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ON THE ENUMERATION OF THE SET OF ELEMENTARY
NUMERICAL SEMIGROUPS WITH FIXED MULTIPLICITY,

FROBENIUS NUMBER OR GENUS

J. C. ROSALES1 AND M. B. BRANCO2

Abstract. In this paper we give algorithms that allow to compute the set of
every elementary numerical semigroups with given genus, Frobenius number and
multiplicity. As a consequence we obtain formulas for the cardinality of these sets.

1. Introduction

Let N be the set of nonnegative integers. A numerical semigroup is a subset S of
N which is closed under addition, 0 ∈ S and N\S has finitely many elements. The
cardinality of the set N\S is called the genus of S and it is denoted by g(S).

Given a positive integer g, we denote by S(g) the set of all numerical semigroups
with genus g. The problem of determining the cardinality of S(g) has been widely
treated in the literature (see for example [2, 4–7] and [13]). Some of these works were
motivated by Amorós’s conjecture [5], which says that the sequence of cardinals of
S(g) for g = 1, 2, . . . has a Fibonacci behavior. It is still not known in general if for a
fixed positive integer g there are more numerical semigroups with genus g + 1 than
numerical semigroups with genus g.

An algorithm that allows us to compute the set of numerical semigroups with
genus g is provided in [3], where elementary numerical semigroups play an important
role. In fact, in [3] an equivalence binary relation R is defined over S(g) such that
S(g)

R
= {[S] | S is a elementary numerical semigroup with genus g}. Moreover, it is

proved that if S and T are elementary numerical semigroups with genus g then
[S] = [T ] if and only if S = T . The main idea of the algorithm in [3] is to compute
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every elementary numerical semigroups S with genus g and, then, to enumerate the
elements in [S] for each S.

For any numerical semigroup S, the smallest positive integer belonging to S (respec-
tively, the greatest that does not belong to S) is called the multiplicity (respectively
Frobenius number) of S and it is denoted by m(S) (respectively F(S)) (see [9]).

We say that a numerical semigroup S is elementary if F(S) < 2m(S). This type
of numerical semigroups were also studied in [8] and [13]. We denote by E(m, F, g)
the set of elementary numerical semigroups with multiplicity m, Frobenius number
F and genus g (when one of the parameters to E(m, F, g) is replaced by the symbol
−, it represents the set of elementary numerical semigroups in which no restrictions
are placed on that parameter).

For any finite set A, #A denotes the cardinal of A. Given a rational number q we
denote by ⌈q⌉ = min {z ∈ Z | q ≤ z}.

In Section 2, we review the results of Y. Zhao in [13] which give formulas for
#E(m, −, −), #E(m, −, g) and #E(−, −, g), and state that #E(−, −, g + 1) =
#E(−, −, g) + #E(−, −, g − 1). Therefore, we get that {#E(−, −, g)}g∈N is a Fi-
bonacci sequence.

In Section 3, we study the sets E(m, F, −) and E(−, F, −), find formulas for their
cardinality, and describe the behavior of the sequence of cardinals of E(−, F, −).

In Section 4, we present algorithms for calculating E(−, F, g) and E(m, F, g). From
these algorithms, we can derive the cardinality of these sets.

Finally, in Section 5 we show that the set of all elementary numerical semigroups
E is a Frobenius variety. This fact, together with the results of [11], allows us to
construct recursively the set E .

2. Multiplicity and Genus

Our aim in this section is to see that {#E(−, −, g)}g∈N is a Fibonacci sequence.
The next result is easy to prove and appears in [13, Proposition 2.1].
Lemma 2.1. Let m be an integer such that m ≥ 2 and let A be a subset of
{m + 1, . . . , 2m − 1}. Then {0, m} ∪ A ∪ {2m, →} is an elementary numerical semi-
group with multiplicity m. Moreover, every elementary numerical semigroup with
multiplicity m is of this form.

As consequence of the above lemma we have that #E(m, −, −) is equal to the
number of subsets of a set with m − 1 elements.
Corollary 2.1. If m is a positive integer, then #E(m, −, −) = 2m−1.

The following result is easy to prove and gives conditions imposed on two positive
integers m and g so that there exists at least one elementary numerical semigroup
with multiplicity m and genus g.
Proposition 2.1. Let m and g be nonnegative integers with m ̸= 0. Then
E(m, −, g) ̸= ∅ if and only if m − 1 ≤ g ≤ 2 (m − 1).
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From Lemma 2.1, we know that S ∈ E(m, −, g) if and only if S = {0, m} ∪ A ∪
{2m, →}, where A is a subset of {m + 1, . . . , 2m − 1} and #A = 2(m − 1) − g. So
we have the following result, which is also in [13, Corollary 2.2].

