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ROUGH STATISTICAL CONVERGENCE FOR DIFFERENCE
SEQUENCES

NIHAL DEMIR1 AND HAFIZE GUMUS1

Abstract. As known, difference sequences have their own characteristics. In this
paper, we study the concept of rough statistical convergence for difference sequences
in a finite dimensional normed space. At the same time, we examine some properties
of the set st − limr

∆xi
=
{

x∗ ∈ X : ∆xi
r→ x∗

}
, which is called as r-statistical limit

set of the difference sequence (∆xi).

1. Introduction and Background

In this study, since the concept of rough statistical convergence will be studied
for difference sequences, it is important to give some literature knowledge about
difference sequences. Kizmaz [19] defined the concept of difference sequence such that
∆x = (∆xi) = (xi − xi+1), where x = (xi) is a real sequence for all i ∈ N (the set of
all natural numbers). In this paper, he also defined c0(∆) = {x = (xi) : ∆x ∈ c0} ,
c(∆) = {x = (xi) : ∆x ∈ c} and l∞(∆) = {x = (xi) : ∆x ∈ l∞} spaces, where l∞, c
and c0 are bounded, convergent and null sequence spaces, respectively. Furthermore,
he investigated relations between these spaces and obtained c0(∆) ⊆ c(∆) ⊆ l∞(∆).

After this study, which can be considered as a base about difference sequences, Et
[11], Et and Çolak [12], Başarır [5], Et and Nuray [15], Gümüş and Nuray [18], Aydın
and Başar [1], Bektaş et al. [6], Et and Esi [14], Savaş [23] and many others researched
various properties of this concept. Et and Çolak [12] generalized Kızmaz’s results for
generalized difference sequences.
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One of the other basic concepts of this study is the concept of statistical convergence.
Statistical convergence was defined by Fast [16] and Steinhaus’ [25], independently.
Schoenberg’s work [24] for this kind of convergence can be shown as one of the
important studies in summability theory. Since the concept of statistical convergence
has been applied to many fields by many researchers, a wide area of use has emerged.
Some of these areas are number theory [10], measure theory [20], trigonometric series
[30] and summability theory [17].

Statistical convergence has recently been studied by Ulusu and Nuray [27,29] and
Ulusu and Dündar [28] for set sequences.

The concept of density is quite wide and is defined in many different ways such
as natural density (asymptotic density), uniform density, density of rational and real
numbers, density of ratio sets. Natural density will also form the basis of statistical
convergence. Let K ⊆ N be a subset of N. d(K) := limn

1
n

∑n
j=1χK

(j) is said to be
natural density of K whenever the limit exists, where χ

K
is the characteristic function

of K. According to the definition of statistical convergence, sets with natural density
zero will be important for us. In more detail we can say that, if K is a finite set, then
it is clear that d(K) = 0. Another notation that we will use during our studies will be
the notation that a P feature is provided for almost all i ∈ N. If a sequence x = (xi)
provides any P property for all other elements except the elements with zero natural
density then the sequence is called “provides the P property for almost all i” and is
abbreviated by writing (a.a.i.). Now, it is possible to give the definition of statistical
convergence as follows.

Definition 1.1 ([16]). Let x = (xi) be a real or complex sequence. x is statistically
convergent to L if

lim
n

1
n

|{i ≤ n : |xi − L| ≥ ε}| = 0,

for each ε > 0 or equivalently

|xi − L| < ε (a.a.i).

This is indicated by st-lim x = L. So, it is easy to say that each sequence that
convergent is also statistical convergent.

Basarir [5] defined the concept of ∆-statistical convergence as follows.

Definition 1.2 ([5]). Let x = (xi) be a real sequence and ∆x = (∆xi) = (xi − xi+1).
For each ε > 0 if

lim
n

1
n

|{i ≤ n : |∆xi − L| ≥ ε}| = 0,

or equivalently
|∆xi − L| < ε (a.a.i),

then x is ∆-statistically convergent to L. The set of all ∆-statistically convergent
sequences is denoted by S(∆).
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The concept of rough convergence is based on the idea of defining a new convergence
type by extending the radius of convergence of a non-convergent but bounded sequence.
Rough convergence is defined by Phu [21] in finite dimensional normed spaces. This
concept was later extended by Phu [22] to infinite dimensional normed spaces. The
definition of rough convergence in a finite dimensional normed space can be given as
follows.

