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MAPS PRESERVING THE SPECTRUM OF SKEW LIE PRODUCT
OF OPERATORS

EMAN ALZEDANI1 AND MOHAMED MABROUK2

Abstract. Let B(H) denote the algebra of all bounded linear operators acting on
a complex Hilbert space H. In this paper, we show that a surjective map φ on B(H)
satisfies

σ (φ(T )φ(S) − φ(S)φ(T )∗) = σ (TS − ST ∗) , T, S ∈ B(H),
if and only if there exists a unitary operator U ∈ B(H) such that

φ(T ) = λUTU∗, T ∈ B(H),
where λ ∈ {−1, 1}.

1. Introduction and Statement of the Main Result

Throughout this paper, B(H) stands for the algebra of all bounded linear operators
acting on an infinite dimensional complex Hilbert space (H, ⟨·, ·⟩). Let Bs(H) (resp.
Ba(H)) be the real linear space of all self-adjoint (resp. anti-self-adjoint) operators in
B(H). For every A ∈ B(H), the spectrum (resp. the spectral radius) of A is denoted
by σ(A) (resp. r(A)).

The problem of describing maps on operators and matrices that preserve certain
functions, subsets and relations has been widely studied in the literature, see [3–6,
9–12, 16, 19–22] and references therein. One of the classical problems in this area of
research is to characterize maps preserving the spectra of the product of operators.
Molnár in [19] studied maps preserving the spectrum of operator and matrix products.
His results have been extended in several directions [1,2,7,8,13–15,17] and [18]. In [1],
the problem of characterizing maps between matrix algebras preserving the spectrum
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of polynomial products of matrices is considered. In particular, the results obtained
therein extend and unify several results obtained in [6] and [8].

Latter in [2], the form of all maps preserving the spectrum and the local spectrum
of Skew Lie product of matrices are determined. This paper is a continuation of such
recent work, and examines the form of maps preserving the spectrum of skew Lie
product of operators on a complex Hilbert space. Mainly, we shall give a characteri-
zation of all surjective maps φ : B(H) → B(H) preserving the spectrum of the skew
Lie product “[T, S]∗ = TS − ST ∗” of operators. Precisely, the following theorem is
the main result of this paper.

Theorem 1.1. A surjective map φ : B(H) → B(H) satisfies
(1.1) σ (φ(T )φ(S) − φ(S)φ(T )∗) = σ (TS − ST ∗) , T, S ∈ B(H),
if and only if there exists a unitary operator U ∈ B(H) such that
(1.2) φ(T ) = ±UTU∗,

for all T ∈ B(H).

Before presenting the proof of the main theorem few comments can be made. Firstly,
note that the only restriction on the map φ is surjectivity; no linearity or additivity
or continuity is assumed. Also, we point out that the consideration of maps φ from
B(H) onto itself is for the sake of simplicity. Our result and its proof remains valid
in the case where φ is a surjective map from B(H) onto B(K) where H and K are
two different Hilbert spaces.

The case of finite dimensional Hilbert spaces was considered in [2] where it is shown
that the theorem 1.1 remains valid without the surjectivity assumption of the map φ.
The proof given therein is based on a density argument and is completely different
from the one presented in the current paper. This paper is divided into three sections.
In Section 2, we collect some auxiliary lemmas needed in the proof of the main result.
In Section 3, we present the proof of Theorem 1.1.

2. Preliminaries

Given two vectors x and y in H, let x ⊗ y be the operator of at most rank one
defined by

(x⊗ y)(z) := ⟨z, y⟩x, z ∈ H,

and note that (x ⊗ y)∗ = y ⊗ x. Let (ek)k∈I be an orthonormal basis of H. For any
A ∈ B(H), the transpose A⊤ of A with respect to the basis (ek)k∈I is defined as the
unique operator such that

⟨Aek, ej⟩ = ⟨A⊤ej, ek⟩,
for any j, k ∈ I.

