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ENTIRE FUNCTION SHARING ENTIRE FUNCTION WITH ITS
FIRST DERIVATIVE

SUJOY MAJUMDER! AND JEET SARKAR?

ABSTRACT. In this paper, we use the idea of normal family to investigate the
problem of entire function that share entire function with its first derivative.

1. INTRODUCTION, DEFINITIONS AND RESULTS

In this paper, by a meromorphic (resp. entire) function we shall always mean
meromorphic (resp. entire) function in the whole complex plane C. We denote by
n(r, o0o; f) the number of poles of f lying in |z| < r, the poles are counted with their
multiplicities. We call the quantity

rn t,00; f) —n(0, oo;
S €T B

0

dt +n(0, 00; f) logr
as the integrated counting function or simply the counting function of poles of f and
21
1 .
mir,o0 f) = o [ log* |f(re")|do
7r
0

as the proximity function of poles of f, where log™ 2 = logz, if x > 1 and log™ z = 0,
fo<zxz<l1.

We use the notation T'(r, f) for the sum m(r, oc0; f) + N(r,00; f) and it is called
the Nevanlinna characteristic function of f. We adopt the standard notation S(r, f)

?E:Q — 0 as 7 — oo except possibly a set of

for any quantity satisfying the relation
finite linear measure.

Key words and phrases. Meromorphic functions, derivative, nevanlinna theory, normal family.
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676 S. MAJUMDER AND J. SARKAR

For a € C, we write N(r,a; f) = N(r, 0o; ﬁ) and m(r,a; f) = m(r, 0o; ﬁ)
Again we denote by 7i(r, a; f) the number of distinct a points of f lying in |z| < r,
where a € CU {oo}. The quantity
— 7t a; f) — 1(0, a;
N(r,a: f) _/n( ,a; f) t (0, a; f)
0

dt +m(0,a; f)logr

denotes the reduced counting function of a points of f (see, e.g., [6,15]).

A meromorphic function a is said to be a small function of f if T'(r,a) = S(r, f),
e, if T(r,a) = o(T(r, f)) as r — oo except possibly a set of finite linear measure.

Let f and g be two non-constant meromorphic functions in the complex plane C
and @ be a polynomial or a finite complex number. If g(z) — Q(z) = 0 whenever
f(z) —Q(z) =0, we write f =Q = g = Q.

Let f and g be two non-constant meromorphic functions. Let a be a small function
with respect to both f and g. If f(2) — a(2) and g(z) — a(z) have the same zeros
with the same multiplicities then we say that f and g share a with CM (counting
multiplicities) and if we do not consider the multiplicities then we say that f and ¢
share a with IM (ignoring multiplicities).

We recall that the order p(f) of meromorphic function f is defined by

: log T'(r, f)
=1 —.
P el log r
Let h be a meromorphic function in C. Then A is called a normal function if there
exists a positive real number M such that h#(z) < M for all z € C, where

L+ |h(2)]?
denotes the spherical derivative of h.

Let F be a family of meromorphic functions in a domain D C C. We say that &F
is normal in D if every sequence { f,}, C F contains a subsequence which converges
spherically and uniformly on the compact subsets of D (see [13]).

Rubel and Yang [12] were the first authors to study the entire functions that share
values with their derivatives. In 1977, they proved the following important result.

Theorem A ([12]). Let a and b be complex numbers such that b # a and let f be a
non-constant entire function. If f and f' share the values a and b CM, then f = f.

In 1979, Mues and Steinmetz [11] generalized Theorem A from sharing values CM
to IM and obtained the following result.

Theorem B ([11]). Let a and b be complex numbers such that b # a and f a non-
constant entire function. If f and f' share the values a and b IM, then f = f'.

In 1983, Gundersen [4] improved Theorem A from entire function to meromorphic
function and obtained the following result.
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Theorem C ([4]). Let f be a non-constant meromorphic function, a and b two distinct

finite values. If f and f" share the values a and b CM, then f = f'.

In 1996, Briick [1] discussed the possible relation between f and f’ when an entire
function f and it’s derivative f’ share only one finite value CM. In this direction an
interesting problem still open is the following conjecture proposed by Briick [1].

Conjecture A. Let f be a non-constant entire function. Suppose

Pl(f):=:hnlsup}9§J9§Z]jljj

T—00 IOg r

is not a positive integer or infinite. If f and f’ share one finite value a CM, then
/ JR—
(1.1) [ a

f—a
for some non-zero constant c.

:C’

By the solutions of the differential equations

"—a "—a
/ =e*  and / = e,

f—a f—a
we see that when p;(f) is a positive integer or infinite, the conjecture does not hold.
Conjecture A for the case a = 0 had been proved by Briick [1]. In the same paper
Briick [1] proved that the growth restriction on f is not necessary when N(r,0; f') =
S(r, f).
Gundersen and Yang [5] proved that Conjecture A is true when f is of finite order.
Further Chen and Shon [3] proved that Conjecture A is also true when f is of infinite

order with p;(f) < %. Recently Cao [2] proved that Briick conjecture is also true

2
when f is of infinite order with py(f) = . But the case pi(f) > % is still open.

Since then, shared value problems, especially the case of f and f*), where k € N
sharing one value or small function have undergone various extensions and improve-
ments (see [15]).

Now it is interesting to know what happens if f is replaced by f™ in Conjecture A.
From (1.2), we see that Conjecture A does not hold when n = 1. Thus, we have to
discuss the problem only when n > 2.

Yang and Zhang [14] proved that Conjecture A holds for the function f" without
imposing the order restriction on f if n is relatively large. Actually they proved the
following result.

(1.2)

Theorem D ([14]). Let f be a non-constant entire function, n € N\ {1,2,...,6} and
F=f" IfF and F' share 1 CM, then F = F' and [ assumes the form f(z) = cen”,
where ¢ € C\ {0}.

In 2009, Lii, Xu and Chen [8] improved Theorem D in the following manner.
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Theorem E ([8]). Let a( 0) be a polynomial and n € N\ {1}, f a transcendental
entire function and F = f". If F' and F'" share a CM, then conclusion of Theorem D
holds.

In 2011, Lii [9] further improved Theorem E as follows.

Theorem F ([9]). Let f be a transcendental meromorphic function with finitely many
poles, n € N\ {1} and a = Pe?(# o) an entire function such that the order of « is
less than that of f, where P, ) are two polynomials. If f™ and (f")" share a CM,
then conclusion of Theorem D holds.

Remark 1.1. If @) is a constant, then Theorem F still holds without the assumption
that p(a) < p(f).

In 2014, Zhang, Kang and Liao [17] improved Theorem F in a different direction
as follows.

Theorem G ([17]). Let f be a transcendental entire function, a = a(z)(# 0,00) a
small function of f such that order of a is less than that of f and n € N\ {1}. If f™
and (f")" share a CM, then conclusion of Theorem D holds.

Naturally, one can ask whether the conclusion of Theorem E still holds if F' and F’
share a CM is replaced by share a IM. In 2015, Lt and Yi [10] gave an affirmative
answer and obtained the following result.

Theorem H ([10]). Let a(# 0) be a polynomial and n € N\ {1}. Let f be a
transcendental entire function and F' = . If F and F’ share a IM, then conclusion
of Theorem D holds.

We now emerge the following question as an open problem.
Question 1. What happens if F' and F’ share a CM is replaced by share Pe? IM,
where P(# 0) and @ are polynomials in Theorem E?

In the paper we prove the following result that answer the above question.

Theorem 1.1. Let f be a transcendental entire function and n € N\ {1}. Let
a = Pe?(# o), where P(£ 0) and Q are polynomials such that 2p(a) < p(f). If f*
and (f™)" share o IM, then conclusion of Theorem D holds.

Remark 1.2. If ) is a constant, then Theorem 1.1 still holds without the assumption
that 2p(a) < p(f). Also from Theorem 1.1, it is clear that Theorem 1.1 is the
generalization of Theorem H.

2. LEMMAS
In this section we present the lemmas which will be needed in the sequel.

Lemma 2.1 ([8]). Let {f.} be a family of functions meromorphic (analytic) on the
unit disc A. If a, — a, |a| <1 and f#(a,) — oo, then there exist
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(a) a subsequence of f, (which we still write as {fn});
(b) points z, — 2o, |20] < 1;
(c) positive numbers p, — 0,

such that f,(zn + pn) = gu(§) — g(§) locally uniformly, where g is a non-constant
meromorphic (entire) function on C such that

< M
Pn > O
f#(QN)

where M is a constant which is independent of n.

Lemma 2.2 ([16]). Let [ be a memmorphic function in the complex plane and

p(f) > 2. Then for each 0 < p < p(f) , there exist points a, — 0o, n — 00, such
that

lim f* ()

n—o0 |an|li

:+OO

Lemma 2.3 ([7]). Let f be a meromorphic function of infinite order on C. Then there
exist points z, — 0o such that for every N > 0, f#(z,) > |za|Y, if n is sufficiently
large.

3. PROOF OF THE THEOREM 1.1

Proof. Let F' = f and G = . Now we consider following two cases.
Case 1. Suppose p(f) < +oo Clearly pla) = deg(Q) and p(f) = p(f™). Since

p(a) < p(f), we have p(a) < p(f"). Note that p (L") < max {p ("), p(a)} = p (f").
Since p(a) < p(f™), it follow that p (f™) = p (; ) < max {p (%) ,p(a)} =p (%)
Consequently, p (") = p (%) = p(F). Therefore,

p(f) = p(f”) = p(g) = p(F) < +o0.

Since p ((f™)) = p (f™) < 400, we have p(G) < max{p ((f")), p(a)} < +o0. Follow-
ing two sub-cases are immediately.

Sub-case 1.1. Suppose (@ is a constant. In that case a reduces to a polynomial.
Then by Theorem H, we have F = G, ie., f* = (f") and so f(z) = cen?, where
ce C\ {0}.

Sub-case 1.2. Suppose @ is non-constant. Let p; = 2deg(Q) > 2 and py = “17_2
Since p; < p(f), we have 0 < py < p(f2)72. Let 0 < e < p(f)f‘“. Then 0 < py <

2 +6<p() . Let = py +¢. Now by Lemma 2.2, f0r0<u<p(f) there exists
a sequence {wn}n such that w, — 0o, n — oo, and

F#(w,
(3.1) lim (1) = +o00.

n— 00 ‘w ‘M
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Since P is a polynomial, for all z € C satisfying |z| > r;, we have
P'(z) M,
Pz) 17 |zl
Let » > ry and D = {z : |2| > r}. Then F is analytic in D. Since w, — oo as
n — oo, without loss of generality we may assume that |w,| > r + 1 for all n. Let
Dy ={z:]z|] <1} and

Oe’ <1, P(z)#0.

Fo.(z) = F(w, + z) = M
a(wy, + z)

Since |wy, +z| > |w,|—|z|, it follows that w,+z € D for all z € D;. Also, since F'(z) is
analytic in D, it follows that F},(z) is analytic in D; for all n. Thus, we have structured
a family (F},),, of holomorphic functions. Note that F#(0) = F#(w,) — 0o as n — oo.
Now it follows from Marty’s criterion that (F},), is not normal at z = 0. Let a,, = 0 for
all n and a = 0. Then a,, — a and |a| < 1. Also, F#(a,) = F#(0) = F#(w,) — 0o as
n — oo. Now we apply Lemma 2.1. Choosing an appropriate subsequence of (F,),,
if necessary, we may assume that there exist sequences (z,), and (p,), such that
|zn] <7 <1, 2z, = 0, p, = 0 and that the sequence (g,), defined by

32) BlQ) = P+ pu) = L2 )

converges locally and uniformly in C, where ¢g(¢) is a non-constant entire function. By
Hurwitz’s theorem, we conclude that zeros of ¢ are of multiplicities at least n. Also,

MM
F#(an> 17#,&(11%)7
for a positive number M. Now from (3.1) and (3.3), we deduce that

(3.3) pn <

(3'4) Pn <

F#(w,)

for sufficiently large values of n, where M; is a positive constant.
Also from (3.2), we see that

(f™) (wy, + 20 + puC) o (W, + 2 + puC)

S M1|wn|_u7

(35)  pn e =g;(<’)+pna2(wn+zn+pnof”(wn+zn+pn€)
_ o (wy, + 2, + puC)
=0, (C) + pn P C——. 9n(Q)-

Note that

36) nFamEme) Ptz tpnl) o ey

a(wy + 20 + pnC)  Plwn + 20 + pu)

Observe that % — 0 as n — oo. Let s = deg(Q’). Since 2deg(Q) < pq, it

follows that 0 < s < py < u. Therefore, from (3.4), we have

. s . S—pn __
(3.7) dim ppfwn|* < lim Mfw, "™ = 0.
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Note that |Q'(w,, + 2z, + pnC)| = O(|w,|*) and so from (3.7), we have
(3.8) pn| Q' (wy, + 20 + pn)| = O(pu|wa]®) = 0 as n — occ.
From (3.6) and (3.8), we have
o (W, + 2 + puC)
a(wy, + 2, + pnl)
Now from (3.2), (3.5) and (3.9), we observe that
(

J") (wn + 20 + puC)
a(wy, + zn + pnQ)

(3.9) Pn —0 as n— oo.

(3.10) Pn

- 4'(Q).

Clearly ¢'(z) # 0, for otherwise g(z) would be a polynomial of degree at most 1 and
so g(z) could not have zero of multiplicity at least n(> 2).

Firstly we claim that ¢ =1 = ¢’ = 0. Suppose that g(ny) = 1. Then by Hurwitz’s
theorem there exists a sequence (9y,)n, 7, — 1o such that (for sufficiently large n)

) = Lt 20 )
w20+ pain)

e, f"(w, + zn + putin) = a(w, + 2z, + punn). By the given condition, we have

(3.11) (f") (wn + 20 + patin) = a(wn + 2 + palin).-
Now from (3.10) and (3.11), we see that

g'(no) = lim g'(nn) = lim py, o t o o) o =0

Thus, g = 1 = ¢’ = 0. Finally we want to prove that ¢ = 0 = g = 1. Now from
(3.10), we see that

(fn),(wn + Zn + PnC) - O./(’U)n + Zn + pnC)
a(wy + zp + puC)

Suppose that ¢'(§y) = 0. Then by (3.12) and Hurwitz’s theorem, there exists a
sequence (&,)n, & — & such that (for sufficiently large n) (f*) (w, + 2, + pu&n) =
a(w, + 2, + pu&n). By the given condition, we have

(3.12) on

— 4'(¢).

fn<wn + 2n + pnfn) = Oé('wn + 2z, + pnfn)

Therefore, from (3.2), we have

g(fo) — lim fn<wn + 2n + pnfn)

—1.
n=o0 a(wy, + 2n + pnén)

Thus ¢ =0=g=1. Asaresult wehave (1) g=0=¢'=0and (2) g=1< ¢ = 0.
From (1) and (2), one can easily deduce that g # 0. Also from (2), we see that zeros
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of g — 1 are of multiplicities at least 2. Now by the second fundamental theorem, we
have

T(r,g) <N(r,0;9) + N(r,00;9) + N(r,1;9) + S(r,g9) < = N(r,1;9) + S(r, )
1

N

S§ T(Tv g) + S(Ta g)a

which is a contradiction.

Case 2. Suppose p(f) = +oo. Then p(f™) = +oo. Since p(a) < +oo, it follows that
p(F) = 400. Now by Lemma 2.3, there exist {w,}, satisfying w, — oo, n — oo,
such that for every N > 0,

(3.13) F#(w,) > w,|Y,
if n is sufficiently large. Then from (3.3) and (3.13), we deduce for every N > 0 that
(3.14) pn < Mw,| ™V,

if n is sufficiently large. If we take N > s, then from (3.14) we deduce that
lim,, oo pn|w,|® = 0 and so (3.9) holds. We omit the proof since the proof of Case 2
can be carried out in the line of proof of Sub-case 1.2. U
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EXISTENCE AND STABILITY RESULTS OF A NONLINEAR
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH
INTEGRAL BOUNDARY CONDITIONS

NAIMI ABDELLOUAHAB!, BRAHIM TELLAB!, AND KHALED ZENNIR?

ABSTRACT. This paper deals with the stability results for solution of a fractional
integro-differential problem with integral conditions. Using the Krasnoselskii’s,
Banach fixed point theorems, we proof the existence and uniqueness results. Based
on the results obtained, conditions are provided that ensure the generalized Ulam
stability of the original system. The results are illustrated by an example.

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

So far, similar to the simplest case-solution of a system of linear ordinary differential
equations, the fractional derivative is not explicitly presented, and therefore it makes
sense to consider for ¢ € [0,1], 0 < a, 8 < 1, the problem for the system

CDEFu(t) = bt ult)) + I8 £t u(t)) + f K (1,5, u(s))ds,
(1.1) u(0) = quu(s)ds, 0<n<l,

where b is a real constant, 0 < a+ <1, CDS“;r 7 is the Caputo fractional derivative of
order o + 3, I denotes the left sided Riemann-Liouville fractional integral of order

a and f, h, K defined as
f:10
(1.2) h: [0,
K|

Key words and phrases. Fractional integro-differential equation, existence, stability, nonlocal
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are an appropriate functions satisfying some conditions which will be stated later. X
here is a Banach space. It is also interesting to study solution to fractional integro-
differential problem with integral conditions, which will allow a generalized stability.
The fractional differential equation

(1.3) Dix(t) = f(t,z(t)), aeR 0<a<l,

was considered in [4,5, 8] and results related to the existence and uniqueness for
solution, with some analytical properties and useful inequalities, were obtained. Next,
it is shown in [9] that, in a real n-dimensional Euclidean space, the local and global
solutions exist for the following Cauchy problem

(1.4) { 2(%@2,2 Fltult)) + JL K (t,s,u(s))ds,

where 0 < a <1, f € C([0,1] x R, R"), K € C([0,1] x [0,1] x R",R") and € Dg, is
the Caputo fractional operator.

A class of abstract delayed fractional neutral integro-differential equations was
introduced in [11]
(1.5) { DN () = AN () + Jo B(t — 8)N(z)ds + f(t, Tpm),

ro=¢, 2'(0)=0, «ac(l,?2),

Using the Leray-Schauder alternative fixed point theorem, the existence results were
obtained (for more details, please see [10]). Recently, much attention has been paid
to the study of differential equations with fractional derivatives [2,3], mainly to the
questions of the existence and stability for a fractional order differential equation with
non-conjugate Riemann-Stieltjes Integro-multipoint boundary conditions.

Note that in [3], the authors introduced and studied a related problem. Precisely
the authors studied the existence for the following problem

CDR A D (t) + f(t,2(1)} = g(t (1), tE€[0,1],
(1.6) z(0) = X521 Bz (0y), ' |
be(1) = a f) x(s)dH(s) + Si=7 oy Je' w(s)ds,

where

O0<o;<&E<mi<l, 0<pg<l, PBjoeR, i=12...n75=12...,m.

CDg+ is the Caputo fractional derivative of order p, f, g, are given continuous functions.
By using a classical tools of fixed point theory, the existence and uniqueness results
were obtained. On an arbitrary domain, in [2], the authors study the existence
and stability results for a fractional order differential equation with non-conjugate
Riemann-Stieltjes integro-multipoint boundary conditions by using a new tools on
function analysis.

Here we focused our study on the question of existence and uniqueness in section
3. Section 4 is devoted to show a generalized stability. Note that this representation
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also allows us to generalize the results obtained recently in the literature. The paper
is ended by an example illustrating our results.

2. NOTATIONS AND NOTIONS PRELIMINARIES

In the present section, we present some notations, definitions and auxiliary lemmas
concerning fractional calculus and fixed point theorems. Let J = [0, 1], X is Banach
space equipped with the norm | - || and C(J, X), C™(J, X) denotes respectively the
Banach spaces of all continuous bounded functions and n times continuously differen-
tiable functions on J. In addition, we define the norm ||g|| = max{|g(t)| : t € J} for
any continuous function g : J — X.

Definition 2.1 ([1,6]). Let « > 0 and g : J — X. The left sided Riemann-Liouville
fractional integral of order « of a function ¢ is defined by

1

1500 = o / “(t— 5 lg(s)ds, te

Definition 2.2 ([1,7]). Let n —1 < a <n,n € N*, and g € C"(J, X). The left sided
Caputo fractional derivative of order a of a function g is given by
1 t dr
- t — n—a—1 _(n) ds = [""—o(t t J
R o)y (6 o)) = I Gnglt), v e,

where n = [a] + 1 and [« denotes the integer part of the real number a.

“Dg.g(t) =

Lemma 2.1 ([1,7]). For real numbers o, 5 > 0 and appropriate function g, we have
forallt e J:

1) Ig I g(t) = 15, I g(t) = I P g(t);

2) Iv“Dg.g(t) = g(t) — g(0), 0 <a < 1;

3) CD8+I(?+9(t) = g(t).

Lemma 2.2 (Banach fixed point theorem, [12]). Let U be a non-empty complete
metric space and T : U — U is contraction mapping. Then, there exists a unique
point w € U such that T'(u) = u.

Lemma 2.3 (Krasnoselskii fixed point theorem, [12]). Let E be bounded, closed and
convex subset in a Banach space X. If T1, T, : E — E are two applications satisfying
the following conditions:

1) Thx +Toy € E for every xz,y € E;

2) Ty is a contraction;

3) T is compact and continuous.
Then there exists z € E such that Tz + Thz = z.

Before presenting our main results, we need the following auxiliary lemma.

Lemma 2.4. Let 0 < a+ 5 < 1 and b # % Assume that h, f and K are three
continuous functions. If u € C(J,X), then u is solution of (1.1) if and only if u
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satisfies the integral equation

t(t — g)ath-1
u(t) :/o (tl“(a)—i—;)[ +/ (s, 7,u(r))dr
- /S (s ;))a_lf(T, u(T))dT] ds
_ T a+ﬁ
1—b77 Fa—i—ﬁ—l— [ —i—/ (1,0,u(0))do
(2.1) +/0 T_F(Ua);lf(a,u(a))da] dr.

Proof. Let v € C(J, X) be a solution of (1.1). Firstly, we show that u is solution of
integral equation (2.1). By Lemma 2.1, we obtain

(2:2) 15O D3 u(t) = ult) — u(0).

In addition, from equation in (1.1) and Definition 2.1, and use the assumption 1) of
Lemma 2.1 we have

Igjﬂcpgjﬂu(t) :[g‘jﬁ (h(t, u(t)) + /Ot K(t,s,u(s))ds + I f(t, u(t))> ds

— OH-ﬁ 1
= / a+ 5 [ ) + / (s,7,u(T))dr
(2.3) + / (Gl s u(T))dT]ds.
o Do) ’
By substituting (2.3) in (2.2) with nonlocal condition in problem (2.1), we get the
following integral equation:

t (t — g)atB-1
u(t) :/0 (tl“(a)—i—ﬁ)[ +/ (s, 7,u(r))dr
(2.4) + [ (S;(Z; f(T,u(T))dT] ds + u(0).

From integral boundary condition of our problem with using Fubini’s thorem and
after some computations, we get:

:b/nusds
_b/[/ 8—(;:*;)1( u(r)) + [ K(r.o,u(e)do

i /T L)alf(o'7 u(o’))d()‘) dr] ds + bnu(0)

O./

_b// — 1) 1h(7’,u(7))d70l3

a—l—ﬁ
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o a+ﬁ 1
—I—b/ / CY+B ; K(T,U,u(a))dades

+ b/ / _a :;ﬂ : ; g ;((;);_lf(a, u(o))dodrds + bnu(0)
=[] (s _Ojf; dsh(r u())dr
+b/ / — ) 1ds/0T K(r,0,u(0))dodr

a—1

+b/ / _a :;ﬁ 1ds/OT<T;(Z))f(a,u(a))dadTernu(O),

that is
( a—l—ﬁ
1—bn/ F(a+5+1l +/ (7,0, u(0))do
(2.5) +/0 Mf(a,u(a))dal dr.

Finally, by substituting (2.5) in (2.4) we find (2.1).
Conversely, from Lemma 2.1 and by applying the operator CDS‘:_r # on both sides of
(2.1), we find

t
DS Pu(t) =C Dt IS [h(t,u(t))+ /0 K (t,s,u(s))ds + Ig: f(t, u(t)) |+ D u(0).

(26)  =h(tu() + S u0) + [ Kt s, uls))ds,

this means that u satisfies the equation in problem (1.1). Furthermore, by substituting
t by 0 in integral equation (2.1), we have clearly that the integral boundary condition
in (1.1) holds. Therefore, u is solution of problem (1.1), which completes the proof. [

3. EXISTENCE RESULTS

In order to prove the existence and uniqueness of solution for the problem (1.1) in
C(]0,1], X), we use two fixed point theorem.

Firstly, we transform the system (1.1) into fixed point problem as u = T'u, where
T:C(J,X)— C(J,X) is an operator defined by following

t (t — g)ath-1
Tu(t) :/0 (tF(a)—i—ﬁ) [ +/ (s, 7,u(T))dr

+ /s (S_T);lf(T, u(7’))d7’] ds

a—l—ﬁ
1—b17 Fa+ﬁ+1[ +/ (7,0, u(0))do
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(3.1) + /0 %f(a,u(a))da dr.

In order to simplify the computations, we offer the following notations
_mllpee + sl | llpallrefla+ 1, o+ B)
Ia+6+1) L(a+ 1) (a+ B)
e P s 1 22 PR

i 1 —bn|l'(a+ 5+ 2)
5.2 lllaall =P B+ Lo+ B+ 1)
1 —bn|l'(a+DH(a+5+1)
and
(3'3) A - |b| 2na+5+1 772‘”5“5(& +1,a+ 8+ 1)

_|_
|1 —bn| | T(a+ B+ 2) MNa+ )N (a+4+1)
3.1. Existence result by Krasnoselskii’s fixed point.

Theorem 3.1. Let h,f : [0,1] x X — X and K : [0,1] x [0,1] x X — X be
continuous functions satisfying the following.
(H1) The inequalities

1At u(t)) = h(t, o)) <Liflut) —o@), ¢ €[0,1], u,ve X,
1F(u®) = [t o) <Laflut) — o), t€0,1], u,ve X,
K, s, u(s)) = K(t,s,0(s))[| <Ls|lu(s) =v(s)ll,  (t,5) € G w0 € X,

hold, where Ly, Ly, Ly > 0, with L = max{Ly, Ly, L3} and G = {(t,s) : 0 < s <t <
1}.

(H2) There exist three functions i, o, ps € L*([0, 1], RT) such that
1A, w@)] <pa Ofu@®l, ¢ €[0,1], u e X,

1 (& u() <p(B)[[u(®)], t€10,1], ue X,
K, s, u(s))| <ps(B)l[uls)]l,  (£,5) € G, ue X.

If A <1 and LA, <1, then the problem (1.1) has at least one solution on [0, 1].
Proof. For any function u € C(J, X) we define the norm
lully = max{e™|lu()]| : t € [0, 1]},
and consider the closed ball
B, ={ueC(J,X): ||u| <r}.

Next, let us define the operators 17,75 on B, as follows

Tlu(t):/otW[ —|—/ (s,T,u(T))dr
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(3.4)
+/OS (s ;(;))a f(T,u(T))dT] ds
and
-7 a+ﬂ
Tu(t) l—bn/ F((oz—l—ﬁ—i—ll +/ (70, u(e
(3.5) —i—/o r ;53; 1f(a,u(o))ala] dr.

For u,v € B,, t € [0,1] and by the assumption (H2), we find

iriate) + T < [ U5 b ol + [t
e IO
|1_bm/ A el + [ ot
= 1wfo-v )nua]df
< /J%[ﬂms)nu M+ [ im@l(ldr
+ [ o] as
|1_bn|/ ﬁwm O+ [ o) do
-+L/ S @)l )Hda]dT
<[ %[nmnmnunles sl (e~ 1)
+ el el / S edras

N ﬂ“
H—Ml Fa+5+D

+ il ol [

[HMHLwlllee + llusllz< vl (e” = 1)

a 1

Jda] dr.



692 N. ABDELLOUAHAB, B. TELLAB, AND KH. ZENNIR

Therefore,

t— g)athl [ s (ef—1)

( B
| Tvu + Tovlly S/O ||M1HL°°HU||1E + [l sl oo flul2 o

I+ B)

s(s—r1)oter
o ——————dr|d
Hlhllilhely [ e ds

bl (p—7)t?
+H—WM£FW+B+D

T(r—o0)* el
o ———~— —do|dr.
+lhallillolh [ gy e |dr

oo o0 o0 1
[HMHL + llpallc 12|z / (1= s)2tFH g0 s
0

e’ (eT —1)
il ol + Bl ol

a+B+1) [(a+ D(a+B)
bl pall o 4 + (bl s om0
1 —-bnl'(a+pB+1)

0]l 2| 2 /" 8
_ A\« o
T tnf{a+ Ui{at g+ D) b 17T

_ lHullle tllusllize | llpolliefla+ 1,0+ B)

+

Fla+p+1) C(a+ )(a+B8)
0] (gl Leen® P + [ ]| Lot
|1 — by D+ f+2)

+ g2l Loen®* P PH B+ 1,00+ B + Dﬂ

a4+ 1)I(a+p+1)
(3.6) =rA <r.

This implies that (Tyu + Tyv) € B,.. Here we used the computations

1
/ (1—5)*"Ps%ds =B(a+ 1,0+ f),
0
[ =7 Preds =Pt B+ Lk B4 1),
0

and the estimations: 27 <1, Z—: <1, ee—: < 1. Now, we establish that T, is a contraction

mapping. For u,v € X and ¢t € [0, 1], we have

Bl (= 7)t?
| Tou(t) — Tou(t)| < 11— by /0 a4+ 6+1)

+ /OT |K(1,0,u(0)) — K(7,0,v(0))]||do

Munuv»—hvwvnu

[ o ulo)  Fov(o)da] dr
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a—i—B

1—b17| Fa+5+1

lL1||u — |1 + /0 Ls||u — v’ do

_ a—1
+/ T")LGu—uulevda]w
I'(a)

—7'
]1—bn| Fa+ﬁ+1

a—i—ﬁ

[LHu —|l1e" + Ll|ju — v|j1(e" — 1)

+/ L||u—v|\1e d0"|d7'
Thus,
n—T7)oth e’ (e" —1)
Tou —T: —vlly— + Lllu —
T — T < bm " = ol 2l o

)al

T—O’ e?
+/0 F(O{)LHU_UHIthU]dT

BIL [_ 29" PTSlatLat f41) e — o]
u—vl|y.

11 —by||T(a+ B +2) o+ D) (a+ 5 +1) !

Then since LA; < 1, T5 is a contraction mapping. The continuity of the functions

h, f and K implies that the operator T} is continuous. Also, T1 B, C B,, for each
u € B,,, i.e., T is uniformly bounded on B, as

t — g)¢ -1 s
Iz < [ 2 o + [ 1K

e G

which implies that

t (t o 8)04-1—5—1 es (es - 1)
[Thull, < 0 T(a+5) [ 421 ]| oo ]2 t+||ﬂ3||L [Eaf o
oc 1 e’
e L
1] oo + || 3] oo ||N2||L°°5(04 +1,a+ )
a4+ p+1) INa+ DI (a+ B)
<rA.
(3.7) <r.

Finally, we will show that (7} B,) is equi-continuous. For this end, we define

>

= sup [[A(s,u)l,
(s,u)€[0,1]x By

f=sup f(s,u)l,

(s,u)€[0,1]x By
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K= sup / | K (t,s,u)|dr.
0

(s,7,u)EGX B,

Let for any u € B, and for each t1,t; € [0, 1] with t; < t5, we have:
[(Thu)(t2) — (Thw)(t)]]

1 to atB1 s
<taig oI [Hh(s,u(s))ll + [ (s u(e) e
i 6= el o
e B R A R e | SIS
[ )l + s [ T)‘”‘le(T,u(T))HdT] ds
1 b2 a+B-1|7 | T foe a—1
Sw/tl (t2—5> B [h+K+w/()(S—T) dT‘|dS
- F(a1+ B /Ot1 [(tl — )M — (ty — )@t [h+K+ F(fa) /OS(S — T)aldTl ds
1 r2 at+pB-1|7 | 77 ?
STarph o g
IR S L P Iy | S
+F(oz+ﬁ)/o [(tl ) (t2 =) [h+K+F(a+1)]dS
I ? a+ a+ a+
:W{mKﬂLW} (20t — 1) 4 4777 — 157

The RHS of the last inequality is independent of u and tends to zero when |to—t;| — 0,
this means that |Tyu(ty) — Thu(t;)| — 0, which implies that (7} B,) is equi-continuous,
then T is relatively compact on B,. Hence by Arzela-Ascoli theorem, T} is compact
on B,. Now, all hypothesis of Theorem 3.2 hold, therefore the operator 77 + 75 has a
fixed point on B,. So the problem (1.1) has at least one solution on [0, 1]. This proves
the theorem. U

3.2. Existence and uniqueness result.

Theorem 3.2. Assume that (H1) holds. If LA < 1, then the BVP (1.1) has a unique
solution on [0, 1].

Proof. Define M = max{Mj, My, M3}, where My, My, M3 are positive numbers such
that:

My = sup ||h(t70)“7 My = sup ||f(t70>||7 M; = sup ||K(t7870)”‘
te[0,1] te[0,1] (t,5)e@
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We fix r > fYLAA and we consider
D, ={z e C([0,1], X) : ||u]| < r}.
Then, in view of the assumption (H1), we have
[A(t, w()|| =[[A(t, u(t)) — h(t,0) + h(t,0)|| < [[A(t,u(t)) — h(t,0)|| + [|a(t, 0)]]
<Li||ul| + M,
1t w() || <Lolull + Mo,
and
K (2, s,u(s))|| < Lallul + Ms.
First step. We show that T'D,. C D,.. For each t € [0, 1] and for any u € D,

t (t — g)ot+6-1 s
|KTuxwufs[;(t(a{;;>bwwsnws»n+;ﬁ (s, 7 (7)) |ar

e I

H—hM/)&a+ﬁ+1lM( O+ [ 1K (7,0 0(0))ldo

v [ L el dr

()
<(Lr + M)A
<r.

Hence, TD, C D,.

