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ON DISTANCE IRREGULAR LABELING OF DISCONNECTED

GRAPHS

FAISAL SUSANTO1∗, KRISTIANA WIJAYA1, PRASANTI MIA PURNAMA1, AND SLAMIN2

Abstract. A distance irregular k-labeling of a graph G is a function f : V (G) →
¶1, 2, . . . , k♢ such that the weights of all vertices are distinct. The weight of a vertex v,
denoted by wt(v), is the sum of labels of all vertices adjacent to v (distance 1 from v),
that is, wt(v) =

∑

u∈N(v) f(u). If the graph G admits a distance irregular labeling

then G is called a distance irregular graph. The distance irregularity strength of G

is the minimum k for which G has a distance irregular k-labeling and is denoted by
dis(G). In this paper, we derive a new lower bound of distance irregularity strength
for graphs with t pendant vertices. We also determine the distance irregularity
strength of some families of disconnected graphs namely disjoint union of paths,
suns, helms and friendships.

1. Introduction

Let G = (V, E) be a simple, finite and undirected graph with vertex set V (G) and
edge set E(G). For a vertex v ∈ V (G), the set of neighbors of v is denoted by N(v).
We write deg(v) to represent the degree of v. The vertex v is called an isolated vertex

if deg(v) = 0. Meanwhile, if deg(v) = 1, we then call such a vertex as a pendant.
Other basic definitions and terminologies about graph theory not mentioned here, we
refer the reader to a book [4]. By notation [a, b] with integers a, b we mean the set of
all integers x such that a ⩽ x ⩽ b.

A graph labeling is a mapping that carries some sets of graph elements to a set of
positive integers, called labels, such that satisfies certain conditions. If the domain
is vertex-set or edge-set, the labelings are called vertex labelings or edge labelings,

Key words and phrases. Distance irregular labeling, disconnected graphs, paths, suns, helms,
friendships.
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508 F. SUSANTO, K. WIJAYA, P. M. PURNAMA, AND SLAMIN

respectively. If the domain is V (G) ∪ E(G), then it is called a total labeling. More
details about recent results of graph labelings can be found in a great survey by
Gallian [5].

One of interesting topics in graph labelings is a distance irregular labeling. This
labeling is motivated by three concepts in graph labelings, namely a distance magic

labeling [6], an (a, d)-distance antimagic labeling [1] and an irregular labeling [3]. For a
graph G, a vertex labeling f : V (G) → ¶1, 2, . . . , k♢ is said to be a distance irregular

k-labeling of G if the weights of all vertices are distinct. The weight of a vertex v,
denoted by wt(v), is the sum of labels of all vertices adjacent to v (distance 1 from
v), that is, wt(v) =

∑

u∈N(v) f(u). If the graph G admits a distance irregular labeling
then G is called a distance irregular graph. The distance irregularity strength of G
is the minimum k for which G has a distance irregular k-labeling and is denoted by
dis(G).

The notion of distance irregular labeling was firstly introduced by Slamin in 2017 [8].
In his paper, he showed some particular graphs that admit a distance irregular labeling,
such as paths with dis(Pn) = ⌈n/2⌉ for n ⩾ 4, complete graphs with dis(Kn) = n
for n ⩾ 3, cycles with dis(Cn) = ⌈(n + 1)/2⌉ for n ≡ 0, 1, 2, 5 (mod 8), and wheels
with dis(Wn) = ⌈(n + 1)/2⌉ for n ≡ 0, 1, 2, 5 (mod 8). He also proved that for any
two different vertices u and v of a graph G, if u and v have the same neighbors, then
G has no distance irregular labeling. As a consequence of this property, he showed
that some classes of graphs such as complete bipartite graphs, complete multipartite
graphs, stars and trees containing vertex with at least two leaves, have no distance
irregular labeling. Novindasari, Marjono and Abusini in [7] determined the distance
irregularity strength of ladder graph and triangular ladder graph. Recently, in [2],
Bong et al. completed the results for the distance irregularity strength of Cn and
Wn, for n ≡ 3, 4, 6, 7 (mod 8). In the same paper, they also determined the distance
irregularity strength of m-book graphs Bm and G + K1 for any connected graph G
admitting a distance irregular labeling.

So far, all papers concerning distance irregular labeling have presented the results
only for connected graphs. Meanwhile, determining the distance irregularity strength
for disconnected graphs has still never been studied. Motivated by this, in this paper,
we study the distance irregular labeling for disconnected graphs. We derive a new
lower bound of distance irregularity strength for graphs with t pendant vertices. Also,
the distance irregularity strength for some classes of disconnected graphs especially
disjoint union of paths, suns, helms and friendships will be determined through this
paper.

The following lemma gives the general lower bound for distance irregularity strength
of graphs found by Slamin [8].
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Lemma 1.1 ([8]). Let G be a graph on p vertices with minimum degree δ and maximum

degree ∆ containing no isolated vertex and no vertices with identical neighbors. Then

dis(G) ⩾

⌈

δ + p − 1

∆

⌉

.

2. Main Results

Our first result gives a lower bound of distance irregularity strength for a graph
having t pendant vertices. We note that the graph is not necessarily connected.

Lemma 2.1. Let G be a graph on p vertices with maximum degree ∆ containing no

isolated vertex and no vertices with identical neighbors. If G has t pendant vertices,

then

dis(G) ⩾ max


t,


p

∆



.

Proof. Let G be a graph on p vertices with maximum degree ∆ containing no iso-
lated vertex and no vertices with identical neighbors. For a positive integer t, let
x1, x2, . . . , xt be the pendant vertices of G. Since the weight of every vertex of G
must be distinct, then the labels of neighbor of all xis must be distinct, that is,
f(N(x1)) ̸= f(N(x2)) ̸= . . . ̸= f(N(xt)). So, dis(G) ⩾ t. Combining with the
lower bound for δ = 1 (since the minimum degree of G is 1) in Lemma 1.1, we have
dis(G) ⩾ max¶t, ⌈p/∆⌉♢. □

The lower bound in Lemma 2.1 is tight as can be seen from Theorem 2.1, 2.2 and
2.3, which present the exact value of distance irregularity strength for disconnected
paths, suns and helms, respectively.

2.1. Disjoint union of paths. In this subsection, we deal with a distance irregular
labeling of disconnected paths. Let mPn be a disjoint union of m identical copies of
paths with vertex set V (mPn) = ¶vj

i : i ∈ [1, n], j ∈ [1, m]♢ and edge set E(mPn) =
¶vj

i vj
i+1 : i ∈ [1, n − 1], j ∈ [1, m]♢. For m ⩾ 2 and n = 3, there exist vertices having

the same neighbors. Consequently, the graph mP3 has no distance irregular labeling.
However, for m ⩾ 2 and n ⩾ 4, the graph mPn admits a distance irregular labeling
and its distance irregularity strength will be determined by the following theorem.

Theorem 2.1. For each m ⩾ 2 and n ⩾ 4, dis(mPn) = ⌈mn/2⌉.

Proof. As n ⩾ 4, it follows from Lemma 2.1 that dis(mPn) ⩾ ⌈mn/2⌉. To prove
the reverse inequality, define a vertex labeling f : V (mPn) → ¶1, 2, . . . , ⌈mn/2⌉♢ as
follows.

Case 1. Let n ≡ 0 (mod 4).
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For j ∈ [1, m], label each vertex in the following way:

f(vj
i ) =

1

2
(n + 1 − i)m, for i = 1, 5, . . . , n − 3,

f(vj
i ) =

1

2
(i − 2)m + j, for i = 2, 6, . . . , n − 2,

f(vj
i ) =

1

2
(n + 1 − i)m + j, for i = 3, 7, . . . , n − 1,

f(vj
i ) =

mi

2
, for i = 4, 8, . . . , n.

Hence, for j ∈ [1, m], the labeling gives the vertex weights as follows:

wt(vj
i ) = (i − 1)m + j, for i = 1, 3, . . . , n − 1,

wt(vj
i ) = (n + 1 − i)m + j, for i = 2, 4, . . . , n.

Case 2. Let n ≡ 1 (mod 4).
For n = 5, first, label all vertices except vj

1, j ∈ [1, m], in the following way:

f(vj
2) =

5j

2
− 2, for j ≡ 2t (mod 2t+1), t is even, t ⩾ 2,

f(vj
2) =



5j

2



− 1, for other j,

f(vj
3) =

⌊

5(m + j)

2

⌋

−


5m

2



, for j ∈ [1, m],

f(vj
4) =



5j

2



, for j ∈ [1, m],

f(vj
5) =



5m

2



, for j ∈ [1, m].

Then, we obtain all vertex weights except wt(vj
2), j ∈ [1, m]:

wt(vj
1) =

5j

2
− 2, for j ≡ 2t (mod 2t+1), t is even, t ⩾ 2,

wt(vj
1) =



5j

2



− 1, for other j,

wt(vj
3) = 5j − 2, for j ≡ 2t (mod 2t+1), t is even, t ⩾ 2,

wt(vj
3) = 2



5j

2



− 1, for other j,

wt(vj
4) =

⌊

5(m + j)

2

⌋

, for j ∈ [1, m],

wt(vj
5) =



5j

2



, for j ∈ [1, m].

Next, for j ∈ [1, m], the label of vj
1 and the weight of vj

2 will be determined by using
the following algorithm.

1. Let W =
{

wt(vj
3) : j ∈

[⌈

m+1
2

⌉

, m
]}

.
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2. For j from 1 up to m, do

a. p = f(vj
3) =

⌊

5(m+j)
2

⌋

−
⌈

5m
2

⌉

;

b. q = wt(vj
4) =

⌊

5(m+j)
2

⌋

.

c. If (q − 1) is contained in W , then

1) f(vj
1) = q − p − 2 =

⌈

5m
2

⌉

− 2;

2) wt(vj
2) = q − 2 =

⌊

5(m+j)
2

⌋

− 2;

3) W = W\¶q − 1♢.
d. Else

1) f(vj
1) = q − p − 1 =

⌈

5m
2

⌉

− 1;

2) wt(vj
2) = q − 1 =

⌊

5(m+j)
2

⌋

− 1.

For n ⩾ 9 and j ∈ [1, m], label each vertex in the following way:

f(vj
i ) =

1

4
(3n − 4 + i)m −



mn

2



+ j − 1,

for i = 1, 5, . . . ,
n − 7

2
(if n ≡ 1 (mod 8)),

f(vj
i ) =

1

4
(3n + i)m −



mn

2



− j + 1,

for i = 1, 5, . . . ,
n − 11

2
(if n ≡ 5 (mod 8)),

f(vj
i ) =

1

4
(i − 2)m + j, for i = 2, 6, . . . , n − 3,

f(vj
i ) =



mn

2



−
1

4
(n + 2 − i)m + 1,

for i = 3, 7, . . . ,
n − 11

2
(if n ≡ 1 (mod 8)),

f(vj
i ) =



mn

2



−
1

4
(n + 6 − i)m + 2j − 1,

for i = 3, 7, . . . ,
n − 7

2
(if n ≡ 5 (mod 8)),

f(vj
i ) =

mi

4
, for i = 4, 8, . . . , n − 5,

f(vj
i ) =



mn

2



−
1

4
(n + 2 − i)m + j,

for i =
n − 3

2
,
n + 5

2
, . . . , n − 2 (if n ≡ 1 (mod 8)) or

for i =
n + 1

2
,
n + 9

2
, . . . , n − 2 (if n ≡ 5 (mod 8)),
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f(vj
i ) =

1

4
(3n + i)m −



mn

2



,

for i =
n + 1

2
,
n + 9

2
, . . . , n − 4 (if n ≡ 1 (mod 8)) or

for i =
n − 3

2
,
n + 5

2
, . . . , n − 4 (if n ≡ 5 (mod 8)),

f(vj
n−1) =

1

2
(n − 3)m + j,

f(vj
n) =



mn

2



.

Thus, for j ∈ [1, m], the labeling provides the following vertex weights:

wt(vj
i ) =

1

2
(i − 1)m + j, for i = 1, 3, . . . , n − 4,

wt(vj
i ) =

1

2
(n − 3 + i)m + j, for i = 2, 4, . . . ,

n − 9

2
,

wt


vj
n−5

2



=
1

4
(3n − 11)m + 2j − 1,

wt(vj
i ) =

1

2
(n − 1 + i)m + j, for i =

n − 1

2
,
n + 3

2
, . . . , n − 1,

wt(vj
n−2) =

1

4
(3n − 11)m + 2j,

wt(vj
n) =

1

2
(n − 3)m + j.

Case 3. Let n ≡ 2 (mod 4).
For j ∈ [1, m], label each vertex in the following way:

f(vj
1) =

1

2
(n − 2)m + j,

f(vj
i ) =

1

2
(i − 2)m + j, for i = 2, 6, . . . , n − 4,

f(vj
3) =

mn

2
,

f(vj
i ) =

mi

2
, for i = 4, 8, . . . , n − 2,

f(vj
i ) =

1

2
(n + 1 − i)m + j, for i = 5, 9, . . . , n − 1,

f(vj
i ) =

1

2
(n + 1 − i)m, for i = 7, 11, . . . , n − 3,

f(vj
n) =

1

2
(n − 4)m + j.
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Hence, for j ∈ [1, m], the labeling provides the following vertex weights:

wt(vj
i ) = (i − 1)m + j, for i = 1, 3, . . . , n − 3,

wt(vj
i ) =

1

2
(2n − i)m + j, for i = 2, 4,

wt(vj
i ) = (n + 1 − i)m + j, for i = 6, 8, . . . , n,

wt(vj
n−1) = (n − 3)m + j.

Case 4. Let n ≡ 3 (mod 4).
For n = 7 and j ∈ [1, m], label each vertex in the following way:

f(vj
i ) =

1

4
(i + 23)m −



7m

2



, for i = 1, 5,

f(vj
i ) =

1

4
(i − 2)m + j, for i = 2, 6,

f(vj
i ) =

1

4
(i − 11)m +



7m

2



+ j, for i = 3, 7,

f(vj
4) = 2m.

Then, for j ∈ [1, m], the labeling yields the following vertex weights:

wt(vj
1) = j,

wt(vj
i ) =

1

2
(i + 6)m + j, for i = 2, 4, 6,

wt(vj
i ) =

1

2
(i + 1)m + j, for i = 3, 5,

wt(vj
7) = m + j.

For n = 11 and j ∈ [1, m], label each vertex in the following way:

f(vj
1) =



11m

2



− 5m,

f(vj
i ) =

1

2
(i − 2)m + j, for i = 2, 6,

f(vj
i ) =

1

4
(i − 15)m +



11m

2



+ j, for i = 3, 7, 11,

f(vj
i ) =

mi

2
, for i = 4, 8,

f(vj
i ) =

1

4
(i − 9)m +



11m

2



, for i = 5, 9,

f(vj
10) = m + j.
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So, for j ∈ [1, m], the labeling gives the following vertex weights:

wt(vj
i ) = (i − 1)m + j, for i = 1, 3, 5, 7,

wt(vj
2) = 3m + j,

wt(vj
i ) =

1

2
(i + 10)m + j, for i = 4, 6, 8, 10,

wt(vj
i ) = (23 − 2i)m + j, for i = 9, 11.

For n ⩾ 15 and j ∈ [1, m], label each vertex in the following way:

f(vj
i ) =



mn

2



−
1

4
(i − 1)m,

for i = 1, 5, . . . , n − 2 (if n ≡ 3 (mod 8)) or

for i = 1, 5, . . . ,
n + 11

2
(if n ≡ 7 (mod 8)),

f(vj
i ) =

1

4
(i − 2)m + j, for i = 2, 6, . . . , n − 5,

f(vj
i ) =



mn

2



−
1

4
(i + 1)m + j,

for i = 3, 7, . . . ,
n + 11

2
(if n ≡ 3 (mod 8)) or

for i = 3, 7, . . . , n (if n ≡ 7 (mod 8)),

f(vj
i ) =

1

4
(i + 4)m, for i = 4, 8, . . . , n − 7,

f(vj
i ) =

1

4
(4n − 5 − i)m −



mn

2



+ j,

for i =
n + 19

2
,
n + 27

2
, . . . , n (if n ≡ 3 (mod 8)),

f(vj
i ) =

1

4
(4n − 3 − i)m −



mn

2



,

for i =
n + 19

2
,
n + 27

2
, . . . , n − 2 (if n ≡ 7 (mod 8)),

f(vj
n−3) =

1

2
(n − 5)m,

f(vj
n−1) = m + j.
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Thus, for j ∈ [1, m], the labeling yields the following vertex weights:

wt(vj
1) = j,

wt(vj
i ) =

1

2
(2n − i)m + j, for i = 2, 4, . . . ,

n + 13

2
,

wt(vj
i ) =

1

2
(i + 1)m + j, for i = 3, 5, . . . , n − 6,

wt(vj
i ) =

1

2
(2n − 2 − i)m + j, for i =

n + 17

2
,
n + 21

2
, . . . , n − 1,

wt(vj
n−4) =

1

4
(3n − 17)m + j,

wt(vj
n−2) =

1

2
(n − 3)m + j,

wt(vj
n) = m + j.

From all cases, it can be checked that the vertex weights form the set ¶1, 2, . . . , mn♢
and the labels used in the labelings are at most ⌈mn/2⌉. Thus, dis(mPn) ⩽ ⌈mn/2⌉.
As ⌈mn/2⌉ ⩽ dis(mPn) ⩽ ⌈mn/2⌉, we can conclude that dis(mPn) = ⌈mn/2⌉. □

As an illustration, a distance irregular labeling of 6P5 is given in Figure 1, where
red numbers show the vertex weights and black numbers represent the label of the
vertices.
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Figure 1. A distance irregular 15-labeling of 6P5.

2.2. Disjoint union of suns. A sun, denoted by Sn, is a graph with 2n vertices
obtained from a cycle by attaching a pendant vertex to each cycle’s vertex. We then
call all vertices adjacent to such pendant vertices as the rim vertices of Sn. Now, let
us denote by mSn a disjoint union of m identical copies of sun graphs with vertex
set V (mSn) = ¶uj

i : i ∈ [1, n], j ∈ [1, m]♢ ∪ ¶vj
i : i ∈ [1, n], j ∈ [1, m]♢ and edge set

E(mSn) = ¶uj
i v

j
i : i ∈ [1, n], j ∈ [1, m]♢ ∪ ¶uj

i u
j
i+1 : i ∈ [1, n], j ∈ [1, m]♢ where the

index i is taken modulo n. Next, we will determine the distance irregularity strength
of mSn in the following theorem.
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Theorem 2.2. For each m ⩾ 2 and n ⩾ 3, dis(mSn) = mn.

Proof. Consider the graph mSn, with 2mn vertices. Since mSn has mn pendant
vertices, according to Lemma 2.1, we have dis(mSn) ⩾ mn. To prove that mn is the
upper bound of dis(mSn), it is sufficient to show the existence of a distance irregular
mn-labeling of mSn. To do that, let us define f : V (mSn) → ¶1, 2, . . . , mn♢ as follows.

For n = 3 and j ∈ [1, m], label every vertex in the following way:

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 3],

f(vj
i ) = 2m − j, for i ∈ [1, 3].

Hence, for j ∈ [1, m], we obtain the following vertex weights:

wt(uj
i ) = j − (i − 6)m, for i ∈ [1, 3],

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 3].

For n = 4 and j ∈ [1, m], label every vertex in the following way:

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 4],

f(vj
i ) = 3m − j, for i = 1, 4,

f(vj
i ) = 2m − j, for i = 2, 3.

So, for j ∈ [1, m], we can get the weight of each vertex as follows:

wt(uj
i ) =

1

2
(15 − i)m + j, for i = 1, 3,

wt(uj
i ) =

1

2
(i + 6)m + j, for i = 2, 4,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 4].

For n ⩾ 5 and j ∈ [1, m], label each vertex as follows:

f(uj
i ) = j + (i − 1)m, for i ∈ [1, n],

f(vj
i ) = m



n + 1

2



− j, for i = 1, n,

f(vj
i ) = (n − i)m − j, for i ∈



2,


n + 1

2



− 1


,

f


vj

⌊n+1

2 ⌋



=


n + 1 −


n + 1

2



m − j,

f(vj
i ) = (n + 2 − i)m − j, for i ∈



n + 1

2



+ 1, n − 1


.
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Then, for j ∈ [1, m], we obtain the weight of each vertex as follows:

wt(uj
i ) =



n −
2(i − 1)

n − 1
+


n + 1

2





m + j, for i = 1, n,

wt(uj
i ) = (n − 2 + i)m + j, for i ∈



2,


n + 1

2



− 1


,

wt


uj

⌊n+1

2 ⌋



=


n − 1 +


n + 1

2



m + j,

wt(uj
i ) = (n + i)m + j, for i ∈



n + 1

2



+ 1, n − 1


,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, n].

Clearly, the largest label appearing on the vertices is mn for each n ⩾ 3. Moreover, it
can be checked that vertex weights of the pendant vertices and the rim vertices of mSn

constitute the set ¶1, 2, . . . , mn♢ and the set ¶mn + 1, mn + 2, . . . , 2mn♢, respectively.
It means that f is a distance irregular mn-labeling of mSn. The proof is complete. □

In Figure 2, as an illustralion, a distance irregular labeling of 3S5 is shown.
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Figure 2. A distance irregular 15-labeling of 3S5.

2.3. Disjoint union of helms. A helm, denoted by Hn, is a graph constructed from a
sun Sn by joining a new vertex, called center vertex, to all the rim vertices of Sn. Next,
we focus on a disjoint union of m identical copies of helm graphs mHn with vertex set
V (mHn) = ¶cj : j ∈ [1, m]♢ ∪ ¶uj

i : i ∈ [1, n], j ∈ [1, m]♢ ∪ ¶vj
i : i ∈ [1, n], j ∈ [1, m]♢

and edge set E(mHn) = ¶cjuj
i : i ∈ [1, n], j ∈ [1, m]♢ ∪ ¶uj

i v
j
i : i ∈ [1, n], j ∈

[1, m]♢ ∪ ¶uj
i u

j
i+1 : i ∈ [1, n], j ∈ [1, m]♢ where the index i is taken modulo n.

Let us recall the labeling formula of the rim vertices of mSn defined in the previous
theorem, that is, for m ⩾ 2, n ⩾ 3, i ∈ [1, n] and j ∈ [1, m],

f(ui) = j + (i − 1)m.

The sum of labels of such rim vertices is

(2.1)
n
∑

i=1

f(ui) =
n
∑

i=1

(j + (i − 1)m) =
n

2
(2j + (n − 1)m).
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Next, consider the set of vertex weights of mSn obtained from Theorem 2.2, namely
¶1, 2, . . . , 2mn♢. We want to find all possible n such that the Equation (2.1) is different
from all such vertex weights for every m ⩾ 2 and j ∈ [1, m]. Therefore,

(2.2)
n

2
(2j + (n − 1)m) > 2mn.

It is not difficult to show that (2.2) happens if and only if n ⩾ 5. Thus, we can use this
characteristic to construct a distance irregular labeling of mHn from the described
distance irregular labeling of mSn for case n ⩾ 5.

Next, we will present the distance irregularity strength of mHn in the following
theorem.

Theorem 2.3. For each m ⩾ 2 and n ⩾ 3, dis(mHn) = mn.

Proof. Consider the graph mHn on (2n + 1)m vertices. Since mHn has mn pendant
vertices, by Lemma 2.1, we get dis(mHn) ⩾ mn. To prove that mn is the upper bound
of dis(mHn), it is sufficient to show the existence of an optimal distance irregular
mn-labeling of mHn. Let f : V (mHn) → ¶1, 2, . . . , mn♢ be a vertex labeling defined
as follows.

For n = 3 and j ∈ [1, m], label each vertex in the following way:

f(cj) = 1,

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 3],

f(vj
1) = 3m − j − 1,

f(vj
2) =

1

2
(5m − 3) −



j

2



, if m is odd,

f(vj
2) =

1

2
(5m − 4) −



j

2



, if m is even,

f(vj
3) = 2m − 2 −



j − 1

2



.

Therefore, for j ∈ [1, m], we obtain the following vertex weights:

wt(cj) = 3(m + j),

wt(uj
1) = 6m + j,

wt(uj
2) =

1

2
(9m − 1) +



3j

2



, if m is odd,

wt(uj
2) =

1

2
(9m − 2) +



3j

2



, if m is even,

wt(uj
3) = 3m − 1 +



3j + 1

2



,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 3].
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For n = 4 and j ∈ [1, m], label every vertex in the following way:

f(cj) = 1,

f(uj
i ) = j + (i − 1)m, for i ∈ [1, 4],

f(vj
1) =

1

3
(10m − 6) −



2j − 2

3



, if m ≡ 0 (mod 3),

f(vj
1) =

1

3
(10m − 4) −



2j

3



, if m ≡ 1 (mod 3),

f(vj
1) =

1

3
(10m − 5) −



2j − 1

3



, if m ≡ 2 (mod 3),

f(vj
2) = 2m − j − 1,

f(vj
3) = 2m −



2j + 4

3



,

f(vj
4) = 3m − j − 1.

So, for j ∈ [1, m], we get the vertex weights as follows:

wt(cj) = 6m + 4j,

wt(uj
1) =

1

3
(22m − 3) +



4j + 2

3



, if m ≡ 0 (mod 3),

wt(uj
1) =

1

3
(22m − 1) +



4j

3



, if m ≡ 1 (mod 3),

wt(uj
1) =

1

3
(22m − 2) +



4j + 1

3



, if m ≡ 2 (mod 3),

wt(uj
2) = 4m + j,

wt(uj
3) = 6m +



4j − 1

3



,

wt(uj
4) = 5m + j,

wt(vj
i ) = j + (i − 1)m, for i ∈ [1, 4].

Now, let n ⩾ 5. For the proof purpose only, first, let us denote the described vertex
labelings and vertex weights formula of mSn, n ⩾ 5, by f ∗ and by wt∗, respectively.
Next, for j ∈ [1, m], label every vertex of mHn such that

f(cj) = 1,

f(uj
i ) = f ∗(uj

i ),

f(vj
i ) = f ∗(vj

i ) − 1.
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Then, for j ∈ [1, m], we obtain the vertex weights as follows:

wt(cj) =
n

2
((n − 1)m + 2j),

wt(uj
i ) = wt∗(uj

i ),

wt(vj
i ) = wt∗(vj

i ).

It can be verified that all the vertex weights are distinct for all pairs of distinct vertices
and the largest label is mn, which lead to dis(mHn) ⩽ mn. Combining with the lower
bound, we have dis(mHn) = mn. □

We show in Figure 3 a distance irregular labeling of 3H5 as an illustration.
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Figure 3. A distance irregular 15-labeling of 3H5.

2.4. Disjoint union of friendships. A friendship fn is a graph obtained by iden-
tifying a vertex from n copies of triangles K3. The vertex of degree 2n is called
the center vertex and the remaining vertices are called the rim vertices. Now, we
focus on a disjoint union of m identical copies of friendships mfn with vertex set
V (mfn) = ¶cj : j ∈ [1, m]♢∪¶uj

i : i ∈ [1, n], j ∈ [1, m]♢∪¶vj
i : i ∈ [1, n], j ∈ [1, m]♢ and

edge set E(mfn) = ¶cjuj
i , cjvj

i : i ∈ [1, n], j ∈ [1, m]♢ ∪ ¶uj
i v

j
i : i ∈ [1, n], j ∈ [1, m]♢.

First, let us consider a single copy of friendship fn. In the following lemma, we give
a necessary condition for fn to be a distance irregular graph.

Lemma 2.2. If fn is a distance irregular graph, then the labels of all rim vertices of

fn must be distinct.

Proof. Let f be a distance irregular labeling of fn. Let x, y be any two rim vertices
of fn. We show that f(x) ̸= f(y). Let c be the center vertex and let x′, y′ be rim
vertices adjacent to x and y, respectively. We know that wt(x) = f(c) + f(x′) and
wt(y) = f(c) + f(y′). Since wt(x) and wt(y) must be distinct, we get f(x′) ̸= f(y′).
Since x, y are arbitrarily two rim vertices in the graph fn and x′, y′ are also the rim
vertices of fn, it naturally implies that f(x) ̸= f(y). □
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It is coherent to say that the property in Lemma 2.2 holds also for disconnected
version of friendships. Thus, in any distance irregular labeling of mfn, the labels of all
rim vertices in the jth-copy of fn are distinct for j ∈ [1, m]. Next, we will determine
the distance irregularity strength of mfn in the following theorem.

Theorem 2.4. For each n ⩾ 2 and m ∈ [2, n], dis(mfn) = mn + 1.

Proof. Firstly, we determine the lower bound of dis(mfn). Let k be the largest label
of the graph mfn. The optimal weights of the vertices of mfn are 2, 3, . . . , 2mn +
1, wt(c1), wt(c2), . . . , wt(cm). Next, for some i ∈ [1, n] and some s ∈ [1, m], let wt(cs)
and wt(vs

i ), be the largest weight of the center vertices of mfn and the largest weight
of the rim vertices of mfn, respectively. Furthermore, it follows from Lemma 2.2
that the labels of every rim vertex in the jth-copy of fn, j ∈ [1, m], must be distinct.
Since the center vertex cs is adjacent to all rim vertices in the sth-copy of fn, then
the largest label used in the computation of wt(cs) is at most k. On the other
hand, we have wt(vs

i ) ⩾ 2mn + 1. Since deg(vs
i ) = 2, we obtain dis(mfn) = k ⩾

⌈(2mn + 1)/2⌉ = mn + 1. Next, for the upper bound of dis(mfn), construct a vertex
labeling f : V (mfn) → ¶1, 2, , . . . , mn + 1♢ as follows:

f(cj) = (2n − 1)(j − 1) + 1, for j ∈ [1, 2],

f(cj) = nj, for j ∈ [3, m],

f(uj
i ) = 2i + j − 1, for i ∈ [1, n] and j ∈ [1, 2],

f(uj
i ) = 2i + 1 + (j − 2)n, for i ∈ [1, n] and j ∈ [3, m],

f(vj
i ) = 2i + j − 2, for i ∈ [1, n] and j ∈ [1, 2],

f(vj
i ) = 2i + (j − 2)n, for i ∈ [1, n] and j ∈ [3, m].

Therefore, we get the vertex weights as follows:

wt(cj) = 2n2 + (2j − 1)n, for j ∈ [1, 2],

wt(cj) = 2n2(j − 1) + 3n, for j ∈ [3, m],

wt(uj
i ) = 2n(j − 1) + 2i, for i ∈ [1, n] and j ∈ [1, m],

wt(vj
i ) = 2n(j − 1) + 2i + 1, for i ∈ [1, n] and j ∈ [1, m].

It can be verified that f is a distance irregular (mn + 1)-labeling of mfn as the vertex
weights are unique and the labels appearing on the vertices are at most mn + 1. Thus
dis(mfn) ⩽ mn + 1. This concludes the proof. □

An example of distance irregular labeling of mfn is described in Figure 4.

3. Conclusion

In this paper we initiated to study the distance irregular labeling of disconnected
graphs. A new lower bound of the distance irregularity strength for a graph G having
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Figure 4. A distance irregular 10-labeling of 3f3.

t pendant vertices was introduced and we proved that dis(G) ⩾ max¶t, ⌈p/∆⌉♢. We
also showed that this lower bound is sharp for disconnected paths, suns and helms.

Because of the limitation of results we found related to this parameter for discon-
nected graphs, we propose the open problem below.

Open Problem 1. Determine the distance irregularity strength of other classes of
disconnected graphs.

In relation with our lower bound in Lemma 2.1 which works for graphs containing
t pendant vertices (δ = 1), the following open problems are also interesting to be
studied.

Open Problem 2. Characterize all graphs containing t pendant vertices having distance
irregularity strength t. Particularly, characterize all trees with t leaves having distance
irregularity strength t.

Open Problem 3. Characterize all graphs containing t pendant vertices having distance
irregularity strength ⌈p/∆⌉. Specifically, characterize all trees with t leaves having
distance irregularity strength ⌈p/∆⌉.

In Theorem 2.4, we determined the distance irregularity strength of disconnected
friendships mfn only for m ⩽ n. Meanwhile, this parameter is still unsolved for the
remaining case of mfn. Therefore, we also give the following open problem.

Open Problem 4. Determine the distance irregularity strength of mfn for m > n.
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MAPS PRESERVING THE SPECTRUM OF SKEW LIE PRODUCT

OF OPERATORS

EMAN ALZEDANI1 AND MOHAMED MABROUK2

Abstract. Let B(H) denote the algebra of all bounded linear operators acting on
a complex Hilbert space H. In this paper, we show that a surjective map ϕ on B(H)
satisĄes

σ (ϕ(T )ϕ(S) − ϕ(S)ϕ(T )∗) = σ (TS − ST ∗) , T, S ∈ B(H),

if and only if there exists a unitary operator U ∈ B(H) such that

ϕ(T ) = λUTU∗, T ∈ B(H),

where λ ∈ ¶−1, 1♢.

1. Introduction and Statement of the Main Result

Throughout this paper, B(H) stands for the algebra of all bounded linear operators
acting on an infinite dimensional complex Hilbert space (H, ⟨·, ·⟩). Let Bs(H) (resp.
Ba(H)) be the real linear space of all self-adjoint (resp. anti-self-adjoint) operators in
B(H). For every A ∈ B(H), the spectrum (resp. the spectral radius) of A is denoted
by σ(A) (resp. r(A)).

The problem of describing maps on operators and matrices that preserve certain
functions, subsets and relations has been widely studied in the literature, see [3–6,
9–12, 16, 19–22] and references therein. One of the classical problems in this area of
research is to characterize maps preserving the spectra of the product of operators.
Molnár in [19] studied maps preserving the spectrum of operator and matrix products.
His results have been extended in several directions [1,2,7,8,13–15,17] and [18]. In [1],
the problem of characterizing maps between matrix algebras preserving the spectrum
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of polynomial products of matrices is considered. In particular, the results obtained
therein extend and unify several results obtained in [6] and [8].

Latter in [2], the form of all maps preserving the spectrum and the local spectrum
of Skew Lie product of matrices are determined. This paper is a continuation of such
recent work, and examines the form of maps preserving the spectrum of skew Lie
product of operators on a complex Hilbert space. Mainly, we shall give a characteri-
zation of all surjective maps φ : B(H) → B(H) preserving the spectrum of the skew
Lie product “[T, S]∗ = TS − ST ∗” of operators. Precisely, the following theorem is
the main result of this paper.

Theorem 1.1. A surjective map φ : B(H) → B(H) satisfies

(1.1) σ (φ(T )φ(S) − φ(S)φ(T )∗) = σ (TS − ST ∗) , T, S ∈ B(H),

if and only if there exists a unitary operator U ∈ B(H) such that

(1.2) φ(T ) = ±UTU∗,

for all T ∈ B(H).

Before presenting the proof of the main theorem few comments can be made. Firstly,
note that the only restriction on the map φ is surjectivity; no linearity or additivity
or continuity is assumed. Also, we point out that the consideration of maps φ from
B(H) onto itself is for the sake of simplicity. Our result and its proof remains valid
in the case where φ is a surjective map from B(H) onto B(K) where H and K are
two different Hilbert spaces.

The case of finite dimensional Hilbert spaces was considered in [2] where it is shown
that the theorem 1.1 remains valid without the surjectivity assumption of the map φ.
The proof given therein is based on a density argument and is completely different
from the one presented in the current paper. This paper is divided into three sections.
In Section 2, we collect some auxiliary lemmas needed in the proof of the main result.
In Section 3, we present the proof of Theorem 1.1.

2. Preliminaries

Given two vectors x and y in H, let x ⊗ y be the operator of at most rank one
defined by

(x⊗ y)(z) := ⟨z, y⟩x, z ∈ H,

and note that (x ⊗ y)∗ = y ⊗ x. Let (ek)k∈I be an orthonormal basis of H. For any
A ∈ B(H), the transpose A⊤ of A with respect to the basis (ek)k∈I is defined as the
unique operator such that

⟨Aek, ej⟩ = ⟨A⊤ej, ek⟩,

for any j, k ∈ I.
For any x =

∑

k∈I xkek, write x̄ =
∑

k∈I xk ek. It is easy to see that

(x⊗ y)⊤ = ȳ ⊗ x̄,



MAPS PRESERVING THE SPECTRUM OF SKEW LIE PRODUCT OF OPERATORS 527

for any x, y ∈ H.
To prove Theorem 1.1, we need some auxiliary results that we present below.

The first lemma describes the spectrum of the skew Lie product [x ⊗ y, A]∗ for any
nonzero vectors x, y ∈ H and operator A ∈ B(H).

Lemma 2.1. For any nonzero vectors x, y ∈ H and A ∈ B(H), set

∆A(x, y) = (⟨Ax, y⟩ + ⟨Ay, x⟩)2 − 4∥x∥2⟨A2y, y⟩

and

ΛA(x, y) = (⟨x,Ay⟩ + ⟨Ax, y⟩)2 − 4⟨x, y⟩⟨Ax,Ay⟩.

Then

(1) σ ([x⊗ y, A]∗) = 1
2

{

0, ⟨Ax, y⟩ − ⟨Ay, x⟩ ±
√

∆A(x, y)
}

;

(2) σ ([A, x⊗ y]∗) = 1
2

{

0, ⟨Ax, y⟩ − ⟨x,Ay⟩ ±
√

ΛA(x, y)
}

.

Proof. For the proof of the first item see [2]. The second statement can be proved in
a similar way and we therefore omit its proof. □

Corollary 2.1. For any x ∈ H and A ∈ B(H), we have

σ(A(x⊗ x) + (x⊗ x)A) =


0, ⟨Ax, x⟩ ± ∥x∥
√

⟨A2x, x⟩


.

Proof. It suffices to replace x by ix and y by x in Lemma 2.1 (1). □

The second principle gives necessary and sufficient conditions for two operators to
be the same.

Lemma 2.2. For any two operators A and B in B(H), the following statements are

equivalent.

(1) A = B.

(2) σ([X,A]∗) = σ([X,B]∗) for every operator X ∈ B(H).
(3) σ([X,A]∗) = σ([X,B]∗) for every operator X ∈ Ba(H).

Proof. The proof is the same as that of [2, Corollary 3.2]. □

The next lemma characterizes real scalar operators in terms of skew Lie products.

Lemma 2.3. For an operator A ∈ B(H), we have σ([A,X]∗) = ¶0♢ holds for any

operator X ∈ B(H) if and only if A = αI for some scalar α ∈ R.

Proof. The “if ” part is obvious. To check the “only if ” part, assume that

σ(([A,X]∗)) = ¶0♢

holds for any operator X ∈ B(H). As A− A∗ is anti-self-adjoint then

∥A− A∗∥ = r(A− A∗) = r([A, I]∗) = 0,
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it follows that A = A∗. If there exists a nonzero vector x ∈ H such that ¶x,Ax♢ is a
linearly independent set, then by Lemma 2.1 (2) we have

σ ([A, x⊗ x]∗) =
1

2



0,±
√

⟨Ax, x⟩2 − ∥x∥2 ∥Ax∥2



.

This is a contradiction since ⟨Ax, x⟩2 − ∥x∥2 ∥Ax∥2 ̸= 0. □

We close this section with the following lemma which gives a characterization of
self-adjoint and antiself-adjoint operators in terms of the spectrum of the skew Lie
product.

Lemma 2.4. If A ∈ B(H) is nonzero operator, then

(1) A ∈ Bs(H) if and only if σ([X,A]∗) ⊂ iR, for any X ∈ B(H);
(2) A ∈ Ba(H) if and only if σ([X,A]∗) ⊂ R, for any X ∈ B(H).

Proof. (1) If A = A∗, then σ([X,A]∗) ⊂ iR, since [X,A]∗ = XA−AX∗ = XA−(XA)∗.
To prove the converse, assume that σ([X,A]∗) ⊂ iR for any operator X ∈ B(H). In
particular by Lemma 2.1 (1) we get

σ ([x⊗ y, A]∗) =
1

2



0, ⟨Ax, y⟩ − ⟨Ay, x⟩ ±
√

∆A(x, y)


⊂ iR,

for any x, y ∈ H. Which yields that

0 = ℜ (⟨Ax, y⟩ − ⟨Ay, x⟩) = ⟨(A− A)∗x, y⟩ + ⟨y, (A− A∗)x⟩.

Replace x by ix in the above equality, we get

⟨(A− A)∗x, y⟩ − ⟨y, (A− A∗)x⟩ = 0.

Accordingly ⟨(A− A)∗x, y⟩ = 0 for any x, y ∈ H. Thus, A = A∗.
(2) We have

A ∈ Ba(H) ⇔iA ∈ Bs(H)

⇔σ([X, iA]∗) ⊂ iR, for all X ∈ B(H) (by Lemma 2.4 (1))

⇔iσ([X,A]∗) ⊂ iR, for all X ∈ B(H) (since σ([X, iA]∗) = iσ([X,A]∗))

⇔σ([X,A]∗) ⊂ R, for all X ∈ B(H). □

3. Proof of Theorem 1.1

The “if ” part is obvious. We will complete the proof of the “only if ” part after proving
several claims.

Claim 1. φ is injective.

Proof. For A,B ∈ B(H), assume that φ(A) = φ(B). Then, for every X ∈ B(H), we
have

σ ([X,A]∗) = σ ([φ(X), φ(A)]∗) = σ ([φ(X), φ(B)]∗ = σ([X,B]∗) .

It then follows from Corollary 2.2 that A = B and φ is injective. □
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Claim 2. φ preserves self-adjoint and anti-self adjoint operators in both directions. In
particular, we have φ(0) = 0.

Proof. Pick up an operator A ∈ B(H). If A ∈ Bs(H), then

σ ([φ(X), φ(A)]∗) = σ ([X,A]∗) ⊂ iR.

As φ is surjective, then Lemma 2.4 (1) entails that ϕ(A) ∈ Bs(H). Similarly, if
A ∈ Ba(H), we have σ([φ(X), φ(A)]∗) ⊂ R. By Lemma 2.4 (2), we get ϕ(A) ∈ Ba(H).

