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EXTENSIONS OF MEIR-KEELER CONTRACTION VIA
w-DISTANCES WITH AN APPLICATION

SEDIGHEH BAROOTKOOB1, ERDAL KARAPINAR2,3, HOSEIN LAKZIAN4,
AND ANKUSH CHANDA5

Abstract. In this article, we conceive the notion of a generalized (α,ψ, q)-Meir-
Keeler contractive mapping and then we investigate a fixed point theorem involving
such kind of contractions in the setting of a complete metric space via a w-distance.
Our obtained result extends and generalizes some of the previously derived fixed
point theorems in the literature via w-distances. In addition, to validate the novelty
of our findings, we illustrate a couple of constructive numerical examples. Moreover,
as an application, we employ the achieved result to earn the existence criteria of the
solution of a kind of non-linear Fredholm integral equation.

1. Introduction and Preliminaries

In this paper, we introduce the notion of a generalized (α, ψ, q)-Meir-Keeler contrac-
tive mapping and investigate fixed points for such operators in the context of complete
metric spaces via a w-distance. For this purpose we first recall the outstanding result
of Meir-Keeler [14] (see also [10]).

Theorem 1.1 ([14]). Let f be a self-map defined on a complete metric space (M,d).
Also assume that for any ε > 0 we can find a δ > 0 such that

ε ≤ d(ρ, ϱ) < ε+ δ implies d(fρ, fϱ) < ε,

for all ρ, ϱ ∈ M . Then f has a unique fixed point.

Key words and phrases. w-distance, α-orbital admissible map, weaker Meir-Keeler function, Fred-
holm integral equation.
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This result is also known as a uniform contraction and it has been studied and
extended by a number of researchers in many directions (see [16, 20]). Now we recall
the notion of w-distance introduced by Kada et al. [12].

Definition 1.1 ([12]). Let (M,d) be a metric space. A mapping q : M ×M → [0,∞)
is said to be a w-distance on M if

(i) q(ρ, σ) ≤ q(ρ, ϱ) + q(ϱ, σ) for any ρ, ϱ, σ ∈ M ;
(ii) q is a lower semi-continuous map in the second variable, that is, when ρ ∈ M

and σn → σ in M , then we have q(ρ, σ) ≤ lim infn q(ρ, σn);
(iii) for every ϵ > 0, there is a δ > 0 which q(σ, ρ) ≤ δ and q(σ, ϱ) ≤ δ imply that

d(ρ, ϱ) ≤ ϵ.

Let T : M → M and α : M ×M → [0,∞). We say that T is α-orbital admissible
(see [17]) if

α(p, Tp) ≥ 1 implies α(Tp, T 2p) ≥ 1,
for all p ∈ M . By using this auxiliary function, it is possible to combine several existing
results in the literature, see, e.g. [9, 15, 18, 19] and the related references therein. In
particular, Lakzian et al. [13] introduced the concept of (α, ψ, q)-contractive mappings
in metric spaces via w-distances and proved fixed point results via this notion.

On the other hand, inspired by the notion of Meir-Keeler contractions, Chen [11]
introduced the concept of a weaker Meir-Keeler function as follows.

Definition 1.2 ([11]). A mapping ψ : [0,∞) → [0,∞) is said to be a weaker Meir-
Keeler function if, for every ϵ > 0, there is a δ > 0 such that for every τ ∈ [0,∞) with
ϵ ≤ τ < ϵ+ δ, we have an n0 ∈ N satisfying ψn0(τ) < ϵ.

Regarding [11], we also consider the family Ψ of weaker Meir-Keeler functions
ψ : [0,∞) → [0,∞) fulfilling the subsequent properties:

(ψ1) ψ(τ) > 0 whenever τ > 0 and ψ(0) = 0;
(ψ2)

∑∞
n=1 ψ

n(τ) < ∞, τ ∈ (0,∞);
(ψ3) for each yn ∈ [0,∞), the following hold:

(i) when limn→∞ yn = ℓ > 0, then limn→∞ ψ(yn) < ℓ;
(ii) whenever limn→∞ yn = 0, we have limn→∞ ψ(yn) = 0.

Along with the aforementioned terminologies, the following lemma is also playing a
crucial role in our subsequent studies.