Corollary 2.2. Let m and g be positive integers such that m − 1 ≤ g ≤ 2 (m − 1).
Then #E(m, −, g) =

(
m−1

g−(m−1)

)
.

From the results above we get

E(−, −, g) =
g+1⋃

m=⌈ g
2 ⌉+1

E(m, −, g).

Thus we have the following algorithm.

Algorithm 2.1. Input: g positive integer. Output: E(−, −, g).
1) For all m ∈

{
⌈g

2⌉ + 1, . . . , g + 1
}

compute the set E(m, −, g).
2) Return ⋃g+1

m=⌈ g
2 ⌉+1 E(m, −, g).

Clearly, we get

#E(−, −, g) =
g+1∑

m=⌈ g
2 ⌉+1

#E(m, −, g).

By applying Corollary 2.2, we obtain the following result.

Corollary 2.3. If g is a positive integer, then #E(−, −, g) = ∑g
i=⌈ g

2 ⌉

(
i

g−i

)
.

The Fibonacci sequence is the sequence of positive integers defined by the linear
recurrence equation an+1 = an + an−1, with a0 = a1 = 1.

It is clear that E(−, −, 0) = {N} and E(−, −, 1) = {{0, 2, →}} and so #E(−, −, 0) =
#E(−, −, 1) = 1. By using Corollary 2.3, we can obtain [13, Proposition 2.3], which
states that {#E(−, −, g)}g∈N is a Fibonacci sequence.

Theorem 2.1. If g is a positive integer, then #E(−, −, g + 1) = #E(−, −, g) +
#E(−, −, g − 1).

3. Multiplicity and Frobenius Number

Our first goal in this section is to describe sufficient conditions for two positive
integers m and F so that there exists at least one elementary numerical semigroups
with multiplicity m and Frobenius number F .

Lemma 3.1. If S is an elementary numerical semigroup such that S ≠ N, then
F(S)+1

2 ≤ m(S) ≤ F(S) + 1 and m(S) ̸= F(S).

Proof. Since S ̸= N, then m(S) ≥ 2 and m(S) − 1 ̸∈ S. Therefore, we have that
m(S) − 1 ≤ F(S). In addition, as S is an elementary numerical semigroup then
F(S) < 2 (m(S)) and thus F(S) + 1 ≤ 2 (m(S)). □
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From the previous lemma we obtain the following result.

Proposition 3.1. Let m and F be positive integers. Then E(m, F, −) ̸= ∅ if and only
if F +1

2 ≤ m ≤ F + 1 and m ̸= F .

It is clear that E(F + 1, F, −) = {{0, F + 1, →}} and E(F − 1, F, −) =
{{0, F − 1, F + 1, →}}. Hence, we can assume that F = m + i, where i ∈
{2, . . . , m − 1}. By applying Lemma 2.1, we deduce that S ∈ E(m, F, −) if and only
if there exists A ⊆ {m + 1, . . . , m + i − 1} such that S = {0, m} ∪ A ∪ {F + 1, →}.
As a consequence we have the following algorithm.

Algorithm 3.1. Input: m and F positive integers such that F +1
2 ≤ m ≤ F + 1 and

m ̸= F .
Output: E(m, F, −).

1) If m = F + 1, then return {{0, F + 1, →}}.
2) If m = F − 1, then return {{0, F − 1, F + 1, →}}.
3) Compute the set C = {A | A ⊆ {m + 1, . . . , F − 1}}.
4) Return {{0, m} ∪ A ∪ {F + 1, →} | A ∈ C}.

Gathering all this information, we obtain the following result which can also be
deduced from equation (6) of [1].

Corollary 3.1. Let m and F be positive integers such that F +1
2 ≤ m ≤ F + 1 and

m ̸= F . Then

#E(m, F, −) =
{

1, if m = F + 1,
2F −m−1, otherwise.

Next we obtain an algorithm that allows us to compute every elementary numerical
semigroup with a given Frobenius number. As a consequence of Proposition 3.1, we
have

E(−, F, −) =
⋃

m∈{⌈ F +1
2 ⌉,...,F +1}\{F }

E(m, F, −).

Algorithm 3.2. Input: F positive integer.
Output: E(−, F, −).

1) For all m ∈
{
⌈F +1

2 ⌉, . . . , F + 1
}

\{F} compute (using Algorithm 3.1) the set
E(m, F, −).

2) Return E(−, F, −) = ⋃
m∈{⌈ F +1

2 ⌉,...,F +1}\{F } E(m, F, −).

