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(ω, c)-ALMOST PERIODIC DISTRIBUTIONS

MOHAMMED TAHA KHALLADI1, MARKO KOSTIĆ2, ABDELKADER RAHMANI3,
AND DANIEL VELINOV4

Abstract. The aim of this work is the introduction of (w, c)-almost periodicity
(resp. asymptotic (w, c)-almost periodicity) in distributions spaces. The charac-
terizations and main properties of these distributions are given. We also study
the existence of distributional (w, c)-almost periodic solutions of linear differential
systems.

1. Introduction

The theory of almost periodicity was introduced by H. Bohr around 1925 and
generalized by many other authors, see [3, 5].

The (ω, c)-almost periodicity of continuous functions and their Stepanov generaliza-
tions is introduced and studied recently by M. T. Khalladi, M. Kostić, A. Rahmani
and D. Velinov.

Almost periodic distributions extending the classical Bohr and Stepanoff almost
periodic functions are due to L. Schwartz, see [9]. Asymptotic almost periodicity of
Schwartz distributions was introduced by I. Cioransescu [4].

This work is aimed to introduce and investigate (ω, c)-almost periodicity (resp.
asymptotic (w, c)-almost periodicity) in the setting of Schwartz-Sobolev distributions.

The paper is organized as follows. In the second section, we recall the concept of
(w, c)-almost periodicity which is a generalization of the classical notion of almost
periodicity and give some of their fundamental properties. Next, we introduce the

Key words and phrases. (w, c)-Almost periodic functions, almost periodic Schwartz distributions,
(w, c)-almost periodic distributions, asymptotically (w, c)-almost periodic distributions, linear differ-
ential systems.
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space Lp
w,c of (w, c)-Lebesgue functions with exponent p, and then, in a similar way to

L. SchwartzŠs work [9], we deĄne the functional space DLp
w,c

of all inĄnitely differen-
tiable functions belonging to the space Lp

w,c as well as each of their derivatives. Some
properties of these spaces of (w, c)-functions are given. At the end of this section, we
introduce the space of (w, c)-smooth almost periodic functions and analyze their basic
properties. The third section is devoted to the study of (w, c)-almost periodic distri-
butions (resp. asymptotically (w, c)-almost periodic distributions) by Ąrst deĄning the
space D′

Lp
w,c

as topological dual of DLq
w,c

, 1
p

+ 1
q

= 1. In particular, we study the space

B′
w,c of (w, c)-bounded distributions. This space provides a general framework for our

investigation of generalized (ω, c)-almost periodicity. We also give some characteri-
zations of (w, c)-almost periodic distributions and their main properties. Finally, we
apply our abstract theoretical results in the study of the existence of distributional
(w, c)-almost periodic solutions of linear differential systems. Throughout the paper,
we consider functions and distributions deĄned on the whole space of real numbers R.

2. Smooth (w, c)-Almost Periodic Functions

In this section, we introduce the space of smooth (w, c)-almost periodic functions
and investigate some of their basic properties. Denote by AP the well-known space
of Bohr almost periodic functions on R. We recall the deĄnition and some properties
of the space APw,c of (ω, c)- almost periodic functions.

In the sequel we will use the following notations:

(2.1) φw,c (·) = c−
(·)
w φ (·) , φ ∈ C

∞ or Lp, 1 ≤ p ≤ +∞, and Tw,c = c−
(·)
w T, T ∈ D

′,

where the equality is taken in the usual (resp. Lebesgue, distributional) sense.

Definition 2.1. Let c ∈ C\¶0♢ and w > 0. A complex-valued function f deĄned and
continuous on R is called (w, c)-almost periodic if and only if fω,c ∈ AP. Denote by
APw,c the set of all such functions.

When c = 1 and w > 0 arbitrary, APw,c = AP, the space of Bohr almost periodic
functions.

The space APω,c is a vector space together with the usual operations of addition
and pointwise multiplication with scalars.

Some properties of (w, c)-almost periodic functions are summarized in the following
proposition.

Proposition 2.1. (i) The space APw,c endowed with the (w, c)-norm

∥f∥w,c = sup
t∈R

♣fw,c (t)♣

is a Banach space.

(ii) If f ∈ APw,c, then f̃ (·) = f (−·) ∈ APw,1/c.
(iii) If w > 0, c ∈ C\ ¶0♢ such that ♣c♣ = 1 and if f ∈ APw,c such that inf

x∈R
♣f (x)♣ > 0,

then 1/f ∈ APw,1/c.
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(iv) If f ∈ APw,c and gw,c ∈ L1, then f ∗ g ∈ APw,c.

To construct the (w, c)-smooth almost periodic functions, we need to introduce
some new functional spaces. Let p ∈ [1,+∞] and f a complex valued measurable
function on R.

We say that f is a (w, c)-Lebesgue function with exponent p, if


∫

R

♣fw,c (t)♣p dt



1
p

< ∞, for 1 ≤ p < +∞,

and

sup
t∈R

♣fw,c (t)♣ < ∞, for p = +∞.

We denote by Lp
w,c the set of (w, c)-Lebesgue functions with exponent p, i.e.,

Lp
w,c := ¶f : R → C measurable, fw,c ∈ Lp♢ .

When c = 1, Lp
w,c := Lp is the classical Lebesgue space over R.

Proposition 2.2. The space Lp
w,c endowed with the (w, c)-norm

∥f∥
L

p
w,c

:= ∥fw,c∥Lp , for 1 ≤ p < +∞,

and

∥f∥
L∞

w,c

:= ∥f∥w,c , for p = +∞,

is a Banach space.

Proposition 2.3. D is dense in Lp
w,c, 1 ≤ p < ∞.

Proof. Since D is dense in the space Cc of continuous functions with compact support
it suffices to show that Cc is dense in Lp

w,c for 1 ≤ p < ∞.
Let S be the set of all simple measurable functions s, with complex values, deĄned

on R and such that

mes ¶t : s (t) ̸= 0♢ < ∞.

First, it is clear that S is dense in Lp
w,c for 1 ≤ p < ∞. Indeed, as c− t

w s ∈ Lp,
then S ⊂ Lp

w,c. Suppose f ∈ Lp
w,c is positive and deĄne the sequence (sn)n such that

0 ≤ s1 ≤ s2 ≤ · · · ≤ f, and for each t ∈ R, sn (t) → f (t) when n → +∞. Then

(f − sn)w,c = c− t
w (f − sn) ∈ Lp, hence sn ∈ S. Furthermore, since

∣∣∣c− t
w (f − sn)

∣∣∣
p ≤ fp,

LebesgueŠs dominated convergence theorem shows that
∥∥∥(f − sn)w,c

∥∥∥
Lp

=
∥∥∥c− t

w (f − sn)
∥∥∥

Lp
→ 0,

when n → +∞. Hence, ∥f − sn∥Lp
w,c

→ 0 when n → +∞. On the other hand, by

LusinŠs theorem, for s ∈ S and ε > 0, there exists g ∈ Cc such that g (t) = s (t) ,
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except on a set of measure less than ε and ♣g♣ ≤ ∥s∥
∞

and since s takes only a Ąnite
number of values, there exists a constant C > 0 which depends on c and w such that

∥∥∥(g − s)w,c

∥∥∥
Lp

=



∫

R

∣∣∣c− t
w (g (t) − s (t))

∣∣∣
p
dt




1
p

≤ 2Cε
1
p ∥s∥

∞
.

The density of S in Lp
w,c completes the proof. □

We deĄne
DLp

w,c
:= ¶φ ∈ C

∞ : φw,c ∈ DLp , j ∈ Z+♢ .
When c = 1, we get DLp

w,c
:= DLp . Moreover, it is easy to show that the space

DLp
w,c

, 1 ≤ p ≤ ∞, endowed with the topology deĄned by the following countable
family of norms

♣φ♣k,p;w,c :=
∑

j≤k

∥∥∥(φw,c)
(j)
∥∥∥

Lp
, k ∈ Z+,

is a Fréchet subspace of C∞.

Proposition 2.4. Let 1 ≤ p ≤ ∞. If φ, ψ ∈ DLp

2w,c
, then φψ ∈ DLp

w,c
.

Proof. Let φ, ψ ∈ DLp

2w,c
. Then φ2w,c ∈ DLp and ψ2w,c ∈ DLp , j ∈ Z+. So, φ

(j)
2w,c ∈ Lp

and ψ
(j)
2w,c ∈ Lp. By LeibnizŠs rule, we obtain

(2.2)
(
(φψ)w,c

(j)
=
(
c− t

2wφc− t
2wψ

(j)
= (φ2w,cψ2w,c)

(j) =
j∑

i=1

(
i

j


φ

(i)
2w,cψ

(j−i)
2w,c ∈ Lp.

This shows that(φψ)w,c ∈ DLp . Hence, φψ ∈ DLp
w,c
. □

The following result shows that the family of norms ♣·♣k,p;w,c is submultiplicative.

Proposition 2.5. Let 1 ≤ p ≤ ∞. If φ, ψ ∈ DLp

2w,c
, then for all k ∈ Z+, there exists

Ck > 0 such that

♣φψ♣k,p;w,c ≤ Ck ♣φ♣k,p;2w,c · ♣ψ♣k,p;2w,c .

Proof. Let φ, ψ ∈ DLp

2w,c
. By Proposition 2.2-Proposition 2.4, we have

∑

j≤k

∥∥∥∥
(
(φψ)w,c

(j)
∥∥∥∥

Lp

=
∑

j≤k

∥∥∥∥∥∥

j∑

i=1

(
i

j


(φ2w,c)

(i) (ψ2w,c)
(j−i)

∥∥∥∥∥∥
Lp

≤
∑

j≤k

j∑

i=1

(
i

j

∥∥∥(φ2w,c)
(i) (ψ2w,c)

(j−i)
∥∥∥

Lp

≤
∑

j≤k

j∑

i=1

(
i

j

∥∥∥(φ2w,c)
(i)
∥∥∥

Lp

∑

j≤k

j∑

i=1

(
i

j

∥∥∥(ψ2w,c)
(j−i)

∥∥∥
Lp
.