Lemma 1.1 ([12]). Suppose that (M,d) is a metric space with a w-distance q.
(i) For any sequence {ρn} in M with limn q(ρn, ρ) = limn q(ρn, ϱ) = 0, we have

ρ = ϱ. Additionally, q(σ, ρ) = q(σ, ϱ) = 0 implies ρ = ϱ.
(ii) For two sequences {αn} and {βn} in [0,∞) converging to 0, whenever

q(ρn, ϱn) ≤ αn, q(ρn, ϱ) ≤ βn hold for each n ∈ N, then the sequence {ϱn}
converges to ϱ.
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(iii) Suppose that {ρn} is a sequence in M such that for every ε > 0 there is an
Nε ∈ N with m > n > Nε implies that q(ρn, ρm) < ε (or limm,n q(ρn, ρm) = 0).
Then {ρn} is a Cauchy sequence.

In this paper, we define the concept of generalized (α, ψ, q)-Meir-Keeler contractive
mappings and by using this new concept, we give some fixed point results. Further-
more, some significant non-trivial numerical examples are investigated to authenticate
our findings. Moreover, as an application, the existence of the solution for a non-linear
Fredholm integral equation is investigated.

2. (α, ψ, q)-Meir-Keeler Contractions

This section brings the idea of generalized (α, ψ, q)-Meir-Keeler contractive map-
pings with the help of a weaker Meir-Keeler function. Also, we conceive a fixed point
result concerning such kinds of mappings. Now we consider the following expressions:

Mq(ρ, ϱ) = max
{
q(ρ, ϱ), q(ρ, fρ), q(ϱ, fϱ), q(ρ, fϱ) + q(fρ, ϱ)

2

}
and

m(ρ, ϱ) = max
{
d(ρ, ϱ), d(ρ, fρ), d(ϱ, fϱ), d(ρ, fϱ) + d(fρ, ϱ)

2

}
.

Here, we propose the idea of generalized (α, ψ, q)-Meir-Keeler contractive mappings.

Definition 2.1. Suppose that (M,d) is a metric space with a w-distance q and
consider the functions ψ ∈ Ψ, α : M ×M → [0,∞) and an α-orbital admissible map
f . Then f is called a generalized (α, ψ, q)-Meir-Keeler contractive mapping if for every
η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M , when η ≤ ψ(Mq(ρ, ϱ)) < η + δ, we
have α(ρ, ϱ)q(fρ, fϱ) < η.

In addition, for q = d and Mq(ρ, ϱ) = m(ρ, ϱ), the mapping f is said to be a
generalized (α, ψ)-Meir-Keeler-contractive. Furthermore, f is a (α, ψ, q)-Meir-Keeler
contractive map, when Mq(ρ, ϱ) = q(ρ, ϱ) for each ρ, ϱ ∈ M .

The succeeding theorem deals with an interesting fixed point result involving the
previously discussed type of maps.

Theorem 2.1. Suppose that (M,d) is a complete metric space with a w-distance
q. Also assume that f is a generalized (α, ψ, q)-Meir-Keeler contractive map such
that there is ρ0 ∈ M with q(fnρ0, f

nρ0) = 0 for all non-negative integers n and
α(ρ0, fρ0) ≥ 1. Suppose that one of the following conditions holds.

(i) For each w ∈ M satisfying w ̸= fw, we have inf{q(ρ, w) + q(ρ, fρ) : ρ ∈ M} >
0.

(ii) f is continuous.
(iii) If for some sequence {ρn}, limn→∞ q(ρn, ρ) = limn→∞ q(fρn, ρ), then fρ = ρ.

Then f owns a fixed point u ∈ M , with q(u, u) = 0.
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Proof. We construct a sequence {ρn} in M such that ρn+1 = fρn = fn+1ρ0 for each
n ∈ N. When ρn0 = ρn0+1 for some positive integer n0, then u = ρn0 is a fixed point
of f . Hence, without loss of generality consider that,

ρn ̸= ρn+1, for all n ∈ N.
As f is α-orbital admissible, we have

α(ρ0, ρ1) = α(ρ0, fρ0) ≥ 1 implies α(fρ0, fρ1) = α(ρ1, ρ2) ≥ 1.
Using mathematical induction, it follows that α(ρn, ρn+1) ≥ 1 for each n ∈ N. Now,
we divide the entire proof into four steps and discuss one by one.

Step 1. We first prove that for each n ∈ N
q(ρn, ρn+1) < Mq(ρn−1, ρn).

Note that for every natural number n, we have q(ρn, ρn+1) > 0. Since, otherwise by
the combination of q(ρn, ρn+1) = 0 and the assumption q(ρn, ρn) = 0 and applying
Lemma 1.1 we get ρn = ρn+1, which is a contradiction. Therefore, we find that

Mq(ρn−1, ρn) = max
{
q(ρn−1, ρn), q(ρn−1, ρn), q(ρn, ρn+1),

q(ρn−1, ρn+1) + q(ρn, ρn)
2

}
> 0.