Therefore, we have #E(−, F, −) = ∑
m∈{⌈ F +1

2 ⌉,...,F +1}\{F } #E(m, F, −). From Corol-
lary 3.1 we obtain the following result.

Corollary 3.2. If F is a positive integer, then #E(−, F−) = 2F −⌈ F +1
2 ⌉.

We finish this section by describing the behavior of the sequence of cardinalities of
E(−, F, −) for F = 1, 2, . . . Observe that #E(−, 1, −) = #E(−, 2, −) = 1.
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Proposition 3.2. Let F be an integer greater than or equal to 2.
1) If F is odd, then #E(−, F + 1, −) = #E(−, F, −).
2) If F is even, then #E(−, F + 1, −) = #E(−, F, −) + #E(−, F − 1, −).

Proof. 1) From Corollary 3.2 it is guaranteed that #E(−, F, −) = 2F −⌈F +1
2 ⌉ =

2F − F +1
2 = 2F −1

2 . By repeating this argument we obtain #E(−, F + 1, −) = 2F −1
2 .

Therefore, we have #E(−, F + 1, −) = #E(−, F, −).
2) Again, by Corollary 3.2, we know that #E(−, F, −) + #E(−, F − 1, −) =

2F −⌈F +1
2 ⌉ + 2F −1−⌈ F

2 ⌉ = 2F − F +2
2 + 2F −1− F

2 = 2F
2 . We obtain #E(−, F + 1, −) =

2F +1−⌈ F +2
2 ⌉ = 2F +1− F +2

2 = 2F
2 . Consequently, #E(−, F + 1, −) = #E(−, F, −) +

#E(−, F − 1, −) □

4. Multiplicity, Frobenius Number and Genus

In this section, we aim to find conditions for m, F and g positive integers so that
there exists at least one elementary numerical semigroup with a given multiplicity m,
Frobenius number F and genus g. The next results are a consequence of the results
given in [3, Proposition 2 and Corollary 3].

Lemma 4.1. Let F and g be two positive integers. Then g ≤ F ≤ 2g − 1 if and only
if E(−, F, g) ̸= ∅.

Lemma 4.2. Let F and g be two positive integers such that g ≤ F ≤ 2g − 1,
and let AF,g =

{
A | A ⊆

{⌈
F +1

2

⌉
, . . . , F − 1

}
and #A = F − g

}
. Then E(−, F, g) =

{{0} ∪ A ∪ {F + 1 →} | A ∈ AF,g}.

As an immediate consequence of Lemmas 4.1 and 4.2 we have the following algo-
rithm.

Algorithm 4.1. Input: F and g positive integers such that g ≤ F ≤ 2g − 1.
Output: E(−, F, g).

1) Compute the set C =
{
A | A ⊆

{⌈
F +1

2

⌉
, . . . , . . . , F − 1

}
and #A = F − g

}
.

2) Return {{0} ∪ A ∪ {F + 1, →} | A ∈ C}.

As a consequence of the previous algorithm we obtain the following result which
also appears in [3, Corollary 4].

Corollary 4.1. If F and g are positive integers such that g ≤ F ≤ 2g − 1, then
#E(−, F, g) =

(
⌈ F

2 ⌉−1
F −g

)
.

Lemma 4.3. If m, F and g are three positive integers such that m ≥ 2 and
E(m, F, g) ̸= ∅, then m − 1 ≤ g ≤ F < 2m.

Proof. Since E(m, F, g) ̸= ∅, then E(m, −, g) ̸= ∅ and we have that m − 1 ≤ g. From
Lemma 4.1, we deduce that g ≤ F . Finally, by Proposition 3.1, we conclude that
F +1

2 ≤ m and thus F < 2m. □
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Finally, we present the main result of this section.

Proposition 4.1. Let m, F and g be three positive integers such that m ≥ 2. Then
E(m, F, g) ̸= ∅ if and only if one of the following conditions holds:

1) (m, F, g) = (m, m − 1, m − 1);
2) (m, F, g) = (m, F, m) and m < F < 2m;
3) m < g < F < 2m.

Proof. Necessity. If E(m, F, g) ̸= ∅ then by applying Lemma 4.3, we deduce that
m − 1 ≤ g ≤ F < 2m. Assume that S ∈ E(m, F, g). We distinguish the following four
cases.

a) If g = m − 1, then S = {0, m, →} and so F = m − 1. Hence, (m, F, g) =
(m, m − 1, m − 1).

b) If g = m, then m < F < 2m and S = {0, m, →} \{F}. Whence, (m, F, g) =
(m, F, m) and m < F < 2m.

c) If g = F , then S = {0, F + 1, →} and thus F + 1 = m. Once again we have
(m, F, g) = (m, m − 1, m − 1).

d) If g ̸∈ {m − 1, m, F}, then as m − 1 ≤ g ≤ F < 2m and we deduce that
m < g < F < 2m.