Second step. We shall show that 7" : D, — D, is a contraction. From the
assumption (H1) we have for any u,v € D, and for each t € [0, 1]

[(Tu)(t) = (Tv)@)]

_ g)ecthl
39 < [ o) - atsoton)

+/0 | K (s, 7,u(T)) — K(s,7,v(7))|dr

bR o) 1] a

bl (n—1)*t?

3.9
(3:9) +|1—b7]| o I

[mvmv»—Mawﬂm
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<LAlu —v]|.
Since LA < 1, it follows that T is a contraction. All assumptions of Lemma 2.2 are
satisfied, then there exists u € C(J, X) such that T'uw = u, which is the unique solution
of the problem (1.1) in C'(J, X). O
4. GENERALIZED ULAM STABILITIES

The aim is to discus the Ulam stability for (1.1), by using the integration

t (t — g)atB-1
v(t) :/0 <tF(a)—|—ﬁ) [ +/ (s, 7,v(T))dr
+ /S (S_T)af<7',v(7'))d7'] ds
a+ﬂ
1—b77 Fa+5+1[ +/ (7,0, v(0))do
(4.1) +/0 7—;(Z);lf(o*,v((f))ala] dr.

Here v € C([0, 1], X) possess a fractional derivative of order a+ 3, where 0 < a+ < 1
and

fih:[0,1] x X — X,
and
K :[0,1] x[0,1] x X — X
are continuous functions. Then we define the nonlinear continuous operator
P:C([0,1], X) — C([0,1], X),

as follows
t
P’U(t) - CDOH_BU(t) - I(?*f(ta U(t)) - h(tu U(t)) - / K(tv S, U(S))dS.
0
Definition 4.1. For each € > 0 and for each solution v of (1.1), such that

(4.2) [Po] <,

the problem (1.1), is said to be Ulam-Hyers stable if we can find a positive real number
v and a solution u € C([0, 1], X) of (1.1), satisfying the inequality

(4.3) |lu — o] < ve,
where €* is a positive real number depending on e.

Definition 4.2. Let m € C(R™,R™) such that for each solution v of (1.1), we can
find a solution u € C([0, 1], X) of (1.1) such that

(4.4) llu(t) —v(t)]| < m(e), te]0,1].
Then the problem (1.1), is said to be generalized Ulam-Hyers stable.
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Definition 4.3. For each ¢ > 0 and for each solution v of (1.1), the problem (1.1) is
called Ulam-Hyers-Rassias stable with respect to 6 € C([0, 1], R™) if

(4.5) | Pu(t)|| < €b(t), te]0,1],
and there exist a real number v > 0 and a solution v € C([0, 1], X) of (1.1) such that
(4.6) |lu(t) —v(t|| < ved(t), te]0,1],

where €, is a positive real number depending on e.

Theorem 4.1. Under assumption (H1) in Theorem 3.1, with LA < 1. The problem
(1.1) is both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let uw € C(]0,1],X) be a solution of (1.1), satisfying (2.1) in the sense of
Theorem 3.2. Let v be any solution satisfying (4.2). Lemma 2.4 implies the equivalence
between the operators P and T — Id (where Id is the identity operator) for every
solution v € C([0,1], X) of (1.1) satisfying LA < 1. Therefore, we deduce by the
fixed-point property of the operator T' that:
[o(t) = u(t]] = [Jo(t) = Tv(t) + To(t) — u(®)[| = v(t) = To(t) + Tv(t) — Tu(t)]]
<||Tw(t) — Tu(®)]| + [Tv(t) —v(t)|| < LAJu —v]| + ¢,
because LA < 1 and € > 0, we find
€

[ — vl <

1— LA
Fixing €, = —%x and v = 1, we obtain the Ulam-Hyers stability condition. In
addition, the generalized Ulam-Hyers stability follows by taking m(e) = =7x. U

Theorem 4.2. Assume that (H1) holds with L < A™', and there exists a function
0 € C([0,1],RT) satisfying the condition (4.5). Then the problem (1.1) is Ulam-Hyers-
Rassias stable with respect to 6.

Proof. We have from the proof of Theorem 4.1,
[u(t) —v(t]] < e.0(t), tel0,1],

where €, = —Fx. This completes the proof. O

FExample 4.1. Consider the following fractional integro-differential problem

2
@ { CDgut) = h(t,ut)) + I8 f(t,u(®) + f3 K(t, s, u(s))ds, te€[0,1],
) 1
uw(0) =3 7 u(s)ds, 0<n<l,
where o = 3 = %, b=3,n= % By the above, we find that A = 0.4602, A; = 4.3755.

To illustrate our results in Theorem 3.1 and Theorem 4.1, we take for u,v € X = R*
and t € [0, 1] the following continuous functions:

(2 — t)u(t) 3 —t? e~ (s

it u(t) = =25 f(tuln) = Tl Kt s, uls) =

|

£
—~

VA
~—
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Note that we can find

1 1 1
L = — L = — L: [ —
1 207 2 187 3 64’
Moreover,
2 —t 3—t2 et
t) = —— t) = —— t) = —.
Ml() 60 M2() 79 Ms( ) 64
Obviously,
loilie = =, Mozllon = oo lsllie = =
M1 Loo—30, 2 Loo—24> M3 Loo—64,
and )
L= maX{Ll, LQ, Lg} = Tg
Then, we get

LA; =02431 <1, A=0.3229 < 1.

All assumptions of Theorem 3.1 are satisfied. Hence, there exists at least one solution
for the problem (4.7) on [0, 1].
By take the same functions, we result the assumption

LA =0.0179 < 1,

then there exists a unique solution of (4.7) on [0, 1].
In order to illustrate our stability result, we consider the same above example:

1
L=1g LAI=02431

This implies that the system (4.7) is Ulam-Hyers stable, then it is generalized Ulam-
Hyers stable. It is Ulam-Hyers-Rassias stable if there exists a continuous and positive
function.

Acknowledgements. The authors would like to express their gratitude to the anony-
mous referees for helpful and very careful reading.
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LOWER BOUNDS FOR ENERGY OF MATRICES AND ENERGY
OF REGULAR GRAPHS

MOHAMMAD REZA OBOUDI!

ABSTRACT. Let A = [a;;] be an n x n real symmetric matrix with eigenvalues
M, ..., An. The energy of A, denoted by E(A), is defined as |A1]| + -+ + [A,|. We
prove that if A is non-zero and [A;| > -+ > |A,], then

nA Al + X 1<ij<n az;

0.1
In particular, we show that W(A)E(A) > 32, ; i, a;, where W(A) is the maximum
value of the sequence >, |ai;], Y°7_; lag;l, -, 27— |an;|. The energy of a simple

graph G, denoted by &(G), is defined as the energy of its adjacency matrix. As an
application of inequality (0.1) we show that if G is a t- regular graph (¢ # 0) of order
n with no eigenvalue in the interval (—1,1), then &(G) > ﬁ—’{ and the equality holds
if and only if every connected component of G is the complete graph K1 or the
crown graph Kj, ;.

1. INTRODUCTION

Throughout this paper the matrices are complex and the graphs are simple (that
is graphs are finite and undirected, without loops and multiple edges). The conjugate
transpose of a complex matrix A is denoted by A*. We recall that a Hermitian matrix
(or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate
transpose. If A is a real matrix, then A is Hermitian if and only if A is symmetric. It is
well known that the eigenvalues of Hermitian matrices (in particular, the eigenvalues
of real symmetric matrices) are real. A complex square matrix A is called normal if
it commutes with its conjugate transpose, that is AA* = A*A. For example, every

Key words and phrases. Energy of matrices, energy of graphs, energy of regular graphs.
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real symmetric matrix is normal. For every complex square matrix A, the trace of A,
denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A.
The energy of a square complex matrix A, denoted by E(A), is defined as the sum of
the absolute values of its eigenvalues. In other words, if A is an n X n complex matrix
with eigenvalues Ay, ..., \,, then

(1.1) E(A) = [Mf + -+ + |l

Nikiforov [9] defined the energy of any complex matrix A by considering the singular
values. This definition of energy of matrices coincides with the previous definition of
energy of matrices if and only if the matrix is normal [1].

Let G = (V(G), E(G)) be a simple graph. The order of G denotes the number of
vertices of G. For two vertices u and v by e = uv we mean the edge e between u and
v. For a vertex v of GG, the degree of v is the number of edges incident with v. A
k-regular graph is a graph such that every vertex of that has degree k. Let B C V(G)
(B C E(G)). By G\ B we mean the graph that obtained from G by removing the
vertices of B (the edges of B). The complement of G, denoted by G, is the simple
graph with vertex set V(G) such that two distinct vertices of G are adjacent if and
only if they are not adjacent in GG. For two disjoint graphs G and G5, the disjoint
union of G; and G5 denoted by G1 U G4 is the graph with vertex set V; UV, and edge
set 4 U E5. The graph rG denotes the disjoint union of r copies of G. A matching
in GG is a set of edges of G without common vertices. A perfect matching of G is a
matching in which every vertex of GG is incident to exactly one edge of the matching.
The edgeless graph (empty graph), the complete graph and the cycle of order n, are
denoted by K,, K,, and C,,, respectively. The complete bipartite graph with part sizes
m and n is denoted by K,,,. Let t > 0 be an integer and M be a perfect matching
of Kit14+1. By K}, we mean the t-regular graph K41 \ M. The graph K} ,
is called the crown graph of order 2t + 2. For example K} = 2K, K} = 2K, and
K} = Cs.

Let G be a simple graph with vertex set {vy,...,v,}. The adjacency matriz of
G, denoted by A(G), is the n x n matrix such that the (7, j)-entry is 1 if v; and v,
are adjacent, and otherwise is 0. Since A(G) is symmetric, all of the eigenvalues of
A(G) are real. By the eigenvalues of G we mean those of its adjacency matrix. By
Spec(G) we mean the multiset of all eigenvalues of G. The energy of GG, denoted
by £(G), is defined as the energy of the adjacency matrix of G. In other words,
the energy of G is the sum of the absolute values of all eigenvalues of G. More
precisely, E(G) = |\| + -+ - + |\, where Spec(G) = {A1,...,\}. The energy of
graphs was defined by Ivan Gutman in 1978. For example, since the eigenvalues of the
complete graph K,, are n — 1 (with multiplicity 1) and —1 (with multiplicity n — 1),
so E(K,) = 2n — 2. See [4,5] for more details. Many papers are devoted to studying
the properties of the spectra of adjacency matrix, in particular studying the energy
of graphs. For instance see [1-20] and the references therein. There are many other
matrices associated to graphs such as Laplacian matriz, signless Laplacian matriz [20]
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and distance matriz [18]. For instance the Laplacian matrix of a graph G, denoted
by L(G), is defined as D(G) — A(G), where A(G) and D(G) are respectively the
adjacency matrix and the diagonal matrix of vertex degrees of G.

We note that the definition (1.1) for energy of matrices is significant for square
real symmetric matrices whose trace are equal to zero. In other words, this definition
maybe not notable for matrices with non-zero trace. For instance consider the Lapla-
cian matrix of a graph G of order n. It is well known that the eigenvalues of Laplacian
matrix of graphs are real and non-negative. Let pu; > --- > u, be the eigenvalues of
the Laplacian matrix of G (in fact u, = 0). By definition (1.1), the energy of L(G) is
E(L(G)) = p1+ -+ pn = tr(L(G)) = 2m, where m is the number of edges of G. We
remark that in [7] the authors define the Laplacian energy of graphs in another way.

In this paper first we obtain a new lower bound for energy of real symmetric
matrices. Let A = [a;;] be an n x n real symmetric matrix with eigenvalues Ay, ..., \,.
If A=0, then clearly £(A) = 0. We show that if A # 0, then

A An] + Xi<ii<n az;
1.2 E(A) > A2 4
(1.2) (4) = M|+ [ A

where |A1| > -+ > |\,|. By studying the lower bound (1.2) we obtain a simple lower
bound for energy of matrices. Let W(A) be the maximum value of the sequence of real
numbers Y0, |ay;], 25 [ag;ls - -, X [an;]. In other words, W(A) is the maximum
value of the sum of the absolute values of the entries of rows of A. We prove that if

A # 0, then

Z1§i,jgn a?j

E(A) > wa)
Finally we study the energy of regular graphs. Let GG be a t-regular graph of order
n and t # 0. In [6] (see also [4]) it was shown that £(G) > n. By applying the
lower bound (1.2) we improve this result and prove that if G has no eigenvalue in
the interval (—1,1), then £(G) > % In addition we show that the equality holds if
and only if every connected component of GG is the complete graph K;,; or the crown

graph K} ;.

2. ENERGY OF MATRICES

In this section we obtain some lower bounds for the energy of matrices. At first
similar to Lemma 1 of [19] we prove the inequality (1.2).

Theorem 2.1. Let n > 2 be an integer and A = [a;j] # 0 be an n X n real symmetric

matriz. Assume that \i,..., N, are the eigenvalues of A such that |A\1| > -+ > |\,].
Then )
N An| + X< j<n @55
E(A) > == W
Moreover, the equality holds if and only if for some r € {1,...,n}, |\i| =--- = |\/]

and | Ari1] = = | Al
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Proof. We note that for every j € {1,...,n}, [\| > |\;| > [\,]. Thus, forj=1,...,n,
(IM] = 1A D (A = |Anl) > 0. In addition, the equality holds if and only if |A;| = |\
or |A;| = |An|. On the other hand

MU+ [Aal) = (A1 I AL = (A = IS D] = [Aa]).

Hence, |\;|(JA1] + | Aal) = (N2 + [A1]|An]) > 0 and the equality holds if and only if
IA;j| = |A1] or [Aj] = |As]. So, for every j € {1,...,n}

(2.1) AL+ [Anl) = X517 4 Al

and the equality holds if and only if |\;| = [A\;] or [A;| = |\,|. Now by summing the
sides of (2.1) for j = 1,...,n, we find that

22) (Al + Pl (Pl ) 2 Pl o P+l Dl

and the equality holds if and only if for some r € {1,...,n}, |[\| =--- = |\;| and
IAri1] = -+ =|An|. On the other hand &(A) = [A\{]| + -+ + |\,| and
(2.3) P+ P =X X = (A7) = Y Al

1<ij<n

We note that because of A is symmetric, we have tr(A%) = 3, ;<, ai;. Since A # 0,
clearly >, ; i<y, a?j # 0. Thus, by (2.3), A has at least one non-zero eigenvalue. Thus,
|A1] > 0. So, [A|+ |An| # 0. Now by dividing the sides of (2.2) by |A1| + |\,| and
using (2.3) the result follows. O

Remark 2.1. We note that in Theorem 2.1 the equality holds for some family of
matrices. For example for diagonal matrices such as diag(a, ..., a,b,...,b), where a
and b are real. Since the eigenvalues of the complete bipartite graph K, , are —,/pq
(with multiplicity 1), 0 (with multiplicity p + ¢ — 2) and /pg (with multiplicity 1),
the adjacency matrix of K, , also satisfying in the equality of Theorem 2.1.

We are interested in to obtain a suitable estimation for the lower bound of Theo-
rem 2.1 in terms of the entries of the matrix. First we prove the following lemma.

Lemma 2.1. Let a and b be some positive real numbers. Let o, 3, x and y be some
non-negative real numbers such that § >y > \/% > x> «a. Then

a+bxy>a+baﬁ
r+y — a+p’

and the equality holds if and only ifx:a:\/% orxzﬁz\/% ory:ﬁ:\/% or
r=aandy=p.

Proof. Let d be a positive real number and f;(t) = “Cﬂ"jt be the one-variable function
on t, where t > 0. So the derivative of f4(t) with respect to ¢ is
bd®> — a
fa(t) =

(d+1t)?
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This shows that if d > \/% , then fy(t) is strictly increasing on the interval [0, c0) and
if d < \/%, then fy(t) is strictly decreasing on the interval [0,00). We note that if
d= \/%, then for every t > 0, f4(t) = § = Vab.

Since y < 3 and f,(t) is strictly decreasing on the interval [0, 00), if x < /%,

CY L2 LE) (5> yade £ [T, then [(0)> L(5).

On the other hand, since x > « and f3(t) is strictly increasing on the interval [0, 00),
it 5> /%,

(2.5) fo(2) > fola) (ifo>aand B % \/g then fs() > fa(a).

Since f,(5) = fs(z), (2.4) and (2.5) show that f,(y) > fs(a). In other words, we
obtain that 22y > atbal

z+y — atf
Now we consider the equality. Assume that % = a;r_lioéﬁ . So, fu(y) = fa(a).
Hence, by (2.4) and (2.5) we find that f,(y) = f.(8) and fz(z) = fs(c). Using (2.4)
and (2.5) one can easily obtain the result. O
Let A = [a;;] be a complex n x n matrix, where n > 1 be an integer. As we
mentioned before, W(A) denotes the maximum value of the sequence of real numbers
iy lagl, X250 lagsl, -, 35— [an;]. We need the following result.

Theorem 2.2 ([8]). Let A be a complex square matriz and X be an eigenvalue of A.
Then |A] < W(A).

Now we obtain a lower bound for the energy of matrices in terms of their entries.

Theorem 2.3. Let n > 2 be an integer and A = [a;j] # 0 be an n X n real symmetric
matriz. Then ,
2o1<ij<n (i
E(A) > === Y

Proof. Assume that Aq,...,\, are the eigenvalues of A such that [\| > - > |\,].
We note that the eigenvalues of A are real. Since A is symmetric, tr(A*) = Y1 j<n a?j.
On the other hand A + - + A2 = tr(A?) and

(2.6) n|Aa? < P4+ A < nf R

Therefore,

(2.7) n|A)? < Z a?j < n|A\]?
1<ij<n

Hence,

y 2
(2.8) ‘)\n|§1/M§‘)\l‘_
n
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Let a =0, 8 =V(A), a = X< j<na;j, b=mn, z = |\,| and y = [\1|. We note that
since A # 0, a > 0. Using Theorem 2.2 and (2.8) we deduce that

623/2\/?2952@.

Thus by applying Theorem 2.1 and Lemma 2.1 we obtain that

g4y by atbal o Yicijendy
T vty T a+pf B U(A)

This completes the proof. 0

3. ENERGY OF REGULAR GRAPHS

In [6] it was proved that if G is a t-regular graph of order n where ¢t # 0, then
&(G) > n. In this section by applying Theorem 2.1 we improve this result and show
that if G has no eigenvalue in the interval (—1,1), then £(G) > ﬁ—’{ Two examples of
this kind of regular graphs are the cycle Cg (with spectrum {2,1,1,—1,—1,—2}) and
the Petersen graph (with spectrum {3,1,1,1,1,1, -2, -2, —2, —2}). First we recall
some results.

Theorem 3.1 ([2]). Let G be a graph and p(G) be the largest eigenvalue (the spectral
radius) of G. Then the following hold:

(i) if G is connected, then the multiplicity of p(G) is one;
(1) for every eigenvalue X of G, |\ < p(G).
Theorem 3.2. [2| Let G be a graph. Then the following hold:

(1) G is bipartite if and only if for every eigenvalue X of G, also —\ is an eigenvalue
of G, with the same multiplicity.

(13) If G is connected with largest eigenvalue 0, then G is bipartite if and only if
—0 is an eigenvalue of G.

Lemma 3.1 ([19]). Let H be a connected t-reqular graph where t > 2. Assume that
Spec(H) ={t,1,...,1,—1,...,—1},
—_——— ——o ——
b c
where b and ¢ are some non-negative integers. Then H is the complete graph Ki ;.
Lemma 3.2 ([19]). Let H be a connected bipartite t-reqular graph where t > 2.
Assume that
Spec(H) ={t,1,...,1,—1,...,—1,—t},
T %(;—/
where b and ¢ are some non-negative integers. Then H is the crown graph Kf .

Lemma 3.3 ([19]). Lett > 0 be an integer. Then
Spec(Ky,,) ={t,1,...,1,—1,...,—1,—t}.
~—_—— ——o ——

t t
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Now we prove the main result of this section.

Theorem 3.3. Let G be a t—regular graph of order n where t # 0. Suppose that G
has no eigenvalue in the interval (—1,1). Then

2tn
3.1 E(G) > ——.
(3.) @)z "
In particular, if t > 2, then E(G) > 4. Moreover in (3.1) the equality holds if and
only if every connected component of G is the complete graph K1 or the crown graph

*
KtJrl'

Proof. Note that if H is a O-regular graph, then E(H) = 0. Let A = A(G) = [ayj]
be the adjacency matrix of G. Assume that A, ..., A\, be the eigenvalues of G (the
eigenvalues of A) such that |A\;| > --- > |\,|. Thus, |\ > |\, fori =1,...,n.
Since Aj = tj (j is the vector of size n such that all of its entries are equal to 1), ¢
is one of the eigenvalues of G. Hence, |A;| > ¢. On the other hand W(A) = t. So,
by Theorem 2.2, |A;| < t. Thus, |A\;| = t. In fact ¢ is the largest eigenvalue of G.
Since G has no eigenvalue in the interval (—1,1), |A,| > 1. As we see in the proof of
Theorem 2.3

- 2
(3.2) WISNMSM-
n

Let a =1, =t a= < j<,a};, b=n, 2z =|\| and y = [\]. Since t # 0, A # 0.
Therefore, a > 0. In fact @ = nt. By (3.2) we find that

52y2\/§2x2a.

Now, by applying Theorem 2.1 and Lemma 2.1 ,we find that
a+ by S a+baB  2tn

3.3 E(G)=E(A) > = ,
(33) (@) (4) 2 r+y — a+f t+1
Hence,

2tn
3.4 eG) > ——.
(3.4 @)z
Ift > 2, thent%zgand so (3.4) implies that &(G) > 4.

Now we investigate the equality of (3.4). We note that for every disjoint graphs
G1 and GQ, E(Gl U Gg) = S(Gl) —+ E(Gg) Since E(Kt+1) = 2t and 8([(,;_1) = 4t
(by Lemma 3.3), it is easy to check that if G = pK, 1 U ¢K[,,, where p and ¢ are
some non-negative integers, then the equality holds. Hence, it remains to consider the
converse. Thus, assume that ¢ # 0 and G is a t-regular graph of order n such that G

has no eigenvalue in the interval (—1,1) and &(G) = 2% Using (3.3) we obtain that

a + by a+bry a4+ bap
and = )
r+y x4y a+p

(3.5) &(A) =
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Thus, the equality hold in Theorem 2.1 and in Lemma 2.1. By Theorem 2.1, there
exists r € {1,...,n} such that |\;| =--- = |\ and |A\,41] = -+ = |\| (we note that
|Ad1] = t). On the other hand, by Lemma 2.1, we deduce that |A;| = \/% or |A,| = \/%

or |A,| =1 If |\ | = \/% or |A,| = \/%, then by (2.6) we obtain that |A;| = = |\,].
By combining these conditions, we find that there are two following cases.

(I) |A1] = -+ - = |A\n| = t. Hence, every eigenvalue of G is t or —t. By the fact that
A+ -+« + A2 = 2m, where m is the number of edges of G, we conclude that nt* = nt.
Thus, t = 1. Since G is t—regular, this shows that every connected component of G is
K.

(IT) [A] = -+ = |\ =t and [N 41| = -+ - = |A\y] = 1. Thus, every eigenvalue of G
istor —t or 1 or —1. If t = 1, then every connected component of G is K,. Thus
assume that ¢t > 2. Let H be a connected component of GG. Since H is t-regular, ¢ is
the largest eigenvalue of H (we note that since H is connected, by the first part of
Theorem 3.1, the multiplicity of ¢ as an eigenvalue of H is one). First suppose that H
is bipartite. Thus, by the first part of Theorem 3.2, —t is also one of the eigenvalues
of H with multiplicity one. Thus Spec(H) is consist of one ¢, one —t and the other
elements are 1 or —1. Thus, by Lemma 3.2, H is K ;. Now assume that H is not
bipartite. Since t is the largest eigenvalue of H, by the second part of Theorem 3.2,
—t is not an eigenvalue of H. Therefore, Spec(H) is consist of one ¢ and the other
elements are 1 or —1. Hence, by Lemma 3.1, H is K;,1. The proof is complete. [
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COMPUTING THE TOTAL VERTEX IRREGULARITY STRENGTH
ASSOCIATED WITH ZERO DIVISOR GRAPH OF COMMUTATIVE
RING

ALI AHMAD!

ABSTRACT. Let R be a commutative ring and Z(R) be the set of all zero divisors
of R. T(R) is said to be a zero divisor graph if z,y € V(I'(R)) = Z(R) and
(z,y) € E(T'(R)) if and only if .y = 0. In this paper, we determine the total vertex
irregularity strength of zero divisor graphs associated with the commutative rings
Zy> X Zg for p, q prime numbers.

1. INTRODUCTION

Let G = (V, E) be a simple graph, the weight of a vertex z € V(G) for an edge
k-labeling ¢ : E(G) — {1,2,...,k} is wy(z) = X, pen@) ©(zy). For all distinct
vertices z,y € V(G), with w,(z) # w,(y), an edge k-labeling ¢ is called a vertex
irregular k-labeling of G. The minimum value of k£ for which G has an edge k-labeling
v with labels at most k is known as irregularity strength, s(G), of a graph G. This
labeling is also called irregular assignments and introduced by Chartrand et al. in
[12]. For further results on irregularity strength, one can see [11,13,15] and a detailed
survey [14].

Motivated by these papers, Baca et al. in [9] introduced an edge irregular total
k-labeling and a vertex irregular total k-labeling. For a graph G = (V| E), a total
k-labeling ¢ : V(G) U E(G) — {1,2,...,k} is defined to be a vertex irregular total
k-labeling, if for every two distinct vertices z,y € V(G) is wt, () # wt,(y), where
the weight of a vertex » € E(G) is wty(x) = o(z) + X.en(@) ¢(22) and N(x) is the
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2010 Mathematics Subject Classification. Primary: 05C78. Secondary: 05C25, 05C12.

DOIT 10.46793/KgJMat2205.711A

Received: May 12, 2019.

Accepted: March 14, 2020.

711



712 A. AHMAD

set of neighbors of x. The minimum £ for which the graph G has a vertex irregular
total k-labeling is called the total vertex irreqularity strength of G, denoted by tvs(G).

In [9] several exact values and bounds of tvs(G) were determined for different types
of graphs. Among others, the authors proved the following theorem.

Theorem 1.1 ([9]). Let G be a (|V(G)|, |E(G)|)-graph with minimum degree 6 = 6(G)
and mazimum degree A = A(G). Then

PV(GM + 4

< < — .
N —‘ <tvs(Q) < |V(G)|+A—20+1

Przybylo [17] improved the results for sparse graphs and for graphs with large
minimum degree. In the latter case the bounds tvs(G) < w + 8 in general
and tvs(G) < m + 1 for r-regular (|V(G)|, |E(G)|)-graphs were proved to hold.
Anholcer et al. [8] determined a new upper bound of the form
3|V(G)|

)
Some results on total vertex irregularity strength can be found in [1-3,16]. The main
aim of this paper is to find an exact value of the total vertex irregularity strength of
certain classes of zero divisor graph of commutative rings which is much closer to the
lower bound in Theorem 1.1 than to the upper bound in (1.1).

(1.1) tvs(G) < + 1.

2. RESULTS AND DISCUSSION

Let R be a commutative ring and Z(R) be the set of all zero divisors of R. T'(R) is
said to be a zero divisor graph if x,y € V(I'(R)) = Z(R) and (x,y) € E(I'(R)) if and
only if z.y = 0. Beck [10] introduced the notion of zero divisor graph. Anderson and
Livingston [6] proved that G(R) is always connected if R is commutative. For a graph
G, the concept of graph parameters have always a high interest. Numerous authors
briefly studied the zero-divisor and total graphs from commutative rings [4,5,7].

Let I'(Z,2 x Z4) denotes the zero divisor graph of the commutative ring Z,2 x Z,
and is defined as following. For « € Z,» and y € Z, (x,y) € V(I'(Z,2 x Z,)) if and
only if x # p,2p,3p,...,(p —pand y # 0. Let I = {(z,y) € V(I'(Z,2 X Z,)) :
T # p,2p,3p,...,(p— 1)p and y # 0}, then |I| = (p* — p)(¢ — 1). The vertices of
the set I are the non zero divisors of the commutative ring Z,2» x Z,. Also (0,0) €
Zuy2 X Zgq is a non zero divisor. Therefore, the total number of non zero divisors are:
1| +1=(p*—p)(g—1)+1 = p?q—p*> —pq+p+1. There are p*q total vertices of the
commutative ring Z,» x Z,. Hence, there are p*q— (p*q—p*—pg+p+1) = p*+pg—p—1
total number of zero divisors. This implies that the order of the zero divisor graph
U(Zye % Zq) is p* +pg —p — 1, ie., [V(T'(Zy x Zg))| = p* +pg —p— 1.

In the following theorem, we determine the lower bound of total vertex irregularity
strength for zero divisor graph I'(Z,2 x Z,).
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Lemma 2.1. Let p, q be two prime numbers and I'(Z,2 X Z,), p > q, be the zero divisor
graph of the commutative ring Zy2 x Z, with mazimum degree A = A(I'(Z,2 x Zyg))
and minimum degree 6 = 0(I'(Zy2 X Z,)). Then

2 -1 2 —p—-1
tVS(F(ZPQXZq))zmaX{P) Pty l,p—l—q—Q, {p trgTp w
q

pqg—1
PP+pg—p+qg—2
p? ‘

Proof. The order of the zero divisor graph I'(Z,2 x Z,) is p* + pg — p — 1, i.e.,
|V(F(Zp2 X Zq))| = p2 +pg—p— 1L

The degree of each vertex (u,v) € V(I'(Z,2 x Z)), is discussed as follows.

If z=0and y € {1,2,3,...,q — 1}, then each such vertex (0,y) is only adjacent
to the vertices (2’,0) for every 2’ € {1,2,3,...,p*> — 1}. Hence, the degree of each
vertex (0,y) is p? — 1 and the number of vertices of type (0,y), with y # 0 are ¢ — 1.
Similarly, the degree of each vertex of type (z,0), x # 0,p,2p,...,(p—1)pisq¢—1
and the number of vertices of type (z,0), with x # 0,p,2p,...,(p — 1)p are p* — p.

lfrx=Fkp, 1<k<p-—1landye€{1,2,3,...,q— 1}, then each such vertex (z,y) is
only adjacent to the vertices (2/,0) for every 2’ = kp, 1 < k < p—1. Hence, the degree
of each vertex (x,y) is p — 1 and the number of vertices of this type is (p — 1)(¢ — 1).

If v =kp, 1 <k<p-—1andy=0, then each such vertex (x,0) is adjacent to the
vertices (0,'), (2/,0), with = # 2/ and (2/,y’) for every ¢/ € {1,2,3,...,¢ — 1} and
' =kp, 1 <k <p—1. Hence, the degree of each vertex (z,0) is (¢ — 1)+ (p — 2) +
(pg—p—q+1)=pq—2.

Let V, denotes the vertex partition of zero divisor graph I'(Z,2 x Z;) of the commu-
tative ring Z,» x Z, of degree a and n, denotes the number of vertices in the partition
Va. Therefore, ng_1 =p* —p, npg2=p—1,n,2 1 =q—1land n,_y = (p—1)(¢ —1).
As p > ¢, this implies that A(I'(Z,2 x Z,)) =p* — 1 and §(I'(Z,2 X Z,)) = q — 1.

To prove the lower bound consider the weights of the vertices. The smallest weight
among all vertices of I'(Z,2 x Z,) is at least ¢ — 1, so the largest weight of vertex of
degree ¢ — 1 is at least p> — p+ ¢ — 1. Since the weight of any vertex of degree q — 1
is the sum of ¢ positive integers, so at least one label is at least [7’2_71%_1]

The largest value among the weights of vertices of degree ¢ — 1 and p — 1 is at least
p? 4+ pg — 2p and this weight is the sum of at most p integers. Hence, the largest label
contributing to this weight must be at least P’Zﬂ;%?ﬂ =p+q-—2.

The largest value among the weights of vertices of degree ¢ — 1, p — 1 and pq — 2 is
at least p? + pg — p — 1 and this weight is the sum of at most pg — 1 integers. Hence,

the largest label contributing to this weight must be at least [1722217:113—1]

If we consider all vertices of I'(Z,2 x Z,) then the lower bound

V(I (Zyz x )| + (T (Zy2 % Zq»w _ {pz T pg—pta— ﬂ
AT (Zy x Z,)) + 1 B 7
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follows from Theorem 1.1. This gives
2 -1 2 S —
tVS(F(szqu))zmaX{{p Pty —‘,p+q—2, {p TP w,
q pqg—1
P’ +pg—p+q—2
2
and we are done. O

In the following theorems, we determine the total vertex irregularity strength of
zero divisor graph I'(Z,2 x Z,) associative with commutative ring Z,2 x Z,, for p,q
prime numbers.

Theorem 2.1. Let p be a prime number and I'(Zy2 X Zs), p > 3, be the zero divisor

graph of the commutative ring Zy2 X Zo. Then tvs(I'(Z,2 x Zy)) = P‘P’Tp*ﬂ )

Proof. Let (x,y) € Zy2 X Zy, with (z,y) # (0,0), such that € Z,2 and y € Z, =
{0,1}. For our convenient, we partitioned the vertices of type (x,0) into two distinct
partitions as: If x € Z,2 \ {0,p,2p,3p, ..., (p — 1)p}, then we denotes such vertices
as x; and the number of these vertices is p? — p, the degree of each vertex is 1. If
z € {p,2p,3p,...,(p—1)p}, then we denote such vertices as z;, 1 < j <p — 1. This
implies that (z,0) = (z;,0) U (z;,0) for 1 <i < p*—p, 1 <j <p— 1. The degree of
each vertex of type (z;,0) and (z;,1) is 2p—2 and p— 1, respectively. The vertex (0, 1)
is the only one vertex with degree p* — 1. The vertex set and edge set of I'(Z,2 X Zy)
are defined as:
V(D(Zy2 X Zs)) ={(2:,0) : 1 < i < p* —p}
0 {(23,0), (z5,1) : 1< § < p— 1} U{(0, 1)},
E(T(Zy2 X Zs)) ={(2:,0)(0,1) : 1 <i < p® —p}
O {(25,0) (20, 1), (23, 0)(0,1) 1 < 2 < p— 1}
U{(2j,0)(2:,0) : 1 < j,t <p—1,5 #t}.
According to Lemma 2.1, we have tvs(I'(Z,2 % Zy)) > [pLTpH] Put k = [”2’271’“] It
is enough to describe a suitable vertex irregular total k-labeling. We define a labeling
0 V(INZy X Zy)) UE(T(Zy2 x Zs)) = {1,2,...,k} as:
90<<071>) :ka 90((‘]7170» :maX{17i+1 _k}7
for 1 <i <p®—pand ¢((z,0) = p((z;,1)) =i for 1 <j<p-—1, o((2;,0)(0,1)) =
min{i, k} for 1 <i < p*—p, ©((z;,0)(0,1)) = ©((2,0)(z, 1)) =k, for 1 < j,t <p—1
and ((2;,0)(2,0)) =k for 1 < jit <p—1,j#t
The weights of vertices of I'(Z,2 x Zj) are as follows:
wt,((z;,0)) =i +1, for1<i<p*—p,
wty((z5,1) =(p— 1k +14, forl1<j<p-—1,
wty((2,0)) =2k(p—1) +1, for1<j<p-—1,
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wt,((0,1)) =D

One can see that the weights of vertices under the function ¢ receive distinct labels
2
and the maximum label used on vertices and edges is k = [E=2*1]. Thus, the labeling

+ (p* — k)k.