So, there exists Ck =

(
∑

j≤k

j∑
i=1

(
i
j

2

> 0 such that

♣φψ♣k,p;w,c ≤ Ck ♣φ♣k,p;2w,c · ♣ψ♣k,p;2w,c . □
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For 1 ≤ p < ∞, we have D ⊂ DLp
w,c

⊂ DL∞

w,c
. Moreover, we have the following

result.

Proposition 2.6. For 1 ≤ p < ∞, the space D is dense in DLp
w,c
.

Proof. It follows from the fact that DLp
w,c

⊂ Lp
w,c and the density of D in Lp

w,c, see
Proposition 2.3. □

The space D is not dense in DL∞

w,c
, we then deĄne

.

DL∞

w,c
as the subspace of all

functions in DL∞

w,c
which vanish at inĄnity with all their derivatives. This space is the

closure of the space DL∞

w,c
in D. It is clear that

.

DL∞

w,c
is a closed subspace of DL∞

w,c
,

hence it is a Fréchet space. Moreover, it is easy to check the following properties on
the structure of DLp

w,c
.

Proposition 2.7. For 1 ≤ p < ∞, we have DLp
w,c

→֒
.

DL∞

w,c
→֒ DL∞

w,c
, with continuous

embedding.

Recall also the following space of smooth almost periodic functions introduced by
L. Schwartz

Bap :=
{
φ ∈ DL∞ : φ(j) ∈ AP, j ∈ Z+

}
.

We have the following properties of Bap.

Proposition 2.8. (i) Bap = AP ∩ DL∞ .
(ii) Bap is a closed differential subalgebra of DL∞ .
(iii) If f ∈ L1 and φ ∈ Bap, then f ∗ φ ∈ Bap.

Proof. See [9]. □

Now, we can introduce the space of smooth (w, c)-almost periodic functions.

Definition 2.2. The space of smooth (w, c)-almost periodic functions on R, is deĄned
by

BAPw,c
:=
{
φ ∈ DL∞

w,c
: φw,c ∈ Bap, j ∈ Z+

}
.

We endow BAPw,c
with the topology induced by DL∞

w,c
. Some properties of BAPw,c

are given in the following.

Proposition 2.9. (i) BAPw,c
= APw,c ∩ DL∞

w,c
.

(ii) BAPw,c
is a closed subspace of DL∞

w,c
.

(iii) If f ∈ L1
w,c and φ ∈ BAPw,c

, then c
t
w (fw,c ∗ φw,c) ∈ BAPw,c

.

Proof. (i) Obvious.
(ii) It follows from (i) and the completeness of (AP, ∥·∥

∞
) .

(iii) If f ∈ L1
w,c and φ ∈ BAPw,c

, then fw,c ∈ L1 and φw,c ∈ Bap. From Proposition

2.8, we have fw,c ∗ φw,c ∈ Bap, hence c− t
w

(
c

t
w (fw,c ∗ φw,c)


∈ Bap, which shows that

c
t
w (fw,c ∗ φw,c) ∈ BAPw,c

. □
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Corollary 2.1. If f ∈ DL∞

w,c
and c

t
w (fw,c ∗ φw,c) ∈ APw,c, φ ∈ D, then f ∈ BAPw,c

.

Remark 2.1. It is clear that BAPw,c
⊂ APw,c ∩ C∞, whereas the converse inclusion is

not true. Indeed, the function

f (t) = 2−t
√

2 + cos t+ cos
√

2t

is an element of APw,c ∩ C∞, with c = 2 and w = 1. However,

f ′ (t) = 2−t


 − sin t−

√
2 sin

√
2t

2
√

2 + cos t+ cos
√

2t
− ln 2

√
2 + cos t+ cos

√
2t




is not bounded, because inf
t∈R

(
2 + cos t+ cos

√
2t


= 0 and therefore

− sin t−
√

2 sin
√

2t

2
√

2 + cos t+ cos
√

2t
/∈ AP,

hence f /∈ BAPw,c
.

3. (w, c)-Almost Periodic Distributions

This section deals with the concept of (w, c)-almost periodicity in the setting of
Sobolev-Schwartz distributions. For this we need to introduce the so-called space of
Lp

w,c-distributions, 1 ≤ p ≤ ∞. We Ąrst recall the space of Lp-distributions, 1 ≤ p ≤
∞, which has been introduced for the Ąrst time by L. Schwartz in [9]. L. Schwartz
has introduced the space D′

Lp as topological dual of DLq , 1
p

+ 1
q

= 1. These spaces is

related to Sobolev spaces. For more details, see [1] and [9].

Definition 3.1. Let 1 < p ≤ ∞, the space D′
Lp is the topological dual of DLq , where

1
p

+ 1
q

= 1. An element of D′
L∞ is called a bounded distribution.

Theorem 3.1. Let T ∈ D′. Then the following statements are equivalent.

(i) T ∈ D′
Lp .

(ii) T ∗ φ ∈ Lp, φ ∈ D.

(iii) There exist k ∈ Z+ and (fj)0≤j≤k ⊂ Lp : T =
k∑

j=0
f

(j)
j .

Proof. See [1] or [9]. □

Thanks to the density of the space D in DLp
w,c

, 1 ≤ p < ∞, (resp.
.

DL∞

w,c
), we have

that the space DLp
w,c

(resp.
.

DL∞

w,c
) is a normal space of distributions, i.e., the elements

of topological dual of DLp
w,c

(resp.
.

DL∞

w,c
) can be identiĄed with continuous linear

forms on D.

Definition 3.2. For 1 < p ≤ ∞, we denote by D′
Lp

w,c
the topological dual of DLq

w,c
,

where 1
p

+ 1
q

= 1.



(ω, c)-ALMOST PERIODIC DISTRIBUTIONS 13

The following spaces of Lp
w,c-distributions are needed to deĄne and study the (w, c)-

almost periodicity of distributions.

Definition 3.3. (i) The topological dual of DL1
w,c
, denoted by B

′

w,c, is called the space

of (w, c)-bounded distributions.

(ii) The topological dual of
.

DL∞

w,c
, denoted by D

′

L1
w,c
, is called the space of (w, c)-

integrable distributions.

By applying Theorem 3.1, we can easily show the following characterizations of
Lp

w,c-distributions.

Theorem 3.2. Let T ∈ D′. Then the following statements are equivalent.

(i) T ∈ D′
Lp

w,c
.

(ii) c
t
w (Tw,c ∗ φ) ∈ Lp

w,c, φ ∈ D.

(iii) There exist k ∈ Z+ and (fj)0≤j≤k ⊂ Lp
w,c : T = c

t
w

k∑
j=0

(fw,c)
(j)
j , where

(
(fw,c)j



0≤j≤k
=
(
c− t

w fj



0≤j≤k
.

Remark 3.1. As a consequence of Theorem 3.2, we have that T ∈ D′
Lp

w,c
if and only if

Tw,c ∈ D′
Lp .

Returning to the notation (2.1) , we recall that a distribution T ∈ D′ is zero on an
open subset V of R if

⟨T, φ⟩ = 0, φ ∈ D (V ) ,

and that two distributions T, S ∈ D′ coincide on V if T − S = 0 on V.

Lemma 3.1. Let f ∈ C∞ and T ∈ D′. If fT = 0, then T = 0 on the set G =
¶x ∈ R : f (x) ̸= 0♢ .

Proof. Let φ ∈ D with suppφ ⊂ G. Then we have

⟨T, φ⟩ =

〈
T, f

φ

f

〉
=

〈
fT,

φ

f

〉
= 0,

because φ
f

∈ D and by hypothesis fT = 0. □

Proposition 3.1. Let T ∈ D′. Then T ∈ D′
Lp

w,c
, 1 ≤ p ≤ ∞, if and only if there

exists S ∈ D′
Lp, 1 ≤ p ≤ ∞, such that T = c

t
wS in D′.

Proof. (=⇒) If T ∈ D′
Lp

w,c
, then we have (see Remark 3.1) Tw,c = c− t

wT ∈ D′
Lp . So,

there exists S ∈ D′
Lp such that c− t

wT − S = 0 in D′
Lp , i.e., c− t

w

(
T − c

t
wS


= 0 in

D′
Lp . By applying Lemma 3.1, it follows that T = c

t
wS in D′.

(⇐=) Suppose that T ∈ D′ and there exists S ∈ D′
Lp , 1 ≤ p ≤ ∞, such that

T = c
t
wS in D′, then c− t

wT = S ∈ D′
Lp , hence T ∈ D′

Lp
w,c
. □
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Recall that the space B
′

ap of almost periodic distributions which was introduced
and studied by L. Schwartz is based on the topological deĄnition of BochnerŠs almost
periodic functions. Let h ∈ R and T ∈ D′, the translated of T by h, denoted by τhT,
is deĄned as:

⟨τhT, φ⟩ = ⟨T, τ−hφ⟩ , φ ∈ D,

where τ−hφ (x) = φ (x+ h) .
The following result gives the basic characterizations of Schwartz almost periodic

distributions.

Theorem 3.3. For any bounded distribution T ∈ D
′

L∞ , the following statements are

equivalent.

(i) The set ¶τhT : h ∈ R♢ is relatively compact in D′
L∞ .

(ii) T ∗ φ ∈ AP, φ ∈ D.

