Rx(t) + 1

c

∫ t
0 x(u)du + vC(0) + Lx′(t) = v(t), we assume that x(0) = 0 (i.e., the switch

is open until t = 0, allowing the capacitor to maintain its initial condition vC(t)
before that moment) and v(t) = A. The corresponding non-conformable fractional
differential equation is

Rx(t) + 1
c NJα

0 (x)(t) + vC(0) + LNα
3 x(t) = A, α ∈ (0, 1].

Applying the non-conformable Laplace transform to both sides of above equation,
we get X(s) = A−vC(0)

L(s2+ R
L

s+ 1
LC

) . The poles of the characteristic equation can be obtained

as s = − R
2L

± i

√
1

LC
−
(

R
2C

)2
= −σ ± iw assuming the radicand is positive we have

X(s) = A−vC(0)
L((s+σ)2+w2) . After taking inverse N -transform and reorder you get

x(t) = A − vC(0)
wL

EN3
α (−σ, t) sin

(
w

tα+1

α + 1

)
.

4. Epilogue

The fundamental goal of this work has been to generalize the main theorems of the
classical Laplace transform into the non-conformable Laplace transform. The goal
has been achieved, whereby the non-conformable derivative definition has been used
to construct some of these theorems and relations. We calculate the non-conformable
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Laplace transform from some elementary functions and establish the non-conformable
version of the transform of the successive derivative, the integral of a function and the
convolution of the fractional functions. In addition, the bounded and the existence
of the non-conformable Laplace transform are presented. The findings of this study
indicate that the results obtained in the fractional case are adjusted to the results
obtained in the ordinary case. Finally, we show the application of the N -transform
to the resolution of fractional differential equations.
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