For the converse, note that φ is bijective and φ−1 satisfies (1.1) A similar discussion
entails that if φ−1(A) ∈ Bs(H) (resp. φ−1(A) ∈ Ba(H)), then so is A. □

Claim 3. φ is homogenous, i.e., φ(αA) = αφ(A) for any α ∈ C and A ∈ B(H).

Proof. For any α ∈ C and A,X ∈ B(H), we have

σ([φ(X), φ(αA)]∗) =σ([X,αA]∗)

=α σ([X,A]∗)

=α σ([φ(X), φ(A)]∗)

=σ([φ(X), αφ(A)]∗).

Hence,

σ([φ(X), φ(αA)]∗) = σ([φ(X), αφ(A)]∗),

for any X ∈ B(H). Since φ is bijective, we infer from Lemma 2.3 that φ(αA) = αφ(A).
This ends the proof of Claim 3. □

Claim 4. There exist a unitary operator U ∈ B(H) and a scalar c ∈ ¶−1, 1♢ such that
either

(i) φ(A) = cUAU∗ for every A ∈ Bs(H) or
(ii) φ(A) = cUA⊤U∗ for every A ∈ Bs(H).

Here A⊤ is the transpose of A with respect to an arbitrary but fixed orthonormal
basis of H.

Proof. Let A,B ∈ B(H). From Claim 3 and (1.1), we have

σ (φ(A)φ(B) + φ(B)φ(A)∗) = − σ (φ(iA)φ(iB) − φ(iB)φ(iA)∗)

= − σ (−AB −BA∗)

=σ (AB +BA∗) .

Thus,

(3.1) σ (φ(A)φ(B) + φ(B)φ(A)∗) = σ (AB +BA∗) ,

for any A,B ∈ B(H). Now Claim 2 implies that φ(A) ∈ Bs(H) whenever A ∈ Bs(H).
This together with Claim 1 entail that the restriction φ♣Bs(H) : Bs(H) → Bs(H) is
well defined and bijective. Moreover, (3.1) implies that

σ (φ(A)φ(B) + φ(B)φ(A)) = σ (AB +BA) ,
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for any A,B ∈ Bs(H). Therefore, by [12, Theorem 3.1] (see also [23, Theorem 2],
there exist a unitary operator U ∈ B(H) and a scalar c ∈ ¶−1, 1♢ such that either

• φ(A) = cUAU∗ for every A ∈ Bs(H) or
• φ(A) = cUA⊤U∗ for every A ∈ Bs(H).

Here A⊤ is the transpose of A with respect to an arbitrary but fixed orthonormal
basis of H. □

In particular Claim 4 implies that φ(I) = ±I. In the sequel we may and shall
assume that ϕ(I) = I. Define a map ψ : B(H) → B(H) by putting

ψ(A) = U∗φ(A)U,

for every A ∈ B(H). Then ψ is a bijective map satisfying

σ (ψ(A)ψ(B) + ψ(B)ψ(A)∗) = σ (AB +BA∗) ,(3.2)

for every A,B ∈ B(H). Moreover, we have either

(3.3) ψ(A) = A, A ∈ Bs(H),

or

(3.4) ψ(A) = A⊤, A ∈ Bs(H).

Claim 5. The form (3.4) cannot occur.

Proof. Assume for the sake of contradiction that ψ(A) = A⊤ for any A ∈ Bs(H). Let
¶ej, j ∈ I♢ be the orthonormal basis with respect to which A⊤ is computed, for every
A ∈ Bs(H). To get a contradiction we shall prove that ⟨Ax, x⟩ = ⟨ψ(A)x, x⟩ for any
x ∈ H and A ∈ Bs(H). To do so it suffices to prove that

(3.5) ⟨Aek, el⟩ = ⟨ψ(A)ek, el⟩,

for any k and l in I and A ∈ Bs(H).
Let A ∈ Bs(H) and pick up two elements ek and el in ¶ej, j ∈ I♢. For any α, β ∈ R,

set a = αek + βel. Note that

ψ(a⊗ a) = (a⊗ a)⊤ = a⊗ a.

Now, by (3.2) we have

σ ((a⊗ a)A+ A(a⊗ a)) =σ ((a⊗ a)A+ A(a⊗ a)∗)

=σ (ψ(a⊗ a)ψ(A) + ψ(A)ψ(a⊗ a)∗)

=σ ((a⊗ a)ψ(A) + ψ(A)(a⊗ a)∗)

=σ ((a⊗ a)ψ(A) + ψ(A)(a⊗ a)) .

Accordingly

σ ((a⊗ a)ψ(A) + ψ(A)(a⊗ a)) = σ ((a⊗ a)A+ A(a⊗ a)) .(3.6)
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Corollary 2.1 together with (3.6) entail that


0, ⟨ψ(A)a, a⟩ ± ∥a∥
√

⟨ψ(A)2a, a⟩


=


0, ⟨Aa, a⟩ ±
√

⟨A2a, a⟩∥a∥2



.

Accordingly ⟨ψ(A)a, a⟩ = ⟨Aa, a⟩. Since α and β are arbitrary, we infer that

⟨Aek, ek⟩ = ⟨ψ(A)ek, ek⟩

and

⟨A(ek + el), (ek + el)⟩ = ⟨ψ(A)(ek + el), (ek + el)⟩,

for every k, l ∈ I. Since A and ψ(A) are in Bs(H), we infer that

⟨Aek, el⟩ = ⟨ψ(A)ek, el⟩.

This in particular implies that ψ(A) = A for every for any A ∈ Bs(H). Which is
impossible since ψ(A) = A⊤ for any A ∈ Bs(H). □

Claim 6. ψ(A) = A for any A ∈ B(H).

Proof. We have ψ(A) = A for any A ∈ Bs(H). For any A ∈ B(H), using a similar
reasoning as above, one can show that ⟨Ax, x⟩ = ⟨ψ(A)x, x⟩ for any x ∈ H. Since
H is a complex Hilbert space it yields that ψ(A) = A as desired. The proof is thus
complete. □
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EXTENSIONS OF MEIR-KEELER CONTRACTION VIA

w-DISTANCES WITH AN APPLICATION

SEDIGHEH BAROOTKOOB1, ERDAL KARAPINAR2,3, HOSEIN LAKZIAN4,
AND ANKUSH CHANDA5

Abstract. In this article, we conceive the notion of a generalized (α,ψ, q)-Meir-
Keeler contractive mapping and then we investigate a Ąxed point theorem involving
such kind of contractions in the setting of a complete metric space via a w-distance.
Our obtained result extends and generalizes some of the previously derived Ąxed
point theorems in the literature via w-distances. In addition, to validate the novelty
of our Ąndings, we illustrate a couple of constructive numerical examples. Moreover,
as an application, we employ the achieved result to earn the existence criteria of the
solution of a kind of non-linear Fredholm integral equation.

1. Introduction and Preliminaries

In this paper, we introduce the notion of a generalized (α, ψ, q)-Meir-Keeler contrac-
tive mapping and investigate fixed points for such operators in the context of complete
metric spaces via a w-distance. For this purpose we first recall the outstanding result
of Meir-Keeler [14] (see also [10]).

Theorem 1.1 ([14]). Let f be a self-map defined on a complete metric space (M,d).
Also assume that for any ε > 0 we can find a δ > 0 such that

ε ≤ d(ρ, ϱ) < ε+ δ implies d(fρ, fϱ) < ε,

for all ρ, ϱ ∈ M . Then f has a unique fixed point.

Key words and phrases. w-distance, α-orbital admissible map, weaker Meir-Keeler function, Fred-
holm integral equation.
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This result is also known as a uniform contraction and it has been studied and
extended by a number of researchers in many directions (see [16,20]). Now we recall
the notion of w-distance introduced by Kada et al. [12].

Definition 1.1 ([12]). Let (M,d) be a metric space. A mapping q : M ×M → [0,∞)
is said to be a w-distance on M if

(i) q(ρ, σ) ≤ q(ρ, ϱ) + q(ϱ, σ) for any ρ, ϱ, σ ∈ M ;
(ii) q is a lower semi-continuous map in the second variable, that is, when ρ ∈ M

and σn → σ in M , then we have q(ρ, σ) ≤ lim infn q(ρ, σn);
(iii) for every ϵ > 0, there is a δ > 0 which q(σ, ρ) ≤ δ and q(σ, ϱ) ≤ δ imply that

d(ρ, ϱ) ≤ ϵ.

Let T : M → M and α : M ×M → [0,∞). We say that T is α-orbital admissible
(see [17]) if

α(p, Tp) ≥ 1 implies α(Tp, T 2p) ≥ 1,

for all p ∈ M . By using this auxiliary function, it is possible to combine several existing
results in the literature, see, e.g. [9, 15, 18, 19] and the related references therein. In
particular, Lakzian et al. [13] introduced the concept of (α, ψ, q)-contractive mappings
in metric spaces via w-distances and proved fixed point results via this notion.

On the other hand, inspired by the notion of Meir-Keeler contractions, Chen [11]
introduced the concept of a weaker Meir-Keeler function as follows.

Definition 1.2 ([11]). A mapping ψ : [0,∞) → [0,∞) is said to be a weaker Meir-
Keeler function if, for every ϵ > 0, there is a δ > 0 such that for every τ ∈ [0,∞) with
ϵ ≤ τ < ϵ+ δ, we have an n0 ∈ N satisfying ψn0(τ) < ϵ.

Regarding [11], we also consider the family Ψ of weaker Meir-Keeler functions
ψ : [0,∞) → [0,∞) fulfilling the subsequent properties:

(ψ1) ψ(τ) > 0 whenever τ > 0 and ψ(0) = 0;
(ψ2)

∑∞
n=1 ψ

n(τ) < ∞, τ ∈ (0,∞);
(ψ3) for each yn ∈ [0,∞), the following hold:

(i) when limn→∞ yn = ℓ > 0, then limn→∞ ψ(yn) < ℓ;
(ii) whenever limn→∞ yn = 0, we have limn→∞ ψ(yn) = 0.

Along with the aforementioned terminologies, the following lemma is also playing a
crucial role in our subsequent studies.

Lemma 1.1 ([12]). Suppose that (M,d) is a metric space with a w-distance q.

(i) For any sequence ¶ρn♢ in M with limn q(ρn, ρ) = limn q(ρn, ϱ) = 0, we have

ρ = ϱ. Additionally, q(σ, ρ) = q(σ, ϱ) = 0 implies ρ = ϱ.

(ii) For two sequences ¶αn♢ and ¶βn♢ in [0,∞) converging to 0, whenever

q(ρn, ϱn) ≤ αn, q(ρn, ϱ) ≤ βn hold for each n ∈ N, then the sequence ¶ϱn♢
converges to ϱ.
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(iii) Suppose that ¶ρn♢ is a sequence in M such that for every ε > 0 there is an

Nε ∈ N with m > n > Nε implies that q(ρn, ρm) < ε (or limm,n q(ρn, ρm) = 0).
Then ¶ρn♢ is a Cauchy sequence.

In this paper, we define the concept of generalized (α, ψ, q)-Meir-Keeler contractive
mappings and by using this new concept, we give some fixed point results. Further-
more, some significant non-trivial numerical examples are investigated to authenticate
our findings. Moreover, as an application, the existence of the solution for a non-linear
Fredholm integral equation is investigated.

2. (α, ψ, q)-Meir-Keeler Contractions

This section brings the idea of generalized (α, ψ, q)-Meir-Keeler contractive map-
pings with the help of a weaker Meir-Keeler function. Also, we conceive a fixed point
result concerning such kinds of mappings. Now we consider the following expressions:

Mq(ρ, ϱ) = max

{

q(ρ, ϱ), q(ρ, fρ), q(ϱ, fϱ),
q(ρ, fϱ) + q(fρ, ϱ)

2

}

and

m(ρ, ϱ) = max

{

d(ρ, ϱ), d(ρ, fρ), d(ϱ, fϱ),
d(ρ, fϱ) + d(fρ, ϱ)

2

}

.

Here, we propose the idea of generalized (α, ψ, q)-Meir-Keeler contractive mappings.

Definition 2.1. Suppose that (M,d) is a metric space with a w-distance q and
consider the functions ψ ∈ Ψ, α : M ×M → [0,∞) and an α-orbital admissible map
f . Then f is called a generalized (α, ψ, q)-Meir-Keeler contractive mapping if for every
η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M , when η ≤ ψ(Mq(ρ, ϱ)) < η + δ, we
have α(ρ, ϱ)q(fρ, fϱ) < η.

In addition, for q = d and Mq(ρ, ϱ) = m(ρ, ϱ), the mapping f is said to be a
generalized (α, ψ)-Meir-Keeler-contractive. Furthermore, f is a (α, ψ, q)-Meir-Keeler
contractive map, when Mq(ρ, ϱ) = q(ρ, ϱ) for each ρ, ϱ ∈ M .

The succeeding theorem deals with an interesting fixed point result involving the
previously discussed type of maps.

Theorem 2.1. Suppose that (M,d) is a complete metric space with a w-distance

q. Also assume that f is a generalized (α, ψ, q)-Meir-Keeler contractive map such

that there is ρ0 ∈ M with q(fnρ0, f
nρ0) = 0 for all non-negative integers n and

α(ρ0, fρ0) ≥ 1. Suppose that one of the following conditions holds.

(i) For each w ∈ M satisfying w ≠ fw, we have inf¶q(ρ, w) + q(ρ, fρ) : ρ ∈ M♢ >
0.

(ii) f is continuous.

(iii) If for some sequence ¶ρn♢, limn→∞ q(ρn, ρ) = limn→∞ q(fρn, ρ), then fρ = ρ.

Then f owns a fixed point u ∈ M , with q(u, u) = 0.
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Proof. We construct a sequence ¶ρn♢ in M such that ρn+1 = fρn = fn+1ρ0 for each
n ∈ N. When ρn0

= ρn0+1 for some positive integer n0, then u = ρn0
is a fixed point

of f . Hence, without loss of generality consider that,

ρn ̸= ρn+1, for all n ∈ N.

As f is α-orbital admissible, we have

α(ρ0, ρ1) = α(ρ0, fρ0) ≥ 1 implies α(fρ0, fρ1) = α(ρ1, ρ2) ≥ 1.

Using mathematical induction, it follows that α(ρn, ρn+1) ≥ 1 for each n ∈ N. Now,
we divide the entire proof into four steps and discuss one by one.

Step 1. We first prove that for each n ∈ N

q(ρn, ρn+1) < Mq(ρn−1, ρn).

Note that for every natural number n, we have q(ρn, ρn+1) > 0. Since, otherwise by
the combination of q(ρn, ρn+1) = 0 and the assumption q(ρn, ρn) = 0 and applying
Lemma 1.1 we get ρn = ρn+1, which is a contradiction. Therefore, we find that

Mq(ρn−1, ρn) = max

{

q(ρn−1, ρn), q(ρn−1, ρn), q(ρn, ρn+1),
q(ρn−1, ρn+1) + q(ρn, ρn)

2

}

> 0.

Hence, we obtain ψ(Mq(ρn−1, ρn)) > 0. Now, from the hypothesis and Definition
2.1 for η = ψ(Mq(ρn−1, ρn)), there exists a δ > 0 such that for ρ, ϱ ∈ M , when
η ≤ ψ(Mq(ρ, ϱ)) < η + δ, we have α(ρ, ϱ)q(fρ, fϱ) < η.

In particular, since for each τ > 0, ψ(τ) < τ , we have

q(ρn, ρn+1) ≤α(ρn−1, ρn)q(ρn, ρn+1) < η = ψ(Mq(ρn−1, ρn)) < Mq(ρn−1, ρn).(2.1)

Since

q(ρn−1, ρn+1)

2
≤
q(ρn−1, ρn) + q(ρn, ρn+1)

2
≤ max¶q(ρn−1, ρn), q(ρn, ρn+1)♢,

we have

Mq(ρn−1, ρn) = max

{

q(ρn−1, ρn), q(ρn−1, ρn), q(ρn, ρn+1),
q(ρn−1, ρn+1) + q(ρn, ρn)

2

}

= max

{

q(ρn−1, ρn), q(ρn, ρn+1),
q(ρn−1, ρn+1)

2

}

= max¶q(ρn−1, ρn), q(ρn, ρn+1)♢.

So, q(ρn, ρn+1) < Mq(ρn−1, ρn) = max¶q(ρn−1, ρn), q(ρn, ρn+1)♢ and this implies that

Mq(ρn−1, ρn) = q(ρn−1, ρn) and q(ρn, ρn+1) < q(ρn−1, ρn).

Now, since ¶q(ρn−1, ρn)♢ is decreasing and bounded below, it is convergent to t ≥ 0
such that q(ρn, ρn+1) ≥ t for each n. Assume that t ≠ 0 and ξ = limn ψ(q(ρn, ρn+1)).
Then by (ψ3), 0 < ξ < t and by Definition 2.1, we can find δ > 0 satisfying

(2.2) when ξ ≤ ψ(Mq(ρ, ϱ)) < ξ + δ, we have α(ρ, ϱ)q(fρ, fϱ) < ξ,
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for ρ, ϱ ∈ M . Consider k0 ∈ N such that 1
k0

< δ and 1
k0

< ξ. Then for each k ≥ k0

there is δk ≤ 1
k

such that

(2.3) ξ −
1

k
≤ ψ(Mq(ρ, ϱ)) < ξ −

1

k
+ δk implies α(ρ, ϱ)p(fρ, fϱ) < ξ −

1

k
< ξ.

Also there is k2 ∈ N such that for each n ≥ k2 one obtains

ξ −
1

k0

< ψ(q(ρn−1, ρn)) = ψ(Mq(ρn−1, ρn)) < ξ +
1

k0

< ξ + δ.

Now, when ξ ≤ ψ(Mq(ρn−1, ρn)) ≤ ξ + 1
k0

, by (2.2), we have

q(ρn, ρn+1) ≤ α(ρn−1, ρn)q(ρn, ρn+1) < ξ < t,

and when ξ − 1
k0

≤ ψ(Mq(ρn−1, ρn) < ξ by (2.3) and since

[ξ −
1

k0

, ξ] ⊆ ∪k≥k0
[ξ −

1

k
, ξ −

1

k
+ δk),

we have q(ρn, ρn+1) ≤ α(ρn−1, ρn)q(ρn, ρn+1) < ξ < t, which is a contradiction. There-
fore, t = 0 and so

(2.4) lim
n
q(ρn, ρn+1) = 0.

Step 2. We prove that ¶ρn♢ is a Cauchy sequence. Alternatively, from the inequality
(2.1), we arrive at

q(ρn, ρn+1) ≤ ψ(q(ρn−1, ρn)), for all n ∈ N.(2.5)

Indeed, if there exists some n∗ such that

q(ρn∗ , ρn∗+1) ≤ ψ(q(ρn∗ , ρn∗+1)) < q(ρn∗ , ρn∗+1),

we get a contradiction. Hence, (2.5) holds. Inductively, we derive, from (2.5), that

q(ρn, ρn+1) ≤ ψn(q(ρ0, ρ1)), for all n ∈ N.

Fix ε and let nε ∈ N such that
∑

k≥nε
ψk(q(ρ1, ρ0)) < ε. Furthermore, for m > n > nε

we can find that

q(ρn, ρm) ≤ q(ρn, ρn+1) + · · · + q(ρm−1, ρm)

≤
m−1
∑

k=n

ψk(q(ρ1, ρ0))

≤
∑

k≥nε

ψk(q(ρ1, ρ0)).

Hence, we conclude that the sequence ¶ρn♢ is Cauchy. Now, since (M,d) is complete,
we can get u ∈ M with ρn → u in M .

Step 3. u is a fixed point of f .
Case (i). For each ϱ ∈ M satisfying ϱ ̸= fϱ, we have inf¶q(ρ, ϱ) + q(ρ, fρ) : ρ ∈

M♢ > 0. It implies that for every ε > 0, there is a natural number N such that for
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n > Nε, we have q(ρNε
, ρn) < ε. Since, ρn → u and q(ρ, ·) is a lower semi-continuous

map, we have
q(ρNε

, u) ≤ lim inf
n→∞

q(ρNε
, ρn) ≤ ε.

Putting ε = 1
k

and Nε = nk, we have

(2.6) lim
k→∞

q(ρnk
, u) = 0.

Assume that u ̸= fu. Then

0 < inf¶q(σ, u) + q(σ, fσ) : σ ∈ M♢ ≤ inf¶q(ρnk
, u) + q(ρnk

, ρnk+1) : k ∈ N♢.

From (2.4) and (2.6), we derive inf¶q(σ, u)+q(σ, fσ) : σ ∈ M♢ = 0, which contradicts
the given hypothesis. Therefore, fu = u.

Case (ii). Let f be continuous.
Using the triangular inequality, we have

q(ρn, f
2ρn) ≤ q(ρn, fρn) + q(fρn, f

2ρn).

Accordingly, letting n → ∞, we obtain q(ρn, f
2ρn) → 0. Further, Lemma 1.1 confirms

that ¶f 2ρn♢ → u as n → ∞. As f is continuous, we have

fu = f( lim
n→∞

fρn) = lim
n→∞

f 2ρn = u.

Hence, u is a fixed point of f .
Case (iii). Here, limn→∞ q(fρn, u) = limn→∞ q(ρn+1, u) = limn→∞ q(ρn, u). Hence,

fu = u.
Step 4. u is a fixed point with q(u, u) = 0.
Conversely, suppose that q(u, u) > 0. Then from (2.1), we get

0 < q(u, u) = q(fu, fu) ≤ ψ(Mq(u, u)) < Mq(u, u) = q(u, u),

and this is impossible. Hence, our claim is verified. □

The fixed point obtained in the previous theorem may be not unique. The following
examples validate our claim.

Example 2.1. Suppose that G is a locally compact group, M = L1(G) and

q(f, g) = ∥g∥1, f, g ∈ L1(G).

Then q is a w-distance . Define ψ(t) =

{ t
2
, t ∈ [0, 1],

1
2
, t ∈ (1,∞),

and

α(f, g) =











2, g = 0 (a.e.),
ψ(Mq(f, g))

2∥g∥1

, otherwise,

and for an arbitrary x ∈ G

Tx : L1(G) → L1(G),
f 7→ 1

8
Lxf,
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where Lxf(y) = f(x−1y). Then for each f ∈ L1(G) and x ∈ G, since ∥Lxf∥1 = ∥f∥1,
we conclude that Mq(f, g) = max¶1

8
∥f∥1, ∥g∥1♢ and so

α(f, g) =
ψ(Mq(f, g))

2∥g∥1

=
ψ(max¶1

8
∥f∥1, ∥g∥1♢)

2∥g∥1

≥ 1.

In each of the cases 0 ≤ max¶1
8
∥f∥1, ∥g∥1♢ ≤ 1, 1 ≤ max¶1

8
∥f∥1, ∥g∥1♢ ≤ 8 and

8 ≤ max¶1
8
∥f∥1, ∥g∥1♢ we conclude that

α(Txf, Txg) =
ψ(max¶ 1

64
∥f∥1,

1
8
∥g∥1♢)

2
8
∥g∥1

> 1.

So, Tx is α-orbital admissible. Now for each η > 0 and δ = η, if η ≤ ψ(Mq(f, g)) < 2η,
then for g ̸= 0 we have

α(f, g)q


1

8
Lxf,

1

8
Lxg



≤
ψ(Mq(f, g))

2∥g∥1



1

8



∥g∥1 ≤
1

8
η < η,

and for g = 0, since q(Txf, Txg) = 0, we are done. So, Tx is a generalized (α, ψ, q)-
Meir-keeler contractive map. Moreover, α(0, Tx0) = α(0, 0) = 2 > 1,

q(T n
x 0, T n

x 0) = q(0, 0) = ∥0∥1 = 0,

and Tx is continuous. Therefore, all the hypotheses of Theorem 2.1 hold and so, Tx has
a fixed point (which is f = 0, satisfying q(0, 0) = 0). Note that for each f ∈ L1(G),
we have

lim ∥T n
x f∥1 = lim

1

8n
∥f∥1 = 0.

Therefore, T n
x f converges to 0 and so 0 is the only fixed point of Tx.

Example 2.2. Suppose that M = ¶ 1
2n : n ∈ N♢ ∪ ¶0♢ is equipped with the usual metric

on R. Consider

q(ρ, ϱ) =







1

n
+

1

m
, ϱ =

1

2m
, ρ =

1

2n
,

0, ρ = 0 or ϱ = 0,

α(ρ, ϱ) =























m

n
, ϱ =

1

2m
, ρ =

1

2n
and 2n ≥ m ≥ n,

1, ρ = 0 or ϱ = 0,
1

n
, otherwise,

and fρ = ρ8. Then α(0, f0) = 1, q(fn0, fn0) = 0 for each n ∈ N and f is continuous
and also α-orbital admissible. Since if α(ρ, fρ) ≥ 1, then ρ = 0, since if ρ = 1

2n for
some n, then n ≤ 8n ≤ 2n is impossible. Therefore, α(fρ, f2ρ) ≥ 1. Also if

ψ(t) =















t

2
, t ∈ [0, 1],

1

2
, t ∈ (1,∞),
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then, since 0 ≤ Mq(ρ, ϱ) ≤ 1, we have ψ(Mq(ρ, ϱ)) = 1
2
Mq(ρ, ϱ). On the other hand,

for each η > 0 and for δ = η, if η ≤ ψ(Mq(ρ, ϱ)) < 2η, then ρ or ϱ is non-zero. So if
ρ = 1

2n and ϱ = 1
2m , then since α(ρ, ϱ) ≤ 2, we conclude that

α(ρ, ϱ)q(fρ, fϱ) ≤ 2


1

8n
+

1

8m



=
1

4
q(ρ, ϱ) ≤

1

4
Mp(ρ, ϱ) =

1

2
ψ(Mp(ρ, ϱ)) < η.

Also, if one of ρ or ϱ is zero, then α(ρ, ϱ)q(fρ, fϱ) = 0 ≤ η. So, f is a generalized
(α, ψ, q)-Meir-Keeler contractive map. Therefore, all the conditions of Theorem 2.1
hold. Hence, ρ = 0 is the unique fixed point of f .

Example 2.3. Let M = [0, 1] be equipped with the usual metric. Also let us consider
the w-distance as q(ρ, ϱ) = ♣ρ− ϱ♣ for each ρ, ϱ ∈ M . Further, we define

fρ =







ρ

20
, ρ ∈ [0, 1),

1, ρ = 1,
α(ρ, ϱ) =

{

1, ρ, ϱ ∈ [0, 1),
0, ρ = 1,

ψ(ρ) =











































0, ρ = 0,
1

3
, ρ ∈



0,
1

2



,

ρ

2
, ρ ∈



1

2
, 1


,

1

2
, ρ ∈ (1,∞).

Hence, for every w ∈ M with fw ̸= w, we obtain w ̸= 0, 1 and so

lim
ρ→w

(♣w − ρ♣ + ♣ρ− fρ♣) ≥
19

20
w > 0.

Again,

lim
ρ→ϱ

(♣w − ρ♣ + ♣ρ− fρ♣) ≥ ♣w − ϱ♣ > 0, ϱ ̸= w.

Therefore, we have inf¶q(ρ, w) + q(ρ, fρ) : ρ ∈ M♢ > 0 for each w ∈ M satisfying
w ̸= fw. Besides, for every ρ ∈ M , we obtain ♣fnρ − fnρ♣ = 0. Now for each η > 0,
put δ = η. Then, ρ = ϱ implies Mq(ρ, ϱ) = 0 and when ρ ̸= ϱ, Mq(ρ, ϱ) ̸= 0 and
further, ψ(Mq(ρ, ϱ)) ≥ 1

4
. Therefore, for η > 1

8
, there is no ρ, ϱ ∈ M satisfying

1

8
≤ ψ(Mq(ρ, ϱ)) <

1

4
.

On the other hand, for η ≤ 1
8
, if η ≤ ψ(Mq(ρ, ϱ)) < η + η = 2η, we have

α(ρ, ϱ)♣fρ− fϱ♣ ≤ ♣fρ− fϱ♣ =
∣

∣

∣

∣

ρ

20
−

ϱ

20

∣

∣

∣

∣

≤
2

20
<

1

8
< η.

That is for each ρ, ϱ, if η ≤ ψ(Mq(ρ, ϱ)) < η+η = 2η, then α(ρ, ϱ)♣fρ−fϱ♣ ≤ η. Note
that 0, 1 are the fixed points of f .

Remark 2.1. In the case where q(ρ, ϱ) = ϱ for each ρ, ϱ ∈ M , the assumption
q(fnρ, fnρ) = 0, for some ρ ∈ M and for each n ∈ N, imply that fnρ = 0 for
each n. Therefore, in this case without any another condition, since ρn = 0 = ρn+1,
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the first part of the Theorem 2.1 implies that f possesses a fixed point. For example,
let M = ¶ 1

2n : n ∈ N♢ ∪ ¶0♢,

α(ρ, ϱ) =







0, ϱ ∈


1

22k
: k ∈ N

}

,

1, otherwise,
and fρ =







ρ

2
, ρ ∈



1

22k
: k ∈ N

}

,

1, otherwise.

Then f is continuous, q(fn0, fn0) = 0 for each n ∈ N and ρ, ϱ ∈ M and η, δ > 0, if
η ≤ ψ(Mq(ρ, ϱ)) < η + δ, then we have

0 = α(ρ, ϱ)q(fρ, fϱ) ≤ η.

Note that 0 is a fixed point of f , since here we require only q(fn0, fn0) = 0.

Now we put down the following additional hypothesis. To attest the uniqueness of
the fixed point of f , this condition along with those of Theorem 2.1 is required.
Property U . Let α(u, v) < 1, implies that at least one of u or v is not a fixed point
of f .

For example if α(u, v) ≥ 1 for each u, v ∈ M , then the property U is valid.

Theorem 2.2. Suppose that (M,d) is a metric space with a w-distance q. Also

assume that f is a generalized (α,ψ, p)-Meir-Keeler contractive mapping and satisfies

all the hypotheses of Theorem 2.1 along with the additional property U . Then we can

claim the uniqueness of the fixed point of f obtained in Theorem 2.1.

Proof. We suppose that u, v ∈ M are two distinct fixed points of f . Then α(u, v) ≥ 1,
fu = u, fv = v, q(u, u) = 0 and q(v, v) = 0. Using the aforementioned criteria and
(2.1), we obtain

q(u, v) =q(fu, fv) ≤ α(u, v)q(fu, fv) ≤ ψ(Mq(u, v)) = ψ(q(u, v)) < q(u, v),

and this is impossible. Hence, f possesses a unique fixed point. □

3. Consequences

This section deals with a few immediate corollaries of our obtained Theorem 2.1.
First, we give the following important result for an (α, ψ, q)-Meir-Keeler contractive
mapping.

Corollary 3.1. Suppose that (M,d) is a complete metric space with a w-distance q.

Also let f be an (α, ψ, q)-Meir-Keeler contractive mapping with the fact that there is

some ρ0 ∈ M , with q(fnρ0, f
nρ0) = 0 for all non-negative integers n and α(ρ0, fρ0) ≥

1. Suppose that one of the following holds.

(i) For each w ∈ M satisfying w ≠ fw, we have inf¶q(ρ, w) + q(ρ, fρ) : ρ ∈ M♢ >
0.

(ii) f is continuous.

(iii) If for some sequence ¶ρn♢, limn→∞ q(ρn, ρ) = limn→∞ q(fρn, ρ), then fρ = ρ.

Then f possesses a fixed point u ∈ M , with q(u, u) = 0.
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Putting α ≡ 1 in Theorem 2.1, we obtain the trailing important corollary.

Corollary 3.2. Suppose that (M,d) is a complete metric space with a w-distance q.

Also let f be a (ψ, q)-Meir-Keeler contractive mapping with the fact that there is some

ρ0 ∈ M , with q(fnρ0, f
nρ0) = 0 for all non-negative integers n. Suppose that one of

the following conditions holds.

(i) For each w ∈ M satisfying w ≠ fw, we have inf¶q(ρ, w) + q(ρ, fρ) : ρ ∈ M♢ >
0.

(ii) f is continuous.

(iii) If for some sequence ¶ρn♢, limn→∞ q(ρn, ρ) = limn→∞ q(fρn, ρ), then fρ = ρ.

Then f possesses a fixed point u ∈ M .

Considering q = d in Theorem 2.1, we deduce the subsequent corollary.

Corollary 3.3. Suppose that (M,d) is a complete metric space and f be an (α,ψ)-
Meir-Keeler contractive mapping with the fact that there is some ρ0 ∈ M with

α(ρ0, fρ0) ≥ 1 or α(fρ0, ρ0) ≥ 1. Suppose that one of the following conditions

holds.

(i) For each w ∈ M satisfying w ̸= fw, we have inf¶d(ρ, w)+d(ρ, fρ) : ρ ∈ M♢ >
0.

(ii) f is continuous.

(iii) For some sequence ¶ρn♢ in M with α(ρn, ρn+1) ≥ 1 for all natural numbers n

and ρn → ρ ∈ M as n → ∞, then α(ρn, ρ) ≥ 1 for every n ∈ N.

Then f possesses a fixed point u ∈ M .

Taking α ≡ 1 in Corollary 3.3, we get the succeeding consequence.

Corollary 3.4. Suppose that (M,d) is a complete metric space and f be a ψ-Meir-

Keeler contractive mapping. Suppose that either f is continuous or inf¶d(ρ, w) +
d(ρ, fρ) : ρ ∈ M♢ > 0 for each w ∈ M with w ̸= fw. Then f possesses a fixed point

u ∈ M .

Definition 3.1. Suppose that (M,d) is a metric space with a w-distance q and
consider the functions ψ ∈ Ψ, α : M ×M → [0,∞) and a self-map f . Then f is said
to be a generalized (α, ψ, q)-Meir-Keeler contractive mapping of

(a) Banach type if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(q(ρ, ϱ)) < η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(b) Kannan type I if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ

(

q(ρ, fρ) + q(ϱ, fϱ)

2



< η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(c) Kannan type II if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max¶q(ρ, fρ), q(ϱ, fϱ)♢) < η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;
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(d) Chatterjea type I if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ

(

q(ρ, fϱ) + q(ϱ, fρ)

2



< η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(e) Chatterjea type II if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max¶q(ρ, fϱ), q(ϱ, fρ)♢) < η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(f) Reich type I if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ

(

q(ρ, ϱ) + q(ρ, fρ) + q(ϱ, fϱ)

3



< η+δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(g) Reich type II if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max¶q(ρ, ϱ), q(ρ, fρ), q(ϱ, fϱ)♢) < η+δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(h) Reich type III if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max¶q(ρ, ϱ), q(ρ, fϱ), q(ϱ, fρ)♢) < η+δ, we have α(ρ, ϱ)p(fρ, fϱ) < η.

In addition, for taking q = d in the inequalities above, we can get several other kind
of contractions in the context of metric spaces.

If in Theorem 2.1, we change the contraction condition ‘generalized (α, ψ, q)-Meir-
Keeler contractive mapping’ with one of the new contractions defined in Definition
3.1, then we may obtain a similar result as Theorem 2.1. Furthermore, as in Corollary
3.3 and Corollary 3.4, we may get some more results by letting q = d. Also, notice
that by choosing the auxiliary function α in a proper way in Theorem 2.1, we can
deduce more consequences related to cyclic contractions and results in metric spaces
endowed with a partially ordered set, see for example [1–8].

4. An Application

In this section, we discuss an application of our obtained fixed point result to
a certain kind of non-linear Fredholm integral equations. First of all, we prove a
proposition which is going to play a crucial role here.

Proposition 4.1. Suppose that (M,d) is a metric space with a w-distance q. Also,

assume that f is a self-mapping on M satisfying

α(ρ, ϱ)q(fρ, fϱ) ≤ kψ(Mq(ρ, ϱ)),(4.1)

for all ρ, ϱ ∈ M and for some k ∈ (0, 1). Then f is a generalized (α, ψ, q)-Meir-Keeler

contractive mapping.

Proof. Consider δ = ( 1
k

− 1)η in Definition 2.1. Accordingly, we derive

η ≤ ψ(Mq(ρ, ϱ)) <η + δ < η +


1

k
− 1



η =
η

k
,
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and so, for every ρ, ϱ ∈ M , we obtain kη ≤ kψ(Mq(ρ, ϱ)) < η. Using (4.1), we get

α(ρ, ϱ)q(fρ, fϱ) ≤ kψ(Mq(ρ, ϱ)) < η.

Hence, α(ρ, ϱ)q(fρ, fϱ) < η and therefore, f is an (α, ψ, q)-Meir-Keeler contractive
mapping. □

Now, we try to obtain a criterion to ensure the existence of a solution for a type of
non-linear Fredholm integral equation.

Theorem 4.1. Let us consider the non-linear Fredholm integral equation

(fx)(t) = g(t) +
∫ b

a
H(t, s, x(s))ds,(4.2)

for some a, b ∈ R, with a < b, g : [a, b] → R and H : [a, b]2 ×R → R be two continuous

maps. Also, assume that the subsequent properties hold:

(i) f : C[a, b] → C[a, b] is a continuous mapping;

(ii) there exists a weaker Meir-Keeler function ψ and k ∈ [0, 1) satisfying

♣H(t, s, x(s))♣ + ♣H(t, s, y(s))♣

≤
k
[

ψ
(

max
{

♣x(t)♣ + ♣y(t)♣, ♣x(t)♣ + ♣(fx)(t)♣, ♣y(t)♣ + ♣(fy)(t)♣,

b− a
(|x(t)|+|(fy)(t)|)+(|(fx)(t)|+|y(t)|)

2

}]

− 2♣g(t)♣

b− a
,

for all t, s ∈ [a, b]. Then the non-linear Fredholm integral equation (4.2) owns a unique

solution in C[a, b].

Proof. Suppose M = C[a, b]. Obviously, M is complete with respect to the metric
d : M ×M → R

+ defined as

d(x, y) = sup
t∈[a,b]

♣x(t) − y(t)♣,

where x, y ∈ M . Now, we consider the map q : M ×M → R
+ given by

q(x, y) = sup
t∈[a,b]

♣x(t)♣ + sup
t∈[a,b]

♣y(t)♣,

where x, y ∈ M . One can easily check that, q is a w-distance on M . Here we have

♣(fx)(t)♣ + ♣(fy)(t)♣

=

∣

∣

∣

∣

∣

g(t) +
∫ b

a
H(t, s, x(s))ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

g(t) +
∫ b

a
H(t, s, y(s))ds

∣

∣

∣

∣

∣

≤ ♣g(t)♣ +

∣

∣

∣

∣

∣

∫ b

a
H(t, s, x(s))ds

∣

∣

∣

∣

∣

+ ♣g(t)♣ +

∣

∣

∣

∣

∣

∫ b

a
H(t, s, y(s))ds

∣

∣

∣

∣

∣

≤2 ♣g(t)♣ +

∣

∣

∣

∣

∣

∫ b

a
H(t, s, x(s))ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a
H(t, s, y(s))ds

∣

∣

∣

∣

∣
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≤2 ♣g(t)♣ +
∫ b

a
♣H(t, s, x(s))♣ ds+

∫ b

a
♣H(t, s, y(s))♣ ds

≤2 ♣g(t)♣ +
∫ b

a
(♣H(t, s, x(s))♣ + ♣H(t, s, y(s))♣) ds

≤2 ♣g(t)♣ +
∫ b

a





k
[

ψ
(

max
{

♣x(t)♣ + ♣y(t)♣, ♣x(t)♣ + ♣(fx)(t)♣, ♣y(t)♣ + ♣(fy)(t)♣,

b− a

(|x(t)|+|(fy)(t)|)+(|(fx)(t)|+|y(t)|)
2

}]

− 2♣g(t)♣

b− a



 ds

=2 ♣g(t)♣ +
k
[

ψ
(

max
{

♣x(t)♣ + ♣y(t)♣, ♣x(t)♣ + ♣(fx)(t)♣, ♣y(t)♣ + ♣(fy)(t)♣,

b− a
(|x(t)|+|(fy)(t)|)+(|(fx)(t)|+|y(t)|)

2

}]

− 2♣g(t)♣

b− a

∫ b

a
ds

=k



ψ

(

max

{

♣x(t)♣ + ♣y(t)♣, ♣x(t)♣ + ♣(fx)(t)♣, ♣y(t)♣ + ♣(fy)(t)♣,

(♣x(t)♣ + ♣(fy)(t)♣) + (♣(fx)(t)♣ + ♣y(t)♣)

2

}]

≤k



ψ

(

max

{

q(x, y), q(x, fx), q(y, fy),
q(x, fy) + q(y, fx)

2

}]

=k [ψ (Mq(x, y))] ,

for all x, y ∈ M and t ∈ [0,∞]. Thus,

sup
t∈[a,b]

♣(fx)(t)♣ + sup
t∈[a,b]

♣(Ty)(t)♣ ≤ k [ψ (Mq(x, y))] ,

and therefore for each x, y ∈ M

q(fx, fy) ≤ k [ψ (Mq(x, y))] .

This implies that f satisfies Proposition 4.1 and hence it is an (α, ψ, q)-Meir-Keeler
contractive mapping. Therefore, by Theorem 2.1, the non-linear Fredholm integral
equation (4.2) has a solution. □
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INVESTIGATION THE EXISTENCE OF A SOLUTION FOR A

MULTI-SINGULAR FRACTIONAL DIFFERENTIAL EQUATION

WITH MULTI-POINTS BOUNDARY CONDITIONS

MANDANA TALAEE1, MEHDI SHABIBI2∗, ALIREZA GILANI3,
AND SHAHRAM REZAPOUR4,5

Abstract. We should try to increase our abilities in solving of complicate differ-
ential equations. One type of complicate equations are multi-singular pointwise
defined fractional differential equations. We investigate the existence of solutions for
a multi-singular pointwise defined fractional differential equation with multi-points
boundary conditions. We provide an example to illustrate our main result.