(iii) There exist k ∈ Z+ and (fj)0≤j≤k ⊂ AP : T =
k∑

j=0
f

(j)
j .

Proof. See [9]. □

The following proposition summarizes the main properties of B
′

ap.

Proposition 3.2. (i) If T ∈ B′
ap, then T (j) ∈ B′

ap, j ∈ Z+.

(ii) Bap × B
′

ap ⊂ B
′

ap.
(iii) B′

ap ∗ D′
L1 ⊂ B′

ap.

Proof. See [9]. □

Now we will introduce the following concept.

Definition 3.4. A distribution T ∈ B
′

w,c is said to be (w, c)-almost periodic if and

only if Tw,c ∈ B
′

ap, i.e., the set ¶τhTw,c : h ∈ R♢ is relatively compact in D
′

L∞ . The set
of (w, c)-almost periodic distributions is denoted by B′

APw,c
.

Example 3.1. (i) The associated distribution of a (w, c)-almost periodic function (resp.
Stepanov (p, w, c)-almost periodic function) is a (w, c)-almost periodic distribution,
i.e.,

APw,c →֒ B
′
APw,c

(resp. SpAPw,c →֒ B
′
APw,c

).

(ii) When c = 1 it follows that B′
APw,c

:= B
′

ap.

Characterizations of (w, c)-almost periodic distributions are given in the following
theorem.

Theorem 3.4. Let T ∈ B
′

w,c. Then the following statements are equivalent.

(i) T ∈ B′
APw,c

.

(ii) c
t
w (Tw,c ∗ φ) ∈ APw,c, φ ∈ D.

(iii) There exist k ∈ Z+ and (fj)0≤j≤k ⊂ APw,c : T = c
t
w

k∑
j=0

(fw,c)
(j)
j , where

(
(fw,c)j



0≤j≤k
=
(
c− t

w fj



0≤j≤k
.
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Proof. Since for every T ∈ B′
APw,c

, we have Tw,c ∈ B
′

ap. Hence, the result follows
immediately from Theorem 3.3. □

The main propreties of B′
APw,c

are given in the following proposition.

Proposition 3.3. (i) If T ∈ B′
APw,c

, then c
t
w (Tw,c)

(j) ∈ B′
APw,c

, j ∈ Z+.

(ii) If φ ∈ BAPw,c
and T ∈ B′

APw,c
, then φw,cT ∈ B′

APw,c
.

(iii) If T ∈ B′
APw,c

and S ∈ D′
L1

w,c
, then c

t
w (Tw,c ∗ Sw,c) ∈ B′

APw,c
.

Proof. (i) Obvious.
(ii) If φ ∈ BAPw,c

and T ∈ B′
APw,c

, then φw,c ∈ Bap and Tw,c ∈ B′
ap. From Proposition

3.2(ii), we get φw,cTw,c ∈ B′
ap and therefore c− t

w

(
c

t
w (φw,cTw,c)


∈ B′

ap, which gives

c
t
w (φw,cTw,c) ∈ B′

APw,c
. Hence φw,cT ∈ B′

APw,c
.

(iii) Let T ∈ B′
APw,c

and S ∈ D′
L1

w,c
. Then Tw,c ∈ B′

ap and Sw,c ∈ D′
L1 . According

to Proposition 3.2 (iii), we have Tw,c ∗ Sw,c ∈ B′
ap and c− t

w

(
c

t
w (Tw,c ∗ Sw,c)


∈ B′

ap.

Hence, c
t
w (Tw,c ∗ Sw,c) ∈ B′

APw,c
. □

The following result shows that BAPw,c
is dense in B′

APw,c
.

Proposition 3.4. Let T ∈ B
′

w,c. Then T ∈ B′
APw,c

if and only if there exists

(φn)n∈Z+
⊂ BAPw,c

such that lim
n→+∞

φn = T in B
′

w,c.

Proof. If T ∈ B′
APw,c

, then Tw,c ∈ B′
ap and from the density of Bap in B′

ap there exists

(ψn)n∈Z+
⊂ Bap such that

lim
n→+∞

ψn = Tw,c in D
′

L∞ .

This is equivalent to

c
t
w lim

n→+∞
ψn = lim

n→+∞

(
c

t
wψn


= c

t
wTw,c = T in B

′

w,c.

Hence, there exists (φn)n∈Z+
=
(
c

t
wψn



n∈Z+

⊂ BAPw,c
such that

lim
n→+∞

φn = T in B
′

w,c. □

Now we will introduce the concept of asymptotic (w, c)-almost periodicity of dis-
tributions. M. Fréchet introduced the space AAP (R+) of classical asymptotically
almost periodic functions in [6] and proved the main properties of these functions. The
space AAPw,c (R+) of asymptotically (w, c)-almost periodic functions were introduced
recently by M. T. Khalladi, M. Kostić, A. Rahmani and D. Velinov. Asymptotically
almost periodic Schwartz distributions have been introduced and studied by I. Cio-
ranescu in [4]. We recall the deĄnition and some properties of asymptotically almost
periodic Schwartz distributions.
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Definition 3.5. A distribution T ∈ D′
L∞ is called vanishing at inĄnity if

lim
h→+∞

⟨τ−hT, φ⟩ = 0 in C, φ ∈ D.

Denote by B′
0+ the space of bounded distributions vanishing at inĄnity.

Definition 3.6. A distribution T ∈ D′
L∞ is called asymptotically almost periodic

if there exist R ∈ B′
ap and S ∈ B′

0+ such that T = R + S on R+. The space of
asymptotically almost periodic Schwartz distributions is denoted by B′

aap (R+).

Proposition 3.5. If T ∈ B′
aap (R+), then the decomposition T = R + S on R+ is

unique in D′
L∞.

Proof. See [4]. □

Set D+ := ¶φ ∈ D : suppφ ⊂ R+♢ . Then we have the following characterization of
space B′

aap (R+) .

Theorem 3.5. Let T ∈ D′
L∞ . Then the following assertions are equivalent.

(i) T ∈ B′
aap (R+) .

(ii) T ∗ ⋎

φ ∈ AAP (R+) , φ ∈ D+, where
⋎

φ (x) = φ (−x) .

(iii) There exist k ∈ Z+ and (fj)0≤j≤k ⊂ AAP (R+) : T =
k∑

j=0
f

(j)
j on R+.

Proof. See [4]. □

Asymptotic (w, c)-almost periodicity of distributions is introduced in the following.

Definition 3.7. Let c ∈ C, ♣c♣ ≥ 1 and w > 0. Then a distribution T ∈ B′
w,c is said

asymptotically (w, c)-almost periodic if and only if Tw,c ∈ B′
aap (R+) . The space of

asymptotically (w, c)-almost periodic distributions is denoted by B′
AAPw,c

(R+) .

Remark 3.2. (i) When c = 1 it follows that B′
AAPw,c

(R+) := B′
aap (R+).

(ii) The associated distribution of an asymptotically (w, c)-almost periodic function
(resp. asymptotically Stepanov (p, w, c)-almost periodic function) is asymptotically
(w, c)-almost periodic distribution.

Now let us deĄne the space
(
B′

w,c



0+
of (w, c)-bounded distributions vanishing at

inĄnity as follows.

Definition 3.8. Let c ∈ C, ♣c♣ ≥ 1 and w > 0. A distribution T ∈ B′
w,c is said to be

(w, c)-bounded distribution vanishing at inĄnity if and only if Tw,c ∈ B′
0+.

We have the following result.

Theorem 3.6. Let c ∈ C, ♣c♣ ≥ 1, w > 0 and T ∈ B′
w,c. Then T ∈ B′

AAPw,c
(R+) if

and only if there exist R ∈ B′
APw,c

and S ∈
(
B′

w,c



0+
such that

(3.1) T = R + S on R+.
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Proof. (=⇒) Let T ∈ B′
AAPw,c

(R+) . Then Tw,c ∈ B′
aap (R+) and by DeĄnition 3.6,

there exist P ∈ B′
ap and Q ∈ B′

0+ such that Tw,c = P +Q on R+. On the other hand,
we have

Tw,c = c− t
wT = P +Q =⇒

〈
c− t

wT, φ
〉

= ⟨P, φ⟩ + ⟨Q,φ⟩ , φ ∈ D

=⇒ ⟨T, ψ⟩ =
〈
c

t
wP, ψ

〉
+
〈
c

t
wQ,ψ

〉
, ψ = c− t

wφ ∈ D.

Thus, there exist R = c
t
wP ∈ B′

APw,c
and S = c

t
wQ ∈

(
B′

w,c



0+
such that T = R + S

on R+.

(⇐=) If there exist R ∈ B′
APw,c

and S ∈
(
B′

w,c



0+
such that T = R+S on R+, then

c− t
wT = c− t

wR + c− t
wS on R+, i.e., Tw,c = Rw,c + Sw,c on R+, where Rw,c ∈ B′

ap and
Sw,c ∈ B′

0+. Hence, Tw,c ∈ B′
aap (R+) , which shows that T ∈ B′

AAPw,c
(R+) . □

Proposition 3.6. The decomposition (3.1) is unique in B′
w,c.

Proof. Suppose that T ∈ B′
AAPw,c

(R+) is such that T = R + S on R+, where R ∈
B′

APw,c
and S ∈

(
B′

w,c



0+
. Then the result follows from the proof of the implication

(⇐=) of Theorem 3.6 and the uniqueness of the decomposition of asymptotically
almost periodic distributions. □

Some characterizations of asymptotically (w, c)-almost periodic distributions are
given in the following result.

Theorem 3.7. Let c ∈ C, ♣c♣ ≥ 1, w > 0 and T ∈ B′
w,c. The following assertions are

equivalent.

