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COEFFICIENT ESTIMATES FOR SUBCLASS OF m-FOLD
SYMMETRIC BI-UNIVALENT FUNCTIONS

A. MOTAMEDNEZHAD!, S. SALEHIAN?, AND N. MAGESH?

ABSTRACT. In the present paper, a general subclass M%’f:()\,ﬂy) of the m-Fold
symmetric bi-univalent functions is defined. Also, the estimates of the Taylor-
Maclaurin coefficients |ap, 11|, |a2m+1| and Fekete-Szegé problems are obtained for
functions in this new subclass. The results presented in this paper would generalize
and improve some recent works of several earlier authors.

1. INTRODUCTION

Let A be a class of analytic functions in the open unit disk U= {z € C: |z] < 1}
of the form

(1.1) flz) =2+ ianz".

Denote by & the class of all functions in the normalized analytic function class A
which are univalent in U (see details in [2,3]).

Since univalent functions are one-to-one, they are invertible and the inverse functions
need not be defined on the entire unit disk U. In fact, the Koebe one-quarter theorem
[3] ensures that the image of U under every univalent function f € 8 contains a
disk of radius 1/4. Therefore, every function f € 8 has an inverse f~! satisfying

fYf(2) =2 (2 €U) and
1

Pt ) = (ol <o) ) = ).
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In fact, the inverse function f~! is given by
(1.2) fHw) = w — ayw?® + (2a3 — az)w® — (5a3 — bagas + ag)w* + - - - .

A function f € A is said to be bi-univalent in U, if both f and f~! are univalent in U
(see [10]). We denote o5 the class of bi-univalent functions in U given by (1.1). For
examples the functions ;% and —log(1 — z) belong to the class 0.

The first time in 1967, Lewin [4] introduced the class o5 and proved that the bound
for the second coefficients of every f € og satisfies the inequality |as| < 1.51. Also,
Smith [5] showed that |as| < 2/v/27 and |as| < 4/27 for bi-univalent polynomial
f(2) = z + az2* + a3z with real coefficients.

Recently many researchers introduced subclasses of bi-univalent functions and ob-
tain non-sharp estimates on the first two Taylor-Maclaurin coefficients |aq| and |as|.
For example, we refer the reader to Srivastava et al. [6,8,10] and others [13,14]. The
coefficient estimate problem, i.e., bound of |a,| (n € N — {2,3}) for each f € o3, is
still an open problem.

Let m be a positive integer. A domain E is known as m-Fold symmetric if a rotation
of F around origin with an angle 27/ maps E on itself. A function f(z) analytic in
U is said to be m-Fold symmetric if

f (ei%z> = ei%f(z).

For each function f € 8, function

(1.3) h(z) = §/ f(z™)

is univalent and maps unit disk U into a region with m-Fold symmetry.
We denote by 8, the class of m-Fold symmetric univalent functions in U and clearly
81 = 8. Every f € §,, has a series expansion of the form

(1.4) f(2) =24 amp1z2™ (2 €U, meN).
k=1

Srivastava et al. [11], introduced a natural extensions of m-Fold symmetric univalent
functions and defined the class ¥, of symmetric bi-univalent functions. They obtained
the series expansion for g = f~! as:

FHw) =0 = g™+ [+ 1)a 1, — o]0
1

(15) — i(m -+ 1)(3m + 2>a;+1 - (3m + 2)am+1a2m+1 + aA3m+1 w?’mH + e

For m = 1 formula (1.5) coincides with formula (1.2) of the class os.

In fact, this widely-cited work by Srivastava et al. [7] actually revived the study of
m-Fold bi-univalent functions in recent years and that it has led to a flood of papers
on the subject by (for example) Srivastava et al. [7,9,11,12].

The aim of the this paper is to introduce new subclass M;Z (A7) of the m-Fold
symmetric bi-univalent functions class >2,,,. Moreover, we obtain estimates on initial
coefficients |a,,11|, |a2m+1| and Fekete-Szegd problems for functions in this subclass.
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The results presented in this paper would generalize and improve some recent works
of Altinkaya et al. [1] and Li et al. [13].