1. Introduction

One possible way that the mathematics has effective role in the various fields the
various fields of sciences is to become more powerful and flexible in modeling theory
so that different types of phenomena with distinct parameters can be written in
mathematical formulas. In this case, different softwares can be developed to allow
for more cost-free testing and less material consumption. In this way, a method
is working with complicate differential equations. Nowadays, many researchers are
studying advanced fractional modelings and its related existence results and qualitative
behaviors of solutions for distinct fractional differential equations and inclusions (see
for example [1–24,26–29,31–34,36–38]).

In 2013, the existence of solutions for the singular differential equation

Dαu(t) + f(t, u(t)) = 0,

Key words and phrases. Caputo derivative, fixed point, multi-singular equation, multi-points
boundary conditions.
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with boundary conditions u′(0) = u′′(0) = · · · = un−1(0) = 0, u(1) =
∫ 1

0 u(s)dµ(s)
studied by Vong, where 0 < t < 1, n ≥ 2, α ∈ (n − 1, n), µ is a function of
bounded variation with

∫ 1
0 dµ(s) < 1, f may have singularity at t = 1 and Dα is the

Caputo derivative [39]. In 2014, Jleli et al. proved the existence of positive solutions
for the singular fractional problem Dαu(t) + f(t, u(t)) = 0 with boundary value
conditions u(0) = u′(0) = 0 and u′(1) =

∑m−2
i=1 βiu

′(ξi), where 0 < t < 1, 2 < α ≤ 3,
0 < ξ1 < ξ2 < . . . < ξm−2 < 1, f : (0, 1] × R → R is a continuous function, f(t, x) is
singular at t = 0 and Dα is the Caputo derivative [25].

In 2016, Shabibi et al. reviewed the multi-singular pointwise defined fractional
integro-differential equation

Dµx(t) + f(t, x(t), x′(t), Dβx(t), Ipx(t)) = 0,

with boundary conditions x′(0) = x(ξ), x(1) =
∫ η

0 x(s)ds, where µ ∈ [2, 3), x′(0) =
x(ξ), x(1) =

∫ η
0 x(s)ds and x(j)(0) = 0 for j = 2, . . . , [µ] − 1, 0 ≤ t ≤ 1, x ∈ C1[0, 1],

β, ξ, η ∈ (0, 1), p > 1, Dµ is the Caputo fractional derivative of order µ and f :
[0, 1] ×R5 → R is a function such that f(t, ·, ·, ·, ·) is singular at some points t ∈ [0, 1]
[36]. In 2018, Baleanu et al. investigated the pointwise defined problem

Dαx(t) + f

(

t, x(t), x′(t), Dβx(t),
∫ t

0
h(ξ)x(ξ)dξ, ϕ(x(t))

)

= 0,

with boundary conditions x(1) = x(0) = x′′(0) = xn(0) = 0, where α ≥ 2, λ, µ, β ∈
(0, 1), ϕ : X → X is a mapping such that

∥ϕ(x) − ϕ(y)∥ ≤ θ0∥x− y∥ + θ1∥x′ − y′∥,
for some non-negative real numbers θ0 and θ1 ∈ [0,∞) and all x, y ∈ X, Dα is the
Caputo fractional derivative of order α

f(t, x1(t), . . . , x5(t)) = f1(t, x1(t), . . . , x5(t)),

for all t ∈ [0, λ),

f(t, x1(t), , x5(t)) = f2(t, x1(t), . . . , x5(t)),

for all t ∈ [λ, µ] and

f(t, x1(t), . . . , x5(t)) = f(t, x1(t), . . . , x5(t)),

for all t ∈ (µ, 1], f1(t, ·, ·, ·, ·) and f3(t, ·, ·, ·, ·) are continuous on [0, λ) and (µ, 1] and
f2(t, ·, ·, ·, ·) is multi-singular [9].

By using idea of the works, we investigate the existence of solutions for the nonlinear
fractional differential pointwise defined equation

(1.1) Dαx(t) = f

(

t, x(t), x′(t), Dβx(t),
∫ t

0
h(ξ)x(ξ)dξ

)

,

with boundary conditions x(0) = 0, x(j)(0) = 0 for j ≥ 2 while j ≠ k for one’s
2 ≤ k ≤ n− 1 and x(1) =

∑m
i=1 λiD

βix(γi), where α ≥ 2, 0 < γ1 < γ2 < · · · < γm < 1,
β1, . . . , βm ∈ (0, 1), λ1, . . . , λm ∈ [0,∞), m ∈ N, Dα is the Caputo fractional derivative
of order α, n = [α] + 1, h ∈ L1 and f ∈ L1 is singular at some points [0, 1].
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Recall that Dαx(t) +f(t) = 0 is a pointwise defined equation on [0, 1] if there exists
a set E ⊂ [0, 1] such that the measure of Ec is zero and the equation holds on E

[36]. In this paper, we use ∥ · ∥1 for the norm of L1[0, 1], ∥ · ∥ for the sup norm of
Y = C[0, 1] and ∥x∥∗ = max¶∥x∥, ∥x′∥♢ for the norm of X = C1[0, 1].

The Riemann-Liouville integral of order p with the lower limit a ≥ 0 for a function
f : (a,∞) → R is defined by

I
p

a+f(t) =
1

Γ(p)

∫ t

a
(t− s)p−1f(s)ds,

provided that the right-hand side is pointwise define on (a,∞). We denote Ip
0+f(t) by

Ipf(t) [30]. The Caputo fractional derivative of order α > 0 is defined by

cDαf(t) =
1

Γ(n− α)

∫ t

0

fn(s)

(t− s)α+1−n
ds,

where n = [α] + 1 and f : (a,∞) → R is a function [30]. Let Ψ be the family of
non-decreasing functions ψ : [0,∞) → [0,∞) such that

∑∞
n=1 ψ

n(t) < ∞ for all t > 0.
One can check that ψ(t) < t for all t > 0 [35]. Let T : X → X and α : X×X → [0,∞)
be two maps. Then T is called an α-admissible map whenever α(x, y) ≥ 1 implies
α(Tx, Ty) ≥ 1 [35]. Let (X, d) be a metric space, ψ ∈ Ψ and α : X ×X → [0,∞) a
map. A self-map T : X → X is called an α-ψ-contraction whenever

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X [35]. We need next results.

Lemma 1.1 ([35]). Let (X, d) be a complete metric space, ψ ∈ Ψ, α : X×X → [0,∞)
a map and T : X → X an α-admissible α-ψ-contraction. If T is continuous and there

exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Lemma 1.2 ([30]). Let n− 1 ≤ α < n and x ∈ C(0, 1). Then, we have

IαDαx(t) = x(t) +
n−1
∑

i=0

cit
i,

for some real constants c0, . . . , cn−1.

2. Main Results

Now, we are ready for preparing our main results.

Lemma 2.1. Let α ≥ 2, [α] = n − 1, m ∈ N, 0 < γ1 < γ2 < · · · < γm < 1,

β1, . . . , βm ∈ (0, 1), λ1, . . . , λm ∈ [0,∞) and f ∈ L1[0, 1], then the solution of the

problem Dαx(t) = f(t) with the boundary conditions x(0) = 0, x(j)(0) = 0 for j ≥ 2
while j ̸= k for one’s 2 ≤ k ≤ n− 1 such that

m
∑

i=1

λi

Γ(k + 1 − βi)
γ

k−βi

i ̸= 1

k!
,
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and x(1) =
∑m

i=1 λiD
βix(γi) is x(t) =

∫ 1
0 G(t, s)f(s)ds, where G(t, s) is defined by

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
−

m
∑

i=j

tkλi(γi − s)α−β1−1

∆Γ(α− βi)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm for

j = 1, 2, . . . ,m,

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γm ≤ s,

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
−

m
∑

i=j

tkλi(γi − s)α−β1−1

∆Γ(α− βi)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm for

j = 1, 2, . . . ,m, and

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γm ≤ s and

∆ := k!
m
∑

i=1

λi

Γ(k + 1 − βi)
γ

k−βi

i − 1.

Proof. By using a similar method in [9], we can show that Lemma 1.1 holds on L1[0, 1].
Let x(t) be a solution for the problem. Since x(j)(0) = 0 for j ≥ 2, by using Lemma
1.1, we have

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds+ c0 + c1t+ · · · + cnt

n.

Since x(0) = 0, so c0 = 0. Also since x(j)(0) = 0 for j ≥ 2 and j ̸= k so c2 = · · · =
cj = · · · = cn = 0 for j ̸= k. Thus,

(2.1) x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds+ ckt

k.

Hence, we get

Dβix(t) =
1

Γ(α− βi)

∫ t

0
(t− s)α−βi−1f(s)ds+ ck

Γ(k + 1)

Γ(k + 1 − βi)
tk−βi

=
1

Γ(α− βi)

∫ t

0
(t− s)α−βi−1f(s)ds+ ck

k!

Γ(k + 1 − βi)
tk−βi ,

and so

λiD
βix(γi) =

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1f(s)ds+ ckλi

k!

Γ(k + 1 − βi)
γ

k−βi

i ,
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for all 1 ≤ i ≤ m. Therefore, we obtain

m
∑

i=1

λiD
βix(γi) =

m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1f(s)ds+ ckk!

m
∑

i=1

λi

Γ(k + 1 − βi)
γ

k−βi

i .

On the other hand, by using (2.1) we have

x(1) =
1

Γ(α)

∫ 1

0
(1 − s)α−1f(s)ds+ ck.

Since x(1) =
∑m

i=1 λiD
βix(γi), we get

1

Γ(α)

∫ 1

0
(1 − s)α−1f(s)ds+ ck =

m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1f(s)ds

+ ckk!
m
∑

i=1

λi

Γ(k + 1 − βi)
γ

k−βi

i .

Hence,

ck



k!
m
∑

i=1

λi

Γ(k + 1 − βi)
γ

k−βi

i − 1

]

=
1

Γ(α)

∫ 1

0
(1 − s)α−1f(s)ds

−
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1f(s)ds.

Put ∆ := k!
∑m

i=1
λi

Γ(k+1−βi)
γ

k−βi

i − 1. Then, by using the assumption ∆ ̸= 0, we have

ck =
1

∆Γ(α)

∫ 1

0
(1 − s)α−1f(s)ds− 1

∆

m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1f(s)ds

and so

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds+

tk

∆Γ(α)

∫ 1

0
(1 − s)α−1f(s)ds

− tk

∆

m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1f(s)ds.

Thus,

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds+

tk

∆Γ(α)

∫ 1

0
(1 − s)α−1f(s)ds

− tk

∆

λ1

Γ(α− β1)

∫ γ1

0
(γ1 − s)α−β1−1f(s)ds

− · · · − tk

∆

λm

Γ(α− βm)

∫ γm

0
(γm − s)α−βm−1f(s)ds.
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If 0 ≤ t ≤ γ1 < · · · < γm < 1, then

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds

+
tk

∆Γ(α)

(∫ t

0
+
∫ γ1

t
+ · · · +

∫ 1

γm

)

(1 − s)α−1f(s)ds

− tkλ1

∆Γ(α− β1)

(∫ t

0
+
∫ γ1

t

)

(γ1 − s)α−β1−1f(s)ds

− · · · − tkλm

∆Γ(α− βm)

×
(

∫ t

0
+
∫ γ1

t
+ · · · +

∫ γm

γm−1



(γm − s)α−βm−1f(s)ds.

If 0 < γ1 ≤ t ≤ γ2 < · · · < γm < 1, then

x(t) =
1

Γ(α)

(∫ γ1

0
+
∫ t

γ1

)

(t− s)α−1f(s)ds

+
tk

∆Γ(α)

(∫ γ1

0
+
∫ t

γ1

+
∫ γ2

t
+ · · · +

∫ 1

γm

)

(1 − s)α−1f(s)ds

− tkλ1

∆Γ(α− β1)

∫ γ1

0
(γ1 − s)α−β1−1f(s)ds

− · · · − tkλm

∆Γ(α− βm)

×
(

∫ γ1

0
+
∫ t

γ1

+
∫ γ2

t
+ · · · +

∫ γm

γm−1



(γm − s)α−βm−1f(s)ds.

By continuing this, finally we get

x(t) =
1

Γ(α)

(∫ γ1

0
+
∫ γ2

γ1

+ · · · +
∫ t

γm

)

(t− s)α−1f(s)ds

+
tk

∆Γ(α)

(∫ γ1

0
+
∫ γ2

γ1

+ · · · +
∫ t

γm

+
∫ 1

t

)

(1 − s)α−1f(s)ds

− tkλ1

∆Γ(α− β1)

∫ γ1

0
(γ1 − s)α−β1−1f(s)ds

− · · · − tk

∆

λm

Γ(α− βm)

∫ γm

0
(γm − s)α−βm−1f(s)ds,

whenever 0 < γ1 < γ2 < · · · < γm ≤ t ≤ 1. Hence, x(t) =
∫ 1

0 G(t, s)f(s)ds, where

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
− tkλ1(γ1 − s)α−β1−1

∆Γ(α− β1)

− tkλ2(γ2 − s)α−β2−1

∆Γ(α− β2)
− · · · − tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,
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when 0 ≤ s ≤ t ≤ 1 and s ≤ γ1 < γ2 < · · · < γm,

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
− tkλ2(γ2 − s)α−β2−1

∆Γ(α− β2)

− · · · − tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 ≤ s ≤ γ2 < · · · < γm, in the general case

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
− tkλj(γj − s)α−βj−1

∆Γ(α− βj)

− · · · − tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm, for
1 ≤ j ≤ m, thus

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
− tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γm−1 ≤ s ≤ γm, and

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γm ≤ s,

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
+
tkλ1(γ1 − s)α−β1−1

∆Γ(α− β1)
− tkλ2(γ2 − s)α−β2−1

∆Γ(α− β2)

− · · · − tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,

when 0 ≤ t ≤ s ≤ 1 and s ≤ γ1 < γ2 < · · · < γm,

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
− tkλ2(γ2 − s)α−β2−1

∆Γ(α− β2)
− · · · − tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 ≤ s ≤ γ2 < · · · < γm and in the general case

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
− tkλj(γj − s)α−βj−1

∆Γ(α− βj)
− · · · − tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm for
1 ≤ j ≤ m, thus

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
− tkλm(γm − s)α−βm−1

∆Γ(α− βm)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γm−1 ≤ s ≤ γm, and finally

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
,
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when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γm ≤ s. Thus,

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
−

m
∑

i=j

tkλi(γi − s)α−β1−1

∆Γ(α− βi)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm for
j = 1, 2, . . . ,m,

G(t, s) =
(t− s)α−1

Γ(α)
+
tk(1 − s)α−1

∆Γ(α)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γm ≤ s,

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
−

m
∑

i=j

tkλi(γi − s)α−β1−1

∆Γ(α− βi)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm for
j = 1, 2, . . . ,m, and

G(t, s) =
tk(1 − s)α−1

∆Γ(α)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γm ≤ s. □

One can check that

∂G

∂t
=

(t− s)α−2

Γ(α− 1)
+
ktk−1(1 − s)α−1

∆Γ(α)
−

m
∑

i=j

ktk−1λi(γi − s)α−β1−1

∆Γ(α− βi)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm for
j = 1, 2, . . . ,m,

∂G

∂t
=

(t− s)α−2

Γ(α− 1)
+
ktk−1(1 − s)α−1

∆Γ(α)
,

when 0 ≤ s ≤ t ≤ 1 and γ1 < γ2 < · · · < γm ≤ s,

∂G

∂t
=
ktk−1(1 − s)α−1

∆Γ(α)
−

m
∑

i=j

ktk−1λi(γi − s)α−β1−1

∆Γ(α− βi)
,

when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γj−1 ≤ s ≤ γj < γj+1 < · · · < γm for j =

1, 2, . . . ,m, and ∂G
∂t

= ktk−1(1−s)α−1

∆Γ(α)
, when 0 ≤ t ≤ s ≤ 1 and γ1 < γ2 < · · · < γm ≤ s.

It is easy to see that G and ∂
∂t
G are continuous with respect to t. Consider the

space X = C1[0, 1] with the norm ∥ · ∥∗, where ∥x∥∗ = max¶∥x∥, ∥x′∥♢ and ∥ · ∥ is the
supremum norm on C[0, 1]. Let f be a map on [0, 1] × X4 such that is singular at
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some points of [0, 1]. Define F : X → X as

Fx(t) =
∫ 1

0

∂

∂t
G(t, s)f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds

=
1

Γ(α)

∫ t

0
(t− s)α−1f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds

+
tk

∆Γ(α)

∫ 1

0
(1 − s)α−1f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds

− tk

∆

m
∑

i=1

λi(γi − s)α−βi−1

Γ(α− βi)

×
∫ γi

0
(γi − s)α−1f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds,

so

F ′x(t) =
∫ 1

0
G(t, s)f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds

=
1

Γ(α− 1)

∫ t

0
(t− s)α−2f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds

+
ktk−1

∆Γ(α)

∫ 1

0
(1 − s)α−1f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds

− ktk−1

∆

m
∑

i=1

λi(γi − s)α−βi−1

Γ(α− βi)

×
∫ γi

0
(γi − s)α−1f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

)

ds.

It is notable that the singular pointwise defined (1.1) has a solution if and only if the
map F has a fixed point.

Theorem 2.1. Let α ≥ 2, [α] = n − 1, m ∈ N, 0 < γ1 < γ2 < · · · < γm < 1,

β1, . . . , βm ∈ (0, 1), λ1, . . . , λm ∈ [0,∞), h ∈ L1[0, 1] and m0 =
∫ 1

0 ♣h(s)♣ds. Assume

that f : [0, 1] ×X4 → R is a singular map on some points [0, 1] such that

♣f(t, x1, . . . , x4) − f(t, y1, . . . , y4)♣ ≤ Λ(t, ♣x1 − y1♣, . . . , ♣x4 − y4♣),

for all x1, . . . , x4, y1, . . . , y1 ∈ X and almost all t ∈ [0, 1], where Λ(t, x1, . . . , x4) be a

real mapping on [0, 1] ×X4 such that is non-decreasing with respect to x1, . . . , x4,

lim
z→0+

Λ(t, z, . . . , z)

H(z)
= θ(t),

for almost all t ∈ [0, 1] in which θ : [0, 1] → R+ is a mapping so that θ̂ ∈ L1[0, 1],

with θ̂(s) = (1 − s)αi−2θ(s), H : [0,∞) → [0,∞) is a linear mapping such that

limz→0+ H(z) = 0 and limi→∞ H i(t) < ∞ for all t ∈ [0,∞). Here, H i is the i-th
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composition of H with itself. Let

♣f(t, x1, . . . , x4)♣ ≤
n0
∑

k=1

bj(t)Kj(♣x1♣, . . . , ♣x4♣),

almost everywhere on [0, 1] and all x1, . . . , x4, where n0 ∈ N, bj : [0, 1] → R+,

b̂j ∈ L1[0, 1], KJ : X4 → R+ is a non-decreasing mapping with respect to all their

components with

lim
z→0+

Kj(z, . . . , z)

z
= qj,

for some qj ∈ R+ and 1 ≤ j ≤ n0. If



1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

max

{

n0
∑

j=1

∥b̂j∥[0,1]qj, ∥θ̂∥[0,1]

}

∈


0,
1

M



,

where M = max
{

1, 1
Γ(2−β)

,m0

}

, then the pointwise defined equation

Dαx(t) = f

(

t, x(t), x′(t), Dβx(t),
∫ t

0
h(ξ)x(ξ)dξ

)

,

with boundary conditions x(0) = 0, x(j)(0) = 0 for j ≥ 2, while j ≠ k, 2 ≤ k ≤ n− 1
and x(1) =

∑m
i=1 λiD

βix(γi), has a solution.

Proof. First we show that F is continuous onX. Let ϵ > 0 be given. SinceH(Mz) → 0
as z → 0+, there exists δ1 > 0 such that z ∈ (0, δ1] implies that H(Mz) < ϵ. Since

lim
z→0+

Λ(t,Mz, . . . ,Mz)

H(Mz)
= θ(t),

for almost all t ∈ [0, 1], there exists δ2 > 0 such that z ∈ (0, δ2] implies that

Λ(t,Mz, . . . ,Mz)

H(z)
≤ θ(t) + ϵ.

Hence, Λ(t,Mz, . . . ,Mz) ≤ (θ(t) + ϵ)H(Mz) almost everywhere on [0, 1]. Let δ =
min¶δ1, δ2, ϵ♢ and z := ∥x− y∥∗ < δ for x, y ∈ X. Then, we have

Λ(t,M∥x− y∥∗, . . . ,M∥x− y∥∗) ≤ (θ(t) + ϵ)H(M∥x− y∥∗) < (θ(t) + ϵ)ϵ.
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So, for all t ∈ [0, 1] and x, y ∈ X such that ∥x− y∥∗ < δ we have

♣Fx(t) − Fy(t)♣ =

∣

∣

∣

∣

∣

∫ 1

0
G(t, s)



f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

]

ds

∣

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t

0
(t− s)α−1

∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

∣

∣

∣

∣

∣

ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

∣

∣

∣

∣

∣

ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

∣

∣

∣

∣

∣

ds

≤ 1

Γ(α)

∫ t

0
(t− s)α−1Λ

(

s, ♣x(s) − y(s)♣, ♣x′(s) − y′(s)♣,

♣Dβ(x− y)(s)♣,
∫ s

0
h(ξ)♣x(ξ) − y(ξ)♣dξ



ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1Λ

(

s, ♣x(s) − y(s)♣, ♣x′(s) − y′(s)♣,

♣Dβ(x− y)(s)♣,
∫ s

0
h(ξ)♣x(ξ) − y(ξ)♣dξ



ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

×
∫ γi

0
(γi − s)α−βi−1Λ

(

s, ♣x(s) − y(s)♣, ♣x′(s) − y′(s)♣,

♣Dβ(x− y)(s)♣,
∫ s

0
h(ξ)♣x(ξ) − y(ξ)♣dξ



ds
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≤ 1

Γ(α)

∫ t

0
(t− s)α−1Λ

(

s, ∥x− y∥, ∥x′ − y′∥,

∥x′ − y′∥
Γ(2 − β)

,m0∥x− y∥


ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1Λ

(

s, ∥x− y∥, ∥x′ − y′∥,

∥x′ − y′∥
Γ(2 − β)

,m0∥x− y∥


ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1Λ(s, ∥x− y∥,

∥x′ − y′∥, ∥x′ − y′∥
Γ(2 − β)

,m0∥x− y∥)ds.

Note that ♣Dβ(x− y)(s)♣ ≤ ∥x′−y′∥
Γ(2−β)

and

∫ s

0
h(ξ)♣x(ξ)♣dξ ≤ ∥x∥

∫ 1

0
h(ξ)dξ = m0∥x∥.

Put M = max
{

1, 1
Γ(2−β)

,m0

}

. Now for each t ∈ [0, 1] and x, y ∈ X, with ∥x−y∥∗ < δ,

we obtain

♣Fx(t) − Fy(t)♣ ≤ 1

Γ(α)

∫ t

0
(t− s)α−1

× Λ

(

s, ∥x− y∥∗, ∥x− y∥∗,
∥x− y∥∗

Γ(2 − β)
,m0∥x− y∥∗



ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

× Λ

(

s, ∥x− y∥∗, ∥x− y∥∗,
∥x− y∥∗

Γ(2 − β)
,m0∥x− y∥



ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

× Λ

(

s, ∥x− y∥∗, ∥x− y∥∗,
∥x− y∥∗

Γ(2 − β)
,m0∥x− y∥∗



ds

≤ 1

Γ(α)

∫ t

0
(t− s)α−1

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds
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+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds

≤ 1

Γ(α)

∫ t

0
(t− s)α−1(θ(s) + ϵ)ϵds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1(θ(s) + ϵ)ϵds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1(θ(s) + ϵ)ϵds

≤ 1

Γ(α)
[
∫ 1

0
(1 − s)αi−2θ(s)ds+ ϵ

∫ t

0
(t− s)αi−1θ(s)ds]ϵ

+
tk

♣∆♣Γ(α)
[
∫ 1

0
(1 − s)α−2θ(s)ds+ ϵ

∫ 1

0
(1 − s)α−1θ(s)ds]ϵ

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

[∫ 1

0
(1 − s)αi−2θ(s)ds

+ϵ
∫ γi

0
(γi − s)α−βi−1θ(s)ds



ϵ

=
1

Γ(α)

[

∥θ̂∥[0,1] +
ϵ

α
tα


ϵ+
tk

♣∆♣Γ(α)

[

∥θ̂∥[0,1] +
ϵ

α



ϵ

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1] +
ϵ

α− βi

γ
α−βi

i

]

ϵ.(2.2)

Hence,

∥Fx− Fy∥ ≤
(

1

Γ(α)
+

1

♣∆♣Γ(α)
+

1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1]

+

(

1

Γ(α+ 1)
+

1

♣∆♣Γ(α+ 1)
+

1

♣∆♣
m
∑

i=1

λiγ
α−βi

i

Γ(α− βi + 1)



ϵ

]

ϵ.

Also, we have

♣F ′x(t) − F ′y(t)♣ =

∣

∣

∣

∣

∣

∫ 1

0

∂G

∂t
(t, s)



f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

]

ds

∣

∣

∣

∣

∣

≤ 1

Γ(α− 1)

∫ t

0
(t− s)α−2

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ


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− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

∣

∣

∣

∣

∣

ds

+
ktk−1

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

∣

∣

∣

∣

∣

ds

+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

∣

∣

∣

∣

∣

ds

≤ 1

Γ(α− 1)

∫ t

0
(t− s)α−2Λ

(

s, ♣x(s) − y(s)♣, ♣x′(s) − y′(s)♣,

♣Dβ(x− y)(s)♣,
∫ s

0
h(ξ)♣x(ξ) − y(ξ)♣dξ



ds

+
ktk−1

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1Λ

(

s, ♣x(s) − y(s)♣, ♣x′(s) − y′(s)♣,

♣Dβ(x− y)(s)♣,
∫ s

0
h(ξ)♣x(ξ) − y(ξ)♣dξ



ds

+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1Λ

(

s, ♣x(s) − y(s)♣,

♣x′(s) − y′(s)♣, ♣Dβ(x− y)(s)♣,
∫ s

0
h(ξ)♣x(ξ) − y(ξ)♣dξ



ds

≤ 1

Γ(α− 1)

∫ t

0
(t− s)α−2

× Λ

(

s, ∥x− y∥, ∥x′ − y′∥, ∥x′ − y′∥
Γ(2 − β)

,m0∥x− y∥


ds

+
ktk−1

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

× Λ

(

s, ∥x− y∥, ∥x′ − y′∥, ∥x′ − y′∥
Γ(2 − β)

,m0∥x− y∥


ds
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+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

× Λ

(

s, ∥x− y∥, ∥x′ − y′∥, ∥x′ − y′∥
Γ(2 − β)

,m0∥x− y∥


ds

≤ 1

Γ(α− 1)

∫ t

0
(t− s)α−2

× Λ

(

s, ∥x− y∥∗, ∥x− y∥∗,
∥x− y∥∗

Γ(2 − β)
,m0∥x− y∥∗



ds

+
ktk−1

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

× Λ

(

s, ∥x− y∥∗, ∥x− y∥∗,
∥x− y∥∗

Γ(2 − β)
,m0∥x− y∥



ds

+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

× Λ

(

s, ∥x− y∥∗, ∥x− y∥∗,
∥x− y∥∗

Γ(2 − β)
,m0∥x− y∥∗



ds

≤ 1

Γ(α− 1)

∫ t

0
(t− s)α−2

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds

+
ktk−1

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds

+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds

≤ 1

Γ(α− 1)

∫ t

0
(t− s)α−2(θ(s) + ϵ)ϵds

+
ktk−1

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1(θ(s) + ϵ)ϵds

+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1(θ(s) + ϵ)ϵds

≤ 1

Γ(α− 1)



∫ 1

0
(1 − s)αi−2θ(s)ds+ ϵ

∫ t

0
(t− s)αi−1θ(s)ds

]

ϵ

+
ktk−1

♣∆♣Γ(α)



∫ 1

0
(1 − s)αi−2θ(s)ds+ ϵ

∫ 1

0
(1 − s)α−1θ(s)ds

]

ϵ
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+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∫ 1

0
(1 − s)αi−2θ(s)ds

+ ϵ

∫ γi

0
(γi − s)α−βi−1θ(s)ds

]

ϵ

=
1

Γ(α− 1)



∥θ̂∥[0,1] +
ϵ

α
tα
]

ϵ+
ktk−1

♣∆♣Γ(α)



∥θ̂∥[0,1] +
ϵ

α

]

ϵ

+
ktk−1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1] +
ϵ

α− βi

γ
α−βi

i

]

ϵ.

Thus,

∥F ′x− F ′y∥ ≤
(

1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1]

+

(

1

Γ(α)
+

k

♣∆♣Γ(α+ 1)
+

k

♣∆♣
m
∑

i=1

λiγ
α−βi

i

Γ(α− βi + 1)



ϵ

]

ϵ,

and so

∥Fx− Fy∥∗ = max ¶∥Fx− Fy∥, ∥F ′x− F ′y∥♢

≤ max

{(

1

Γ(α)
+

1

♣∆♣Γ(α)
+

1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1]

+

(

1

Γ(α+ 1)
+

1

♣∆♣Γ(α+ 1)
+

1

♣∆♣
m
∑

i=1

λiγ
α−βi

i

Γ(α− βi + 1)



ϵ

]

ϵ,

(

1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1]

+

(

1

Γ(α)
+

k

♣∆♣Γ(α+ 1)
+

k

♣∆♣
m
∑

i=1

λiγ
α−βi

i

Γ(α− βi + 1)



ϵ

]

ϵ

}

=

(

1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1]

+

(

1

Γ(α)
+

k

♣∆♣Γ(α+ 1)
+

k

♣∆♣
m
∑

i=1

λiγ
α−βi

i

Γ(α− βi + 1)



ϵ

]

ϵ.

This concludes that ∥Fx− Fy∥∗ tends to zero as ∥x− y∥∗ tends to zero and so F is
continuous in X. Since for all 1 ≤ j ≤ n0,

lim
z→0+

Kj(Mz, . . . ,Mz)

Mz
= qj,

for each ϵ > 0 there exists δ = δ(ϵ) > 0 such that

Kj(Mz, . . . ,Mz) ≤ (qj + ϵ)Mz,
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for all 0 < z ≤ δ and 1 ≤ j ≤ n0. Since

M



1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

n0
∑

j=1

∥b̂j∥[0,1]qj

]

< 1,

there exists ϵ0 > 0 such that

M



1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

](

n0
∑

j=1

∥b̂j∥[0,1](qj + ϵ0)



< 1.

Let δ0 = δ(ϵ0). On the other hand, for almost all s ∈ [0, 1] we have

lim
z→0+

Λ(s,Mz, . . . ,Mz)

H(Mz)
= θ(s).

For the given ϵ > 0, there exists δ′ = δ′(ϵ) such that for almost everywhere on [0, 1],
Λ(s,Mz, . . . ,Mz) ≤ (θ(s) + ϵ)H(Mz) for 0 < z ≤ δ′. Since

M



1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

∥θ̂∥[0,1] < 1,

there exists ϵ1 > 0 such that

M



1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

∥θ̂∥[0,1]

+
ϵ1M

α− 1



1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

< 1.

Let δ1 = δ′(ϵ1) and δ2 = min¶δ0,
δ1

2
♢. For each z ∈ (0, δ2] and 1 ≤ j ≤ n0, we have

Kj(Mz, . . . ,Mz) ≤ (qj + ϵ0)Mz and for each z ∈ (0, δ1] we have

(2.3) Λ(s,Mz, . . . ,Mz) ≤ (θ(s) + ϵ1)H(Mz),

almost everywhere on [0, 1]. Let C = ¶x ∈ X : ∥x∥∗ ≤ δ2♢. Define α : X2 → [0,∞)
by α(x, y) = 1 whenever x, y ∈ C and α(x, y) = 0 otherwise. If α(x, y) ≥ 1, then
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x, y ∈ X and so ∥x∥∗ ≤ δ2 and ∥y∥∗ ≤ δ2. Thus, for each t ∈ [0, 1] we have

♣Fx(t)♣ =

∣

∣

∣

∣

∣

∫ 1

0
G(t, s)f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



ds

∣

∣

∣

∣

∣

≤ 1

Γ(α)

∫ t

0
(t− s)α−1

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

∣

∣

∣

∣

∣

ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

∣

∣

∣

∣

∣

ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

×
∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ

∣

∣

∣

∣

∣

ds

≤ 1

Γ(α)

∫ t

0
(t− s)α−1

×
n0
∑

j=1

bj(s)Kj

(

♣x(s)♣, ♣x′(s)♣, ♣Dβx(s)♣,
∣

∣

∣

∣

∣

∫ s

0
h(ξ)x(ξ)dξ

∣

∣

∣

∣

∣



ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

×
n0
∑

j=1

bj(s)Kj

(

♣x(s)♣, ♣x′(s)♣, ♣Dβx(s)♣,
∣

∣

∣

∣

∣

∫ s

0
h(ξ)x(ξ)dξ

∣

∣

∣

∣

∣



ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

×
n0
∑

j=1

bj(s)Kj

(

♣x(s)♣, ♣x′(s)♣, ♣Dβx(s)♣,
∣

∣

∣

∣

∣

∫ s

0
h(ξ)x(ξ)dξ

∣

∣

∣

∣

∣



ds

≤ 1

Γ(α)

n0
∑

j=1

∫ t

0
(t− s)α−1bj(s)

×Kj

(

♣x(s)♣, ♣x′(s)♣, ∥x′∥
Γ(2 − β)

, ∥x∥
∫ s

0
♣h(ξ)x(ξ)♣dξ



ds

+
n0
∑

j=1

bj(s)
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1

×Kj

(

♣x(s)♣, ♣x′(s)♣, ∥x′∥
Γ(2 − β)

, ∥x∥
∫ s

0
♣h(ξ)x(ξ)♣dξ



ds
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+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

n0
∑

j=1

∫ γi

0
(γi − s)α−βi−1bj(s)

×Kj

(

♣x(s)♣, ♣x′(s)♣, ∥x′∥
Γ(2 − β)

, ∥x∥
∫ s

0
♣h(ξ)x(ξ)♣dξ



ds

≤ 1

Γ(α)

n0
∑

j=1

∫ 1

0
(1 − s)α−1bj(s)

×Kj

(

∥x∥, ∥x′∥, ∥x′∥
Γ(2 − β)

,m0∥x∥


ds

+
n0
∑

j=1

tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1bj(s)

×Kj

(

∥x∥, ∥x′∥, ∥x′∥
Γ(2 − β)

,m0∥x∥


ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



n0
∑

j=1

∫ γi

0
(1 − s)α−2

× bj(s)Kj

(

∥x∥, ∥x′∥, ∥x′∥
Γ(2 − β)

,m0∥x∥


ds

]

≤ 1

Γ(α)

n0
∑

j=1

Kj(M∥x∥∗, . . . ,M∥x∥∗)
∫ 1

0
(1 − s)α−2bj(s)ds

+
tk

♣∆♣Γ(α)

n0
∑

j=1

Kj(M∥x∥∗, . . . ,M∥x∥∗)
∫ 1

0
(1 − s)α−2bj(s)ds

+
tk

♣∆♣
n0
∑

j=1

[Kj(M∥x∥∗, . . . ,M∥x∥∗)

×
m
∑

i=1

λi

Γ(α− βi)

∫ 1

0
(1 − s)α−2bj(s)ds]

≤ 1

Γ(α)

n0
∑

j=1

∥b̂j∥[0,1]Kj(Mδ2, . . . ,Mδ2)

+
tk

♣∆♣Γ(α)

n0
∑

j=1

∥b̂j∥[0,1]Kj(Mδ2, . . . ,Mδ2)

+
tk

♣∆♣

(

m
∑

i=1

λi

Γ(α− βi)



n0
∑

j=1

∥b̂j∥[0,1]Kj(Mδ2, . . . ,Mδ2)

=



1

Γ(α)
+

tk

♣∆♣Γ(α)
+

tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]
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×




n0
∑

j=1

∥b̂j∥[0,1]Kj(Mδ2, . . . ,Mδ2)



 .

Hence,

∥Fx∥ ≤


1

Γ(α)
+

1

♣∆♣Γ(α)
+

1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

·


n0
∑

j=1

∥b̂j∥[0,1]Kj(Mδ2, . . . ,Mδ2)

]

≤


1

Γ(α)
+

1

♣∆♣Γ(α)
+

1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

·


n0
∑

j=1

∥b̂j∥[0,1](qj + ϵ0)

]

Mδ2

≤


1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

·


n0
∑

j=1

∥b̂j∥[0,1](qj + ϵ0)

]

Mδ2 ≤ δ2.

Similarly, one can concluded that

∥F ′x∥ ≤


1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

×


n0
∑

j=1

∥b̂j∥[0,1]Kj(Mδ2, . . . ,Mδ2)

]

≤


1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

×


n0
∑

j=1

∥b̂j∥[0,1](qj + ϵ0)

]

Mδ2 ≤ δ2,

and so ∥Fx∥∗ = max¶∥Fx∥, ∥F ′x∥♢ ≤ δ2. Thus, Fx ∈ C. Similarly, we can show
that Fy ∈ C. Hence, α(Fx, Fy) ≥ 1. It is obvious that C ̸= ϕ. For x0 ∈ C, we have
Fx0 ∈ C and so α(x0, Fx0) ≥ 1. Put

λ := M



1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

∥θ̂∥[0,1].

Let x, y ∈ C. Then, α(x, y) = 1. On the other hand by using (2.2), for each x, y ∈ X

and t ∈ [0, 1] we have

♣Fx(t) − Fy(t)♣ ≤
∫ 1

0
♣G(t, s)♣

∣

∣

∣

∣

∣

f

(

s, x(s), x′(s), Dβx(s),
∫ s

0
h(ξ)x(ξ)dξ



− f

(

s, y(s), y′(s), Dβy(s),
∫ s

0
h(ξ)y(ξ)dξ

∣

∣

∣

∣

∣

ds

≤ 1

Γ(α)

∫ t

0
(t− s)α−1

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1
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× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

∫ γi

0
(γi − s)α−βi−1

× Λ(s,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗,M∥x− y∥∗)ds.

If x, y ∈ C, then ∥x∥∗ < δ1 and ∥y∥∗ < δ1 and so

∥x− y∥∗ < ∥x∥∗ + ∥y∥∗ < 2δ∗ ≤ δ1.

Hence, by using (2.3) we have

Λ(s,M∥x− y∥∗, . . . ,M∥x− y∥∗) ≤ (θ(s) + ϵ1)H(M∥x− y∥∗).

Thus, for each t ∈ [0, 1] and x, y ∈ C we have

♣Fx(t) − Fy(t)♣ ≤ 1

Γ(α)

∫ t

0
(t− s)α−1(θ(s) + ϵ1)H(M∥x− y∥∗)ds

+
tk

♣∆♣Γ(α)

∫ 1

0
(1 − s)α−1(θ(s) + ϵ1)H(M∥x− y∥∗)ds

+
tk

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

×
∫ γi

0
(γi − s)α−βi−1(θ(s) + ϵ1)H(M∥x− y∥∗)ds

≤ 1

Γ(α)
H(M∥x− y∥∗)

×


∫ 1

0
(1 − s)α−2θ(s)ds+ ϵ1

∫ 1

0
(1 − s)α−2θ(s)ds

]

+
tk

♣∆♣Γ(α)
H(M∥x− y∥∗)

×


∫ 1

0
(1 − s)α−2θ(s)ds+ ϵ1

∫ 1

0
(1 − s)α−2θ(s)ds

]

+
tk

♣∆♣H(M∥x− y∥∗)

×
m
∑

i=1

λi

Γ(α− βi)



∫ 1

0
(1 − s)α−2θ(s)ds+ ϵ1

∫ 1

0
(1 − s)α−2θ(s)ds

]

= H(M∥x− y∥∗)

(

∥θ̂∥[0,1]

Γ(α)
+
tk∥θ̂∥[0,1]

♣∆♣Γ(α)
+
tk∥θ̂∥[0,1]

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



+
ϵ1

α− 1

(

∥θ̂∥[0,1]

Γ(α)
+
tk∥θ̂∥[0,1]

♣∆♣Γ(α)
+
tk∥θ̂∥[0,1]

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

.
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Hence,

∥Fx− Fy∥ ≤
(

1

Γ(α)
+

1

♣∆♣Γ(α)
+

1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1]

+
ϵ1

α− 1

(

1

Γ(α)
+

1

♣∆♣Γ(α)
+

1

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

H(M∥x− y∥∗)

≤ M

(

1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)



∥θ̂∥[0,1]

+
ϵ1M

α− 1

(

1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

H(∥x− y∥∗)

= λH(∥x− y∥∗).

Similarly, we conclude that ∥F ′x− F ′y∥ ≤ λH(∥x− y∥∗). Hence,

∥Fx− Fy∥∗ = max¶∥Fx− Fy∥, ∥F ′x− F ′y∥♢
≤ λH(∥x− y∥∗) = ψ(∥x− y∥∗),

where ψ : [0,∞) → [0,∞) is defined as ψ(t) = λH(t). Since H is non-decreasing and
λ is positive, ψ is non-decreasing. Also,

∞
∑

i=1

ψi(t) = H∞(t)
λ

1 − λ
,

where H∞(t) = limi→∞ H i(t). If x ̸= C or y ̸= C, then α(x, y) = 0 and so
α(x, y)d(Fx, Fy) ≤ ψ(d(x, y)). Thus, α(x, y)d(Fx, Fy) ≤ ψ(d(x, y)) for all x, y ∈ C.
Now by using Lemma 1.1, F has a fixed point which is the solution of the problem. □

Now, we provide an example to illustrate our main result.