(i) T ∈ B′
AAPw,c

(R+) .

(ii) c
t
w

(
Tw,c ∗ ⋎

φ


∈ AAPw,c (R+) , φ ∈ D+, where
⋎

φ (x) = φ (−x) .

(iii) There exist k ∈ Z+ and (fj)0≤j≤k ⊂ AAPw,c (R+) : T = c
t
w

k∑
j=0

(fw,c)
(j)
j on R+,

where
(
(fw,c)j



0≤j≤k
=
(
c− t

w fj



0≤j≤k
.

Proof. It is clear that if T ∈ B′
AAPw,c

(R+), then Tw,c ∈ B′
aap (R+). Thus, by applying

Theorem 3.5 we obtain the result. □

4. Linear Differential Equations in B′
APw,c

In this section we will study the existence of distributional (w, c)-almost periodic
solutions of the following system of linear ordinary differential equations

(4.1) T ′ = AT + S,

where A = (aij)1≤i,j≤k , k ∈ N, is a given square matrix of complex numbers, S =

(Si)1≤i≤k ∈ (D′)k is a vector distribution and T = (Ti)1≤i≤k is the unknown vector
distribution.
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First, consider the system (4.1) with S ∈ (AP )k and let us recall the following
result.

Theorem 4.1. If the matrix A has no eigenvalues with real part zero, then for any

S ∈ (AP )k , there exists a unique solution T ∈ (AP )k
of the system (4.1) .

Proof. See [5]. □

Let Ik be the unit matrix of order k. The following result gives the (w, c)-almost
periodicity of the solution (if it exists) of the system (4.1).

Theorem 4.2. Let S ∈
(
B′

APw,c

k
. If the matrix A− log c

w
Ik has no eigenvalues with

real part zero, then the system (4.1) admits a unique solution T ∈
(
D

′

L∞

w,c

k
which is

an (w, c)-almost periodic vector distribution.

Proof. Let φ ∈ D. We have

(4.2) c− t
wT ′ ∗ φ =

(
c− t

wT ∗ φ
′

+
log c

w
c− t

wT ∗ φ.

On the other hand, if T ∈
(
D

′

L∞

w,c

k
satisĄes system (4.1) , then

c− t
wT ′ ∗ φ = Ac− t

wT ∗ φ+ c− t
wS ∗ φ.

So from (4.2), we have

(
c− t

wT ∗ φ
′

=

(
A− log c

w
Ik


c− t

wT ∗ φ+ c− t
wS ∗ φ,

i.e.,

(4.3) (Tw,c ∗ φ)′ =

(
A− log c

w
Ik


(Tw,c ∗ φ) + Sw,c ∗ φ,

where

Tw,c ∗ φ =
(
(Tw,c)i ∗ φ



1≤i≤k
=
((
c− t

wTi


∗ φ



1≤i≤k

and

Sw,c ∗ φ =
(
(Sw,c)i ∗ φ



1≤i≤k
=
((
c− t

wSi


∗ φ



1≤i≤k
.

Then the system (4.3) is equivalent in (C∞)k to the following system of differential
equations

P ′ = BP +Q,

with B = A− log c
w
Ik, P = Tw,c ∗ φ ∈ (C∞)k and Q = Sw,c ∗ φ ∈ (AP )k . According to

Theorem 4.1, it follows that there exists a unique bounded solution P which is almost

periodic. Therefore, (Tw,c)i ∗ φ ∈ AP, 1 ≤ i ≤ k, φ ∈ D, hence c
t
w

(
(Tw,c)i ∗ φ


∈

APw,c, 1 ≤ i ≤ k, φ ∈ D. Thus, according to Theorem 3.4, we get (Ti)1≤i≤k ∈
(
B′

APw,c

k
. □
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b-GENERALIZED SKEW DERIVATIONS ON MULTILINEAR

POLYNOMIALS

BALCHAND PRAJAPATI1

Abstract. Let R be a prime ring of characteristic different from 2 with the center
Z(R) and F , G be b-generalized skew derivations on R. Let U be Utumi quotient
ring of R with the extended centroid C and f(x1, . . . , xn) be a multilinear polynomial
over C which is not central valued on R. Suppose that P /∈ Z(R) such that

[

P, [F (f(r)), f(r)]
]

= [G(f(r)), f(r)],

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:
(1) there exist λ, µ ∈ C such that F (x) = λx, G(x) = µx for all x ∈ R;
(2) there exist a, b ∈ U , λ, µ ∈ C such that F (x) = ax+λx+xa, G(x) = bx+µx+xb

for all x ∈ R and f(x1, . . . , xn)2 is central valued on R.

1. Introduction

Throughout the article R always denotes an associative ring with the center Z(R), U
denotes the Utumi quotient ring of ring R. The deĄnition and axiomatic formulation
of Utumi quotient ring U can be found in [5] and [10]. We notice that U is a prime
ring with unity and Z(U) = C is called the extended centroid of ring R. The extended
centroid C is a Ąeld. For x, y ∈ R, the commutator of x and y is xy − yx and it is
denoted by [x, y]. Sometimes commutator of x and y is called Lie product of x and
y. Let S ⊆ R, a function f on R is called centralizing (or commuting) function on
S if [f(s), s] ∈ Z(R) (or [f(s), s] = 0) for all s ∈ S. In this direction, Divinsky [17]
studied the commuting automorphism on rings. More precisely, it is proved that a
simple artinian ring is commutative if it has a commuting automorphism different
from the identity mapping. Mayne [9] generalized this result and proved that if R is

Key words and phrases. b-Generalized skew derivations, multilinear polynomials, prime rings, the
extended centroid, Utumi quotient ring.
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a prime ring with a nontrivial centralizing automorphism then R is a commutative
integral domain. Further, Posner [8] studied the centralizing derivations on prime
rings. More precisely, he proved that there does not exist any non zero centralizing
derivation on non commutative prime ring. This was the starting point for the research
by several authors. By derivation, we mean an additive mapping d on R such that
d(xy) = d(x)y + xd(y) for all x, y ∈ R. Let a ∈ R, deĄne a mapping f on R such that
f(x) = [a, x] for all x ∈ R. Here, we notice that f is a derivation on R. This kind of
derivation is called an inner derivation induced by an element a. Derivation is called
outer if it not an inner.

Brešar [13] extended the PosnerŠs [8] result by taking two derivations and proved
that if d and δ are two derivations of R with atleast one derivation is non zero, such
that d(x)x − xδ(x) ∈ Z(R) for all x ∈ R, then R is commutative. Notable work has
been done by several mathematicians to generalize these results on some appropriate
subsets of prime ring R. Natural question will arise that what will happen if we replace
x with multilinear polynomial in PosnerŠs theorem [8] as well as BrešarŠs theorem [13]
and in this direction many results have been done. One of these results in this direction
is given by De Filippis and Wei [27] for skew derivation on multilinear polynomial.
Note that an additive mapping d on R is said to be skew derivation associated with
an automorphism α if d(xy) = d(x)y + α(x)d(y) for all x, y ∈ R. It is natural to ask
that what will happen if derivation replaced by generalized derivation. The notion
of generalized derivation introduced by Brešar in [12] which is a generalization of
derivation. An additive mapping F is said to be a generalized derivation if there
exists a derivation d on R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R. Note
that if R is a prime or a semiprime ring then the derivation d is uniquely determined
by F and d is called the associated derivation of F .

Argaç and De Filippis [16] have given the partial generalization of PosnerŠs theorem
[8]. More precisely, they describe the structure of additive mapping satisfying the
identity F (f(r))f(r) − f(r)G(f(r)) = 0 for all r ∈ Rn, where f is a multilinear
polynomial and F , G are two generalized derivations on prime ring R. In 2018,
Tiwari [19] studied the commuting generalized derivations on prime ring, which is
generalization of the work of Argaç and De Filippis [16]. The generalization of PosnerŠs
theorem for generalized derivation on multilinear polynomial in [26] (where further
generalization can be found in [1, 2, 20, 21]) is given below.

Let K be a commutative ring with unity, R be a prime algebra over K and let
f(x1, . . . , xn) be a multilinear polynomial over K, not central valued on R. Suppose
that d is a non zero derivation and F is a non zero generalized derivation of R such
that d([F (f(r)), f(r)]) = 0 for all r = (r1, . . . , rn) ∈ Rn, then one of the following
holds:

(1) there exist a ∈ U , λ ∈ C such that F (x) = ax + λx + xa for all x ∈ R and
f(x1, . . . , xn)2 is central valued on R;

(2) there exists λ ∈ C such that F (x) = λx for all x ∈ R.
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2. b-Generalized Skew Derivation

Generalizations of derivations and generalized derivations are b-generalized deriva-
tions and b-generalized skew derivations. The deĄnition of b-generalized derivation is
given below which is from [14]. Let R be a prime ring and U be its Utumi ring of
quotient. Let b ∈ U .

Definition 2.1. An additive mapping F : R → U is called b-generalized derivation
of R if F (xy) = F (x)y + bxd(y) for all x, y ∈ R, where d : R → U is an additive map.

In [14] Košan and Lee proved that if R is a prime ring and b ≠ 0 then the associated
map d must be a derivation of R. Here, we see that a 1-generalized derivation
is a generalized derivation. For some a, b, c ∈ U , deĄne a map F : R → U as
F (x) = ax + bxc for all x ∈ R. This is a b-generalized derivation which is called
b-generalized inner derivation.