For any x = ∑
k∈I xkek, write x̄ = ∑

k∈I xk ek. It is easy to see that
(x⊗ y)⊤ = ȳ ⊗ x̄,
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for any x, y ∈ H.
To prove Theorem 1.1, we need some auxiliary results that we present below.

The first lemma describes the spectrum of the skew Lie product [x ⊗ y, A]∗ for any
nonzero vectors x, y ∈ H and operator A ∈ B(H).

Lemma 2.1. For any nonzero vectors x, y ∈ H and A ∈ B(H), set

∆A(x, y) = (⟨Ax, y⟩ + ⟨Ay, x⟩)2 − 4∥x∥2⟨A2y, y⟩

and
ΛA(x, y) = (⟨x,Ay⟩ + ⟨Ax, y⟩)2 − 4⟨x, y⟩⟨Ax,Ay⟩.

Then
(1) σ ([x⊗ y, A]∗) = 1

2

{
0, ⟨Ax, y⟩ − ⟨Ay, x⟩ ±

√
∆A(x, y)

}
;

(2) σ ([A, x⊗ y]∗) = 1
2

{
0, ⟨Ax, y⟩ − ⟨x,Ay⟩ ±

√
ΛA(x, y)

}
.

Proof. For the proof of the first item see [2]. The second statement can be proved in
a similar way and we therefore omit its proof. □

Corollary 2.1. For any x ∈ H and A ∈ B(H), we have

σ(A(x⊗ x) + (x⊗ x)A) =
{

0, ⟨Ax, x⟩ ± ∥x∥
√

⟨A2x, x⟩
}
.

Proof. It suffices to replace x by ix and y by x in Lemma 2.1 (1). □

The second principle gives necessary and sufficient conditions for two operators to
be the same.

Lemma 2.2. For any two operators A and B in B(H), the following statements are
equivalent.

(1) A = B.
(2) σ([X,A]∗) = σ([X,B]∗) for every operator X ∈ B(H).
(3) σ([X,A]∗) = σ([X,B]∗) for every operator X ∈ Ba(H).

Proof. The proof is the same as that of [2, Corollary 3.2]. □

The next lemma characterizes real scalar operators in terms of skew Lie products.

Lemma 2.3. For an operator A ∈ B(H), we have σ([A,X]∗) = {0} holds for any
operator X ∈ B(H) if and only if A = αI for some scalar α ∈ R.

Proof. The “if ” part is obvious. To check the “only if ” part, assume that

σ(([A,X]∗)) = {0}

holds for any operator X ∈ B(H). As A− A∗ is anti-self-adjoint then

∥A− A∗∥ = r(A− A∗) = r([A, I]∗) = 0,
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it follows that A = A∗. If there exists a nonzero vector x ∈ H such that {x,Ax} is a
linearly independent set, then by Lemma 2.1 (2) we have

σ ([A, x⊗ x]∗) = 1
2

{
0,±

√
⟨Ax, x⟩2 − ∥x∥2 ∥Ax∥2

}
.

This is a contradiction since ⟨Ax, x⟩2 − ∥x∥2 ∥Ax∥2 ̸= 0. □

We close this section with the following lemma which gives a characterization of
self-adjoint and antiself-adjoint operators in terms of the spectrum of the skew Lie
product.

Lemma 2.4. If A ∈ B(H) is nonzero operator, then
(1) A ∈ Bs(H) if and only if σ([X,A]∗) ⊂ iR, for any X ∈ B(H);
(2) A ∈ Ba(H) if and only if σ([X,A]∗) ⊂ R, for any X ∈ B(H).

Proof. (1) If A = A∗, then σ([X,A]∗) ⊂ iR, since [X,A]∗ = XA−AX∗ = XA−(XA)∗.
To prove the converse, assume that σ([X,A]∗) ⊂ iR for any operator X ∈ B(H). In
particular by Lemma 2.1 (1) we get

σ ([x⊗ y, A]∗) = 1
2

{
0, ⟨Ax, y⟩ − ⟨Ay, x⟩ ±

√
∆A(x, y)

}
⊂ iR,

for any x, y ∈ H. Which yields that
0 = ℜ (⟨Ax, y⟩ − ⟨Ay, x⟩) = ⟨(A− A)∗x, y⟩ + ⟨y, (A− A∗)x⟩.