Example 2.1. Consider the pointwise defined problem

(2.4) D
7

2x(t) = f

(

t, x(t), x′(t), D
1

2x(t),
∫ t

0
ξx(ξ)dξ



,

with boundary conditions x(0) = 0, x(j)(0) = 0 for j ≥ 2 and j ̸= 3 and

x(1) =
1

4
D

1

3x

(

1

10

)

+
1

3
D

1

2x

(

1

5

)

,

where

f(t, x1, . . . , x4) =
t

4p(t)
(♣x1♣ + · · · + ♣x4♣),

p(t) = 0 whenever t ∈ [0, 1] ∩ Q and p(t) = 1 whenever t ∈ [0, 1] ∩ Qc. Put h(t) =
t, Λ(t, x1, . . . , x4) = f(t, x1, . . . , x4), H(z) = z, θ(t) = t

p(t)
, n0 = 1, b1(t) = t

4p(t)
,

K1(x1, . . . , x4) = ♣x1♣ + · · · + ♣x4♣ and q1 = 4. Then

m0 =
∫ 1

0
h(ξ)d(ξ) =

∫ 1

0
ξd(ξ) =

1

2
,
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Λ(t, x1, . . . , x4) is a positive and non-decreasing mapping with respect to x1, . . . , x4

and

lim
z→0+

Λ(t, z, . . . , z)

H(z)
= θ(t),

for almost all t ∈ [0, 1], H : [0,∞) → [0,∞) is a linear mapping, limz→0+ H(z) = 0

and limi→∞ H i(t) = t < ∞ for all t ∈ [0,∞), ∥θ̂∥[0,1] ≤ 2
5
,

♣f(t, x1, . . . , x4)♣ ≤
n0
∑

k=1

bj(t)Kj(♣x1♣, . . . , ♣x4♣) = b1(t)K1(♣x1♣, . . . , ♣x4♣),

almost everywhere on [0, 1], K1(♣x1♣, . . . , ♣x4♣) is a positive and non-decreasing mapping

with respect to x1, . . . , x4, limz→0+
K1(z,...,z)

z
= 4 = q1 and ∥b̂1∥[0,1] ≤ 2

20
. Also we have

M = max

{

1,
1

Γ(2 − β)
,m0

}

= max

{

1,
1

Γ(3
2
)
,
1

2

}

=
2√
π

and

♣∆♣ :=

∣

∣

∣

∣

∣

k!
m
∑

i=1

λi

Γ(k + 1 − βi)
γ

k−βi

i − 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3!



1
4

Γ(4 − 1
3
)

(

1

10

)4− 1

3

+
1
3

Γ
(

4 − 1
2

)

(

1

5

)4− 1

2

]

− 1

∣

∣

∣

∣

∣

≥ 0.997.

Since


1

Γ(α− 1)
+

k

♣∆♣Γ(α)
+

k

♣∆♣
m
∑

i=1

λi

Γ(α− βi)

]

max

{

n0
∑

j=1

∥b̂j∥[0,1]qj, ∥θ̂∥[0,1]

}

≤


1

Γ(7
2
)

+
3

0.997Γ(7
2
)

+
3

0.997





1
4

Γ(7
2

− 1
3
)

+
1
3

Γ
(

7
2

− 1
2

)





]

max

{

2

20
× 4,

2

5

}

<



8

15
√
π

+
8

0.997 × 5
√
π

+
3

0.997

(

1
4

+ 1
3

6

]

× 2

5

<0.604 <
1

M
.

By using Theorem 2.1, we conclude that the problem (2.4) has a solution.
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N-CUBIC SETS APPLIED TO LINEAR SPACES

P. R. KAVYASREE1∗ AND B. SURENDER REDDY1

Abstract. The concept of N-fuzzy sets is a good mathematical tool to deal with
uncertainties that use the co-domain [−1, 0] for the membership function. The
notion of N-cubic sets is defined by combining interval-valued N-fuzzy sets and
N-fuzzy sets. Using this N-cubic sets, we initiate a new theory called N-cubic linear
spaces. Motivated by the notion of cubic linear spaces we define P -union (resp.
R-union), P -intersection (resp. R-intersection) of N-cubic linear spaces. The notion
of internal and external N-cubic linear spaces and their properties are investigated.

1. Introduction

The classical set theory failed to handle uncertain, vague and clearly not defined
objects because of its limitation to a bivalent condition which is precise in character
- an element either belongs or does not belong to the set. As it is well known that
Zadeh [19] pioneered the study of fuzzy sets in 1965, which can handle various types
of uncertainties successfully in different fields. In contrast to classical set theory fuzzy
set theory permits gradual assessment of membership of elements in a set. Fuzzy
set theory has rich potential for application in several directions such as topology,
analysis, logic, group theory and, semigroup theory. After a decade in 1975, Zadeh [20]
introduced interval-valued fuzzy sets as a generalization of a fuzzy set whose members
are mapped to the collection of closed subintervals of [0, 1]. Attansov [1, 2], further
extended the idea of fuzzy sets to intuitionistic fuzzy sets where one can handle
membership as well as non-membership of an element. This approach gradually
replaced fuzzy sets in dealing with uncertanity and vagueness.

Key words and phrases. N-Interval number, interval-valued N-fuzzy linear space, N-cubic linear
space, internal and external N-cubic linear spaces, P -intersection and P -union, R-intersection and
R-union.
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Another extension of fuzzy set theory is cubic set theory introduced by Jun et
al. [5] in 2010 and examined many properties of cubic sets like internal cubic sets,
external cubic sets, P -union, P -intersection, R-union and R-intersection of internal
and external cubic sets. Since cubic sets undertake positive part of many physical
problems and took no notice of negative aspects wholly. Jun et al [4] brought up
a negative valued function and formulated N-structures. Moreover, they applied
N structure theory to subtraction algebra and BCK/BCI algebra [6]. This paved
way to the idea of N-cubic sets introduced by Jun [9] combining N-fuzzy sets and
interval-valued N-fuzzy sets to cover the negative part of cubic sets along the codomain
[−1, 0].

An abundant measure of efforts was executed by researchers in extending fuzzy sets
to groups, rings, vector spaces and other branches of mathematics. G. Lubczonok
and V. Murali [10] introduced the theory of flags and fuzzy subspaces of vector spaces.
Kastras and Liu [7] applied the concept of fuzzy sets to the elementary theory of
vector spaces and topological vector spaces. Nanda [11] introduced the concept of
fuzzy linear space. Later Gu Wexiang and Lu [18] redefined the concept of fuzzy
field and fuzzy linear space and gave some fundamental properties. Vijaybalaji et
al. further advanced the theory to cubic linear space combining interval-valued fuzzy
linear space and fuzzy linear space and their properties are presented in [17].

In this paper we present the notion of N-cubic linear spaces. After providing
essential background on cubic sets, N-cubic linear spaces and their intersection and
union properties we confine section 3 to define the concept of N-cubic linear spaces.
We introduce the P -union (resp. P -intersection) and R-union (resp. R-intersection)
in N-Cubic linear spaces. We show that N-cubic linear space is closed with respect
to R-intersection. By giving examples we disprove that R-union, P -union and P -
intersection of two N-cubic linear spaces is again a N-cubic linear space. In section 4,
we introduce the concept of internal N-cubic linear space and external N-cubic linear
space. We also show that internal N-cubic linear space is not closed with respect to
P -union, P -intersection and R-union (resp. external) by providing counter examples.

2. Preliminaries

Definition 2.1 ([20]). An N-interval number is a closed subinterval of [−1, 0] and
the collection of all closed subintervals of [−1, 0] is denoted by D[−1, 0]. It is of the

form D[−1, 0] = {̂i = [i−, i+] : i− ≤ i+, i−, i+ ∈ [0, 1]♢. Notably the operations “≥”,
“≤”, “=”, “max”, “min” are defined as follows:

(i) î1 ≥ î2 if and only if i1
− ≥ i2

− and i1
+ ≥ i2

+;

(ii) î1 ≤ î2 if and only if i1
− ≤ i2

− and i1
+ ≤ i2

+;

(iii) î1 = î2 if and only if i1
− = i2

− and i1
+ = i2

+;

(iv) min¶î1, î2♢ = [min¶i1
−, i2

−♢, min¶i1
+, i2

+♢];

(v) max¶î1, î2♢ = [max¶i1
−, i2

−♢, max¶i1
+, i2

+♢].
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Definition 2.2 ([20]). For an N-interval number ît ∈ D[−1, 0], where t ∈ Λ. We
define

inf ît =


inf
t∈Λ

ît

−

, inf
t∈Λ

ît

+


and sup ît =



sup
t∈Λ

ît

−

, sup
t∈Λ

ît

+

]

.

Definition 2.3 ([20]). An interval valued N-fuzzy set denoted by I
N on Y is of the

form I
N = ¶< y, IN(y) : y ∈ Y >♢, where IN : Y → D[0, 1] and I

N(y) = [ϑ−

IN
(y), ϑ+

IN
(y)]

for all y ∈ Y. Here ϑ−

IN
(y) : Y → [0, 1] and ϑ+

IN
(y)] : Y → [0, 1] are fuzzy sets in Y

such that ϑ−

IN
(y) ≤ ϑ+

IN
(y).

Definition 2.4 ([5]). Let Y be a non-empty set. A cubic set C of Y is a structure C

= ¶y, ϑ̂C(y), λC(y)♣y ∈ Y♢ in which ϑ̂C : Y → D[0, 1] and λC : Y → [0, 1].

Definition 2.5 ([5]). A cubic set C = (ϑ̂C, λC) in a non-empty set Y is said to be
an internal cubic set (in brief, ICS) if ϑ−

C
(y) ≤ λC(y) ≤ ϑ+

C
(y) for all y ∈ Y. For an

external cubic set (in brief, ECS) it is λC(y) ̸∈ (ϑ−

C
(y), ϑ+

C
(y) for all y ∈ Y.

Definition 2.6 ([17]). Let W be a linear space over field F, (W, ϑ̂) be an interval

valued fuzzy linear space, (W, λ) be a fuzzy linear space. A cubic set C = (ϑ̂C, λC)
is called a cubic linear space of W if for all σ, τ ∈ F

(i) ϑ̂(σa ∗ τb) ≥ min¶ϑ̂(a), ϑ̂(b)♢;
(ii) λ(σa ∗ τb) ≤ max¶λ(a), λ(b)♢.

Definition 2.7 ([9]). Let Y be a fixed set. A N-fuzzy set in Y is defined as NF =
¶y, λNF (y)♢ : y ∈ Y and λNF : Y → [−1, 0] a membership function for all y ∈ Y.

Definition 2.8 ([9]). Let Y be a non-empty set. A N-cubic set in Y is a structure

NC =
{

⟨y, ϑ̂NC(y), λNC(y)⟩♣y ∈ Y
}

is briefly denoted by NC = ⟨ϑ̂NC , λNC⟩ in which

ϑ̂NC = [ϑ−

NC , ϑ+

NC ] an interval valued fuzzy set and λNC : Y → [−1, 0] is a fuzzy set
in Y.

Definition 2.9 ([9]). Let Y be a non-empty set. An N-cubic set NC = ⟨ϑ̂NC , λNC⟩
in Y is said to be an internal N-cubic set (INCS) if ϑ−

NC(y) ≤ λNC ≤ ϑ+

NC(y) for all
y ∈ Y. Similarly, external N-cubic set (ENCS) if λNC(y) ̸∈ (ϑ−

NC(y), ϑ+

NC(y)).

Definition 2.10 ([9]). For any NC

i =
{

⟨y, ϑ̂NC

i

(y), λNC

i

(y)⟩ : y ∈ Y
}

, where i ∈ Λ, we

define
(a)

⋃

R
i∈Λ

NC

i =
{〈

y, (
⋃

i∈Λ ϑ̂NC

i

)(y), (
⋃

i∈Λ λNC

i

)(y) : y ∈ Y
〉}

(R-union);

(b)
⋃

P
i∈Λ

NC

i =
{〈

y, (
⋃

i∈Λ ϑ̂NC

i

)(y), (
⋃

i∈Λ λNC

i

)(y) : y ∈ Y
〉}

(P -union);

(c)
⋂

R
i∈Λ

NC

i =
{〈

y, (
⋃

i∈Λ ϑ̂NC

i

)(y), (
⋃

i∈Λ λNC

i

)(y) : y ∈ Y
〉}

(P -intersection);

(d)
⋂

R
i∈Λ

NC

i =
{〈

y, (
⋃

i∈Λ ϑ̂NC

i

)(y), (
⋃

i∈Λ λNC

i

)(y) : y ∈ Y
〉}

(R-intersection).
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3. Results

In this section, we come across the notion of N-cubic linear space. We also discuss
some results in connection with the N-cubic linear space.

3.1. N-cubic linear spaces.

Definition 3.1. For a linear space W over a field F a N-fuzzy set NF =(W, λNF ) in
W is said to be a N-fuzzy linear space WF=¶(w, λNF (w)) : w ∈ W, λNF (w) ∈ [−1, 0]♢
if it satisfies

λWF(σa ∗ τb) ≤λWF(a) ∪ λWF(a),

for any σ, τ ∈ F and a, b ∈ W.

Definition 3.2. An interval-valued N-fuzzy set ϑ̂N : W → D[−1, 0] is said to be an
interval-valued N-fuzzy linear space where W over field F if the latter conditions are
satisfied

ϑ̂N(σa ∗ τb) ≤ max
{

ϑ̂N(a), ϑ̂N(b)
}

,

for any for any σ, τ ∈ F and a, b ∈ W.

Definition 3.3. Let W be a linear space over field F , (W, ϑ̂IF) an interval-valued N-

fuzzy linear space, (W, λWF) a N-fuzzy linear space. A N-cubic set NC = ⟨ϑ̂NC , λNC⟩
in Y is said to be a N-cubic linear space of W if

(i) ϑ̂NC(σa ∗ τb) ≤ max¶ϑ̂NC(a), ϑ̂NC(b)♢;
(ii) λNC(σa ∗ τb) ≥ min¶λNC(a), λNC(b)♢,

for all a, b ∈ W and σ, τ ∈ F .

Example 3.1. Let W = M2×2(R) over the field GF (2) with the binary operation “+”
as follows

W =



w11 w12

w21 w22



,

such that w11 + w12 = w21. Then W is a vector space over the field GF (2).

Consider an interval-valued N-fuzzy set ϑ̂N in W as

ϑ̂N(a) =[−0.9, −0.8],

ϑ̂N(b) =[−0.6, −0.3],

ϑ̂N(c) =[−0.4, −0.1],

ϑ̂N(d) =[−0.8, −0.7].

Here ϑ̂N is an interval-valued N-fuzzy linear space.
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Consider a N-fuzzy set λ in W as

λN(a) = − 0.4,

λN(b) = − 0.6,

λN(c) = − 0.25,

λN(d) = − 0.9.

Here λ is a N-fuzzy linear space of W.
Consequently, the above example satisfied the conditions required for a cubic set

NC = ⟨ϑ̂NC , λNC⟩ to be a N-cubic linear space.

Remark 3.1. For any family of real numbers ¶bj : j ∈ Λ♢ we define
(i)

⋃

¶bj : j ∈ W♢ =







max¶bj : j ∈ Λ♢, if Λ is finite,

sup¶bj : j ∈ Λ♢, otherwise.

(ii)

⋂

¶bj : j ∈ W♢ =







min¶bj : j ∈ Λ♢, if Λ is finite,

inf¶bj : j ∈ Λ♢, otherwise.

In the following proposition, we prove that the R-union of a family of N-cubic
linear spaces is again a N-cubic linear space.

Definition 3.4. Let (W, ϑ̂
N1

C) and (W, ϑ̂
N2

C) be two interval-valued N-fuzzy linear
spaces. Then the union and intersection of two interval-valued N-fuzzy linear spaces
can be defined as

ϑ̂N1
∩ ϑ̂N2

(w) = min¶ϑ̂N1
(w), ϑ̂N2

(w)♢, w ∈ W,

ϑ̂N1
∪ ϑ̂N2

(w) = max¶ϑ̂N1
(w), ϑ̂N2

(w)♢, w ∈ W.

Definition 3.5. Let (W, λ
N1

C) and (W, λ
N2

C) be two interval-valued N-fuzzy linear
spaces. Then the union and intersection of N-fuzzy linear spaces can be defined as

λN1
∩ λN2

(w) = min¶λN1
(w), λN2

(w)♢, w ∈ W,

λN1
∪ λN2

(w) = max¶λN1
(w).λN2

(w)♢, w ∈ W.

Proposition 3.1. Let N
C

1 = (ϑ̂
N1

C , λ
N1

C) and N
C

2 = (ϑ̂
N2

C , λ
N2

C) be two N-cubic

linear spaces. Then their R-intersection (NC

1 ∩ N
C

2 )R=(ϑ̂NC

1

∪ ϑ̂NC

2

, λ
N1

C ∩ λ
N2

C) is

again an N-cubic linear space.

Proof. Since ϑ̂N1
∪ ϑ̂N2

(w) = max¶ϑ̂N1
(w), ϑ̂N2

(w)♢, w ∈ W. We have

ϑ̂N1
∪ ϑ̂N2

(σw1 ∗ τw2) = max
{

ϑ̂N1
(σw1 ∗ τw2), ϑ̂N2

(σw1 ∗ τw2)
}

,

for w1, w1 ∈ W and σ, τ ∈ F .
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From Definition 3.3 we have

ϑ̂N1
∪ ϑ̂N2

(σw1 ∗ τw2) = max
{

ϑ̂N1
(σw1 ∗ τw2), ϑ̂N2

(σw1 ∗ τw2)
}

,

≤ max
{

max
{

ϑ̂N1
(w1), ϑ̂N1

(w2)
}

, max
{

ϑ̂N2
(w1), ϑ̂N2

(w2)
}}

,

= max
{

max
{

ϑ̂N1
(w1), ϑ̂N2

(w1)
}

, max
{

ϑ̂N1
(w2), ϑ̂N2

(w2)
}}

,

= max
{

ϑ̂N1
∪ ϑ̂N2

(w1), ϑ̂N1
∪ ϑ̂N2

(w2)
}

,

which imply

(3.1) (ϑ̂N1
∪ ϑ̂N2

)(σw1 ∗ τw2) ≤ max
{

ϑ̂N1
∪ ϑ̂N2

(w1), ϑ̂N1
∪ ϑ̂N2

(w2)
}

.

Hence,
⋃

i∈Λ

ϑ̂Ni
is an interval-valued N-fuzzy linear space. Since λN1

∩ λN2
(w) =

min ¶λN1
(w), λN2

(w)♢, w ∈ W. We have

λN1
∩ λN2

(σw1 ∗ τw2) = min ¶λN1
(σw1 ∗ τw2), λN2

(σw1 ∗ τw2)♢ ,

for w1, w1 ∈ W and σ, τ ∈ F .
From Definition 3.3 we have

λN1
∩ λN2

(σw1 ∗ τw2) = min ¶λN1
(σw1 ∗ τw2), λN2

(σw1 ∗ τw2)♢ ,

≥ min ¶min ¶λN1
(w1), λN1

(w2)♢ , max ¶λN2
(w1), λN2

(w2)♢♢ ,

= min ¶min ¶λN1
(w1), λN2

(w1)♢ , min ¶λN1
(w2), λN2

(w2)♢♢ ,

= min ¶λN1
∩ λN2

(w1), λN1
∩ λN2

(w2)♢ ,

which imply

(3.2) (λN1
∩ λN2

)(σw1 ∗ τw2) ≥ min ¶λN1
∩ λN2

(w1), λN1
∩ λN2

(w2)♢ .

Hence,
⋂

i∈Λ

λNi
is an interval-valued N-fuzzy linear space.

Thus from (3.1) and (3.2) the conditions required for R- intersection to be a N-cubic
linear space are satisfied. □

Remark 3.2. By taking an example we prove that the intersection of two interval-
valued N-fuzzy linear spaces do not satisfy the first condition of N-cubic linear space
as in Definition 3.3.

Example 3.2. Let W = M2×2(R) over the field GF (2) with the binary operation “+”
as in the Example 3.1.

Consider two interval-valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

in W as given in the Table 1.

Here ϑ̂N1
and ϑ̂N2

are interval-valued N-fuzzy linear spaces in W.
From the Definition 3.4

ϑ̂N1
∩ ϑ̂N2

(w11) =[−0.7, −0.6], ϑ̂N1
∩ ϑ̂N2

(w12) = [−0.5, −0.4],

ϑ̂N1
∩ ϑ̂N2

(w21) =[−0.4, −0.2], ϑ̂N1
∩ ϑ̂N2

(w22) = [−0.6, −0.4].
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Table 1. Values of interval-valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

ϑ̂N1
(w11)=[−0.7, −0.5] ϑ̂N2

(w11)=[−0.7, −0.6]

ϑ̂N1
(w12)=[−0.4, −0.1] ϑ̂N2

(w12)=[−0.5, −0.4]

ϑ̂N1
(w21)=[−0.4, −0.2] ϑ̂N2

(w21)=[−0.4, −0.1]

ϑ̂N1
(w22)=[−0.3, −0.1] ϑ̂N2

(w22)=[−0.6, −0.4]

We note that ϑ̂N1
∩ ϑ̂N2

is an interval-valued N-fuzzy set in W. For σ = τ = 1 in
Definition 3.3 we have

ϑ̂N1
∩ ϑ̂N2

(w11 + w12) ≤ max
{

ϑ̂N1
∩ ϑ̂N2

(w11), ϑ̂N1
∩ ϑ̂N2

(w12)
}

,

ϑ̂N1
∩ ϑ̂N2

(w21) ≤ max ¶[−0.7, −0.6], [−0.5, −0.4]♢ = [−0.5, −0.4],

which imply ϑ̂N1
∩ ϑ̂N2

(w21) = [−0.4, −0.2] ≤ [−0.5, −0.4], which is non-sensical.
From the above example, it is clear that the intersection of two interval-valued

N-fuzzy linear spaces need not be an interval-valued N-fuzzy linear space.

Remark 3.3. Similarly, by taking an example, we prove that the union of two N-
fuzzy linear spaces does not satisfy the second condition of N-cubic linear space as in
Definition 3.3.

Example 3.3. Let W = M2×2(R) over the field GF (2) with the binary operation “+”
as in the Example 3.1.

Consider a N-fuzzy set λN in W as given in the Table 2. We note that λN1
and

Table 2. Values of N-fuzzy sets λN

λN1
(w11)=−0.5 λN2

(w11)=−0.2

λN1
(w12)=−0.3 λN2

(w12)=−0.85

λN1
(w21)=−0.4 λN2

(w21)=−0.7

λN1
(w22)=−0.2 λN2

(w22)=−0.6

λN2
are N-fuzzy linear spaces in W. From Definition 3.5 we have

λN1
∪ λN2

(w11) = −0.2, λN1
∪ λN2

(w12) = −0.3,

λN1
∪ λN2

(w21) = −0.4, λN1
∪ λN2

(w22) = −0.2.

We note that λN1
and λN2

are N-fuzzy sets in W.
For σ = τ = 1 in Definition 3.3 we have

λN1
∪ λN2

(w11 + w12) ≥ min ¶λN1
∪ λN2

(w11), λN1
∪ λN2

(w12)♢ ,

λN1
∪ λN2

(w21) ≥ min ¶−0.2, −0.3♢ = −0.3,
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which imply λN1
∪ λN2

(w21) = −0.4 ≥ −0.3, which is non-sensical.
From the above example, it is clear that the intersection of two N-fuzzy linear

spaces need not be a N-fuzzy linear space.

Lemma 3.1. From the above theorem and examples following statements can be

proved.

(i) Let N
C

1 = (ϑ̂
N1

C , λ
N1

C) and N
C

2 = (ϑ̂
N2

C , λ
N2

C) be two N-cubic linear spaces.

Then their R-union (NC

1 ∪ N
C

2 )R = (ϑ̂NC

1

∩ ϑ̂NC

2

, λ
N1

C ∪ λ
N2

C) need not be a N-cubic

linear space.

(ii) Let NC

1 = (ϑ̂
N1

C , λ
N1

C) and N
C

2 = (ϑ̂
N2

C , λ
N2

C) be two N-cubic linear spaces.

Then their P -union (NC

1 ∪ N
C

2 )P = (ϑ̂NC

1

∩ ϑ̂NC

2

, λ
N1

C ∩ λ
N2

C) need not be a N-cubic

linear space.

(iii) Let NC

1 = (ϑ̂
N1

C , λ
N1

C) and N
C

2 = (ϑ̂
N2

C , λ
N2

C) be two N-cubic linear spaces.

Then their P -intersection (NC

1 ∩ N
C

2 )P = (ϑ̂NC

1

∪ ϑ̂NC

2

, λ
N1

C ∪ λ
N2

C) need not be a

N-cubic linear space.

Proof. (i) From Example 3.2 we can observe that intersection of two interval-valued

N-fuzzy linear spaces ϑ̂N1
∩ ϑ̂N2

do not satisfy the first condition of N-cubic linear
space as in Definition 3.3 and from Example 3.3 union of two N-fuzzy linear spaces
(λN1

∪λN2
) do not satisfy the second condition of N-cubic linear space as in Definition

3.3. Therefore, the R-union (NC

1 ∪N
C

2 )R = (ϑ̂NC

1

∩ ϑ̂NC

2

, λ
N1

C ∪λ
N2

C) is not a N-cubic
linear space.

(ii) Consider λN1
and λN2

as in Example 3.3. Now by Definition 3.5 λN1
∩λN2

(w) =
min¶λN1

(w), λN2
(w)♢, w ∈ W. Therefore,

λN1
∩ λN2

(w11) = −0.5, λN1
∩ λN2

(w12) = −0.85,

λN1
∩ λN2

(w21) = −0.7, λN1
∩ λN2

(w22) = −0.6.

We note that λN1
∩ λN2

is an N-fuzzy set in W. For σ = τ = 1 in Definition 3.3 we
have

λN1
∩ λN2

(w11 + w12) ≥ min ¶λN1
∩ λN2

(w11), λN1
∩ λN2

(w12)♢ ,

λN1
∩ λN2

(w21) ≥ min ¶−0.5, −0.85♢ = −0.85,

which imply λN1
∩ λN2

(w21) = −0.7 ≥ −0.85. Certainly, (λN1
∩ λN2

) satisfies the

second condition of N-cubic linear spaces. But from Example 3.2 (ϑ̂N1
∩ ϑ̂N2

) is not

an interval-valued N-fuzzy linear space. Therefore, P -union (NC

1 ∪ N
C

2 )P =(ϑ̂NC

1

∩

ϑ̂NC

2

, λ
N1

C ∩ λ
N2

C) is not a N-cubic linear space.

(iii) Consider ϑ̂N1
and ϑ̂N2

as in Example 3.2. Now by Definition 3.4 ϑ̂N1
∪ϑ̂N2

(w) =

max¶ϑ̂N1
(w), ϑ̂N2

(w)♢, w ∈ W, we have

ϑ̂N1
∪ ϑ̂N2

(w11) =[−0.7, −0.5], ϑ̂N1
∪ ϑ̂N2

(w12) = [−0.4, −0.1],

ϑ̂N1
∪ ϑ̂N2

(w21) =[−0.4, −0.1], ϑ̂N1
∪ ϑ̂N2

(w22) = [−0.3, −0.1].
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We note that ϑ̂N1
∩ ϑ̂N2

is an interval-valued N-fuzzy set in W. For σ = τ = 1 in
Definition 3.3 we have

ϑ̂N1
∪ ϑ̂N2

(w11 + w12) ≤ max
{

ϑ̂N1
∪ ϑ̂N2

(w11), ϑ̂N1
∪ ϑ̂N2

(w12)
}

,

ϑ̂N1
∪ ϑ̂N2

(w21) ≤ max ¶[−0.7, −0.5], [−0.4, −0.1]♢ = [−0.4, −0.1],

which imply ϑ̂N1
∩ ϑ̂N2

(w21) = [−0.4, −0.1] ≤ [−0.4, −0.1]. Certainly, (λN1
∩ λN2

)
satisfies the second condition of N-cubic linear spaces. But from Example 3.3
(λN1

∪ λN2
) is not a N-fuzzy linear space. Therefore, P -intersection

(NC

1 ∩ N
C

2 )P = (ϑ̂NC

1

∪ ϑ̂NC

2

, λ
N1

C ∪ λ
N2

C)

need not be a N-cubic linear space. □

4. Internal and External N-Cubic Linear Spaces

In this section, we come out with the notion of internal and external N-cubic linear
spaces and confer some of their properties.

Definition 4.1. Suppose W be a linear space over a field F . A N-cubic set NC =
⟨ϑ̂NC , λNC⟩ is said to be an internal N-cubic linear space (shortly, INCLS) if

ϑ̂−

NC(σw1 ∗ τw2) ≤ λNC(σw1 ∗ τw2) ≤ ϑ̂+

NC(σw1 ∗ τw2),

for all w1, w2 ∈ W and σ, τ ∈ F .

Example 4.1. Let W = M2×2(R) over the field GF (2) with the binary operation “+”

as in the Example 3.1. Consider an interval-valued N-fuzzy set ϑ̂N in W as

ϑ̂N(w11) =[−0.5, −0.3], ϑ̂N(w12) = [−0.4, −0.1],

ϑ̂N(w21) =[−0.8, −0.7], ϑ̂N(w22) = [−0.6, −0.4].

Here ϑ̂N is an interval-valued N-fuzzy linear space.
Consider a N-fuzzy set λ in W as

λN(w11) = − 0.7, λN(w12) = −0.6,

λN(w21) = − 0.85, λN(w22) = −0.4.

Here ϑ̂N is an interval-valued N-fuzzy linear space. For σ = τ = 1 in Definition 4.1
we have

ϑ̂−

NC(w11 + w12) ≤λNC(w11 + w12) ≤ ϑ̂+

NC(w11 + w12),

ϑ̂−

NC(w21) ≤λNC(w21) ≤ ϑ̂+

NC(w21),

which imply −0.85 ∈ [−0.8, −0.7]. So, NC = ⟨ϑ̂NC , λNC⟩ is an INCLS.
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Definition 4.2. Suppose W be a linear space over a field F . A N-cubic set NC =
⟨ϑ̂NC , λNC⟩ is said to be an external N-cubic linear space (shortly, ENCLS) if

λNC(σw1 ∗ τw2) /∈


ϑ̂−

NC(σw1 ∗ τw2), ϑ̂+

NC(σw1 ∗ τw2)


,

for all w1, w2 ∈ W and σ, τ ∈ F .

Example 4.2. Let W = M2×2(R) over the field GF (2) with the binary operation “+”

as in the Example 3.1. Consider an interval-valued N-fuzzy set ϑ̂N in W as

ϑ̂N(w11) =[−0.5, −0.1], ϑ̂N(w12) = [−0.7, −0.4],

ϑ̂N(w21) =[−0.8, −0.6], ϑ̂N(w22) = [−0.6, −0.3].

Here ϑ̂N is an interval-valued N-fuzzy linear space. Consider a N-fuzzy set λ in W as

λN(w) =







−0.9, when w = w11,

−0.95, otherwise.

For σ = τ = 1 in Definition 4.2 we have

λNC(w11 + w12) /∈


ϑ̂−

NC(w11 + w12), ϑ̂+

NC(w11 + w12)


,

λNC(w21) /∈


ϑ̂−

NC(w21), ϑ̂+

NC(w21)


,

which imply −0.95 /∈ [−0.8, −0.6]. So, NC = ⟨ϑ̂NC , λNC⟩ is an ENCLS.

Remark 4.1. In the following proposition, we present that the R-intersection of a
family of INCLS’s is again an INCLS (resp. ENCLS).

Proposition 4.1. Let N
I
1 = (ϑ̂

N1
C , λ

N1
C) and N

I
2 = (ϑ̂

N2
C , λ

N2
C) be two INCLS.

Then their R-intersection (N1 ∩ N2)
I
R = (ϑ̂

N1
C ∪ ϑ̂

N2
C , λ

N1
C ∩ λ

N2
C) is an INCLS.

Proof. Considering the fact that N
I
1 and N

I
2 are INCLS in W, we have

ϑ̂−

N1
C(σw1 ∗ τw2) ≤ λ

N1
C(σw1 ∗ τw2) ≤ ϑ̂+

N1
C(σw1 ∗ τw2),

ϑ̂−

N2
C(σw1 ∗ τw2) ≤ λ

N2
C(σw1 ∗ τw2) ≤ ϑ̂+

N2
C(σw1 ∗ τw2),

for all w1, w2 ∈ W and σ, τ ∈ F . Now since the union of interval-valued fuzzy linear
spaces is again an interval-valued N-fuzzy linear space and intersection of N-fuzzy
linear space is again a fuzzy linear space. We have

(ϑ̂
N1

C ∪ ϑ̂
N2

C)−(σw1 ∗ τw2) ≤(λ
N1

C ∩ λ
N2

C)(σw1 ∗ τw2)

≤(ϑ̂
N1

C ∪ ϑ̂
N2

C)+(σw1 ∗ τw2).

Therefore, (N1 ∩ N2)
I
R = (ϑ̂

N1
C ∪ ϑ̂

N2
C , λ

N1
C ∩ λ

N2
C) is an INCLS. □

Proposition 4.2. Let N
E
1 = (ϑ̂

N1
C , λ

N1
C) and N

E
2 = (ϑ̂

N2
C , λ

N2
C) be two ENCLS.

Then their R-intersection (N1 ∩ N2)
E
R = (ϑ̂

N1
C ∪ ϑ̂

N2
C , λ

N1
C ∩ λ

N2
C) is again an

ENCLS.
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Proof. Considering the fact that N
I
1 and N

I
2 are ENCLS in W, we have

λ
N1

C(σw1 ∗ τw2) /∈


(ϑ̂
N1

C)−(σw1 ∗ τw2), (ϑ̂
N1

C)+(σw1 ∗ τw2)


,

λ
N2

C(σw1 ∗ τw2) /∈


(ϑ̂
N2

C)−(σw1 ∗ τw2), (ϑ̂
N2

C)+(σw1 ∗ τw2)


,

for all w1, w2 ∈ W and σ, τ ∈ F . Now since the union of interval-valued fuzzy linear
spaces is again an interval-valued N-fuzzy linear space and intersection of N-fuzzy
linear space is again a fuzzy linear space. We have

(λ
N1

C ∩ λ
N2

C)(σw1 ∗ τw2)

/∈


(ϑ̂
N1

C ∪ ϑ̂
N2

C)−(σw1 ∗ τw2), (ϑ̂
N1

C ∪ ϑ̂
N2

C)+(σw1 ∗ τw2)


.

Therefore, (N1 ∩ N2)
I
R = (ϑ̂

N1
C ∪ ϑ̂

N2
C , λ

N1
C ∩ λ

N2
C) is an ENCLS. □

Remark 4.2. By taking an example, we disprove the statement that the P -intersection
of two interior N-cubic linear spaces is again an interior N-cubic linear space.

Proposition 4.3. Let N
I
1 = (ϑ̂

N1
C , λ

N1
C) and N

I
2 = (ϑ̂

N2
C , λ

N2
C) be two INCLS.

Then their P -intersection (N1 ∩ N2)
I
P = (ϑ̂

N1
C ∪ ϑ̂

N2
C , λ

N1
C ∪ λ

N2
C) need not be an

INCLS.

Proof. The statement can be proved by giving an example below.

Example 4.3. Let W = M2×2(R) over the field GF (2) with the binary operation “+”
as in the Example 3.1.

Define two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

in W as given in the Table

3. Here ϑ̂N1
and ϑ̂N2

are interval-valued N-fuzzy linear spaces in W and that we can

Table 3. Values of two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

ϑ̂N1
(w11)=[−0.8, −0.5] ϑ̂N2

(w11)=[−0.9, −0.8]

ϑ̂N1
(w12)=[−1, −0.9] ϑ̂N2

(w12)=[−0.6, −0.3]

ϑ̂N1
(w21)=[−0.85, −0.7] ϑ̂N2

(w21)=[−1, −0.93]

ϑ̂N1
(w22)=[−0.9, −0.78] ϑ̂N2

(w22)=[−0.7, −0.4]

check by simple calculation using Definition 3.2. From the Definition 3.4

ϑ̂N1
∪ ϑ̂N2

(w11) =[−0.8, −0.5], ϑ̂N1
∪ ϑ̂N2

(w12) = [−0.6, −0.3],

ϑ̂N1
∪ ϑ̂N2

(w21) =[−0.85, −0.7], ϑ̂N1
∪ ϑ̂N2

(w22) = [−0.7, −0.4].

We note that ϑ̂N1
∪ ϑ̂N2

is an interval-valued N-fuzzy set in W.
For σ = τ = 1 in Definition 3.3 we have

ϑ̂N1
∪ ϑ̂N2

(w11 + w12) ≤ max
{

ϑ̂N1
∪ ϑ̂N2

(w11), ϑ̂N1
∪ ϑ̂N2

(w12)
}

,

ϑ̂N1
∪ ϑ̂N2

(w21) ≤ max ¶[−0.8, −0.5], [−0.6, −0.3]♢ = [−0.6, −0.3],



586 P. R. KAVYASREE AND B. SURENDER REDDY

which imply ϑ̂N1
∪ ϑ̂N2

(w21) = [−0.85, −0.7] ≤ [−0.6, −0.3].
Now define two fuzzy sets λN1

and λN2
in W as given in the Table 4. We note that

Table 4. Value of two fuzzy sets λN1
and λN2

λN1
(w11)=−0.42 λN2

(w11)=−0.9

λN1
(w12)=−0.3 λN2

(w12)=−0.2

λN1
(w21)=−0.8 λN2

(w21)=−0.98

λN1
(w22)=−0.6 λN2

(w22)=−0.1

λN1
and λN2

are N-fuzzy linear spaces in W.
From Definition 3.5 we have

λN1
∪ λN2

(w11) = −0.42, λN1
∪ λN2

(w12) = −0.2,

λN1
∪ λN2

(w21) = −0.8, λN1
∪ λN2

(w22) = −0.1.

We note that λN1
and λN2

are N-fuzzy sets in W.
Since N1

I and N2
I are INCLS the example that we have taken will satisfy the

condition mentioned in Definition 4.1. For σ = τ = 1 in Definition 4.1 we have

ϑ̂−

NC

1

(w11 + w12) ≤λNC

1

(w11 + w12) ≤ ϑ̂+

NC

1

(w11 + w12),

ϑ̂−

NC

1

(w21) ≤λNC

1

(w21) ≤ ϑ̂+

NC

1

(w21),

which imply 0.8 ∈ [−0.85, −0.7].

Similarly, for N2
I = (ϑ̂NC

2

, λNC

2

), when σ = τ = 1 in Definition 4.1 we have

ϑ̂−

NC

2

(w11 + w12) ≤λNC

2

(w11 + w12) ≤ ϑ̂+

NC

2

(w11 + w12),

ϑ̂−

NC

2

(w21) ≤λNC

2

(w21) ≤ ϑ̂+

NC

2

(w21),

which imply 0.98 ∈ [−1, −0.93].
For σ = τ = 1 in Definition 3.3 we have

λN1
∪ λN2

(w11 + w12) ≥ min ¶λN1
∪ λN2

(w11), λN1
∪ λN2

(w12)♢ ,

λN1
∪ λN2

(w21) ≥ min¶−0.42, −0.2♢ = −0.42,

which imply λN1
∪ λN2

(w21) = −0.8 ≥ −0.42, which is non-sensical.

Therefore, the P -intersection of two INCLS need not be an INCLS. □

Remark 4.3. By taking an example, we disprove the statement that the P -intersection
of two exterior N-cubic linear spaces is again an exterior N-cubic linear space.

Proposition 4.4. Let N
E
1 = (ϑ̂

N1
C , λ

N1
C) and N

E
2 = (ϑ̂

N2
C , λ

N2
C) be two ENCLS.

Then their P -intersection (N1 ∩ N2)
E
P = (ϑ̂

N1
C ∪ ϑ̂

N2
C , λ

N1
C ∩ λ

N2
C) need not be an

ENCLS.
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Proof. The proof of the above statement follows by the example.

Example 4.4. The proof of the above statement follows by the example. Let W =
M2×2(R) over the field GF (2) with the binary operation “+” as in the Example 3.1.

Define two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

in W as given in the Table 5.

Here ϑ̂N1
and ϑ̂N2

are interval-valued N-fuzzy linear spaces in W and that we can

Table 5. Values of two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

ϑ̂N1
(w11)=[−0.55, −0.3] ϑ̂N2

(w11)=[−0.75, −0.5]

ϑ̂N1
(w12)=[−0.9, −0.8] ϑ̂N2

(w12)=[−0.4, −0.05]

ϑ̂N1
(w21)=[−0.6, −0.4] ϑ̂N2

(w21)=[−0.5, −0.2]

ϑ̂N1
(w22)=[−0.7, −0.5] ϑ̂N2

(w22)=[−0.38, −0.08]

check by simple calculation using Definition 3.2. From Definition 3.4 we have

ϑ̂N1
∪ ϑ̂N2

(w11) =[−0.55, −0.3], ϑ̂N1
∪ ϑ̂N2

(w12) = [−0.4, −0.05],

ϑ̂N1
∪ ϑ̂N2

(w21) =[−0.5, −0.2], ϑ̂N1
∪ ϑ̂N2

(w22) = [−0.38, −0.08].

We note that ϑ̂N1
∪ ϑ̂N2

is an interval-valued N-fuzzy set in W.
For σ = τ = 1 in Definition 3.3 we have

ϑ̂N1
∪ ϑ̂N2

(w11 + w12) ≤ max
{

ϑ̂N1
∪ ϑ̂N2

(w11), ϑ̂N1
∪ ϑ̂N2

(w12)
}

,

ϑ̂N1
∪ ϑ̂N2

(w21) ≤ max ¶[−0.55, −0.3], [−0.4, −0.05]♢ = [−0.4, −0.05],

which imply ϑ̂N1
∪ ϑ̂N2

(w21) = [−0.5, −0.2] ≤ [−0.4, −0.05].
Now define two fuzzy sets λN1

and λN2
in W as given in Table 6.