Definition 1.3 ([21]). Let (X, ∥·∥) be a normed linear space and r be a non-negative
real number. Then the sequence x = (xi) in X is said to be rough convergent (or
r-convergent) to x∗, if for any ε > 0, there exists an iε ∈ N such that

∥xi − x∗∥ < r + ε,

for all i ≥ iε. This expression means that

lim sup ∥xi − x∗∥ < r,

and r is called as roughness degree. In this definition, we say that x∗ is an r-limit
point of the sequence (xi) and it is denoted by xi

r→ x∗.

Let (xi) be a rough convergent sequence in a finite dimensional normed space
(X, ∥·∥) and r be a non-negative real number. For each r > 0 we obtain a different x∗
point. So, this point which is called as the r-limit point of the sequence may not be
unique. Therefore, a set of these points can be mentioned. This set is called as the
set of r-limit points and is indicated by limr

xi
. As seen, the topological and analytical

features of this set are very important. The r-limit points set of the sequence (xi) is
defined by

limr
xi

=
{
x∗ ∈ X : xi

r→ x∗
}

.

Following Phu’s definition [21], Aytar [2] described rough statistically convergent
sequences as follows.

Definition 1.4 ([2]). Let (X, ∥·∥) be a normed linear space and r be a non-negative
real number. The sequence x = (xi) in X is said to be rough statistically convergent
(or r-statistically convergent) to x∗, if the set

{i ∈ N : ∥xi − x∗∥ ≥ r + ε}

has natural density zero for any ε > 0. This expression means that

st − lim sup ∥xi − x∗∥ ≤ r,

and it is denoted by xi
rst→ x∗.

Aytar [3, 4] also studied with rough limit set and rough cluster points. After these
studies, Demir [7] and Demir and Gümüş [8] studied the concept of rough convergence
for difference sequences and proved some basic theorems. On the other hand, Dündar
and Çakan [9] define rough I-convergence.
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2. Our Aim

The idea of rough statistical convergence has developed a new perspective for non-
convergent sequences. Applying this new perspective to difference sequences, which
are known with their own properties, will produce very interesting results.

3. Main Results

In this part we investigate the concept of rough statistical convergence for difference
sequences in (Rn, ∥·∥) space, where Rn is real n-dimensional normed space and we
prove some important theorems.

Definition 3.1. Let (Rn, ∥·∥) be the real n-dimensional normed space and r be a
non-negative real number. A difference sequence ∆x = (∆xi) in Rn is said to be
rough statistically convergent (or r-statistically convergent) to x∗, provided that the
set

{i ∈ N : ∥∆xi − x∗∥ ≥ r + ε}
has natural density zero for any ε > 0 or equivalently

st − lim sup ∥∆xi − x∗∥ ≤ r.

In this case we write ∆xi
r−st→ x∗.

The set of all r-st-limit points of a difference sequence ∆x is indicated by

st − limr
∆xi

=
{
x∗ ∈ Rn : ∆xi

r−st→ x∗
}

.

The notation r denotes the degree of roughness and it is easy to see that if r = 0,
then statistical convergence is obtained.

The following example gives us an example of a difference sequence which is not
statistically convergent but r-statistically convergent.

Example 3.1. Let the difference sequence ∆y = (∆yi) be a statistically convergent to
y∗ and cannot be measured exactly. Additionally, let ∆x = (∆xi) be a sequence that
provides the property ∥∆xi − ∆yi∥ ≤ r (a.a.i.). Then the sets

{i ∈ N : ∥∆yi − x∗∥ ≥ ε}

and
{i ∈ N : ∥∆xi − ∆yi∥ ≥ ε} ,

have natural density zero for any ε > 0. According to these informations we can not
say that ∆x is statistically convergent. But we know that

{i ∈ N : ∥∆xi − y∗∥ ≥ r + ε} ⊆ {i ∈ N : ∥∆yi − y∗∥ ≥ ε}

and this relation gives us that the natural density of the set on the left will be zero.
So, the sequence ∆x is r-statistically convergent.
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For the set of all r − st-limit points of ∆x, if st − limr
∆xi

≠ ∅, then st − limr
∆xi

=
[st − lim sup ∆x − r, st − lim inf ∆x + r] . On the other hand, we know that if ∆x is
unbounded, then the set of r-limit points is empty, i.e., limr

∆xi
= ∅. Whereas this

sequence might be rough statistically convergent. The following example explains this
situation.