Replace x by ix in the above equality, we get
⟨(A− A)∗x, y⟩ − ⟨y, (A− A∗)x⟩ = 0.

Accordingly ⟨(A− A)∗x, y⟩ = 0 for any x, y ∈ H. Thus, A = A∗.
(2) We have

A ∈ Ba(H) ⇔iA ∈ Bs(H)
⇔σ([X, iA]∗) ⊂ iR, for all X ∈ B(H) (by Lemma 2.4 (1))
⇔iσ([X,A]∗) ⊂ iR, for all X ∈ B(H) (since σ([X, iA]∗) = iσ([X,A]∗))
⇔σ([X,A]∗) ⊂ R, for all X ∈ B(H). □

3. Proof of Theorem 1.1

The “if ” part is obvious. We will complete the proof of the “only if ” part after proving
several claims.

Claim 1. φ is injective.

Proof. For A,B ∈ B(H), assume that φ(A) = φ(B). Then, for every X ∈ B(H), we
have

σ ([X,A]∗) = σ ([φ(X), φ(A)]∗) = σ ([φ(X), φ(B)]∗ = σ([X,B]∗) .
It then follows from Corollary 2.2 that A = B and φ is injective. □
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Claim 2. φ preserves self-adjoint and anti-self adjoint operators in both directions. In
particular, we have φ(0) = 0.

Proof. Pick up an operator A ∈ B(H). If A ∈ Bs(H), then
σ ([φ(X), φ(A)]∗) = σ ([X,A]∗) ⊂ iR.

As φ is surjective, then Lemma 2.4 (1) entails that ϕ(A) ∈ Bs(H). Similarly, if
A ∈ Ba(H), we have σ([φ(X), φ(A)]∗) ⊂ R. By Lemma 2.4 (2), we get ϕ(A) ∈ Ba(H).

For the converse, note that φ is bijective and φ−1 satisfies (1.1) A similar discussion
entails that if φ−1(A) ∈ Bs(H) (resp. φ−1(A) ∈ Ba(H)), then so is A. □

Claim 3. φ is homogenous, i.e., φ(αA) = αφ(A) for any α ∈ C and A ∈ B(H).

Proof. For any α ∈ C and A,X ∈ B(H), we have
σ([φ(X), φ(αA)]∗) =σ([X,αA]∗)

=α σ([X,A]∗)
=α σ([φ(X), φ(A)]∗)
=σ([φ(X), αφ(A)]∗).

Hence,
σ([φ(X), φ(αA)]∗) = σ([φ(X), αφ(A)]∗),

for any X ∈ B(H). Since φ is bijective, we infer from Lemma 2.3 that φ(αA) = αφ(A).
This ends the proof of Claim 3. □

Claim 4. There exist a unitary operator U ∈ B(H) and a scalar c ∈ {−1, 1} such that
either

(i) φ(A) = cUAU∗ for every A ∈ Bs(H) or
(ii) φ(A) = cUA⊤U∗ for every A ∈ Bs(H).

Here A⊤ is the transpose of A with respect to an arbitrary but fixed orthonormal
basis of H.

Proof. Let A,B ∈ B(H). From Claim 3 and (1.1), we have
σ (φ(A)φ(B) + φ(B)φ(A)∗) = − σ (φ(iA)φ(iB) − φ(iB)φ(iA)∗)

= − σ (−AB −BA∗)
=σ (AB +BA∗) .

Thus,
(3.1) σ (φ(A)φ(B) + φ(B)φ(A)∗) = σ (AB +BA∗) ,
for any A,B ∈ B(H). Now Claim 2 implies that φ(A) ∈ Bs(H) whenever A ∈ Bs(H).
This together with Claim 1 entail that the restriction φ|Bs(H) : Bs(H) → Bs(H) is
well defined and bijective. Moreover, (3.1) implies that

σ (φ(A)φ(B) + φ(B)φ(A)) = σ (AB +BA) ,
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for any A,B ∈ Bs(H). Therefore, by [12, Theorem 3.1] (see also [23, Theorem 2],
there exist a unitary operator U ∈ B(H) and a scalar c ∈ {−1, 1} such that either

• φ(A) = cUAU∗ for every A ∈ Bs(H) or
• φ(A) = cUA⊤U∗ for every A ∈ Bs(H).