Table 6. Values of two fuzzy sets λN1
and λN2

λN1
(w11)=−0.2 λN2

(w11)=−0.84

λN1
(w12)=−0.32 λN2

(w12)=−0.4

λN1
(w21)=−0.7 λN2

(w21)=−0.9

λN1
(w22)=−0.25 λN2

(w22)=−0.1

We note that λN1
and λN2

are N-fuzzy linear spaces in W. From Definition 3.5 we
have

λN1
∪ λN2

(w11) = −0.2, λN1
∪ λN2

(w12) = −0.32,

λN1
∪ λN2

(w21) = −0.7, λN1
∪ λN2

(w22) = −0.1.
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We note that λN1
and λN2

are N-fuzzy sets in W. Since N1
I and N2

I are ENCLS
the example that we have taken will satisfy the condition mentioned in Definition 4.2.
For σ = τ = 1 in Definition 4.2 we have

λNC

1

(w11 + w12) /∈


ϑ̂−

NC

1

(w11 + w12), ϑ̂+

NC

1

(w11 + w12)


,

λNC

1

(w21) /∈


ϑ̂−

NC

1

(w21), ϑ̂+

NC

1

(w21)


,

which imply −0.7 /∈ [−0.6, −0.4].

Similarly, for N2
I= (ϑ̂NC

2

, λNC

2

), when σ = τ = 1 in Definition 4.2 we have

λNC

2

(w11 + w12) /∈


ϑ̂−

NC

2

(w11 + w12), ϑ̂+

NC

2

(w11 + w12)


,

λNC

2

(w21) /∈


ϑ̂−

NC

2

(w21), ϑ̂+

NC

2

(w21)


,

which imply −0.95 /∈ [−0.5, −0.2]. For σ = τ = 1 in Definition 3.3 we have

λN1
∪ λN2

(w11 + w12) ≥ min ¶λN1
∪ λN2

(w11), λN1
∪ λN2

(w12)♢ ,

λN1
∪ λN2

(w21) ≥ min ¶−0.2, −0.32♢ = −0.32,

which imply λN1
∪ λN2

(w21) = −0.7 ≥ −0.42, which is non-sensical.

Therefore, the P -intersection of two ENCLS need not be an ENCLS. □

Remark 4.4. By taking an example, we disprove the statement that the P -union of
two interior N-cubic linear spaces is again an interior N-cubic linear space.

Proposition 4.5. Let N
I
1 = (ϑ̂

N1
C , λ

N1
C) and N

I
2 = (ϑ̂

N2
C , λ

N2
C) be two INCLS.

Then their P -union (N1 ∪N2)I
P = (ϑ̂

N1
C ∩ ϑ̂

N2
C , λ

N1
C ∩ λ

N2
C) need not be an INCLS.

Proof. The statement can be proved by giving an example below.

Example 4.5. Let W = M2×2(R) over the field GF (2) with the binary operation “+”

as in the Example 3.1. Define two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

in W

as given in the Table 7. Here ϑ̂N1
and ϑ̂N2

are interval-valued N-fuzzy linear spaces

Table 7. Values of two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

ϑ̂N1
(w11)=[−0.3, −0.1] ϑ̂N2

(w11)=[−0.95, −0.85]

ϑ̂N1
(w12)=[−0.5, −0.45] ϑ̂N2

(w12)=[−1, −0.93]

ϑ̂N1
(w21)=[−0.4, −0.2] ϑ̂N2

(w21)=[−0.63, −0.5]

ϑ̂N1
(w22)=[−1, −0.9] ϑ̂N2

(w22)=[−0.8, −0.7]

in W and that we can check by simple calculation using Definition 3.2. From the
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Definition 3.4 we have

ϑ̂N1
∩ ϑ̂N2

(w11) =[−0.3, −0.1], ϑ̂N1
∩ ϑ̂N2

(w12) = [−1, −0.93],

ϑ̂N1
∩ ϑ̂N2

(w21) =[−0.63, −0.5], ϑ̂N1
∩ ϑ̂N2

(w22) = [−1, −0.9].

We note that ϑ̂N1
∩ ϑ̂N2

is an interval-valued N-fuzzy set in W. For σ = τ = 1 in
Definition 3.3 we have

ϑ̂N1
∩ ϑ̂N2

(w11 + w12) ≤ max
{

ϑ̂N1
∩ ϑ̂N2

(w11), ϑ̂N1
∩ ϑ̂N2

(w12)
}

,

ϑ̂N1
∩ ϑ̂N2

(w21) ≤ max ¶[−0.95, −0.85], [−1, −0.93]♢ = [−0.95, −0.85],

which imply ϑ̂N1
∩ ϑ̂N2

(w21) = [−0.63, −0.5] ≤ [−0.95, −0.85], which is non-sensical.
Now define two fuzzy sets λN1

and λN2
in W as given in the Table 8. We note that

Table 8. Values of two fuzzy sets λN1
and λN2

λN1
(w11)=−0.65 λN2

(w11)=−0.8

λN1
(w12)=−0.12 λN2

(w12)=−0.25

λN1
(w21)=−0.42 λN2

(w21)=−0.68

λN1
(w22)=−0.3 λN2

(w22)=−0.9

λN1
and λN2

are N-fuzzy linear spaces in W. From Definition 3.5 we have

λN1
∩ λN2

(w11) = −0.8, λN1
∩ λN2

(w12) = −0.25,

λN1
∩ λN2

(w21) = −0.68, λN1
∩ λN2

(w22) = −0.9.

We note that λN1
and λN2

are N-fuzzy sets in W. For σ = τ = 1 in Definition 4.1

ϑ̂−

NC

1

(w11 + w12) ≤λNC

1

(w11 + w12) ≤ ϑ̂+

NC

1

(w11 + w12),

ϑ̂−

NC

1

(w21) ≤λNC

1

(w21) ≤ ϑ̂+

NC

1

(w21),

which imply 0.42 ∈ [−0.4, −0.2].

Similarly, for N2
I = (ϑ̂NC

2

, λNC

2

) when σ = τ = 1 in Definition 4.1 we have

ϑ̂−

NC

2

(w11 + w12) ≤λNC

2

(w11 + w12) ≤ ϑ̂+

NC

2

(w11 + w12),

ϑ̂−

NC

2

(w21) ≤λNC

2

(w21) ≤ ϑ̂+

NC

2

(w21),

which imply 0.68 ∈ [−0.63, −0.5].
For σ = τ = 1 in Definition 3.3 we have

λN1
∩ λN2

(w11 + w12) ≥ min ¶λN1
∩ λN2

(w11), λN1
∩ λN2

(w12)♢ ,

λN1
∩ λN2

(w21) ≥ min ¶−0.8, −0.25♢ = −0.8,

which imply λN1
∩ λN2

(w21) = −0.68 ≥ −0.8. Even though the intersection of two
N-fuzzy linear spaces satisfies the first condition of Definition 3.3 the intersection of
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interval-valued N-fuzzy linear spaces failed to satisfy the second condition of Defini-
tion 3.3.

Therefore, the P -union of two INCLS need not be an INCLS. □

Remark 4.5. In the latter example, we show that the P -union of two exterior N-cubic
linear spaces need not be an exterior N-cubic linear space.

Proposition 4.6. Let N
I
1 = (ϑ̂

N1
C , λ

N1
C) and N

I
2 = (ϑ̂

N2
C , λ

N2
C) be two ENCLS.

Then their P -union (N1 ∪N2)I
P = (ϑ̂

N1
C ∩ ϑ̂

N2
C , λ

N1
C ∩λ

N2
C) need not be an ENCLS.

Proof. The statement can be proved by giving an example below.

Example 4.6. Let W = M2×2(R) over the field GF (2) with the binary operation “+”
as in the Example 3.1.

Define two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

in W as given in the Table 9.

Table 9. Values of two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

ϑ̂N1
(w11)=[−1, −0.7] ϑ̂N2

(w11)=[−0.9, −0.5]

ϑ̂N1
(w12)=[−0.75, −0.2] ϑ̂N2

(w12)=[−1, −0.6]

ϑ̂N1
(w21)=[−0.95, −0.55] ϑ̂N2

(w21)=[−0.85, −0.4]

ϑ̂N1
(w22)=[−0.6, −0.1] ϑ̂N2

(w22)=[−0.8, −0.4]

Here ϑ̂N1
and ϑ̂N2

are interval-valued N-fuzzy linear spaces in W and that we can
check by simple calculation using Definition 3.2. From the Definition 3.4 we have

ϑ̂N1
∩ ϑ̂N2

(w11) =[−1, −0.7], ϑ̂N1
∩ ϑ̂N2

(w12) = [−1, −0.6],

ϑ̂N1
∩ ϑ̂N2

(w21) =[−0.95, −0.55], ϑ̂N1
∩ ϑ̂N2

(w22) = [−0.8, −0.4].

We note that ϑ̂N1
∩ ϑ̂N2

is an interval-valued N-fuzzy set in W.
For σ = τ = 1 in Definition 3.3 we have

ϑ̂N1
∩ ϑ̂N2

(w11 + w12) ≤ max
{

ϑ̂N1
∩ ϑ̂N2

(w11), ϑ̂N1
∩ ϑ̂N2

(w12)
}

,

ϑ̂N1
∩ ϑ̂N2

(w21) ≤ max ¶[−0.1, −0.7], [−1, −0.6]♢ = [−1, −0.6],

which imply ϑ̂N1
∩ ϑ̂N2

(w21) = [−0.95, −0.55] ≤ [−1, −0.6], which is non-sensical.
Now define two fuzzy sets λN1

and λN2
in W as given in the Table 10. We note

that λN1
and λN2

are N-fuzzy linear spaces in W. From Definition 3.5 we have

λN1
∩ λN2

(w11) = −0.8, λN1
∩ λN2

(w12) = −0.75,

λN1
∩ λN2

(w21) = −0.4, λN1
∩ λN2

(w22) = −0.7.
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Table 10. Values of two fuzzy sets λN1
and λN2

λN1
(w11)=−0.8 λN2

(w11)=−0.25

λN1
(w12)=−0.6 λN2

(w12)=−0.75

λN1
(w21)=−0.4 λN2

(w21)=−0.35

λN1
(w22)=−0.3 λN2

(w22)=−0.7

We note that λN1
and λN2

are N-fuzzy sets in W. For σ = τ = 1 in Definition 4.2 we
have

λNC

1

(w11 + w12) /∈


ϑ̂−

NC

1

(w11 + w12), ϑ̂+

NC

1

(w11 + w12)


,

λNC

1

(w21) /∈


ϑ̂−

NC

1

(w21), ϑ̂+

NC

1

(w21)


,

which imply −0.4 /∈ [−0.95, −0.55]. Also,

λNC

2

(w11 + w12) /∈


ϑ̂−

NC

2

(w11 + w12), ϑ̂+

NC

2

(w11 + w12)


,

λNC

2

(w21) /∈


ϑ̂−

NC

2

(w21), ϑ̂+

NC

2

(w21)


,

which imply −0.35 /∈ [−0.85, −0.4]. For σ = τ = 1 in Definition 3.3 we have

λN1
∩ λN2

(w11 + w12) ≥ min ¶λN1
∩ λN2

(w11), λN1
∩ λN2

(w12)♢ ,

λN1
∩ λN2

(w21) ≥ min ¶−0.8, −0.75♢ = −0.8,

which imply λN1
∩ λN2

(w21) = −0.4 ≥ −0.8.

Therefore, the P -union of two ENCLS need not be an ENCLS. □

Remark 4.6. In the latter example, we show that the R-union of two interior N-cubic
linear spaces need not be an interior N-cubic linear space.

Proposition 4.7. Let N
I
1 = (ϑ̂

N1
C , λ

N1
C) and N

I
2 = (ϑ̂

N2
C , λ

N2
C) be two INCLS.

Then their R-union (N1 ∩N2)I
R = (ϑ̂

N1
C ∩ ϑ̂

N2
C , λ

N1
C ∪ λ

N2
C) need not be an INCLS.

Proof. The statement can be proved by giving an example below.

Example 4.7. Let W = M2×2(R) over the field GF (2) with the binary operation “+”

as in the Example 3.1. Define two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

in W

as given in the Table 11. Here ϑ̂N1
and ϑ̂N2

are interval-valued N-fuzzy linear spaces
in W and that we can check by simple calculation using Definition 3.2. From the
Definition 3.4 we have

ϑ̂N1
∩ ϑ̂N2

(w11) =[−0.65, −0.45], ϑ̂N1
∩ ϑ̂N2

(w12) = [−0.9, −0.8],

ϑ̂N1
∩ ϑ̂N2

(w21) = [−0.6, −0.4], ϑ̂N1
∩ ϑ̂N2

(w22) = [−1, −0.95].
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Table 11. Values of two interval valued N-fuzzy sets ϑ̂N1
and ϑ̂N2

ϑ̂N1
(w11)=[−0.65, −0.5] ϑ̂N2

(w11)=[−0.55, −0.25]

ϑ̂N1
(w12)=[−0.8, −0.7] ϑ̂N2

(w12)=[−0.9, −0.8]

ϑ̂N1
(w21)=[−0.5, −0.3] ϑ̂N2

(w21)=[−0.6, −0.4]

ϑ̂N1
(w22)=[−1, −0.95] ϑ̂N2

(w22)=[−1, −0.85]

Table 12. Values of two fuzzy sets λN1
and λN2

λN1
(w11)=−0.2 λN2

(w11)=−0.35

λN1
(w12)=−0.7 λN2

(w12)=−0.3

λN1
(w21)=−0.4 λN2

(w21)=−0.5

λN1
(w22)=−0.8 λN2

(w22)=−0.45

We note that ϑ̂N1
∩ ϑ̂N2

is an interval-valued N-fuzzy set in W. For σ = τ = 1 in
Definition 3.3 we have

ϑ̂N1
∩ ϑ̂N2

(w11 + w12) ≤ max
{

ϑ̂N1
∩ ϑ̂N2

(w11), ϑ̂N1
∩ ϑ̂N2

(w12)
}

,

ϑ̂N1
∩ ϑ̂N2

(w21) ≤ max ¶[−0.65, −0.5], [−0.9, −0.8]♢ = [−0.65, −0.5],

which imply ϑ̂N1
∩ ϑ̂N2

(w21) = [−0.6, −0.4] ≤ [−0.65, −0.5], which is non-sensical.
Now define two fuzzy sets λN1

and λN2
in W as given in the Table 12. We note

that λN1
and λN2

are N-fuzzy linear spaces in W. From Definition 3.5 we have

λN1
∪ λN2

(w11) = −0.2, λN1
∪ λN2

(w12) = −0.3,

λN1
∪ λN2

(w21) = −0.4, λN1
∪ λN2

(w22) = −0.45.

We note that λN1
and λN2

are N-fuzzy sets in W. For σ = τ = 1 in Definition 4.1 we
have

ϑ̂−

NC

1

(w11 + w12) ≤λNC

1

(w11 + w12) ≤ ϑ̂+

NC

1

(w11 + w12),

ϑ̂−

NC

1

(w21) ≤λNC

1

(w21) ≤ ϑ̂+

NC

1

(w21),

which imply −0.4 ∈ [−0.5, −0.3].

Similarly, for N2
I= (ϑ̂NC

2

, λNC

2

), when σ = τ = 1 in Definition 4.1 we have

ϑ̂−

NC

2

(w11 + w12) ≤λNC

2

(w11 + w12) ≤ ϑ̂+

NC

2

(w11 + w12),

ϑ̂−

NC

2

(w21) ≤λNC

2

(w21) ≤ ϑ̂+

NC

2

(w21),



N-CUBIC SETS APPLIED TO LINEAR SPACES 593

which imply 0.5 ∈ [−0.6, −0.4]. For σ = τ = 1 in Definition 3.3 we have

λN1
∪ λN2

(w11 + w12) ≥ min ¶λN1
∪ λN2

(w11), λN1
∪ λN2

(w12)♢ ,

λN1
∪ λN2

(w21) ≥ min ¶−0.2, −0.3♢ = −0.3,

which imply λN1
∪ λN2

(w21) = −0.4 ≥ −0.3, which is non-sensical.

Therefore, the R-union of two INCLS need not be an INCLS. □

Remark 4.7. Finally, we show that the R-union of two exterior N-cubic linear spaces
need not be an exterior N-cubic linear space. From Example 4.5 we can observe
that intersection of two interval-valued N-fuzzy linear spaces do not satisfy the first
condition of N-cubic linear spaces and in Example 4.7 we can observe that union of
two N-fuzzy linear spaces do not satisfy the second condition of N-cubic linear spaces.
Hence,

(N1 ∩ N2)
I
R =(ϑ̂

N1
C ∩ ϑ̂

N2
C , λ

N1
C ∪ λ

N2
C)

need not be an ENCLS.

5. Conclusion

We find huge literature for dealing the uncertain problems like fuzzy sets, interval-
valued fuzzy sets, intuitionistic fuzzy sets, cubic sets, N-fuzzy sets, and N-cubic
sets. But in all most all cases we see these sets are properly used for applications in
algebra and topology. In order, to extend this idea to linear spaces, we in this paper
have introduced the notion of N-cubic linear spaces which also handles the negative
features of certain things like side effects of certain medicine. The main rationale of
this paper is to extend the idea of N-cubic sets to N-cubic linear spaces and discuss
in detail two types of N-cubic linear spaces called ENCLS and INCLS with examples.
We also discuss the basic operations like P -union (resp. intersection) and R-union
(resp. intersection) intersection of N-cubic linear spaces, ENCLS and INCLS. Sooner,
different aggregation operators can be dealt with N-cubic linear spaces. We will define
Pythagorean fuzzy linear spaces by using the idea presented in this paper and [16].
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BOUNDEDNESS OF L-INDEX IN JOINT VARIABLES FOR SUM

OF ENTIRE FUNCTIONS

A. BANDURA1

Abstract. In the paper, we present sufficient conditions of boundedness of L-index
in joint variables for a sum of entire functions, where L : Cn → R

n

+ is a continuous
function, R+ = (0, +∞). They are applicable to a very wide class of entire functions
because for every entire function F in C

n with bounded multiplicities of zero points
there exists a positive continuous function L such that F has bounded L-index in
joint variables. Our propositions are generalizations of PughŠs result obtained for
entire functions of one variable of bounded index.

1. Introduction

Let us introduce a main definition. Let l : C → R+ be a fixed positive continuous
function, where R+ = (0, +∞). An entire function f is said to be of bounded l-index
[15,25] if there exists an integer m, independent of z, such that for all p and all z ∈ C,
♣f (p)(z)♣
lp(z)p!

≤ max
{

♣f (s)(z)♣
ls(z)s!

: 0 ≤ s ≤ m
}

. The least such integer m is called the l-index of

f(z) and is denoted by N(f, l). If l(z) ≡ 1, then we obtain a definition of function of
bounded index [16] and in this case we denote N(f) := N(f, 1).

In 1970, W. J. Pugh and S. M. Shah [22] posed some questions on properties of
entire functions of bounded index. One of these questions is following. II. Classes
of functions of bounded index: is the sum (or product) of two functions of bounded
index also of bounded index?

Later W. J. Pugh [21] proved that class of entire functions of bounded index is not
closed under the operation of addition of the functions. He presented an example of

Key words and phrases. Entire function of several variables, bounded L-index in joint variables,
sum of entire functions.

2010 Mathematics Subject Classification. Primary: 32A15. Secondary: 32A17, 30D20.
DOI 10.46793/KgJMat2204.595B
Received: July 19, 2019.
Accepted: February 27, 2020.

595



596 A. BANDURA

two functions, for which its sum is a function of unbounded index. Also, there were
deduced conditions providing index boundedness for sum of entire functions, when one
addend is a function of bounded index. His example was based on the fact that every
entire function with bounded multiplicities of zeros has unbounded index. Moreover,
bounded multiplicities of zeros of the entire function f : C → C is necessary and
sufficient condition for existence of some positive continuous function l : C → R+ such
that f has bounded l-index [13].

There are two approaches to introduce concept of index boundedness in multidimen-
sional complex space. The first approach uses directional derivatives in the definition.
It generates a concept of entire function of bounded L-index in direction [4, 7], where
L : Cn → R

n
+ is a positive continuous function. And the second approach uses all

possible partial derivatives in the definition. It leads to a concept of entire function of
bounded L-index in joint variables [3, 9], where L : Cn → R

n
+ is a positive continuous

vector-valued function. Pugh’s example and his theorem was generalized for entire
functions of bounded L-index in direction (see [8, 11]).

Of course, the similar question can be posed for entire functions of bounded L-
index in joint variables: What are sufficient conditions that sum of entire functions
of bounded L-index in joint variables is also a function of bounded L-index in joint
variables?

In [10], there were generalized Pugh’s example and the sufficient conditions for this
class of functions, if L ≡ 1, i.e., for entire functions of bounded index in joint variables.
Here we will formulate and prove theorems which contain sufficient conditions for
arbitrary positive continuous vector-function L : Cn → R+.

Note that for every entire function F with bounded multiplicities of zero points
[12, 13] there exists a positive continuous function L : Cn → R

n
+ such that F is of

bounded L-index in joint variables. Thus, the concept of bounded L-index in joint
variables allows studying properties of very wide class of entire functions.

The concepts of bounded L-index in a direction and bounded L-index in joint
variables have applications in analytic theory of partial differential equations. A
connection between these classses of entire functions is partially established in [6, 9].
They allow investigating properties of entire solutions of partial differential equations
[4, 7] and their system [19]. Index boundedness of entire solution yields some sharp
growth estimates, uniform distribution of zeros, regular behavior of its derivatives,
etc. There is also known such a result [23] that if entire functions f and g satisfy
differential equations with some additional conditions, then f + g will be of bounded
index. Besides, another objects of investigations in theory of bounded index are
functions analytic in a polydisc [2], in a ball [5] or in Cartesian product of a disc and
a complex plane [1].

2. Notations, Definitions and Auxiliary Results

Let us introduce some standard notations in theory of entire functions of sev-
eral variables. Let R

n and C
n be n-dimensional real and complex vector spaces,
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respectively, n ∈ N. Denote R+ = (0, +∞), 0 = (0, . . . , 0) ∈ R
n. For K =

(k1, . . . , kn) ∈ Z
n
+ let us write ∥K∥ = k1 + · · · + kn, K! = k1! · · · kn!. For A =

(a1, . . . , an) ∈ C
n, B = (b1, . . . , bn) ∈ C

n, we will use formal notations without
violation of the existence of these expressions A ± B = (a1 ± b1, . . . , an ± bn),
AB = (a1b1, . . . , anbn), A/B = (a1/b1, . . . , an/bn), AB = ab1

1 ab2
2 · · · abn

n . For A, B ∈ R
n

max¶A, B♢ = (max¶a1, b1♢, . . . , max¶an, bn♢), a notation A < B means that aj < bj

for all j ∈ ¶1, . . . , n♢. Similarly, the relation A ≤ B is defined.
For R = (r1, . . . , rn) we denote by D

n(z0, R) := ¶z ∈ C
n : ♣zj − z0

j ♣ < rj, j ∈

¶1, . . . , n♢♢ the polydisc, by T
n(z0, R) := ¶z ∈ C

n : ♣zj − z0
j ♣ = rj, j ∈ ¶1, . . . , n♢♢

its skeleton and by D
n[z0, R] := ¶z ∈ C

n : ♣zj − z0
j ♣ ≤ rj, j ∈ ¶1, . . . , n♢♢ the closed

polydisc.
For a partial derivative of entire function F (z) = F (z1, . . . , zn) we will use the

notation

F (K)(z) =
∂∥K∥F

∂zK
=

∂k1+···+knf

∂zk1
1 · · · ∂zkn

n

, where K = (k1, . . . , kn) ∈ Z
n
+.

Let L(z) = (l1(z), . . . , ln(z)), where lj(z) are positive continuous functions of vari-
able z ∈ C

n, j ∈ ¶1, 2, . . . , n♢.
An entire function F (z) is called a function of bounded L-index in joint variables

[3,9], if there exists a number m ∈ Z+ such that for all z ∈ C
n and J = (j1, j2, . . . , jn) ∈

Z
n
+

(2.1)
♣F (J)(z)♣

J !LJ(z)
≤ max

{

♣F (K)(z)♣

K!LK(z)
: K ∈ Z

n
+, ∥K∥ ≤ m

}

.

The least integer m for which inequality (2.1) holds is called L-index in joint variables
of the function F and is denoted by N(F, L). If lj(zj) ≡ 1, j ∈ ¶1, 2, . . . , n♢, then the
entire function is called a function of bounded index (in joint variables) [14, 17, 18,
20,24].

For R ∈ R
n
+, j ∈ ¶1, . . . , n♢ and L(z) = (l1(z), . . . , ln(z)) we define

λ1,j(z0, R) = inf
{

lj(z)/lj(z
0) : z ∈ Dn

[

z0, R/L(z0)
]}

, λ1,j(R) = inf
z0∈Cn

λ1,j(z0, R),

λ2,j(z0, R) = sup
{

lj(z)/lj(z
0) : z ∈ Dn

[

z0, R/L(z0)
]}

, λ2,j(R) = sup
z0∈Cn

λ2,j(z0, R),

Λk(R) =(λk,j(R), . . . , λk,n(R)), k ∈ ¶1, 2♢.

By Qn we denote a class of functions L(z) which for some R0 ∈ R
n
+ satisfy the

condition

(2.2) 0 < Λ1(R
0) ≤ Λ2(R

0) < +∞.

Note that if (2.2) holds for some R0 then it is valid for all R ∈ R
n
+.

We need the following proposition.
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Theorem 2.1 ([9]). Let L ∈ Qn. An entire function F has bounded L-index in joint

variables if and only if for any R′, R′′ ∈ R
n
+, 0 < R′ < R′′, there exists a number

p1 = p1(R
′, R′′) ≥ 1 such that for every z0 ∈ C

n

(2.3) max

{

♣F (z)♣ : z ∈ T
n



z0,
R′′

L(z0)

}

≤ p1 max

{

♣F (z)♣ : z ∈ T
n



z0,
R′

L(z0)

}

.

Lemma 2.1 ([3]). If L ∈ Qn, then for every j ∈ ¶1, . . . , n♢ and for every fixed

z∗ ∈ C
n ♣zj♣lj(z

∗ + zj1j) → ∞ as ♣zj♣ → ∞.

3. Main Result

Theorem 3.1. Let L : Cn → R
n
+ be a continuous function, F, G be entire functions

in C
n, which obey the following conditions:

a) G(z) has bounded L-index in joint variables with N(G, L) = N < +∞;
b) there exists α ∈ (0, 1) such that for all z ∈ C

n and for every ∥P∥ ≥ N + 1,

P ∈ N
n,

(3.1)
♣G(P )(z)♣

P !LP (z)
≤ α max

{

♣G(K)(z)♣

K!LK(z)
: ∥K∥ ≤ N

}

;

c) for some z0 ∈ C
n, F (z0) ̸= 0, and every z ∈ C

n one has

max

{

♣F (z′)♣ : z′ ∈ T
n



z0,
2R

L(z)

}

≤ max

{

♣G(K)(z)♣

K!LK(z)
: ∥K∥ ≤ N

}

,(3.2)

where rj = ♣zj − z0
j ♣lj(z), R = (r1, . . . , rn);

d) one of the following conditions is valid: either exists c ≥ 1 for all z ∈ C
n such

that ♣zj − z0
j ♣lj(z) ≤ 1 for some j ∈ ¶1, . . . , n♢ one has

max


♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))



♣F (z0)♣
≤ c < +∞,

or L ∈ Qn.
Then for every ε ∈ C, ♣ε♣ ≤ 1−α

2c
the function

(3.3) H(z) = G(z) + εF (z)

has bounded L-index in joint variables and N(H, L) ≤ N.

Proof. The proof uses methods and ideas from [8, 10, 21]. One should observe that
for L ∈ Qn by Lemma 2.1 the set A := ¶z ∈ C

n : ♣zj − z0
j ♣lj(z) ≤ 1 for some j ∈

¶1, . . . , n♢♢ is bounded. Then there exits c ≥ 1 such that for every z ∈ A the
inequality

max
{

♣F (z′)♣ : z′ ∈ T
n


z0, 2 max
{

Λ2(1)
L(z0)

, R
L(z)

}}

♣F (z0)♣
≤ c < +∞(3.4)

holds.
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We write Cauchy’s formula for the entire function F (z)

(3.5)
F (P )(z)

P !
=

1

(2πi)n

∫

z′∈Tn(z,R/L(z))

F (z′)

(z′ − z)P +1
dz′.

For the chosen rj = ♣zj − z0
j ♣lj(z) we have

rj

lj(z)
= ♣z′

j − zj♣ ≥ ♣z′
j − z0

j ♣ − ♣zj − z0
j ♣ = ♣z′

j − z0
j ♣ −

rj

lj(z)
.

Hence,

(3.6) ♣z′
j − z0

j ♣ ≤
2rj

lj(z)
.

From (3.5) it follows that

♣F (P )(z)♣

P !LP (z)
≤

1

(2π)nLP (z)
·

LP +1(z)

RP +1

n
∏

j=1

2πrj

lj(z)
max

{

♣F (z′)♣ : z′ ∈ T
n(z, R/L(z))

}

≤
1

RP
max

{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))

}

.(3.7)

If RP > 1, then (3.7) means that

(3.8)
♣F (P )(z)♣

P !LP (z)
≤ max

{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))

}

.

Let RP ∈ (0, 1]. Then for some j ∈ ¶1, . . . , n♢, rj = ♣zj − z0
j ♣lj(z) ∈ (0, 1]. Putting

rj = 1 for those j in (3.5) and (3.6) and R′ = max¶1, R♢, we similarly deduce

♣F (P )(z)♣

P !LP (z)
≤

1

R′P
max

{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R′/L(z))

}

=
1

R′P

max ¶♣F (z′)♣ : z′ ∈T
n(z0, 2R′/L(z))♢

max ¶♣F (z′)♣ : z′ ∈Tn(z0, 2R/L(z))♢

× max
{

♣F (z′)♣ : z′ ∈T
n(z0, 2R/L(z))

}

≤
max ¶♣F (z′)♣ : z′ ∈ T

n(z0, 2R/L(z))♢

R′P ♣F (z0)♣

× max
{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))

}

≤c max
{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))

}

,(3.9)

where

c = sup
z∈Cn,∃j∈¶1,...,n♢
♣(zj−z0

j
)lj(z)♣≤1

max ¶♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))♢

♣F (z0)♣
.
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If L ∈ Qn, then sup
{

lj(z0)

lj(z)
: z0 ∈ D

n(z, 1

L(z)
)
}

≤ λ2,j(1). This means that lj(z) ≥
lj(z0)

λ2,j(1)
. Using the inequality, we choose

c := sup
z∈Cn,∃j∈¶1,...,n♢
♣(zj−z0

j
)lj(z)♣≤1

max
{

♣F (z′)♣ : z′ ∈ T
n


z0, 2 max
{

Λ2(1)
L(z0)

, R
L(z)

}}

♣F (z0)♣
≥ 1

in (3.9). In view of (3.8) and (3.9), one has

(3.10)
♣F (P )(z)♣

P !LP (z)
≤ c max

{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))

}

,

for all P ∈ Z
n
+.

We differentiate equality (3.3) p times, ∥P∥ = p ≥ N + 1, and apply consequently
(3.1), (3.10) and (3.2) to the obtained equality

♣H(P )(z)♣

P !LP (z)
≤

♣G(P )(z)♣

P !LP (z)
+

♣ε♣♣F (P )(z)♣

P !LP (z)
≤ α max

{

♣G(K)(z)♣

K!LK(z)
: ∥K∥ ≤ N

}

+ c♣ε♣ max
{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))

}

≤(α + c♣ε♣) max

{

♣G(K)(z)♣

K!LK(z)
: ∥K∥ ≤ N

}

.(3.11)

If ∥S∥ ≤ N then (3.10) is true with P = S, but (3.1) does not hold. Therefore, the
differentiation of (3.3) give us the lower estimate

♣H(S)(z)♣

S!LS(z)
≥

♣G(S)(z)♣

S!LS(z)
−

♣ε♣♣F (S)(z)♣

S!LS(z)

≥
♣G(S)(z)♣

S!LS(z)
− c♣ε♣ max

{

♣F (z′)♣ : z′ ∈ T
n(z0, 2R/L(z))

}

,(3.12)

where ∥S∥ ≤ N. From (3.2) and (3.12) we conclude

(3.13) max

{

♣H(S)(z)♣

S!LS(z)
: ∥S∥ ≤ N

}

≥ (1 − c♣ε♣) max

{

♣G(S)(z)♣

S!LS(z)
: ∥S∥ ≤ N

}

.

If c♣ε♣ < 1, then (3.11) and (3.13) yield

♣H(P )(z)♣

P !LP (z)
≤

α + c♣ε♣

1 − c♣ε♣
max

0≤s≤N

{

♣H(S)(z)♣

S!LS(z)
: ∥S∥ ≤ N

}

,

for ∥P∥ ≥ N + 1. Assume that α+c♣ε♣
1−c♣ε♣

≤ 1. Then ♣ε♣ ≤ 1−α
2c

. For this ε the function H

has bounded L-index in joint variables with N(H, L) ≤ N. Proof of Theorem 3.1 is
complete. □

Remark 3.1. Every entire function F with N(F, L) = 0 obeys inequality (3.4) (see
proof of necessity of Theorem 3 in [9]).
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If L ∈ Qn, then condition b) in Theorem 3.1 is always satisfied. The next theorem
is valid.

Theorem 3.2. Let L ∈ Qn, α ∈ (0, 1) and F, G be entire functions in C
n, which

satisfy the following conditions:

a) G(z) has bounded L-index in joint variables;

b) for some z0 ∈ C
n, F (z0) ̸= 0, and every z ∈ C

n the inequality holds

max

{

♣F (z′)♣ : z′ ∈ T
n



z0,
2R

L(z)

}

≤ max

{

♣G(K)(z)♣

K!LK(z)
: ∥K∥ ≤ N(Gα, Lα)

}

,

where rj = ♣zj − z0
j ♣lj(z), R = (r1, . . . , rn).

If ♣ε♣ ≤ 1−α
2c

, then the function

H(z) = G(z) + εF (z)

has bounded L-index in joint variables, with N(H, L) ≤ N(Gα, Lα), where Gα(z) =
G(z/α), Lα(z) = L(z/α).

Proof. Condition b) in Theorem 3.1 always is obeyed with N(Gα, Lα) instead N =
N(G, L), where Gα(z) = G(z/α), Lα(z) = L(z/α), α ∈ (0, 1). Indeed, by Theorem 2.1,

inequality (2.3) holds for the function G. Substituting z0

α
, z

α
instead z0, z respectively

in (2.3), we obtain

max

{

♣G(z/α)♣ : z ∈ T
n



z0,
R′′α

L(z0/α)

}

≤p1 max

{

♣G(z/α)♣ : z ∈ T
n



z0,
R′α

L(z0/α)

}

.(3.14)

By Theorem 2.1 inequality (3.14) yields that Gα(z) = G(z/α) is of bounded Lα-index
in joint variables and vice versa. Therefore, for each ∥P∥ ≥ N(Gα, Lα) + 1 and
α ∈ (0, 1) we have

♣G(P )
α (z)♣

P !LP
α (z)

=
♣G(P )(z/α)♣

α∥P ∥P !LP (z/α)
≤ max

{

♣G(S)
α (z)♣

S!LS
α(z)

: ∥S∥ ≤ N(Gα, Lα)

}

= max

{

♣G(S)(z/α)♣

α∥S∥S!LS(z/α)
: ∥S∥ ≤ N(Gα, Lα)

}

.

Hence, for all z ∈ C
n

♣G(P )(z/α)♣

P !Lp(z/α)
≤ max

{

α∥P ∥−∥S∥♣G(z/α)♣

S!LS(z/α)
: ∥S∥ ≤ N(Gα, Lα)

}

≤α max

{

♣G(S)(z/α)♣

S!LS(z/α)
: ∥S∥ ≤ N(Gα, Lα)

}

.(3.15)

Thus, from inequality (3.15) it follows (3.1). □

It is easy to verify that N(Gα, Lα) ≤ N(G, L) for α ∈ (0, 1). Thus, N(Gα, Lα) in
Theorem 3.2 can be replaced by N(G, L).
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HANKEL DETERMINANTS FOR A NEW SUBCLASSES OF

ANALYTIC FUNCTIONS INVOLVING A LINEAR OPERATOR

LAXMIPRIYA PARIDA1, TEODOR BULBOACĂ2, AND ASHOK KUMAR SAHOO3

Abstract. Using the operator L(a, c) deĄned by Carlson and Shaffer, we deĄned
a new subclass of analytic functions ML(λ, a, c). The well known Fekete-Szegö
problem, upper bound of Hankel determinant of order two, and coefficient bound
of the fourth coefficient is determined. Our investigation generalises some previous
results obtained in different articles.

1. Introduction

We denote by H(D) the class of functions which are analytic in the open unit disk
D := ¶z ∈ C : ♣z♣ < 1♢, and let A be the subclass of H(D) consisting of the functions
of the form

(1.1) f(z) = z +
∞∑

k=2

ak z
k, z ∈ D.

Let P be the well-known class of Carathéodory functions, that is P ∈ H(D) with
the power series expansion

(1.2) P (z) = 1 + p1z + p2z
2 + · · · , z ∈ D,

and ReP (z) > 0 for all z ∈ D.
For two functions f, g ∈ H(D), the function f is called to be subordinate to the

function g, written f(z) ≺ g(z), if there exists a function ψ ∈ H(D), with ♣ψ(z)♣ < 1,

Key words and phrases. Analytic functions, differential subordination, Hankel determinant, Fekete-
Szegö problem, Carlson-Shaffer operator, BernoulliŠs lemniscate.
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z ∈ D and ψ(0) = 0, such that f(z) = g(ψ(z)) for all z ∈ D. In particular, if g is
univalent in D then the following equivalence relationship holds true:

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(D) ⊂ g(D).

Let hs(z) =
∑

∞

k=0 ak,s z
k, s = 1, 2, which are analytic in D, then the well-known

Hadamard (or convolution) product of h1 and h2 is given by

(h1 ∗ h2)(z) :=
∞∑

k=0

ak,1 ak,2 z
k, z ∈ D.

The Carlson-Shaffer operator [2] L(a, c) : A → A is defined by

(1.3) L(a, c)f(z) := φ̃(a, c; z) ∗ f(z), z ∈ D,

where

φ̃(a, c; z) :=
∞∑

k=0

(a)k

(c)k

zk+1, z ∈ D, a ∈ C, c ∈ C \ Z
−

0 , Z
−

0 := ¶. . . ,−2,−1, 0♢,

is the incomplete beta function and (t)k denotes the Pochhammer symbol (or the
shifted factorial) defined in terms of the Gamma function by

(t)k :=
Γ(t+ k)

Γ(t)
=

{
t(t+ 1)(t+ 2) · · · (t+ k − 1), if k ∈ N := ¶1, 2, . . . ♢,
1, if k = 0.

For f ∈ A is given by (1.1) one can see by using (1.3) that

L(a, c)f(z) = z +
∞∑

k=1

(a)k

(c)k

ak+1 z
k+1, z ∈ D,

and

zL′(a, c)f(z) = aL(a+ 1, c)f(z) − (a− 1)L(a, c)f(z), z ∈ D.

Remark 1.1. Next we will emphasize a few special cases of the operator L(a, c), as
follows:

(i) L(a, a)f(z) = f(z);
(ii) L(2, 1)f(z) = zf ′(z);
(iii) L(3, 1)f(z) = zf ′(z) + 1

2
z2f ′′(z);

(iv) L(m+1, 1)f(z) =: Dmf(z) = z
(1−z)m+1 ∗f(z), m ∈ Z, m > −1, is the well-known

Ruscheweyh derivative of f [22];
(v) L(2, 2 − µ)f(z) =: Ωµ

zf(z), 0 ≤ µ < 1, is the well-known Owa-Srivastava

fractional differential operator [18].

For the function f ∈ A of the form (1.1) Noonan and Thomas [16] defined q-th
Hankel determinant as

Hq,k(f) :=

∣∣∣∣∣∣∣∣∣∣

ak ak+1 . . . ak+q−1

ak+1 ak+2 . . . ak+q

...
...

...
...

ak+q−1 ak+q . . . ak+2q−2

∣∣∣∣∣∣∣∣∣∣

, a1 = 1, q, k ∈ N.
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The above determinant Hq,k(f) has been studied by several authors, for example,
Pommerenke [19], Noonan and Thomas [16], Ehrenborg [4] and Noor [17].

These authors studied the Hankel determinant in their own developed way: for
instance Noor [17] studied the rate of growth of Hq,k as k → ∞ for functions of
the form (1.1) with bounded boundary rotation. Unlike to Noor, Ehrenborg [4] has
studied different order Hankel determinants taking a family of exponential polynomials.
Layman’s article [11] gave some ideas on Hankel transform of an integer sequence,
and the article discusses some properties of the transform for integer sequences.

For k = 1, q = 2, a1 = 1 and k = q = 2 the Hankel determinant simplifies to the
functionals ♣a3 − a2

2♣ and ♣a2a4 − a2
3♣, called Hankel determinants of order two, denoted

by ∧1 := H2,1(f) and ∧2 := H2,2(f), respectively. It is well-known (see Duren [3])
that if f is given by (1.1) and is univalent in D, then ∧1 ≤ 1 occurs, and this result is
sharp.

For T ⊂ A, to find a sharp (best possible) upper bound of
∧̃

c := ♣a3 − c a2
2♣ for the

subclass T is generally called Fekete-Szegö problem for the subclass T, where c is a real
or a complex number. There are some subclasses of univalent functions, such that
the starlike functions, convex functions and close-to-convex functions, for which the
problem of finding sharp upper bounds for the functional

∧̃
c was completely solved

(see [5, 8–10]). For the family of analytic functions R, such that for f ∈ R we have
Re f ′(z) > 0, z ∈ D, Janteng et al. [6, 7] have found the sharp upper bound to the
second Hankel determinant ∧2. For initial work on the class R one may refer to the
article of MacGregor [15].