2. SUBCLASS ME” (), 7)
In this section, we introduce and consider the subclass M}ELT‘Z (A, 7).

Definition 2.1. Assume that A~ : U — C and p : U — C, are analytic functions of
the form

h(2) =1 4 hpz™ 4 hom2®™ 4 hap 2™ 4 -+ |
p(w) =1+ ppaw™ + poyw™™ + Papw™ + -+,
such that
min{Re((h(z)),Re(p(z))} >0 (2 € U).
Let A > 0 and v € C—{0}. We say that a function f given by (1.4) is in the subclass
M’gi (A, ), if the following conditions are satisfied:

1, o) @)Y )
(2.1) 1+7[(1 N +)\(1+ f,(z)> 1]eh(U) (z € U)
and

1 wy' (w) wy' (w)
(2.2) 1+7[(1—>\) os +)\<1+ jon )-1} € p(U) (weU),

where g is the extension of f~! to U.

Definition 2.2. A function f € %, given by (1.4) is said to be in the subclass Cx,_ (5)
(0 < B < 1), if two following conditions are satisfied:

2f"(2)
f'(2)

where ¢ is the extension of f~! to U.

Re<1+ >>6 and Re<1+wg//(w>>>6 (z,w € U),

g (w)

Remark 2.1. There are many selections of the functions h(z) and p(z) which would pro-
vide interesting classes of m-Fold symmetric bi-univalent functions ,,. For example,
if we let
1+ 2™
he) =) = (7o
it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition
21.If f € MQ’Z(A,V), then

el o ) )

> =1+2az"+2a%2"" +-.. (0<a<]l),

and
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In this case we say that f belongs to the subclass My, (a, A, 7).
Also, for h(z) = p(z) = (HZm)a, v =1and A = 0, the subclass J\/[%Z(A,’y) reduces

1—2zm

to the subclass 8% ~which was considered by Altinkaya and Yalcin [1].
If we let

h(z) = p(2)

1+ (1 —-2p)m
N 1—2zm

=1+2(1—p)2"+2(1-B)""+--- (0<B<1),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition
2.1. If f € MEP (), 7), then

Re (1 4 H(l - A)ZJ{C;S) T\ (1 + Z;é?) - 1]) > 8

and

1 / "
Re (1 ol N w) | ) (1 + 2 (w)> - 1D > 5.
gl g(w) g'(w)

In this case we say that f belongs to the subclass My, (3, A, 7).

Also, for h(z) = p(z) = %, v =1 and A = 0, the subclass M%Z(A,y)
reduces to the subclass ng considered by Altinkaya and Yalcin [1].

Furthermore, for h(z) = p(z) = %, v = 1land X\ = 1, the subclass Mg’i()\, v)
reduces to Definition 2.2.

Remark 2.2. For one-fold symmetric bi-univalent functions, we denote the subclass
Mgf’ (A, ) = MEP(X, 7). Special cases of this subclass are illustrated below.

(i) By putting h(z) = p(z) = (}“_Lj)a and v = 1, the subclass M%?(), ) reduces
to the subclass My(a, \) studied by Li and Wang [13].

(ii) By putting h(z) = p(z) = Gfi)a, v =1 and A = 0, the subclass M%P(X, )
reduces to the subclass S of strongly bi-starlike functions of order a (0 <
a<1).

(iii) By putting h(z) = p(2) = % and v = 1, the subclass M%P (), ) reduces
to the subclass By (3, A) studied by Li and Wang [13].

(iv) By putting h(z) = p(z) = %, v =1and XA = 0, the subclass ME?(\,~)
reduces to the subclass 8,,(3) of bi-starlike functions of order 5 (0 < g < 1).

(v) By putting h(z) = p(z) = % and A = y = 1, the subclass MEP(X,7)
reduces to the subclass C,, () of bi-convev functions of order 5 (0 < g < 1).