© is the desired vertex irregular total (ﬂTpHW—labeling. This completes the proof. [

Theorem 2.2. Let I'(Z,2 x Zs3), p > 3, be the zero divisor graph of the commutative
ring Zy2 X Zz. Then tvs(I'(Z,2 x Z3)) = {PQ—TPHW .

Proof. Let us consider the vertex partition of type (z,0) as defined in the proof of
Theorem 2.1. The vertex set and edge set of I'(Z,2 x Zs3) are defined as:
V(D(Zy X Z3)) ={(2:,0) : 1 <i<p* —p}U{(z;,t): 1<j<p-—1,0<t <2}

U {(0,1),(0,2)},

E(U(Zy2 x Zs)) ={(2:,0)(0,1), (2:,0)(0,2) : 1 < < p* — p}
U{(2,0)(21,1), (7, 0)(2, 2), (25, 0)(0, 1), (2, 0)(0,2) :
1<t <p—11U{(2,0)(2,0) : 1 <jt <p—1,j#t}.

According to Lemma 2.1, we have tvs(I'(Z,2 xZ3)) > P’Q—Tp”]. Put k = (”2_37’”21. It
is enough to describe a suitable vertex irregular total k-labeling. We define a labeling
0 V(IN(Zy xZ3))UE(L'(Zy2 x Z3)) — {1,2,...,k} as p((z;,0)) = max{1,i4+2—2k},
for 1 <i <p®—p, ¢((0,1)) =k ©((0,2)) =k — 1, ((2,0)) = ¢((z,1)) = j for
1<j<p-Tland ¢((#;,2)=p+j—1,1<j<p—1

For 1 <i < p? —p, ¢((0,1)(x;,0)) = min{i, k}, »((0,2)(z;,0)) = min{max{1,7 +
1=k}, k} and ((0,1)(25,0)) = ¢((0,2)(z,0)) = ¢((z, 1)(2;,0)) = ¢((2},2)(2;,0)) =
@((Zj70><zs70)) = k? for 1 S.] < p— 17 J 7& S.

The weights of vertices of I'(Z,2 x Z3) are as follows:

wt,((24,0)) =i +2, for1<i<p®—p,
who((55,1) =0~ D(E+1 - 1)+, for1<j<p—1,1<t<2,
wty((25,0)) =k(pg —q+ 1) +j, for1<j<p-1,

202 +1—k
ur ((0.) =k (1R,

2p° +5 — 3k
wt,((0,2)) =k <p+2> )

One can see that the weights of vertices under the function ¢ receive distinct labels
2
and the maximum label used on vertices and edges is k = [E=2*2]. Thus, the labeling

@ is the desired vertex irregular total P’Q*TPHW—Iabeling. This completes the proof. [

Theorem 2.3. Letp>q >3, (p—q)(p—1) > (¢ —1)* and T'(Z,2 x Z,) be the zero

divisor graph of the commutative ring Zy> X Z,. Then tvs(I'(Zy2 x Zy)) = {’?2_11%_1} :
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Proof. Let us consider the vertex partition of type (z,0) as defined in the proof of
Theorem 2.1. The vertex set and edge set of I'(Z,2 x Z,) are defined as:
V(T(Zye x Zy)) ={(24,0) : 1 <i < p* —p}U{(2;,t) : 1<j<p-1,0<t<qg—1}
U{(0,t):1<t<qg-—1},
E(T(Zye x Zy)) ={(24,0)(0,¢) : 1 <i<p*—p, 1<t <qg—1}
U{(zj,0)(zs,%),(24,0)(0,2) : 1 < j,s<p—1,1<t<qg—1}
U{(2,0)(25,0): 1 <j,s <p—1,j #s}.

According to Lemma 2.1, we have tvs(I'(Z,2 X Z,)) > (”2”1%’1} forp > ¢ > 3,

(p—q)(p—1) > (¢q—1)% Put k = (H%”]. It is enough to describe a suitable vertex
irregular total k-labeling. We define a labeling ¢ : V(I'(Zy2 X Z,)) U E(I'(Z2 X Z,)) —
{1,2,...,k}as: ((0,t) =k+1—-t,1<t<qg—1,¢((2,0) =jfor 1 <j<p-—1,
o((zj,t)=j+t—1(p—-1for1<j<p—-1,1<t<g—1and

1, for 1 <i<(¢g—1)k—q+2,
Z+(q_1)(1_k)a for (q_l)k_Q+3§i§p2—p7

o((2:,0)) = {

0((2,0)(0,8)) = kfor 1 < j <p—-11=<t<q-1, ¢((2,0)(z,0) = k for
1§j78§p_17j7é87 @((Z],O><Zs,t>):kf0r1S],Sgp—l,].Stgq—L
©((0,1)(x;,0)) = min{i, k} for 1 <i<p?—pand for 2<t<qg—1

1, for1<i<(t—1)(k—1)+1,
©((0,8)(x;,0)) =i+ (t—1)(1—k), for t—1)(k—1)+2<i<t(k—1)+1,
k, for t(k—1)+2<i<p?>—p.

The weights of vertices of I'(Z,2 x Z,) are as follows:
wt,((2;,0)) =i +q—1, for1<i<p®—np,
wty,((z,t) =j+(p—-1)(t—1+k), for1<t<g—1,1<j5<p-—1,
wt,((24,0)) =j + (pg — 2)k, for 1 <j<p-—1,

k(2p* — k+1)
wt((0,1)) = 5 ,
(t—1)(k—1)+1 t(k—1)+1
wt,((0,8) = Y. 1+ o G+t —k)),
i=1 i=(t—1)(k—1)+2

+(p?—th+t—1Dk—1—t, for2<t<qg-—1.
One can see that the weights of vertices under the function ¢ receive distinct labels
and the maximum label used on vertices and edges is k = [1”2_’1%_11. Thus the

labeling ¢ is the desired vertex irregular total f’ﬁ_p%_l}—labeling. This completes
the proof. O
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Theorem 2.4. Letp > q >3, (p+q)(g+1) > p*+4qg—1 and T(Z,2 X Z,) be the zero
divisor graph of the commutative ring Zy2 x Z,. Then tvs(I'(Z,2 X Z,)) =p+q — 2.

Proof. For our convenient, we partitioned the vertices of the graph I'(Z,2 x Z,) as

A={(@,0): 2 € Zp\{0,p,2p,...,(p— V)p}} = {a; : 1 <i < p* —p},
B={(z,y):x=p,2p,...,(p—1)pand y € Z, \ {0}}
={b;:1<j<(p—-1(g—-1)},
C={0.1)yeZ\N O} = {a: 1<t <q—1},
D={(z,0):x=p,2p,...,(p— p} ={ds : 1 <s <p—1}.
This implies that V(I'(Z,2 x Z;)) = AUBUC U D and the edge set is
ET(Zye x Zy)) ={aic; : 1 <i<p*—p,1 <t <q—1}
U{ads:1<s<p—-11<t<qg-1}
U{dsb; :1<s<p—-1,1<j<(p—1)(¢g—1)}
U{dedy :1<s, 8 <p—1,5s#s}

According to Lemma 2.1, we have tvs(I'(Z,2 x Z;)) > p+q—2, for p > q >
3,(p+q)(qg+1) > p*>+4q—1. It is enough to describe a suitable vertex irregular total
(p + q — 2)-labeling. We define a labeling ¢ : V(I'(Z,2 x Z,)) U E(I'(Z,2 x Zg)) —
{1,2,....p+q—2}as p(a;) =1 for 1 < i <p?>—p, p(c;) =t for 1 <t <q-—1,
pldg) =sfor1 <s<p-—1

o(b;) = q, for 1 <j<pq—2p—q+3,
’ j—pg+2p+2¢—3, forpg—2p—q+4<j<(p—1)(g—1),

o(cdy) plddg) = p+qg—2for 1 <t <qg—1,1<3s,¢ <p—-1, s # ¢,
o(cra;) = min{i,p+q— 2} for 1 < i < p*> — p, p(dib;) = min{p + j,p + q — 2} for
1<j<(p—1(g—1). For2<t<qg-—1
1, for1<i<(t—1)(p+q—3)+1,
plaa) =i—(t—=1)(p+q—3), for (t-1)(p+qg—3)+2<i<tlp+q-—3)+1,
p+q—2, fort(p+q—3)+2<i<p?—p.
For2<s<p-1
Ds for 1 <j<(s—1)(¢g—3)+1,
o) = {p+j—(5—Dg—3), for (s—1)(g—3)+2<j <slg—3)+1,
ptaq—2, fors(g=3)+2<j<(p—1(¢—1),

to(a;) =i +q—1, forl1<i<p®—np,

)
(b])—p —p4q—1+4j forl<j<(p-1)(g—1),
)=

p+q 2

wt (e 2p° —p—q+1)+1,
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(t=1)(p+g—3)+1 t(p+q—3)+1
wt,(cy) =t + > (1) + > (i—(t—=1)(p+q—3))
i=1 i=(t—1)(p+q—3)+2
p*—p

i=t(p+q—3)+2
ptq—2

wt,(dy) —f(?)p +3¢—-7)+1—

p(p+1)
2 9
(s—1)(g—3)+1
wty(d) =s+p+q—2)p+q—3)+ > p
j=1
s(g—3)+1
+ Y (p+i—-(s-1(g-3)

J=(s—1)(g—3)+2

(p—1)(¢—1)
+ > (p+qg—2), for2<s<p-1.
j=s(q—3)+2

One can see that the weights of vertices under the function ¢ receive distinct labels
and the maximum label used on vertices and edges is p 4+ ¢ — 2. Thus the labeling ¢ is
the desired vertex irregular total (p + ¢ — 2)-labeling. This completes the proof. [
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STABILITY OF NONLINEAR NEUTRAL MIXED TYPE
LIVEN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

KARIMA BESSIOUD!, ABDELOUAHEB ARDJOUNI!, AND AHCENE DJOUDI?

ABSTRACT. In this paper, we use the contraction mapping theorem to obtain as-
ymptotic stability results about the zero solution for a nonlinear neutral mixed type
Levin-Nohel integro-differential equation. An asymptotic stability theorem with a
necessary and sufficient condition is proved. An example is also given to illustrate
our main results.

1. INTRODUCTION

The Lyapunov direct method has been very effective in establishing stability results
and the existence of periodic solutions for wide variety of ordinary, functional and
partial differential equations. Nevertheless, in the application of Lyapunov’s direct
method to problems of stability in delay differential equations, serious difficulties
occur if the delay is unbounded or if the equation has unbounded terms. In recent
years, several investigators have tried stability by using a new technique. Particularly,
Burton, Furumochi, Zhang and others began a study in which they noticed that some
of this difficulties vanish or might be overcome by means of fixed point theory, see
[1-28] and the references therein. The fixed point theory does not only solve the
problems on stability but have other significant advantage over Lyapunov’s direct
method. The conditions of the former are often average but those of the latter are
usually pointwise, see [8] and the references therein.
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differential equations, mixed type.
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In paper, we consider the following nonlinear neutral mixed type Levin-Nohel
integro-differential equation

jtx@):—gjl/:
d

(1.1) +ag(t,x(t—ﬁ(t)),...,x(t—rm(t))),

with an assumed initial condition

r(t)=9¢(t), te[mit),to],
where ¢ € C' ([m (to) ,to],R) and
m; (to) =inf{t —7; ()}, m(to) =min{m; (to): 1 <j < m}.
Throughout this chapter, we assume that a; € C ([to, +00) X [m (tg),+00),R), b; €
C ([to, +00) x [to, +00) ,R) and 75,0, € C ([to, +o0),RT), with ¢ — 7; (t) — 400 as
t — 400 and t + 0, (t) = +o0 as t — 400, (1 < j <m). The functions g is globally
Lipschitz continuous in x. That is, there are positive constants E;, 1 < j < m, such

that
(1.2)

|g(t,l'1,l’2,...,l'm) _g(tvylay277ym)| S ZEJ |xj_y]|ﬂ g(t70770) = 0.
j=1

T tto;(t)
)aj (t,s)x(s)ds—Z/ b; (t,s)z(s)ds
j=1"1

Tj (¢

In this paper, our purpose is to use the contraction mapping theorem [26] to show the
asymptotic stability of the zero solution for (1.1). An asymptotic stability theorem
with a necessary and sufficient condition is proved. In the special case b; (¢,s) = 0,
1<j<mandg(tmr,z,...,0n) = >j-, g;(t,7;), Bessioud, Ardjouni and Djoudi
[5] proved the zero solution of (1.1) is asymptotically stable with a necessary and
sufficient condition by using the contraction mapping theorem. Then, the results
presented in this paper extend the main results in [5]. An example is also given to
illustrate our main results.

2. MAIN RESULTS

For each ty, we denote C () the space of continuous functions on [m (to) ,to] with
the supremum norm ||-||, . For each (to,¢) € [0,+00) x C (ty), denote by x () =
x (t, to, ¢) the unique solution of (1.1).

Definition 2.1. The zero solution of (1.1) is called

(i) stable if for each € > 0 there exists a 6 > 0 such that |z (¢,to,¢)| < € for all
2 4o i ], < 0,

(ii) asymptotically stable if it is stable and tlELn |z (t, 0, ¢)| = 0.

In order to be able to construct a new fixed mapping, we transform the Levin-Nohel
equation into an equivalent equation. For this, we use the variation of parameter
formula and the integration by parts.
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Lemma 2.1. z is a solution of (1.1) if and only if

2 (1) = (6 (o) — G (1)) ¢ 0P 1 G, (1)

t t t
(2.1) _/ (Lo (5) + A () G ()] e - A5 — [N (5) e Ji A=g
to to
where
(2.2) G.(t)=gt,x(t—711(t)),...,x({t —7m (1)),
I m t t m u d
(1) = a;(t,s ag (u,v)x (V) dv
=3[ uea ([ (L[, nwnre)
m o rutoy(u)
(2.3) + Z/ by (u,v) x (v) du) du+ G, (s) — G, (t)) ds,
k=1""
m t+o;(t) t [ m u
N, (t) = bi (t,s ay (u,v)x (v)dv
0= [ e ([ (X[, mwnee)
m o rutog(u)
(2.4) +3 / b (u, 1) 2 (1) dy) du+ G,y (s) — G, (t)) ds,
k=1""
and
mo o t+oj(t)
2. = .
(2.5) Jz::l/tT](t) tsds—l—Z/ s)ds
Proof. Obviously, we have
t
x(s)=z(t) — i 6;11’ (u) du.
Inserting this relation into (1.1), we get
d ot t 0
pr (t) —l—jz:l/t_Tj(t) a;j (t,s) (x (t) — 5t z(u )du) ds
m t+0'j(t) t a d
+§1/t b; (t,5) <:1: )~ [ 5w du> ds = .G (t) = 0,

where G is given by (2.2). Or equivalently

jt (Z/t (t, s ds+2/t+% ds)
_z/”] o (1,5) (/ )ds

m

_Z/tw’ (t,5) (/ )ds—thx(t):O.

Jj=1
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Substituting 2% from (1.1), we obtain

d, d et s)d
a’ Z/trj(t (t.) 8+Z/ °

—gﬁ/ttT_ 0 (4:9) Vt (— 3 /uuw) ax (1, ) x (v) dv

k=1
_ f: /u“”’“(“ ) (v)dv + ;;Gx (u)> du] ds
- ]il /ttw by (0.9 Vt (— é/ﬂum(u) ax (u, ) & (1) dv
26) - Z / T v) (V) d + 6‘1@5 (u)> du] ds — thw () =o.
By performing the integration, we have
(2.7) : aiGm () du = Gy (£) — G (5).

Substituting (2.7) into (2.6), we have

d
() + Az () + Lo () + No () =

where A and L, and N, are given by (2.5) and (2.3) and (2.4) respectively. By the
variation of constants formula, we get

2 (0) =6 (to) ¢ o = [ (L (5) 4+ N ()] e A g

to

G (1) =0, t>t,

t 2 —ftA(z)dz
(2.8) + A (aSGz (S)) e Js ds.

By using the integration by parts, we obtain

t g fft A(z)dz
/to (asz (s)) e s ds
(2.9) —G () — G (b)) € o / A(s e~ Jo Az g

Finally, we obtain (2.1) by substituting (2.9) in (2.8). Since each step is reversible,
the converse follows easily. This completes the proof. O

Theorem 2.1. Let (1.2) holds and suppose that the following two conditions hold
t

(2.10) lim inf | A(z)dz > —o0,
t——+oo 0
(211) sup (Z Ej +/ (S) e_fstA(Z)dst) =a<l,
t>0 =1 0
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where

Z/gwlagsw </ (Z/uwmkumdy
+Z/u+ak

s+0j(s)
+Z/5 b; (s </w <Z/um(u)|aku1/|du

+Z/u+ak(u by (u, V)|dl/) du—l—QZEk) dw + |A (s )‘iEy

k=1 j=1

|bg (u, V)|dy> du—l—QZEk) dw

Then the zero solution of (1.1) is asymptotically stable if and only if

t
(2.12) / A(z)dz — 400 as t— +oo.
0

Proof. Sufficient condition. Suppose that (2.12) holds. Denoted by C' the space
of continuous bounded functions = : [m (tg),+0o0) — R such that z(t) = ¢(t),

t € [m(to),to]. It is known that C' is a complete metric space endowed with a metric
||| = SUPt> (1) |7 (t)]. Define the operator P on C by (Px) (t) = ¢ (t), t € [m (to) , o]
and

(Pz) (t) = (¢ (to) — Gy (to)) € fto (2)d= + G, (1)
[ (2 6+ A(8) Gu (s)] e A — [, (5) e LA,

to to

Obviously, Px is continuous for each z € C'. Moreover, it is a contraction operator.
Indeed, let z,y € C

[(Pz) (t) — (Py) ()]
<162 ()= Gy (O] + [ 122 () = Ly (9)] + N (5) = Ny (5)
+M@ﬂ@ﬂ$—Gﬂ$WfﬁAdW&
Since x (t) = y (t) = ¢ (t) for all t € [m (ty), to], this implies that

Lo (5) = Ly (5)]

<z:1/ST(S la; (s, w) (/w (Z/u Tku]akul/]dz/
u+ak
+Z/

\bk u, V)| dy> du + 2 Z Ek> dw ||z — y|

k=1
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s D (s, w)| (/w (i/ ., law ()] dv

m uto (u)
—i—Z/ b (u, V)| dv | du +22Ek>dw||x—y||

k=1

Consequently, it holds for all ¢ > t, that

|(Pz) (t) — (Py) (1)]

<ZEH$—yH+/O(Z/8 Tjs|aj s, w) </w( /umu\akuu|dy

+Z/ ]bkuu)]dy>du+22Ek>dw
+;/:+g] b (s (/w (Z/W ax (u, )| d

u+o m
—i—Z/ ™ |bkuy)|dy>du+QZEk>dw+\A()|ZEj>
k=1 =1
x e~ Jy ARz |z =yl
Hence, it follows from (2.11) that
((Pz) (t) = (Py) ()] < ellz —yll, ¢ =to.

Thus P is a contraction operator on C'. We now consider a closed subspace S of C
that is defined by
S={zxeC:|x(t) —0ast— 4oo}.

We will show that P (S) C S. To do this, we need to point out that for each x € S,
|(Px)(t)] = 0 as t = +o00. Let # € S, by the definition of P we have

(Pa) (1) = (6 (to) — G (t0)) e o " 4 G, (1
B /tt Lo (5) + A(5) Gy ()] e A@=qs — [* N, (5) e S A= g

to

:[1 +[2+[3—|—[4

The first term I; tends to 0 by (2.12) and I5 tends to 0 by (1.2) and ¢ — 7; (t) — +o00
as t — +oo, and t + o, (t) = +00 as t — +o00. For any T € (y,t), we have the
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following estimate for the third term

|I3] <

/T (L. (s)+ A(s)Gy (s)] e J @ g g

to

+ /Tt (L. (s)+ A(s) Gy (s)]e” [, Az g

A (i/;@ e ([ (§ 1 otuna
+Z/ )
*QEZEde+L4 Iy )s @“w]@mwuwmo

k=1 j=1

+/<zln\%sw<é( [ e w2 )
+Z/ g ()| |2 (0 )|du> du
+2Ek]x s — 7k ( ))\—i—g:lEk\x(w—Tk(w))\)dw

k=1

<

’lL+0'k

+ A (s)] i Ejle (s — 7 (S))I) e J AR g
j=1

=131 + I32.

Since t — 7; (t) = 400 as t — 400, and ¢t + 0, (t) = +00 as t — +oo, this implies
that v — 7 (u) — 400, and u + of (u) — +00 as T — +oo. Thus, from the fact
|z (v)] = 0, v — 400, we can infer that for any € > 0 there exists T} = T > ¢, such
that

]32<— ( / |aj S, w) (/ (Z/ lag (u,v)|dv
Ty s—7i(s) u—T7k(u)

+Z/

and hence, I3, < § for all £ > T;. On the other hand, [|z|| < 400 because z € S.
This combined with (2.12) yields I3; — 0 as t — 400. As a consequence, there exists
Ty > Ti such that I3, < § for all t > T,. Thus, I3 < € for all £ > T, that is, I3 — 0
as t — +oo. Similarly, I, — 0 as t — 4+00. So, P(S) C S.

By the Contraction Mapping Principle, P has a unique fixed point x in S which
is a solution of (1.1) with x (t) = ¢ (t) on [m (ty),to] and = (t) = x (¢,t0, ) — 0 as

u+top(u) m .
K by (u V)\dy) dU+QZEk> dw + |A (s |ZEJ) o Az g

k=1 J=1
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t — +o00. To obtain the asymptotic stability, we need to show that the zero solution
of (1.1) is stable. By condition (2.10), we can define

t
(2.13) K =supe JoA@# < Loo
0

Using the formula (2.1) and condition (2.11), we can obtain

j=1

= to z)az
1z ()] < K (1+ZEJ-) loll, elo” 2% +a (] + l1¢ll, ), t > to,

which leads us to

7=1

" <1 +3 EJ‘) eh’ 4% 4
]l < -

(2.14) b1, -

1l -«
Thus, for every € > 0, we can find § > 0 such that [|¢[|,, < ¢ implies that ||z < e.
This shows that the zero solution of (1.1) is stable and hence, it is asymptotically
stable.

Necessary condition. Suppose that the zero solution of (1.1) is asymptotically
stable and that the condition (2.12) fails. It follows from (2.10) that there exists a se-
quence {t,}, t, — 400 as n — +oo such that lim,, , |, fi" A (2) dz exists and is finite.
Hence, we can choose a positive constant L satisfying

tn
(2.15) — L < lim A(z)dz < L, foralln>1.

n—+oo /o

Then condition (2.11) gives us

tn s n
Cn = / w(s) elo ARz gg < aedo” AR < oL
0

The sequence {c,} is increasing and bounded, so it has a finite limit. For any dy > 0,
there exists ng > 0 such that

tn S 6
(2.16) / w(s) elo A g « 20 foralln > no,
tng 2K
where K is as in (2.13). We choose §y such that §y < 1o , and consider

K(HZ;;EJ-)(;LH
the solution z (t) = x (¢, t,,, ¢) of (1.1), with the initial data ¢ (t,,) = dp and |¢ (s)| <
do, § < tp,. It follows from (2.14) that

(2.17) |z (t)] <1—20dp, forallt>t,,.
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Applying the fundamental inequality |a — b > |a| — |b| and then using (2.17), (2.16)
and (2.15), we get

|z (tn) — G ()]

" A(2)dz tn tn
>dpe ft" (=) —/ w(s)e Js A2)dz g g
¢

n0

tn

- z)az n tn s
>e Jtng A(=)d (50 e f; 0 A(Z)dz/ w (S) €f0 A(z)dzds>

tng

t S
w(s) elo A(z)dzds>

tng

>e— t:no A(z)dz (50 K

1 noq 1
25506 tng A% > 5506_2L >0,

which is a contradiction because, then (z (¢,) — Gy (t,)) — 0 as t,, — +o00. The proof
is complete. O

Letting G, (t,) = 0, we get the following result.

Corollary 2.1. Suppose that the following two conditions hold:

t
(2.18) lim mf/ Ay (2)dz > —0
0

t—+o00

and

t | m s
sup / a; (s, w / < / ag (u,v)| dv
t>0 J0 [Z::l s—7j(s) | J | ( w Z u—Tk(u) | |

m utoy(u)
+ Z/ ' bk (u, V)| dl/> du) dw
k=1""
m s+0;(s) s m U
+ |wmm/ S [ eyl
j=17s =1 Y u—Tk(u
m u+ak(u _ftA (2)d
—i—Z/ e (u,v)|dv | du | dw]| e Js TP ds
(219) =a<1,

where

Then the zero solution of

+Z/ s+ [T ) () ds = 0
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is asymptotically stable if and only if
¢

(2.20) / Ap(z)dz = 400 as t— +oo.
0

Example 2.1. Consider the following nonlinear neutral mixed type Levin-Nohel integro-
differential equation

(2.21) (jt:v (t) = /ttT(t)a(t, ‘) ds~|—/tt+a(t)b(t,s)x(s) ds+jtg (ta(t—7 (1),

where a (t,s) = ﬁ, T(t) =5, b(t,s) = tzi-l’ o(t)=t, g(t,z) =0.08(xcost+3)+
0.09z sin t2. Then the zero solution of (2.21) is asymptotically stable.

Proof. We have

t t+o(t) )
A(t):/tT(t)a(t,s)ds+/t ts)ds—2t2+1 / dz—ln(t _|_1>
()—/S ° / /u 24 +/2ud du+0.34) d
WS—%SQ_i_l %UQ—}—]_V u2 4 u . w
2s s u 2 2u 4
a0 av+ [ dv ) du+0.34 dw+038
w \Je u?+1 u2 241
252+1[

sln (s + 1) +4 arctan% — 2arctan s

2
+ sln (1 + 1> — 2arctan2s — 2s1n (432 + 1) + 5.025]
and

/ (s

z)dzdz

e
ik

+sln (1 + 1) — 2arctan2s — 2sIn (432 + 1) + 5.023] ds

[s ln + 4 arctan g — 2arctan s

1 1/, ) 2 +2 1 , ,
Itzﬂlz(f +3)1In (¢ +1)+2<4—1>ln<4 +1>—4<4t —1)In (4¢* + 1)

t
— 2t arctant + 4t arctan 3~ 2t arctan 2t + 2.51752]

<0.43056.

Then .
sup (E + M +/ w(s) e s A(z)dzdz> < 0.60.
0

>0
It is easy to see that all conditions of Theorem 2.1 hold for @ = 0.60 < 1. Thus,

Theorem 2.1 implies that the zero solution of (2.21) is asymptotically stable. O
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ROUGH STATISTICAL CONVERGENCE FOR DIFFERENCE
SEQUENCES

NIHAL DEMIR! AND HAFIZE GUMUS!

ABSTRACT. As known, difference sequences have their own characteristics. In this
paper, we study the concept of rough statistical convergence for difference sequences
in a finite dimensional normed space. At the same time, we examine some properties

of the set st — limTAmi = {IL'* eX:Azx; S x*}, which is called as r-statistical limit

set of the difference sequence (Ax;).

1. INTRODUCTION AND BACKGROUND

In this study, since the concept of rough statistical convergence will be studied
for difference sequences, it is important to give some literature knowledge about
difference sequences. Kizmaz [19] defined the concept of difference sequence such that
Az = (Az;) = (z; — T441), where x = (z;) is a real sequence for all ¢ € N (the set of
all natural numbers). In this paper, he also defined ¢y(A) = {z = (x;) : Az € ¢y},
c(A) ={z = (2;) : Az € ¢} and Io(A) = {z = (z;) : Az € I} spaces, where [, ¢
and ¢y are bounded, convergent and null sequence spaces, respectively. Furthermore,
he investigated relations between these spaces and obtained ¢o(A) C ¢(A) C o (A).

After this study, which can be considered as a base about difference sequences, Et
[11], Et and Colak [12], Basarir [5], Et and Nuray [15], Giimig and Nuray [18], Aydin
and Basar [1], Bektas et al. [6], Et and Esi [14], Savas [23] and many others researched
various properties of this concept. Et and Colak [12] generalized Kizmaz’s results for
generalized difference sequences.

Key words and phrases. Statistical convergence, difference sequences, rough convergence, statisti-
cal limit set.
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One of the other basic concepts of this study is the concept of statistical convergence.
Statistical convergence was defined by Fast [16] and Steinhaus’ [25], independently.
Schoenberg’s work [24] for this kind of convergence can be shown as one of the
important studies in summability theory. Since the concept of statistical convergence
has been applied to many fields by many researchers, a wide area of use has emerged.
Some of these areas are number theory [10], measure theory [20], trigonometric series
[30] and summability theory [17].

Statistical convergence has recently been studied by Ulusu and Nuray [27,29] and
Ulusu and Diindar [28] for set sequences.

The concept of density is quite wide and is defined in many different ways such
as natural density (asymptotic density), uniform density, density of rational and real
numbers, density of ratio sets. Natural density will also form the basis of statistical
convergence. Let K C N be a subset of N. d(K) := lim, £3°7_ X, (j) is said to be
natural density of K whenever the limit exists, where x . is the characteristic function
of K. According to the definition of statistical convergence, sets with natural density
zero will be important for us. In more detail we can say that, if K is a finite set, then
it is clear that d(K) = 0. Another notation that we will use during our studies will be
the notation that a P feature is provided for almost all i € N. If a sequence = = (x;)
provides any P property for all other elements except the elements with zero natural
density then the sequence is called “provides the P property for almost all ¢” and is
abbreviated by writing (a.a.i.). Now, it is possible to give the definition of statistical
convergence as follows.

Definition 1.1 ([16]). Let = (z;) be a real or complex sequence. x is statistically
convergent to L if

hm |{z<n |z; — L] > €} =0,
for each ¢ > 0 or equivalently
|z, — L| <e (a.a.i).

This is indicated by st-limz = L. So, it is easy to say that each sequence that
convergent is also statistical convergent.

Basarir [5] defined the concept of A-statistical convergence as follows.

Definition 1.2 ([5]). Let # = (z;) be a real sequence and Az = (Az;) = (x; — zi41).
For each ¢ > 0 if
hm |{z <n:|Az;—L| > e} =0,
or equivalently
|Ax; — L] <e (a.a.i),

then z is A-statistically convergent to L. The set of all A-statistically convergent
sequences is denoted by S(A).
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The concept of rough convergence is based on the idea of defining a new convergence
type by extending the radius of convergence of a non-convergent but bounded sequence.
Rough convergence is defined by Phu [21] in finite dimensional normed spaces. This
concept was later extended by Phu [22] to infinite dimensional normed spaces. The
definition of rough convergence in a finite dimensional normed space can be given as
follows.

Definition 1.3 ([21]). Let (X, ||-||) be a normed linear space and r be a non-negative
real number. Then the sequence x = (z;) in X is said to be rough convergent (or
r-convergent) to x,, if for any € > 0, there exists an i € N such that

|x; — x| <7 +e¢,
for all ¢ > 4.. This expression means that
limsup ||z; — x.|| <,

and r is called as roughness degree. In this definition, we say that x, is an r-limit
point of the sequence (z;) and it is denoted by z; = ..

Let (z;) be a rough convergent sequence in a finite dimensional normed space
(X, |I|l) and 7 be a non-negative real number. For each r > 0 we obtain a different z,
point. So, this point which is called as the r-limit point of the sequence may not be
unique. Therefore, a set of these points can be mentioned. This set is called as the
set of 7-limit points and is indicated by lim}_. As seen, the topological and analytical
features of this set are very important. The r-limit points set of the sequence (z;) is
defined by

lim;i = {x* GX:xii)x*}.

Following Phu’s definition [21], Aytar [2] described rough statistically convergent
sequences as follows.

Definition 1.4 ([2]). Let (X, ||-||) be a normed linear space and r be a non-negative
real number. The sequence = (z;) in X is said to be rough statistically convergent
(or r-statistically convergent) to z,, if the set

{i eN: ||z — x| >1+¢}

has natural density zero for any € > 0. This expression means that
st — limsup ||z; — z.|| <,

and it is denoted by z; .

Aytar [3,4] also studied with rough limit set and rough cluster points. After these
studies, Demir [7] and Demir and Giimiig [8] studied the concept of rough convergence
for difference sequences and proved some basic theorems. On the other hand, Diindar
and Cakan [9] define rough J-convergence.
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2. OURrR AM

The idea of rough statistical convergence has developed a new perspective for non-
convergent sequences. Applying this new perspective to difference sequences, which
are known with their own properties, will produce very interesting results.

3. MAIN RESULTS

In this part we investigate the concept of rough statistical convergence for difference
sequences in (R™,||-||) space, where R™ is real n-dimensional normed space and we
prove some important theorems.

Definition 3.1. Let (R",||-||) be the real n-dimensional normed space and r be a
non-negative real number. A difference sequence Ar = (Ax;) in R” is said to be
rough statistically convergent (or r-statistically convergent) to x,, provided that the
set

{i e N:||Az; —zi]| > r+¢€}
has natural density zero for any € > 0 or equivalently
st —limsup |[|Ax; — x| < 7.

. . r—st
In this case we write Az; — x,.