Let α be an automorphism on R. This α is said to be an inner automorphism of
R if there exists an invertible element p ∈ U such that α(x) = pxp−1 for all x ∈ R
otherwise it is called outer automorphism. An additive mapping F on R is called
generalized skew derivation associated with an automorphism α if there exists a skew
derivation d on R such that F (xy) = F (x)y + α(x)d(y) for all x, y ∈ R. Note that a
skew derivation on R associated with an automorphism α is an additive mapping such
that d(xy) = d(x)y + α(x)d(y) for all x, y ∈ R. A skew derivation associated with
the identity automorphism is a derivation and generalized skew derivation associated
with identity automorphism is a generalized derivation.

Let α be an inner automorphism on R, that is, α(x) = pxp−1 for some p ∈ U and
for all x ∈ R. Now by deĄnition of generalized skew derivation associated with this α,
we have F (xy) = F (x)y + pxp−1d(y) for all x, y ∈ R. If d is a skew inner derivation
associated with same α, then we know that d(x) = ax − α(x)a = ax − pxp−1a.
Thus we have F (xy) = F (x)y + pxp−1(ay − pyp−1a), which implies that F (xy) =
F (x)y + pxp−1ay − pxp−1pyp−1a = F (x)y + px¶p−1ay − yp−1a♢. This gives that
F (xy) = F (x)y + pxd(y), where d(y) = [p−1a, y] for all y ∈ R, is an inner derivation
induced by p−1a. This implies that it is a p-generalized derivation on R. Thus, if
α is an inner automorphism on R, then every generalized skew derivation on R is a
b-generalized derivation.

The following deĄnition given by De Filippis and Wei [28] is a generalization of
above.

Definition 2.2. Let R be an associative ring, b ∈ U , d : R → R a linear mapping and
α be an automorphism of R. A linear mapping F : R → R is said to be b-generalized
skew derivation of R associated with an automorphism α if F (xy) = F (x)y+bα(x)d(y)
for all x, y ∈ R.

As par the above deĄnition b-generalized skew derivations cover the concepts of
derivations, generalized derivations, skew derivations, generalized skew derivations
and b-generalized derivations. In the same article it is proved that if b ≠ 0 and R
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is a prime ring then the associated additive mapping d becomes a skew derivation
associated with the same automorphism α. Further, it is proved that F can be
extended to U and it assumes the form F (x) = ax + bd(x), where a ∈ U .

Recently, Liu [6] generalized the result of Posner [8] by taking b-generalized deriva-
tion with Engel conditions on prime ring R.

More recently, Sharma et al. [18] studied an identity related to generalized deriva-
tions on prime ring with multilinear polynomial over C. More precisely, they proved
the following.

Suppose that R is a prime ring of characteristic different from 2 with Utumi quotient
ring U and f(x1, . . . , xn) is a non central multilinear polynomial over C. Let F and
G be two generalized derivations of R and d a non zero derivation of R such that

d([F (f(r1, . . . , rn)), f(r1, . . . , rn)]) = [G(f(r1, . . . , rn)), f(r1, . . . , rn)],

for all r1, . . . , rn ∈ R, then one of the following holds:

(a) there exist λ, µ ∈ C such that F (x) = λx, G(x) = µx for all x ∈ R;
(b) there exist a, b ∈ U and λ, µ ∈ C such that F (x) = ax + λx + xa, G(x) =

bx + µx + xb for all x ∈ R and f(x1, . . . , xn)2 is central valued on R.

Motivated by above result we prove our main theorem. In this case we take d to be
an inner derivation and F , G are b-generalized skew derivations. More precisely, the
statement of our main theorem is the following.

Theorem 2.1 (Main Theorem). Let R be a prime ring of characteristic different

from 2 with the center Z(R) and F , G be b-generalized skew derivations on R. Let

U be Utumi quotient ring of R with the extended centroid C and f(x1, . . . , xn) be

a multilinear polynomial over C which is not central valued on R. Suppose that

P /∈ Z(R) such that
[

P, [F (f(r1, . . . , rn)), f(r1, . . . , rn)]
]

= [G(f(r1, . . . , rn)), f(r1, . . . , rn)],

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exist λ, µ ∈ C such that F (x) = λx, G(x) = µx for all x ∈ R;

(2) there exist a, b ∈ U , λ, µ ∈ C such that F (x) = ax+λx+xa, G(x) = bx+µx+xb
for all x ∈ R and f(x1, . . . , xn)2 is central valued on R.

The following corollaries are immediate consequence of our main result.

Corollary 2.1. Let R be a prime ring of characteristic different from 2 with the

center Z(R) and G be a b-generalized skew derivation on R. Let U be Utumi quotient

ring of R with the extended centroid C and f(x1, . . . , xn) be a multilinear polynomial

over C which is not central valued on R. If

[G(f(r1, . . . , rn)), f(r1, . . . , rn)] = 0,

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exists λ ∈ C such that G(x) = λx for all x ∈ R;
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(2) there exist a ∈ U , λ ∈ C such that G(x) = ax + λx + xa for all x ∈ R and

f(x1, . . . , xn)2 is central valued on R.

Corollary 2.2. Let R be a prime ring of characteristic different from 2 with the

center Z(R) and F be a b-generalized skew derivations on R. Let U be Utumi quotient

ring of R with the extended centroid C and f(x1, . . . , xn) be a multilinear polynomial

over C which is not central valued on R. If

[F (f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ Z(R),

for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

(1) there exists λ ∈ C such that F (x) = λx for all x ∈ R;

(2) there exist a ∈ U , λ ∈ C such that F (x) = ax + λx + xa for all x ∈ R and

f(x1, . . . , xn)2 is central valued on R.

If we take F = d, a skew derivation, then we get the following.

Corollary 2.3. Let R be a prime ring of characteristic different from 2 and d be a

skew derivation on R such that [d(x), x] ∈ Z(R) for all x ∈ R, then either d = 0 or

R is a commutative ring.

Let α be any automorphism, then α − 1 is a skew derivation. From above corollary
we get [(α−1)(x), x] ∈ Z(R) which implies either R is commutative or α is an identity
automorphism. Therefore we state the result of Mayne [9].

Corollary 2.4. Let R be a prime ring of characteristic different from 2 and α be an

automorphism on R such that [α(x), x] ∈ Z(R) for all x ∈ R, then either α is an

identity automorphism or R is a commutative ring.

3. Preliminaries and Notations

Let f(x1, . . . , xn) be a multilinear polynomial over C. Then f(x1, . . . , xn) has the
following form:

f(x1, . . . , xn) =
∑

σ∈Sn

γσxσ(1)xσ(2) . . . xσ(n),

where γσ ∈ C and Sn be the symmetric group of n symbols.
If d is a skew derivation associated with an automorphism α then

d(γσxσ(1)xσ(2) . . . xσ(n)) =d(γσ)xσ(1)xσ(2) . . . xσ(n)

+ α(γσ)
n−1
∑

j=0

α(xσ(1)xσ(2) . . . xσ(j))d(xσ(j+1))xσ(j+2) . . . xσ(n)

and therefore

d(f(x1, . . . , xn)) =fd(x1, . . . , xn)

+
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1)xσ(2) . . . xσ(j))d(xσ(j+1))xσ(j+2) . . . xσ(n),(3.1)
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where fd(x1, . . . , xn) is a multilinear polynomial originated from f(x1, . . . , xn) after
replacing each coefficients γσ with d(γσ). Similarly, we use fα(x1, . . . , xn) to denote a
multilinear polynomial originated from f(x1, . . . , xn) after replacing each coefficients
γσ with α(γσ). Let SD denotes the set of all skew derivations and SDin denotes the
set of all skew inner derivations of R.

Further, we will frequently use some important theory of generalized polynomial
identities and differential identities. We recall some of the remarks.

Remark 3.1. If I is a two-sided ideal of R then R, I and U satisfy the same differential
identities [23].

Remark 3.2. If I is a two-sided ideal of R then R, I and U satisfy the same generalized
polynomial identities with coefficients in U [5].

Remark 3.3. Let R be a prime ring and α ∈ Aut(R) be an outer automorphism of
R. If Φ(xi, α(xi)) is a generalized polynomial identity for R, then R also satisĄes
the non trivial generalized polynomial identity Φ(xi, yi), where xi and yi are distinct
indeterminates [29].

Remark 3.4. If f(xi, d(xi), α(xi)) is a generalized polynomial identity for a prime ring
R, d is an outer skew derivation and α is an outer automorphism of R then R also
satisĄes the generalized polynomial identity f(xi, yi, zi), where xi, yi, zi are distinct
indeterminates ([4, Theorem 1], also see [29]).

Remark 3.5. If d is a non zero skew derivation of R, then the associated automorphism
α is unique [11].

Remark 3.6. From [4] we can state the following result. Let R be a prime ring, d a
non zero skew derivation on R and I a non zero ideal of R. If I satisĄes the skew
differential polynomial identity

f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0,

for any r1, . . . , rn ∈ I then either

(i) I satisĄes the generalized polynomial identity f(r1, . . . , rn, x1, . . . , xn) = 0 or
(ii) d is skew U -inner.

Remark 3.7. Let R be a prime ring. Suppose
∑n

i=1 aixbi +
∑m

j=1 cjxqj = 0 for all x ∈ R,
where ai, bi, cj, qj ∈ U , 1 ≤ i ≤ n and 1 ≤ j ≤ m. If a1, . . . , an are C-independent,
then each bi is C-dependent on q1, . . . , qm. Similarly, if b1, . . . , bn are C-independent,
then each ai is C-dependent on c1, . . . , cm (see [24, Lemma 1]).