Theorem 2.1. Let f given by (1.4) be in the subclass Mg’i()\,v) (A>0,ve C—-{0}).
Then

][] J|v|<|h2m|+|p2m|>}

o
[ | < min { m(L+xm)’\ 2m2(1+ \m)
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and
YI([h2m| + [p2ml) | (m A+ DY (hl® + [p]?)
4m(1 4+ 2 m) 4m2(1 + Am)? ’
(BAm?2 + 2 m + 2m + 1) ||| ham| + (Am? + 2 m + 1)|7||pam|
4m2(1 + 2Am)(1 + Am) ‘

|agm+1| < min {

Proof. The main idea in the proof of Theorem 2.1 is to get the desired bounds for the
coefficient |a,, 11| and |agy,11]. Indeed, by considering the relations (2.1) and (2.2), we
have

2f'(2)
f'(2)

2f'(2)
f(2)

(2.3) 1+1B1—M

+A<1+
»

)—&]:h@)(zeU)

and

1wy (w) wg @)\ 1o (e
(2.4) 1+7k1/mgw)+A<H-gm)> q—p()( e U),

where each of the functions h and p satisfies the conditions of Definition 2.1. For
precise comparison of the coefficients of the above equations, in the following we
obtain Taylor-Maclaurin series expansions each side of the equations

(2.5)

1 2f'(2) 2f (%)
1+§ [(1—>\) 8 +)\<1+ 702 ) —1]
—1 4+ Mam+lzm + {WMG/Qm+1 . m(l + 2Am + /\m2>a12n+1} z2m
ol Y
+ - )
and
1 _)\wg’(w) A( wg (w))_ ]
(2.6) 1+ v [(1 ) g(w) * - g9'(w)
m(1+ Am) m { 2m(1 +2Am)
=l—-—ap W+ Q2m+1
v Y
m(1 + 2m + 2xm + 3 Am?) 9 } om
+ 5 Uppgr (W7 F 000

Also from the Definition 2.1, the analytic functions kA and p have the following Taylor-
Maclaurin series expansions

(2.7) h(2) = 1+ hp2™ + Rop2®™ + hgpn2®™ + - -
and

(2.8) p(w) = 14 ppw™ + popw®™ 4 pamw®™ + -+ - .



400 A. MOTAMEDNEZHAD, S. SALEHIAN, AND N. MAGESH

By comparing the coefficients of the equations (2.5), (2.7), (2.6) and (2.8), respectively,
we get

m(1+ Am)

(29) Am+1 :hm;
Y
2m(1 + 2\ 1+2A Am?
(210) Man-&-l - m< T eam e Am )a72’n+1 :h2m>
Y Y
m(1l 4+ Am
(2.11) _gam—l—l =DPm
Y
and
2m(1 + 2Am m(1 + 2m + 2Am + 3 m?
(212) — (fy)angrl + ( ~ )a72n+l = Po2m-
From (2.9) and (2.11), we get
(2.13) hm = —Pm
and

Gmt1 = 2m?(1 4+ Am)?’
Adding (2.10) and (2.12), we get

V(th +p2m)
2.1 2 = e
(2.15) 1 2m2(1 + Am)

Therefore, we find from the equations (2.13), (2.14) and (2.15) that

V]| [7[([h2m| + |p2ml)
< - 7 <
1] < m(1+ Am) and am 1] < 2m2(1+ Am) ’

respectively. So, we get the desired estimate on the coefficient |a,,+1]-
The proof is completed by finding the bound on the coefficient |ag,,4+1|. Upon
subtracting (2.12) from (2.10), we get

7(h2m - me) (m + 1)a2
4m(1 4 2 m) 2 Mt

Putting the value of a2, ; from (2.14) into (2.16), it follows that

V(hom — pam) | (m+1)7*(h3, + pr)
4m(1 + 2\m) Am2(1 + Am)?