Example 3.2. Let

∆xi =
{

(−1)i, if i = k2,
i, otherwise,

i.e.,
(∆xi) = (−1, 2, 3, 1, 5, 6, 7, 8, −1, . . . ).

Then
{i ∈ N : ∥∆xi − x∗∥ ≥ r + ε} = {1, 4, 9, 16, . . . }

and this set has natural density zero. So, we obtain

st − limr
∆xi

=
{

∅, if r < 1,
[1 − r, r − 1] , otherwise.

Corollary 3.1. st − limr
∆xi

̸= ∅ does not imply limr
∆xi

̸= ∅, but limr
∆xi

≠ ∅ implies
st − limr

∆xi
̸= ∅. Therefore,

limr
∆xi

⊆ st − limr
∆xi

and
diam(limr

∆xi
) ⊆ diam

(
st − limr

∆xi

)
.

Theorem 3.1. For any difference sequence ∆x = (∆xi) , diameter of st − limr
∆xi

is
not greater than 2r. Generally, there is no smaller bound.

Proof. Suppose that diam
(
st − limr

∆xi

)
> 2r. Then there exist y, z ∈ st − limr

∆xi

such that
d := ∥y − z∥ > 2r.

Take an arbitrary ε ∈
(
0, d

2 − r
)

. Define A1 and A2 sets such that

A1 := {i ∈ N : ∥∆xi − y∥ ≥ r + ε}

and
A2 := {i ∈ N : ∥∆xi − z∥ ≥ r + ε} .

Because y, z ∈ st − limr
∆xi

, we have d(A1) = 0, d(A2) = 0 and from the properties of
natural density, d(Ac

1 ∩ Ac
2) = 1. So,

∥y − z∥ ≤ ∥∆xi − y∥ + ∥∆xi − z∥ < 2 (r + ε) < 2r + 2
(

d

2 − r

)
= d = ∥y − z∥ ,

for all i ∈ Ac
1 ∩ Ac

2. This is a contradiction. Therefore, diam
(
st − limr

∆xi

)
≤ 2r.



738 N. DEMIR AND H. GUMUS

Now, let’s show that there is generally no smaller bound. For this, we show that
st − limr

∆xi
= B̄r(x∗). We know that diam

(
B̄r(x∗)

)
= 2r for

B̄r(x∗) := {y ∈ X : ∥x∗ − y∥ ≤ r} .

Choose a difference sequence (∆xi), with st − lim ∆x = x∗. For each ε > 0 we have
d({i ∈ N : ∥∆xi − x∗∥ ≥ ε}) = 0.

Then
∥∆xi − y∥ ≤ ∥∆xi − x∗∥ + ∥x∗ − y∥ ≤ ∥∆xi − x∗∥ + r,

for each y ∈ B̄r(x∗). In this case,
∥∆xi − y∥ < r + ε,

for each i ∈ {i ∈ N : ∥∆xi − x∗∥ < ε} . At the same time, we know that
d ({i ∈ N : ∥∆xi − x∗∥ < ε}) = 1

and so, y ∈ st − limr
∆xi

. Then we have st − limr
∆xi

= B̄r(x∗). □

Theorem 3.2. For a bounded sequence (∆xi), there is a non-negative real number r
such that st − limr

∆xi
̸= 0.

The question of whether the converse of the above theorem is also valid is a question
that can immediately come to mind. The answer is no. But if the sequence is
statistically bounded, the converse is valid. The theorem that gives this case is below.

Theorem 3.3. (∆xi) is statistically bounded if and only if there exists a non-negative
real number r such that st − limr

∆xi
̸= 0.

Proof. First, let’s show that st − limr
∆xi

̸= 0, when ∆x is statistically bounded. From
the definition of statistically boundedness, there exists a positive real number M such
that

d ({i ∈ N : ∥∆xi∥ ≥ M}) = 0.