Hence, we obtain ψ(Mq(ρn−1, ρn)) > 0. Now, from the hypothesis and Definition
2.1 for η = ψ(Mq(ρn−1, ρn)), there exists a δ > 0 such that for ρ, ϱ ∈ M , when
η ≤ ψ(Mq(ρ, ϱ)) < η + δ, we have α(ρ, ϱ)q(fρ, fϱ) < η.

In particular, since for each τ > 0, ψ(τ) < τ , we have
q(ρn, ρn+1) ≤α(ρn−1, ρn)q(ρn, ρn+1) < η = ψ(Mq(ρn−1, ρn)) < Mq(ρn−1, ρn).(2.1)

Since
q(ρn−1, ρn+1)

2 ≤ q(ρn−1, ρn) + q(ρn, ρn+1)
2 ≤ max{q(ρn−1, ρn), q(ρn, ρn+1)},

we have

Mq(ρn−1, ρn) = max
{
q(ρn−1, ρn), q(ρn−1, ρn), q(ρn, ρn+1),

q(ρn−1, ρn+1) + q(ρn, ρn)
2

}

= max
{
q(ρn−1, ρn), q(ρn, ρn+1),

q(ρn−1, ρn+1)
2

}
= max{q(ρn−1, ρn), q(ρn, ρn+1)}.

So, q(ρn, ρn+1) < Mq(ρn−1, ρn) = max{q(ρn−1, ρn), q(ρn, ρn+1)} and this implies that
Mq(ρn−1, ρn) = q(ρn−1, ρn) and q(ρn, ρn+1) < q(ρn−1, ρn).

Now, since {q(ρn−1, ρn)} is decreasing and bounded below, it is convergent to t ≥ 0
such that q(ρn, ρn+1) ≥ t for each n. Assume that t ̸= 0 and ξ = limn ψ(q(ρn, ρn+1)).
Then by (ψ3), 0 < ξ < t and by Definition 2.1, we can find δ > 0 satisfying
(2.2) when ξ ≤ ψ(Mq(ρ, ϱ)) < ξ + δ, we have α(ρ, ϱ)q(fρ, fϱ) < ξ,
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for ρ, ϱ ∈ M . Consider k0 ∈ N such that 1
k0
< δ and 1

k0
< ξ. Then for each k ≥ k0

there is δk ≤ 1
k

such that

(2.3) ξ − 1
k

≤ ψ(Mq(ρ, ϱ)) < ξ − 1
k

+ δk implies α(ρ, ϱ)p(fρ, fϱ) < ξ − 1
k
< ξ.

Also there is k2 ∈ N such that for each n ≥ k2 one obtains

ξ − 1
k0

< ψ(q(ρn−1, ρn)) = ψ(Mq(ρn−1, ρn)) < ξ + 1
k0

< ξ + δ.

Now, when ξ ≤ ψ(Mq(ρn−1, ρn)) ≤ ξ + 1
k0

, by (2.2), we have

q(ρn, ρn+1) ≤ α(ρn−1, ρn)q(ρn, ρn+1) < ξ < t,

and when ξ − 1
k0

≤ ψ(Mq(ρn−1, ρn) < ξ by (2.3) and since

[ξ − 1
k0
, ξ] ⊆ ∪k≥k0 [ξ − 1

k
, ξ − 1

k
+ δk),

we have q(ρn, ρn+1) ≤ α(ρn−1, ρn)q(ρn, ρn+1) < ξ < t, which is a contradiction. There-
fore, t = 0 and so

(2.4) lim
n
q(ρn, ρn+1) = 0.

Step 2. We prove that {ρn} is a Cauchy sequence. Alternatively, from the inequality
(2.1), we arrive at

q(ρn, ρn+1) ≤ ψ(q(ρn−1, ρn)), for all n ∈ N.(2.5)

Indeed, if there exists some n∗ such that

q(ρn∗ , ρn∗+1) ≤ ψ(q(ρn∗ , ρn∗+1)) < q(ρn∗ , ρn∗+1),

we get a contradiction. Hence, (2.5) holds. Inductively, we derive, from (2.5), that

q(ρn, ρn+1) ≤ ψn(q(ρ0, ρ1)), for all n ∈ N.