(216) A2m+1 =

(217) Ao2m+1 =

By substituting the value of a2, ; from (2.15) into (2.16), we obtain

2.18 oy =
(2.18) am+1 Am(1 + 2 m) 4m2(1 + Am)
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Therefore, from the equations (2.17) and (2.18), we get

M (h2m] + [p2m)) (4 Dy (m]* + pml?)
4m(1 42 m) 4m2(1 4+ Am)?

|a2m+1’ S

and

(3Xm? + 2 m + 2m + 1)|y||hom| + (Am? + 2Xm + 1)[7]|pam|

U
4m?(1 4 2Am)(1 4+ Am)

|agm1] <

Theorem 2.2. Let f given by (1.4) be in the subclass M}ZL’Z()\W) (A >0, ve C—{0}).
Also let p be real number. Then

il
s pa [ < T 1 2 L+ T ezm| + (1= T(0) [panl}» [T(p)| < 1,
4171(1|—Z’2)\7n){‘1+T(p)“h2m’+’T(p)_1‘|p2m|}, T(p)| > 1,
where
T(p) = (m = 2p+ 1)(1+ 2Am)

m(1+ Am)
Proof. From the equation (2.16), we get

Y(hom — pom) | m—2p+1 2
+ am+1‘
4m(1 + 2Am) 2

From the equation (2.15) and (2.19), we have

(2.19) Gami1 — Py =

9 el (m—2p+1)(1+2\m)
— =— ¢ |1 h
@2m+1 = Plm+1 dm(1 + 2)\m){ [ m (14 Am) 2m
(m—2p+1)(1 4 2\m)
— 1| pom ¢
* [ m(1 4+ Am) b2
Next, taking the absolute values we obtain
—2p+1)(1 + 2\m)
2 < el (m P h
@m0 = “4m(1+ 2 m) m (14 Am) [hom|
(m—2p+1)(1+42Am)
m(1+ Am)

Then, we conclude that

v
|Gam i1 —pa2, 4| < 4m(1 +2xm) {(1+T(p)) [ham| + (1 =T(p)) [p2ml}, T (p)| <1,
4771(1|_7_|2>\Tn){‘1—|—T(p>“h2m’+’T(p)—1‘|p2m|}’ (o) > 1.

O
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3. COROLLARIES AND CONSEQUENCES
By setting
14 2™
h pu— = (
() =) = (1
in Theorem 2.1, we conclude the following result.

Corollary 3.1. Let f given by (1.4) be in the subclass My, (a, A\,y) (0 < a < 1,
A>0,v€C—{0}). Then

|ams1| < min LME‘/M
mH = m(l 4+ m) m\ 1+ m

o’ 202 (m+ 1)y a?y|(m+1)
L+2xm)  m2(14+Am)? " m?(1+ Am)

By setting h(z) = p(z) = (Hzm)a (0 < a < 1) in Theorem 2.2, we conclude the

1—2zm

> =1+2a2™+22%2""4--- (0<a<l1,zel),

and

|agm41] < min{
m(

following result.

Corollary 3.2. Let f given by (1.4) be in the subclass My, (a, A\,y) (0 < a < 1,
A>0,ve€C—{0}). Also let p be real number. Then

el
- <1
s Tl <L
|@2mi1 — Pa72n+1‘ < 2
ATEIN > 1
m(1+ 2 m)’ -

where

(m—2p+1)(1+2Am)
m(1+ Am) ‘
By setting v =1 and A = 0 in Corollary 3.1, we conclude the following result.
Corollary 3.3. Let f given by (1.4) be in the subclass 8% (0 <o <1). Then

V2a

|ami1| < ——
m

T(p) =

and

C L2 1)a? 1)a? a2
|a2m11| < min Y4 (m+1)a ’ (m+1)a M.
m m2

m2 m2

Remark 3.1. The bounds on |a,,+1| and |ag,+1| given in Corollary 3.3 are better than
those given in [1, Corolary 6], because of

V2a 2c
m mya+1
and (m+1o® o 2m+1)a* o 2(m+1)a?
< — 4 <=
m2 - m m2 —m m2
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By setting m = 1 and v = 1 in Corollary 3.1, we conclude the following result.

Corollary 3.4. Let f given by (1.1) be in the subclass Mx(a, A) (0 < <1, A > 0).
Then

1, 0 OS/\S]-)
’CL2|§ 1+/\
2o > 1
14+ )\ -
and
2
20 | 0<A<2+\/13’
0] < 14+ A - 3
a
K I L, do? 2+ VI3
14+2x  (1+ N - 3

Remark 3.2. The bounds on |ay| and |as| given in Corollary 3.4 are better than those
given in [13, Theorem 2.2].