4. F and G be b-Generalized Skew Inner Derivations

In this section, we study the situation when F and G are b-generalized skew inner
derivations of R. Let F (x) = ax + bα(x)u and G(x) = cx + bα(x)v for all x ∈ R and
for some a, b, c, u, v ∈ U . Then we prove the following proposition.
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Proposition 4.1. Let R be a prime ring of characteristic different from 2, U be Utumi

ring of quotient of R with the extended centroid C. Suppose F and G are b-generalized

skew derivations defined as F (x) = ax + bpxp−1u and G(x) = cx + bpxp−1v for all

x ∈ R and for some a, b, c, u, v, p ∈ U with invertible p. Let f(x1, . . . , xn) be a non

central multilinear polynomial over C. If P ∈ R be non central such that
[

P, [F (f(r)), f(r)]
]

= [G(f(r)), f(r)],

for all r = (r1, . . . , rn) ∈ Rn, then one of the following conditions holds:

(1) there exist λ, µ ∈ C such that F (x) = λx, G(x) = µx for all x ∈ R;

(2) there exist a, b ∈ U , λ, µ ∈ C such that F (x) = ax+λx+xa, G(x) = bx+µx+xb
for all x ∈ R and f(x1, . . . , xn)2 is central valued on R.

For proof of this proposition, we need the following.

Lemma 4.1. ([26, Lemma 1]). Let C be an infinite field and m ≥ 2. If A1, . . . , Ak are

non scalar matrices in Mm(C) then there exists some invertible matrix P ∈ Mm(C)
such that each matrix PA1P

−1, . . . , PAkP −1 has all non zero entries.

Proposition 4.2. Let R = Mk(C), k ≥ 2, be the ring of all k × k matrices over the

infinite field C with characteristic different from 2. Let a, a′, b′, c, c′, P, q, q′, q′′ ∈ R
such that a′x2 + b′xq′x − Pxax − Pxqxq′ − ax2P − qxq′xP + xaxP + xqxc′ − qxq′′x −
xcx − xqxq′′ = 0 for all x ∈ f(R), where f(R) denotes the set of all evaluations of

the polynomial f(x1, . . . , xn) in R, then either q or q′ or P is central.

Proof. By our assumption

a′f(r)2 + b′f(r)q′f(r) − Pf(r)af(r) − Pf(r)qf(r)q′ − af(r)2P − qf(r)q′f(r)P

+f(r)af(r)P + f(r)qf(r)c′ − qf(r)q′′f(r) − f(r)cf(r) − f(r)qf(r)q′′ = 0,(4.1)

for all r = (r1, . . . , rn), where r1, . . . , rn ∈ R. We shall prove this result by contradic-
tion. Suppose that q /∈ C, q′ /∈ C and P /∈ C. Then by Lemma 4.1 there exists a
C-automorphism ϕ of Mm(C) such that ϕ(q), ϕ(q′) and ϕ(P ) have all non zero entries.
Clearly ϕ(q), ϕ(q′), ϕ(P ), ϕ(a), ϕ(a′), ϕ(b′), ϕ(c), ϕ(c′) and ϕ(q′′) must satisfy the
condition (4.1).

Let eij be the matrix whose (i, j)-entry is 1 and rest entries are zero. Since
f(x1, . . . , xn) is not central, by [23] (see also [25]), there exist s1, . . . , sn ∈ Mm(C)
and 0 ̸= γ ∈ C such that f(s1, . . . , sn) = γeij, with i ̸= j. Moreover, since the
set ¶f(r1, . . . , rn) : r1, . . . , rn ∈ Mm(C)♢ is invariant under the action of all C-
automorphisms of Mm(C), then for any i ≠ j there exist r1, . . . , rn ∈ Mm(C) such
that f(r1, . . . , rn) = eij. Since ϕ is an automorphism, without loss of generality we
write (4.1) after replacing f(r1, . . . , rn) = eij

a′e2
ij + b′eijq

′eij − Peijaeij − Peijqeijq
′ − ae2

ijP − qeijq
′eijP

+eijaeijP + eijqeijc
′ − qeijq

′′eij − eijceij − eijqeijq
′′ = 0.
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It implies that

b′eijq
′eij − Peijaeij − Peijqeijq

′ − qeijq
′eijP

+eijaeijP + eijqeijc
′ − qeijq

′′eij − eijceij − eijqeijq
′′ = 0.(4.2)

Left and right multiplying by eij in (4.2), we obtain

−eijPeijqeijq
′eij − eijqeijq

′eijPeij = 0.

From this we have 2(P )ji(q)ji(q
′)jieij = 0 or get (P )ji(q)ji(q

′)jieij = 0, since char(R) ̸=
2. It gives that either (P )ji = 0 or (q)ji = 0 or (q′)ji = 0, a contradiction, since P ,
q and q′ have all non zero entries. Thus, we conclude that either q or q′ or P is
central. □

Proposition 4.3. Let R = Mm(C), m ≥ 2, be the ring of all matrices over the

field C with characteristic different from 2 and f(x1, . . . , xn) a non central multilinear

polynomial over C. Let a, a′, b′, c, c′, P, q, q′, q′′ ∈ R such that a′x2 + b′xq′x − Pxax −
Pxqxq′ − ax2P − qxq′xP + xaxP + xqxc′ − qxq′′x − xcx − xqxq′′ = 0 for all x ∈ f(R),
where f(R) denotes the set of all evaluations of the polynomial f(x1, . . . , xn) in R,

then either q or q′ or P is central.

Proof. The conclusions follow from Proposition 4.2 in the case of inĄnite Ąeld C. Now
we assume that C is a Ąnite Ąeld. Suppose that K is an inĄnite extension of the Ąeld
C. Let R = Mm(K) ∼= R ⊗C K. Notice that the multilinear polynomial f(x1, . . . , xn)
is central valued on R if and only if it is central valued on R. Suppose that the
generalized polynomial Q(r1, . . . , rn) such that

Q(r1, . . . , rn) =a′f(r1, . . . , rn)2 + b′f(r1, . . . , rn)q′f(r1, . . . , rn)

− Pf(r1, . . . , rn)af(r1, . . . , rn) − Pf(r1, . . . , rn)qf(r1, . . . , rn)q′

− af(r1, . . . , rn)2P − qf(r1, . . . , rn)q′f(r1, . . . , rn)P

+ f(r1, . . . , rn)af(r1, . . . , rn)P + f(r1, . . . , rn)qf(r1, . . . , rn)c′

− qf(r1, . . . , rn)q′′f(r1, . . . , rn) − f(r1, . . . , rn)cf(r1, . . . , rn)

− f(r1, . . . , rn)qf(r1, . . . , rn)q′′(4.3)

is a generalized polynomial identity for R. It is a multihomogeneous of multide-
gree (2, . . . , 2) in the indeterminates r1, . . . , rn. Hence the complete linearization of
Q(r1, . . . , rn) is a multilinear generalized polynomial Θ(r1, . . . , rn, x1, . . . , xn) in 2n in-
determinates, moreover Θ(r1, . . . , rn, r1, . . . , rn) = 2nQ(r1, . . . , rn). It is clear that the
multilinear polynomial Θ(r1, . . . , rn, x1, . . . , xn) is a generalized polynomial identity
for both R and R. By assumption char(R) ̸= 2 we obtain Q(r1, . . . , rn) = 0 for all
r1, . . . , rn ∈ R and then conclusion follows from Proposition 4.3. □

Lemma 4.2. Let R be a prime ring of characteristic different from 2 with Utumi

quotient ring U and the extended centroid C and f(x1, . . . , xn) a multilinear polynomial

over C, which is not central valued on R. Let a, a′, b′, c, c′, P, q, q′, q′′ ∈ R such that

a′x2+b′xq′x−Pxax−Pxqxq′−ax2P −qxq′xP +xaxP +xqxc′−qxq′′x−xcx−xqxq′′ = 0
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for all x ∈ f(R), where f(R) denotes the set of all evaluations of the polynomial

f(x1, . . . , xn) in R, then either q or q′ or P is central.

Proof. We shall prove this by contradiction. Suppose that none of q, q′ and P is in
C. By hypothesis, we have

h(x1, . . . , xn) =a′f(x1, . . . , xn)2 + b′f(x1, . . . , xn)q′f(x1, . . . , xn)

− Pf(x1, . . . , xn)af(x1, . . . , xn) − Pf(x1, . . . , xn)qf(x1, . . . , xn)q′

− af(x1, . . . , xn)2P − qf(x1, . . . , xn)q′f(x1, . . . , xn)P

+ f(x1, . . . , xn)af(x1, . . . , xn)P + f(x1, . . . , xn)qf(x1, . . . , xn)c′

− qf(x1, . . . , xn)q′′f(x1, . . . , xn) − f(x1, . . . , xn)cf(x1, . . . , xn)

− f(x1, . . . , xn)qf(x1, . . . , xn)q′′,(4.4)

for all x1, . . . , xn ∈ R. Since R and U satisfy same generalized polynomial identity
(GPI) (see [5]), U satisĄes h(x1, . . . , xn) = 0T . Suppose that h(x1, . . . , xn) is a trivial
GPI for U . Let T = U ∗C C¶x1, . . . , xn♢, the free product of U and C¶x1, . . . , xn♢,
the free C-algebra in non commuting indeterminates x1, . . . , xn. Then h(x1, . . . , xn)
is zero element in T = U ∗C C¶x1, . . . , xn♢. Since neither q nor q′ nor P is central,
hence the term

−Pf(x1, . . . , xn)qf(x1, . . . , xn)q′ − qf(x1, . . . , xn)q′f(x1, . . . , xn)P

appears nontrivially in h(x1, . . . , xn). Thus, U satisĄes

−Pf(x1, . . . , xn)qf(x1, . . . , xn)q′ − qf(x1, . . . , xn)q′f(x1, . . . , xn)P = 0T .

Since P /∈ C, hence it implies that Pf(x1, . . . , xn)qf(x1, . . . , xn)q′ = 0. This gives a
contradiction, i.e., we have either P ∈ C or q′ ∈ C or q ∈ C.