Fix ε and let nε ∈ N such that ∑k≥nε
ψk(q(ρ1, ρ0)) < ε. Furthermore, for m > n > nε

we can find that
q(ρn, ρm) ≤ q(ρn, ρn+1) + · · · + q(ρm−1, ρm)

≤
m−1∑
k=n

ψk(q(ρ1, ρ0))

≤
∑

k≥nε

ψk(q(ρ1, ρ0)).

Hence, we conclude that the sequence {ρn} is Cauchy. Now, since (M,d) is complete,
we can get u ∈ M with ρn → u in M .

Step 3. u is a fixed point of f .
Case (i). For each ϱ ∈ M satisfying ϱ ̸= fϱ, we have inf{q(ρ, ϱ) + q(ρ, fρ) : ρ ∈

M} > 0. It implies that for every ε > 0, there is a natural number N such that for
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n > Nε, we have q(ρNε , ρn) < ε. Since, ρn → u and q(ρ, ·) is a lower semi-continuous
map, we have

q(ρNε , u) ≤ lim inf
n→∞

q(ρNε , ρn) ≤ ε.

Putting ε = 1
k

and Nε = nk, we have
(2.6) lim

k→∞
q(ρnk

, u) = 0.

Assume that u ̸= fu. Then
0 < inf{q(σ, u) + q(σ, fσ) : σ ∈ M} ≤ inf{q(ρnk

, u) + q(ρnk
, ρnk+1) : k ∈ N}.

From (2.4) and (2.6), we derive inf{q(σ, u)+q(σ, fσ) : σ ∈ M} = 0, which contradicts
the given hypothesis. Therefore, fu = u.

Case (ii). Let f be continuous.
Using the triangular inequality, we have

q(ρn, f
2ρn) ≤ q(ρn, fρn) + q(fρn, f

2ρn).
Accordingly, letting n → ∞, we obtain q(ρn, f

2ρn) → 0. Further, Lemma 1.1 confirms
that {f 2ρn} → u as n → ∞. As f is continuous, we have

fu = f( lim
n→∞

fρn) = lim
n→∞

f 2ρn = u.

Hence, u is a fixed point of f .
Case (iii). Here, limn→∞ q(fρn, u) = limn→∞ q(ρn+1, u) = limn→∞ q(ρn, u). Hence,

fu = u.
Step 4. u is a fixed point with q(u, u) = 0.
Conversely, suppose that q(u, u) > 0. Then from (2.1), we get

0 < q(u, u) = q(fu, fu) ≤ ψ(Mq(u, u)) < Mq(u, u) = q(u, u),
and this is impossible. Hence, our claim is verified. □

The fixed point obtained in the previous theorem may be not unique. The following
examples validate our claim.

Example 2.1. Suppose that G is a locally compact group, M = L1(G) and
q(f, g) = ∥g∥1, f, g ∈ L1(G).

Then q is a w-distance . Define ψ(t) =
{ t

2 , t ∈ [0, 1],
1
2 , t ∈ (1,∞),

and

α(f, g) =


2, g = 0 (a.e.),
ψ(Mq(f, g))

2∥g∥1
, otherwise,

and for an arbitrary x ∈ G

Tx : L1(G) → L1(G),
f 7→ 1

8Lxf,
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where Lxf(y) = f(x−1y). Then for each f ∈ L1(G) and x ∈ G, since ∥Lxf∥1 = ∥f∥1,
we conclude that Mq(f, g) = max{1

8∥f∥1, ∥g∥1} and so

α(f, g) = ψ(Mq(f, g))
2∥g∥1

=
ψ(max{1

8∥f∥1, ∥g∥1})
2∥g∥1

≥ 1.

In each of the cases 0 ≤ max{1
8∥f∥1, ∥g∥1} ≤ 1, 1 ≤ max{1

8∥f∥1, ∥g∥1} ≤ 8 and
8 ≤ max{1

8∥f∥1, ∥g∥1} we conclude that

α(Txf, Txg) =
ψ(max{ 1

64∥f∥1,
1
8∥g∥1})

2
8∥g∥1

> 1.

So, Tx is α-orbital admissible. Now for each η > 0 and δ = η, if η ≤ ψ(Mq(f, g)) < 2η,
then for g ̸= 0 we have

α(f, g)q
(1

8Lxf,
1
8Lxg

)
≤ ψ(Mq(f, g))

2∥g∥1

(1
8

)
∥g∥1 ≤ 1

8η < η,

and for g = 0, since q(Txf, Txg) = 0, we are done. So, Tx is a generalized (α, ψ, q)-
Meir-keeler contractive map. Moreover, α(0, Tx0) = α(0, 0) = 2 > 1,

q(T n
x 0, T n

x 0) = q(0, 0) = ∥0∥1 = 0,

and Tx is continuous. Therefore, all the hypotheses of Theorem 2.1 hold and so, Tx has
a fixed point (which is f = 0, satisfying q(0, 0) = 0). Note that for each f ∈ L1(G),
we have

lim ∥T n
x f∥1 = lim 1

8n
∥f∥1 = 0.