In our paper we have defined a subclass of A using the concept of subordination
and the linear operator L(a, c).

Definition 1.1. Let ML(λ, a, c) denotes the subclass of A, members of which are of
the form (1.1) and satisfy the subordination condition

(1.4)
zL′(a, c)f(z)

(1 − λ)L(a, c)f(z) + λz
≺

√
1 + z,

with
√

1 + z

∣∣∣∣
z=0

= 1 or equivalently

∣∣∣∣∣∣


zL′(a, c)f(z)

(1 − λ)L(a, c)f(z) + λz

]2

− 1

∣∣∣∣∣∣
< 1, z ∈ D,

where a ∈ C, c ∈ C \ Z
−

0 and 0 ≤ λ ≤ 1.

Remark 1.2. (i) We will discuss the geometrical significance of the class ML(λ, a, c).
If we set h(z) =

√
1 + z, z ∈ D, with h(0) = 1, and denote

ω := h(eiθ) =
√

1 + eiθ, θ ∈ [0, 2π] \ ¶π♢,
this yields ω2 − 1 = eiθ or ♣ω2 − 1♣ = 1. Letting ω = u+ iv, u, v ∈ R, we deduce that


u2 + v2

)2
= 2


u2 − v2

)
.
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Thus, h(D) is the region bounded by the right-half of the Bernoulli’s lemniscate

given by
{
u+ iv ∈ C : (u2 + v2)

2
= 2 (u2 − v2)

}
, which implies that the functions in

ML(λ, a, c) have a positive real part.
(ii) Using the point (i) of the Remark 1.1, for a = c we denoteML(λ) := ML(λ, a, a),

and member of this class satisfies the subordination condition

zf ′(z)

(1 − λ)f(z) + λz
≺

√
1 + z,

with
√

1 + z

∣∣∣∣
z=0

= 1 or equivalently

∣∣∣∣∣∣


zf ′(z)

(1 − λ)f(z) + λz

]2

− 1

∣∣∣∣∣∣
< 1, z ∈ D.

(iii) Remark that the subclass

ML(0) = SL∗ :=



f ∈ A :

∣∣∣∣∣∣


zf ′(z)

f(z)

]2

− 1

∣∣∣∣∣∣
< 1, z ∈ D





was introduced and studied by Sokól and Stankiewicz [25], and Raza and Mallik [21]
determined the upper bound of third Hankel determinant for the class SL∗. Also,

the subclass ML(1) :=
{
f ∈ A :

∣∣∣[f ′(z)]2 − 1
∣∣∣ < 1, z ∈ D

}
was studied by Sahoo and

Patel [23].

In our work we have used the techniques of Libera and Zlotkiewicz [12] and Koepf
[9], combined with the help of MAPLE™ software to find an upper bound of

∧̃
µ and

∧2, and of the coefficient a4 for the functions belonging to the class ML(λ, a, c).

2. Preliminaries

To establish our main results, we shall need the followings lemmas. The first lemma
is the well-known Carathéodory’s lemma (see also [20, Corollary 2.3.]).

Lemma 2.1 ([1]). If P ∈ P and given by (1.2), then ♣pk♣ ≤ 2 for all k ≥ 1 and the

result is best possible for the function P∗(z) = 1+ρz

1−ρz
, ♣ρ♣ = 1.

The next lemma gives us a majorant for the coefficients of the functions of the class
P, and more details may be found in [14, Lemma 1].

Lemma 2.2 ([13]). Let the function P given by (1.2) be a member of the class P.

Then

(2.1)
∣∣∣p2 − ν p2

1

∣∣∣ ≤ 2 max ¶1, ♣2ν − 1♣♢ , where ν ∈ C.

The result is sharp for the functions given by

P ∗(z) =
1 + ρ2z2

1 − ρ2z2
and P∗(z) =

1 + ρz

1 − ρz
, ♣ρ♣ = 1.
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Lemma 2.3 ([13]). Let the function P given by (1.2) be a member of the class P.

Then

(2.2) p2 =
1

2

[
p2

1 +

4 − p2

1

)
x
]

and

(2.3) p3 =
1

4

[
p3

1 + 2

4 − p2

1

)
p1x−


4 − p2

1

)
p1x

2 + 2

4 − p2

1

)
(1 − ♣x♣2)z

]
,

for some complex numbers x, z satisfying ♣x♣ ≤ 1 and ♣z♣ ≤ 1.

Other details regarding the above lemma my be found in [13], relations (3.9)
and (3.10).

3. Main Results

In our first result we will determine an upper bound for
∧̃

µ, and this tends to solve
the Fekete-Szegö problem for the subclass ML(λ, a, c).

Theorem 3.1. For f ∈ ML(λ, a, c) and is in the form given by (1.1) then, for any

µ ∈ C we have

∣∣∣a3 − µ a2
2

∣∣∣ ≤ ♣(c)2♣
♣(a)2♣

· 1

2(2 + λ)
(3.1)

× max

{
1,

♣(3λ− 1)(1 + λ)a(c+ 1) + 2µ(2 + λ)c(a+ 1)♣
4(1 + λ)2♣a(c+ 1)♣

}
.

Proof. If f ∈ ML(λ, a, c), from (1.4) it follows that there exists a function ψ ∈ H(D)
satisfying the conditions ψ(0) = 0 and ♣ψ(z)♣ < 1, z ∈ D, such that

(3.2)
zL′(a, c)f(z)

(1 − λ)L(a, c)f(z) + λz
=
√

1 + ψ(z), z ∈ D.

Setting

P (z) :=
1 + ψ(z)

1 − ψ(z)
= 1 + p1z + p2z

2 + · · · , z ∈ D,

then P ∈ P. From the above relation, we get

ψ(z) =
P (z) − 1

P (z) + 1
, z ∈ D,

and from (3.2) it follows that

(3.3)
zL′(a, c)f(z)

(1 − λ)L(a, c)f(z) + λz
=


2P (z)

1 + P (z)

 1

2

, z ∈ D.
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It is easy to show that


2P (z)

1 + P (z)

 1

2

=1 +
1

4
p1z +

(
1

4
p2 − 5

32
p2

1

)
z2

+
(

1

4
p3 − 5

16
p1p2 +

13

128
p3

1

)
z3 + · · · , z ∈ D,

and identifying the coefficients of z, z2 and z3 in (3.3) we deduce that

a2 =
c

a
· p1

4(1 + λ)
,(3.4)

a3 =
(c)2

(a)2

· 1

4(2 + λ)


p2 − (7λ+ 3)

8(1 + λ)
p2

1

]
,(3.5)

a4 =
(c)3

(a)3

· 1

4(3 + λ)


p3 − 7λ2 + 16λ+ 7

4(1 + λ)(2 + λ)
p1p2 +

25λ2 + 40λ+ 13

32(1 + λ)(2 + λ)
p3

1

]
.(3.6)

Thus, from (3.4) and (3.5) we get

∣∣∣a3 − µ a2
2

∣∣∣ =
1

4(2 + λ)
· ♣(c)2♣
♣(a)2♣

∣∣∣∣∣p2−


(7λ+ 3)(λ+ 1)a(c+ 1) + 2µ(2 + λ)c(a+ 1)

8(1 + λ)2a(c+ 1)

]
p2

1

∣∣∣∣∣ ,

which with the aid of the inequality (2.1) of Lemma 2.2 yields the required esti-
mate (3.1). □

For a = c the above theorem reduces to the following special case.

Corollary 3.1. If f ∈ ML(λ) and is given by (1.1), then for any µ ∈ C we have

∣∣∣a3 − µ a2
2

∣∣∣ ≤ 1

2(2 + λ)
max

{
1,

♣(3λ− 1)(1 + λ) + 2µ(2 + λ)♣
4(1 + λ)2

}
.

If we take µ ∈ R in Theorem 3.1 we get the next special case.

Corollary 3.2. If the function f ∈ ML(λ, a, c) and is given by (1.1), with µ ∈ R and

a > c ≥ 0, then

∣∣∣a3 − µ a2
2

∣∣∣ ≤





a(c+ 1)(3λ− 1)(λ+ 1) + 2µc(a+ 1)(2 + λ)

8(λ+ 1)2a(c+ 1)(2 + λ)
· (c)2

(a)2

, if µ < δ1,

1

2(2 + λ)
· (c)2

(a)2

, if δ1 ≤ µ ≤ δ2,

−a(c+ 1)(3λ− 1)(λ+ 1) + 2µc(a+ 1)(2 + λ)

8(λ+ 1)2a(c+ 1)(2 + λ)
· (c)2

(a)2

, if µ > δ2,

where

δ1 := −(7λ+ 3)(λ+ 1)

2(2 + λ)
· a(c+ 1)

c(a+ 1)
and δ2 :=

(λ+ 1)(λ+ 5)

2(2 + λ)
· a(c+ 1)

c(a+ 1)
.

Remark 3.1. (i) Putting λ = 1 in Corollary 3.1 and Corollary 3.2 we get the recent
results due to Sahoo and Patel [23, Theorem 2.1] and [23, Corollary 2.2], respectively.
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(ii) For λ = 0, Corollary 3.1 and Corollary 3.2 reduce to the results of Raza and
Malik [21, Theorem 2.1] and [21, Theorem 2.2], respectively.

The next result deals with an upper bound of ∧2 for the subclass ML(λ, a, c).

Theorem 3.2. For a ≥ c > 0, if the function f given by (1.1) belongs to the class

ML(λ, a, c), then

(3.7)
∣∣∣a2a4 − a2

3

∣∣∣ ≤


(c)2

(a)2

2
1

4(2 + λ)2
.

Proof. If f ∈ ML(λ, a, c), using a similar proof like in the proof of Theorem 3.1, from
(3.4), (3.5) and (3.6) we get

a2a4 − a2
3 = k1p

4
1 + k2p

2
1p2 + k3p1p3 + k4p

2
2,

where

k1 =
25λ2 + 40λ+ 13

512(1 + λ)2(2 + λ)(3 + λ)
· c
a

· (c)3

(a)3

−


(c)2

(a)2

2
1

16(2 + λ)2


7λ+ 3

8(1 + λ)

2

,

k2 =
7λ+ 3

64(2 + λ)2(1 + λ)


(c)2

(a)2

2

− c

a
· (c)3

(a)3

· 7λ2 + 16λ+ 7

64(1 + λ)2(2 + λ)(3 + λ)
,

k3 =
c

a
· (c)3

(a)3

· 1

16(1 + λ)(3 + λ)
,

k4 = −




(c)2

(a)2

2
1

16(2 + λ)2


 .

Using the relations (2.2) and (2.3) of Lemma 2.3, we get
∣∣∣a2a4 − a2

3

∣∣∣(3.8)

=

∣∣∣∣∣Ap
4
1 +B


4 − p2

1

)
xp2

1 +


k4

4


4 − p2

1

)
− k3

4
p2

1

] 
4 − p2

1

)
x2

+
k3

2
p1


4 − p2

1

) 
1 − ♣x♣2

)
z

∣∣∣∣∣ ,(3.9)

with ♣x♣ ≤ 1, ♣z♣ ≤ 1 and

A :=
1

4
(4k1 + 2k2 + k3 + k4) =

c(c)2

a(a)2 [1024(a+ 1)(a+ 2)(2 + λ)2(1 + λ)2(3 + λ)]

×
[
(−4ac− 13c+ a− 8)λ3 + (−11ac− 11a− 40c− 22)λ2

+ (19ac+ 36c+ 21a+ 41)λ+ (3ac+ 3c+ 5a+ 9)
]
,

B :=
1

2
(k2 + k3 + k4) =

c(c)2

[
3(c− a)λ2 + (ac− 6a+ 9c+ 2)λ− 5ac− 7a

]

a(a)2

[
128(1 + λ)(2 + λ)2(3 + λ)(a+ 1)(a+ 2)

] .



612 L. PARIDA, T. BULBOACĂ, AND A. K. SAHOO

Since P ∈ P it follows that P (e−i arg p1z) ∈ P, hence we may assume without loss
of generality that p := p1 ≥ 0, and according to Lemma 2.1 it follows that p ∈ [0, 2].
Now, using the triangle’s inequality in (3.8) and substituting ♣x♣ = t we get

∣∣∣a2a4 − a2
3

∣∣∣ ≤ ♣A♣ p4 + ♣B♣

4 − p2

)
p2t+

♣k4♣
4


4 − p2

)2
t2 +

♣k3♣
4
p2

4 − p2

)
t2

+
♣k3♣
2
p

4 − p2

)
(1 − t2) =: G(p, t), 0 ≤ p ≤ 2, 0 ≤ t ≤ 1.

Next, we will find maximum of G(p, t) on the closed rectangle [0, 2] × [0, 1]. Using
the MAPLE™ software for the following code, where we denoted C := k4 and D =
E := k3,

[> G:= abs(A)*p^4+abs(B)*(-p^2+4)*p^2*t+(1/4)*abs(C)*(-p^2+4)^2*t^2

+(1/4)*abs(D)*p^2*(-p^2+4)*t^2+(1/2)*abs(\mathbb{D})*p

*(-p^2+4)*(-t^2+1);

[> maximize(G, p = 0 .. 2, t = 0 .. 1, location);

we get

max(16 |A|, 4 |C|), {[{p = 2}, 16 |A|], [{p = 0, t = 1}, 4 |C|]}

that is
max ¶G(p, t) : (p, t) ∈ [0, 2] × [0, 1]♢ = max¶16♣A♣, 4♣C♣♢

and
16♣A♣ = G(2, t), 4♣C♣ = G(0, 1).

We will prove that under our assumption we have 4♣C♣ ≥ 16♣A♣ and therefore

(3.10) max ¶G(p, t) : (p, t) ∈ [0, 2] × [0, 1]♢ = 4♣C♣ = 4 ♣k4♣ = G(0, 1).

Letting α := c
a

· (c)3

(a)3
and β :=


(c)2

(a)2

)2
, since a ≥ c > 0 it follows that α ≥ β > 0,

and first we will show that A > 0. A simple computation shows that

4A = 4k1 + 2k2 + k3 + k4 = α
5λ2 + 1

128(1 + λ)2(2 + λ)(3 + λ)
− β

9λ2 − 6λ+ 1

256(1 + λ)2(2 + λ)2
,

and using the fact that

5λ2 + 1

128(1 + λ)2(2 + λ)(3 + λ)
− 9λ2 − 6λ+ 1

256(1 + λ)2(2 + λ)2

=
λ3 + 19λ+ (1 − λ2)

256(1 + λ)2(2 + λ)2(3 + λ)
> 0, 0 ≤ λ ≤ 1,

it follows that A > 0. Hence,

16♣A♣ − 4♣C♣ =α


5λ2 + 1

32(1 + λ)2(2 + λ)(3 + λ)

]
− β


9λ2 − 6λ+ 1

64(1 + λ)2(2 + λ)2
+

1

4(2 + λ)2

]

=
λ3(10α− 25β) + λ2(20α− 101β) + λ(2α− 95β) + (4α− 51β)

64(1 + λ)2(2 + λ)2(3 + λ)
,
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and since 0 ≤ λ ≤ 1, each term of the numerator is not positive if

α

β
≤ min

{
25

10
,
101

20
,
95

2
,
51

4

}
=

25

10
,

which is equivalent to 3ac + a + 8c + 6 ≥ 0. This last inequality holds for all a > 0
and c ≥ 0, and therefore 16♣A♣ ≤ 4♣C♣. Since (3.10) was proved, the upper bound
of G(p, t) on the closed rectangle [0, 2] × [0, 1] is attained at p = 0 and t = 1, which
implies the inequality (3.7). □

For a = c Theorem 3.2 reduces to the next special case.

Corollary 3.3. If the function f given by (1.1) belongs to the class ML(λ), then

∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1

4(2 + λ)2
.

Remark 3.2. (i) For λ = 1, Corollary 3.3 reduces to the result due to Sahoo and Patel
[23, Theorem 2.2].

(ii) Taking λ = 0 in Corollary 3.3 we obtain the recent result of Raza and Malik
[21, Theorem 2.4].

In our last result we found an upper bound of the fourth coefficient for the functions
of ML(λ, a, c).

Theorem 3.3. If a ≥ c > 0 and the function f given by (1.1) belongs to the class

ML(λ, a, c), then

♣a4♣ ≤ (c)3

(a)3

· 1

2(3 + λ)
.

Proof. If f ∈ ML(λ, a, c), using a similar proof like in the proof of Theorem 3.1, from
(3.6) we obtain

(3.11) a4 =
(c)3

(a)3

· 1

4(3 + λ)


p3 − 7λ2 + 16λ+ 7

4(1 + λ)(2 + λ)
p1p2 +

25λ2 + 40λ+ 13

32(1 + λ)(2 + λ)
p3

1

]
.

Replacing in (3.11) the values of p2 and p3 with those given by the relations (2.2) and
(2.3), respectively, and denoting p := p1 we get

a4 =
(c)3

(a)3

· 1

4(3 + λ)


 5λ2 + 1

32(1 + λ)(2 + λ)
p3 − 3λ2 + 4λ− 1

8(1 + λ)(2 + λ)


4 − p2

)
px

− 1

4


4 − p2

)
px2 +

1

2


4 − p2

)
(1 − ♣x♣2)z


,
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for some complex numbers x and z, with ♣x♣ < 1 and ♣z♣ ≤ 1. Using the triangle’s
inequality and substituting ♣x♣ = y we get

♣a4♣ ≤ (c)3

(a)3

· 1

4(3 + λ)
×

 5λ2 + 1

32(1 + λ)(2 + λ)
p3 +

♣3λ2 + 4λ− 1♣
8(1 + λ)(2 + λ)


4 − p2

)
py

+
1

4


4 − p2

)
py2 +

1

2


4 − p2

) 
1 − y2

)

 =: T(p, y), 0 ≤ p ≤ 2, 0 ≤ y ≤ 1.

Now we will find the maximum of the function T(p, y) on the closed rectangle [0, 2] ×
[0, 1]. Denoting

H(p, y) :=
5λ2 + 1

32(1 + λ)(2 + λ)
p3 +

♣3λ2 + 4λ− 1♣
8(1 + λ)(2 + λ)


4 − p2

)
py

+
1

4


4 − p2

)
py2 +

1

2


4 − p2

) 
1 − y2

)
,

and using the MAPLE™ software for the following code

[> H := (5*l^2+1)*p^3/((32*(1+l))*(2+l))

+abs(3*l^2+4*l-1)*(-p^2+4)*p*y/((8*(1+l))*(2+l))

+(1/4*(-p^2+4))*p*y^2+(1/2*(-p^2+4))*(-y^2+1);

[> maximize(H, p = 0 .. 2, y = 0 .. 1, location);

we get

max(2, (1/4)*(5*l^2+1)/((1+l)*(2+l))),

{[{p = 2}, (1/4)*(5*l^2+1)/((1+l)*(2+l))], [{p = 0, y = 0}, 2]}

that is

max ¶H(p, y) : (p, y) ∈ [0, 2] × [0, 1]♢ = max

{
2,

5λ2 + 1

4(1 + λ)(2 + λ)

}
,

and

2 = H(0, 0),
5λ2 + 1

4(1 + λ)(2 + λ)
= H(2, y).

A simple computation shows that 2 > 5λ2+1
4(1+λ)(2+λ)

, whenever λ ≥ 0, therefore

max ¶H(p, t) : (p, t) ∈ [0, 2] × [0, 1]♢ = 2 = H(0, 0),

which implies that

max ¶T(p, y) : (p, y) ∈ [0, 2] × [0, 1]♢ =
(c)3

(a)3

· 1

2(3 + λ)
= T(0, 0),

and the proof of our theorem is complete. □

Putting a = c in Theorem 3.3 we get the next special case.
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Corollary 3.4. If the function f given by (1.1) belongs to the class ML(λ), then

♣a4♣ ≤ 1

2(3 + λ)
.

Remark 3.3. (i) For λ = 1, Corollary 3.4 reduces to the recent result due to Sahoo
and Patel [23, Theorem 2.3].

(ii) Taking λ = 0 in Corollary 3.4 we get the result due to Sokół [24, Theorem 2].
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ON FUZZY PRIMARY AND FUZZY QUASI-PRIMARY IDEALS IN

LA-SEMIGROUPS

PAIROTE YIARAYONG1

Abstract. The purpose of this paper is to introduce the notion of a weakly fuzzy
quasi-primary ideals in LA-semigroups, we study fuzzy primary, fuzzy quasi-primary,
fuzzy completely primary, weakly fuzzy primary and weakly fuzzy quasi-primary
ideals in LA-semigroups. Some characterizations of weakly fuzzy primary and weakly
fuzzy quasi-primary ideals are obtained. Moreover, we investigate relationships
between fuzzy completely primary and weakly fuzzy quasi-primary ideals in LA-
semigroups. Finally we show that a fuzzy left ideal f is a weakly fuzzy quasi-primary
ideal of S2 if and only if S1 × f is a weakly fuzzy quasi-primary ideal of S1 × S2.

1. Introduction

The concept of a fuzzy subset of a set was first considered by Zadeh [27] in 1965.
In 1988, Zhang [28] studied prime L-fuzzy ideals and primary L-fuzzy ideals in rings
where L is a completely distributive lattice. In 2012, Palanivelrajan and Nandakumar
[18] introduced the definition and some operations of intuitionistic fuzzy primary and
semiprimary ideals.

In 2010, Khan et al. [10] gave the concept of (α, β)-fuzzy interior ideals of AG-
groupoids and gave some properties of AG -groupoids in terms of (α, β)-fuzzy interior
ideals. In 2012, Khan et al. [14] introduced the concept of (∈, ∈ ∨qk)-fuzzy bi-ideals,
(∈, ∈ ∨qk)-fuzzy left (right)-ideals and (∈, ∈ ∨qk)-fuzzy interior ideals in AG-groupoids
and characterized regular and intera-regular AG -groupoids in terms of the lower
parts of (∈, ∈ ∨qk)-fuzzy left (resp. right) ideals and (∈, ∈ ∨qk)-fuzzy bi-ideals in AG
-groupoids. In 2013, Yaqoob [21] applied the interval valued intuitionistic fuzzy sets

Key words and phrases. LA-semigroup, fuzzy primary ideal, weakly fuzzy quasi-primary ideal,
fuzzy completely primary ideal, fuzzy quasi-primary ideal.
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in regular LA-semigroups and characterized regular LA-semigroups by the properties
of interval valued intuitionistic fuzzy left ideals, interval-valued intuitionistic fuzzy
right ideal, interval valued intuitionistic fuzzy generalized bi-ideals and interval valued
intuitionistic fuzzy bi-ideals. In 2014, Abdullah, Aslam and Amin [1] defined the
concept of interval-valued (α, β)-fuzzy ideals, interval-valued and (α, β)-fuzzy gener-
alized bi-ideals in LA-semigroups and characterized the lower part of interval-valued
(∈, ∈ ∨q)-fuzzy left ideals, interval-valued (∈, ∈ ∨q)-fuzzy quasi-ideals and interval-
valued (∈, ∈ ∨q)-fuzzy generalized bi-ideals in LA-semigroups. In 2015, Khan, Jun
and Yousafzai [11] studied fuzzy left (right, two-sided) ideals, fuzzy (generalized) bi-
ideals, fuzzy interior ideals, fuzzy (1, 2)-ideals and fuzzy quasi-ideals of right regular
LA-semigroups and gave some properties of right regular LA-semigroups in terms of
fuzzy left and fuzzy right ideals. In 2016, Yousafzai, Yaqoob and Zeb [26] introduced
the concept of (∈γ, ∈γ ∨qδ)-fuzzy (left, right, bi-) ideals of ordered AG-groupoids
and provided the basic theory for an intra-regular ordered AG-groupoid in terms of
generalized fuzzy ideals. In 2018, Rehman et al. [19] studied lower and upper parts
of (∈, ∈ ∨q)- fuzzy interior ideals and (∈, ∈ ∨q)-fuzzy bi-ideals in LA-semigroups. In
2019, Nasreen [17] characterized regular (intra-regular, both regular and intra-regular)
ordered AG-groupoid in terms of fuzzy (left, right, quasi-, bi-, generalized bi-) ideals
with thresholds (α, β]. There are many mathematicians who added several results to
the theory fuzzy LA-semigroups, see [5, 9, 20,22,24,25].

In this study we followed lines as adopted in [2–4, 6–8, 13, 16, 23] and established
the notion of fuzzy subsets of LA-semigroups. Specifically we characterize the fuzzy
primary, fuzzy quasi-primary, fuzzy completely primary, weakly fuzzy primary and
weakly fuzzy quasi-primary ideals in LA-semigroups. Moreover, we investigate rela-
tionships between fuzzy completely primary and weakly fuzzy quasi-primary ideals in
LA-semigroups.

2. Preliminaries

In this section we refer to [12] for some elementary aspects and quote few definitions
and examples which are essential to step up this study. For more details we refer to
the papers in the references.

Recall that a function f from S to the unit interval [0, 1] is a fuzzy subset of S.

Definition 2.1 ([12]). A fuzzy subset f of an LA-semigroup S is called a fuzzy
LA-subsemigroup of S if f (xy) ≥ min ¶f(x), f(y)♢ for all x, y in S.

Recall that the LA-semigroup S itself is a fuzzy subset of S such that S (x) = 1 for
all x ∈ S, denoted also by S. Let f and g be two fuzzy subsets of S. Then the inclusion
relation f ⊆ g is defined f (x) ≤ g (x) for all x ∈ S. f ∩ g and f ∪ g are fuzzy subsets
of S defined by (f ∩ g) (x) = min ¶f (x) , g (x)♢, (f ∪ g) (x) = max ¶f (x) , g (x)♢ for
all x ∈ S. More generally, if ¶fα : α ∈ β♢ is a family of fuzzy subsets of S, then
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⋂
α∈β fα and

⋃
α∈β fα are defined as follows:



⋂

α∈β

fα


 (x) =

⋂

α∈β

fα (x) = inf ¶fα(x) : α ∈ β♢ ,



⋃

α∈β

fα


 (x) =

⋃

α∈β

fα (x) = sup ¶fα(x) : α ∈ β♢ ,

and will be the intersection and union of the family ¶fα : α ∈ β♢ of fuzzy subset of R.
The product f ◦ g [12] is defined as follows:

(f ◦ g) (x) =





⋃

x=yz

min ¶f (y) , g (z)♢ , exists y, z ∈ S, such that x = yz,

0, otherwise.

As is well known [12], this operation “◦” is left invertive.

Lemma 2.1 ([12]). If f, g and h are fuzzy subsets of an LA-semigroup S, then

(f ◦ g) ◦ h = (h ◦ g) ◦ f .

Proof. The proof is available in [12]. □

Lemma 2.2 ([12]). Let f , g, h and k be any fuzzy subsets of an LA-semigroup S
with left identity. Then the following properties hold:

(a) f ◦ (g ◦ h) = g ◦ (f ◦ h);
(b) (f ◦ g) ◦ (h ◦ k) = (k ◦ h) ◦ (g ◦ f);
(c) S ◦ S = S.

Proof. The proof is available in [12]. □

Recall that a fuzzy subset f of an LA-semigroup S is called a fuzzy left (right) ideal
of S if f (xy) ≥ f (y) (f (xy) ≥ f (x)) for all x, y ∈ S, if f is both fuzzy left and right
ideal of S, then f is called a fuzzy ideal of S.

Remark 2.1. It is easy that f is a fuzzy ideal of an LA-semigroup S if and only if
f (xy) ≥ max ¶f (x) , f (y)♢ for all x, y in S and any fuzzy left (right) ideal of S is a
fuzzy LA-subsemigroup of S.

Lemma 2.3 ([12]). Let f be a fuzzy subset of an LA-semigroup S. Then the following

properties hold.

(a) f is a fuzzy LA-subsemigroup of S if and only if f ◦ f ⊆ f .

(b) f is a fuzzy left ideal of S if and only if S ◦ f ⊆ f .

(c) f is a fuzzy right ideal of S if and only if f ◦ S ⊆ f .

(d) f is a fuzzy ideal of S if and only if S ◦ f ⊆ f and f ◦ S ⊆ f .

Proof. The proof is available in [12]. □
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Theorem 2.1 ([12]). Let I be a nonempty subset of an LA-semigroup S and let

fI : S → [0, 1] be a fuzzy subset of S such that

(fI) (x) =

{
1, x ∈ I,
0, otherwise.

Then the following properties hold.

(a) I is an LA-subsemigroup of S if and only if fI is a fuzzy LA-subsemigroup

of S.

(b) I is a left ideal of S if and only if fI is a fuzzy left ideal of S.

(c) I is a right ideal of S if and only if fI is a fuzzy right ideal of S.

(d) I is an ideal of S if and only if fI is a fuzzy ideal of S.

Proof. The proof is available in [12]. □

3. Fuzzy Completely Primary Subsets of LA-Semigroups

In this section, we concentrate our study on the fuzzy completely primary sub-
sets and fuzzy primary ideals of LA-semigroups and investigate their fundamental
properties and mutual relationships. Finally, we prove that a fuzzy subset f of an
AG-3-band is a fuzzy quasi-primary ideal of S if and only if f is a fuzzy primary ideal
in S.

Definition 3.1. Let x and y be any elements of an LA-semigroup S. A fuzzy subset
f of S is called fuzzy completely primary if max ¶f (x) , f (yn)♢ ≥ f (xy) for some
positive integer n.

We now present the following example satisfying above definition.

Example 3.1. Let S = ¶0, 1, 2♢ be a set under the binary operation defined as in Table
1. Then S is an LA-semigroup. We define a fuzzy subset f : S → [0, 1] by f (x) = 0

Table 1. LA-semigroup

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

for all x ∈ S. It is easy to show that f is a fuzzy completely primary subset of S.

In the light of the definition of fuzzy completely primary subsets on an LA-
semigroup, we can obtain the following properties.

Theorem 3.1. If Pi is a fuzzy completely primary subset of an LA-semigroup S, then⋃
i∈I Pi is a fuzzy completely primary subset of S.
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Proof. Let x and y be any elements of an LA-semigroup S. Since Pi is a fuzzy
completely primary subset of S, we have Pi (xy) ≤ max ¶Pi (x) , Pi (yn)♢ for some
positive integer n. Hence, since max ¶

⋃
i∈I Pi (x) ,

⋃
i∈I Pi (yn)♢ ≥ Pi (xy) for all i ∈ I

max

{
⋃

i∈I

Pi (x) ,
⋃

i∈I

Pi (yn)

}
≥
⋃

i∈I

Pi(xy).

Therefore,
⋃

i∈I Pi is a fuzzy completely primary subset of S. □

Recall that a left ideal P of an LA-semigroup S is called completely quasi-primary
if for any two elements x, y of S, xy ∈ P implies that either x ∈ P or yn ⊆ P for some
positive integer n.

Theorem 3.2. Let S be an LA-semigroup S. Then the following properties hold.

(a) If P is a completely quasi-primary ideal of S, then fP is a fuzzy completely

primary left ideal of S.

(b) If P is a completely quasi-primary ideal of S, then tfP is a fuzzy completely

primary left of S.

Proof. (a). Let P is a completely quasi-primary ideal of S. It follows from Theorem
2.1 (2) that fP is a fuzzy left ideal of S. Let x and y be any elements of S. If xy ̸∈ P ,
then fP (xy) = 0 ≤ max ¶fP (x) , fP (yn)♢ for some positive integer n. Next, if xy ∈ P ,
then fP (xy) = 1. Since P is a completely quasi-primary ideal of S, we have x ∈ P or
yn ∈ P for some positive integer n and so we have fP (x) = 1 or fP (y) = 1. Therefore,
fP (xy) = 1 = max ¶fP (x) , fP (y)♢ and hence fP is a fuzzy completely primary left
ideal of S.

(b) The proof is similar to (a). □

Next, define the notions of fuzzy quasi-primary ideals on an LA-semigroup S.

Definition 3.2. A fuzzy left ideal f of an LA-semigroup S is called fuzzy quasi-
primary if for any two fuzzy left ideals g and h of S such that g ◦ h ⊆ f implies g ⊆ f
or hn ⊆ f for some positive integer n.

Example 3.2. Let S = ¶0, 1, 2, 3, 4, 5, 6, 7, 8♢ be a set under the binary operation
defined in Table 2. It is clear that S is an LA-semigroup. We define a fuzzy subset
f : S → [0, 1] by

f (x) =

{
1, x ∈ ¶1, 2, 4, 5, 6, 7♢ ,
0, otherwise.

It is easy to see that f is a fuzzy completely primary subset of S. But f is not a fuzzy
quasi-primary ideal of S, since f is not a fuzzy left ideal of S.

Next, define the notions of fuzzy primary ideal on an LA-semigroup S.

Definition 3.3. A fuzzy ideal f of an LA-semigroup S is called fuzzy primary of S
if for any two fuzzy ideals g and h of S such that g ◦ h ⊆ f implies g ⊆ f or hn ⊆ f
for some positive integer n.



622 P. YIARAYONG

Table 2. LA-semigroup

· 0 1 2 3 4 5 6 7 8
0 3 1 6 3 1 6 6 1 3
1 0 3 0 3 8 8 3 0 8
2 8 1 5 3 7 2 6 4 0
3 3 3 3 3 3 3 3 3 3
4 0 6 7 3 5 4 1 2 8
5 8 6 4 3 2 7 1 5 0
6 8 3 8 3 0 0 3 8 0
7 0 1 2 3 4 5 6 7 8
8 3 6 1 3 6 1 1 6 3

Remark 3.1. It is easy to see that every fuzzy primary ideal is fuzzy quasi-primary.

Recall that an LA-semigroup in which (xx) x = x (xx) = x holds for all x is called
an AG-3-band. It is easy to see that every fuzzy left ideal of an AG-3-band S is a
fuzzy ideal.

Then we have the following result.

Theorem 3.3. For an AG-3-band S, the following conditions are equivalent.

(a) f is a fuzzy quasi-primary ideal of S.

(b) f is a fuzzy primary ideal of S.

Proof. It is obvious. □

4. Weakly Fuzzy Quasi-Primary Ideals of LA-Semigroups

In this section, we investigate some properties of weakly fuzzy primary and weakly
fuzzy quasi-primary ideals in LA-semigroups; these facts will be used frequently and
normally we shall make no reference to this lemma.

Lemma 4.1. Let A and B be any nonempty subsets of an LA-semigroup S and

t ∈ (0, 1]. Then the following properties hold:

(a) tfA ◦ tfB = tfAB;

(b) tfA ∩ tfB = tfA∩B;

(c) tfA ∪ tfB = tfA∪B;

(d) S ◦ tfA = tfSA, tfA ◦ S = tfAS and S ◦ (tfA ◦ S) = tfS(AS).

Proof. It is obvious. □

Definition 4.1 ([12]). Let S be an LA-semigroup, x ∈ S and t ∈ (0, 1]. A fuzzy
point xt of S is defined by the rule that

xt (y) =

{
t, x = y,
0, otherwise.
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It is accepted that xt is a mapping from S into [0, 1], then a fuzzy point of S is a fuzzy
subset of S. For any fuzzy subset f of S, we also denote xt ⊆ f by xt ∈ f in sequel.

Lemma 4.2. Let A be a non-empty subset of an LA-semigroup S. If t ∈ (0, 1], then

tfA =
⋃

a∈A at.

Proof. It is obvious. □

Next, defines the notions of weakly fuzzy primary and weakly fuzzy quasi-primary
ideals on an LA-semigroup S.

Definition 4.2. A fuzzy ideal f of an LA-semigroup S is called weakly fuzzy primary
of S if for any two ideals A and B of S such that tgA ◦ tgB ⊆ f implies tgA ⊆ f or
tgn

B ⊆ f for some positive integer n.

Definition 4.3. A fuzzy left ideal f of an LA-semigroup S is called weakly fuzzy
primary of S if for any two left ideals A and B of S such that tgA ◦ tgB ⊆ f implies
tgA ⊆ f or tgn

B ⊆ f for some positive integer n.

Remark 4.1. It is easy to see that every weakly fuzzy primary is weakly fuzzy quasi-
primary.

Then we have the following result.

Theorem 4.1. For an AG-3-band S, the following conditions are equivalent.

(a) f is a weakly fuzzy quasi-primary ideal of S.

(b) f is a weakly fuzzy primary ideal of S.

Proof. It is straightforward by Theorem 3.3. □

Theorem 4.2. Let P be a fuzzy left ideal of an LA-semigroup S with left identity.

Then the following statements are equivalent.

(a) P is a weakly fuzzy quasi-primary ideal of S.

(b) For any x, y ∈ S and t ∈ (0, 1] if xt ◦ (S ◦ yt) ⊆ P , then xt ∈ P or yn
t ∈ P for

some positive integer n.

(c) For any x, y ∈ S and t ∈ (0, 1] if tfx ◦ tfy ⊆ P , then xt ∈ P or yn
t ∈ P for

some positive integer n.

(d) If A and B are left ideals of S such that tfA ◦ tfB ⊆ P , then tfA ⊆ P or

tfn
B ⊆ P for some positive integer n.
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Proof. (a) ⇒ (b). First assume that P is a weakly fuzzy quasi-primary ideal of S.
Let x and y be any elements of S and t ∈ (0, 1]. Since xt ◦ (S ◦ yt) ⊆ P , we have

tf(xe)S ◦ tf(ye)S = (tfxe ◦ S) ◦ (tfye ◦ S)

= (tfxe ◦ tfye) ◦ (S ◦ S)

= ((tfx ◦ tfe) ◦ (tfy ◦ tfe)) ◦ (S ◦ S)

= ((tfx ◦ tfy) ◦ (tfe ◦ tfe)) ◦ (S ◦ S)

= ((tfe ◦ tfe) ◦ (tfy ◦ tfx)) ◦ (S ◦ S)

= (tfee ◦ (tfy ◦ tfx)) ◦ (S ◦ S)

= (tfy ◦ (tfe ◦ tfx)) ◦ (S ◦ S)

= (tfy ◦ tfex) ◦ (S ◦ S)

= (S ◦ S) ◦ (tfx ◦ tfy)

=S ◦ (tfx ◦ tfy)

=tfx ◦ (S ◦ tfy)

=xt ◦ (S ◦ yt)

⊆P.

Then since P is a weakly fuzzy quasi-primary ideal of S, we have

xt = tfx = tf(ee)x = tf(xe)e ⊆ tf(xe)S ⊆ P,

or yn
t = tfyn = tf((ee)y)n = tf((ye)e)n ⊆ tf((ye)S)n = tfn

(ye)S ⊆ P for some positive integer

n. Thus, xt ∈ P or yn
t ∈ P and so (a) implies (b).

(b) ⇒ (c). Assume that (b) holds. Let x and y be any elements of S and t ∈ (0, 1].
Since tfx ◦ tfy ⊆ P , we have

xt ◦ (S ◦ yt) ⊆tfx ◦ (S ◦ tfy)

=S ◦ (tfx ◦ tfy)

⊆S ◦ P

⊆P.

Thus, by hypothesis xt ∈ P or yn
t ∈ P for some positive integer n. Hence we obtain

that (b) implies (c).
(c) ⇒ (d). Assume that (c) holds. Let A and B be any left ideals of S. Then it

follows from Theorem 2.1 (2) that tfA and tfB are fuzzy left ideals of S. Next, let
tfA ◦ tfB ⊆ P such that tfn

B ⊈ P for all positive integer n. Otherwise, there exists
y ∈ B such that yn

t /∈ P for all positive integer n. For any x ∈ A, by Lemma 4.1 and
hypothesis

tfx ◦ tfy = tfxy ⊆ tfAB = tfA ◦ tfB ⊆ P.

Since yn
t /∈ P , we have tfx ⊆ P and so xt ∈ P . By Lemma 4.2, it follows that

tfA =
⋃

x∈A

xt. Hence we obtain that (c) implies (d).
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(d) ⇒ (a). It is obvious. □

As is easily seen, every weakly fuzzy primary ideal of an LA-semigroup S is a weakly
fuzzy quasi-primary ideal of S. The following example shows that the converse of this
property does not hold in general.

Example 4.1. Let S = ¶0, 1, 2, 3♢ be a set under the binary operation defined as in
Table 3. It is clear that S is an LA-semigroup. We define a fuzzy subset f : S → [0, 1]

Table 3. LA-semigroup

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

by

f (x) =





0.9, x ∈ ¶0♢ ,
0.5, x ∈ ¶2♢ ,
0, otherwise.

It is easy to see that f is a weakly fuzzy quasi-primary ideal of S. But f is not a
fuzzy quasi-primary ideal of S, since g ◦h ⊆ f , while g ̸⊆ f and hn ̸⊆ f for all positive
integer n, where

g (x) =

{
0.9, x ∈ ¶0, 2♢ ,
0, otherwise,

and

h (x) =

{
1, x ∈ ¶0♢ ,
0, otherwise.

Theorem 4.3. Let a and b be any elements of an LA-semigroup S with left identity.

If f is a fuzzy quasi-primary subset of S, then inf ¶f (a (Sb))♢ ≤ max ¶f (a) , f (bn)♢
for some positive integer n.

Proof. Assume inf ¶f (a (Sb))♢ = m. Let g and h be any fuzzy subsets of S such that

g (x) =

{
m, x ∈ (ae) S,
0, otherwise,

and

h (x) =

{
m, x ∈ (be) S,
0, otherwise.