Next, suppose that h(x1, . . . , xn) is a non trivial GPI for U . In case C is inĄnite, we
have h(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U ⊗C C, where C is the algebraic closure
of C. Since both U and U ⊗C C are prime and centrally closed [22, Theorem 2.5 and
Theorem 3.5], we may replace R by U or U ⊗C C according to C Ąnite or inĄnite.
Then R is centrally closed over C and h(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R. By
MartindaleŠs theorem [30], R is then a primitive ring with non zero socle soc(R) and
with C as its associated division ring. Then, by JacobsonŠs theorem [15, page 75], R
is isomorphic to a dense ring of linear transformations of a vector space V over C.

Assume Ąrst that V is Ąnite dimensional over C, that is, dimC V = m. By density
of R, we have R ∼= Mm(C). Since f(r1, . . . , rn) is not central valued on R, R must be
non commutative and so m ≥ 2. In this case, by Proposition 4.3, we get that either
P ∈ C or q′ ∈ C or q ∈ C, a contradiction.

Next we suppose that V is inĄnite dimensional over C. By MartindaleŠs the-
orem [30, Theorem 3], for any e2 = e ∈ soc(R) we have eRe ∼= Mt(C) with
t = dimC V e. Since we have assumed that neither P nor q nor q′ is in the cen-
ter. Then there exist h1, h2, h3 ∈ soc(R) such that [P, h1] ̸= 0, [q, h2] ̸= 0 and
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[q′, h3] ̸= 0. By LitoffŠs Theorem [7], there exists an idempotent e ∈ soc(R) such that
Ph1, h1P, qh2, h2q, q′h3, h3q

′, h1, h2, h3 ∈ eRe. Since R satisĄes generalized identity

e
{

a′f(ex1e, . . . , exne)2 + b′f(ex1e, . . . , exne)q′f(ex1e, . . . , exne)

− Pf(ex1e, . . . , exne)af(ex1e, . . . , exne) − Pf(ex1e, . . . , exne)qf(ex1e, . . . , exne)q′

− af(ex1e, . . . , exne)2P − qf(ex1e, . . . , exne)q′f(ex1e, . . . , exne)P

+ f(ex1e, . . . , exne)af(ex1e, . . . , exne)P + f(ex1e, . . . , exne)qf(ex1e, . . . , exne)c′

− qf(ex1e, . . . , exne)q′′f(ex1e, . . . , exne) − f(ex1e, . . . , exne)cf(ex1e, . . . , exne)

− f(ex1e, . . . , exne)qf(ex1e, . . . , exne)q′′

}

e,

the subring eRe satisĄes
{

ea′ef(x1, . . . , xn)2 + eb′ef(x1, . . . , xn)eq′ef(x1, . . . , xn)

− ePef(x1, . . . , xn)eaef(x1, . . . , xn) − ePef(x1, . . . , xn)eqef(x1, . . . , xn)eq′e

− eaef(x1, . . . , xn)2ePe − eqef(x1, . . . , xn)eq′ef(x1, . . . , xn)ePe

+ f(x1, . . . , xn)eaef(x1, . . . , xn)ePe + f(x1, . . . , xn)eqef(x1, . . . , xn)ec′e

− eqef(x1, . . . , xn)eq′′ef(x1, . . . , xn) − f(x1, . . . , xn)ecef(x1, . . . , xn)

− f(x1, . . . , xn)eqef(x1, . . . , xn)eq′′e
}

.

Then by the above Ąnite dimensional case, either ePe or eqe or eq′e is central element
of eRe. Thus either Ph1 = (ePe)h1 = h1ePe = h1P or qh2 = (eqe)h2 = h2(eqe) = h2q
or q′h3 = (eq′e)h3 = h3(eq′e) = h3q

′, a contradiction. □

Lemma 4.3. Let R be a prime ring of characteristic different from 2 with Utumi

quotient ring U and the extended centroid C, f(x1, . . . , xn) a multilinear polynomial

over C which is not central valued on R. Let F and G are mappings defined as

F (x) = ax+bxu, G(x) = cx+bxv for some a, b, c, u, v ∈ R. Let P ∈ R be non central

such that
[

P, [F (x), x]
]

= [G(x), x] for all x ∈ f(R), where f(R) denotes the set of

all evaluations of the polynomial f(x1, . . . , xn) in R, then either b is central or u is

central.

Proof. By applying similar argument as we have used in Lemma 4.2, we get our desired
result. □

Remark 4.1. Let R be a prime ring of characteristic different from 2 with Utumi
quotient ring U and the extended centroid C, f(x1, . . . , xn) a multilinear polynomial
over C which is not central valued on R. Let P, p, q ∈ R and P non central be such

that
[

P, [p, x]
]

= [q, x] for all x ∈ f(R), where f(R) denotes the set of all evaluations

of the polynomial f(x1, . . . , xn) in R, then p and q are central.

Proof. Similar as proof of Lemma 4.2. □
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Remark 4.2. Let R be a prime ring of characteristic different from 2 with Utumi
quotient ring U and the extended centroid C, f(x1, . . . , xn) a multilinear polynomial
over C which is not central valued on R. Let a ∈ R be such that af(r1, . . . , rn) ∈ C
for all r1, . . . , rn ∈ R, where f(R) denotes the set of all evaluations of the polynomial
f(x1, . . . , xn) in R, then a = 0.

Proof. By applying similar argument as we have used in Lemma 4.2 we get a ∈ C. If
a ≠ 0 then from af(x1, . . . , xn) ∈ C, we get f(x1, . . . , xn) ∈ C for all x1, . . . , xn ∈ R,
a contradiction. Therefore, we must have a = 0. □

Now we are in position to prove Proposition 4.1.

Proof of Proposition 4.1. From Lemma 4.2, we get either P ∈ C or bp ∈ C or p−1u ∈
C. Since P /∈ C, we shall study following cases.

Case-I. If bp ∈ C then F (x) = ax + xbu and G(x) = cx + xbv are generalized inner
derivations. By [18, Lemma 3.6] we get our conclusions.

Case-II. If p−1u ∈ C then F (x) = (a+bu)x = u′x, G(x) = cx+bpxp−1v = cx+qxq′′,

where u′ = a + bu, q = bp, q′′ = p−1v . Then from
[

P, [F (x), x]
]

= [G(x), x], R satisĄes

the generalized polynomial identity θ(x1, . . . , xn) which can be written as

θ(x1, . . . , xn) =Pu′f(x1, . . . , xn)2 − Pf(x1, . . . , xn)u′f(x1, . . . , xn)

− u′f(x1, . . . , xn)2P + f(x1, . . . , xn)u′f(x1, . . . , xn)P

− cf(x1, . . . , xn)2 − qf(x1, . . . , xn)q′′f(x1, . . . , xn)

+ f(x1, . . . , xn)cf(x1, . . . , xn) + f(x1, . . . , xn)qf(x1, . . . , xn)q′′.(4.5)

If θ(x1, . . . , xn) is a trivial generalized polynomial identity for R then each of the
following is a trivial generalized polynomial identity for R:

• Pu′f(x1, . . . , xn)2 − Pf(x1, . . . , xn)u′f(x1, . . . , xn) − u′f(x1, . . . , xn)2P
+ f(x1, . . . , xn)u′f(x1, . . . , xn)P ;

• −cf(x1, . . . , xn)2 + f(x1, . . . , xn)cf(x1, . . . , xn);
• −qf(x1, . . . , xn)q′′f(x1, . . . , xn) + f(x1, . . . , xn)qf(x1, . . . , xn)q′′.

Therefore, we must have u′ ∈ C, c ∈ C and q, q′′ ∈ C. In this case we get our
conclusion.

If θ(x1, . . . , xn) is a non trivial generalized polynomial identity for R then by Matin-
daleŠs theorem [30] U is a primitive ring having non zero socle with the Ąeld C as its
associated division ring. By [15, page 35] U is isomorphic to a dense subring of the
ring of linear transformations of a vector space V over C, containing non zero linear
transformations of Ąnite rank. Assume Ąrst that dimC V = k ≥ 2 is a Ąnite positive
integer, then U ∼= Mk(C) and the conclusion follows from Proposition 4.3.

Now suppose that dimC V = ∞. Then the set f(U) = ¶f(r1, . . . , rn) : ri ∈ U♢ is
dense on U , see [31, Lemma 2]. By the fact that θ(x1, . . . , xn) = 0 is a generalized
polynomial identity for U , therefore U satisĄes the generalized polynomial identity

Pu′x2 − Pxu′x − u′x2P + xu′xP = cx2 + qxq′′x − xcx − xqxq′′.(4.6)
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In (4.6) replace x by x + 1 we get

Pu′x − Pxu′ − u′xP + xu′P − cx − qq′′x + xc + xqq′′ = 0,(4.7)

for all x ∈ U . Replace x by xy in the expression (4.7) we get

Pu′xy − Pxyu′ − u′xyP + xyu′P − cxy − qq′′xy + xyc + xyqq′′ = 0,(4.8)

for all x, y ∈ U . Now multiply from right side by y in expression (4.7) we get

Pu′xy − Pxu′y − u′xPy + xu′Py − cxy − qq′′xy + xcy + xqq′′y = 0.(4.9)

Comparing (4.8) and (4.9) we get

Px[u′, y] + u′x[P, y] + x[−u′P − c − qq′′, y] = 0,(4.10)

for all x, y ∈ U . By Remark 3.7 either u′ ∈ C or there exist λy, µy depending on y
such that [P, y] = λy[u′, y] and [−u′P − c − qq′′, y] = µy[u′, y]. If u′ ∈ C then by [3,
Main theorem] we get our conclusions. If u′ /∈ C then there is some y0 ∈ U such that
[u′, y0] ̸= 0. Therefore, we have [P, y0] = λy0

[u′, y0] and [−u′P −c−qq′′, y0] = µy0
[u′, y0].