Therefore, T n
x f converges to 0 and so 0 is the only fixed point of Tx.

Example 2.2. Suppose that M = { 1
2n : n ∈ N} ∪ {0} is equipped with the usual metric

on R. Consider

q(ρ, ϱ) =


1
n

+ 1
m
, ϱ = 1

2m
, ρ = 1

2n
,

0, ρ = 0 or ϱ = 0,

α(ρ, ϱ) =


m

n
, ϱ = 1

2m
, ρ = 1

2n
and 2n ≥ m ≥ n,

1, ρ = 0 or ϱ = 0,
1
n
, otherwise,

and fρ = ρ8. Then α(0, f0) = 1, q(fn0, fn0) = 0 for each n ∈ N and f is continuous
and also α-orbital admissible. Since if α(ρ, fρ) ≥ 1, then ρ = 0, since if ρ = 1

2n for
some n, then n ≤ 8n ≤ 2n is impossible. Therefore, α(fρ, f 2ρ) ≥ 1. Also if

ψ(t) =


t

2 , t ∈ [0, 1],
1
2 , t ∈ (1,∞),
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then, since 0 ≤ Mq(ρ, ϱ) ≤ 1, we have ψ(Mq(ρ, ϱ)) = 1
2Mq(ρ, ϱ). On the other hand,

for each η > 0 and for δ = η, if η ≤ ψ(Mq(ρ, ϱ)) < 2η, then ρ or ϱ is non-zero. So if
ρ = 1

2n and ϱ = 1
2m , then since α(ρ, ϱ) ≤ 2, we conclude that

α(ρ, ϱ)q(fρ, fϱ) ≤ 2
( 1

8n + 1
8m

)
= 1

4q(ρ, ϱ) ≤ 1
4Mp(ρ, ϱ) = 1

2ψ(Mp(ρ, ϱ)) < η.

Also, if one of ρ or ϱ is zero, then α(ρ, ϱ)q(fρ, fϱ) = 0 ≤ η. So, f is a generalized
(α, ψ, q)-Meir-Keeler contractive map. Therefore, all the conditions of Theorem 2.1
hold. Hence, ρ = 0 is the unique fixed point of f .

Example 2.3. Let M = [0, 1] be equipped with the usual metric. Also let us consider
the w-distance as q(ρ, ϱ) = |ρ− ϱ| for each ρ, ϱ ∈ M . Further, we define

fρ =


ρ

20 , ρ ∈ [0, 1),
1, ρ = 1,

α(ρ, ϱ) =
{

1, ρ, ϱ ∈ [0, 1),
0, ρ = 1, ψ(ρ) =



0, ρ = 0,
1
3 , ρ ∈

(
0, 1

2

)
,

ρ

2 , ρ ∈
[1
2 , 1

]
,

1
2 , ρ ∈ (1,∞).

Hence, for every w ∈ M with fw ̸= w, we obtain w ̸= 0, 1 and so

lim
ρ→w

(|w − ρ| + |ρ− fρ|) ≥ 19
20w > 0.

Again,
lim
ρ→ϱ

(|w − ρ| + |ρ− fρ|) ≥ |w − ϱ| > 0, ϱ ̸= w.

Therefore, we have inf{q(ρ, w) + q(ρ, fρ) : ρ ∈ M} > 0 for each w ∈ M satisfying
w ̸= fw. Besides, for every ρ ∈ M , we obtain |fnρ − fnρ| = 0. Now for each η > 0,
put δ = η. Then, ρ = ϱ implies Mq(ρ, ϱ) = 0 and when ρ ̸= ϱ, Mq(ρ, ϱ) ̸= 0 and
further, ψ(Mq(ρ, ϱ)) ≥ 1

4 . Therefore, for η > 1
8 , there is no ρ, ϱ ∈ M satisfying

1
8 ≤ ψ(Mq(ρ, ϱ)) <

1
4 .