The set of all r-st-limit points of a difference sequence Ax is indicated by
st — limgxi = {x* e R": Ax; gt x*} )

The notation r denotes the degree of roughness and it is easy to see that if r = 0,
then statistical convergence is obtained.

The following example gives us an example of a difference sequence which is not
statistically convergent but r-statistically convergent.

Ezample 3.1. Let the difference sequence Ay = (Ay;) be a statistically convergent to
Y, and cannot be measured exactly. Additionally, let Az = (Ax;) be a sequence that
provides the property [|Ax; — Ay;|| < r (a.a.i.). Then the sets

{t eN:[|Ay; — 2] = €}
and
{i e N:||Az; — Ay;|| > €},

have natural density zero for any € > 0. According to these informations we can not
say that Ax is statistically convergent. But we know that

{ieN:||Az; —y. || >r+e} C{i e N: || Ay; — y.|| > €}

and this relation gives us that the natural density of the set on the left will be zero.
So, the sequence Az is r-statistically convergent.
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For the set of all r — st-limit points of Az, if st — limj, # 0, then st — limj, =
[st — limsup Az — r, st — liminf Az 4 r|. On the other hand, we know that if Az is
unbounded, then the set of r-limit points is empty, i.e., limj,, = (). Whereas this
sequence might be rough statistically convergent. The following example explains this
situation.

Example 3.2. Let

1, otherwise,

ie.,
(Az;) =(-1,2,3,1,5,6,7,8,—1,...).
Then
{i e N:||Az; —z.|| >r+e} ={1,4,9,16,...}
and this set has natural density zero. So, we obtain

e 0, ifr <1,
St— Mpg, = [1 —r,r—1], otherwise.

Corollary 3.1. st — lim}, # 0 does not imply limj, # 0, but limy, # O implies
st —limj, # 0. Therefore,
lim}y, C st —limjy,,
and
diam(lim},.) € diam (st - limgxz) .

Theorem 3.1. For any difference sequence Ax = (Ax;), diameter of st —limy, s
not greater than 2r. Generally, there is no smaller bound.

Proof. Suppose that diam (st — limgxi) > 2r. Then there exist y,z € st — limj,,
such that
d:=|ly—z| > 2r

Take an arbitrary ¢ € (0, g — 7“) . Define A; and A, sets such that
Ay ={ieN: ||Az; —y|| >r+e}

and
Ay ={i e N:||Ax; —z|| > r+¢e}.
Because y, z € st — lim}, , we have d(A4;) = 0, d(A2) = 0 and from the properties of
natural density, d(A§ N AS) = 1. So,
d
ly = 2l < [|Az; =yl + [[Az; — 2] <2(r +¢) <2r +2 (2—7"> =d=lly—z[,

for all « € Af N AS. This is a contradiction. Therefore, diam (st - 1im2zi) < 2r.



738 N. DEMIR AND H. GUMUS

Now, let’s show that there is generally no smaller bound. For this, we show that
st — lim}, = B,(z.). We know that diam (Br(a:*)) = 2r for
B(w.) = {y € X : [lz. —yll <7}
Choose a difference sequence (Ax;), with st — lim Az = z,. For each ¢ > 0 we have
d{i e N: ||[Az; — 2] > €}) = 0.
Then
Az =yl < N[Az =zl + o = yll < [[Az; = ]| + 7,
for each y € B,.(z,). In this case,
|Az; —y|| <r+e,
for each i € {i € N: ||[Ax; — x,|| < e}. At the same time, we know that
d{i e N:||Az; — 2| <e}) =1
and so, y € st — limj, . Then we have st — lim}, = B,(z.). O

Theorem 3.2. For a bounded sequence (Ax;), there is a non-negative real number r
such that st —lim}y, # 0.

The question of whether the converse of the above theorem is also valid is a question
that can immediately come to mind. The answer is no. But if the sequence is
statistically bounded, the converse is valid. The theorem that gives this case is below.

Theorem 3.3. (Ax;) is statistically bounded if and only if there exists a non-negative
real number v such that st —lim}y . # 0.

Proof. First, let’s show that st —lim},. # 0, when Az is statistically bounded. From
the definition of statistically boundedness, there exists a positive real number M such
that
d({i e N:|Az;|| > M}) = 0.

Let’s define r' := sup{||Az;|| : i € K¢}, where K = {i € N: ||Ax;|| > M}. Then
st — limzxi contains the origin of R" and st — limgxi # 0.

Now, assume that st — limzzi # () for some r > 0. Then we have an z, such that
Ty € St — limgxi . In that case

d({i e N: |Az; — .|| >r+¢e}) =0,

for each £ > 0. So, we can say that almost all Ax; are contained in some ball with
any radius greater than r and Ax; is statistically bounded. 0

In rough convergence, we know that when (AxZ-J) is a subset of (Ax;)
lim}y, C limg%.

In the case of rough statistical convergence, the subsequence must be non-thin to
satisfy this condition.
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i, ifi= k2

: is a difference sequence of real numbers.
0, otherwise,

Ezample 3.3. Let Ax; := {

Then (Axij) = (1,4,9,16,...) is a subsequence of (Az;). We have st — lim},. =
[—7r,7] and st —lim},,. = 0.

Definition 3.2. (Axij) is a non-thin subsequence of (Az;) provided that the set B
does not have natural density zero where B = {i; : j € N}.

Theorem 3.4. If (Aa:i].) is a non-thin subsequence of (Ax;), then st — lim}, C
st — limj, .

J
Theorem 3.5. st — lim}, is closed.

Proof. For this proof, we use one of the well-known theorems of functional analysis.
According to this theorem, “For a convergent sequence Ay, — y,, when Ay € st —
limj,, (at the same time y, € st—lim}, ), then st—lim}, is closed”. If st—lim}y, =0,
then the proof is trivial. Suppose that st — limj, # (. Then we have a sequence
(Ay;) C st — lim)y,, such that Ay; — y.. From the definition of convergence, for each
e > 0 there exists i € N such that [[Ay; — y.|| < § for all i > i:. Choose an iy € N
such that ig > ic. Then [[Ay;, — vl < 3.
On the other hand, since Ay; C st — limy, , we have y;, € st —lim}, , ie.,

d({ZEN HAZ’Z—leH ZT"";}) = 0.

Now, we need to show following inclusion

{ieN: ||A$z‘—y*||<7“+€}2{i€Ni Az — ys, | <r+;}.

Let k € {’L eN:||Az; —yill <7+ %} . Then ||Azy — y4|| < r + 5 and hence
1Az = yul| < [[Azk — ol + [|gi0 — y:ll <7+ €.

It means k € {i € N: ||Az; — y;,|| <7+ ¢} and we have the proof. O
Theorem 3.6. st — lim},, is convex.
Proof. Suppose that yo,y1 € st —limj,. and let € > 0 be given. Define the sets

K1 = {Z €EN: ||A.f1fz—y0|| 27""8}
and

K2 = {Z eEN: ”AZL‘Z—ZAH ZT+€}.
We know that d (K;) = d(K3) =0 and d (K{ N K§) = 1 from the assumption. Then
we have

[Az; = [(1 =X yo + Amll] = I(1 = A) (Azi —yo) + A (Azi =) <7+,

for each ¢« € K{ N K§ and each A € [0,1]. We get

d({i e N:[JAz; — [(1 = N yo + Ap]l| = 7 +¢}) =0,
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this means [(1 — ) yo + Ay1] € st —limj,. and so st —lim},. is convex. O

Theorem 3.7. The sequence (Ax;) is r-statistically convergent to x, if only if there
exists a difference sequence Ay = (Ay;) such that st—lim Ay = z, and ||Az; — Ay;|| <
r for each v € N.

Proof. For the necessity part, suppose that (Ax;) is r-statistically convergent to z..
From the definition
st —limsup |[|Ax; — x| < 7.
Let’s define the sequence (Ay;) as follows:
T, if ||Az; — x| <,
Ty —

Ay; = i
2 — Ay’

Az, +7r otherwise.

Then it is easy to see that

Ay — o] {

and [|Ax; — Ay;|| < r for each i € N.
For the sufficiency, suppose that st — lim Ay = z, and ||Az; — Ay,|| < r for each
1 € N. From the definiton of statistical convergence, for each ¢ > 0 we get

d({i e N:[JAy; — 2.]| = e}) = 0.

0, if ||Az; —a. <,
|Ax; — x,|| —r, otherwise,

We know that
{i eN: Ay —w.|| > e} D {i e N: ||Az; -z || > 7 + ¢},

and we have

d({i e N: ||Az; — 2| >r+e}) =0. O

In order to prove the next theorem, we will need the following lemma, which is
related to statistical cluster points.

Lemma 3.1. Let I'a, be the set of all statistical cluster points of Ax and ¢ be an
arbitrary element of this set. For all x, € st —limy, we have ||z, —c|| <.

Proof. Let’s accept the contrary of the lemma and find the contradiction. Assume
that there exist a point ¢ € I'a, and =z, € st —lim},, such that ||z, — ¢|| > r. Define

€= w In that case,
{i eN:||Az; — x| >r+e} D{i e N: ||Az; — ]| < €}.
From the fact that ¢ € I'a,, we know that the natural density of the set
{i e N:||Az; — || < ¢}
is not zero. So, by using the inclusion above, we obtain
d{i e N: ||Az; —z.|| >r+¢e}) #0,
and this completes the proof. O
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Theorem 3.8. For a difference sequence Ax = (Ax;), Ax; "=, if and only if
st —limy, = By(z,).
Proof. In Theorem 3.1, we proved the necessity part. So, we need to prove if st —
lim}y, = B.(x.), then Ax; =8 z,. We know that if the statistical cluster point of a
statistically bounded sequence is unique, then the sequence is statistically convergent
to this point. B

In that case, if st —limy, = B,(x,) # 0, then (Az;) is statistically bounded. Let
(Ax;) sequence has two different statistical cluster points, such as z, and z/. Then

the point
r
(x* - ZL’;) )

e A N E—
T =l

satisfies

T
7. = alll = (1 s = 2l = s — 2 >

From the previous lemma, ., ¢ st — limj, but this contradicts the fact that

|z, — .|| = r and st — lim}, = B,(z.). This means that z, is the unique statistical
cluster point of Az. So, Az is statistically convergent to x,. OJ

4. CONCLUSIONS AND FUTURE DEVELOPMENTS

In our paper, we obtain some different results by defining the concept of rough
statistical convergence for difference sequences. Later on, we investigate some proper-
ties of r-statistical limit point set of a difference sequence. In addition, it may be of
interest to investigate similar results for generalized difference sequences.
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QUOTIENT HOOPS INDUCED BY QUASI-VALUATION MAPS
R. A. BORZOOELI', G. R. REZAEI?, M. AALY KOLOGANI?, AND Y. B. JUN*

ABSTRACT. In this paper, our aim was making a metric space on hoop algebras,
because of that, we introduced the notion of valuation maps from F-quasi-valuation
map based on hoops and related properties of them are investigated. By using
these notions, we introduced a quasi-metric space. The continuity of operations of a
hoop is studied with topology induced by a quasi-valuation. Also, we studied hoop
homomorphism and investigated that under which condition this homomorphism
is an F-quasi-valuation map. Moreover, we wanted to find a congruence relation
on hoops in a new way and study about the quotient structure that is made by it.
So, we defined a congruence relation by F-quasi-valuation map and proved that the
quotient is a hoop.

1. INTRODUCTION

Non-classical logic has become a considerable formal tool for computer science
and artificial intelligence to deal with fuzzy information and uncertainty information.
Many-valued logic, a great extension and development of classical logic, has always
been a crucial direction in non-classical logic. In order to research the many-valued
logical system whose propositional value is given in a lattice, Bosbach in [14, 15],
proposed the concept of hoops, and discussed their some properties. Hoops are
naturally ordered commutative residuated integral monoids. In the last years, hoops
theory and related structues was enriched with deep structure theorems [1,3-10,12,
13,16-18,22,24,27]. Many of these results have a strong impact with fuzzy logic.
Particularly, from the structure theorem of finite basic hoops one obtains an elegant
short proof of the completeness theorem for propositional basic logic, introduced

Key words and phrases. Hoop, quasi-valuation map, Sg-quasi-valuation map, S_,-quasi-valuation
map, F-quasi-valuation map, (pseudo) metric space.
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by Héjek in [21]. The algebraic structures corresponding to Hajek’s propositional
(fuzzy) basic logic, BL-algebras, are particular cases of hoops. The main example
of BL-algebras in interval [0,1] endowed with the structure induced by a t-norm.
MV-algebras, product algebras and Godel algebras are the most known classes of BL-
algebras. Recent investigations are concerned with non-commutative generalizations
for these structures. During these years, many researchers study on hoops in different
way, and got some results on hoops [11,20,23,26]. Algebra and topology, the two
fundamental domains of mathematics, play complementary roles. Topology studies
continuity and convergence and provides a general framework to study the concept
of a limit. Algebra studies all kinds of operations and provides a basis for algorithms
and calculations. Many of the most important objects of mathematics represent a
blend of algebraic and of topological structures. Topological function spaces and
linear topological spaces in general, topological groups and topological fields and
topological lattices are objects of this kind. Very often an algebraic structure and a
topology come naturally together. The rules that describe the relationship between
a topology and algebraic operation are almost always transparent and natural the
operation has to be continuous, jointly continuous, jointly or separately. In the 20th
century many topologists and algebraists have contributed to topological algebra.
Song, Roh and Jun, in [25] introduced the notion of quasi-valuation maps based
on a subalgebra and an ideal in BCK/BCl-algebras, and then they investigated
several properties. They provided relations between a quasi-valuation map based on
a subalgebra and a quasi-valuation map based on an ideal. In a BCl-algebra, they
gave a condition for a quasi-valuation map based on an ideal to be a quasi-valuation
map based on a subalgebra, and found conditions for a real-valued function on a
BCK/BCl-algebra to be a quasi-valuation map based on an ideal. Using the notion
of a quasi-valuation map based on an ideal, they constructed (pseudo) metric spaces,
and shew that the binary operation * in BCK-algebras is uniformly continuous. In
[2], Aaly and Rezaei, introduced the notion of quasi-valuation maps such as (Sg,
S_,) S-quasi-valuation maps and F-quasi-valuation map based on subalgebras and
filters and related properties of them are investigated. Also, they studied the relation
between them and proved that every F-quasi-valuation map is an S-quasi-valuation
map. Finally, by using the notion F-quasi-valuation map, they introduced a metric
space and proved that if A is an F-quasi-valuation map of hoop H then all operation
of H are continuous.

In this paper, our aim was making a metric space on hoop algebras, because of
that, we introduced the notion of valuation maps from F-quasi-valuation map based
on hoops and related properties of them are investigated. By using these notions, we
introduced a quasi-metric space. The continuity of operations of a hoop is studied with
topology induced by a quasi-valuation. Also, we studied hoop homomorphism and
investigated that under which condition these homomorphism is an F-quasi-valuation
map. Moreover, we wanted to find a congruence relation on hoops in a new way and
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study about the quotient structure that is made by it. So, we defined a congruence
relation by F'-quasi-valuation map and proved that the quotient is a hoop.

2. PRELIMINARIES

By a hoop we mean an algebra (H,®,—,1) in which (H,®, 1) is a commutative
monoid and for all z,y, 2z € H the following assertions are valid:

(H1) 2 —» = = 1;
(H2) 20 (z = y) =y O (y = 2);
H3) z = (y = 2)=(zOQy) — =

We define a relation “<” on a hoop H by
Ve,ye H)(z <y zx—y=1).

It is easy to see that (H, <) is a poset. A hoop H is bounded if there is an element
0 € H such that, forallz € H, 0 < z. Let 2° = 1 and 2" = 2" ® x, for any n € N.
If H is a bounded hoop, then we define a negation ”’ ” on H such that, for all x € H,
2’ =x — 0. A nonempty subset S of H is called a subhoop of H if it satisfies:

Vz,ye S)zaoye S z—yebl).
Note that every subhoop contains the element 1.

Proposition 2.1 ([19]). Let (H,®,—, 1) be a hoop. For any x,y,z € H, the following
conditions hold:

(al) (H,<) is a meet-semilattice with t Ny = x © (x — y);

(a2) z Oy <z ifand anly if t <y — z;

(a3) z Oy <zx,y and ™ < x for any n € N;

(ad) z <y — z;

(@5) 1 »x=xandx —1=1;

(a6) 2O (x—y)<yandzoOy<zANy<z—y;

(a7l z—y<(y—2z2)—(r—2);

(a8) z <y impliesr ©2<y®z,z—zr<z—oyandy—z<x—2;
(a9)

r—=>y—z2)=@0y) »z=y— (r— 2).
A nonempty subset F' of a hoop H is called a filter of H (see [19]) if the following
assertions are valid:

8
9

(2.1) Ve,ye H)(z,ye F =20y e F),
(Ve,ye H)(x e F, s <y=yeF).

Note that the conditions (2.1) and (2.2) mean that F' is closed under the operation
@ and F' is upward closed, respectively.
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Note that a subset F' of a hoop H is a filter of H if and only if the following
assertions are valid (see [19]):

1€ F,
Ve,ye H)(xr »yeF,ze F=yeclF).

Definition 2.1 ([2]). A real valued function A of H is called
e an S, -quasi-valuation map of H if

(Vo,y € H)(AMz ©y) = AMz) + A(y));
e an S_,-quasi-valuation map of H if
(Vz,y € H)(Mz = y) = AMz) + A(y));

e an S-quasi-valuation map of H if it is an Sy-quasi-valuation map and an S_.-
quasi-valuation map of H.

Definition 2.2 ([2]). A real valued function A of H is called an F-quasi-valuation
map of H if
A1) =0,
(Vz,y € H)(AMy) = Mz) + Mz — y)).
Proposition 2.2 ([2]). Let A be an F-quasi-valuation map on H. Then the following
statements hold:
(1) A is an S-quasi-valuation map on H;

(13) A is an order preserving map;
(1ii) for any x € H, A(z) < 0.

Theorem 2.1 ([2]). If an F-quasi-valuation map X of H satisfies the following con-
dition
Vze H)(Mz)=0=2=1),

then (H,dy) is a metric space.

Note. In what follows, let H denote a hoop unless otherwise specified.

3. QUASI-VALUATION MAPS ON HOOPS

In this section, we introduce the notion of valuation maps from F-quasi-valuation
map based on hoops and related properties of them are investigated. By using these
notions, we introduce a quasi-metric space. The continuity of operations of a hoop
was studied with topology induced by a quasi-valuation.

If a F-quasi-valuation map A of H satisfies:

(Vo € H) (z £ 1= Az) £0),

then we say that A is an F'-valuation map of H.
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TABLE 1. Cayley table for the binary operation “®”

— o o0
O OO oo
QOO
>R OoOlc
_ o Ol

TABLE 2. Cayley table for the binary operation “—”

— o o
oo ~lo
L Q= R
(ST UGN FO
— = | =

Example 3.1. Let H = {0,a,b,1} be a set with Cayley tables (Table 1 and 2). Then
(H, ®, —,1) is a bounded hoop. Define a map A on H as follows:

—30, if x =0,

=25, it x =a,

AN H—-R, z+— 20, ifx=b,
0, ifx=1.

It is routine to verify that X\ is an F-valuation map of H.

For any non-empty subset F' of H and a negative real number &, define a real valued
function \r on H as follows:

0, if x € F,

(3.1) Ap i H =R, v { k, otherwise.

Lemma 3.1 ([2]). If F' is a filter of H, then the function Ag in (3.1) is an F-quasi-
valuation map of H and F\, = F.

Theorem 3.1. The function Ap in (3.1) is an F-valuation map of H if and only if
F' is the trivial filter of H, that is F = {1}.

Proof. Straightforward. O

In the following, we introduce quasi-metric space by using the notion of valuation
maps from F-quasi-valuation map based on hoops. The continuity of operations of a
hoop will study with topology induced by a quasi-valuation.
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Definition 3.1. A function d : H x H — R is called a quasi-metric on H if it satisfies:
(Vz,y € H) (d(z,y) <0, d(z,x) =0),
(Va,y € H) (d(x,y) = d(y, ),
(Vx,y,z € H) (d(x,z) > d(x,y) + d(y, 2)) .
We say that the pair (H,d) is a quasi-metric space.

Theorem 3.2. If \ is an F-quasi-valuation map of H, then (H,dy) is a quasi-metric
space which is called the quasi-metric space induced by X\, where

dy:HxH—=R, (z,y)— ANz —y)+ ANy — ).
Proof. Since X\ is an F-quasi-valuation map of H, by Proposition 2.2, A is order
preserving and for any = € H, A(z) < 0. Thus, according to definition of d,, it is
clear that, for any z,y € H, dy(z,y) < 0. Let x € H. Then d)(z,z) = ANz — z) =
A(1) = 0. Also, for any z,y € H,
di(z,y) = Mz = y) + My = 2) = Ay = 2) + Mz = y) = da(y, 2).
Moreover, by Proposition 2.1 (a7), for any z,y,2 € H, (t = y) © (y = 2) < x — 2.

Since A\ is an F-quasi-valuation map of H, by Proposition 2.2, \ is order preserving
and S-quasi-valuation map of H. Then

Mz =y)+AMy—=2)<AN(z—=y)0@y—2) <ANz—2).

By the similar way, A\(z = y) + Ay = ) < AM(z = y) © (y — x)) < Az — ).
Hence,

da(z,y) +da(y,2) =Mz = y) + Ay = 2) + My — 2) + Az = y)
<Mz = 2)+ Mz = x) =dy(z, 2).

Therefore, (H,d)) is a quasi-metric space which is called the quasi-metric space
induced by A. O

Proposition 3.1. Every quasi-metric space (H,dy) induced by an F-quasi-valuation
map \ of H satisfies:

di(z,y) <
dy(x = y,a = b) >d\(r = y,a = y) + dy(a = y,a = b),
d\(x ©y,a®b) >dy(r Oy, a®@y)+dy(a®y,a®b),
for all a,b,x,y € H.

min{dy(z — a,y — a),dx(a = z,a = y)},

Proof. Let (H,dy) be a quasi-metric space. By Proposition 2.1 (a7) for any z,y,z € H,

r—=y<(y—a)— (r—a)andy -z < (xr — a) = (y — a). Since A is an F-quasi-

valuation map of H, by Proposition 2.2, A is order preserving and S-quasi-valuation

map of H. Then

dy(z,y) <Mz —=y) + Ay = 2) My = a) = (= a) + AM(z = a) = (y — a)
=dy(x = a,y — a).
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By the similar way, dy(z,y) < dx(a — x,a — y). Hence,
d)\(‘/L‘7 y) < mln{dk(‘r — a,y — CL), d)x(a — T,a— y>}

Now, let x,y,a € H. Then by Proposition 2.1 (a7), we have

(z=y) = (y—a)o((y—a)—(@—=b)<(x—y) —(a—D).
By the similar way,

((a—=b) = (a—=y))o((a—y) = (x—y) <(a—=b)—(x—y).
Since A is an F-quasi-valuation map of H, by Proposition 2.2, \ is order preserving
and S-quasi-valuation map of H. Then it is clear that

dy(z = y,a — y) +dy(a — y,a —b) <dy(xr = y,a = D).

Also, since y ©® a < y ® a, by Proposition 2.1 (a2) and (a8), we have y < a — (y ® a),
andsor — y < (x®a) — (y®a). Then, by Proposition 2.2, A is order preserving, thus,
Mz = y) < M(z®a) = (y©a)). By the similar way, A(y — ) < AM((y®a) — (x®a)).
Hence,
da(z,y) =Mz = y) + Ay = 2) S Mz ©a) = (y©a)) + My © a) = (x©a))
:d)\(.T © a,y O] a)'
Then, for any z,y,a,b € H, since (H,d)) is a quasi-metric space, we have,

dr\(r @y, a®y)+dya®@y,a®b) <d\(rOy,a®b). O

Theorem 3.3. If X is an F-valuation map of H, then the quasi-metric space induced
by \ satisfies the following assertion,

(3.2) (Ve,y € H) (dy(z,y) =0=>z=1y).

Proof. Let A be an F-valuation map of H. Then A is an F-quasi-valuation map of H.
Thus, by Theorem 3.2, d)(z,y) is quasi-metric. Now, for any =,y € H, if d)(z,y) = 0,
then M(z — y) + A(y — x) = 0. Since A is an F-quasi-valuation map of H, by
Proposition 2.2, for any z € H, A(z) < 0. So, by routine calculations, it is clear that
Mz — y) = My — x) = 0, and so by Theorem 2.1, x -y =1andy — = = 1.
Therefore, x = y. U

We consider conditions for an F-quasi-valuation map to be an F-valuation map.

Theorem 3.4. If the quasi-metric space (H,d)y) induced by an F-quasi-valuation map
A of H satisfies the condition (3.2), then X is an F-valuation map of H.

Proof. Let A be an F-quasi-valuation map of H and there exists 1 # = € H such that
A(z) = 0. Since A is an F-quasi-valuation map of H that satisfying the condition
(3.2), we have

dy(1,2) = M1 — ) + Mz — 1) = AMz) + A\(1) = 0.



750 R. A. BORZOOEI G. R. REZAEI, M. AALY KOLOGANI, AND Y. B. JUN

Then dy(1,2) = 0. Since (H,d,) is a quasi metric, we have x = 1, which is a
contradiction. Hence, for any 1 # = € H, A\(x) # 0. Therefore, X is an F-valuation
map of H. O

Note. If (H,d,) is a quasi-metric space, then for any z € H and € < 0 the set
B.(x) ={y € H | dx(x,y) > e} is called a ball of radius |e| with center at x. The set
U C H is open in (H,d,) if, for any = € U, there is an € < 0 such that B.(z) C U.
The topology T4, induced by d, is the collection of all open sets in (H,d)).

Theorem 3.5. If T, is an induced topology by dy, then (H,®,—,Ty) is a topological
hoop.

Proof. By Theorem 3.3, (H,d,) is a quasi-metric space. Let x,y € H such that
x —y € B.(x — y) for any ¢ < 0. We claim that B.(z) — B.(y) C B.(z — y). For
this, suppose z € B.(x) — B.(y). Then there exist p € B.(x) and ¢ € B-(y) such
that z = p — ¢. Thus, dx(z,p) > § and dx(y,q) > 5. By Proposition 3.1, it is clear
that dy(z — y,p = y) > dx(z,p) and dx(p = y,p — q) > da(y,q). Thus,

e €

bz =yp=2qzdz—yp2y)+tdlp2yp—a2 5+ =c

So, dx(x — y,p — q) > €. Hence, z € B.(x — y) and so, (H,—, 7)) is a topolog-
ical hoop. By the similar way, we can prove that (H,®,T)) is a topological hoop.
Therefore, (H,®,—,Ty) is a topological hoop. O

Theorem 3.6. For any F-quasi-valuation map \ of H, if we define a relation Ry on
H as follows:

(Va:,y) ((x,y) € R)\ <~ d)\(xvy) = O) )

then Ry is a congruence relation on H.
We say that R) is a congruence relation on H induced by .

Proof. Let x,y,z € H. For proving that R, is a congruence relation on H, first of
all we have to prove that R, is an equivalence relation on H. It is clear that R, is
reflexive and symetric relation on H. Suppose (z,y) € Ry and (y,z) € Ry. Then
dy(z,y) = 0 and d)(y, z) = 0. By Proposition 2.1 (a7), for any x,y,z € H, we have
(x = y)©(y = z) <z — 2. Since A is an F-quasi-valuation map of H, by Proposition
2.2, X is order preserving and S-quasi-valuation map of H, then A(z — y) + A(y —
z) < AMa — z). By the similar way, \(z — y) + A(y = z) < A(z — x). Hence,

O=Xz—=y)+ANy—=2)+ ANy —2)+ Az —=y) <Az — 2)+ ANz — z) =di(z,2).

Since A is an F-quasi-valuation map of H, by Proposition 2.2, for any x € H, A(z) < 0.
Then dy(x,z) = 0 and so (z,z) € Ry). Therefore, R, is a transitive relation on H.
Now, we prove that R) is a congruence relation on H. For any z,y,z € H such that
(z,y) € Ry. Since y < z — (y ® z), by Proposition 2.1 (a8),

roy<zr—>2z—=WYoz2)=(0z2) = (y0O=2).
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Since \ is an F-quasi-valuation map of H, by Proposition 2.2, A is order preserving,
then A(z — y) < A((x ® 2) — (y ® 2)). By the similar way, it is clear that

My =) < My©z) = (z02)).
Hence,
0=d\(z,y) SM(z©2) = HO2)+A(y©2) = (z02)) =d\(r© 2,y © 2).

Since A is an F-quasi-valuation map of H, by Proposition 2.2, for any x € H, A\(z) < 0.
Then dy(z ©® 2,y ® z) =0 and so (z ® z,y ® z) € R\. Moreover, if (z,y) € R,, then
by Proposition 3.1, it is clear that (z — z,y — z) € Ry and (z — =,z — y) € R).
Therefore, R is a congruence relation on H induced by . O

For any congruence relation R, induced by F-quasi-valuation map A of H, let H)
denote the set of all equivalence classes, that is,

Hy:={z)\|ze€ H},
where z) :={y € H | (z,y) € Ry}

Theorem 3.7. If \ is an F-quasi-valuation map of H, then (Hy,[, —, 1)) is a hoop,
where

(Vzx,yn € Hy) (x By = (@ O y)x, ox = ya = (2 = y)r) .

Proof. Let x € H. Then it is clear that 2y — x) = (r — z) = 1, and (H,,[,1,) is a
commutative monoid. Suppose xy, yx, zx € Hy. Then

(@ By) »a=@oyh»a=((z0y) = 2)r=(r = (y = 2)),

=) = (Yp = 2))-
Moreover, by routine calculations, we have
@y —>yp)=@o0@—=y)r=Wo Y —=z)r=nllr ).
Therefore, (H,,H, —,1,) is a hoop. O
Theorem 3.7 is illustrated by the following example.
Ezxample 3.2. According to Example 3.1, Hy = {1, xx, yx, 0r}.
Lemma 3.2 ([2]). If \: H — R is an F-quasi-valuation map of H, then the set
F\:={x € H|\xz)=0}
is a filter of H.

Proposition 3.2. If \ is an F-quasi-valuation map of H, then F\ = 1,.
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Proof. Let \ be an F-quasi-valuation map of H. Then, by Lemma 3.2, we have
Fx={zeH|XNz)=0}={zeH| X1l —z)+ XNz —1)=0}
={z € H|d\(1l,z) =0}
={x e H|(z,1) € R\}
=1,. U
For any filter F' of H, let nr be a relation on H defined by
Vx,y e H) ((z,y) Enpox—yeF, y—xeF).

Then np is a congruence relation on H (induced by F'). Denote by H/F the set of all
equivalence classes, that is,

H/F :={[z] |z € H},
where [z] ={y € H | (z,y) € nr}.
Theorem 3.8. If A is an F'-quasi-valuation map of H, then ng, = R).
Proof. Let x,y € H. Then
(x,y) €Enp, &z —y € Fyandy — x € F)
SANzr—=y)=ANy—x)=0
SNz —=y)+AMy—2)=0
& dy(zr,y) =0
& (z,y) € Ry. O

Theorem 3.9. Let A and g be F-quasi-valuation maps of H with X # g. If 1\ = 1,,
then Ry and R, coincide and so Hy = H,.

Proof. By routine calculations, we can see that 1y, = {x € H | A(x) = 0}. Suppose
x,y € H such that (z,y) € Ry. Then d)(x,y) = 0 and so A(z — y) + A(y — x) = 0.
Thus, Mz — y) > —A(y — x). Since A is an F-quasi-valuation map of H, by
Proposition 2.2, we get that A(z — y) = Ay — ) = 0. Thus, x — y, y — = € 1,. By
assumption, 1y = 1, we get that = -y, y - x € 1,, and so g(v — y) = g(y = z) = 0.
Hence, g(z — y) + g(y — =) = 0, and so dy(x,y) = 0. So (x,y) € R,. The proof of
converse is similar. Therefore, Ry and R, coincide and so Hy = H,,. [l

Theorem 3.10. For any filter F' and any F'-quasi-valuation map X\ of H such that
1, C F consider the set

F\:={x\|z € F}.
Then the following assertions are valid:

(1) (Yze H) (s € F & ay € F);
(2) F\ is a filter of Hy.
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Proof. (1) Tt is clear that if z € F, then z, € F\. Suppose z) € F). Then there exists
y € F such that z), = y,. Thus, (z,y) € Ry. Since R, is a congruence relation on H,
we have (y — z,1) = (y — z,y — y) € Ry. Hence, y — = € 1,. Since 1, C F, we
have y — x € F. Moreover, y € F and F' is a filter of H, then = € F.

(2) Since F is a filter of H, 1 € F, and so 1, € Fy. Suppose zy, ) — y» € F.
Then by (1), z € F and x — y € F. Since F is a filter of H, y € F. Thus, by (1),
yx € F\. Therefore, F) is a filter of H,. O

Proposition 3.3. For any F-quasi-valuation map X\ of H, let F* be a filter of F}.
Then the set
F:={xeH|x\eF"}
is a filter of H and 1, C F.
Proof. Since F* is a filter of F\, 1, € F* and so 1 € F. Now, suppose =,z — y € F.

Then zy, (z — y)x € F*. Since F* is a filter of Fy, we have y, € F* and so y € F.
Hence, F' is a filter of H. O

Let F(H,) denote the set of all filters of F) and let F(H, \) denote the set of all
filters of H containing 1,. Then there exists a bijection between F(H,) and F(H, ),
that is,

f?(HA)—)?(H,)\), F— F)
is a bijection.
Theorem 3.11. Let g : H — G be a homomorphism of hoops. Then the following
hold.
(1) If X is an F-quasi-valuation map of G, then the composition Ao g of A and g
is an F'-quasi-valuation map of H.
(2) If g is an isomorphism and if X is an F-quasi-valuation map of G, then H,
and Gy are isomorphic.
Proof. (1) Since g is a homomorphism of hoops, we have (Ao g)(1) = A(g(1)) = A\(1).
Since A is an F-quasi-valuation map of H, we have A\(1) = 0 and so (Ao g)(1) = 0.
Now, suppose z,y € H. Since ) is an F-quasi-valuation map of H, we have
(Aog)(@ —=y)+ (Aog)(x) = Aglz = y)) + Ag(x))
= Ag(z) = g(y) + Ag(2))
< AMy(y)) = (Ao g)(y).
(2) Let define the map ¢ : Hy,, — G, such that, for any xyog € Hyog, ¢(Trog) =
(g9(x))x. Now, we prove that ¢ is an isomorphism. For this, let Zxoq, Yrog € Hxrog- Then
P(Trog L Yrog) = O((T © Y)rog)
= (9(z ©y))r = (9(z) © g(y))x
= (9(@))x E (9(y))x = D(Tr0g) L A(Yr0g)
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and

Hence, ¢ is a homomorphism of hoop.