Sufficiency. It is clear that {0, m, →} ∈ E(m, m − 1, m − 1) and {0, m, →} \{F} ∈
E(m, F, m). Suppose that m < g < F < 2m. Let A be a subset of {m + 1, . . . , F − 1},
with cardinality F − g − 1. Since g(S) = m − 1 + F − 1 − m − 1 + 1 − #A + 1 =
F − 1 − F + g + 1 = g, then S = {0, m} ∪ A ∪ {F + 1, →} ∈ E(m, F, g). □

Notice that, by the sufficiency condition of the proof above, we conclude that, if
m < g < F < 2m, knowing an element in E(m, F, g) is the same as knowing a subset
of {m + 1, . . . , F − 1} with cardinality F − g − 1. So we have the following algorithm.

Algorithm 4.2. Input: m, F and g integers such that 2 ≤ m < g < F < 2m.
Output: E(m, F, g).

1) Compute C = {A | A ⊆ {m + 1, . . . , F − 1} and #A = F − g − 1}.
2) Return {{0, m} ∪ A ∪ {F + 1 →} such that A ∈ C}.

Clearly #E(m, m − 1, m − 1) = #E(m, F, m) = 1. For the remaining cases the
following result gives us the cardinality of E(m, F, g).

Corollary 4.2. Let m, F and g be positive integers such that 2 ≤ m < g < F ≤ 2m.
Then #E(m, F, g) =

(
F −m−1
F −g−1

)
.

Proof. As a consequence of Algorithm 4.2 we have that S ∈ E(m, F, g) if and only
if there exists A ⊆ {m + 1, . . . , F − 1}, with cardinality F − g − 1 such that S =
{0, m} ∪ A ∪ {F + 1, →}. □

We conclude this section by giving an example that illustrates the previous results.
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Example 4.1. Let us compute E(4, 7, 5). By Corollary 4.2 we have #E(4, 7, 5) =(
7−4−1
7−5−1

)
=

(
2
1

)
= 2. Now by using Algorithm 4.2, with m = 4, F =

7 and g = 5 we can conclude that C = {{5} , {6}} and E(4, 7, 5) =
{{0, 4} ∪ {5} ∪ {8, →} , {0, 4} ∪ {6} ∪ {8, →}}.

5. Frobenius Variety

A Frobenius variety (see for example [11]) is a nonempty set V of numerical semi-
groups fulfilling the following conditions:

1) if S and T are in V , then S ∩ T ∈ V ;
2) if S is in V and S ̸= N, then S ∪ {F(S)} ∈ V .

Proposition 5.1. E = {S | S is an elementary numerical semigroup} is a Frobenius
variety.

Proof. If S and T belong to E it is clear that S ∩ T is a numerical semigroup,
F(S ∩ T ) = max {F(S), F (T )}

and
m(S ∩ T ) ≥ max {m(S), m(T )} .

Therefore, F(S ∩ T ) < 2m(S ∩ T ) and thus S ∩ T ∈ E .
If S is an element in E and S ̸= N, then clearly S = S ∪ {F(S)} is a numerical

semigroup such that F(S) < F(S) and m(S) is equal to m(S) or F(S). Therefore,
F(S) < 2m(S) and thus S ∈ E . □

We define a directed graph G(E), with edges pointing from T to S, in the following
way: the set of vertices is E and (T, S) ∈ E × E is an edge of G(E) if and only if
S ∪ {F(S)} = T .

The goal of this section is to see that G(E) is a tree with root equal to N and to
characterize the sons of a vertex. This fact allows us to recursively construct G(E)
and consequently E . To this end we need to introduce some concepts and results.

Given a nonempty subset A of N we will denote by ⟨A⟩ the submonoid of (N, +)
generated by A, that is,

⟨A⟩ = {λ1a1 + · · · + λnan | n ∈ N\{0}, ai ∈ A, λi ∈ N for all i ∈ {1, . . . , n}} .

It is well known (see for instance [12]) that every numerical semigroup S is finitely
generated, and therefore there exists a finite subset A of N such that S = ⟨A⟩.
Furthermore, we say that A is a minimal set of generators of S if no proper subset of A
generates S. Every numerical semigroup admits an unique minimal set of generators
of S and we denote this set by msg(S). It is well known (see for instance [12])
that msg(S) = (S\{0}) \ (S\{0} + S\{0}) and if x ∈ S then S\{x} is a numerical
semigroup if and only if x ∈ msg(S).