Let’s define r′ := sup {∥∆xi∥ : i ∈ Kc}, where K = {i ∈ N : ∥∆xi∥ ≥ M} . Then
st − limr′

∆xi
contains the origin of Rn and st − limr′

∆xi
̸= ∅.

Now, assume that st − limr′

∆xi
≠ ∅ for some r ≥ 0. Then we have an x∗ such that

x∗ ∈ st − limr′

∆xi
. In that case

d ({i ∈ N : ∥∆xi − x∗∥ ≥ r + ε}) = 0,

for each ε > 0. So, we can say that almost all ∆xi are contained in some ball with
any radius greater than r and ∆xi is statistically bounded. □

In rough convergence, we know that when
(
∆xij

)
is a subset of (∆xi)

limr
∆xi

⊆ limr
∆xij

.

In the case of rough statistical convergence, the subsequence must be non-thin to
satisfy this condition.
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Example 3.3. Let ∆xi :=
{

i, if i = k2,
0, otherwise,

is a difference sequence of real numbers.

Then
(
∆xij

)
:= (1, 4, 9, 16, . . . ) is a subsequence of (∆xi). We have st − limr

∆xi
=

[−r, r] and st − limr
∆xij

= ∅.

Definition 3.2.
(
∆xij

)
is a non-thin subsequence of (∆xi) provided that the set B

does not have natural density zero where B = {ij : j ∈ N}.

Theorem 3.4. If
(
∆xij

)
is a non-thin subsequence of (∆xi) , then st − limr

∆xi
⊆

st − limr
∆xij

.

Theorem 3.5. st − limr
∆xi

is closed.
Proof. For this proof, we use one of the well-known theorems of functional analysis.
According to this theorem, “For a convergent sequence ∆yi → y∗, when ∆y ∈ st −
limr

∆xi
(at the same time y∗ ∈ st−limr

∆xi
), then st−limr

∆xi
is closed”. If st−limr

∆xi
= ∅,

then the proof is trivial. Suppose that st − limr
∆xi

≠ ∅. Then we have a sequence
(∆yi) ⊆ st − limr

∆xi
such that ∆yi → y∗. From the definition of convergence, for each

ε > 0 there exists i ε
2

∈ N such that ∥∆yi − y∗∥ < ε
2 for all i > i ε

2
. Choose an i0 ∈ N

such that i0 > i ε
2
. Then ∥∆yi0 − y∗∥ < ε

2 .
On the other hand, since ∆yi ⊆ st − limr

∆xi
, we have yi0 ∈ st − limr

∆xi
, i.e.,

d
({

i ∈ N : ∥∆xi − yi0∥ ≥ r + ε

2

})
= 0.

Now, we need to show following inclusion

{i ∈ N : ∥∆xi − y∗∥ < r + ε} ⊇
{

i ∈ N : ∥∆xi − yi0∥ < r + ε

2

}
.

Let k ∈
{
i ∈ N : ∥∆xi − yi0∥ < r + ε

2

}
. Then ∥∆xk − yi0∥ < r + ε

2 and hence
∥∆xk − y∗∥ ≤ ∥∆xk − yi0∥ + ∥yi0 − y∗∥ < r + ε.

It means k ∈ {i ∈ N : ∥∆xi − yi0∥ < r + ε} and we have the proof. □

Theorem 3.6. st − limr
∆xi

is convex.
Proof. Suppose that y0, y1 ∈ st − limr

∆xi
and let ε > 0 be given. Define the sets

K1 := {i ∈ N : ∥∆xi − y0∥ ≥ r + ε}
and

K2 := {i ∈ N : ∥∆xi − y1∥ ≥ r + ε} .

We know that d (K1) = d (K2) = 0 and d (Kc
1 ∩ Kc

2) = 1 from the assumption. Then
we have

∥∆xi − [(1 − λ) y0 + λy1]∥ = ∥(1 − λ) (∆xi − y0) + λ (∆xi − y1)∥ < r + ε,

for each i ∈ Kc
1 ∩ Kc

2 and each λ ∈ [0, 1]. We get
d ({i ∈ N : ∥∆xi − [(1 − λ) y0 + λy1]∥ ≥ r + ε}) = 0,
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this means [(1 − λ) y0 + λy1] ∈ st − limr
∆xi

and so st − limr
∆xi

is convex. □

Theorem 3.7. The sequence (∆xi) is r-statistically convergent to x∗ if only if there
exists a difference sequence ∆y = (∆yi) such that st−lim ∆y = x∗ and ∥∆xi − ∆yi∥ ≤
r for each i ∈ N.