It follows from Theorem 2.1 (2) that g and h are fuzzy left ideals of S. If

(g ◦ h) (x) =
⋃

x=yz

min ¶g (y) , h (z)♢ = m,
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then there exist u ∈ (ae) S and v ∈ (be) S such that uv = x. Put u = (ae) t and
v = (be) k for some t, k ∈ S. Then we have

f(x) =f (uv) = f (((ae) t) ((be) k)) = f (((ae) (be)) (tk)) = f ((kt) ((be) (ae)))

≥f ((be) (ae)) = f ((ba) (ee)) = f ((ee) (ab)) = f (e (ab)) = f (a (eb))

≥ inf ¶f (a (Sb))♢

=m,

so that g ◦ h ⊆ f . Since f is a fuzzy quasi-primary subset of S, we have g ⊆ f
or hn ⊆ f for some positive integer n. Therefore g (a) = g ((ee) a) = g ((ae) e) =
mf(ae)S ((ae) e) = m or

hn (bn) =gn ((ee) bn) = gn ((bne) e) = mf((be)S)
n ((bne) e) = mf(be)nSn ((bne) e)

=mf(bnen)S ((bne) e) = mf(bne)S ((bne) e) = m.

But from m = max ¶f (a) , f (bn)♢ < inf ¶f (a (Sb))♢ = m, we have a contradiction.
Thus it follows that inf ¶f (a (Sb))♢ ≤ max¶f (a) , f (bn)♢ for some positive integer n.

□

The following corollary can be easily deduced from the theorem.

Corollary 4.1. Let a and b be any elements of an LA-semigroup S with left identity.

If f is a fuzzy quasi-primary left ideal of S, then inf ¶f (a (Sb))♢ = max ¶f (a) , f (bn)♢
for some positive integer n.

Theorem 4.4. Let P be a fuzzy left ideal of an LA-semigroup S with left identity and

let x and y be any elements of S. If P (xy) = max ¶P (x) , P (yn)♢ for some positive

integer n, then P is a weakly fuzzy quasi-primary ideal of S.

Proof. Let x and y be any elements of S and t ∈ (0, 1]. Suppose that xt and yt are
fuzzy points of S such that xt ◦ (S ◦ yt) ⊆ P . Then we have S ◦ (xy)t = S ◦ (xt ◦ yt) =
xt ◦ (S ◦ yt) ⊆ P and so P (xy) ≥ t. Since P (xy) = max ¶P (x) , P (yn)♢, we have
P (x) ≥ t or P (yn) ≥ t for some positive integer n. This implies that xt ∈ P or
yn

t ∈ P and hence P is a weakly fuzzy quasi-primary ideal of S. □

Theorem 4.5. Let P be a fuzzy completely primary subset of an LA-semigroup S
with left identity. Then P is weakly fuzzy quasi-primary subset of S.

Proof. We leave the straightforward proof to the reader. □

Theorem 4.6. Let S be an LA-semigroup with left identity. Then the following

conditions are equivalent.

(a) P is a weakly fuzzy quasi-primary subset of S.

(b) If x, y ∈ S, then P (xy) ≤ max ¶P (x) , P (yn)♢ for some positive integer n.

Proof. First assume that P is a weakly fuzzy quasi-primary subset of an LA-semigroup
S with left identity. Let x and y be any elements of S. If P (xy) > max ¶P (x) , P (yn)♢,
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then there exists t ∈ (0, 1) such that P (xy) > t > max ¶P (x) , P (yn)♢. Thus, we
have

xt ◦ (S ◦ yt) = S ◦ (xt ◦ yt) = S ◦ (xy)t ⊆ S ◦ P ⊆ P.

Since P is a weakly fuzzy quasi-primary subset of S, we have xt ∈ P or yn
t ∈ P for

some positive integer n, but xt /∈ P and yn
t /∈ P , which is impossible. Therefore,

P (xy) ≤ max ¶P (x) , P (yn)♢.
Conversely, assume that (b) holds. Let x and y be any elements of S and t ∈ (0, 1].

Suppose that xt and yt are fuzzy points of S such that xt ◦ (S ◦ yt) ⊆ P . Since

S ◦ (xy)t = S ◦ (xt ◦ yt) = xt ◦ (S ◦ yt) ⊆ P ,

we have P (xy) ≥ t. Then, since P (xy) ≤ max ¶P (x) , P (yn)♢, we have P (x) ≥ t or
P (yn) ≥ t for some positive integer n and so xt ∈ P or yn

t ∈ P . Therefore we obtain
that, P is a weakly fuzzy quasi-primary subset of S. □

Theorem 4.7. Let S be an LA-semigroup. Then the following conditions are equiva-

lent.

(a) P is a quasi-primary ideal of S.

(b) fP is a weakly fuzzy quasi-primary ideal of S.

Proof. We leave the straightforward proof to the reader. □

Theorem 4.8. Let f be a fuzzy subset of an LA-semigroup S. Then the following

conditions are equivalent.

(a) f is a weakly fuzzy quasi-primary ideal of S.

(b) The level subset U (f, t) of f is a quasi-primary ideal of S for every t ∈ Im (f).

Proof. First assume that f is a weakly fuzzy quasi-primary ideal of S. Let t ∈ (0, 1]
and let a and b be any elements of S such that ab ∈ U (f, t). Then we have f (ab) ≥ t.
Since tfa ◦ tfb = tfab ⊆ f , we have tfa ⊆ f or tfbn ⊆ f for some positive integer n
and so f (a) ≥ t or f (bn) ≥ t. Thus, a ∈ U (f, t) or bn ∈ U (f, t) and hence U (f, t) is
a quasi-primary ideal of S.

Conversely, assume that U (f, t) is a quasi-prime ideal of S for every t ∈ Im (f).
Let a and b be any elements of S such that tga ◦ tgb ⊆ f . Since tgab = tga ◦ tgb, we have
f (ab) ≥ tgab (ab) = t and so ab ∈ U (f, t). By assumption, a ∈ U (f, t) or bn ∈ U (f, t)
for some positive integer n. Suppose at /∈ f and bn

t /∈ f for all positive integer n.
However, t = at (a) > f (a) and t = bn

t (bn) > f (bn) and we have a contradiction.
Therefore at ∈ f or bn

t ∈ f and hence f is a weakly fuzzy quasi-primary ideal of S. □

5. Cartesian Product of Fuzzy Ideals of LA-Semigroups

In this section, we concentrate our study on the cartesian product of fuzzy ideals of
an LA-semigroup and investigate their fundamental properties and mutual relation-
ships. Finally we show that a fuzzy left ideal f is a weakly fuzzy quasi-primary ideal
of S2 if and only if S1 × f is a weakly fuzzy quasi-primary ideal of S1 × S2.
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We start with the following theorem that gives a relation between cartesian product
of fuzzy ideals in an LA-semigroup. Our starting points are the following definitions:

Let S1 and S2 be two LA-semigroups. Then

S1 × S2 := ¶(x, y) ∈ S1 × S2 : x ∈ S1, y ∈ S2♢,

and for any (a, b), (c, d) ∈ S1 × S2 we define

(a, b) (c, d) := (ac, bd),

then S1 × S2 is an LA-semigroup as well. Let f : S1 → [0, 1] and g : S2 → [0, 1]
be two fuzzy subsets of LA-semigroups S1 and S2 respectively. Then the product
of fuzzy subsets is denoted by f × g and defined as f × g : S1 × S2 → [0, 1], where
(f × g) (x, y) = min ¶f (x) , g (y)♢.

In the light of the definition of cartesian product of fuzzy ideals in an LA-semigroup,
we can obtain the following properties.

Lemma 5.1. Let f and g be two fuzzy subsets of LA-simigroups S1 and S2, respectively

and let t ∈ (0, 1]. Then (f × g)t = ft × ft.

Proof. Let f and g be two fuzzy subsets of LA-simigroups S1 and S2, respectively and
let t ∈ (0, 1]. Next, let (x, y) be any element of S1 × S2. Then we have

(x, y) ∈ ft × gt ⇔x ∈ ft ∧ y ∈ gt

⇔f (x) ≥ t ∧ g (y) ≥ t

⇔ min ¶f (x) , g (y)♢ ≥ t

⇔ (f × g) (x, y) ≥ t

⇔ (x, y) ∈ (f × g)t .

Hence, (f × g)t = ft × ft. □

By Lemma 5.1, we have the following result.

Corollary 5.1. Let f1, f2, . . . , fn be any fuzzy subsets of LA-simigroups S1, S2, . . . , Sn,

respectively and let t ∈ (0, 1]. Then

(
n∏

i=1

fi



t

=
∏n

i=1 (fi)t.

Proof. One can easily show by induction method. □

Theorem 5.1. Let f1 and f2 be two fuzzy subsets of LA-semigroups S1 and S2,

respectively. Then the following conditions are equivalent.

(a) f × g is a fuzzy completely primary ideal of S1 × S2.

(b) The level subset (f × g)t of f × g is a completely primary ideal of S1 × S2 for

every t ∈ Im (f × g).

Proof. First assume that f × g is a fuzzy completely primary ideal of S1 × S2. Let
(x, y) and (m, n) be any elements of S1 × S2 such that (x, y) (m, n) ∈ (f × g)t. Then
we have (f × g) ((x, y) (m, n)) ≥ t and so (f × g) (xm, yn) ≥ t. Since f × g is a fuzzy
completely primary ideal of S1 × S2, we have



ON FUZZY PRIMARY AND FUZZY QUASI-PRIMARY IDEALS IN LA-SEMIGROUPS 629

(f × g) ((x, y) (m, n)) ≤ max
{
(f × g) (x, y) , (f × g) (m, n)k

}
,

for some positive integer k. If (f × g) (x, y) ≤ (f × g) (m, n)k, then

t ≤ max
{
(f × g) (x, y) , (f × g) (m, n)k

}
= (f × g) (m, n)k.

Hence, we have (f × g) (m, n)k ≥ t and so (m, n)k ∈ (f × g)t. Now if (f × g) (x, y) >

(f × g) (m, n)k, then

t ≤ max
{
(f × g) (x, y) , (f × g) (m, n)k

}
= (f × g) (x, y).

Therefore, we obtain that (f × g) (x, y) ≥ t and hence (x, y) ∈ (f × g)t. In any case,
we have (f × g)t is a completely primary ideal of S1 × S2.

Conversely, assume that (f × g)t is a completely primary ideal of S1 × S2 for
every t ∈ Im (f × g). Let (x, y) and (m, n) be any elements of S1 × S2. Otherwise,
(f × g) ((x, y) (m, n)) ≥ 0. Since (x, y) (m, n) ∈ (f × g)(f×g)((x,y)(m,n)), by hypothesis,

we have (x, y) ∈ (f × g)(f×g)((x,y)(m,n)) or (m, n)k ∈ (f × g)(f×g)((x,y)(m,n)) for some

positive integer k. Thus, we have (f × g)(x, y) ≥ (f × g)((x, y)(m, n)) or (f ×
g)(m, n)k ≥ (f × g)((x, y)(m, n)) and so we have

max
{
(f × g) (x, y) , (f × g) (m, n)k

}
≥ (f × g) ((x, y) (m, n)).

Thus, it follows from Definition 3.1 that f × g is a fuzzy completely primary ideal of
S1 × S2. □

By Theorem 5.1, we have the following result.

Corollary 5.2. Let f1, f2, . . . , fn be any fuzzy subsets of LA-semigroups S1, S2, . . . , Sn,

respectively. Then the following conditions are equivalent.

(a)
∏n

i=1 fi is a fuzzy completely primary ideal of
∏n

i=1 Si.

(b) The level subset (
∏n

i=1 fi)t is a completely primary ideal of
∏n

i=1 Si for every

t ∈ Im (
∏n

i=1 fi).

Proof. One can easily show by induction method. □

Lemma 5.2. Let S1 and S2 be two LA-semigroups. Then the following properties

hold.

(a) f is a fuzzy LA-subsemigroup of S1.

(b) f × S2 is a fuzzy LA-subsemigroup of S1 × S2.

Proof. We leave the straightforward proof to the reader. □

By Lemma 5.2, we have the following result.

Corollary 5.3. Let S1 and S2 be two LA-semigroups. Then the following properties

hold.

(a) f is a fuzzy LA-subsemigroup of S2.

(b) S1 × f is a fuzzy LA-subsemigroup of S1 × S2.
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Lemma 5.3. Let S1 and S2 be two LA-semigroups. Then the following properties

hold.

(a) f is a fuzzy left ideal (fuzzy right ideal, fuzzy ideal) of S1.

(b) f × S2 is a fuzzy left ideal (fuzzy right ideal, fuzzy ideal) of S1 × S2.

Proof. Similar to the proof of Lemma 5.2. □

By Lemma 5.3, we have the following result.

Corollary 5.4. Let S1 and S2 be two LA-semigroups. Then the following properties

hold.

(a) f is a fuzzy left ideal (fuzzy right ideal, fuzzy ideal) of S2.

(b) S1 × f is a fuzzy left ideal (fuzzy right ideal, fuzzy ideal) of S1 × S2.

By Lemmas 5.2, 5.3 and Corollaries 5.3, 5.4, we have the following result.

Corollary 5.5. Let fi be a fuzzy subset of an LA-semigroup Si. Then the following

properties hold.

(a) fi is a fuzzy LA-subsemigroup of Si if and only if S1 × · · · × Si−1 × fi × Si+1 ×
· · · × Sn is a fuzzy LA-subsemigroup of

∏n
i=1 Si.

(b) fi is a fuzzy left ideal (fuzzy right ideal, fuzzy ideal) of Si if and only if S1 ×
· · · × Si−1 × fi × Si+1 × · · · × Sn is a fuzzy left ideal (fuzzy right ideal, fuzzy

ideal) of
∏n

i=1 Si.

Proof. One can easily show by induction method. □

The following theorem show that the fuzzy left ideal f is a weakly fuzzy quasi-
primary ideal of S2 if and only if S1 × f is a weakly fuzzy quasi-primary ideal of
S1 × S2.

Theorem 5.2. Let S1 and S2 be two LA-semigroups with left identities. Then the

following conditions are equivalent.

(a) f is a weakly fuzzy quasi-primary ideal of S1.

(b) f × S2 is a weakly fuzzy quasi-primary ideal of S1 × S2.

Proof. First assume that f is a weakly fuzzy quasi-primary ideal of S1. Let (a, b) and
(c, d) be any elements of S1 × S2 such that (ac, bd)t = (a, b)t ◦ (c, d)t ∈ f × S2. Then
we have f (ac) = min ¶f (ac) , 1♢ = min ¶f (ac) , S2 (bd)♢ = (f × S2) (ac, bd) ≥ t and
so f (ac) ≥ t. Obviously, at ◦ ct = (ac)t ∈ f . By Theorem 4.2, at ∈ f or cn

t ∈ f for
some positive integer n, it is clear that f (a) ≥ t or f (cn) ≥ t for some positive integer
n. Thus, we have

(f × S2) (a, b) = min ¶f (a) , S2 (b)♢ ≥ min ¶t, 1♢ = t

or

(f × S2) (c, d)n = (f × S2) (cn, dn) = min ¶f(cn), S2(d
n)♢ ≥ min ¶t, 1♢ = t,
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and so we have (a, b)t ∈ f × S2 or (c, d)n

t ∈ f × S2. Then it follows from Theorem 4.2
that f × S2 is a weakly fuzzy quasi-primary ideal of S1 × S2 and so (a) implies (b).

Conversely, assume that f ×S2 is a weakly fuzzy quasi-primary ideal of S1 ×S2. Let
a and c be any elements of S1 such that (ac)t = at ◦ct ∈ f . Then we have t ≤ f (ac) =
min ¶f (ac) , 1♢ = min ¶f (ac) , S2 (bd)♢ = (f × S2) (ac, bd) and so (f × S2) (ac, bd) ≥ t
for all b, d ∈ S2. Obviously, (a, b)t ◦ (c, d)t = (ac, bd)t ∈ f × S2. By Theorem 4.2,
(a, b)t ∈ f × S2 or (c, d)n

t ∈ f × S2 for some positive integer n, it is clear that
(f × S2) (a, b) ≥ t or (f × S2) (c, d)n ≥ t for some positive integer n. Thus we have

f (a) = min ¶f (a) , 1♢ = min ¶f (a) , S2 (b)♢ = (f × S2) (a, b) ≥ t

or

f (cn) = min ¶f (cn) , 1♢ = min ¶f (cn) , S2(d
n)♢ = (f × S2) (cn, dn) = (f × S2) (c, d)n

≥t,

and so we have at ∈ f or cn
t ∈ f . Then it follows from Theorem 4.2 that f is a weakly

fuzzy quasi-primary ideal of S1. □

By Theorem 5.2, we have the following result.

Corollary 5.6. Let S1 and S2 be two LA-semigroups with left identities. Then the

following conditions are equivalent.

(a) f is a weakly fuzzy quasi-primary ideal of S2.

(b) S1 × f is a weakly fuzzy quasi-primary ideal of S1 × S2.

By Theorem 5.2 and Corollary 5.6, we have the following result.

Theorem 5.3. Let Si be an LA-semigroup with left identity. Then the following

conditions are equivalent.

(a) fi is a weakly fuzzy quasi-primary ideal of Si.

(b) S1 × · · · × Si−1 × fi × Si+1 × · · · × Sn is a weakly fuzzy quasi-primary ideal of∏n
i=1 Si.

Proof. One can easily show by induction method. □
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ITERATIVE CONTINUOUS COLLOCATION METHOD FOR

SOLVING NONLINEAR VOLTERRA INTEGRAL EQUATIONS

K. ROUIBAH1, A. BELLOUR2, P. LIMA3, AND E. RAWASHDEH4

Abstract. This paper is concerned with the numerical solution of nonlinear
Volterra integral equations. The main purpose of this work is to provide a new
numerical approach based on the use of continuous collocation Lagrange polynomi-
als for the numerical solution of nonlinear Volterra integral equations. It is shown
that this method is convergent. The results are compared with the results obtained
by other well-known numerical methods to prove the effectiveness of the presented
algorithm.

1. Introduction

In this paper, we study a numerical method based on iterative continuous collocation
method for the solution of nonlinear Volterra integral equations of the form,

(1.1) x(t) = f(t) +
∫ t

0
K(t, s, x(s))ds, t ∈ I = [0, T ],

where the functions f, K are sufficiently smooth.
The integral equations are often involved in various fields such as physics and

biology (see, for example [5, 14, 15]), and they also occur as reformulations of other
mathematical problems, such as ordinary differential equations and partial differential
equations (see [14]).

There has been a growing interest in the numerical solution of Equation (1.1) (see,
for example, [2, 3, 7, 8, 10, 11, 13, 15–17, 19, 21]) such as, Chebyshev approximation
[2], Adomian’s method [3, 15], Taylor polynomial approximations [21], homotopy
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iterative method, Lagrange polynomials.

2010 Mathematics Subject Classification. Primary: 45L05. Secondary: 65R20.
DOI 10.46793/KgJMat2204.635R
Received: January 08, 2020.
Accepted: March 03, 2020.

635



636 K. ROUIBAH, A. BELLOUR, P. LIMA, AND E. RAWASHDEH

perturbation method [10], the series expansion method [11], fixed point method [16],
Haar wavelet method [17], rationalized Haar functions method [19]. Moreover, many
collocation methods for approximating the solutions for Equation (1.1) have been
developed recently (see, [5, 9, 18,20,22]) such as Lagrange spline collocation method
[5], cubic B-spline collocation method [9], quintic B-spline collocation method [18],
Taylor collocation method [20], and sinc-collocation method for Volterra integral
equations is used in [22].

The numerical solution of these equations has a high computational cost due to
the nonlinearity and most of the collocation methods for nonlinear Volterra integral
equations transform (1.1) into a system of nonlinear algebraic equations.

This paper is concerned with the continuous piecewise polynomial collocation
method based on the use of Lagrange polynomials. Our goal is to develop an it-
erative explicit solution to approximate the solution of nonlinear Volterra integral
equation (1.1).

The main advantages of the current collocation method are that it is direct and
there is no algebraic system to be solved, which makes the proposed algorithm very
effective, easy to implement and the calculation cost low.

This paper is organized as follows. In Section 2, we divide the interval [0, T ]
into subintervals, and we approximate the solution of (1.1) in each interval by using
iterative Lagrange polynomials. Global convergence is established in Section 3. Finally,
we report our numerical results and demonstrate the efficiency and accuracy of the
proposed numerical scheme by considering some numerical examples in Section 4.

2. Description of the Collocation Method

Let ΠN be a uniform partition of the interval I = [0, T ] defined by tn = nh,
n = 0, . . . , N −1, where the stepsize is given by T

N
= h. Let the collocation parameters

be 0 ≤ c1 < · · · < cm ≤ 1 and the collocation points be tn,j = tn + cjh, j = 1, . . . , m,
n = 0, . . . , N − 1. Define the subintervals σn = [tn, tn+1].

Moreover, denote by πm the set of all real polynomials of degree not exceeding m.
We define the real polynomial spline space of degree m as follows

S(0)
m (ΠN) = ¶u ∈ C(I,R) : un = u/σn ∈ πm, n = 0, . . . , N − 1♢.

It holds for any y ∈ Cm+1([0, T ]) that

(2.1) y(tn + sh) = L0(s)y(tn) +
m∑

j=1

Lj(s)y(tn,j) + hm+1 y(m+1)(ζn(s))

(m + 1)!
s

m∏

j=1

(s − cj),

where s ∈ [0, 1], L0(v) = (−1)
m ∏m

l=1
v−cl

cl
and Lj(v) = v

cj

∏m
l ̸=j

v−cl

cj−cl
, j = 1, . . . , m, are

the Lagrange polynomials associated with the parameters cj, j = 1, . . . , m.
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Inserting (2.1) for the function s 7→ K(t, s, x(s))ds into (1.1), we obtain for each
j = 1, . . . , m, n = 0, . . . , N − 1,

x(tn,j) =f(tn,j) + h
n−1∑

p=0

b0K(tn,j, tp, x(tp)) + h
n−1∑

p=0

m∑

v=1

bvK(tn,j, tp,v, x(tp,v))

+ haj,0K(tn,j, tn, x(tn)) + h
m∑

v=1

aj,vK(tn,j, tn,v, x(tn,v)) + o(hm+1),(2.2)

such that aj,v =
∫ cj

0 Lv(η)dη and bv =
∫ 1

0 Lv(η)dη, v = 0, . . . , m.
It holds for any u ∈ S0

m(I, ΠN) that

(2.3) un(tn + sh) = L0(s)un−1(tn) +
m∑

j=1

Lj(s)un(tn,j), s ∈ [0, 1].

Now, we approximate the exact solution x by u ∈ S0
m(I, ΠN) such that u(tn,j) satisfies

the following nonlinear system,

un(tn,j) =f(tn,j) + h
n−1∑

p=0

b0K(tn,j, tp, up(tp)) + h
n−1∑

p=0

m∑

v=1

bvK(tn,j, tp,v, up(tp,v))

+ haj,0K(tn,j, tn, un−1(tn)) + h
m∑

v=1

aj,vK(tn,j, tn,v, un(tn,v)),(2.4)

for j = 1, . . . , m, n = 0, . . . , N − 1, where u−1(t0) = x(0) = f(0).
Since the above system is nonlinear, we will use an iterative collocation solution

uq ∈ S0
m(I, ΠN), q ∈ N, to approximate the exact solution of (1.1) such that

(2.5) uq
n(tn + sh) = L0(s)uq

n−1(tn) +
m∑

j=1

Lj(s)uq
n(tn,j), s ∈ [0, 1],

where the coefficients uq
n(tn,j) are given by the following formula:

uq
n(tn,j) =f(tn,j) + h

n−1∑

p=0

b0K(tn,j, tp, uq
p(tp)) + h

n−1∑

p=0

m∑

v=1

bvK(tn,j, tp,v, uq
p(tp,v))

+ haj,0K(tn,j, tn, uq
n−1(tn)) + h

m∑

v=1

aj,vK(tn,j, tn,v, uq−1
n (tn,v)),(2.6)

such that uq
−1(t0) = f(0) for all q ∈ N and the initial values u0(tn,j) ∈ J (J is a

bounded interval).
The above formula is explicit and the approximate solution uq is obtained without

solving any algebraic system. The complexity of the proposed algorithm can be
measured in terms of how many times the function K must be evaluated at each
collocation point.

From (2.5) it follows that the number of such evaluations is O(mn) for each iteration.
Since the optimal number of iterations is q = m + 1 (as it will be shown in the next
section), we conclude that the total number of evaluations is O(m2 n), which makes
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this method competitive, in comparison with other methods where a nonlinear system
of equations is solved by an iterative algorithm.

In the next section, we prove the convergence of the approximate solution uq to the
exact solution x of (1.1) is of order m for all q ≥ m.

3. Convergence Analysis

In this section, we assume that the function K satisfies the Lipschitz condition with
respect to the third variable: there exists L ≥ 0 such that

♣K(t, s, y1) − K(t, s, y2)♣ ≤ L♣y1 − y2♣.

The following lemmas will be used in this section.

Lemma 3.1 ([6]). Assume that ¶αn♢n≥1 and ¶qn♢n≥1 are given non-negative sequences

and the sequence (εn)n≥1 satisfies ε1 ≤ β and

εn ≤ β +
n−1∑

j=1

qj +
n−1∑

j=1

αjεj, n ≥ 2,

then

εn ≤



β +
n−1∑

j=1

qj



 exp





n−1∑

j=1

αj



 , n ≥ 2.

Lemma 3.2 ([1]). If ¶fn♢n≥0, ¶gn♢n≥0 and ¶εn♢n≥0 are nonnegative sequences and

εn ≤ fn +
n−1∑

i=0

giεi, n ≥ 0,

then

εn ≤ fn +
n−1∑

i=0

figi exp

(
n−1∑

k=0

gk



, n ≥ 0.

Lemma 3.3 ([12]). Assume that the sequence ¶εn♢n≥0 of nonnegative numbers satisfies

εn ≤ Aεn−1 + B
n−1∑

i=0

εi + K, n ≥ 0,

where A, B and K are nonnegative constants, then

εn ≤
ε0

R2 − R1

[(R2 − 1)Rn
2 + (1 − R1)R

n
1 ] +

K

R2 − R1

[Rn
2 − Rn

1 ],

where

R1 =
1 + A + B −

√

(1 − A)2 + B2 + 2AB + 2B

2
,

R2 =
1 + A + B +

√

(1 − A)2 + B2 + 2AB + 2B

2
.(3.1)

Therefore, 0 ≤ R1 ≤ 1 ≤ R2.
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The following result gives the existence and the uniqueness of a solution for the
nonlinear system (2.4).

Lemma 3.4. The nonlinear system (2.4) has a unique solution u ∈ S0
m(I, ΠN) for

sufficiently small h.

Proof. We will use the induction combined with the Banach fixed point theorem.
(i) On the interval σ0 = [t0, t1], the nonlinear system (2.4) becomes

u0(t0,j) =f(t0,j) + haj,0K(t0,j, t0, f(0)) + h
m∑

v=1

aj,vK(t0,j, t0,v, u0(t0,v)), j = 1, . . . , m.

We consider the operator Ψ defined by

Ψ : Rm → R
m,

x = (x1, . . . , xm) 7→ Ψ(x) = (Ψ1(x), . . . , Ψm(x)),

such that for j = 1, . . . , m, we have

Ψj(x) = f(t0,j) + haj,0K(t0,j, t0, f(0)) + h
m∑

v=1

aj,vK(t0,j, t0,v, xv).

Hence, for all x, y ∈ R
m, we have

∥Ψ(x) − Ψ(y)∥≤ hmaL∥x − y∥,

where a = max¶♣aj,v♣, j = 1, . . . , m, v = 0, . . . , m♢.
Since hmaL < 1 for sufficiently small h, then by the Banach fixed point theorem,

the nonlinear system (2.4) has a unique solution u0 on σ0.
(ii) Suppose that ui exists and is unique on the intervals σi, i = 0, . . . , n − 1, for

n ≥ 1. We show that un exists and is unique on the interval σn.
On the interval σn, the nonlinear system (2.4) becomes

un(tn,j) = F (tn,j) + h
m∑

v=1

aj,vK(tn,j, tn,v, un(tn,v)),(3.2)

where

F (tn,j) =f(tn,j) + h
n−1∑

p=0

b0K(tn,j, tp, up(tp))

+ h
n−1∑

p=0

m∑

v=1

bvK(tn,j, tp,v, up(tp,v)) + haj,0K(tn,j, tn, un−1(tn)).

We consider the operator Ψ defined by

Ψ : Rm → R
m,

x = (x1, . . . , xm) 7→ Ψ(x) = (Ψ1(x), . . . , Ψm(x)),
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such that for j = 1, . . . , m,

Ψj(x) = F (tn,j) + h
m∑

v=1

aj,vK(tn,j, tn,v, xv).

Hence, for all x, y ∈ R
m

∥Ψ(x) − Ψ(y)∥≤ hmaL∥x − y∥.

Since hmaL < 1 for sufficiently small h, then by the Banach fixed point theorem, the
nonlinear system (3.2) has a unique solution un on σn. □

The following result gives the convergence of the approximate solution u to the
exact solution x.

Theorem 3.1. Let f, K be m + 1 times continuously differentiable on their respective

domains. If −1 < R(∞) = (−1)
m

m∏

l=1

1−cl

cl
< 1, then, for sufficiently small h, the

collocation solution u converges to the exact solution x and the resulting error function

e := x − u satisfies

∥e∥ ≤ Chm+1,

where C is a finite constant independent of h.

Proof. Define the error e on σn by e(t) = en(t) = x(t)−un(t) for all n ∈ ¶0, 1, . . . , N −
1♢.

We have, from (2.4) and (2.2), for all n = 0, . . . , N − 1, and j = 1, . . . , m,

♣en(tn,j)♣ ≤hbL
n−1∑

p=0

♣ep(tp)♣ + hbL
n−1∑

p=0

m∑

v=1

♣ep(tp,v)♣ + haL♣en−1(tn)♣

+ haL
m∑

v=1

♣en(tn,v)♣ + αhm+1,(3.3)

where α is a positive number and e−1(t0) = 0.
We consider the sequence εn =

∑m
v=1 ♣en(tn,v)♣ for n = 0, . . . , N − 1. Then, from

(3.3), εn satisfies for n = 0, . . . , N − 1,

εn ≤ hbLm
n−1∑

p=0

♣ep(tp)♣ + hbLm
n−1∑

p=0

εp + haLm♣en−1(tn)♣ + haLmεn + αmhm+1

≤ 2hbLm
n−1∑

p=0

∥ep∥ + hbLm
n−1∑

p=0

εp + haLmεn + αmhm+1.

Hence, for h < 1
Lam

and h ∈ (0, h], we have

εn ≤
2bLm

1 − Lamh
︸ ︷︷ ︸

α1

h
n−1∑

p=0

∥ep∥ +
bLm

1 − Lamh
︸ ︷︷ ︸

α2

h
n−1∑

p=0

εp +
αm

1 − Lamh
︸ ︷︷ ︸

α3

hm+1.
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Then, by Lemma 3.1, for all n = 0, . . . , N − 1,

εn ≤ α1 exp(Tα2)
︸ ︷︷ ︸

α4

h
n−1∑

p=0

∥ep∥ + α3 exp(Tα2)
︸ ︷︷ ︸

α5

hm+1.

Therefore, by using (2.1) and (2.3), we obtain

∥en∥ ≤ ♣R(∞)♣∥en−1∥ + ρεn + βhm+1

≤ ♣R(∞)♣∥en−1∥ + ρα4
︸︷︷︸

α6

h
n−1∑

p=0

∥ep∥ + (ρα5 + β)
︸ ︷︷ ︸

α7

hm+1,

where ρ = max¶♣Lj(t)♣ : t ∈ [0, 1], j = 1, . . . , m♢.
Hence, by Lemma 3.3, we obtain for all n = 0, . . . , N − 1,

∥en∥ ≤
∥e0∥

R2 − R1

[(R2 − 1)Rn
2 + (1 − R1)R

n
1 ] +

α7h
m+1

R2 − R1

[Rn
2 − Rn

1 ]

≤
∥e0∥

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
α7h

m+1

R2 − R1



R
T
h

2



≤


1

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
1

R2 − R1



R
T
h

2



α7h
m+1,

where R1, R2 are defined by (3.1) such that A = ♣R(∞)♣, B = α6h, K = α7h
m+1.

Since

lim
h−→0


1

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
1

R2 − R1



R
T
h

2



=
1

1 − ♣R(∞)♣
exp

(

2Tα6

1 − ♣R(∞)♣



< +∞.

Then there exists γ > 0 such that for all h ∈ (0, h]

1

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
1

R2 − R1



R
T
h

2



≤ γ.

Thus, the proof is completed by taking C = α7γ. □

The following result gives the convergence of the iterative solution uq to the exact
solution x.

Theorem 3.2. Consider the iterative collocation solution uq, q ≥ 1, defined by (2.5)
and (2.6). If −1 < R(∞) = (−1)

m ∏m
l=1

1−cl

cl
< 1, then for any initial condition

u0(tn,j) ∈ J , the iterative collocation solution uq, q ≥ 1, converges to the exact

solution x for sufficiently small h. Moreover, the following error estimate holds

∥uq − x∥ ≤ dβqhq + Chm+1,

where d, β and C are finite constants independent of h.
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Proof. We define the errors eq and ξq by eq(t) = eq
n(t) = uq

n(t) − x(t) and ξq = ξq
n =

uq
n(t) − un(t) on σn, n = 0, . . . , N − 1, where u is defined by Lemma 3.4.
We have, from (2.4) and (2.6), for all n = 0, . . . , N − 1 and j = 1, . . . , m,

♣ξq
n(tn,j)♣ ≤hbL

n−1∑

p=0

♣ξq
p(tp)♣ + hbL

n−1∑

p=0

m∑

v=1

♣ξq
p(tp,v)♣ + haL♣ξq

n−1(tn)♣

+ haL
m∑

v=1

♣ξq−1
n (tn,v)♣.

Now, for each fixed q ≥ 1, we consider the sequence ηq
n = max¶♣ξq

n(tn,v)♣ : v =
1, . . . , m♢ for n = 0, . . . , N − 1, it follows that

ηq
n ≤ hbL

n−1∑

p=0

♣ξq
p(tp)♣ + hbLm

n−1∑

p=0

ηq
p + haL♣ξq

n−1(tn)♣ + haLmηq−1
n

≤ 2hbL
n−1∑

p=0

∥ξq
p∥ + hbLm

n−1∑

p=0

ηq
p + haLmηq−1

n .

Hence, by Lemma 3.2, for all n = 0, . . . , N − 1,

ηq
n ≤2hbL

n−1∑

p=0

∥ξq
p∥ + haLmηq−1

n + exp(TLbm)ab(hLm)2
n−1∑

p=0

ηq−1
p

+ 2 exp(TLbm)Tm(bL)2h
n−1∑

p=0

∥ξq
p∥.(3.4)

We consider the sequence ηq = max¶ηq
n, n = 0, . . . , N − 1♢ for q ≥ 1. Then, from

(3.4), ηq satisfies

ηq
n ≤ 2(bL + exp(TLbm)Tm(bL)2)

︸ ︷︷ ︸

α1

h
n−1∑

p=0

∥ξq
p∥ + α2hηq−1,

where α2 = (aLm + exp(TLbm)abT (Lm)2).
Therefore, by using (2.3) and (2.5), we obtain

∥ξq
n∥ ≤ ♣R(∞)♣∥ξq

n−1∥ + ρmηq
n ≤ ♣R(∞)♣∥ξq

n−1∥ + ρmα1h
n−1∑

p=0

∥ξq
p∥ + ρmα2hηq−1.

Hence, by Lemma 3.3, we obtain for all n = 0, . . . , N − 1,

∥ξq
n∥ ≤

∥ξq
0∥

R2 − R1

[(R2 − 1)Rn
2 + (1 − R1)R

n
1 ] +

ρmα2hηq−1

R2 − R1

[Rn
2 − Rn

1 ]

≤
∥ξq

0∥

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
ρmα2hηq−1

R2 − R1



R
T
h

2



≤


1

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
1

R2 − R1



R
T
h

2



ρmα2hηq−1,(3.5)
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where R1 and R2 are defined by (3.1) such that A = ♣R(∞)♣, B = ρmα1h, K =
ρmα2hηq−1. Since

lim
h→0


1

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
1

R2 − R1



R
T
h

2



=
exp( 2T ρmα1

1−♣R(∞)♣
)

1 − ♣R(∞)♣
< +∞.

Then there exists γ > 0 such that for all h ∈ (0, h]

1

R2 − R1



(R2 − 1)R
T
h

2 + 1


+
1

R2 − R1



R
T
h

2



≤ γ.

It follows, from (3.5), that for all n = 0, . . . , N − 1,

∥ξq
n∥ ≤ γρmα2hηq−1 ≤ γρmα2h∥ξq−1∥,

which implies, for all q ≥ 1, that

∥ξq∥ ≤ γρmα2h∥ξq−1∥ ≤ · · · ≤ (γρmα2)
qhq∥ξ0∥.

Since, u0
−1(t0) = f(0), u0(tn,j) ∈ J (bounded interval), then by (2.3) the function u0 is

bounded. Hence, there exists d > 0 such that ∥ξ0∥ = ∥u0−u∥ ≤ ∥u0−x∥+∥x−u∥ < d.
Which implies that for all q ≥ 1

∥ξq∥ ≤ d(γρmα2
︸ ︷︷ ︸

β

)qhq.

Hence, by Theorem 3.1, we deduce that

∥eq∥ ≤ ∥ξq∥ + ∥u − x∥ ≤ dβqhq + Chm+1.

Thus, the proof is completed. □

Remark 3.1. From the error estimate in Theorem 3.2 it follows that the optimal
number of iterations is q = m + 1. Actually, with m + 1 iterations the total error has
the order of O(hm+1), which will not be improved if more iterations are performed.

4. Numerical Examples

In order to test the applicability of the presented method, we consider the following
examples with T = 1. These examples have been solved with various values of N, m
and q. In each example, we calculate the error between x and the iterative collocation
solution uq.

The absolute errors at some particular points are given to compare our solutions
with the solutions obtained by [3, 9, 13,16,18].

These results of these numerical examples are in agreement with the theory pre-
sented in Section 3 and they confirm the advantages of our method in comparison
with those described in [3, 9, 13,16,18].

Example 4.1 ([9, 13]). Consider the following nonlinear Volterra integral equation

x(t) = 1 + (sin(t))2 −
∫ t

0
3 sin(t − s)(x(s))2ds, t ∈ [0, 1],
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where u(x) = cos(x) is the exact solution.
The absolute errors for N = 10, 20 and m = q = 3 at t = 0, 0.1, . . . , 1, are

displayed in Table 1. We used the collocation parameters ci = i
m+1

+ 1
5
, i = 1, . . . , m,

and R(∞) = −0.02. The numerical results obtained by the present method are
considerably more accurate in comparison with the numerical results obtained in [9,13].

Table 1. Comparison of the absolute errors of Example 4.1

t Method in [9] Method in [13] Our method
N = 10 N = 20 N = 10 N = 20 N = 10 N = 20

0.1 1.01E−5 1.59E−6 1.24E−5 2.54E−8 3.32E−8 7.92E−9
0.2 2.48E−5 3.26E−6 1.62E−6 3.44E−7 1.84E−9 5.15E−9
0.3 3.65E−5 4.72E−6 2.03E−4 9.19E−7 3.58E−8 3.87E−9
0.4 4.61E−5 5.87E−6 2.07E−5 1.44E−6 5.29E−8 8.00E−9
0.5 5.26E−5 6.63E−6 3.84E−5 1.88E−6 9.91E−8 8.90E−10
0.6 5.59E−5 6.98E−6 5.11E−5 2.18E−6 1.48E−7 5.90E−9
0.7 5.58E−5 6.92E−6 7.22E−5 1.83E−6 1.77E−7 9.71E−9
0.8 5.28E−5 6.47E−6 6.43E−5 6.41E−6 2.00E−7 3.34E−9
0.9 4.65E−5 5.70E−6 1.96E−5 1.00E−4 2.04E−7 2.07E−8
1 3.97E−5 4.71E−6 6.36E−4 9.25E−4 1.95E−7 5.13E−9

Example 4.2 ([3, 18]). Consider the following linear Volterra integral equation with
exact solution x(t) = 1 − sinh(t):

x(t) = 1 − t −
t2

2
+
∫ t

0
(t − s)x(s)ds, t ∈ [0, 1].

The absolute errors for m = q = 3 and N = 20 at t = 0, 0.1, . . . , 1, are displayed
in Table 2. We used the collocation parameters ci = i

m+1
+ 1

5
, i = 1, . . . , m, and

R(∞) = −0.02. The numerical results obtained here are compared in Table 2 with
the numerical results obtained by using the methods in [3, 18].

It is seen from Table 2 that the results obtained by the present method are much
more accurate than those obtained in [3, 18].

The absolute errors for N = 5 and (q, m) ∈ ¶(2, 2), (3, 2), (3, 3), (3, 5), (4, 5)♢ at
t = 0, 0.1, . . . , 1, are presented in Table 3, we note that the absolute error reduces as
q or m increases.

We calculate the experimental order of convergence (EOC) at t = 1 for N = 2l,
l = 1, 2, 3, 4, 5, m = 1, 2, 3 and q = m+1 in Table 4, the result confirms the theoretical
result and suggests that the order of convergence with q = m + 1 is m + 1. As we
have remarked (see Remark 3.1) this is the maximal convergence order that can be
obtained with the present method.
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Moreover, we calculate the run time to solve the approximate solution u for N =
6, . . . , 10, m = 7, . . . , 10, and q = m + 1, the numerical results are solved by using
Maple version 16.

The computations were performed in a PC with a 2.16 GHz processor, running with
2.00 Go RAM. As it could be expected, the computing time increases with m and
N . However, we cannot see a simple relationship between the computing time and
the complexity of the algorithm, probably because this time depends on other factors
than the number of evaluations of the function K. This table shows that accurate
results can be obtained by our method in a small computer with a low computational
cost.