As a consequence of [11, Proposition 24 and Theorem 27] we have the following
result.
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Theorem 5.1. The graph G(E) is a tree with root N. Furthermore, the sons of a
vertex S of G(E) are in {S\{x} | x ∈ msg(S), x > F(S) and S\{x} ∈ E}.

The following result is useful to compute the sons of a vertex of G(E).

Proposition 5.2. Let S be an elementary numerical semigroup and x ∈ msg(S) such
that x > F(S). Then S\{x} is an elementary numerical semigroup if and only if
x < 2m(S).

Proof. Suppose that S = {0, m(S), →}. Then
msg(S) = {m(S), m(S) + 1, . . . , 2m(S) − 1}

and clearly the result is true. If S ̸= {0, m(S), →} then m(S\{x}) = m(S) and
F(S\{x}) = x. Therefore, S\{x} is elementary numerical semigroup if and only if
x < 2m(S). □

We illustrate the above results with the following example.

Example 5.1. Let us compute the sons of vertex S = {0, 5, 6, 9, →} of G(E).
We have msg(S) = {5, 6, 9, 13}, F(S) = 8 and m(S) = 5. Whence
{x ∈ msg(S) | F(S) < x < 2m(S)} = {9}. Using Theorem 5.1 and Proposition 5.2 we
conclude that S has an unique son S\{9} = ⟨5, 6, 13, 14⟩.

Now, we can recursively construct the tree G(E) starting with N and connect-
ing each vertex with their sons. First we construct msg(S\{x}) from msg(S),
when x is a minimal generator of S greater than F(S). It is clear that if
msg(S) = {m, m + 1, . . . , 2m − 1} which is S = {0, m, →} then msg(S\{m}) =
{m + 1, m + 2, . . . , 2m + 1}. For the remaining cases, we use the following result that
appears in [10, Corollary 18].

Proposition 5.3. Let S be a numerical semigroup with msg(S) = {n1, . . . , np}. If
m(S) = n1 < np and np > F(S) then

msg(S\{np}) =


{n1, . . . , np−1}, if exists i ∈ {2, . . . , p − 1} such that

np + n1 − ni ∈ S,
{n1, . . . , np−1, np + n1}, otherwise.

Note that, in the previous proposition, the elements in msg(S) are not necessarily
ordered.

Example 5.2. Let S = ⟨5, 6, 9, 13⟩. Let us compute msg(S\{9}). By Proposition 5.3,
as 9 + 5 − 6 ̸∈ S and 9 + 5 − 13 ̸∈ S, we can conclude that {5, 6, 13, 14} is the minimal
system of generators of S\{9}.

Using Theorem 5.1 and Proposition 5.2 and 5.3 we obtain the following:
. ⟨1⟩ has only son ⟨1⟩\{1} = ⟨2, 3⟩;
. ⟨2, 3⟩ has two sons ⟨2, 3⟩\{2} = ⟨3, 4, 5⟩ and ⟨2, 3⟩\{3} = ⟨2, 5⟩;
. ⟨2, 5⟩ has no sons;
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⟨1⟩ = N

��

⟨2, 3⟩

{{ ��

⟨3, 4, 5⟩

zz �� ##

⟨2, 5⟩

⟨4, 5, 6, 7⟩

ss vv }} ��

⟨3, 5, 7⟩

��

⟨3, 4⟩

⟨5, 6, 7, 8, 9⟩ ⟨4, 6, 7, 9⟩ ⟨4, 5, 7⟩ ⟨4, 5, 6⟩ ⟨3, 7, 8⟩ . . .

. ⟨3, 4, 5⟩ has three sons ⟨3, 4, 5⟩\{3} = ⟨4, 5, 6, 7⟩, ⟨3, 4, 5⟩\{4} = ⟨3, 5, 7⟩ and
⟨3, 4, 5⟩\{5} = ⟨3, 4⟩;

. ⟨3, 4⟩ has no sons;

. ⟨3, 5, 7⟩ has one son ⟨3, 5, 7⟩\{5} = ⟨3, 7, 8⟩;

. ⟨4, 5, 6, 7⟩ has four sons ⟨4, 5, 6, 7⟩\{4} = ⟨5, 6, 7, 8, 9⟩, ⟨4, 5, 6, 7⟩\{5} =
⟨4, 6, 7, 9⟩, ⟨4, 5, 6, 7⟩\{6} = ⟨4, 5, 7⟩ and ⟨4, 5, 6, 7⟩\{7} = ⟨4, 5, 6⟩;

. . . . . . . . . . . . .
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