Proof. For the necessity part, suppose that (∆xi) is r-statistically convergent to x∗.
From the definition

st − lim sup ∥∆xi − x∗∥ ≤ r.

Let’s define the sequence (∆yi) as follows:

∆yi :=


x∗, if ∥∆xi − x∗∥ ≤ r,

∆xi + r
x∗ − ∆xi

∥x∗ − ∆xi∥
, otherwise.

Then it is easy to see that

∥∆yi − x∗∥ =
{

0, if ∥∆xi − x∗∥ ≤ r,
∥∆xi − x∗∥ − r, otherwise,

and ∥∆xi − ∆yi∥ ≤ r for each i ∈ N.
For the sufficiency, suppose that st − lim ∆y = x∗ and ∥∆xi − ∆yi∥ ≤ r for each

i ∈ N. From the definiton of statistical convergence, for each ε > 0 we get
d ({i ∈ N : ∥∆yi − x∗∥ ≥ ε}) = 0.

We know that
{i ∈ N : ∥∆yi − x∗∥ ≥ ε} ⊇ {i ∈ N : ∥∆xi − x∗∥ ≥ r + ε} ,

and we have
d ({i ∈ N : ∥∆xi − x∗∥ ≥ r + ε}) = 0. □

In order to prove the next theorem, we will need the following lemma, which is
related to statistical cluster points.

Lemma 3.1. Let Γ∆x be the set of all statistical cluster points of ∆x and c be an
arbitrary element of this set. For all x∗ ∈ st − limr

∆xi
we have ∥x∗ − c∥ ≤ r.

Proof. Let’s accept the contrary of the lemma and find the contradiction. Assume
that there exist a point c ∈ Γ∆x and x∗ ∈ st − limr

∆xi
such that ∥x∗ − c∥ > r. Define

ε = ∥x∗−c∥−r
3 . In that case,

{i ∈ N : ∥∆xi − x∗∥ ≥ r + ε} ⊇ {i ∈ N : ∥∆xi − c∥ < ε} .

From the fact that c ∈ Γ∆x, we know that the natural density of the set
{i ∈ N : ∥∆xi − c∥ < ε}

is not zero. So, by using the inclusion above, we obtain
d ({i ∈ N : ∥∆xi − x∗∥ ≥ r + ε}) ̸= 0,

and this completes the proof. □
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Theorem 3.8. For a difference sequence ∆x = (∆xi) , ∆xi
r−st→ x∗ if and only if

st − limr
∆xi

= B̄r(x∗).

Proof. In Theorem 3.1, we proved the necessity part. So, we need to prove if st −
limr

∆xi
= B̄r(x∗), then ∆xi

r−st→ x∗. We know that if the statistical cluster point of a
statistically bounded sequence is unique, then the sequence is statistically convergent
to this point.

In that case, if st − limr
∆xi

= B̄r(x∗) ̸= ∅, then (∆xi) is statistically bounded. Let
(∆xi) sequence has two different statistical cluster points, such as x∗ and x′

∗. Then
the point

x̄∗ := x∗ + r

∥x∗ − x′
∗∥

(x∗ − x′
∗) ,

satisfies

∥x̄∗ − x′
∗∥ =

(
r

∥x∗ − x′
∗∥

+ 1
)

∥x∗ − x′
∗∥ = r + ∥x∗ − x′

∗∥ > r.

From the previous lemma, x̄∗ /∈ st − limr
∆xi

but this contradicts the fact that
∥x̄∗ − x∗∥ = r and st − limr

∆xi
= B̄r(x∗). This means that x∗ is the unique statistical

cluster point of ∆x. So, ∆x is statistically convergent to x∗. □

4. Conclusions and Future Developments

In our paper, we obtain some different results by defining the concept of rough
statistical convergence for difference sequences. Later on, we investigate some proper-
ties of r-statistical limit point set of a difference sequence. In addition, it may be of
interest to investigate similar results for generalized difference sequences.
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paper.
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