On the other hand, for η ≤ 1
8 , if η ≤ ψ(Mq(ρ, ϱ)) < η + η = 2η, we have

α(ρ, ϱ)|fρ− fϱ| ≤ |fρ− fϱ| =
∣∣∣∣ ρ20 − ϱ

20

∣∣∣∣ ≤ 2
20 <

1
8 < η.

That is for each ρ, ϱ, if η ≤ ψ(Mq(ρ, ϱ)) < η+η = 2η, then α(ρ, ϱ)|fρ−fϱ| ≤ η. Note
that 0, 1 are the fixed points of f .

Remark 2.1. In the case where q(ρ, ϱ) = ϱ for each ρ, ϱ ∈ M , the assumption
q(fnρ, fnρ) = 0, for some ρ ∈ M and for each n ∈ N, imply that fnρ = 0 for
each n. Therefore, in this case without any another condition, since ρn = 0 = ρn+1,
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the first part of the Theorem 2.1 implies that f possesses a fixed point. For example,
let M = { 1

2n : n ∈ N} ∪ {0},

α(ρ, ϱ) =

 0, ϱ ∈
{ 1

22k
: k ∈ N

}
,

1, otherwise,
and fρ =


ρ

2 , ρ ∈
{ 1

22k
: k ∈ N

}
,

1, otherwise.
Then f is continuous, q(fn0, fn0) = 0 for each n ∈ N and ρ, ϱ ∈ M and η, δ > 0, if
η ≤ ψ(Mq(ρ, ϱ)) < η + δ, then we have

0 = α(ρ, ϱ)q(fρ, fϱ) ≤ η.

Note that 0 is a fixed point of f , since here we require only q(fn0, fn0) = 0.

Now we put down the following additional hypothesis. To attest the uniqueness of
the fixed point of f , this condition along with those of Theorem 2.1 is required.
Property U . Let α(u, v) < 1, implies that at least one of u or v is not a fixed point
of f .

For example if α(u, v) ≥ 1 for each u, v ∈ M , then the property U is valid.

Theorem 2.2. Suppose that (M,d) is a metric space with a w-distance q. Also
assume that f is a generalized (α,ψ, p)-Meir-Keeler contractive mapping and satisfies
all the hypotheses of Theorem 2.1 along with the additional property U . Then we can
claim the uniqueness of the fixed point of f obtained in Theorem 2.1.

Proof. We suppose that u, v ∈ M are two distinct fixed points of f . Then α(u, v) ≥ 1,
fu = u, fv = v, q(u, u) = 0 and q(v, v) = 0. Using the aforementioned criteria and
(2.1), we obtain

q(u, v) =q(fu, fv) ≤ α(u, v)q(fu, fv) ≤ ψ(Mq(u, v)) = ψ(q(u, v)) < q(u, v),
and this is impossible. Hence, f possesses a unique fixed point. □

3. Consequences

This section deals with a few immediate corollaries of our obtained Theorem 2.1.
First, we give the following important result for an (α, ψ, q)-Meir-Keeler contractive
mapping.

Corollary 3.1. Suppose that (M,d) is a complete metric space with a w-distance q.
Also let f be an (α, ψ, q)-Meir-Keeler contractive mapping with the fact that there is
some ρ0 ∈ M , with q(fnρ0, f

nρ0) = 0 for all non-negative integers n and α(ρ0, fρ0) ≥
1. Suppose that one of the following holds.

(i) For each w ∈ M satisfying w ̸= fw, we have inf{q(ρ, w) + q(ρ, fρ) : ρ ∈ M} >
0.

(ii) f is continuous.
(iii) If for some sequence {ρn}, limn→∞ q(ρn, ρ) = limn→∞ q(fρn, ρ), then fρ = ρ.

Then f possesses a fixed point u ∈ M , with q(u, u) = 0.
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Putting α ≡ 1 in Theorem 2.1, we obtain the trailing important corollary.

Corollary 3.2. Suppose that (M,d) is a complete metric space with a w-distance q.
Also let f be a (ψ, q)-Meir-Keeler contractive mapping with the fact that there is some
ρ0 ∈ M , with q(fnρ0, f

nρ0) = 0 for all non-negative integers n. Suppose that one of
the following conditions holds.

(i) For each w ∈ M satisfying w ̸= fw, we have inf{q(ρ, w) + q(ρ, fρ) : ρ ∈ M} >
0.

(ii) f is continuous.
(iii) If for some sequence {ρn}, limn→∞ q(ρn, ρ) = limn→∞ q(fρn, ρ), then fρ = ρ.

Then f possesses a fixed point u ∈ M .

Considering q = d in Theorem 2.1, we deduce the subsequent corollary.