By setting m = 1 in Corollary 3.3, we conclude the following result.

Corollary 3.5. Let f given by (1.1) be in the subclass 83, of strongly bi-starlike
functions of order o (0 < o« <'1). Then

las] < V2a  and |as| < 202

By setting

h(z) =p(z) = 1+ (11_—227?)2771

=14+2(1-B8)2"+2(1-p)* +--- (0<p<1,ze),

in Theorem 2.1, we conclude the following result.

Corollary 3.6. Let f given by (1.4) be in the subclass Ms, (5, A,7) (0 < 8 < 1,
A>0,v€C—{0}). Then

] < min {2(1—5>w| 21— B)h| }
= m(1+ Am)’ \ m2(1 4+ Am)

L=B)l | 2(1-B)*(m+ 1) (1—5)(m+1)|7|}
m(1+2Am) m2(1+xm)2 7 m?(1+ Am) ‘

and

lagm+1| < min{

By setting h(z) = p(z) = % (0 < < 1) in Theorem 2.2, we conclude the
following result.
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Corollary 3.7. Let f given by (1.4) be in the subclass My, (8, A7) (0 < 8 < 1,
A>0,7€C—{0}). Also let p be real number. Then

(18l
la i | < m(1+2\m)’ T(p)] <1,
2m+1 — ma1l < L T
(nmfﬂgggfﬂ» T(p)| > 1,

where
(m—2p+1)(1+2Am)
m(1+ Am) ‘

T(p) =

By setting v =1 and A = 0 in Corollary 3.6, we conclude the following result.

Corollary 3.8. Let f given by (1.4) be in the subclass ng (0 < B <1). Then

2(1 —
VAAZH) gL
|am+1|§ m 2
M’ }§ﬁ<1’
m 2
and
(m+ D) = 5), 1< pg< LM
| < m? (1+m)
a2m =
mt 2(m+1)(1—6)2+1—6 Lt2m
m? m  2(1+m) ~ '

Remark 3.3. The bounds on |a,,+1| and |ag,,+1| given in Corollary 3.8 are better than
those given in [1, Corolary 7].

By setting v =1 and A = 1 in Corollary 3.6, we conclude the following result.
Corollary 3.9. Let f given by (1.4) be in the subclass Cx,, () (0 < 3 < 1). Then

L [0-5 26 +m < 1,

| | E (14m)
Am41 S
2(1 —
M’ 28 +m > 1,
m(1+m)
and
_ 2
1 67 0§6§1+2m m7
WS AT 2(1 + 2m)
am —
2t 1- 3 2(1 — B)? 1+2m—m2<6<1
m(1+2m)  m2(1+m)’ 2(1+2m) — '

By setting m = 1 and v = 1 in Corollary 3.6, we conclude the following result.
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Corollary 3.10. Let f given by (1.1) be in the subclass Bx(8,A) (0 < 8 <1, A >0).
Then

2(1 —
a;ﬁ, A28 <1,
£ 20 s
— A+28>1
1+A’ +/8—7
and )
2@—5% 0§5§3+4X—%7
0] < 1+ A 4(1+2))
a
=) 18 41 -p)? 3+4x-w2<5<1
IT4+2X (1427 4(1+2)) — '

Remark 3.4. The bounds on |as| and |as| given in Corollary 3.10 are better than those
given in [13, Theorem 3.2].

By setting m = 1 in Corollary 3.8, we conclude the following result.

Corollary 3.11. Let f given by (1.1) be in the subclass 8,4(3) of bi-starlike functions
of order (0 < < 1). Then

J20-B). 0<p<y,
2
las| < 1
and 3
2(1-7), 0<p<7,
las| < 5
41-p8)2+(1-7), Z§6<1'

By setting m = 1 in Corollary 3.9, we conclude the following result.

Corollary 3.12. Let f given by (1.1) be in the subclass Coy () of bi-convex functions
of order (0 < g < 1). Then

1
1 - 57 0 S 5 S ga
lag| <1—=0 and lag| <
1_5+u B8)? 1<5<1
3 ’ 3
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