Let z,y € H such that ¢(x) = ¢(y). Then Aog(z) = Aog(y). Thus, g(x)r = g(y)a,
and so (g(z),9(y)) € Rx. Hence, dy(g(x),g(y)) = 0. Since d is a quasi-metric and
g is an isomorphism, we have g(z) = ¢g(y) and so z = y. Hence, ¢ is a one to one
homomorphism.

Let x) € G). Since g is unto, there exists y € G, such that g(y), = xx. Then
(Ao g)(y) = xy, thus, ¢(y) = ). Hence, ¢ is an isomorphism and so Hy., and G, are
isomorphic. U]

Theorem 3.12. For any F'-quasi-valuation map A of H, we have the following asser-
tions.

(1) The map w: H — H), x> xy, is an onto homomorphism.

(2) For any F-quasi-valuation map ¢* of Hy, there exists an F-quasi-valuation
map ¢ of H such that ¢ = ¢* o .

(3) The map X* : Hy — R, ) — (), is an F-quasi-valuation map of H).

Proof. (1) By definition of Hj, the proof is clear.

(2) Let define ¢ = ¢*(x,). We show that ¢ is an F-quasi-valuation map of H. For
this, since 1 € H, we have ¢(1) = ¢*(1,). Moreover, ¢* is an F-quasi-valuation map
of H, (1) = 0. Suppose z,y € H such that

o(x) + d(x = y) = ¢*(xx) + ¢™(xx = yr) < d"(Un)-

Since ¢* is an F-quasi-valuation map of H, we have ¢(x) + ¢(z — y) < ¢(y).
(3) Let x) € Hy. Since A is an F-quasi-valuation map of H, we have

A (z2) + AN (xn = un) = A2) + Az = y) < AMy) = A (). O

Proposition 3.4. Let H and G be two hoops and A : H — R and v : G — R be
quasi-valuations. If f : H — G is a homomorphism, then the following statements
are equivalent:

(1) f is a quasi-valuation preserving;

(13) f is an isometry.
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Proof. (i) = (ii) Let f be a quasi-valuation preserving. Then, for any x € H, define
v(f(z)) = A(z). For any =,y € H, we have

dy(f(x), f(y) = v(f(x) = f(y) +v(f(y) = f(2))
=7(f(z = y) +1(fly = 2))
=vo f(x = y)+vofly—x)
=Nz —=y)+ Ay — x)
= dx\(7,y).

Hence, f is an isometry.
(17) = (i) Let f be an isometry. Then, for any z € H,

M) =dx(z,1) = d\(f(z), f(1)) =7(f(z) = f(1)) +7(f(Q) = f(=z)) =7(f(2))
=7 o f().

Hence, f is a quasi-valuation preserving. O

Proposition 3.5. Let f : H — G be a hoop isomorphism. If X is a quasi-valuation
on H, then v : G — R that, for any y € G, is defined by y(y) = Ao f~1(y) is a quasi-
valuation. Moreover, if X is an F-quasi-valuation on H, then v is an F-quasi-valuation

on G.

Proof. Let y1,y2 € G. Since f is an isomorphism, there exist xy, x5 € H such that
f(z1) = y1 and f(z2) = yo. Then

Yy = y2) = Ao fHy = 12) = AT — )
=AM/ ) = £ (1) = AMar — x2)
> A1) + AMaz) = A (m1) + A (92))
=7(y1) +7(y2)-
By the similar way, we can prove that v(y1 ® y2) > v(y1) + 7(y2). Hence, v is a
quasi-valuation.

Since f is a hoop isomorphism, it is clear that f(ly) = 1g. Since A is an F-
quasi-valuation on H, we have y(1g) = Ao f1(1g) = AM(f}(1¢)) = M1g) = 0, and
so Y(lg) = 0. Let x,y € H and X be an F-quasi-valuation on H. Since f is an
isomorphism, there exist a,b € H such that f(a) = x and f(b) =y. Then

Y(y) = Ao f7Hy) = MfH(y) = AD)
> Ma = b) + Aa) = A fH2) + A z) = ()
=AM @) AT = y) = Ao fH@) + Ao [Tz — )
=7(z) +v(x = y). O
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4. CONCLUSIONS AND FUTURE WORKS

In this paper, our aim was making a metric space on hoop algebras, because of
that we introduced the notion of valuation maps from F-quasi-valuation map based
on hoops and related properties of them are investigated. By using these notions, we
introduce a quasi-metric space. The continuity of operations of a hoop was studied
with topology induced by a quasi-valuation. Also, we study hoop homomorphism and
investigate that under which condition these homomorphism is an F-quasi-valuation
map. Moreover, we wanted to find a congruence relation on hoops in a new way and
study about the quotient structure that is made by it. Because of that, we define a
congruence relation by F-quasi-valuation map and prove that the quotient is a hoop.
In our future work, we want to study about the product of finite number of this
quasi-metric space and investigate that the quotient space of hoop has a quasi-metric
or not. Finally we study the completion of this pace.
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OBTAINING VOIGT FUNCTIONS VIA QUADRATURE FORMULA
FOR THE FRACTIONAL IN TIME DIFFUSION AND WAVE
PROBLEM

HEMANT KUMAR!, M. A. PATHAN?, AND SURYA KANT RAI?

ABSTRACT. In many given physical problems and in the course of dispersion curve
through a spectral line under the influence of the Doppler-effect and in collision
damping, the Voigt functions have been widely utilized. By taking advantage of
the fractional calculus in spectral theory and the Sturm-Liouville problems, in this
paper, we obtain the Voigt functions via the quadrature formulae of one dimensional
fractional in time evolution diffusion and wave problems consisting of different initial
and inhomogeneous boundary conditions.

1. INTRODUCTION

The Voigt functions V, ,(z,y, 2) in generalized form have been studied by many
authors (e.g., [10,19,25] and [26]) for getting various connections with a class of
special functions and the numbers. In astrophysics the fundamental equations of
stellar statistics are of this type. Other remarkable examples are the Voigt functions
which occurs and utilized frequently in the course of the dispersion curve through a
spectral line under the influence of the Doppler-effect and collision damping. The Voigt
functions V, ,(z,y, 2) which play an essential role in spectroscopy, neutron physics
and in several diverse field of physics and harmonic analysis are generally investigated
from the viewpoint of integral operators.

Key words and phrases. Caputo fractional derivative, Sturm-Liouville diffusion and wave problem,
non-zero zeros of Bessel function, Voigt functions.
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In 1991, Klusch [10] defined the generalized Voigt function of the second kind by
the Hankel integral transform

(L1 Viu(w,y,2) = \/z/ e v I (et)dt, x,y,2 € RT, R(y+v) > —1,
0
where J, () is the classical Bessel function (see [1,22] and [24]) defined by

o= £ Gl

ZT(n+1)I'(v+n+1)

|z| < o0.

Again, we note that J,(z) is the defining oscillatory kernel of Hankel’s integral
transform

(@) = [ FO Ity

Furthermore, the relation of the Bessel functions with the trigonometrical functions

is given by
2 1. =1
Ji(z) =4/—=z"2sinz and J_1(z)=4/—27 cosz.
2 T 2 v

To explore new ideas for representing the relation of the Voigt functions (1.1) with
the quadrature formula of the solution of fractional in time diffusion and wave problem,
in our current investigation, we present following fractional in time Sturm-Liouville
type diffusion and wave equation in the form:

(1.2)  9DgY (a,t) :(98:10 lp(x)aax] Y(z,t) —qx)Y(z,t) + f(z,t), 0<a<2,

for all (x,t) € (0,1) x (0,00), for the function defined by f : [0,{] x [0,00) — R,
0,{] C R.

Throughout this paper [ is taken greater than zero, and also subjected to the initial
and inhomogeneous boundary values

(13)  Y(@.0) =) + (T ~1)@(0) = 200,
SV leo=(7 1) 00 = Tenl0), (1) € 0,0 {0),

Y(0,2) + ¢1(t)
Y(l,t) + QOQ(t)

:Ov £Y<m7t)|ac0 =1+ }(901(25) - SOQ(t))v (:L‘,t) € {O} X [0700)7
=0

, forall (z,t) € {l} x [0, 00).

Here in (1.2), the Caputo fractional derivative ¢ Dg,, m — 1 < a < m, of function
Y (t) is given by

(1.4) (DS Y)(t) = (ImY™)(t), for all m € N,
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where Y™ (t) = 42X(t), I™~* being the Riemann-Liouville fractional integral (see,
Diethelm [2, p. 49])

1 t m—a—1
(I"Y)(t) = T(m—a) Jo (t—71) Y(r)dr, t>0,m—-1<a<m,
Y(t),a =m, forallm & N.

In this work, we also use the Laplace transformation of Caputo derivative (1.4), for
LIY(t)] =Y (s), s > 0, (see, Kilbas, Srivastava and Trujillo [8, p. 312]), given by

(L5)  LIEDgY)(B)] =Y (s) — 'Y (0) — 2 2Y D (0) — - - — sy 0 (0),

m—1<a<m.

It may be observed that for & = 1, the equation (1.2) converts into a linear second
order parabolic partial differential equation and a diffusion problem with initial and
boundary conditions given in (1.3). For o = 2, equation (1.2) reduces to a linear
second order elliptic partial differential equation of wave problem with given initial
and inhomogeneous boundary conditions (see Evans [3]). On the other hand, when
0 < a < 1, the above problem becomes identical to the initial-boundary value problem
for the one dimensional time fractional diffusion equation because of the availability
of the vast literature due to the researchers and authors (e.g., [4,9,14,15]) with some
additional boundary conditions. The analytic solutions of the space-time fractional
differential equations with initial and boundary value problems are computed by the
authors ([11,14]). The computation of anomalous diffusion problems in the form of
integral equations can be found in ([5,12] and [13]). For the theory and analysis of
the fractional differential equations, we refer the work of the researchers including
authors (e.g., [2,6-8,18,21] and [23]).

We will focus on the relations of the Voigt functions with the quadrature formula
of the solution of fractional in time diffusion and wave problem. We first convert
this fractional in time problem into the Sturm-Liouville problem and then find out
its solution on using Green function in the form of Mercer formula [20]. The theory
and applications of Sturm-Liouville problems are studied and computed by various
authors (e.g., [5,17,28]).

2. SOLUTION OF THE PROBLEM (1.2)—(1.3)

We solve our problem (1.2)—(1.3) by setting Y'(z,t) = y(x,t)+F (p1(t) —p2(t)) —p1(t)
and to get

9
Ox
for all (z,t) € (0,1) x (0,00), where

0

1) DGl =5 [oa) 5| 0(et) — a0l )+ Al D <<

Aty = (1) £D80+ 5 D5t + | (1) atw) + 42 ot
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+[5) - 22 ) + st

along with initial and homogeneous boundary conditions, given by

(2.2) y(z,0) = g(x), gty(iv,t)h:o =0, forall (z,t) €[0,] x {0},

y(0,t) =0, aaxy(w,tﬂx:g =1, forall (z,t) € {0} x [0, 00),
y(l,t) =0, forall (z,t) € {I} x [0,00).

Then consider L{y(z,t)} = y(x,s) for s > 0. Now using the result (1.5), and
then taking Laplace transformation of (2.1) and (2.2), we find that in the form of
Sturm-Liouville problem [1]

23) o [P0 ) ato) )3t 9) = o)
where,
fia.s) == = (1-7) 10) = T0)}

+5{(1- D) G0+ 760 =5 {(1-7) ) + Tals)
(=5 a0+ 22 i~ {Fatw) - 22 i) - e,

0<a<2forall z € (0,l) and s > 0, along with homogeneous boundary conditions

(2.4) y(0,s) =0, forall (x,s) € {0} x (0,00), s >0,
y(l,s) =0, forall (x,s) € {l} x(0,00), s> 0.

Again, letting £y(z,s) = {Z[p(z)Z] — q(z)}y(z,s), we may write the problem

(2.3)—(2.4) in the form
(2.5) Ly(z,s) — s°y(x,s) = fi(x,s), 0<a<2,

for all z € (0,1), (0,1) C R, and s > 0, along with the boundary conditions given in
(2.4).

Now, to solve the differential equation (2.5), with boundary conditions (2.4), first we
construct a Green function and consider the normalized eigenfunctions (see, Churchill
(1, p. 291]) ¥, (x), for all n = 1,2,3,..., where ¥, (z) = UnlE:n) - for g > g, 8p > 0

~ gn(a,sn)ll
for alln =1,2,3,..., and the orthonormalized property, given by

/Oz U,y (1), (1)t = {0, -

1, m=n.
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Thus, by differential equation (2.5) with boundary conditions (2.4), we have the
following homogeneous differential equation

(2.6) £V, (z)—snW,(z) =0,9,(0)=0,¥,(1) =0, forallzel0,l],n=123,...

Again then, in (2.5) and (2.6), we introduce two series

(2.7) filz,s) = iAn\Ifn(x),g(x, s) = iCn\I/n(x)

forall s > s,, s, >0, A4, #0,n=1,2,3,...
Then on using the relations from (2.5) to (2.7), we find following equations

(2.8) Z SCn\I!n — 5 Z C, \I/ Z AV, (
n=1
and
(2.9) Z L0, ( Z saCp W,
n=1

Therefore, on use of (2.8) and (2.9), we find that

00 l o l
(2.10) - 2_:1 (s* — sg)C’n/O U, (2)V,,(z)dx = ;An/o U, ()W, (z)d.

Now, for obtaining the solution of the problem (1.2)-(1.3), for s > s,, s, > 0, we

use the orthogonal property given in (2.5) and consider that A,[[a]]ss, = (i’;‘; ),
B, # 0, when s — s, for all n > ngy and

A,
Ch=—>r———— a>0,s >s,, s, >0foralln=1,2,3,...,
H(a;s, sn)
where
— °on S,8n 9 > n > 07
s = [l <
(s —sn)77, S —> Sp, Sp, >0,
for all n = 1,2,3,..., a > 0. Here [[a]]ss, = (s 71 + 8™ 25, + ... + 88772 + 5771,
[a] = m, m is the smallest integer greater than or equal to «, then
—An > >0
S > Sn, Sn )
Cn =4 5% = 8%7
0, s — sy, forallm=1,2,3,...

Again then, for s > s,, s, > 0 for all n = 1,2,3,..., by (2.7) and (2.10), and the
orthogonal property (2.5), we may write

(211) -3 S (o),

n:l
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and further for all s > s,, s, > 0 for all n = 1,2,3,..., and by relation (2.7), we get
an equality as

Z/ so‘—sa df ZZ — /\Ij

mlnl

Therefore, for all m = n, by using the orthogonal property (2.5), and the relations
given in (2.11), we obtain an identity

I _
(212) ilo.s) = [ Gla.&5)filg e,
where the following Green function in form of Mercer formula [20] is obtained as

(2.13) G(z,€,s) = — i W

n=1

Here in (2.12), the value of fi(x, s) is given in (2.3) and the functions ¥, (z) for all
n=1,2,3,..., are found by the problem (2.6). Thus, by (2.3), (2.12) and (2.13), the
solution of the problem (2.5) with the conditions (2.4) may be computed in the form

(2.14)

, 8> Sp, S, >0foralln=1,23,...

y(x, )

[e¢) a—1

Un(x, 85)s

n—=1 Hyn T Sn)H (5% — (

o [ 3560 = (1= 5] 100) = Sintoas
N _ Yn(, sn)sa:1<8n>a) /Oz (6, 50) ((1 — ?) 1(0) + f@;(@) d§

bl ZACEN R Ch

o~ Ynl@sa) oo AV
* St e (1) 20+ o)

> (80)° G (@, 51) g S _§ 71(s §* S

2 [, s0) [2(s° — (Sn)a)/o Yn(&, sn) ((1 l) P1(s) + S éa )> d¢

?jn(z Sn)(sn)a L _§ p/(g) 5 (s
X T P ) e ) (((l l)q“” l )901”
IS

' (lq@ - pgﬂ) os) + flo, s>) de.

Now, to take the inverse Laplace transformation on both of the sides of result (2.14),
we have the following formulae. For 0 < oo < 2, 0] < |s*| and s > s,,, s, > 0 for all
n=1,2,3,..., the inverse Laplace transformation formula of Mittag-Leffler function
E.(z), where E,(2) = Y32, F(ﬁkﬂ) (see Mathai and Haubold [16, p. 80], and Kilbas,
Srivastava and Trujillo [8, p. 313]), is given by

_I_

a—1
(2.15) L—l{ i _9} E.(0t%), 0< 0] < |s°|.
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Again, the Laplace transformation formula of the derivative of the Mittag-Leffler
function (see in (2.15)), with the aid of formula (1.5), is found in the form

d o 5@ 0
(2.16) L{tha(Qt )}_sa—Q_l_sa—H’

so that the relation (2.16) gives us

1 1d
2.1 Ll{ }:Ea @ al,
(2.17) ] = g B0, 010 <7

Finally, on making an application of the results (2.15)—(2.17), we obtain

(2.18) L_l{sa—e}:L_l{ssa— } /E (67°)

Thus, on using above results of (2.15)—(2.18) into the result (2.14), we obtain the
solution of the problem (2.3)—(2.4) for all z € (0,1), and t > 0, s > s, s, > 0 for all
n=1,2,3,..., in the form

(2.19)  y(x,t)

g Ton e (t) [ e sla© (1= 3)0) - Seal0)ae
Hyy: e [ Eatswreiar e {(1-$)ei0+ S0 fag

*Zuz}y:f:u?/% € 5n) {(1—5) 10+ Sea(t) | de

Z TP 5 ssf w les{ (1-5) [ et = Earear

8 [ ealt =) (o))
i yﬁyf inin)H? /Ol yn(g,sn){ ((1 —~ f) q(&) + 1’9)

< [ ealt =) Bl ryar + [ fGot - T>C§3Ea<<sn>%a>df}dg.

Finally, putting
y(a,t) = Y (@) = T(e1() = pa(t) + o1 (1)

in solution (2.19), we obtain the solution of the problem (1.2)-(1.3) for all x € (0,{) and
t>0,s,>0, foralln=1,2,3,..., in the form

(2.20) Y(x,1)
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iuynaf G [anen ( A GHECREDE
szj:;ss:n?/E o7 Lo (1) A0+ o))

+§:n$tjih2/zm“”“{<lf>@“”+§¢“”}%

*zﬁffjw/%ﬁ%{@‘>/¢”‘7 Ba((sn)"r%)d7

+7/0 oot — T)dTEa((sn)%a)dT} de
> z, Sy, ! '
.\ plrs) | yn<§,sn){<(1—§) q(§)+p§€)>

n=1 (sn)* |y (@, sn

< [ et )AL Eul(sn))ar
+ Gq(f) - p§§)> /Ot oot =) B ((s0)*7)

+ [ e Eal(52)*T)dr}ds + T 1(6) = ¢2(6) = 1(0)
Hence, from the study of the results (1.2) to (2.20), we find the following.

Theorem 2.1. Ifl > 0 and f is a function defined by f : [0,1] x [0,00) = R, [0,{] C R,
q(x), p(x), p'(z), p"(x) are continuous real valued functions of x on 0 < x < 1. Then there
exists the normalized eigenfunctions

yn($73n)
Hyn(iv,sn)ll’

by the solution of boundary value problem (2.5) and with boundary conditions (2.4) simulta-
neously give the Green’s function

ZL' 5’ B Z 80‘ _ Sa)g)’

n=1

U, (z) = Sp, >0 for allm € N,

provided that s > $p, $p, >0 for alln € N and 0 < a < 2, for all x,£ € (0,1), (0,1) C R and
s > 0, which gives the solution of the problem (2.3) with boundary values (2.4), in the form

57)

the function fi(x,s) is given in the (2.3).

Finally, its inverse Laplace transformation gives the solution (2.20) of the fractional in
time Sturm-Liouville type diffusion and wave problem (1.2)—(1.3) for all z, 0 <z <, t > 0,
$ > Sn, Sn >0 for all n € N.

_—i/lﬁ(&s)wczf, §> spy 50 >0, foralln=1,2,3...
n=1 0 -



OBTAINING VOIGT FUNCTIONS VIA QUADRATURE FORMULA... 767

3. THE VOIGT FUNCTIONS VIA SOLUTION OF THE PROBLEM (1.2)—(1.3) IN VARIOUS
CONDITIONS

In any given physical problem, a numerical, computational or analytical evaluation of the
Voigt functions (or of their variants) is required. We begin our study of Voigt functions and
their relations with quadrature formula of the solution of the fractional in time Sturm-
Liouville type diffusion and wave problem (1.2)—(1.3) in different particular cases and
conditions.

3.1. The Voigt functions via non-homogeneous Bessel type diffusion and wave
problem, when 0 < o < 2.

Theorem 3.1. If we put f =0, g(z) =0, p(x) =z forallz, 0 <z <1l CR, pi(t) =t,
wot) =12, 0 < a <2, t>0,in the problem (1.2)~(1.3), then our problem becomes Bessel
type fractional in time diffusion-wave problem of the form

o 0 0
(3.1) tCDOJrY(:):,t) p [3:8} Y(z,t), 0<a<2,

for all (x,t) € (0,1) x (0,00), (0,1) C R, subjected to the initial and inhomogeneous boundary
values

(3.2) Y(z,0) =g(z), ;Y(x,t)]to = (SZC - 1) . forall (x,t) €10,1] x {0}, [0,]] C R,

1
Y (0,t) +t =0, %Y(m,tﬂxzo =1+ 7(75 — %), for all (z,t) € {0} x [0, 00),
Y (I,t) + > =0, for all (z,t) € {I} x [0,0).
Then, solution of problem (3.1)—(3.2) has the form

(3.3) Y(x,t)

[e'¢) J ) 9
}Z (j]l \/> E, (_ (/Zzl> tOé) /Ol Jo <_,Un\/§) g(&)d¢

9 X Jo(—ﬂn\/%) t d (Mn)Q . ; \/Z
+l;w/() (t—T)dTEa<— 1 T)dT/O Jo | —pin ; &de

. i Jo(—un\ﬁ)

n=1 (:un)gjl(_ﬂn)
t d (Nn)z ! 9 d (Nn)z
t—7)—FE, | — *|dr — t—7)"—FE, | — *|d

XVD( 7 ar < a T/o( i a )Y
—i—(glc—l)t—:;t2, forall p, e R, n=1,2,3,...

Proof. Here, put Y (z,t) = y(,t) + ¥(t — t?) — ¢, in differential equation (3.1) and boundary
values (3.2), and then make an appeal to the techniques applied for finding out the solution
(2.20) of the problem (1.2)—(1.3) and with the aid of Theorem 2.1, we obtain the solution
(3.3) of the problem (3.1)—(3.2). O
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Corollary 3.1. If Jo(—pyn) =0 foralln =1,2,3. .., and for all x,y, z € R, R(y+v) > —1,
then for all p, € R~ wunder the conditions given in the differential equation (3.1) and
boundary values (3.2), the quadrature formula of the solution (3.3) exists and is given by
the relation

(3.4)

/ ule Vit g, (—unuﬁ) Y (zu?, t)du
0

i t,l,un +H2(t,l,ﬂn)+H3(talaMn)}
=1

pn [T\ =~ Tl +4v+2m) z\™ t v
L5V X w6 ) ”m%“y”ﬂ+x<l_l>

i [T —1/2 - i [E —-1/2 =
<(5T) e ()~ (7)) v (e )

Here in (3.4), we have

2 l
(w)ﬂ@WWmM;WmG%%ﬂAhtMﬁ%@%
t 2 l
Hy(t;1, pn) :l[Jl(—Qun)P/o (t_T)%Ea (— (’Z}) Ta> dT/O Jo (—un\/%) ¢de,

2
Hy(t;1, pin) :8ln) {/Ot(t - T)%Ea <— (/ZLZ) Ta> dr

(k)2 J1(—p
¢ d (pn)? _
/O(t T) dTEa< T dT:|, un € R7,n =1,2,3,...,

IT(,%)(% v,0,¢0) = / u7+”+2m6_9“_¢“2du, for allm e N, 0, ¢ € RT,
0

and

(see [10]).

Proof. In both sides of (3.3), replace by zu? and then multiply by uYeYu—zu? Jl,(—,un/u\/%)

and then integrate both the sides with respect to u from 0 to oo, and use (1.1) and (3.5),
to get the relation

(3.6) / we v g, (—unruﬁ) Y (zu?, t)du
0
= Z Hl(t;l,un)/ u'ye*yufzuz,],, (—pn/uﬁ> Jo (—mﬂtﬁ) du

> —yu—zu? z z
+ Zﬂs(tslaun) /0 wle ¥R, (—un/u\fl) Jo (—unu\fl> du

n=1
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tt? ot [x -1/ x
o (z - z) (F5V7) Ve (o)
j2% x —1/2 T
_t(_ 2n V l) V%” <_Mn’\/?’y72’)’ ,un,,un/ER_,n,n’:1,2,3,....

Now in both sides of equation (3.6), replacing n’ by n and then using the following result
given in Rainville [22, p. 121]

o (om0 (cmon7) - C o [T ).

and the sequence of functions of mathematical physics due to [14], given by

o)
I (v, 0,0,0) = / u7+”+2m6_eu_¢“2du, forallm €N, 0, ¢ € RT,
0
to obtain the result (3.4). O

3.2. The Voigt functions via homogeneous Bessel type diffusion problem, when
0 < a < 1. In a similar manner of the Theorem 3.1, we present and prove the following.
Theorem 3.2. If we put f =0, q(x) =0, p(x) =z forallz, 0 <z <ICR, pi(t) =0,
w2(t) =0, 0 < <1, t >0, in the equations (1.2)—(1.3), then we have Bessel type one
dimensional time fractional diffusion problem

0 0
. — |x— <
(3.7) OD8LY (z,t) = o [wax} Y(z,t), 0<a<l,
for all (x,t) € (0,1)x(0,00), (0,1) C R, subjected to the initial and inhomogeneous boundary
values

38)  Y(2.0) = g(x), gtY(ﬂU,t)|t0 — 0, forall (m,£) € [0,1] x {0}, [0.]] C R

Y (0,t) =0, aaxY(a:,t)]wo =1, forall (z,t)€ {0} x][0,00),
Y(l,t) =0, forall (z,t) € {I} x [0,00).

Then there exists

(3.9) }i (1 \ﬂ E, <_(/le)27§&> /0 o (—un\/g) g(€)de,

O<z<l,t>0.

Proof. With the aid of Theorem 2.1 and Subsection 3.1, the solution of the problems (3.7)-
(3.8) is found by result (3.9). O

Corollary 3.2. If Jo(—pn) = 0 foralln =1,2,3 ..., and for all z,y,z € RT, R(y+v) > —1,
then for all p, € R~ under the conditions given in (3.7) and (3.8), the quadrature formula
of the solution (3.9) exists and is given by the relation

(3.10)

/0 u’Ye—y“_ZUQJu <_Mnu\/f) Y (zu®, t)du = Z Hy(t: pin) (—?\/?)

n=1
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= I'(1+ v+ 2m) 2\™
<3 s )

x I (v,v,y, 2),
where Hy(t;1, py) and If(,p(’y, v,0,¢) are given in (3.5).
4. NUMERICAL EXAMPLE

In this section, we consider more briefly a computational formula starting from Y (z,t),
0<x <l teR" and using the Theorem 3.2.

If we set g(z) = & for all z, 0 < z <, in (3.9), we find a numerical formula

(4.1) Y(x,t) = i ME (— (“”)Qta> .

2 ) (=) N\

A fairly immediate consequence of this result is its use for obtaining the approximate
various real values of Y (x,t). According to our formalism we now in (4.1), introduce the
approximate value of E,(—z), given by (see [27])

L+ raig
o _ 0
) = Ty 1
a5 a5
h
where Fl4+a) TO+o)l(1-a)
q* _ 'l—a) T'(1-2a)
T Trl+al(l-a)—1
and

. Tl+a)- g(gl;;g)
NPl +al(l—a) -1
Again from the formula (1.1), it follows that
B o0 (_1)m (x>2m B 00 (_1)m <x)2m+1
@) => T lz) - "@=2 commelz)

m=0 m=0

Now putting the zeros of Jyo(z) as p;, ¢ = 1,2,...,n, together with the values of o and [
such that 0 < o < 1 and [ > 0, we can provide several examples with selected values of n
to compute and approximate various real values of Y (z,t), for all z,¢ € RT. We omit them
due to lack of space and left them for further researchers in the field of computer science
and technology.

CONCLUSION

Explicit expressions for the generalized Voigt functions [10,19,25] and [26] of the second
kind defined by the Hankel integral transform (1.1) are given in terms of relatively more
familiar special functions of one and more variables, indeed, each of these representations
will naturally lead to various other needed properties of the Voigt functions. Here, in our
work, we have obtained the relations of the Voigt functions with the quadrature formula of
the solution of fractional in time diffusion and wave problem by first converting it into the
Sturm-Liouville problems and then looked out for its solutions. This concept may provide
the basis of investigations and further extensions for a high voltage technology to compute
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the fractional differential equations, anomalous diffusion problems and fractional in time
and space diffusion and wave problems with the help of Voigt functions.

To explore new ideas for representing the relation of the Voigt functions (1.1) with the
quadrature formula of the solution of fractional in time diffusion and wave problem, in our
current investigation, we have presented fractional in time Sturm-Liouville type diffusion
and wave equation. In the paper of Luchko [14] (see also [15]), some initial-boundary-value
problems with the Dirichlet boundary conditions for the time-fractional diffusion equation
were considered. Of course, the same method can be applied for the initial boundary value
problems with the Neumann, Robin, or mixed boundary conditions.

Besides establishing some interesting integral and series representations of special func-
tions, the results given in [13] and [14] may provide a new way of solution of a space-time
fractional anomalous diffusion problem using the series of bilateral eigenfunctions and se-
ries solution for initial value problems of time fractional generalized anomalous diffusion
equations as on the lines of [11,12] and [13].

Acknowledgements. The authors are highly grateful to the editor and reviewer for their
valuable comments and suggestions to improve the presentation of the paper.
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(F,G)-DERIVATIONS ON A LATTICE
ABDELAZIZ AMROUNE!, LEMNAOUAR ZEDAM!, AND MOURAD YETTOU!

ABSTRACT. In the present paper, we introduce the notion of (F, G)-derivation on
a lattice as a generalization of the notion of (A, V)-derivation. This newly notion
is based on two arbitrary binary operations F' and G instead of the meet (A) and
the join (V) operations. Also, we investigate properties of (F,G)-derivation on a
lattice in details. Furthermore, we define and study the notion of principal (F,G)-
derivations as a particular class of (F, G)-derivations. As applications, we provide
two representations of a given lattice in terms of its principal (F, G)-derivations.

1. INTRODUCTION

Binary operations are among the oldest fundamental concepts in algebraic structures.
Since their introduction, they have become the key notion in the consepts of groups,
monoids, semigroups, rings, and in more algebraic structures studied in abstract
algebra [6,15]. Binary operations have become essential tools in lattice theory and
its applications [8]. Several notions and properties, and the notion of the lattice itself
can be interpreted in terms of binary operations on it [5,21]. Furthermore, it is not
surprising that binary operations with specific properties appear in various theoretical
and application fields. For instance, aggregation functions (as binary operations
with specific properties) on bounded lattices and their wide use in various fields of
applied sciences, including, computer and information sciences, economics, and social
sciences (see, e.g., [9,11] and [12,13,16,18]). Also, they play an important role (as
generalization of the basic connectives between fuzzy sets) in theories of fuzzy sets
and logic [3].

Key words and phrases. Lattice, (F, G)-derivation, principal (F,G)-derivation, lattice representa-
tion.
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The notion of derivation appeared first on the ring structures and it has many
applications (see, e.g., [2]). Szdsz [23] has extended this notion to the lattice structures
based on the meet and the join operations ((A, V)-derivation, for short), i.e., a (A, V)-
derivation on given lattice L is a function d of L into itself satisfying the following
two conditions: d(z Ay) = (d(z) ANy)V (z Ad(y)) and d(z V y) = d(z) V d(y) for any
x,y € L. Ferrari [7] has investigated some properties of this notion and provided some
interesting examples in particular classes of lattices. Xin et al. [27] have ameliorated
the notion of derivation on a lattice by considering only the first condition, and they
have shown that the second condition obviously holds for the isotone derivations on a
distributive lattice. In the same paper, they have characterized the distributive and
modular lattices in terms of their isotone derivations. Later on, Xin [26] has focused
his attention to the structure of the set of fixed points of a derivation on a lattice and
has shown some relationships between lattice ideals and this set of fixed points.

The notion of (A, V)-derivation on a lattice is witnessing increased attention. It
studies, among others, in partially ordered sets [1,31], in distributive lattices [30], in
semilattices [29], in bounded hyperlattices [24], in quantales and residuated lattices
[10,25] and in several kinds of algebras [14,17,19]. Furthermore, it used in the
definition of congruences and ideals in a distributive lattice [20].

In this paper, we generalize the notion of (A, V)-derivation on a lattice to the
(F, G)-derivation, where F' and G are arbitrary binary operations on that lattice.
More precisely, we introduce the notion of derivation on a lattice L with respect to
two arbitrary binary operations F' and G on L instead of the meet (A) and the join
(V) operations of L. Also, we investigate their properties in details. Furthermore,
we define the principal (F,G)-derivations as a particular class of (F,G)-derivations
on a lattice, and we study their various properties. Specific attention is paid to
the lattice structure of the poset of principal (F,G)-derivations on a lattice. As
applications, we provide two representations of a given lattice in terms of its principal
(F, G)-derivations. These representations are draw upon some properties of binary
operations on a lattice we investigated in [28].