Corollary 3.3. Suppose that (M,d) is a complete metric space and f be an (α,ψ)-
Meir-Keeler contractive mapping with the fact that there is some ρ0 ∈ M with
α(ρ0, fρ0) ≥ 1 or α(fρ0, ρ0) ≥ 1. Suppose that one of the following conditions
holds.

(i) For each w ∈ M satisfying w ̸= fw, we have inf{d(ρ, w)+d(ρ, fρ) : ρ ∈ M} >
0.

(ii) f is continuous.
(iii) For some sequence {ρn} in M with α(ρn, ρn+1) ≥ 1 for all natural numbers n

and ρn → ρ ∈ M as n → ∞, then α(ρn, ρ) ≥ 1 for every n ∈ N.
Then f possesses a fixed point u ∈ M .

Taking α ≡ 1 in Corollary 3.3, we get the succeeding consequence.

Corollary 3.4. Suppose that (M,d) is a complete metric space and f be a ψ-Meir-
Keeler contractive mapping. Suppose that either f is continuous or inf{d(ρ, w) +
d(ρ, fρ) : ρ ∈ M} > 0 for each w ∈ M with w ̸= fw. Then f possesses a fixed point
u ∈ M .

Definition 3.1. Suppose that (M,d) is a metric space with a w-distance q and
consider the functions ψ ∈ Ψ, α : M ×M → [0,∞) and a self-map f . Then f is said
to be a generalized (α, ψ, q)-Meir-Keeler contractive mapping of

(a) Banach type if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(q(ρ, ϱ)) < η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;
(b) Kannan type I if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ

(
q(ρ, fρ) + q(ϱ, fϱ)

2

)
< η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(c) Kannan type II if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max{q(ρ, fρ), q(ϱ, fϱ)}) < η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;
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(d) Chatterjea type I if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ

(
q(ρ, fϱ) + q(ϱ, fρ)

2

)
< η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(e) Chatterjea type II if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max{q(ρ, fϱ), q(ϱ, fρ)}) < η + δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(f) Reich type I if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ

(
q(ρ, ϱ) + q(ρ, fρ) + q(ϱ, fϱ)

3

)
< η+δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(g) Reich type II if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max{q(ρ, ϱ), q(ρ, fρ), q(ϱ, fϱ)}) < η+δ, we have α(ρ, ϱ)p(fρ, fϱ) < η;

(h) Reich type III if for every η > 0, there exists a δ > 0 such that for ρ, ϱ ∈ M

when η ≤ ψ(max{q(ρ, ϱ), q(ρ, fϱ), q(ϱ, fρ)}) < η+δ, we have α(ρ, ϱ)p(fρ, fϱ) < η.

In addition, for taking q = d in the inequalities above, we can get several other kind
of contractions in the context of metric spaces.

If in Theorem 2.1, we change the contraction condition ‘generalized (α, ψ, q)-Meir-
Keeler contractive mapping’ with one of the new contractions defined in Definition
3.1, then we may obtain a similar result as Theorem 2.1. Furthermore, as in Corollary
3.3 and Corollary 3.4, we may get some more results by letting q = d. Also, notice
that by choosing the auxiliary function α in a proper way in Theorem 2.1, we can
deduce more consequences related to cyclic contractions and results in metric spaces
endowed with a partially ordered set, see for example [1–8].

4. An Application

In this section, we discuss an application of our obtained fixed point result to
a certain kind of non-linear Fredholm integral equations. First of all, we prove a
proposition which is going to play a crucial role here.

Proposition 4.1. Suppose that (M,d) is a metric space with a w-distance q. Also,
assume that f is a self-mapping on M satisfying

α(ρ, ϱ)q(fρ, fϱ) ≤ kψ(Mq(ρ, ϱ)),(4.1)

for all ρ, ϱ ∈ M and for some k ∈ (0, 1). Then f is a generalized (α, ψ, q)-Meir-Keeler
contractive mapping.

Proof. Consider δ = ( 1
k

− 1)η in Definition 2.1. Accordingly, we derive

η ≤ ψ(Mq(ρ, ϱ)) <η + δ < η +
(1
k

− 1
)
η = η

k
,
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and so, for every ρ, ϱ ∈ M , we obtain kη ≤ kψ(Mq(ρ, ϱ)) < η. Using (4.1), we get
α(ρ, ϱ)q(fρ, fϱ) ≤ kψ(Mq(ρ, ϱ)) < η.