Table 2. Comparison of the absolute errors of Example 4.2

t Our method Method in Method in
N = 10 N = 20 [3] [18]

0.0 0 0 0 1.98E−14
0.1 1.30E−8 1.98E−9 5.38E−6 1.21E−7
0.2 3.35E−8 2.54E−9 2.20E−5 2.35E−7
0.3 3.14E−8 6.55E−9 4.82E−5 3.54E−7
0.4 5.98E−8 5.80E−9 8.33E−5 4.77E−7
0.5 6.94E−8 3.50E−9 1.26E−4 6.05E−7
0.6 8.01E−8 8.51E−10 1.77E−4 7.39E−7
0.7 1.00E−7 5.83E−9 2.34E−4 8.80E−7
0.8 1.15E−7 7.38E−9 2.97E−4 1.03E−6
0.9 1.37E−7 8.90E−9 3.65E−4 1.19E−6
1 1.62E−7 9.38E−9 4.38E−4 1.36E−6

Table 3. Absolute errors for Example 4.2

t q = 2 q = 3 q = 3 q = 3 q = 4
m = 2 m = 2 m = 3 m = 5 m = 5

0 0.0 0.0 0.0 0.0 0.0
0.1 8.231E−6 7.282E−6 3.015E−7 7.451E−8 3.701E−8
0.2 8.563E−5 8.373E−5 4.115E−7 1.147E−6 8.474E−7
0.3 1.053E−5 7.583E−6 6.394E−7 5.824E−8 4.007E−8
0.4 1.027E−4 9.863E−5 8.478E−7 8.031E−7 4.328E−7
0.5 1.064E−5 5.410E−6 1.017E−6 2.316E−8 1.897E−8
0.6 1.143E−4 1.070E−4 1.324E−6 1.058E−7 4.785E−8
0.7 1.033E−5 2.283E−6 1.470E−6 1.309E−8 3.040E−8
0.8 1.297E−4 1.175E−4 1.909E−6 1.114E−7 7.258E−8
0.9 9.861E−6 1.815E−6 2.021E−6 8.470E−9 8.137E−10
1 1.514E−4 1.314E−4 2.620E−6 1.156E−7 4.245E−8
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Table 4. EOC and the run-time/sec of Example 4.2

N m = 1 m = 2 m = 3
2
4 2.04 2.91 4.00
8 2.05 2.96 4.01
16 2.04 2.91 4.00
32 2.04 2.91 4.00

N m = 7 m = 8 m = 9 m = 10
6 3.9 5.6 9.9 14.8
7 5.8 9.9 17.9 31.1
8 8.9 16.7 24.3 56.6
9 13.3 32.7 43.9 118.4
10 17.4 35.9 126.3 232.3

Example 4.3 ([16]). We consider the following nonlinear Volterra integral equation

x(t) =
t

et2
+
∫ t

0
2tse−x2(s)ds, t ∈ [0, 1],

where the exact solution is x(t) = t.
The absolute errors for N = 20 and m = 3, q = 5 at t = 0, 0.2, . . . , 1, are compared

with the absolute error of the method in [16] in Table 5, where the collocation
parameters ci = i

m+3
+ 1

5
, i = 1, . . . , m, and R(∞) = −0.64.

Table 5. Comparison of the absolute errors of Example 4.3

t Method in [16] Our method
N = 20 N = 20

0 0 0
0.2 1.49E−8 8.9E−9
0.4 7.74E−7 2.69E−8
0.6 9.36E−6 8.90E−9
0.8 4.58E−5 3.39E−8
1 1.29E−4 2.49E−8

Example 4.4 ([16]). We consider the following nonlinear Volterra integral equation

x(t) = t cos(t) +
∫ t

0
t sin(x(s))ds, t ∈ [0, 1],

where the exact solution is x(t) = t.
The absolute errors for N = 25 and m = q = 4 at t = 0.001, 0.2, 0.4, 0.6, 0.8, 1 are

compared with the absolute error of the method in [16] in Table 6.
Where the collocation parameters ci = i

m+3
+ 1

5
, i = 1, . . . , m, and R(∞) = 0.35.

It is seen from Table 6 that the results obtained by the present method is very
superior to that obtained by the method in [16].

5. Conclusion

In this paper, we have used an iterative collocation method based on the Lagrange
polynomials for the numerical solution of nonlinear Volterra integral equations (1.1)



NONLINEAR VOLTERRA INTEGRAL EQUATIONS 647

Table 6. Comparison of the absolute errors of Example 4.4

t Method in [16] Our method
N = 25 N = 25

0.001 1.25E−12 1.75E−11
0.2 3.53E−6 6.30E−8
0.4 5.81E−6 5.40E−8
0.6 7.74E−7 9.60E−8
0.8 1.20E−5 6.00E−9
1 3.98E−5 7.20E−8

in the spline space S(0)
m (ΠN). The main advantages of this method that, is easy to

implement, has high order of convergence and the coefficients of the approximation
solution are determined by using iterative formulas without the need to solve any
system of algebraic equations. Numerical examples showing that the method is
convergent with a good accuracy and the comparison of the results obtained by the
present method with the other methods reveals that the method is very effective and
convenient.
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torate General for Scientific Research and Technological Development, Algeria.
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TWO-DIMENSIONAL WAVELET WITH MATRIX DILATION

M = 2I AND ITS APPLICATION IN SOLVING INTEGRAL

EQUATIONS

MAHDIEH TAHAMI1 AND ATAOLLAH ASKARI HEMMAT2,3

Abstract. In this study, using a one-dimensionl MRA we constructed a two-
dimensional wavelet as well as four masks which are not related to the MRA. Finally,
we provide some examples to prove the applicability of our construction in case of
finding numerical solution of two-dimensional first kind Fredholm integral equations.

1. Introduction

Let ¶Vj♢ be a one-dimensional multiresolution analysis (MRA) with scaling function
ϕ and mother wavelet ψ, then Φ(x, y) = ϕ(x)ϕ(y) is a scaling function for two-
dimensional MRA and in this case, we have 3 mother wavelets

(1.1) Ψa(x, y) = ϕ(x)ψ(y), Ψb(x, y) = ψ(x)ϕ(y), Ψd(x, y) = ψ(x)ψ(y).

It means that ¶Ψr
j,(s,t) : j, s, t ∈ Z, r = a, b, d♢ consists of an orthonormal basis for

L2(R). For more details see [1, 3, 9].
In applications, finding a way to construct a wavelet with a smaller frequency domain

and correspondingly increase in time domain is of great importance. The higher the
number of mother wavelets, the more accurate the answer would be. Finding a way
to minimizing frequency domain and so maximizing accuracy is so important. For
more details see [3].

In Section 2, first we refer to the meaning of a two-dimensional wavelet by matrix
dilation and then we present a way to construct a two-dimensional wavelet with small
frequency domain and high accuracy by using a two-dimensional MRA and four masks

Key words and phrases. Wavelet with matrix dilation, multiresolution analysis, integral equation.
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which are not related to the MRA. In Section 3, we will find numerical solution for
two first kind Fredholm integral equations. This kind of equations provide an ill-posed
system, i.e., there might be no solutions or no unique solution and even no stable
solution. Solving this type of integral equation is not easy.

2. Two-Dimensional Wavelet with Matrix Dilation M = 2I

In the subject of wavelet with matrix dilation M, we shall assume that M is a fixed
quadratic integer matrix such that all its eigenvalues are greater than one in modulus,
m = ♣ detM ♣. In this paper we consider M = 2I, especially.

Definition 2.1 ([8]). A collection of closed subspaces Vj ⊂ L2(R2), j ∈ Z, is called
a multiresolution analysis (MRA) in L2(R2) with matrix dilation M if the following
conditions hold:

MRA1: Vj ⊂ Vj+1 for all j ∈ Z;
MRA2:

⋃
j∈Z Vj is dense in L2(R2);

MRA3:
⋂

j∈Z Vj = ¶0♢;
MRA4: f ∈ Vj if and only if f(M−j·) ∈ V0 for all j ∈ Z;
MRA5: there exists a function ϕ ∈ V0 such that the sequence ¶ϕ(· +m, · +n)♢m,n∈Z

forms an orthonormal basis in V0 (ϕ is called scaling function).

Let ϕ be a scaling function for an MRA. Using properties MRA1, MRA5 and
notation

fj,(s,t) := mj/2f(M j · +(s, t)), j, s, t ∈ Z,

we get the refinement equation

(2.1) ϕ =
∑

s,t∈Z

hs,tϕ1,(s,t),
∑

s,t∈Z

♣hs,t♣
2 < ∞.

Applying the Fourier transform,

ϕ̂(ξ1, ξ2) =
∫

R

∫

R

ϕ(x, y)e−2πi(xξ1+yξ2)dxdy,

to both sides of above equality, we get

ϕ̂(ξ1, ξ2) = m0(M
∗−1(ξ1, ξ2))ϕ̂(M∗−1(ξ1, ξ2)),

where

m0(η1, η2) = m− 1

2

∑

s,t∈Z

hs,te
2πi(sη1+tη2).

As in the one-dimensional case, the function m0 is called a mask. For more details
see [8].

Example 2.1. Let M = 2I and ϕ(x, y) = χ[0,1)×[0,1)(x, y). From (2.1), we have

ϕ(x, y) = 2
∑

s,t∈Z

hs,tϕ(2x+ s, 2y + t),
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and we conclude that

ϕ(x, y) = 2[h−1,−1ϕ(2x−1, 2y−1)+h−1,0ϕ(2x−1, y)+h0,−1ϕ(2x, 2y−1)+h0,0ϕ(x, y)],

where h−1,−1, h−1,0, h0,−1, h0,0 = 1
2
.

Hence,

m0(ξ1, ξ2) =
1

2

(
1

2
e2πi(−ξ1−ξ2) +

1

2
e2πi(−ξ1) +

1

2
e2πi(−ξ2) +

1

2

)
.

Definition 2.2 ([8]). If A is a nonsingular integer 2 × 2 matrix, we say the vectors
(k, l), (s, t) ∈ Z

2 are congruent modulo A and write (k, l) ≡ (s, t) (mod A) if (k, l) −
(s, t) = A(p, q) for some (p, q) ∈ Z

2. The integer lattice Z
2 is partitioned into

cosets with respect to the congruence introduced above. Any set containing only one
representative of each coset is called a set of digits of the matrix A. When it does not
matter which set of digits is chosen, we shall assume that it is chosen arbitrarily and
denote it by D(A).

Example 2.2. For M = 2I, we consider

D(M) = ¶s0 = (0, 0), s1 = (0,−1), s2 = (−1, 0), s3 = (−1,−1)♢.

Theorem 2.1 ([8]). Suppose an MRA ¶Vj♢j∈Z is generated by a scaling function

ϕ with mask m0 and the system ¶ϕ(· + (s, t))♢s,t∈Z is orthonormal. Let D(M∗) =
¶s0, . . . , sm−1♢. Let there exist functions mν ∈ L2([0, 1] × [0, 1]), ν = 0, . . . ,m − 1,

such that the matrix

(2.2) M = ¶mν((ξ1, ξ2) +M∗−1sk)♢m−1
ν,k=0

is unitary, that is, MM∗ = M∗M = I. Take the functions ψ(ν), ν = 1, . . . ,m − 1,

defined by the equalities

ψ̂(ν)(ξ1, ξ2) = mν(M∗−1(ξ1, ξ2))ϕ̂(M∗−1(ξ1, ξ2)).

Then the system ¶ψ
(ν)
j,(k,l)♢ is an orthonormal basis in the space L2(R2).

The following lemma is a portrait of some remark in [8, page 93].

Lemma 2.1. Let ϕ be a scaling function with mask

m0(ξ1, ξ2) = m− 1

2

m−1∑

k=0

h0
0,ke

2πi⟨sk,(ξ1,ξ2)⟩,

such that h0,k’s are real numbers, k = 0, . . . ,m− 1, and
∑m−1

k=0 ♣h0,k♣2 = 1. Define

mν(ξ1, ξ2) = m− 1

2

m−1∑

k=0

hν
ν,ke

2πi⟨sk,(ξ1,ξ2)⟩,

where hν
ν,0 = h0

0,ν , h
ν
ν,k = δν,k −

h0
0,k

h0
0,ν

1−h0
0,0

, ν = 1, . . . ,m− 1. Then the matrix

M = ¶mν((ξ1, ξ2) +M∗−1sk)♢m−1
ν,k=0

is unitary.
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Proof. Since
∑m−1

k=0 ♣hν
ν,k♣2 = 1 for ν = 1, . . . ,m− 1, and

∑m−1
k=0 h

ν
ν,kh

µ
µ,k = 0 for ν ≠ µ,

M is unitary. □

Example 2.3. Consider mask m0 in example (2.1),

m0(ξ1, ξ2) =
1

2

(
1

2
+

1

2
e−2πiξ2 +

1

2
e−2πiξ1 +

1

2
e−2πi(ξ1+ξ2)

)
.

Take

mn(ξ1, ξ2) =
1

2

(
1

2
+ (−1)[ n

2
] 1

2
e−2πiξ2 + (−1)n 1

2
e−2πiξ1 + (−1)[ n+1

2
] 1

2
e−2πi(ξ1+ξ2)

)
,

for n = 1, 2, 3, where [·] denotes integer part. Hence,

(2.3) M =




m0(ξ1, ξ2) m0

(
ξ1, ξ2 − 1

2

)
m0

(
ξ1 − 1

2
, ξ2

)
m0

(
ξ1 − 1

2
, ξ2 − 1

2

)

m1(ξ1, ξ2) m1

(
ξ1, ξ2 − 1

2

)
m1

(
ξ1 − 1

2
, ξ2

)
m1

(
ξ1 − 1

2
, ξ2 − 1

2

)

m2(ξ1, ξ2) m2

(
ξ1, ξ2 − 1

2

)
m2

(
ξ1 − 1

2
, ξ2

)
m2

(
ξ1 − 1

2
, ξ2 − 1

2

)

m3(ξ1, ξ2) m3

(
ξ1, ξ2 − 1

2

)
m3

(
ξ1 − 1

2
, ξ2

)
m3

(
ξ1 − 1

2
, ξ2 − 1

2

)




is unitary.

Since the matrix (2.2) is unitary we have some useful formulas for mν , ν =
0, . . . ,m− 1, as

(2.4)
m−1∑

k=0

♣mν((ξ1, ξ2) +M∗−1sk)♣2 = 1.

For all ν, µ = 0, . . . ,m− 1,

(2.5)
m−1∑

k=0

mν((ξ1, ξ2) +M∗−1sk)mµ((ξ1, ξ2) +M∗−1sk) = 0, for ν ̸= µ,

and
m−1∑

ν=0

♣mν((ξ1, ξ2) +M∗−1sk)♣2 = 1, for k = 0, . . . ,m− 1,

and for all k = 1, . . . ,m− 1,

(2.6)
m−1∑

ν=0

mν((ξ1, ξ2) +M∗−1sk)mν(ξ1, ξ2) = 0.

Theorem 2.2. Let f(x, y) be a function such that ¶f(· − s, · − t) : s, t ∈ Z♢ is

an orthonormal system and let m0(ξ1, ξ2) = 1
2

∑
s,t∈Z h

0
s,te

2πi(sξ1+tξ2) and mν(ξ1, ξ2) =
1
2

∑
s,t∈Z h

ν
s,te

2πi(sξ1+tξ2), ν = 1, 2, 3, are masks with matrix dilation M = 2I such that

(2.3) is unitary. Define

Fn(x, y) =
∑

s,t

hn
s,tf(x− s, y − t), n = 0, 1, 2, 3.

Then

(2.7) ¶Fn(· − 2k, · − 2l) : n = 0, . . . , 3, k, l ∈ Z♢
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is an orthonormal basis for span¶f(· − s, · − t) : s, t ∈ Z♢.

Proof. First of all, we calculate some useful formulas.
By definition of Fν , for ν = 1, 2, 3,

(2.8) F̂ν(ξ1, ξ2) = 2mν(ξ1, ξ2)f̂(ξ1, ξ2).

Since ¶f(· − s, · − t) : s, t ∈ Z♢ is an orthonormal set so

⟨f, f(· − s, · − t)⟩ =





1, if s = t = 0,

0, o.w,

and since

⟨f, f(· − s, · − t)⟩ =
〈
f̂(·, ·), e−2πi(s·+t·)f̂(·, ·)

〉
=
∫

R

∫

R

♣f̂(ξ1, ξ2)♣
2e2πi(sξ1+tξ2)

=
∑

k,l

∫ l+1

l

∫ k+1

k
♣f̂(ξ1, ξ2)♣

2e2πi(sξ1+tξ2)dξ1dξ2

=
∫ 1

0

∫ 1

0

∑

k,l

♣f̂(ξ1 + k, ξ2 + l)♣2e2πi(sξ1+tξ2)dξ1dξ2,

noticing Fourier cofficients, we conclude that

(2.9)
∑

k,l

♣f̂(ξ1 + k, ξ2 + l)♣2 = 1 a.e.

Also, by (2.4), (2.5), (2.8) and (2.9), we have

∑

k,l

F̂ν

(
ξ1 −

k

2
, ξ2 −

l

2

)
F̂µ

(
ξ1 −

k

2
, ξ2 −

l

2

)

=
∑

k,l

F̂ν

(
ξ1 −

2k

2
, ξ2 −

2l

2

)
F̂µ

(
ξ1 −

2k

2
, ξ2 −

2l

2

)

+
∑

k,l

F̂ν

(
ξ1 −

2k

2
, ξ2 −

2l + 1

2

)
F̂µ

(
ξ1 −

2k

2
, ξ2 −

2l + 1

2

)

+
∑

k,l

F̂ν

(
ξ1 −

2k + 1

2
, ξ2 −

2l

2

)
F̂µ

(
ξ1 −

2k + 1

2
, ξ2 −

2l

2

)

+
∑

k,l

F̂ν

(
ξ1 −

2k + 1

2
, ξ2 −

2l + 1

2

)
F̂µ

(
ξ1 −

2k + 1

2
, ξ2 −

2l + 1

2

)

=4
∑

k,l

mν

(
ξ1 −

2k

2
, ξ2 −

2l

2

)
mµ

(
ξ1 −

2k

2
, ξ2 −

2l

2

) ∣∣∣∣∣f̂
(
ξ1 −

2k

2
, ξ2 −

2l

2

)∣∣∣∣∣

2

+ 4
∑

k,l

mν

(
ξ1 −

2k

2
, ξ2 −

2l + 1

2

)
mµ

(
ξ1 −

2k

2
, ξ2 −

2l + 1

2

)
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×

∣∣∣∣∣f̂
(
ξ1 −

2k

2
, ξ2 −

2l + 1

2

)∣∣∣∣∣

2

+ 4
∑

k,l

mν

(
ξ1 −

2k + 1

2
, ξ2 −

2l

2

)
mµ

(
ξ1 −

2k + 1

2
, ξ2 −

2l

2

)

×

∣∣∣∣∣f̂
(
ξ1 −

2k + 1

2
, ξ2 −

2l

2

)∣∣∣∣∣

2

+ 4
∑

k,l

mν

(
ξ1 −

2k + 1

2
, ξ2 −

2l + 1

2

)
mµ

(
ξ1 −

2k + 1

2
, ξ2 −

2l + 1

2

)

×

∣∣∣∣∣f̂
(
ξ1 −

2k + 1

2
, ξ2 −

2l + 1

2

)∣∣∣∣∣

2

=4

[
mν(ξ1, ξ2)mµ(ξ1, ξ2) +mν

(
ξ1, ξ2 −

1

2

)
mµ

(
ξ1, ξ2 −

1

2

)

+mν

(
ξ1 −

1

2
, ξ2

)
mµ

(
ξ1 −

1

2
, ξ2

)
+mν

(
ξ1 −

1

2
, ξ2 −

1

2

)
mµ

(
ξ1 −

1

2
, ξ2 −

1

2

)]

=





4, if µ = ν,

0, if µ ̸= ν.

(2.10)

Now we are ready to show that ¶Fν(·−2k, ·−2l) : ν = 0, . . . , 3♢k,l∈Z is an orthonormal
set. By (2.10),

⟨Fν , Fµ(· − 2s, · − 2t)⟩

=
∫

R

∫

R

F̂ν(ξ1, ξ2)F̂µ(ξ1, ξ2)e
4πi(sξ1+tξ2)dξ1dξ2

=
∑

k,l

∫ (l+1)/2

l
2

∫ (k+1)/2

k
2

F̂ν(ξ1, ξ2)F̂µ(ξ1, ξ2)e
4πi(sξ1+tξ2)dξ1dξ2

=
∫ 1

2

0

∫ 1

2

0

∑

k,l

F̂ν

(
ξ1 +

k

2
, ξ2 +

l

2

)
F̂µ

(
ξ1 +

k

2
, ξ2 +

l

2

)
e4πi(sξ1+tξ2)dξ1dξ2

=





1, if ν = µ and s = t = 1,

0, o.w.

Now we will show that the set (2.7) will generate the set ¶f(· − s, · − t) : s, t ∈ Z♢.
In this order we will use the bellow equalities:

mν(ξ1, ξ2) +mν

(
ξ1, ξ2 −

1

2

)
+mν

(
ξ1 −

1

2
, ξ2

)
+mν

(
ξ1 −

1

2
, ξ2 −

1

2

)

=2
∑

s,t

hν
2s,2te

2πi(2sξ1+2tξ2),



TWO-DIMENSIONAL WAVELET WITH MATRIX DILATION AND ITS APPLICATION 655

mν(ξ1, ξ2) −mν

(
ξ1, ξ2 −

1

2

)
+mν

(
ξ1 −

1

2
, ξ2

)
−mν

(
ξ1 −

1

2
, ξ2 −

1

2

)

=2
∑

s,t

hν
2s,2t+1e

2πi(2sξ1+(2t+1)ξ2),

mν(ξ1, ξ2) +mν

(
ξ1, ξ2 −

1

2

)
−mν

(
ξ1 −

1

2
, ξ2

)
−mν

(
ξ1 −

1

2
, ξ2 −

1

2

)

=2
∑

s,t

hν
2s+1,2te

2πi((2s+1)ξ1+2tξ2),

mν(ξ1, ξ2) −mν

(
ξ1, ξ2 −

1

2

)
−mν

(
ξ1 −

1

2
, ξ2

)
+mν

(
ξ1 −

1

2
, ξ2 −

1

2

)

=2
∑

s,t

hν
2s+1,2t+1e

2πi((2s+1)ξ1+(2t+1)ξ2).(2.11)

Hence, by (2.4), (2.6) and (2.11), we have


∑

k,l

h0
2k,2lF0(· + 2k, · + 2l) + h1

2k,2lF1(· + 2k, · + 2l) + h2
2k,2lF2(· + 2k, · + 2l)

+ h3
2k,2lF3(· + 2k, · + 2l)

]̂
(ξ1, ξ2)

=2
3∑

ν=0

∑

k,l

hν
2k,2le

2πi(2kξ1+2lξ2)mν(ξ1, ξ2) f̂(ξ1, ξ2)

=
[
m0(ξ1, ξ2) +m0

(
ξ1, ξ2 −

1

2

)
+m0

(
ξ1 −

1

2
, ξ2

)

+ m0

(
ξ1 −

1

2
, ξ2 −

1

2

)
m0(ξ1, ξ2)f̂(ξ1, ξ2) +

[
m1(ξ1, ξ2) +m1

(
ξ1, ξ2 −

1

2

)

+ m1

(
ξ1 −

1

2
, ξ2

)
+m1

(
ξ1 −

1

2
, ξ2 −

1

2

)
m1(ξ1, ξ2) f̂(ξ1, ξ2)

+
[
m2(ξ1, ξ2) +m2

(
ξ1, ξ2 −

1

2

)
+m2

(
ξ1 −

1

2
, ξ2

)

+ m2

(
ξ1 −

1

2
, ξ2 −

1

2

)
m2(ξ1, ξ2)f̂(ξ1, ξ2) +

[
m3(ξ1, ξ2) +m3

(
ξ1, ξ2 −

1

2

)

+m3

(
ξ1 −

1

2
, ξ2

)
+m3

(
ξ1 −

1

2
, ξ2 −

1

2

)
m3(ξ1, ξ2) f̂(ξ1, ξ2)

=f̂(ξ1, ξ2)
3∑

ν=0

♣mν(ξ1, ξ1)♣
2 + f̂(ξ1, ξ2)

3∑

ν=0

mν

(
ξ1, ξ2 −

1

2

)
mν(ξ1, ξ2)

+ f̂(ξ1, ξ2)
3∑

ν=0

mν

(
ξ1 −

1

2
, ξ2

)
mν(ξ1, ξ2)

+ f̂(ξ1, ξ2)
3∑

ν=0

mν

(
ξ1 −

1

2
, ξ2 −

1

2

)
mν(ξ1, ξ2)
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=f̂(ξ1, ξ2).

Similarly, we have

∑

k,l

h0
2k,2l+1F0 (· + 2k, · + 2l) + h1

2k,2l+1F1 (· + 2k, · + 2l)

+ h2
2k,2l+1F2 (· + 2k, · + 2l) + h3

2k,2l+1F3 (· + 2k, · + 2l)



̂
(ξ1, ξ2)

=2
3∑

ν=0

∑

k,l

hν
2k,2l+1e

2πi(2kξ1+2lξ2)mν(ξ1, ξ2)f̂(ξ1, ξ2)

=e−2πiξ2 f̂(ξ1, ξ2)
3∑

ν=0

[
mν(ξ1, ξ2) −mν

(
ξ1, ξ2 −

1

2

)
+mν

(
ξ1 −

1

2
, ξ2

)

− mν

(
ξ1 −

1

2
, ξ2 −

1

2

)
mν(ξ1, ξ2)

=[f(·, · − 1)]̂(ξ1, ξ2)

and

∑

k,l

h0
2k+1,2lF0(· + 2k, · + 2l) + h1

2k+1,2lF1(· + 2k, · + 2l) + h2
2k+1,2lF2(· + 2k, · + 2l)

+ h3
2k+1,2lF3(· + 2k, · + 2l)



̂
(ξ1, ξ2)

=2
3∑

ν=0

∑

k,l

hν
2k+1,2le

2πi(2kξ1+2lξ2)mν(ξ1, ξ2)f̂(ξ1, ξ2)

=e−2πiξ1 f̂(ξ1, ξ2)
3∑

ν=0

[
mν(ξ1, ξ2) +mν

(
ξ1, ξ2 −

1

2

)
−mν

(
ξ1 −

1

2
, ξ2

)

− mν

(
ξ1 −

1

2
, ξ2 −

1

2

)
mν(ξ1, ξ2) = [f(· − 1, ·)]̂(ξ1, ξ2)

and

∑

k,l

h0
2k+1,2l+1F0(· + 2k, · + 2l) + h1

2k+1,2l+1F1(· + 2k, · + 2l)

+ h2
2k+1,2l+1F2(· + 2k, · + 2l) + h3

2k+1,2l+1F3(· + 2k, · + 2l)



̂
(ξ1, ξ2)

=2
3∑

ν=0

∑

k,l

hν
2k,2le

2πi(2kξ1+2lξ2)mν(ξ1, ξ2)
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=e−2πi(ξ1+ξ2)f̂(ξ1, ξ2)
3∑

ν=0

[
mν(ξ1, ξ2) −mν

(
ξ1, ξ2 −

1

2

)
−mν

(
ξ1 −

1

2
, ξ2

)

+mν

(
ξ1 −

1

2
, ξ2 −

1

2

)
mν(ξ1, ξ2)

=[f(· − 1, · − 1)]̂(ξ1, ξ2). □

The above theorem shows that wavelet filters can be used to split any space spanned
by two-dimensional orthonormal functions f(· − s, · − t) into four parts. We can apply
this method to the space W0 spanned by the ψ(· − s, · − t) in a two-dimensional
multiresolution analysis with matrix dilation 2I. In particular, if we choose arbitrary
functions mν in Theorem 2.2 we have the following.

Corollary 2.1. Let ψ ∈ L2(R2) be a two-dimensional wavelet which is generated

by an MRA ¶Vj♢j∈Z and let mν, ν = 0, . . . , 3, are masks not necessary related to ψ.

Define

ψν(x, y) =
∑

s,t

hν
s,tψ(x− s, y − t), ν = 0, . . . , 3.

Then ¶ψν
j,(2k,2l) : ν = 0, . . . , 3♢j,k,l∈Z consists of an orthonormal basis for span¶ψν

j,(2k,2l) :

ν = 0, . . . , 3♢j,k,l∈Z.

Proof. Let Wj be the orthonormal complement in Vj+1 of Vj. Since W0 =
span¶ψ(· − k, · − l) : k, l ∈ Z♢, by preceding theorem,

W0 =span¶ψ0(· − 2k, · − 2l) : l, k ∈ Z♢
⊕

span¶ψ1(· − 2k, · − 2l) : l, k ∈ Z♢
⊕

span¶ψ2(· − 2k, · − 2l) : l, k ∈ Z♢
⊕

span¶ψ3(· − 2k, · − 2l) : l, k ∈ Z♢

=W 0
0

⊕
W 1

0

⊕
W 2

0

⊕
W 3

0 .

Since each W
j
0 , j = 0, . . . , 3, is generated by translations of ψj(· − 2k, · − 2l), by

dilation we can construct corresponding orthonormal bases for each Wm and their
union is again a basis for span¶ψν

j,(2k,2l) : ν = 0, . . . , 3♢j,k,l∈Z. □

Corollary 2.2. Let ψ be a one dimensional wavelet with scaling function ϕ. Consider

masks mν, ν = 0, . . . , 3, which is asserted in Theorem 2.2. Define

Ψa,i =
∑

s,t

hi
s,tΨ

a(· − s, · − t), i = 1, . . . , 3,

Ψb,i =
∑

s,t

hi
s,tΨ

b(· − s, · − t), i = 1, . . . , 3,

Ψd,i =
∑

s,t

hi
s,tΨ

d(· − s, · − t), i = 1, . . . , 3.

Then, by Corollary 2.1,
{
Ψr,i

j,(2s,2t) : r = a, b, d, i = 0, . . . , 3
}

is an orthonormal basis for L2(R2), where Ψr, r = a, b, d are defined as (1.1).
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3. Constructing an Example and Application of Example

3.1. Example. Consider one-dimensional Haar wavelet with scaling function ϕ =
χ[0,1)

ψ(x) =





1, if x ∈
[
0,

1

2

)
,

−1, if x ∈
[
1

2
, 1
)
,

0, o.w.,

then

Ψa(x, y) =





1, if x ∈ [0, 1), y ∈
[
0,

1

2

)
,

−1, if x ∈ [0, 1), y ∈
[
1

2
, 1
)
,

0, o.w.,

Ψb(x, y) =





1, if x ∈
[
0,

1

2

)
, y ∈ [0, 1),

−1, if x ∈
[
1

2
, 1
)
, y ∈ [0, 1),

0, o.w.,

Ψd(x, y) =





1, if x, y ∈
[
0,

1

2

)
or x, y ∈

[
1

2
, 1
)
,

−1, if x ∈
[
0,

1

2

)
, y ∈

[
1

2
, 1
)

or x ∈
[
1

2
, 1
)
, y ∈

[
0,

1

2

)
,

0, o.w.

Now consider the masks in the Example (2.3), we have

h0
0,0 =h0

0,−1 = h0
−1,0 = h0

−1,−1 =
1

2
,

h1
0,0 =h1

0,−1 =
1

2
, h1

−1,0 = h1
−1,−1 = −

1

2
,

h2
0,0 =h2

−1,0 =
1

2
, h2

0,−1 = h2
−1,−1 = −

1

2
,

h3
0,0 =h3

−1,−1 =
1

2
, h3

0,−1 = h3
−1,0 = −

1

2
.

So, we have

Ψa,0(x, y) =
0∑

s,t=−1

h0
s,tΨ

a(x− s, y − t)

=
1

2
[Ψa(x, y) + Ψa(x, y + 1) + Ψa(x+ 1, y) + Ψa(x+ 1, y + 1)]
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=





1

2
, if (x, y) ∈ [0, 1) ×

[
0,

1

2

)
or (x, y) ∈ [−1, 1) ×

[
0,

1

2

)

or (x, y) ∈ [−1, 1) ×
[
−1,−

1

2

)
,

−
1

2
, if (x, y) ∈ [−1, 1) ×

[
1

2
, 1
)

or (x, y) ∈ [−1, 1) ×
[
−

1

2
, 0
)
,

0, o.w.

Similary,

Ψr,0(x, y) =
1

2
[Ψr(x, y) + Ψr(x, y + 1) + Ψr(x+ 1, y) + Ψr(x+ 1, y + 1)], r = b, d,

and

Ψr,1(x, y) =
1

2
[Ψr(x, y) + Ψr(x, y + 1) − Ψr(x+ 1, y) − Ψr(x+ 1, y + 1)], r = a, b, d,

Ψr,2(x, y) =
1

2
[Ψr(x, y) − Ψr(x, y + 1) + Ψr(x+ 1, y) − Ψr(x+ 1, y + 1)], r = a, b, d,

Ψr,3(x, y) =
1

2
[Ψr(x, y) − Ψr(x, y + 1) − Ψr(x+ 1, y) + Ψr(x+ 1, y + 1)], r = a, b, d.

Hence, ¶2jΨr,i(2j ·−2k, 2j ·−2l) : i = 0, . . . , 3, r = a, b, d, j, k, l ∈ Z♢ is an orthonormal
basis for L2(R2).

The diagram of the 12 mother wavelets is shown in Figures 1–12.

Figure 1. Ψa,0(x, y)

3.2. Application of example in solving two dimensional first kind Fredholm

integral equation. Now we are going to show that our example consists a useful
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Figure 2. Ψa,1(x, y)

Figure 3. Ψa,2(x, y)

basis wavelet to find numerical solution for the first kind Fredholm integral equations.
A two-dimensional first kind Fredholm integral equation has the following form

(3.1) f(x, y) =
∫ d

c

∫ b

a
k(x, y, s, t)G(u(s, t))dsdt,

where k(x, y, s, t) and f(x, y) are known functions and u(x, y) is an unknown function
to be determined. To solve (3.1), if ¶Ψjk : j, k ∈ Z♢ is a wavelet basis let β be a finite



TWO-DIMENSIONAL WAVELET WITH MATRIX DILATION AND ITS APPLICATION 661

Figure 4. Ψa,3(x, y)

Figure 5. Ψb,0(x, y)

subset of it. If ũ is an approximated solution for (3.1) which is compute by β take

r̃ =
∫ d

c

∫ b

a
k(x, y, s, t)G(ũ(s, t))dsdt− f(x, y).

To find ũ, we have to solve the system ⟨r̃, y⟩ = 0 for all y ∈ β. Since first kind
Fredholm integral equations generate ill-conditioned systems, to solve the mentioned
system we use Tikhonov regularization. Note that if ũ is a solution for (3.1), then
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Figure 6. Ψb,1(x, y)

Figure 7. Ψb,2(x, y)

∥r̃∥2 = 0. Then we are going to find ũ such that ∥r̃∥2 be the smallest. We named the
value of ∥r̃∥2 as L2-norm of error. For more details see [2, 4, 7, 9].

Now by using wavelet basis which was presented in the former subsection, we are
going to solve two following examples.
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Figure 8. Ψb,3(x, y)

Figure 9. Ψd,0(x, y)

Example 3.1. Consider the integral equation
∫ 1

0

∫ 1

0
(x2s+ yt2)u(s, t)dsdt =

15(9944x2 + 16549y)

131072
.

We have

ũ(x, y) = − 3.78777Ψa,0(x, y) − 3.78777Ψa,1(x, y) − 3.78777Ψa,2(x, y)

− 3.78777Ψa,3(x, y) − 2.276Ψb,0(x, y) − 2.276Ψb,1(x, y)
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Figure 10. Ψd,1(x, y)

Figure 11. Ψd,2(x, y)

− 2.276Ψb,2(x, y)2.276Ψb,3(x, y) + Ψd,0(x, y) + Ψd,1(x, y) + Ψd,2(x, y)

+ Ψd,3(x, y).

The L2-norm of error equals 1.42968 × 10−11.
If we use two-dimensional Haar wavelets which are made by (1.1), our numerical

solution is −7.57553Ψa(x, y)−4.552Ψb(x, y)+Ψd(x, y) and the L2-norm of error equals
1.03387 × 10−8.
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Figure 12. Ψd,3(x, y)

Example 3.2. Consider integral equation
∫ 1

0

∫ 1

0
(x2 + yt)(u2(s, t) − u(s, t))dsdt =

(−12 + 5 π)(2x2 + y)

12 π
.

We have

ũ(x, y) =0.0841832Ψa,0(x, y) + 0.0841832Ψa,1(x, y) + 0.0841832Ψa,2(x, y)

+ 0.0841832Ψa,3(x, y) + 0.145072Ψb,0(x, y) + 0.145072Ψb,1(x, y)

+ 0.145072Ψb,2(x, y) + 0.145072Ψb,3(x, y) + 0.145072Ψd,0(x, y)

+ 0.145072Ψd,1(x, y) + 0.145072Ψd,2(x, y) + 0.145072Ψd,3(x, y).

The L2-norm of error equals 1.13239 × 10−9.

References

[1] J. J.-P. Antoine, R. Murenzi, P. Vandergheynst and S. T. Ali, Two-Dimensional Wavelets and

their Relatives, Cambridge University Press, Cambridge, 2004.
[2] C. Baker, The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, 1977.
[3] I. Daubechies, Ten Lecture on Wavelets, SIAM, Philaderphia, PA, 1992.
[4] G. H. Golub, P. C. Hansen and D. P. O’Leary, Tikhonov regularization and total least squares,

SIAM J. Matrix Anal. Appl. 21(1) (1999), 185–194.
[5] C. W. Groetsch, Integral equations of the first kind, inverse problems and regularization: a crash

course, J. Phys. Conf. Ser. 73(1) (2007), Paper ID 012001.
[6] A. Krisch, An Introduction to the Mathematical Theory of Inverse Problems, Second Edition,

Springer-Verlag, New York, 2013.
[7] D. Lesnic, S. A. Yousefi and M. Ivanchov, Determination of a time-dependent diffusivity from

nonlocal conditions, Int. J. Appl. Math. Comput. Sci. 41 (2013), 301–320.



666 M. TAHAMI AND A. ASKARI HEMMAT

[8] I. Ya. Novikov, V. Yu. Protasova and M. A. Skopina, Wavelet Theory, American Mathematical
Soc., Providence, Rhode Island, 2011.

[9] M. Tahami, A. Askari Hemmat and S. A. Yousefi, Numerical solution of two-dimensional first

kind Fredholm integral equations by using linear Legendre wavelet, Int. J. Wavelets Multiresolut.
Inf. Process. 14(1) (2016), DOI 10.1142/S0219691316500041.

1Department of Pure mathematics,
Faculty of Mathematics and computer, Shahid Bahonar University of Kerman,
Kerman, Iran
Email address: tahami_info@yahoo.com

2Department of Applied mathematics,
Faculty of Mathematics and computer, Shahid Bahonar University of Kerman,
Kerman, Iran

3Mahani mathematical research center,
Shahid Bahonar University of Kerman,
Kerman, Iran
Email address: askari@mail.uk.ac.ir



KRAGUJEVAC JOURNAL

OF MATHEMATICS

About this Journal

The Kragujevac Journal of Mathematics (KJM) is an international journal devoted
to research concerning all aspects of mathematics. The journal’s policy is to motivate
authors to publish original research that represents a significant contribution and is
of broad interest to the fields of pure and applied mathematics. All published papers
are reviewed and final versions are freely available online upon receipt. Volumes are
compiled and published and hard copies are available for purchase. From 2018 the
journal appears in one volume and four issues per annum: in March, June, September
and December. From 2021 the journal appears in one volume and six issues per
annum: in February, April, June, August, October and December.

During the period 1980–1999 (volumes 1–21) the journal appeared under the name
Zbornik radova PrirodnoŰmatematičkog fakulteta Kragujevac (Collection of Scientific
Papers from the Faculty of Science, Kragujevac), after which two separate journals—
the Kragujevac Journal of Mathematics and the Kragujevac Journal of Science—were
formed.

Instructions for Authors

The journal’s acceptance criteria are originality, significance, and clarity of presen-
tation. The submitted contributions must be written in English and be typeset in
TEX or LATEX using the journal’s defined style (please refer to the Information for
Authors section of the journal’s website http://kjm.pmf.kg.ac.rs). Papers should
be submitted using the online system located on the journal’s website by creating
an account and following the submission instructions (the same account allows the
paper’s progress to be monitored). For additional information please contact the
Editorial Board via e-mail (krag_j_math@kg.ac.rs).

http://kjm.pmf.kg.ac.rs
mailto:krag_j_math@kg.ac.rs

	1. Introduction
	2. Main Results
	2.1. Disjoint union of paths
	2.2. Disjoint union of suns
	2.3. Disjoint union of helms
	2.4. Disjoint union of friendships

	3. Conclusion
	Acknowledgements.

	References
	1. Introduction and Statement of the Main Result
	2. Preliminaries
	3. Proof of Theorem 1.1
	References
	1. Introduction and Preliminaries
	2. -Meir-Keeler Contractions
	3. Consequences
	4. An Application
	References
	1. Introduction
	2. Main Results
	References
	1. Introduction
	2. Preliminaries
	3. Results
	3.1. N-cubic linear spaces

	4. Internal and External N-Cubic Linear Spaces
	5. Conclusion
	Acknowledgements.

	References
	1. Introduction
	2. Notations, Definitions and Auxiliary Results
	3. Main Result
	Acknowledgements.

	References
	1. Introduction
	2. Preliminaries
	3. Main Results
	References
	1. Introduction
	2. Preliminaries
	3. Fuzzy Completely Primary Subsets of LA-Semigroups
	4. Weakly Fuzzy Quasi-Primary Ideals of LA-Semigroups
	5. Cartesian Product of Fuzzy Ideals of LA-Semigroups
	References
	1. Introduction
	2. Description of the Collocation Method
	3. Convergence Analysis
	4. Numerical Examples
	5. Conclusion
	Acknowledgements.

	References
	1. Introduction
	2. Two-Dimensional Wavelet with Matrix Dilation M=2I
	3. Constructing an Example and Application of Example
	3.1. Example
	3.2. Application of example in solving two dimensional first kind Fredholm integral equation

	References