The remainder of the paper is structured as follows. In Section 2, we recall the
necessary basic concepts and properties of lattices and binary operations on lattices.
In Section 3, we introduce the notion of (F,G)-derivation on a lattice and investigate
their properties. In Section 4, we define the principal (F,G)-derivations on a lattice
and study their various properties. In Section 5, we provide two representations of
a given lattice in terms of its principal (F,G)-derivations. Finally, we present some
concluding remarks in Section 6.

2. BASIC CONCEPTS

In this section, we recall the necessary basic concepts and properties of lattices and
binary operations on lattices.
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2.1. Lattice. An order relation < on a set X is a binary relation on X that is reflexive
(i.e,, z < x, for any z € X), antisymmetric (i.e., v < y and y < x imply z = y, for any
x,y € X) and transitive (i.e., < y and y < z imply = < z, for any x,y,z € X). A
set X equipped with an order relation < is called a partially ordered set (a poset, for
short), denoted (X, <). Let (X, <) be a poset and A be a subset of X. An element
xo € X is called a lower bound of A if xo < z, for any x € A. x is called the greatest
lower bound (or the infimum) of A if zq is a lower bound and m < zy, for any lower
bound m of A. Upper bound and least upper bound (or supremum) are defined dually.

A poset (L, <) is called a A-semi-lattice if any two elements = and y have a greatest
lower bound, denoted by z Ay and called the meet (infimum) of x and y. Analogously,
it is called a V-semi-lattice if any two elements x and y have a smallest upper bound,
denoted by z V y and called the join (supremum) of z and y. A poset (L, <) is
called a lattice if it is both a A-semi-lattice and a V-semi-lattice. Usually, the notation
(L, <, A, V) is used. A poset (L, <) is called bounded if it has a smallest and a greatest
element, respectively denoted by 0 and 1. Often, the notation (L, <, A, V,0,1) is used
to describe a bounded lattice. A lattice (L, <, A, V) is called distributive if one of the
following two equivalent conditions hold:

(a) xA(yVz)=(zAy)V(zAz)forany z,y,z € L;

(%) zV(yAz)=(xVy) A(zVz)forany z,y,2 € L.

Let (X, <) and (Y, <) be two posets. A mapping ¢ from X into Y is called an
order isomorphism if it is surjective and satisfies

r <y ifandonlyif ¢(x)=<ep(y), foranyz,yec X.

Let (L, <,A,V) and (M, =, ~,—) be two lattices. A mapping ¢ from L into M is
called a lattice homomorphism, if it satisfies p(x A y) = p(xz) ~ ¢(y) and p(z V
y) = p(x) — @(y), for any z,y € L. A lattice isomorphism is a bijective lattice
homomorphism.

The following proposition shows that an order isomorphism between two lattices is
a lattice isomorphism.

Proposition 2.1 ([5]). Let L, M be two lattices and ¢ be a mapping from L into M.
The following statements are equivalent:
(1) ¢ is an order isomorphism;

(17) @ is a lattice isomorphism.

For more details on lattices, we refer to [5,15,21,22].

2.2. Binary operations on a lattice. In this subsection, we recall properties of
binary operations on a lattice.
Let F be a binary operation on a non-empty set X. An element e € X is called:
(i) a right- (resp. left-) neutral element of F if F'(x,e) = z (resp. F(e,x) = x) for
any r € X;
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(ii) neutral element of F, if it is right- and left-neutral element, i.e., F(e,z) =
F(z,e) = x for any z € X.
An element k € X is called:
(i) a right- (resp. left-) absorbing element of F', if F'(x,k) = k (resp. F(k,z) = k)
for any x € X;
(ii) an absorbing element of F', if it is right- and left-absorbing element, i.e.,

F(z,k) = F(k,xz) =k, foranyze€ X.
The following properties of binary operations on a lattice are interest in this paper.

Definition 2.1 ([28]). Let (L, <, A, V) be a lattice and F' be a binary operation on
L. Fis called:
(i) idempotent, if F(x,z) = x for any = € L;
(ii) conjunctive, if F(z,y) < x Ay for any z,y € L;
(iii) increasing with respect to the first variable, if x < y, implies F(z,2) < F(y, 2)
for any x,y,z € L;
(iv) increasing, if r1 < x9 and y; < yo implies F(x1,y1) < F(x2,y,) for any
T1,Y1,T2,Y2 € L.
In what follows, the statement x; < x5 and y; < ys, can be written shortly by using
the coordinate-wise order (z1,vy1) <pxr (T2,¥2).

Definition 2.2 ([4]). A triangular norm (t-norm, for short) T" on a bounded lattice
(L, <, A, V,0,1) is a commutative, associative and increasing binary operation on L,
and it has the neutral element 1 € L. Dually, a triangular conorm (t-conorm, for
short) S on L, is a commutative, associative and increasing binary operation on L,
and it has the neutral element 0 € L.

3. (F,G)-DERIVATIONS ON A LATTICE

In this section, we introduce the notion of (F, G)-derivation on a lattice and inves-
tigate their properties. This newly notion is a natural generalization of the notion
of derivation on a lattice given by Xin et al. [27] with respect to the meet and join
operations.

3.1. Definitions and examples. The notion of derivation on a lattice was first
introduced by Szész [23].

Definition 3.1 ([23]). Let (L, <, A,V) be a lattice. A function d : L — L is called a
derivation on L if it satisfies the following two conditions:

(Dy) d(x Ay) = (d(x) ANy) V (z Ad(y)) for any x,y € L;

(Dy) d(xVy)=d(z)Vd(y) for any z,y € L.

Later on, Xin et al. [27] have reduced the above conditions by considering only the
condition (D;). Moreover, they have shown that the condition (Ds) obviously holds
for the isotone derivations on a distributive lattice.
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Definition 3.2 ([27]). Let (L, <, A, V) be a lattice. A function d : L — L is called a
derivation on L if it satisfies the (D) condition, i.e.,

dlx ANy) = (d(x) ANy)V (z ANd(y)), forany x,y € L.

Inspired by the above Definition 3.2, we introduce the core definition of this paper.
It is based on two arbitrary binary operations on a lattice.

Definition 3.3. Let (L, <, A, V) be a lattice and F, G be two binary operations on L.
A function d : L — L is called an (F, G)-derivation on L if it satisfies the following
condition:

d(F(z,y)) = G(F(d(x),y), F(x,d(y))), forany z,y € L.

In the rest of the paper, we shortly write dz instead of d(x) and dF(x,y) instead
of d(F(z,y)).

In the following, we present some illustrative examples of (F, G)-derivations on a
lattice.

Ezample 3.1. Let (L, <,A,V) be a lattice and F,G be two binary operations on L
such that G is idempotent. The identity function of L is an (F, G)-derivation on L.
Indeed, suppose that d is the identity function of L. The fact that G is idempotent
implies that dF'(z,y) = F(z,y) = G(F(z,y), F(x,y)) = G(F(dz,y), F(z,dy)) for any
x,y € L. Hence, d is an (F, G)-derivation on L.

Ezample 3.2. Let (N*, <, min, max) be the lattice of positive integers and o € N*.
Then the following hold.

(i) The null function of N is a (-, +)-derivation on N, but it is not a (+, -)-derivation
on N.
(ii) The translation function d; of N* defined by d;(x) = x + a for any z € N*| it
is both (+, ged)-derivation and (+, lem)-derivation on N*.
(iii) The homothety function dy of N* defined by dy(x) = o - x for any = € N*| it is
both (-, ged)-derivation and (-, lcm)-derivation on N*.

Remark 3.1. We note that any derivation on a lattice L is a (A, V)-derivation on L.

Definition 3.4. Let (L, <, A, V) be a lattice. An (F,G)-derivation d on L is called
isotone if it satisfies the following condition:
r <y implies dxr <dy, foranyx,ye€ L.

Ezample 3.3. The translation (resp. homothety) function given in Example 3.2 is
both isotone (+, ged)-derivation and isotone (+, lem)-derivation (resp. isotone (-, ged)-
derivation and isotone (-,lcm)-derivation) on N*.

3.2. Properties of (F,G)-derivations on a lattice. In this subsection, we investi-
gate some properties of (F, G)-derivations on a lattice.

Proposition 3.1. Let (L, <,A,V) be a lattice and d be an (F,G)-derivation on L.
The following implications hold.
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(i) If G is conjunctive, then dF (z,y) < F(dx,y) A F(x,dy) for any x,y € L.

(i1) If G is disjunctive, then F(dz,y)V F(z,dy) < dF(z,y) for any x,y € L.
Proof. (i) The fact that d is an (F,G)-derivation on L and G is conjunctive imply
that dF(z,y) = G(F(dz,y), F(z,dy)) < F(dz,y) A F(x,dy), for any x,y € L. Thus,
dF(z,y) < F(dz,y) N F(x,dy) for any z,y € L.

(77) The proof is similar to that of (7). O

The above proposition leads to the following corollary.

Corollary 3.1. Let (L,<,A,V) be a lattice and d be an (F,G)-derivation on L. The
following implications hold.

(¢) If F and G are conjunctive, then dF(z,y) < dx A dy ANz Ay for any x,y € L.
(17) If F and G are disjunctive, then de VvV dy V x V y < dF(z,y) for any x,y € L.

Proposition 3.2. Let (L, <,A,V) be a lattice and d be an (F,G)-derivation on L.

The following implications hold.

(1) If F is conjunctive and G is increasing, then dF(x,y) < G(dz,dy) N G(y,z) A
G(dz,x) N G(y,dy) for any x,y € L.

(12) If F' is disjunctive and G is increasing, then G(dz,dy)V G(y,z) V G(dz,x) V
G(y,dy) < dF(z,y) for any x,y € L.

Proof. (i) Let z,y € L, the conjunctivity of F' guarantees that F'(dx,y) < dx Ay and
F(z,dy) < x Ady. Since G is increasing, it holds that

G(F(dz,y), F(z,dy)) < G(dz,dy) N G(y,z) AN G(dz,z) A G(y, dy).
The fact that d is an (F, G)-derivation on L implies that
dF(z,y) < G(dz,dy) A G(y,z) A G(dz, ) A G(y, dy).
(#2) The proof is similar to that of (7). O
Theorem 3.1. Let (L, <,A\,V) be a lattice and d be an (F,G)-derivation on L. If

F and G are increasing and conjunctive, then the following statements hold for any
r,y € L:

(i) G(F(dx,dF(y,y)), F(dF (2, 2),dy)) < dF(z,y) A F(dx, dy);
(i) G(F(dF (z,x),y), F(z,dF(y,y))) < dF(z,y) N F(z,y);

(i)
G(F(dF (z,x),dF(y,y)), F(dF(z,z),dF (y,y)))
<dF(x,y) AN F(z,y) A F(x,dy) A F(dz,y) A\ F(dz, dy).

Proof. To prove (i), suppose that d is an (F,G)-derivation on L and let x,y € L.
Corollary 3.1 (i) guarantees that dF'(z,z) < do Az and dF (y,y) < dy Ay. Then

((dz,dF(y,y)), (dF(z,z),dy)) <p2xr2 ((dz,y), (x,dy)),
((dz,dF(y,y)), (dF(z,z),dy)) <pexr2 ((dz,dy), (dz,dy)).
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The fact that F' is increasing implies that

(F(dx,dF(y,y)),F(dF(m :L’) dy)) XLXL (F(dl‘,y),F(iL’,dy)),
(F(dx,dF(y,y)), F(dF(z,z),dy)) <pxi (F(dz,dy), F(dr,dy)).

Since G is increasing and conjunctive, and d is an (F, G)-derivation on L, then it
follows that

G(F(dz,dF(y,y)), F(dF(z, 2), dy)) < G(F(dz,y), F(z,dy)) = dF(z,y),
G(F(dz,dF (y,y)), F(dF(z,z),dy)) < G(F(dx,dy), F(dz,dy)) < F(dz,dy).

Thus, G(F(dz, dF(y,)), F(dF (x,2), dy)) < dF (x, y) A F(dz, dy).
To demonstrate (i), let z,y € L. Corollary 3.1 (i) guarantees that dF'(z,z) < deAx
and dF(y,y) < dy Ay. Then

{<<dF<x, 2),9), (2, dF(y,9))) <pzxrz ((dz,y), (z,dy)),

NN

((dF(z,2),y), (,dF(y,y))) <pzxzz ((z,9), (z,y)).

Since F' is increasing, it holds that

(F(dF(z,2),y), F(2r,dF(y,y))) <wxr (F(dz,y), F(x,dy)),
(F(dF(2,x),y), F(x,dF(y,y))) <wxz (F(z,y), F(z,y)).

The fact that G is increasing and conjunctive, and d is an (F, G)-derivation on L, it
implies that

G(F(dF(z,x),y), F(z,dF(y,y))) < G(F(dx,y), F(z,dy)) = dF (z,y),
G(F(dF(z,2),y), F(z,dF(y,y))) < G(F(2,y), F(z,y)) < F(z,y).
Therefore, G(F(dF(z,z),y), F(x,dF(y,y))) < dF(z,y) A F(x,y).
1

)
For proving (ii), let z,y € L. Corollary 3.1 (i) guarantees that dF'(z,x) < doz A x
and dF(y,y) < dy Ay. Then

(dF(z,x),dF(y,y)), (dF(z,x),dF(y,y))) <r2xrz ((dz,y), (z,dy))
(dF(z,2),dF(y,y)), (dF (z, ), dF(y,y))) <rz2xz2 ((2,9), (2, 9)),
((dF(l‘,:E),dF(y,y)), (dF(x>x)adF(y7y))) <L2><L2 ((xvdy)> (m,dy)),
((dF(z,2),dF(y,y)), (dF(z,z),dF(y,y))) <rexrz ((dz,y), (dz,y)),
((dF(z,x),dF(y,y)), (dF(x,2),dF(y,v))) <r2xr2 ((dz,dy), (dz,dy))

The fact that F' is increasing implies that

(F(dF(z,x),dF(y,y)), F(dF(x,x),dF(y,y))) <pxr (F(dz,y), F(z,dy)),
(F(dF(z,2),dF(y,y)), F(dF(z,2),dF(y,y))) <pxw (F(z,y), F(x,y)),
(F(dF(z,x),dF(y,y)), F(dF (z,2),dF(y,v))) <pxrp (F(x,dy), F(z,dy)),
(F(dF(z,z),dF(y,y)), F(dF (z,2),dF(y,y))) <txr (F(dz,y), F(dz,y)),
(F(dF(z,x),dF(y,y)), F(dF (x,2),dF(y,y))) <px. (F(dz,dy), F(dz, dy))
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Since G is increasing, it holds that

G(F(dF(z,z),dF(y,y)), F(dF(z,2),dF(y,y))) < G(F(dz,y), F(z,dy)),
G(F(dF(z,2),dF(y,y)), F(dF(z,x),dF(y,y))) < G(F(z,y), F(z,y)),
G(F(dF(z,2),dF (y,y)), F(dF(z,),dF (y,y))) < G(F(z,dy), F(z,dy)),
G(F(dF(z,2),dF (y,y)), F(dF(z,z),dF(y,y))) < G(F(dz,y), F(dz,y)),
G(F(dF(z,2),dF (y,y)), F(dF(z,z),dF(y,y))) < G(F(dz, dy), F(dz, dy))

The conjunctivity of G and the fact that d is an (F, G)-derivation on L assure that
G(F(dF (z,x),dF(y,y)), F(dF (z,x),dF(y,y))) < dF(z,y),
GF(dF(z,x),dF (y,y)), F(dF(z,z),dF(y,y))) < F(z,y),

G(F(dF (z,x),dF(y,y)), F(dF (z,x),dF(y,y))) < F(z,dy),
G(F(dF (z,x),dF(y,y)), F(dF (z,x),dF(y,y))) < F(dz,y),
G(F(dF(z,2),dF (y,y)), F(dF(z,z),dF (y,y))) < F(dz, dy).
Thus, G(F(dF (z,z),dF(y,y)), F(dF (z,z),dF(y,y))) < dF(x,y)NF(z,y)AF(x,dy)\
F(dz,y) N\ F(dz,dy). O

Analogously, we obtain the following result for increasing and disjunctive binary
operations.

Theorem 3.2. Let (L,<,A\,V) be a lattice and d be an (F,G)-derivation on L. If
F and G are increasing and disjunctive, then the following statements hold for any
x,y € L:

(i) dF(x,y) V F(dz,dy) < G(F(dv,dF(y,y)), F(dF(z,x),dy));

(4i) dF(z,y) V F(z,y) < G(F(dF(z,v),y), F(x,dF(y,y)));

(44i) dF(z,y)V F(z,y)V F(z,dy) ( z,y)V F(dr,dy) < G(F(dF(z,z),dF(y,y)),
F(dF(z,z),dF(y,y))).

Proposition 3.3. Let (L, <,A\,V) be a lattice and d be an (F,G)-derivation on L.
The following implications hold:
(i) If F is conjunctive, G is increasing and idempotent, then dF(z,x) < x Adx
forany x € L;
(i1) If F' is disjunctive, G is increasing and idempotent, then xV dx < dF(z,z) for
any x € L.

Proof. (i) Let x € L, since F' is conjunctive, it holds that (F(dz,z), F(z,dz)) <pxr
(x Adz,x A dx). The fact that G is increasing implies that

G(F(dz,x), F(z,dr)) < G(xz ANdx,x A dx).

Since d is an (F, G)-derivation on L and G is idempotent, it follows that dF(z,z) <
x A dz.
(77) The proof is similar to that of (7). O
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The following theorems give alternative conditions to that of Theorems 3.1 and 3.2.
Their proofs can be done in a similar way.

Theorem 3.3. Let (L,<,A\,V) be a lattice and d be an (F,G)-derivation on L. If
F' is increasing and conjunctive, G is increasing and idempotent, then the following
statements hold for any x,y € L:

(i) G(F(dz, dF(y,y)), F(dF(z,2),dy)) < dF (z,y) A F(dz, dy);
(ii) G(F(dF (z,x),y), F(x,dF(y,y))) < dF(z,y) A F(z,y);
(1ii) F(dF(z,2),dF(y,y)) < dF(z,y) N F(z,y) A F(z, dy) A F(de,y) A F(dz, dy).
Theorem 3.4. Let (L,<,A\,V) be a lattice and d be an (F,G)-derivation on L. If

F' is increasing and disjunctive, G is increasing and idempotent, then the following
statements hold for any x,y € L:

(1) dF(z,y) vV F(dz,dy) < G(F(dz,dF(y,y)), F(dF(z,2),dy));
(i1) dF(z.y) V F(z,y) < G(F(dF(z,2),y), F(r, dF(y,y)));
(1ii) dF(z,y) vV F(z,y) A F(x,dy) V F(dz,y) V F(dr,dy) < F(dF(z,2), dF(y,y)).
Proposition 3.4. Let (L, <, A, V) be a lattice and d be an (F, G)-derivation on L. If
F is commutative and G is idempotent, then

dF(xz,z) = F(dz,z) = F(x,dz), for any x € L.
Proof. Since d is an (F, G)-derivation on L, F'is commutative and G is idempotent, it

holds that dF(z,z) = G(F(dx,x), F(z,dz)) = G(F(dz,z), F(dz,x)) = F(dz,x) for
any x € L. 0]

Proposition 3.4 leads to the following corollary.

Corollary 3.2. Let (L, <, A, V) be a lattice and d be an (F,G)-derivation on L. The
following implications hold:

(1) If F' is commutative and conjunctive and G is idempotent, then
dF(z,x) < x ANdx, for any x € L;
(13) If F' is commutative and disjunctive and G is idempotent, then

xVdr < dF(x,z), foranyx € L.

Proposition 3.5. Let (L, <,A\,V,0) be a lattice with the least element 0 € L and d
be an (F,G)-derivation on L. The following implications hold.
(1) If F and G are conjunctive, then d0 = 0 (i.e., 0 is a fized point of d).
(13) If F is conjunctive, G is increasing and idempotent, then d0 = 0.
(1i1) If F is commutative and conjunctive, and G is idempotent, then d0 = 0.

Proof. (i) The conjunctivity of F' implies that F'(0,0) = 0. Then d0 = dF'(0,0). From
Corollary 3.1 (7), it holds that dF(0,0) < 0. Thus, d0 = 0.

(77) The proof is similar to that of (i) by using Proposition 3.3 (7).

(731) The proof is similar to that of (i) by using Corollary 3.2 (7). O
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In the same line, we obtain the following result.

Proposition 3.6. Let (L, <,A,V,1) be a lattice with the greatest element 1 € L and
d be an (F,G)-derivation on L. The following implications hold.
(2) If F and G are disjunctive, then d1 =1 (i.e., 1 is a fixed point of d).
(13) If F is disjunctive, G is increasing and idempotent, then d1 = 1.
(13i) If F' is commutative and disjunctive and G is idempotent, then d1 = 1.

Proposition 3.7. Let (L, <, A, V) be a lattice and d be an (F,G)-derivation on L. If
F has a right- (resp. a left-) neutral element e € L, then dv = G(dx, F(x,de)) (resp.
dx = G(F(de,x),dz)) for any x € L.

Proof. The fact that e is a right- (resp. a left-) neutral element of F' and d is an (F, G)-
derivation on L imply that doz = dF(x,e) = G(F(dz,e), F(x,de)) = G(dz, F(z, de))
(resp. dx = dF (e,xz) = G(F(de,x), F(e,dx)) = G(F(de,x),dx)) for any = € L. O

Proposition 3.8. Let (L, <, A, V) be a lattice and d be an (F, G)-derivation on L. If
F has a right- (resp. a left-) absorbing element k € L, then dk = G(k, F(x,dk)) (resp.
dk = G(F(dk,x),k)) for any x € L.

Proof. Since k is a right- (resp. a left-) absorbing element of F' and d is an (F,G)-
derivation on L, then dk = dF(x,k) = G(F(dx, k), F(z,dk)) = G(k, F(x,dk)) (resp.
dk = dF(k,z) = G(F(dk,z), F(k,dz)) = G(F(de,z), k)) for any x € L. O

The above Proposition 3.8 leads to the following corollary.

Corollary 3.3. Let (L, <, A\, V) be a lattice and d be an (F, G)-derivation on L. If F
and G have a right- or a left-absorbing element k € L, then dk =k (i.e., k is a fized
point of d).

4. PRINCIPAL (F,G)-DERIVATIONS ON A LATTICE

In this section, we introduce the notion of principal (£, G)-derivation on a lattice
and investigate their various properties.

4.1. Definitions and auxiliary results. Let (L, <, A, V) be a lattice and F' be a
binary operation on L. For any element a € L, there exists an F-function f, : L — L
defined as:

folz) = F(a,z), forany z € L.

Let Ar(L) be the set of the f, functions on L, i.e., Ap(L) = {f, | @ € L}. One
can easily verify that Ap(L) equipped with the usual order of functions (i.e., fo < f3
if and only if f,(z) < fs(x) for any x € L) is a poset.

The following propositions show some cases that the poset (Ar(L), <) has a lattice
structure.
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Proposition 4.1 ([28]). Let (L,<,A,V) be a lattice and F' be a binary operation
on L. If F is increasing with respect to the first variable and having a right-neutral
element e € L, then the poset (Ar(L),=) is a lattice. Where, the meet ~ and the

join — operations of Ap(L) are defined as fo —~ fz = farg and fo — fz = favp for
any fa, fs € Ar(L).

Proposition 4.2 ([28]). Let (L,<,A,V) be a lattice and F be a binary operation on
L. If F is the meet (resp. the join) operation of L, then (Ap(L), X, ~,—) is a lattice.
Proposition 4.3 ([28]). Let (L,<,A,V) be a lattice and F be a binary operation on
L. Then the following hold.

(1) If F is increasing with respect to the first variable and having a right-neutral
element e € L, then for any o, 8 € L, we obtain that

a< B ifandonlyif  fo = fs.
(13) If F is idempotent, conjunctive or disjunctive and increasing with respect to
the first variable, then for any o, 8 € L, we obtain that

a< B ifandonlyif  fo = fs.

The following proposition provides some conditions that the elements of Ar(L) are
(F, G)-derivations on L.

Proposition 4.4. Let (L, <, A, V) be a lattice and F, G be two binary operations on L
such that F' is commutative and associative, and G is idempotent. Then any elements
of Ar(L) is an (F,G)-derivation on L.

Proof. Let f, € Ap(L) and x,y € L. We will show that
fo(F(2,y)) = G(F(fa(x),y), F(z, fa(y))) -

Since F'is commutative and associative, and G is idempotent, it follows that
fo(F(z,y)) = F(Oé F(fc y))
G(F(a,
(F (e,
(F(cv, (fv, Y)),
(F(
(

[
Q Q@

F(F(,2),y),

(F(fa(2),y), F(z, fa(y))) -
Thus, f, is an (F, G)-derivation on L. O

Q

In view of Proposition 4.4, we introduce the notion of principal (F,G)-derivation
on a given lattice.

Definition 4.1. Let (L, <, A, V) be a lattice and F, G be two binary operations on L
such that F'is commutative and associative, and G is idempotent. Any f, function
is called principal (F, G)-derivation on L. In this case, Ap(L) denotes the set of the
principal (F, G)-derivations on L.
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Ezample 4.1. Let (L, <,A,V,0,1) be a bounded lattice, &« € L, T be a t-norm on
L and S a t-conorm on L. The function ¢, (resp. s,) defined for any x € L by
to(z) = T(cv, x) (resp. sqo(x) = S(a, x)) is a principal (T, G)-derivation (resp. principal
(S, G)-derivation) on L, for any idempotent binary operation G on L.

4.2. Properties of principal (F,G)-derivations on a lattice. In this subsection,
we investigate some properties of principal (F, G)-derivations on a given lattice.

Proposition 4.5. Let (L, <, A, V) be a lattice and f, € Ap(L) be a principal (F,G)-
derivation on L. Then it holds that

foo fa(F(x,y)) = F(fa(2), faly)),  foranyz,y L.

Proof. Let f, € Ap(L) be a principal (F, G)-derivation on L and =,y € L. The facts
that F'is commutative and associative imply that

fa o fo(F(x,y)) = falfa(F(z,y))) = faF (o, F(z,y)) = Fla, Fo, F(z,y)))
= Flo, F(F(a, 2),y)) = F(F(a, Fla, 7)), y) = F(F(F(, 2), @), y)

= F(F(a,2), Fla,y)) = F(fa(2), fa(y))- -

Proposition 4.6. Let (L, <, A, V) be a lattice and f, € Ap(L) be a principal (F,G)-
derivation on L. If F is increasing, then f, is isotone, i.e., if v < y, then fqo(x) <
fa(y), for any x,y € L.

Proof. Let x,y € L such that x < y. Since F' is increasing, it holds that F'(a,x) <
F(a,y), i.e., fa(z) < fa(y). Thus, the principal (F, G)-derivation f, is isotone. [

One can easily verify that if the principal (F, G)-derivations on L are isotone, then
F' is increasing.
Proposition 4.6 leads to the following corollary.

Corollary 4.1. Let (L, <, A, V,0,1) be a bounded lattice, T be a t-norm and S be a t-
conorm on L. Then the principal (T, G)-derivations (resp. principal (S, G)-derivations)
on L are isotone for any idempotent binary operation G on L.

Proposition 4.7. Let (L, <, A, V) be a lattice and f, € Ap(L) be a principal (F,G)-
derivation on L. If F is increasing, then f. satisfies that if v <y, then f (F(z,x)) <
fo(F(y,y)) for any z,y € L.

Proof. Let z,y € L such that x < y. The fact that F' is associative implies that
fulF(x.2)) = Fla, Pla.2)) = F(F(a.x).) and fo(F(y.y)) = F(P(a.y).y). Since
x < y and F is increasing, it follows that F(F(«a,z),z) < F(F(a,y),y). Thus,
fo(F(z,2)) < fo(F(y,y)). [

5. REPRESENTATIONS OF A LATTICE IN TERMS OF ITS PRINCIPAL
(F, G)-DERIVATIONS

In this section, we provide two representations of a given lattice in terms of its
principal (F, G)-derivations. We start by the first one.
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Theorem 5.1. Let (L,<,A,V) be a lattice and F,G be two binary operations on L
such that F' is commutative and associative, and G is idempotent. If F' is increasing
and having a neutral element e € L, then the lattice (L, <, A\, V) is isomorphic to the
lattice (Ap(L), =, ~,—) of principal (F, G)-derivations on L.

Proof. Proposition 4.1 guarantees that the poset (Ap(L), <, ~, —) of principal (F, G)-
derivations on L is a lattice. Next, let ¢ be a mapping from L into Ap(L) defined by
() = fo, for any a € L. One can easily verify that v is surjective. Furthermore,
from Proposition 4.3 (i), it holds that

a<f ifandonlyif (a)=¢(B), foranya,p e L.

Now, v is an order isomorphism between L and Ag(L). Thus, Proposition 2.1
guarantees that ¢ is a lattice isomorphism. Therefore, the lattices (L, <, A, V) and
(Ap(L), =, ~,—) are isomorphic. O

In the following, we present an illustrative example of Theorem 5.1.

Example 5.1. Let L = R7 be the lattice of the positive real numbers ordered by the
usual order, and let F,G' be two binary operations on R defined for any =,y € R,
as F(z,y) =x -y and

x, ifx =1y,

G(z,y) = {

One can easily verify that F'is commutative and associative, and G is idempotent.
Furthermore, F' is increasing and having the neutral element 1 € R . Theorem 5.1
guarantees that the lattice (R* , <, min, max) is isomorphic to the lattice (Ap(R% ), =
, —~, ) of principal (F,G)-derivations on R .

x +y, otherwise.

Theorem 5.1 leads to the following corollary.

Corollary 5.1. Let (L, <,A,V,0,1) be a bounded lattice, G be an idempotent binary
operation, T' be a t-norm and S be a t-conorm on L. Then the following hold.

(1) The bounded lattice (L,<,A\,V,0,1) is isomorphic to the bounded lattice
(Ar(L), =, —~,—, to,t1) of principal (T, G)-derivations on L, where to(x) = T(0,2) = 0
and t(z) =T(1,z) = x for any x € L.

(1¢)  The  bounded lattice (L,<,A,V,0,1) is isomorphic to  the
bounded lattice (As(L), =<, ~,—, S0, 1) of principal (S,G)-derivations on L, where
so(x) = S(0,z) = x and s1(z) = S(1,2) =1 for any z € L.

The following theorem provides the second representation of a lattice in terms of
its principal (F,G)-derivations.

Theorem 5.2. Let (L, <, A, V) be a lattice and F,G be two binary operations on L
such that G is idempotent. If ' is the meet (resp. the join) operation of L, then the
lattice (L, <, N\, V) is isomorphic to the lattice (Ap(L), =X, ~,—) of principal (F,G)-
derivations on L.
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Proof. Since F' is the meet (resp. the join) operation of L, it follows from Proposi-
tion 4.2 that the poset (Ap(L), =X, ~,—) of principal (F,G)-derivations on L is a
lattice. Now, let 1) be a mapping from L into Ap(L) defined by ¢ (a) = f,, for any
a € L. Using the same steps as Theorem 5.2, we obtain that 1) is a lattice isomorphism.
Thus, the lattices (L, <, A, V) and (Agr(L), X, ~,—) are isomorphic. O

Remark 5.1. We note the following.

(i) If (L, <, A, V,0,1) is a bounded lattice, F' is the meet (resp. the join) operation
of L and G is an idempotent binary operation on L, then (L, <, A,V,0,1) can
be represented by using both Theorems 5.1 and 5.2.

(i) If (L, <,A,V) is a latticea and it does not have the least element 0 (resp.
greatest element 1), F' is the meet (resp. the join) operation of L and G is an
idempotent binary operation on L, then (L, <, A,V) can be represented only
by Theorem 5.2.

(iii) If (L, <, A, V) is a distributive lattice and F, G are respectively the meet and the
join operations of L, then Theorem 5.2 coincides with representation theorem
given by Xin et al. (Theorem 3.29 in [27]). Thus, Theorem 5.2 is a generalization
of Theorem 3.29 to an arbitrary lattice.

6. CONCLUSION

In this work, based on two arbitrary binary operations F' and G on a given lattice,
we have introduced the notion of (F,G)-derivation on a lattice as a generalization to
the notion of (A, V)-derivation. Also, we have investigated their various properties.
We have defined and studied the principal (F, G)-derivations as a particular class of
(F, G)-derivations on a lattice. As applications, we have provided two representations
of a given lattice in terms of its principal (F, G)-derivations.

Acknowledgements. The authors thank the editors and the referees for their valu-
able comments and suggestions for improving the article.
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INFINITELY MANY SOLUTIONS TO A FOURTH-ORDER
IMPULSIVE DIFFERENTIAL EQUATION WITH TWO CONTROL
PARAMETERS

HADI HAGHSHENAS! AND GHASEM A. AFROUZI?

ABSTRACT. In this article, we give some new criteria to guarantee the infinitely
many solutions for a fourth-order impulsive boundary value problem. Our main
tool to ensure the existence of infinitely many solutions is the classical Ricceri’s
Variational Principle.

1. INTRODUCTION.

In this paper, we consider the following boundary value problem for a fourth-order
impulsive differential equation:

u®(t) + Au"(t) + Bu(t) = Mf(t, u(t )) + ug(
(1.1) Au(ty) = Ly (u'(ty)), —Ou"(t;) = Iy(ult;
u(0) = u(l) =u"(0) =u"(1) =0,

where A, B are two real constants, f,g : [0,1] x R — R are two L?-Carathéodory
functions, I, Ir; € C(R,R), 0 =1ty <ty <ty <--- <tp, <ty = 1, the operator A
is defined as AU(t;) = U(t]) — U(t; ), where U(t]) (U(t]_)) denotes the right-hand
(left-hand) limit of U at ¢; and A > 0 and p > 0 are referred to as control parameters.

In recent years, a great deal of work has been done in the study of the existence of
solutions for impulsive boundary value problems (IBVPs for short).

Some classical tools have been used to study such problems in the literatures. These
techniques include the coincidence degree theory of Mawhin, the method of upper and

Key words and phrases. Infinitely many solutions, impulsive differential equations, critical points,
variational methods.
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lower solutions with monotone iterative technique, and some fixed point theorems in
cones.

On the other hand, in the last few years, many researchers have used variational
methods to study the existence of solutions for IBVPs. We refer the interested readers
to [1-4,6-8].

Motivated by the paper [1], in the present paper, by employing the classical Ricceri’s
Variational Principle, we obtain a sequence of solutions to problem (1.1) which is
unbounded. Note that when p = 0 system (1.1) reduces to the one studied in [§]. Our
results extend those ones in [8].