Hence, α(ρ, ϱ)q(fρ, fϱ) < η and therefore, f is an (α, ψ, q)-Meir-Keeler contractive
mapping. □

Now, we try to obtain a criterion to ensure the existence of a solution for a type of
non-linear Fredholm integral equation.

Theorem 4.1. Let us consider the non-linear Fredholm integral equation

(fx)(t) = g(t) +
∫ b

a
H(t, s, x(s))ds,(4.2)

for some a, b ∈ R, with a < b, g : [a, b] → R and H : [a, b]2 ×R → R be two continuous
maps. Also, assume that the subsequent properties hold:

(i) f : C[a, b] → C[a, b] is a continuous mapping;
(ii) there exists a weaker Meir-Keeler function ψ and k ∈ [0, 1) satisfying

|H(t, s, x(s))| + |H(t, s, y(s))|

≤
k
[
ψ
(
max

{
|x(t)| + |y(t)|, |x(t)| + |(fx)(t)|, |y(t)| + |(fy)(t)|,

b− a
(|x(t)|+|(fy)(t)|)+(|(fx)(t)|+|y(t)|)

2

})]
− 2|g(t)|

b− a
,

for all t, s ∈ [a, b]. Then the non-linear Fredholm integral equation (4.2) owns a unique
solution in C[a, b].

Proof. Suppose M = C[a, b]. Obviously, M is complete with respect to the metric
d : M ×M → R+ defined as

d(x, y) = sup
t∈[a,b]

|x(t) − y(t)|,

where x, y ∈ M . Now, we consider the map q : M ×M → R+ given by
q(x, y) = sup

t∈[a,b]
|x(t)| + sup

t∈[a,b]
|y(t)|,

where x, y ∈ M . One can easily check that, q is a w-distance on M . Here we have
|(fx)(t)| + |(fy)(t)|

=
∣∣∣∣∣g(t) +

∫ b

a
H(t, s, x(s))ds

∣∣∣∣∣+
∣∣∣∣∣g(t) +

∫ b

a
H(t, s, y(s))ds

∣∣∣∣∣
≤ |g(t)| +

∣∣∣∣∣
∫ b

a
H(t, s, x(s))ds

∣∣∣∣∣+ |g(t)| +
∣∣∣∣∣
∫ b

a
H(t, s, y(s))ds

∣∣∣∣∣
≤2 |g(t)| +

∣∣∣∣∣
∫ b

a
H(t, s, x(s))ds

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a
H(t, s, y(s))ds

∣∣∣∣∣
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≤2 |g(t)| +
∫ b

a
|H(t, s, x(s))| ds+

∫ b

a
|H(t, s, y(s))| ds

≤2 |g(t)| +
∫ b

a
(|H(t, s, x(s))| + |H(t, s, y(s))|) ds

≤2 |g(t)| +
∫ b

a

k
[
ψ
(
max

{
|x(t)| + |y(t)|, |x(t)| + |(fx)(t)|, |y(t)| + |(fy)(t)|,

b− a

(|x(t)|+|(fy)(t)|)+(|(fx)(t)|+|y(t)|)
2

})]
− 2|g(t)|

b− a

 ds
=2 |g(t)| +

k
[
ψ
(
max

{
|x(t)| + |y(t)|, |x(t)| + |(fx)(t)|, |y(t)| + |(fy)(t)|,

b− a
(|x(t)|+|(fy)(t)|)+(|(fx)(t)|+|y(t)|)

2

})]
− 2|g(t)|

b− a

∫ b

a
ds

=k
[
ψ

(
max

{
|x(t)| + |y(t)|, |x(t)| + |(fx)(t)|, |y(t)| + |(fy)(t)|,

(|x(t)| + |(fy)(t)|) + (|(fx)(t)| + |y(t)|)
2

})]

≤k
[
ψ

(
max

{
q(x, y), q(x, fx), q(y, fy), q(x, fy) + q(y, fx)

2

})]
=k [ψ (Mq(x, y))] ,

for all x, y ∈ M and t ∈ [0,∞]. Thus,

sup
t∈[a,b]

|(fx)(t)| + sup
t∈[a,b]

|(Ty)(t)| ≤ k [ψ (Mq(x, y))] ,

and therefore for each x, y ∈ M

q(fx, fy) ≤ k [ψ (Mq(x, y))] .

This implies that f satisfies Proposition 4.1 and hence it is an (α, ψ, q)-Meir-Keeler
contractive mapping. Therefore, by Theorem 2.1, the non-linear Fredholm integral
equation (4.2) has a solution. □
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