Here A⊤ is the transpose of A with respect to an arbitrary but fixed orthonormal
basis of H. □

In particular Claim 4 implies that φ(I) = ±I. In the sequel we may and shall
assume that ϕ(I) = I. Define a map ψ : B(H) → B(H) by putting

ψ(A) = U∗φ(A)U,

for every A ∈ B(H). Then ψ is a bijective map satisfying

σ (ψ(A)ψ(B) + ψ(B)ψ(A)∗) = σ (AB +BA∗) ,(3.2)

for every A,B ∈ B(H). Moreover, we have either

(3.3) ψ(A) = A, A ∈ Bs(H),

or

(3.4) ψ(A) = A⊤, A ∈ Bs(H).

Claim 5. The form (3.4) cannot occur.

Proof. Assume for the sake of contradiction that ψ(A) = A⊤ for any A ∈ Bs(H). Let
{ej, j ∈ I} be the orthonormal basis with respect to which A⊤ is computed, for every
A ∈ Bs(H). To get a contradiction we shall prove that ⟨Ax, x⟩ = ⟨ψ(A)x, x⟩ for any
x ∈ H and A ∈ Bs(H). To do so it suffices to prove that

(3.5) ⟨Aek, el⟩ = ⟨ψ(A)ek, el⟩,

for any k and l in I and A ∈ Bs(H).
Let A ∈ Bs(H) and pick up two elements ek and el in {ej, j ∈ I}. For any α, β ∈ R,

set a = αek + βel. Note that

ψ(a⊗ a) = (a⊗ a)⊤ = a⊗ a.

Now, by (3.2) we have

σ ((a⊗ a)A+ A(a⊗ a)) =σ ((a⊗ a)A+ A(a⊗ a)∗)
=σ (ψ(a⊗ a)ψ(A) + ψ(A)ψ(a⊗ a)∗)
=σ ((a⊗ a)ψ(A) + ψ(A)(a⊗ a)∗)
=σ ((a⊗ a)ψ(A) + ψ(A)(a⊗ a)) .

Accordingly

σ ((a⊗ a)ψ(A) + ψ(A)(a⊗ a)) = σ ((a⊗ a)A+ A(a⊗ a)) .(3.6)
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Corollary 2.1 together with (3.6) entail that{
0, ⟨ψ(A)a, a⟩ ± ∥a∥

√
⟨ψ(A)2a, a⟩

}
=

{
0, ⟨Aa, a⟩ ±

√
⟨A2a, a⟩∥a∥2

}
.

Accordingly ⟨ψ(A)a, a⟩ = ⟨Aa, a⟩. Since α and β are arbitrary, we infer that
⟨Aek, ek⟩ = ⟨ψ(A)ek, ek⟩

and
⟨A(ek + el), (ek + el)⟩ = ⟨ψ(A)(ek + el), (ek + el)⟩,

for every k, l ∈ I. Since A and ψ(A) are in Bs(H), we infer that
⟨Aek, el⟩ = ⟨ψ(A)ek, el⟩.

This in particular implies that ψ(A) = A for every for any A ∈ Bs(H). Which is
impossible since ψ(A) = A⊤ for any A ∈ Bs(H). □

Claim 6. ψ(A) = A for any A ∈ B(H).

Proof. We have ψ(A) = A for any A ∈ Bs(H). For any A ∈ B(H), using a similar
reasoning as above, one can show that ⟨Ax, x⟩ = ⟨ψ(A)x, x⟩ for any x ∈ H. Since
H is a complex Hilbert space it yields that ψ(A) = A as desired. The proof is thus
complete. □
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