The remaining part of this paper is organized as follows. Some fundamental facts
will be given in Section 2 and the main result of this paper will be presented in
Section 3.

2. PRELIMINARIES

Our main tool to ensure the existence of infinitely many solutions for the problem
(1.1) is the classical Ricceri’s Variational Principle ([5, Theorem 2.5]) that we now
recall here.

Theorem 2.1. Let X be a reflexive real Banach space. Let ¢, : X — R be two
Gateaux differentiable functionals such that ¢ is sequentially weakly lower semicontin-
uous, strongly continuous and coercive and 1 is sequentially weakly upper semicontin-
uous. For every r > infy ¢, let us put

p(r) = inf Supv@‘l(loim])?/’(v)—@b(U)'
ueg=1(j=oor) r— o(u)

If v = liminf, ,, @(r) < +o0, then for each A\ €]0, %[, only one of the following
statements holds to the functional I\ := ¢ — \p:

(A1) I, possesses a global minimum;
(A2) there is a sequence (uy) of critical points (local minima) of I such that

lim ¢(u,) = +oo.

n—-+oo
Here and in the sequel, we suppose that A and B satisfy the following condition:
(2.1) A<0<B.
Define
Hy ([0,1]) :=={u € L*([0,1]) : «" € L*([0,1]),u(0) = u(1) = 0},
H?([0,1]) :=={u € L*([0,1]) : v/, u" € L*([0, 1])}.
Take X := H?([0,1]) N Hy([0,1]) and define

22) Jullx = ([ 1@ = AW/ OF + Blu()Par)
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Since A, B satisfy (2.1), it is straightforward to verify that (2.2) defines a norm for
the Sobolev space X and this norm is equivalent to the usual norm defined as follows:

ull = "] L2(0,1))-

It follows from (2.1) that ||ul| < [Ju||x. For the norm in C*(]0, 1])

ol = o { o). s 01 .

t€(0,1] t€(0,1]
we have the following relation.
Lemma 2.1 ([8]). Let My := 14 L. Then ||Jul| < Mi|ju||x for allu € X.

Definition 2.1. By a weak solution of the problem (1.1), we mean any u € X such
that

[ 00— Au @) + Bu(eyo(n)at + i%(u(%))v(%) ¥ f:lfu (o (£ (1)

_A/ (, u(t dt+u/ (8, u(t))o(t)dt

holds for every v € X.

Put
Fite) = [ ft.0ds. Glt.a):= [ gt O)de.
for all (¢,z) € [0,1] x R.

3. MAIN RESULTS

In this section, we present our main results. To this end, we need the following
assumptions.

(H1) Assume that there exist two positive constants k; and ks such that for each
ueX

0<Z / Ly(s)ds <k _max /()]

je{1,2,m}
and
0< i/u(tj) Lj(s)ds <k, max _|u(t;)|*.
j=170 je{1,2,....m}
Also put ks := 2.048(2 — 2z A + 155 B) and ky := ks + k3. These constants will

be used in the hypotheses of Theorem 3.1.
(H2) Assume that {t;,ts,... ,t,m} C[3, 3]
(H3) Assume that F'(t,u) > 0 for (t,u) € ([ HIVE: 1]) X R.
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Theorem 3.1. Suppose that (H1), (H2) and (H3) are satisfied. Also

(H4)
3
1 1
SUp|,<¢ F'(t,x)dt 1 Ji F(t,§)dt
M12 lim inf J i |§§2 (t,z) < — limsup 4727
E—+o0 & k4 P £
and X €A1, Ao[, where
k 1
)\1 = 4§ ’ )\2 = 1 .
L F(tg)dt M21lim inf fo sup|g|<¢ F(t,z)dt
lim sup ——5— L e sioo £
{—+o00

If G is a nonnegative function satisfying the condition
1
Supy,<¢ G(t, x)dt
(3.1) Joo i= gliELn Jo sup |§§2 t,2)
—+00 S
(i)

then for every p € [0, pug\[, where

< 400,

1 o
g x i= goo<1 — AM; lgr_%:&f

fol Sup|,<¢ F(t, z)dt
£ ’
the problem (1.1) has an unbounded sequence of weak solutions in X.

Proof. Fix X\ €]A1, \o| and let g be a function satisfying the condition (3.1). Since
A < Ag, one has py 5 > 0. Fix p € [0, py [ and put

If go = 0, clearly, v1 = Ay, v3 = Ay and A\ €Jvy, vo[. If goo # 0, since p < pg\, we
obtain %2 + 9o < 1, and so vy > A. Hence, since A > A\; = vy, one has A €]y, vy].

Take X = HZ([O, 1]) N H&([O, 1]) and define in X the functional I, for each u € X
as follows

vV = )\1, Vg

In(u) == o(u) = Mp(u),

where
| AR () m (i)
o) =gllully + 3 [* 7 (s + 3 [T By(s)ds,
j=1 j=1

W(u) = /0 "Bt u(t)dt + % /0 LGt ut))dt.

It is not hard to show that every critical point of I is a weak solution of system
(1.1). So, our goal is to apply Theorem 2.1 to ¢ and . In the first step, it is
well known that ¢, : X — R are two Gateaux differentiable functionals such
that ¢ is sequentially weakly lower semicontinuous, strongly continuous and coercive.
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Moreover, 1 is sequentially weakly upper semicontinuous. Now, we wish to prove that
v = liminf, . o @(r) < oo, where

sup (v) — ¢(u)

. P(v)<r
r) = inf
(1) b(u)<r r— ¢(u)

Let

Q(t,z) == F(t,z) + gG(t, ), (t.x)€[0,1] xR,

Let (&,) be a real sequence such that &, > 0 for all n € N and £, — +o00 as n — o
and

1 1
/ sup Q(t,x)dt / sup Q(t, x)dt

0 ai<e, 0 jae

lim = lim inf

n—00 5721 € +00 52

2

Put r, = 2?\’/‘[2 for all n € N. Then for every u € X, with ¢(u) < r,,, we have
i

lull2 < M2|ul% < 2M2p(u) < 2MPr, = €2,
thus
¢ (] —00,mal) C{u € X : [Jufloe < &0}

Hence, taking into account that ¢(0) = 1(0) = 0 for every n large enough, one has

sup ¥(v) — ¥(u) sup ¥ (v) — (0)

QO(T' ) _ 1nf d(v)<rp d(v)<rp
" P(u)<rn Tn — gb(u) - Tn — ¢<O)
1 2M?
= — sup P(v) =5 sup P(v)
"n ¢(v)<rn & )<
2M? 1
< 21/ sup Q(t,x)dt
§n 0 Jel<en
1 1
/ sup F(t,x)dt / sup G(t,x)dt
0 fe|<én LB it
= & A &
2M? 2M?2

Therefore, it follows from (H4) and condition (3.1) that

fol Slip F(t,x) + (%)G(t ) dt
(3.2) v < hr_r)linf o(r,) < lim lz|<&n

n—-+o00 §721
2M?

< +00.

Here, we can observe that | A1, A3[C]0, %[ Hence, for the fixed A €]A1, Ag], the inequality
(3.2) assures that Theorem 2.1 can be used and either I, has a global minimum
or there exists a sequence (u,) of weak solutions of the problem (1.1) such that

dim [|uy,[|x = +o0.
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The other step is to verity that the functional I has no global minimum. Since
%
N / F(t,€)dt
— < limsup *+——+——,
{——+o0 52

we can consider a real sequence (,) and a positive constant 7 such that ~, — +oo

as n — oo and
. /4 F(t,~,)dt
(3.3) Mor< -

A V2

153

-

for each n € N large enough. Thus, if we consider a sequence (w,) in X defined by
setting

3 3 o1
N
6’y<t 4t+16t, tez(i,%,

wn(t) =3\ Tns te 17 4] )

9 27 7 13
ISV
6’y<t+4t 16t+16 , t6_4, )

then, taking (H1) and (H2) into account, we conclude

3 9 79 UCyet
n:2.048<— A+ B> 24 / I:(8)ds < kav? + ko2 = kary2.

On the other hand, since GG is nonnegative, we observe

b(w,) > / F(t,y,)dt.

So, from (3.3), we conclude

In(n) = §(wa) = Np(wn) < kard = A [" F(t,)dt < 420k = A7),

for every n € N large enough. Note that ky — A7 < 0. Hence, the functional I, is
unbounded from below, and it follows that I, has no global minimum and we have
the conclusion. O

We have the following corollary as a special case of Theorem 3.1.

Corollary 3.1. Suppose that f : R — R is a nonnegative function and let F(z) =
Iy F(&)de for all x € R. Also,

lim inf F) =0 and limsup F(g)
§—r+o0 2 E—400 52

= +00.
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Then for every continuous function g : R — R whose G(z) = [5 g(§)d¢ for every
x € R, is a nonnegative function satisfying the condition

sup,<¢ G(x
g = lim Sz GO
£—+o00 %
M

1

and for every p € [0, p.[, where p, = (1 — M liminfe o %), the problem

{ ul(t) + Au"(t) + Bu(t) = f(u(t)) + pg(u(t)), t€[0,1],
u(0) = u(1) =u"(0) =u"(1) =0,

has an unbounded sequence of weak solutions.

Acknowledgements. The authors would like to thank the two referees for a very
careful reading of this manuscript and for making good suggestions for the improve-
ment of this article.
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ON SOME STATISTICAL APPROXIMATION PROPERTIES OF
GENERALIZED LUPAS-STANCU OPERATORS

MOHD QASIM!, M. MURSALEEN?34* ASIF KHANZ, AND ZAHEER ABBAS'

ABSTRACT. The purpose of this paper is to introduce Stancu variant of generalized
Lupas operators whose construction depends on a continuously differentiable, in-
creasing and unbounded function p. Depending on the selection of v and §, these
operators are more flexible than the generalized Lupas operators while retaining
their approximation properties. For these operators we give weighted approxima-
tion, Voronovskaya type theorem, quantitative estimates for the local approximation.
Finally, we investigate the statistical approximation property of the new operators
with the aid of a Korovkin type statistical approximation theorem.

1. INTRODUCTION

Approximation theory rudimentary deals with approximation of functions by simpler
functions or more facilely calculated functions. Broadly it is divided into theoretical
and constructive approximation. Inspired by the binomial probability distribution, in
1912 S. N. Bernstein [3] was the first to construct sequence of positive linear operators
to provide a constructive proof of prominent Weierstrass approximation theorem [33]
using probabilistic approach. One can find a detailed monograph about the Bernstein
polynomials in [19,21].

In order to obtain more flexibility, Stancu [32] applied another technique for choosing
nodes. He observed that the distance between two successive nodes and between 0
and first node and similarly between last and 1 goes to zero when m — oo. After

Key words and phrases. Generalized Lupag-Stancu operators, Korovkin’s type theorem, conver-
gence theorems, Voronovskaya type theorem, statistical approximation.
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these observation Stancu introduced the following positive linear operators

(1.1) (PO ) (u) = )3 (?) (1 - )" (W)

prd m-+0

converge to continuous function f(u) uniformly in [0, 1] for each real v,d such that
0 <~ < 4. For more recent literatures on Stancu type operators on can see [1,4,7,15—
17,23-31].

In another development in approximation theory Cardenas et al. [5], in 2011 defined
the Bernstein type operators by B,,(f o 77!) o7 and showed that its Korovkin set is
{eo, 7,72} instead of {eg,e1,e2}. Recently, Aral et al. [18] in 2014 defined a similar
modification of Szasz-Mirakyan type operators obtaining approximation properties of
these operators on the interval [0, 00).

Very recently motivated by the above work Ilarslan et al. [14] introduced a new mod-
ification of Lupag operators [22] using a suitable function p, which satisfies following
properties:

(p1) p be a continuously differentiable function on [0, 00);
(PQ) p<0) =0 and inqu[O,oo) P (u) > 1.

The generalized Lupag operators are defined as

(1.2) L0(fru) =27 2 W (For™) (;) ’

for m > 1, u > 0, and suitable functions f defined on [0, 00). If p(u) = u, then (1.2)
reduces to the Lupag operators defined in [22].

The purpose of this paper is to define the Stancu type variant of operators (1.2)
which depend on p. The present work is organized as follows. In the Section 2, we give
the definition of a new family of the generalized Lupag-Stancu operators and calculate
its moments and central moments. In the Section 3, we study convergence properties
of new constructed operators in the light of weighted space. In Section 4, we obtain
the order of approximation of generalized Lupas-Stancu operators associated with the
weighted modulus of continuity. In Section 5, a Voronovskaya type result is obtained.
In Section 6, we obtain some local approximation results related to K-functional also
we define a Lipschitz-type functions, as well as related results. Finally, in last section,
we investigate the statistical approximation property of the new operators with the
aid of a Korovkin type statistical approximation theorem

2. CONSTRUCTION OF THE GENERALIZED LUPAS-STANCU OPERATORS

Persuaded by the above mentioned work, we introduce Stancu variant of operators
(1.2), which depend on a suitable function p as follows.
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Definition 2.1. Let 0 <y < §and m € N. For f : [0,00) — R, we define generalized
Lupag-Stancu operators as

Cmp() o= (1)) [ l+y
(2.1 Ty i) = 2732 T (0 p70) (122,

where (mp(u)), is the rising factorial defined as:
(mp(u))o =1,
(mp(u))e =(mp(u))(mp(u) + 1) (mp(u) +2) - (mp(u) +1=1), 1>0.

The operators (2.1) are linear and positive. For v = 6 = 0, the operators (2.1) turn
out to be generalized Lupag operators defined in (1.2). Next, we prove some auxiliary
results for (2.1).

Lemma 2.1. Let T),° be given by (2.1). Then for each u >0 and m € N we have

(i) T2o(Lu) = 1;

m2 mA-2m 2
(”l) (I'Z‘L’fsp(p27 U) = (m+5)2 p2(U) + Q(Vm—:§2 p(U) + (Tn’_yu,_igpa
- m3 m2 m2 m m 2m 3
(EU§ T (0% ) = e () + SR 2 () 4 SRR () o s
v
4 12m3 + 4ym? 36m? + 6ym>m? + 24ym?
Fr6 () = 4 3 2
mp(p"5 ) 1 0" (u) + o "’ (u) (m 1oy p(u)
129%m + 24ym + 26m o
T )+ —
(m +9) (m +9)

Corollary 2.1. For n = 1,2, 3,4 the n'* order central moments of ‘J’;V,fp defined as
0 n.
‘J"’ryn,p((p(w) - p(U)) ,U), we have

(i) Ty (p(w) — plu)su) = (725 — 1) plu) + 725
(i4)
T, ((p(w) = p(w)%; w)

:< m? 2m +1> (1) + (27m+2m 2y >p<u)+(72)2:0m(u);

(m+6)?2 m+0 (m+6?2 m+4 m+ 4
Tooo((p(w) = p(u))*;u)
B m3 _ 3m? 3m B 30y 6m? + 3ym? _ 6ym + 6m
_<(m+5)3 (m—|—5)2+m+5 1>p() ( (m+9)3 (m+9)?
3y ) 6m + 6ym + 3y*m v
+(m+5)>p (“)+< (m +0)? ) W+ oy
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(iv)
Too((p(w) = p(u)*;u)
m* 4m? 6m? 4m 4
:<(m+5)4 T mtop T mror (mto) “)p ()
12m3 +4m3y  12m%y +24m?  12my + 12m 4~ 3
(o e ~wmes)
<36m2 +6m*y® +24m*y  24mym + 24m + 12my° N 62 ) )
(m +0)* (m+0)° (m +0)?
<26m + 12m~? + 24mfy> (u) + v B 43
(m+4)* (m+8)* (m+0)3

Remark 2.1. Tt is observed from Lemma 2.1 and Corollary 2.1 that for v = = 0, we
get the moments and central moments of generalized Lupag operators [14].

3. WEIGHTED APPROXIMATION

We start by noting that p not only defines a Korovkin-type set {1, p, p?} but also
characterizes growth of the functions which are approximated.

Let ¢(u) = 1+ p*(u) be a weight function satisfying the conditions (p;) and (ps)
given above let B4[0,00) be the weighted space defined by

By[0,00) = {f : [0,00) = R [|f(u)| < XKs¢(u),u =0},

where K is a constant which depends only on f. B,[0, 00) is a normed linear space
equipped with the norm

_ | f(u)]
1 flls = uﬁféﬁo) o)

Also, we define the following subspaces of B,[0, 00) as
Cy[0,00) ={f € By[0,00) : f is continuous on [0, 00)},

C3[0,00) = {f € C4[0,00) : 7}13010% = in} :
where Xy is a constant depending on f and
f(u)
¢(u)

Uy[0,00) = {f € Cy[0,00) : is uniformly continuous on [0, oo)} :

Obviously,
C3[0,00) C Uyl0,00) C C4[0,00) C By[0, 00).

For the weighted uniform approximation by linear positive operators acting from
Cs[0, 00) to B0, 00), we state the following results due to Gadjiev in [12] and [9].
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Lemma 3.1 ([12]). Let (A,,)m>1 be a sequence of positive linear operators which acts
from C4[0,00) to By[0,00) if and only if the inequality

Am(¢;u)| < Kpd(u), u =0,
holds, where X,, > 0 is a constant depending on m.

Theorem 3.1 ([9]). Let (An)m>1 be a sequence of positive linear operators, acting
from C4[0,00) to By[0,00) and satisfying

dim [|Anp" = pfly =0, i=0,1,2.

Then we have

lim [|A,(f) = flle =0, forany f € C}[0, 00).

m—r0o0

Remark 3.1. It is clear from Lemma 2.1 and Lemma 3.1 that the operators ‘J';fp act
from €40, 00) to By0, 00).

Theorem 3.2. Let 0 < <0 and for each function f € C3[0,00) we have
T |75,() — fllo = 0.
Proof. By Lemma 2.1 (i) and (7i), it is clear that
1750,(1; 1) — 1|5 =0,

m p(u) ~y =0
T:0 Tu) — = ( — 1) su + < .
1755 w) = plls m+ 0 ue[o};) 14+p2(u) m+0 " m+9o

Again by Lemma 2.1 (iii), we have

2 2
2ym + 2m p(u) o

su +
(m+0)% uclooe) 1+ p(u) * (m + 0)?
<72 — 6% —2md + 2my + 2m
- (m + §)?
Then from Lemma 2.1 and (3.1) we get lim || T3% (p") — p[ls = 0, i = 0,1, 2. Hence,

the proof is completed. 0

4. RATE OF CONVERGENCE

In this section, we determine the rate of convergence for ‘J'pr by weighted modulus
of continuity w,(f; o) which was recently considered by Holhog [13] as follows:

(4.1) w,(f;0) = sup M, g >0,

u,¢€[0,00),|o(Q)—p(u)| <o P(C) + G(u)
where f € Cy[0,00), with the following properties:
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(i) wp(f;0) = 0;
(ii) wy(f;0) >0, 0 >0 for f € Cyl0,00);
(ii) limy_ow,(f;0) = 0 for each f € U0, 00).

Theorem 4.1 ([13]). Let A,, : C4[0,00) — B4[0,00) be a sequence of positive linear
operators with

(4.2) [ Am(0°) = Pl g0 =am,
(4.3 [400(0) ~ pll 3 =b.
(4.4) [ A (p%) = |l 6 =Cum,
(4.5) Al = 5l 5 =,

where the sequences (ar,), (bm), (¢m) and (d,) converge to zero as m — oco. Then
(4.6) M () = Fll 3 < (T4 dam + 23 )w,(f; 0m) + [ fllom,
for all f € Cy[0,00), where

O = 2\/(am + 2by, + ) (1 + @) + ap + by + 3¢ + di-
Theorem 4.2. Let for each f € Cy[0,00), with 0 <~ <. Then we have

2v2 — 20% — 4md + 4my + 4m

where w, is the weighted modulus of continuity defined in (4.1) and

$2’y—25 v2 — 0% — 2md + 2my + 2m
Om =2 +

m+ 0 (m +6)?
+3fy—3(5 372 — 36% — 6md + 6my + 6m
m+ 6 (m+0)?
N 6m? + 3ym? + 6m + 6ym + 3v*m + 3 — 6% — 3m?5 — 3mé?
(m+9)3 '

Proof. 1f we calculate the sequences (a,,), (bn), (¢n) and (d,,,), then by using Lemma
2.1, clearly we have

1T3:5,(0°) = P°llgo =0 = @,

0 77O _
IT55,00) = Plls <25 = b
and s
— 0% —2md + 2my + 2m

F18 (,2) — 2|, < 1 —c..

|| m,p(p ) p ||¢ = (m+5)2 C
Finally,
(4.7) 1752,(0%) = P11 3

2
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<6m2 + 3ym? + 6m + 6ym + 3y*m + 7* — §° — 3m?é — 3mdé* q
- (m +6)3 o

Thus the conditions (4.1)—(4.2) are satisfied. Now, by Theorem 4.1, we obtain the
desired result. O

Remark 4.1. For %ir% wy(f;0) = 0 in Theorem 4.2, we get
%

lim [[T70,(f) ~ fllg =0, for f € U0, 00).

m—o0

5. VORONOVSKAYA TYPE THEOREM

In this section, by using a technique which is developed in [5] by Cardenas-
Morales, Garrancho and Rasa, we prove pointwise convergence of T,pr by obtaining
Voronovskaya-type theorems.

Theorem 5.1. Let f € Cy[0,00), u € [0,00), with 0 < v < § and suppose that
(fop™ and (fop™)" exist at p(u). If (fop=Y)" is bounded on [0,00), then we
have

lim m [T3%,(F:) = F@)] = plu) (Fop™) 5+ plu) (For") plu).

m—0o0
Proof. By using Taylor expansion of fop~t at p(u) € [0,00), we have
(5.1)

fw)=(fop ™) (pw) = (fop™)(pw)+ (for™) (p(w) (p(w) — p(u))

where

—1\" . 1\
(5.2) M(w) = o) (p(w) : (f o ™) (p(w))
Therefore, by (5.2) together with the assumption on f ensures that

Au(w)| <K, forall w e [0,00),

and is convergent to zero as w — u. Now, applying the operators (2.1) to the equality
(5.1), we obtain

(T30 (fru) = Fw)] = (£ o p7) (p() T, (plw) — plu)); )

(5.3) L ey (p(U))‘TZqZZ) ((p(w) = p(y))% u)

+ T3, (A () ((pw) = p(u))* 1)
By Lemma 2.1 and Corollary 2.1, we get

(5.4) Jim mT0 ((p(w) = p(u);u) =
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and
(5.5) Tim mT2 ((p(w) — p(u)* ) = 2p(u).

By estimating the last term on the right hand side of equality (5.3), we will get the
proof.

Since from (5.2) for every € > 0, lim,,—, Ay (w) = 0. Let 0 > 0 such that |\, (w)| < €
for every w > 0. By Cauchy-Schwartz inequality, we get

i m 2 (0 ) (o) = p(u))? 1) <e lim mT35 ((pla) — pluw)*s )

+ 25 dim T8 ((plw) - plu))'su)

g4 Mm—0oo
Since
(5:6) Jim w75, (o) — pla)) ') =0,
we obtain
(5.7) Tim mT70 (|Au(w)] (p(w) = p()?5y) = 0.
Thus, by taking into account the equations (5.4), (5.5) and (5.7) to (5.3) the proof is
completed. O

6. LOCAL APPROXIMATION

In this section, we present local approximation theorems for the operators ‘J'Z{fsp.
By €p[0, c0), we denote the space of real-valued continuous and bounded functions f
defined on the interval [0, 00). The norm || - || on the space Cg[0, 00) is given by

IfIl = sup [f(z)].
0<u<oo
Further let us consider the following K-functional:

Kaf,0) = inf {1 = sl +ollg" I}

where o > 0 and W? = {s € €p[0,00) : 5,5 € Cp[0,00)}. By Devore and Lorentz
[6, Theorem 2.4, p. 177], there exists an absolute constant € > 0 such that

(6.1) K(f,0) < Cws(f,V0).

Second order modulus of smoothness is as follows

wo(f, Vo) = sup  sup [f(u+2h) —2f(u+h)+ f(u)],

0<h<+/o u€[0,00)

where f € Cg[0,00). The usual modulus of continuity of f € Cg[0,c0) is defined by
w(f,o) = sup sup [f(u+h)— f(u)l.

0<h<o uel0,00)
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Theorem 6.1. Let f € Cp[0,00), with 0 <~y < 4. Let p be a function satisfying the
conditions (p1), (p2) and ||p"|| is finite. Then, there exists an absolute constant C > 0
such that

T8 (frw) = fu)|< CX (f,0m(u),
where

out)={ (¥ s 1) o (s ) o o

Proof. Let s € W? and u,w € [0,00). By using Taylor’s formula we have

(6:2) s(w) = s(w)+(s0p™") () (p(w) = p(u) + [ “(p(w)=v) (s0p7)" (v)dv.

Now, put v = p(y) in the last term of (6.2) and by using the equality

p(w)

p(u)

(6.3) (s007") (p(u)) = (;’/(S;))Q —5"(u) (;),N(S;és-
we get
plw) Y e s"(y)p'(y) = s'(y)p" (v)
L, 0w =v) (sop™) @av=| <p<w>—p<y>>[ TIOE ]dy
6 = [ o) = o) S
ey — o S ()
AR PP O EN

equality (6.2), we deduce

; s S
s =)+ T35 ([ ota) = 0) S i)
N B L PR Ve ) VR ) v_u>
2 [ ot =0y R B )

As we know p is strictly increasing on [0, 00) and with condition (py), we get
(772 (50) = s(u)| < MG o) ([Is"]] + 11511071

where

M, o(w) = T30, ((p(t) — p(u))?sw).
For f € €Cp[0,00), we have

65)  [Ts|<if o gtz 3 Py g ) = ).
=0

Hence, we have

T3, 0) = )< T3 (F = s00) [+ T3 (s50) = sw)] () = f(w)
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m? 2m
< — _ 2
<2|f g\|+{<(m+5)2 7n+5+1>pw)
29m + 2m 27y 772 Y -
+ ( (m 1 o m+5) p(u) + gz ( U1+ D'l
If we choose € = max{2, ||p"||}, then

s = sef<e (27 -l + { (g — o +1) 0

29m + 2m 2y 72 "
(T = LB o+ e 1)

Taking infimum over all s € W? we obtain
T8 (F5u) = f()| < CX(f, om(u)) O

Now, we recall local approximation in terms of a order Lipschitz-type maximal
function given in [10]. Let p be a function satisfying the conditions (p1), (p2), 0 <
a <1, and Lipy(p(u); ), M > 0, is the set of functions f satisfying the inequality

[£(w) = f(u)| < Mp(w) - p(u)|”

Moreover, for a bounded subset & C [0,00), we say that the function f € Cp[0, c0)
belongs to Lipy(p(u);a), 0 < aw < 1, on € if

, u,w > 0.

[F(w) = ()| < Ma s |p(w) = plw)|”

where M, ¢ is a constant depending on « and f.

, u€&andw >0,

Theorem 6.2. Let p be a function satisfying the conditions (p1), (p2). Then for any
f € Lipy(p(u);a), 0 < a < 1, with 0 <~y < 6 and for every u € (0,00), m € N, we
have

(6.6) T (i) = ()] < M (o (u)?
where

- m? 2m . 2ym + 2m 2 72
om(u) = {((m+5)2 o 1) P (u)+< (m+6)?2 m+5> p(u)+(m+5)2}'

Proof. Assume that o = 1. Then, for f € Lipy(a;1) and u € (0,00), we have

[Towo(F3w) = ()] <TL(1f(w) = f(u)];u)
<MT(lp(w) = f(u)lsu).
By applying Cauchy-Schwartz inequality, we get

T50) = S IO — p)s)] < 2o

[N]1)
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Let us assume that « € (0,1). Then, for f € Lipy(c; 1) and u € (0, 00), we have
[T, (Fru) = Flw)] <T0 (| f(w) = flu)];u) < MT0(Ip(w) = fu)|*5u).
From Holder’s inequality with p = é and ¢ = ﬁ, for f € Lipy(p(u); ), we have

[T05(f5) = F)] < M[TH(1(p(t) — plu)];w)]
Finally by Cauchy-Schwartz inequality, we get
T2 () = f )| < M (0 (u)) 2 . O

A relationship between local smoothness of functions and the local approximation
was given by Agratini in [2]. Here we will prove the similar result for operators ‘Tﬂrfp,
m € N, for functions from Lipy(p(u)) on a bounded subset.

Theorem 6.3. Let € be a bounded subset of [0,00) and p be a function satisfying the
conditions (p1), (p2). Then for any f € Lipy(p(u);), 0 < a <1 on & a € (0,1], we
have

T (F5u) = F()]|< Ma g {(om(u)? + 200 (w)]*d*(u,€)}, u € [0,00),meN,
where d(u, ) = inf{|lu —y|| : y € €} and M, 5 is a constant depending on o and f,

am(u):{<( m? 2m +1> pg(u)+<2’ym+2m 2y )p(u)+(722}

m+6)2 m+o (m+0)2 m+é m+0)

Proof. Let € be the closure of € in [0,00). Then there exists a point ug € € such that
d(u, &) = |u — ug|.
Using the monotonicity of ‘J’Z{fp and the hypothesis of f, we obtain
[ Towop (f3u) = f(@)] ST20 (L (w) = fluo)l;u) + T30, (1 (w) — fluo)l:w)
<M s { T35 (Ip(w) = p(uo)| s u) + [p(u) — pluo)|* |
<M s {70, (Ip(w) = p(u)|; ) + 2|p(u) — p(uo)|”},
2

by choosing p = 2 and ¢ = 3=, as well as the fact |p(u) — p(uo)| = p'(uw)|p(u) — p(uo)]

2—a’
in the last inequality. Then by using Hoélder’s inequality we easily conclude

(T8 (fru) = f(u)| < Moy {[‘mfp«mw) = p(u))%u)]* + 2[' (w)|p(u) - p(uwu“} :
Hence, by Corollary 2.1 we get the proof. O

Now, for f € Cg[0, 00), we recall local approximation in terms of v order generalized
Lipschitz-type maximal function given by Lenze [20] as

67) @(fiu)= sup LW S0

——, u€[0,00)and a € (0,1].
wH#u,we(0,00) ’w - u|

Then we get the following result.
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Theorem 6.4. Let f € Cp[0,00) and a € (0,1], with 0 < v < o. Then for all
u € [0,00) we have

N1

(T8 () = f(w)|< B(F5 ) (om(w))?

where

Um(u):{< m 2m +1>p2(u)+<27m+2m 27 >p(u)+(722}.

(m+0)2 m+0 (m+0)2 m+6 m + 9)

Proof. We know that
[Toacp (f3w) = F)] < TR () = F(u)lsu).

From (6.7), we have

[ Toaop (f3u) = f(u)| < QE(F;w)T30,(|o(w) — p(u)|*; ).

)

From Holder’s inequality with p = % and ¢ = 2% we have

o’

M1

(T8 () — F(u)] <@E(fru) [ T2, (o) — p(u))?; w)]
<@8(f;u) (om(u)?

which proves the desired result O

7. STATISTICAL APPROXIMATION

In this section we obtain the Korovkin type weighted statistical approximation by
the operators defined in (2.1). Let us recall the concept of statistical convergence
which was given by Fast [8] and further studied by many authors.

Let X € N and X,,, = {i < m : ¢ € K}. Then the natural density or we can say
asymptotic density of X is defined by o(X) = lim,, --|X,,| whenever the limit exists,
where |X,,| denotes the cardinality of the set IC,,.

A sequence u = (u;) of real numbers is said to be statistically convergent to £ if
for every € > 0 the set {i € N : |u; — £| > €} has natural density zero; that is, for
each € > 0,

1
im —[{i < mjui — L] 2 e}

In this case, we write st — lim,,, u,, = £. Note that convergent sequences are statis-
tically convergent since all finite subset of of natural no have density zero. However,
its converse is not true. This is demonstrated by the following example.

Ezxample 7.1. Let us consider the sequences,

— + 1, otherwise,
u = (Up) =< 2m
0, m = i2 for some i,
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and
1, m =12 for some i,
v=(vm) =140, m=1i?+1 for some i,
2, otherwise.

Then it is easy to see that the sequence u and v are not convergent in the ordinary
sense, but st — lim,, u,, = 1 and st — lim,, v,, = 2. All properties of convergent
sequences are not true for statistical convergence. For instance, it is known that a
subsequence of a convergent sequence is convergent. However, for statistical conver-
gence this is not true. Indeed, the sequence [ = {i : i =1,2,3,...} is a subsequence
of the statistically convergent sequence u from Example 7.1. At the same time, [ is
statistically divergent.

Gadjiev and Orhan [11] introduced the concept of statistical convergence in approxi-
mation theory and prove the following Bohman-Korovkintype approximation theorem
for statistical convergence.

Theorem 7.1 ([11]). If the sequence of positive linear operators A, : Cy[a, b] — Cla, b]
satisfies the conditions st — lim, o |[An(€y;-) — €llefap = 0, with e,(t) = t¥ for
v =0,1,2, then for any function f € Cyla,b], we have

st — lim ||An(f;") = fllefas) = 0

where Cytla, b] denotes the space of all functions f which are continuous in [a,b] and
bounded on the all positive axis.

Now our first result is as follows.

Theorem 7.2. Let ‘J'V’ (f;u) be the sequence of operators (2.1), then for any function
f € Cg0,00) we have

(7.1) st —lim [|T30,(f;u) = flls = 0.
Proof. Clearly for v =0 ,‘J’Z{fp( f;u) =1, which implies
st —lim |7 (1;u) —1 [}y =0,

Forv=1
1720 (i) = plls < | ———p(u) + —— — p(u)
P A - m+5 m+5
Y

f— 1 -
|(m+5 )pw ny
<
_m—|—5 ‘m+5

For a given € > 0, let us define the following sets:

W ={m « |75, (pu) = pllo > €},
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W’:{m:l— m }
_l’_

W :{m:

> <.
m+46
It is obvious that W C W’ U W'. Then it can be written as:
oli <m |~ pls > e} <o fi<min- >

+U{i§m:|| Ze}.
m+90
Then we have
st —lim [|T30,(f;u) — flls = 0.

Lastly for v = 2, we have
2 2ym + 2m 72
(W) + 5 — P (w)

T8 (2 ) — 2. < m 2 i AL N
|| m,p(p ,U) p ||¢ — (m+5)2p (U)‘l‘ <m+5)2 pLu (m_|_5)2

m2 B 2, 29m + 2m " y
(( E 1>f’<>+<m+5>2ﬂ<>+<m+5>2

IN

m—+0
. m? B 2ym + 2m 2
~[(m+9)? (m+9)2 (m+9)?
If we choose
m? 2ym + 2m 72
amzi_L 5m:77 Tm = 7 o>
(m+9)? (m+9)? (m+9)2
then
(7.2) st—liglnozm:st—lir%nﬁmzst—linl[bnvmzo.

Now given € > 0, we define the following four sets:
W ={m: |T50,(0% u) = plls > e},
le{m:amze},
3
€
WQZ{m:6m2}7
3
€
Wgz{m:fyng}.
It is obvious that W C 'W; U W, U W3. Thus, we obtain
5 < m 1T (%) = pPlle = b <o {i < mian > £}

+5{i§m:ﬁng}+5{i§m:7m23
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Using (7.2), we get
st —1im [|T30, (0% ) — p?[ls = 0
and thus the proof is completed.

Since
T35 (F3 1) = Fllo <UTR%(0%5w) = 2Plls + 11T (05 w) = pllo + 1950, (1) = 1],
we get

st —lim || T30 (f;u) = flls
<st—lim || 770 (0% w) = p?[lg + st=lim [|T7:%, (s w) —plls + st —lim [| T30, (1;u) — 1,

which implies that
st —lim || T30 (f;u) = fllo = 0.
This completes the proof. 0]
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RIGHT AND LEFT MAPPINGS IN EQUALITY ALGEBRAS

MONA AALY KOLOGANI', MOHAMMAD MOHSENI TAKALLO?, RAJAB ALI BORZOOEI?,
AND YOUNG BAE JUN*

ABSTRACT. The notion of (right) left mapping on equality algebras is introduced,
and related properties are investigated. In order for the kernel of (right) left map-
ping to be filter, we investigate what conditions are required. Relations between
left mapping and —-endomorphism are investigated. Using left mapping and —-
endomorphism, a characterization of positive implicative equality algebra is estab-
lished. By using the notion of left mapping, we define —-endomorphism and prove
that the set of all —+-endomorphisms on equality algebra is a commutative semigroup
with zero element. Also, we show that the set of all right mappings on positive
implicative equality algebra makes a dual BCK-algebra.

1. INTRODUCTION

Non-classical logic has become a considerable formal tool for computer science
and artificial intelligence to deal with fuzzy information and uncertainty information.
Many-valued logic, a great extension and development of classical logic, has always
been a crucial direction in non-classical logic. A crucial question for every many-
valued logic is, what should be structure of its truth values. It is generally accepted
that in fuzzy logic, it should be a residuated lattice, possibly fulfilling some additional
properties. On the basis of that, we may now distinguish various kinds of formal
fuzzy logics. Most important among them seem to be BL-logics, MTL-logics and
IMTL-logics. The answer to the above question is positive and the fuzzy type theory
(FTT) has indeed been introduced in [12]. However, the basic connective in FTT
is a fuzzy equality since it is developed as a generalization of the elegant classical

Key words and phrases. Equality algebra, &-equality algebra, positive implicative equality algebra,
filter, left mapping, right mapping.
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formal system originated by Henkin (see [5]). So Novak in [13] introduced a special
algebra so called EQ-algebra and that reflects directly the syntax of FTT. Viewing the
axioms of EQ-algebras with a purely algebraic eye it appears that unlike in the case of
residuated lattices where the adjointness condition ties product with implication, the
product in EQ-algebras is quite loosely related to the other connectives. For instance,
a moment’s reflection shows that one can replace the product of an EQ-algebra by any
other binary operation which is smaller or equal than the original product (viewed
as a two-place function) and still obtains an EQ-algebra. However, the huge freedom
in choosing the product might prohibit to find deep related algebraic results, hence
our aim was to find something similar to EQ-algebras but without a product: an
axiomatic treatment of equality/equivalence. Because of that Jenei in [9] introduced
a new structure, called equality algebras. It has two connectives, a meet operation
and an equivalence, and a constant 1.

Left and right mappings are very important concepts and mathematicians have
used them in various mathematical fields. For example, Kondo [11] introduced the
notion of left mapping on BCK-algebras and investigated some properties of it. He
showed that in a positive implicative BCK-algebra, if a left map is surjective, then it
is also an injective one. Borzooei and Aaly [2], introduced left and right stabilizers
by using a fixed point sets of right and left mappings. They investigated that under
which conditions these sets can be equal. Also, by using the (right) left stabilizers,
produced a basis for a topology on hoops and showed that the generated topology by
this basis is Baire, connected, locally connected and separable. Moreover, Hail, Abu
baker and Mohd [4], by using the notion of (right) left mapping defined different kinds
of derivation on BCK/BCl-algebras. The notion of derivation and extended of that
are introduced on different kinds of logical algebras such as UP-algebras, MV-algebras
and etc. In UP-algebras, lampan in [6] proved that the fixed point set and the kernel
of left derivation are UP-subalgebras and investigated under which condition they can
be an ideal or filter. Kamali in [10], extended the notion of derivation on MV-algebras
by using left and right mappings and investigate some properties of them.

Now, in this paper, we introduce the concept of (right) left mapping on equality
algebras and investigate several properties. Then by using of left and right mapping
on equality algebras, we construct a commutative monoid, a commutative semigroup
with zero element and a dual BCK-algebra.

2. PRELIMINARIES

In this section, we recollect some definitions and results which will be used in the
next sections.

Definition 2.1 ([8]). By an equality algebra, we mean an algebra (X, A, ~, 1) satisfying
the following conditions:

(E1) (X, A, 1) is a commutative idempotent integral monoid (i.e., meet semilattice
with the top element 1);
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(
(Va € X)(a ~1=a);
(Va,b,ce X)(a<b<c=a~c<b~ca~c<ar~b)
(Va,b,ce X)(a~b<(aNc)~ (bAc));

(E7) (Va,b,c € X)(a~b< (a~c)~(b~c)),
where a < b if and only if a A b = a. The equality algebra (X, A,~,1) is simply
denoted by X only.

In an equality algebra (X, A, ~, 1), we define two operations “—” and “<»” on X
as follows:
a—b:=a~(aNb),
a+rb:=(a—b)A(b—a).
Proposition 2.1 ([8]). Let (X, A, ~, 1) be an equality algebra. Then for alla,b,c € X,
the following assertions are valid:
a—b=1<a<b,
2.1) a—(b—c)=b— (a—c),
l—-a=a a—1=1 a—>a=1,
a<b—cesb<a—c

(2.3) a<b—a,
a<(a—b)—b,
(2.5) a—b<(b—c)— (a—c),

b<a=a<rb=a—>b=a~b,
a~b<a+<b<a—b,

b—c<a-—c,

(2:6) agb:}{c—)agc—ﬂv,

(2.7) ((a—=b) = b) —-b=a—b.

An equality algebra X is said to be bounded if there exists an element 0 € X such
that 0 < a for all a € X. In a bounded equality algebra X, we define the negation
““7on X by ra=a—-0=a~0foralla e X.

A subset A of X is called a deductive system (or filter) of X (see [9]) if it satisfies

(2.8) 1e A,
(Va,be X)(a€ Aja<b = be A),
(Va,be X)(a€ Aja~be A = be A).

Denote by DS(X) the set of all deductive systems of X.
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Lemma 2.1 ([7]). Let X be an equality algebra. A subset A of X is a deductive
system of X if and only if it satisfies (2.8) and

(Va,be X)(a€ A,a—be A=be A).
Definition 2.2 ([14]). An equality algebra X is said to be commutative if it satisfies:
Ve,y e X)((x = y) 2 y=(y > x) = x).
Definition 2.3 ([1]). Given an equality algebra (X, A,~,1) and a,b € X, we define
X(a,b) :={re X |a<b—zx}
It is clear that 1, @ and b are contained in X(a,b).

Definition 2.4 ([1]). An equality algebra (X, A, ~,1) is called an &-equality algebra
if for all a,b € X, the set X (a,b) has the least element which is denoted by a ® b.

Proposition 2.2 ([1]). If X = (X, A, ~,1) is an &-equality algebra, then
(Va,be X)(a®b=b0Oa),

(Va,b,c € X)((a®b)®c=a® (bOc)),
(Va,b,ce X)(a<b=aGc<bOec).

Lemma 2.2 ([1]). Let X = (X, A, ~, 1) be an equality algebra in which there ezists a
binary operation “©” such that

(Va,b,c € X)(a— (b—c¢)=(a®b) = c).
Then X = (X, A, ~, 1) is an &-equality algebra.

3. LEFT MAPPINGS

In this section, we define the notion of left mapping on equality algebra and inves-
tigate some properties of it. Moreover, we define the notions of —-homomorphism,
positive implicative and &-equality algebras and study the relation among them.

Definition 3.1. Given a fixed element a in an equality algebra X, we define a
self-mapping f, of X by

fo: X=X, z—a—uz,
and we say that f, is a left mapping on X.
Let £(X) denote the set of all left mappings on an equality algebra X
Ezxample 3.1. Let X = {0, a,b,1} be a set with the following Hasse diagram.

1
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Then (X, A, 1) is a commutative idempotent integral monoid. We define a binary
operation ~ on X by Table 1. Then (X,A,~,1) is an equality algebra, and the

TABLE 1. Cayley table for the implication “~”

=]
O O
QO TR
ST = O Q>
_— ot R Ol

implication “—7” is given by Table 2.

TABLE 2. Cayley table for the implication “—”

— o Q O\L
o oo
Q=R
S =S o
— = = | =

Let f, and f, be self mappings of X defined by
fa(o) = fa(b) =, fa(a) = fa(l) =1

and
fo(0) = fio(a) =a, fi(b) = fio(1) =1,

respectively. It is routine to verify that f, and f, are left mappings on X.

Remark 3.1. It is clear that fo(x) =1 and f;(z) = « for all x in a bounded equality
algebra X.

Question 1. If f, is a left mapping on X, then is f? a left mapping on X7
The following example shows that the answer to the above question is false.

Ezxample 3.2. Let X = {0,a,b,c,d, 1} be a set with the following Hasse diagram.

Then (X, A, 1) is a commutative idempotent integral monoid. We define a binary
operation ~ on X by Table 3. Then & = (X, A,~, 1) is an equality algebra, and
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TABLE 3. Cayley table for the implication “~”

— Q0 o9 O
S0 Qo
Q0O QL O R
S0 QO S
O QU QL o
QUM QUL O O O
— O T Ol

TABLE 4. Cayley table for the implication “—”

— a0 oo ol
S0 Qo
Q0O QU
S0 QU Qo
O QL — = = O
Q= =
el el e

the implication “—” is given by Table 4. Define a mapping f, : X — X by f,(0) =
fa(b) = d and f,(a) = f.(c) = fa(d) = fo(1) = 1. Then f, is a left mapping on X,
but f2 is not a left mapping on X since

d=a—=0=f,0)#f(0)=a—(a—=0)=a—d=1.
Definition 3.2. An equality algebra X is said to be positive implicative if it satisfies
(3.1) Ve,y,z € X)(z — (y = 2) = (xr = y) = (x — 2)).

Theorem 3.1. In a positive implicative equality algebra X, if f, is a left mapping on
X, then so is f>.

Proof. For any x € X, we have
fA2)=fufu@)=a—(a—=2)=(a—a) = (a—=2)=1—(a = 1)=0a— z.
Therefore, f2 is a left mapping on X. O

Corollary 3.1. In a positive implicative equality algebra X, if f, is a left mapping
on X fora e X, then so is f]' for every n € N.

Proof. 1t is by mathematical induction. 0

Proposition 3.1. Let X be an equality algebra and f, be a left mapping on X. Then
the following statements hold:
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(1) fu(z) = fuly) < folz — y) and the equality is true when X is positive implica-

(2) the left mapping f, on X is isotone, that is, if v <y, then f,(z) < fu(y);
Yo < fo(x) < f2(2) < -+ and the equality is true when a = 1;
) x =y < fx) = fM(y) for any n € N and the equality is true when a = 1;
) Im(fy) € -+ C Im(f7) € Im(fo);
) Fix(f,) C Fix(f2) C - -, where Fix(f,) := {x € X | fu(x) = x};
7) ker(f,) C ker(f2) C --- and the equality is true when a = 1, where ker(f,) :=
{reX|/fur) =1}
(8) Fix(f) C Im(f) for any n € N and the equality is true when X is positive
implicative;
(9) Fix(f) nker(fr) = {1} for any n € N, for all a,z,y € X;
(10) if X is an &-equality algebra, then f? = f, for any a € X, with a ® a = a.

Proof. Let a,z,y € X. Using (2.1) and (2.6), we have
fa@) = faly) = (a = 2) = (a = y) Sa— (z = y) = folz = y),

which proves (1).

(2) and (3) are straightforward by (2.6) and (2.3), respectively.

(4) Using (2.1) and (2.5), we have x — y < (a — z) — (a = y) = fo(x) = fu(y).
Suppose that  — y < f¥(z) — f¥(y) for k € N. Then

z =y < [ (@) = [3(y) < fulf2(2) = fuf5(W) = L7 (@) = [ (),
and so z — y < f(z) — f*(y) by mathematical induction.
(5) If y € Tm(f?), then y = f2(z) = fu(fa(z)) for some z € X and so y € Im(f,),
which shows that Im(f2?) C Im(f,). Repeating this process induces
In(f7) € -+ C m(f2) C Im(f,)

By the similar way to the proof of (5), we have (6), (7) and (8).

(9) Let x € Fix(f)Nnker(fr). Then x = fI(x) = 1. Hence, Fix(f)Nker(f) = {1}
for any n € N.

(10) Let a € X with a ® a = a. Then

ff(x):a—>(a—>x):(a®a)—>x:a—>x:fa(:c),
for all z € X and so f2 = f,. O

We pose a question as follows. Given a left mapping f, on X, is the subset Fix(f,)
of X a filter of X7 But the following example shows that the answer is negative.

Ezxample 3.3. Let Y = {0,a,b, ¢, 1} be a set with the following Hasse diagram.
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Then (Y,A,1) is a commutative idempotent integral monoid. We define a binary
operation ~ on Y by Table 5. Then (Y, A, ~, 1) is an equality algebra which is not

TABLE 5. Cayley table for the implication “~”

— o o9 O
OO O OO
SIS N N =]
QRO Ol
0O = ot oln
_ 0 o O

commutative, and the implication (—) is given by Table 6. We know that the map

TABLE 6. Cayley table for the implication “—"

— 0 O O\L
OO OO O
Q= Q ~ HQ
S e R
O R Q |0
— = == e

fo : Y = Y given by f,(0) = 0, fo(a) = fo(c) = a and f,(b) = fp(1) = 1 is a left
mapping on Y. Then Fix(f;,) = {0, a, 1}, which is not a filter of Y.

Proposition 3.2. Given a left mapping f, on X, the following statements are equiv-
alent.

(1) (Vo,y € X)(Vn e N) (y" — x =y"™! — x), where

y' o=y =y — - (y— ).

n times

(2) (vn € N)(Im(fg) = Fix(f3)).
(3) (Yn e N)(f = fa+).

Proof. (1) = (2) By Proposition 3.1 (8), we have Fix(f?) C Im(f2). If y € Im(f2),
then there exists « € X such that f7(x) =y. By (1), we get
y=file) = fa" (@) = = () = fo(fa(2) = fi().

Hence, y € Fix(f?), and so Im(f?) C Fix(f). Therefore, Im(f2) = Fix(f).
(2) = (1) Let =,y € X. It is clear that y" — z < y"™' — z. On the other hand,

W™ =) = (" =) = 7 @) = £ (@) = £ () = [ (@).
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Then f,(z) € Im(f;’) = Fix(f;) and so f;‘(fy(x)) = fy(x). Since fy(x) < f;(a:), we

have

(" =) = (" =) = fy(2) = (f (@) =1,

and so (y"™! — z) < (y" — x). Therefore, y" — z = y"™! — .
(1) < (3) The proof is clear. O

Corollary 3.2. In a positive implicative equality algebra X, the conditions (2) and
(3) of Proposition 3.2 are always valid.

Definition 3.3. Let X and Y be equality algebras. A mapping f: X — Y is called
a —-homomorphism if f(a — x) = f(a) — f(z) for all a,x € X.

By a —-endomorphism on X we mean a —-homomorphism from X to X. It is
clear that the left mapping f; on X is a —-homomorphism.

Example 3.4. Let X be the equality algebra as in Example 3.1 and Y be the equality
algebra as in Example 3.3. We define a mapping f : X — Y by f(0) = f(b) = 0 and
f(a) = f(1) = 1. Then f is a —-homomorphism.

Theorem 3.2. Let (X, Ax,~x,1x) and (Y, Ay, ~y, ly) be equality algebras. Then
every homomorphism from X to'Y is a —-homomorphism.

Proof. Let f: X — Y be a homomorphism. Then
fle =xy)=f(z Axy) ~x @)
= [z Ax y) ~y [(z)
= (f(@) Ay f(y)) ~v f(z)
= f(z) =y fy),
for all z,y € X. Hence, f is a —-homomorphism. O

The following example shows that a left mapping is not a —-endomorphism.
Example 3.5. The left mapping f, in Example 3.2 is not a —-endomorphism since
1= falc) = fa(d = 0) # fa(d) = fu(0) = (@ = d) = (a = 0) =1 = d =d.

We provide a condition for a left mapping to be a —-endomorphism, and consider
a characterization of a positive implicative equality algebra by using the notion of left

mapping.

Theorem 3.3. An equality algebra X is a positive implicative if and only if every left
mapping on X is a —-endomorphism of X.

Proof. Let X be a positive implicative equality algebra and f, : X — X be a left
mapping on X where a € X. Then

falx = y)=a— (x—y)=(a—12) = (a—>y) = fulx) = fuly),

for all z,y € X, and so f, is a —-endomorphism of X.
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Conversely, assume that every left mapping on X is a —-endomorphism of X. Let
fa be a left mapping on X for each a € X. Then f, is a —-endomorphism of X and
SO

a—(x—=y) = fuz—=y) = ful@) = fuly) = (@ = 2) = (a = y).
Therefore, X is a positive implicative equality algebra. 0

Corollary 3.3. Let f, be a left mapping on X. If f2 = f,, then f, is a —-
endomorphism.

Corollary 3.4. If f, is a —-endomorphism on X, then f* = f**! for any n € N.

Theorem 3.4. Let X be an &-equality algebra. Then L(X) is a commutative monoid
under the composition of mappings with the zero element fi.

Proof. For any f,, fy, fe € L(X), where a,b,c € X, we have
(fao fo)lx) = fulfo(x) = falb—=2)=a— (b—x)=(a®b) = x = foep(T),
for all x € X. Hence, £(X) is closed under the operation o. Also, we have
(fa o (fb © fc))(l’) = fa(f(b(DC) (x)) - f(a®(bGC))(x) - f((a®b)60)(x>
= flaon) © fe(®) = ((fa o fi) © fo)(2),
(faofo)(@)=fab—=2)=a— (b—=2)=b— (a = x) = fr(a = x)
= (fb ° fa)($)7

and (f, o f1)(z) = fae1(z) = fu(z) for all z € X. Therefore, £(X) is a commutative
monoid. O

Theorem 3.5. In a positive implicative equality algebra X, if f, is a left mapping on
X forae X, then Im(f,), Fix(f,) and ker(f,) are closed under the operation —.

Proof. If z,y € Im(f,), then there exist u,v € X such that f,(u) =z and f,(v) = y.
It follows that

x—=y=folu) = folv) =(a = u) = (a—=v)=a— (u—v)= f(u—v)€lm(f,).
Thus, Im(f,) is closed under —. Let =,y € ker(f,). Then f,(z) =1 = f,(y) and thus
faw=y)=a—(z—y)=(a—=2)=(a—=y) = fuz) = fuly) = 1.

Hence, x — y € ker(f,) and so ker(f,) is closed under —. Let z,y € Fix(f,). Then
fo(x) =z and f,(y) = y. Thus,

=y = ful@) = fuly) = (a = 2) = (a = y) =a— (2= y) = fulz =),
and so x — y € Fix(f,). Hence, Fix(f,) is closed under —. O

Using mathematical induction, we have the following corollary.

Corollary 3.5. In a positive implicative equality algebra X, if f, is a left mapping
on X fora € X, then Im(f), Fix(f?) and ker(f) are closed under the operation —
for all n € N.
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We define an order “<” and equality “=" on £(X) as follows.
fo < fo e falz) < fi(z) for all x € X,
fo=tvo fa <& fo < fa

for all f,, f» € L(X).

Proposition 3.3. If X is a positive implicative equality algebra, then the following
assertions are true in L(X):

(1) fao fo=foo fa;

(2) fao fo= fas

(3) flofa:fa:faofl;'

(4) agbjfbgfaa faofb:fa-

Proof. (1) Let a,b,z € X. Then by (2.1), it is clear that
fao folx)=fu(fs(x)=a— (b—=x)=b— (a — ) = fi( fu(z)) = fr o fulx).
(2) Let a,x € X. Since X is a positive equality algebra, we get that
fao fal@) = falfalz)) =a = (a = ) = a = x = fa(z).
(3) The proof is clear.

(4) Let a,b € X such that a < b. Then for any x € X, by (2.6), we get fy(x) =
b—x <a— x= f,(r). Moreover, since X is positive implicative, we have

faofolx)=a—(b—2)=(a—=b) —(a—2x)=1—=(a—z)=a—>x=f,
This completes the proof. 0

Let End_, (X)) denote the set of all left mappings on X which is a —-homomorphism,
that is,

End,(X) = {f., € £L(X) | f. is a =-homomorphism}.

Theorem 3.6. If X is a positive implicative &-equality algebra, then (End_(X),o0)
is a commutative semigroup with the zero element fi.

Proof. Let x € X. Since X is an &-equality algebra, we get
(fao fo)()=a— (b—=2)=(a®b) — = foep(x),
and 80, fyep(z) € L(X). Since X is a positive implicative equality algebra, we have
(fao fo)(x = y) = facp(z = y) = (@O b) = (z = y)
=((a®b) =) = ((a®b) = y)
= (fao fo)(@) = (fao [1)(y).
Let fa, fo, fe € End_,(X). Since X is an &-equality algebra, we have
(fa o (fb © fc))(x) = fa@(b@c)(x) = f(a@b)@c(m) - ((fa © fb) o fc)<x>

Also f,o f = fyo fo and f, o fi = f1 by Proposition 3.3. Therefore, (End_,(X),0) is
a commutative semigroup with the zero element f;. O
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4. RiGHT MAPPINGS

In this section, we introduce the notion of right mapping and investigate some
properties of it. Also, we prove that kernel of g2 is a filter of X. Finally we show

that the set of all right mappings on positive implicative equality algebra is a dual
BCK-algebra.

Definition 4.1. Given a fixed element a in an equality algebra X, we define a
self-mapping g, of X by

(4.1) 9o : X = X, =1z —a,
and we say that g, is a right mapping on X.
Let R(X) denote the set of all right mappings on an equality algebra X.

Example 4.1. Let X be the equality algebra as in Example 3.1. Then define a self
mapping g, : X — X by ¢.(0) = gu.(a) = 1 and ¢,(b) = go(1) = a. It is routine to
verify that g, is a right mapping on X.

Proposition 4.1. Every right mapping gz on X, where 3 is any element of X,
satisfies the following conditions:
(1) (Va € X)(ga(a) = 1,94(1) = a);
2) (Va,b € X)(ga(1) < ga(b));
3) If X is bounded, then g,(0) =1 and go(a) = —a for all a € X;
1) (vz € X)(gi(x) = 1);
5) (Va, 2,y € X)( < 3 = ga(y) < ga(a)).

Proof. Straightforward. O

N N N

Proposition 4.2. For any right mapping gs on X where [ is any element of X, we
have the following assertions.
(1) If X is a commutative equality algebra, then g2(x) = g*(a) for all x,a € X.
(2) For any natural number n € N and a € X, we have

n .« N is odd,
p-{

g2 nis even.

(3) ga(x) = 9a(y) = 92(y) = ga(x) for any a,z,y € X.

(4) y = 92(x) = ga(®) = galy) and g3(x) = g2(y) = x — gi(y) for any a,z,y €
X.

(5) g2(x) =1 if and only if f.(a) = a, where f, is a left mapping on X.

(6) The mapping g> is isotone.

Proof. (1) Since X is a commutative equality algebra, we have
9a(@) = (& = a) > a=(a—2) >z =ga),

for all a,xz € X.
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(2) Let z,a € X and n € N. Suppose n = 4. Then
ga(a) = (((z = a) wa) = a) » a=(r = a) = a= gs(v),
by (2.7). By the similar way, we can prove that g"(x) = g2(x) for any even number
n € N. Now, if n = 3, then
@)=z —a)—=a)—sa=1z— a=g,(),
by (2.7). By the similar way, we can prove that ¢7(z) = g,(x) for any odd number
n € N.
(3) Let a,xz,y € X. Then
9a(@) = galy) = ((x = a) = a) = (y — a)
=y— (((rt = a) > a) —a)
=y— (r—a)
=y — Ga(),
by (2.7). By the similar way, we can prove that g2(y) — ga(7) = y — go(z). Hence,

92(x) = 9a(y) = 92(y) — ga().
(4) Let z,y,a € X. Then

y—=ga(x) =y — ((x = a) = a) = (r—=a) = (y = a) = ga(x) = ga(y),
by (2.7). Also, we have
g3(x) = gi(y) = (

~—

x—>a)—>a) ((y = a) — a)
((x—>a)—>a)—>a)

(5) and (6) are Straightforward. O

Theorem 4.1. For any right mapping g, on X, the following are equivalent.

(1) g2 is a —-endomorphism.
(2) ¢2(x = y) =z — g(y) for all x,y € X.
(3) ga(z = y) = ga(y) = gal@) for allz,y € X.

Proof. (1) = (2). Let g*> be a —-endomorphism and z,y € X. Then
galz = y) = ga(x) — g2 (y)

={(z—a)—a)— ((y—a) —a)
=(y—a)— (((z —a) —a) —a)
=(y—a—(xr—a)
=z — ((y—a) —a)
=z = g;(y),

by (2.7).
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(2) = (3). For any z,y € X we have
gax = y)=r = gi(y) =2 ((y > a) > a)=(y > a) > (v > a)
=9a(y) = ga(),
by (2).
(3) = (1). For any a,z,y € X we have
92() = ga(y) = ((z = @) = a) = ((y = a) = a)
=(y—a)—= (((r = a) —a) —a)
= —a)—(z—a)
= 9a(y) = ga(x
= ga(r = y),
by (2.7) and (3). Therefore, g2 is a —-endomorphism on X. O

Theorem 4.2. For any right mapping g, on X, the following are equivalent.
(1) g2 is an identity map.
(2) ga is an injective map.
(3) ga s a surjective map.

Proof. (1) = (2). Let g? be an identity map. Let x,y € X be such that g,(z) = ga(v).
Then * —+ a =y — a and so

r=gi(x) =(zr—a) v a=(y—a)—>a=gly) =y
Hence, g, is an injective map on X.

(2) = (3). For any x,y € X, we have g,((x — a) — a) = g.(x) by (2.7). Since g,
is an injective map on X, it follows that (z — a) — a = x. Moreover, we know that
Im(g,) € X. Let y € X. Then g,(y — a) = (y - a) — a =y and so y € Im(g,).
Hence, X = Im(g,). Therefore, g, is a surjective map on X.

(3) = (1). Using (2.4), we have z < (x — a) — a = g2(x) for any z € X. Since
ga 1s a surjective map, for any y € X, there exists © € X such that g,(z) = v, i.e.,
x — a=y. It follows from (2.1) and (2.7) that

Gay) my=(y—a)—a)=(@—=a=s=(y>a)=y—y=1,
that is, g2(y) <y for all y € X. Hence, g2(y) = y for all y € X and therefore g* is an
identity map. O

Corollary 4.1. For any right mapping gz on X where 3 is any element of X, the
following are equivalent.

(1) g2 is an injective map for all a € X.

(2) g2 is an identity map for all a € X.

(3) g2 is a surjective map for all a € X.

Proof. By Theorem 4.2 and Proposition 4.2 (2), the proof is clear. 0]
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Theorem 4.3. For any right map g, on X, the set ker(g?) = {x € X | g*(z) = 1} is
a filter of X.

Proof. Let a € X. Since g2(1) = (1 - a) > a=a — a =1, we get that 1 € ker(g?).
Let z,y € X be such that x,2 — y € ker(g?). Then ¢2(z) = ¢2(zx —» y) = 1. Tt
follows from (2.1), (2.5) and (2.7) that
9ay) =y —~a) —a
=1—-(y—a)—a)
=(((z =y) = a) 2 a) = ((y = a) =a)

=W—=a) = ((((z—=y) —2a)—a)—a)
=Wy —=a=(r—=y —a
=@ =y = (y—=a)—a)
=@ =y = 1—=(y—a)—a)
=x—y = (((x—=a)—a)—((y—a) —a
=@ =y = (y—=a)—=((r—=0a)—a)—a))
=@ =y = (y—a) = (@ —a)
=@ =y = (= (y—a)—a)
>y —((y —a)—a)
=y—=a=(y—a
Hence, g2(y) = 1, and so y € ker(g?). Therefore, ker(g?) is a filter of X. O

Corollary 4.2. For any right map g?* on X, the set ker(g?*) is a filter of X, where
k is any natural number.

Proposition 4.3. Let gg be a right mapping on X where [ is any element of X. If
F and G are filters of X such that FNG = {1}, then g2(y) = g;(x) = 1 for allz € F
andy € G.

Proof. Let F and G be filters of X such that FNG = {1}. Suppose x € F and y € G.
Since ¢ < (z — y) > yand y < (xr — y) — y by (2.1), (2.2) and (2.4), we have
(z = y) >y FNG = {1} and so g’(z) = (r = y) — y = 1. By the similar way we
can prove that ¢2(y) = 1. O

Let X be a positive implicative equality algebra. We define the implication “<—”
on R(X) as follows:

= R(X) X R(X) = R(X),  (ga, g) = ga(x) = go(2).
Using the positive implicativity of X, we have

(9o = 9)(2) = ga(2) = go(7) = (z = @) = (£ = b) =2 = (¢ = b) = gasp(2),
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and so g, — gp € R(X).

Theorem 4.4. If X is a positive implicative equality algebra, then (R(X), <>, g1) is
a dual BCK-algebra (see [3] for the notion of dual BCK-algebra).

Proof. Let gq, gy, 9. € R(X). Then

((gb — gc) — ((gc — ga) — (gb — ga)))(m)
=(g5(x) = ge(@)) = ((ge(2) = gal2)) = (9(2) = ga(2)))

)
=((z—=b)=>(r—0c)=(((r—=c)=(r—=a) = (x—=0b) — (r—a)))
=@ = (b—=c) = (z = (c—=a) = (z = (b—a)))
=(@ = (b—=¢) = (z = ((c—=a) = (b—a)))
=z = ((b—c)— ((c—=a) = (b—a)))

=z —1=g(x)

and
(96 = ((9b = ga) = 9a)) () = go() = ((9(7) = ga(T)) = ga(T))
=(z = b) = ((z = b) = (. = a)) = (z = a))
=(z—b) = ((r—(b—a))— (:B a))
(x —b) = (x ( b—a

=z — ((b—a) — ( —a

=z — 1= g(x),
for all z € X by (2.1), (2.2), (2.5) and (3.1). Thus,

(9 = 9e) = ((9e = ga) = (96 = 9a)) = 91,
and gy — ((g» = ga) < ga) = g1. Since
(9 = 9a)(2) = ga(x) = golz) = (z 2 a) > (2 a) =1=2 = 1=g(z)
and
(9 = 91)(%) = ga(z) = g1(2) = (z = a) = (x = 1)
=r—(a—>1)=z—1=g(x),

for all z € X, we have g, — ¢, = ¢1 and g, < ¢1 = g1. Assume that g, — g, = ¢
and g, — g, = g1 Then

(= a) = (2 = b) = ga(x) = 9(x) = (90 = ) (@) = gu(z) =2 = 1 =1
and
(. —=0) = (v = a) = go(x) = galT) = (9 = gu)(¥) = qu(7) =2 > 1 =1,

for all z € X. It follows that g,(z) =2 — a =2 — b = gy(x) for all z € X. Hence,
9o = gp- Therefore, (R(X), <, ¢g1) is a dual BCK-algebra. O
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Define an order “<” on R(X) as follows:
(Vga, 3o € R(X))(9a < 96 < (ga = ) (x) = g1 (z) for all x € X.

It is clear that if X is a positive implicative equality algebra, then (R(X), <) is a
partially ordered set.

Proposition 4.4. If X is a positive implicative equality algebra, then the following
assertions are true in R(X):

(1) Ja = gp < (gb — ga) — (ga — gC);'

(2) 9o < (9a = Gb) = 9b;
(3) 9o < Ga;
(4) ga < gv and gy < go imply g = Gy;
(5) 9a < 915
(6) fagfb:fb%fcgfac_)fm fc;)fagfc%fb;
(1) fa= (fo= fo) = fo = (fo = [fo);
(8) fagfb%fcjfbgfac_)fc;
(9) fa — fb S (fc — fa) — (fc — fb);'
(10) fa S fb — fa'
Proof. 1t is easy by routine calculations. 0]

5. CONCLUSIONS AND FUTURE WORKS

In this paper, the notion of (right) left mapping on equality algebras is introduced,
some properties of it are investigated and it is proved that the set of all right mappings
on positive implicative equality algebra makes a dual BCK-algebra. Also, we studied
that under which condition the kernel of (right) left mapping is a filter. The notion of
—-endomorphism is introduced and it is proved that the set of all —-endomorphisms
on equality algebra is a commutative semigroup with zero element. Moreover, the
relation between left mapping and —-endomorphism and a characterization of positive
implicative equality algebra are investigated.

In future work, by using the notion of (right) left mapping on equality algeras and
the set of fixed point of that, we can introduce the notion of (right) left stabilizer
on equality algebra and by using this notion we can define a basis of a topology on
equality algebra. Also, we can introduce the notion of derivation on equality algebra
and extend it.
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