Substituting these values in (4.10) we get

Px[u′, y0] + u′xλy0
[u′, y0] + xµy0

[u′, y0] = (P + u′λy0
+ µy0

)x[u′, y0] = 0,

by primeness of U we get P + u′λy0
+ µy0

= 0. We note that λy0
≠ 0 otherwise P ∈ C,

a contradiction. Substituting the value of P in (4.10) we get

2λy0
u′x[u′, y] + x[−λy0

u′2 − c − qq′′, y] = 0.

Again by Remark 3.7 there exists ηy depending on y such that [−λy0
u′2 − c − qq′′, y] =

ηy[u′, y]. Since u′ /∈ C there is some y′

0 such that [u′, y′

0] ̸= 0. For Ąxed ηy′

0
we have

[−λy0
u′2 − c − qq′′, y′

0] = ηy′

0
[u′, y′

0]. Thus, we get (2λy0
u′ + ηy′

0
)x[u′, y′

0] = 0 for all
x ∈ U . The primeness of U gives 2λy0

u′ + ηy′

0
= 0. Since charR ≠ 2 and λy0

≠ 0 we
get u′ ∈ C, a contradiction. □

Proposition 4.4. Let R be a prime ring of characteristic different from 2 with Utumi

quotient ring U and the extended centroid C, f(x1, . . . , xn) a multilinear polynomial

over C which is not central valued on R. Suppose that F and G are b-generalized skew

derivations associated with an outer automorphism α defined as F (x) = ax + bα(x)u,

G(x) = cx + bα(x)v for all x ∈ f(R) and for some a, b, c, u, v ∈ R. Let P ∈ R be

non central element of R such that
[

P, [F (f(r)), f(r)]
]

= [G(f(r)), f(r)] for all f(r) ∈

f(R), where f(R) denotes the set of all evaluations of the polynomial f(x1, . . . , xn) in

R, then one of the following holds:

(1) there exist λ, µ ∈ C such that F (x) = λx, G(x) = µx for all x ∈ R;

(2) there exist a, b ∈ U , λ, µ ∈ C such that F (x) = ax+λx+xa, G(x) = bx+µx+xb
for all x ∈ R and f(x1, . . . , xn)2 is central valued on R.

Proof. From the given hypothesis we get
[

P, [af(x1, . . . , xn) + bα(f(x1, . . . , xn))u, f(x1, . . . , xn)]
]

=[cf(x1, . . . , xn) + bα(f(x1, . . . , xn))v, f(x1, . . . , xn)],
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for all x1, . . . , xn ∈ R. Since R and U satisfy the same polynomial identity we get
[

P, [af(x1, . . . , xn) + bα(f(x1, . . . , xn))u, f(x1, . . . , xn)]
]

=[cf(x1, . . . , xn) + bα(f(x1, . . . , xn))v, f(x1, . . . , xn)],

for all x1, . . . , xn ∈ U . By Remark 3.3 above expression becomes
[

P, [af(x1, . . . , xn) + bfα(y1, . . . , yn)u, f(x1, . . . , xn)]
]

=[cf(x1, . . . , xn) + bfα(y1, . . . , yn)v, f(x1, . . . , xn)],

for all x1, . . . , xn, y1, . . . , yn ∈ U . In particular, U satisĄes the blended component
[

P, [af(x1, . . . , xn), f(x1, . . . , xn)]
]

= [cf(x1, . . . , xn), f(x1, . . . , xn)].

Now result follows from Proposition 4.1 by taking F (x) = ax and G(x) = cx. □

5. Proof of the Main Theorem

We can write F (x) = ax + bd(x), G(x) = cx + bδ(x) for all x ∈ R and for some
a, b, c ∈ U , where d, δ are skew derivations on R. If d and δ both are skew inner
derivations on R then by Proposition 4.1 and Proposition 4.4, we get our conclusions.
If b = 0 then also we get our conclusions from Proposition 4.1. So assume b ̸= 0. Now
we assume that both are not skew inner derivations. We shall study the following
cases.

Case-I. Let d be skew inner and δ be outer. In this case we write F (x) = ax+bα(x)u
and G(x) = cx + bδ(x). From given hypothesis we get

[

P, [af(x1, . . . , xn) + bα(f(x1, . . . , xn))u, f(x1, . . . , xn)]
]

=[cf(x1, . . . , xn) + bδ(f(x1, . . . , xn)), f(x1, . . . , xn)].(5.1)

Substituting the value of δ(f(x1, . . . , xn)) from (3.1) in equation (5.1), we get
[

P, [af(x1, . . . , xn) + bα(f(x1, . . . , xn))u, f(x1, . . . , xn)]
]

=
[

cf(x1, . . . , xn) + bf δ(x1, . . . , xn)

+ b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))δ(xσ(j+1))xσ(j+2) . . . xσ(n), f(x1, . . . , xn)


.(5.2)

Since δ is outer, by using Remark 3.6 in above expression, we get
[

P, [af(x1, . . . , xn) + bα(f(x1, . . . , xn))u, f(x1, . . . , xn)]
]

=



cf(x1, . . . , xn) + bf δ(x1, . . . , xn)

+ b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))yσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)



.(5.3)
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In particular U satisĄes the blended component


b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))yσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)



.(5.4)

Suppose α is an inner automorphism. In (5.4) replace yσ(1) = xσ(1) and yσ(i) = 0 for
all i > 1, we get

[

bf(x1, . . . , xn), f(x1, . . . , xn)
]

= 0.

Conclusions follow from the inner case.
Suppose α is an outer automorphism, then for yσ(n) = α(xσ(n)), α(xσ(i)) = tσ(i) for

all i and yσ(i) = 0 for i < n in (5.4) we get
[

bfα(t1, . . . , tn), f(x1, . . . , xn)
]

= 0,

for all t1, . . . , tn, x1, . . . , xn ∈ U . By Remark 4.1 we get bfα(t1, . . . , tn) ∈ C for all
t1, . . . , tn ∈ U and by Remark 4.2 we get b = 0, a contradiction.

Case-II. Now we assume that d is an outer derivation and δ is a skew inner
derivation then we write F (x) = ax + bd(x) and G(x) = cx + bα(x)v. Then our
hypothesis becomes

[

P, [af(x1, . . . , xn) + bd(f(x1, . . . , xn)), f(x1, . . . , xn)]
]

=[cf(x1, . . . , xn) + bα(f(x1, . . . , xn))v, f(x1, . . . , xn)].(5.5)

We substitute the value of d(f(x1, . . . , xn)) from (3.1) in above equation, we get that
U satisĄes



P,
[

af(x1, . . . , xn) + bfd(x1, . . . , xn)

+ b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))d(xσ(j+1))xσ(j+2) . . . xσ(n), f(x1, . . . , xn)
]





=[cf(x1, . . . , xn) + bα(f(x1, . . . , xn))v, f(x1, . . . , xn)].

Since d is outer derivation, by using Remark 3.6 in above expression, we get


P,
[

af(x1, . . . , xn) + bfd(x1, . . . , xn)

+ b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))yσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)
]





=[cf(x1, . . . , xn) + bα(f(x1, . . . , xn))v, f(x1, . . . , xn)],

where d(xi) = yi. In particular, U satisĄes the blended component


P,



b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))yσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)







.(5.6)
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Suppose α is an inner automorphism. Replace yσ(1) = xσ(1) and yσ(i) = 0 for all

i > 1 in (5.6) we get
[

P, [bf(x1, . . . , xn), f(x1, . . . , xn)]
]

= 0 for all x1, . . . , xn ∈ U .

Conclusions follow from inner case.
Now suppose α is an outer automorphism, then for yσ(n) = α(xσ(n)), α(xσ(i)) = tσ(i)

for all i and yσ(i) = 0 for i < n in (5.6) we get
[

P, [bfα(t1, . . . , tn), f(x1, . . . , xn)]
]

= 0,

for all t1, . . . , tn, x1, . . . , xn ∈ U . From Remark 4.1 we get bfα(t1, . . . , tn) ∈ C for all
t1, . . . , tn ∈ U and by Remark 4.2 we get b = 0, a contradiction.

Case-III. Now we suppose that none of d and δ are skew inner derivations. In this
case we write F (x) = ax + bd(x), G(x) = cx + bδ(x), where d and δ both are outer
derivations. Now we have the following two subcases.

d and δ be C-Linearly Independent Modulo SDin

In this case from our hypothesis, U satisĄes
[

P, [af(x1, . . . , xn) + bd(f(x1, . . . , xn)), f(x1, . . . , xn)]
]

=[cx + bδ(f(x1, . . . , xn)), f(x1, . . . , xn)].(5.7)

We substitute the value of d(f(x1, . . . , xn)) and δ(f(x1, . . . , xn)) from (3.1) and use
Remark 3.6 to (5.7) then U satisĄes



P,
[

af(x1, . . . , xn) + bfd(x1, . . . , xn)

+ b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))yσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)
]





=



cf(x1, . . . , xn) + bf δ(x1, . . . , xn)

+ b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))zσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)



,

where yσ(j+1) = d(xσ(j+1)) and zσ(j+1) = δ(xσ(j+1)). In particular, U satisĄes the
blended component



b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))zσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)



.(5.8)

Suppose α is an inner automorphism. Replace zσ(1) = xσ(1) and zσ(i) = 0 for all i > 1
in expression (5.8) we get [bf(x1, . . . , xn), f(x1, . . . , xn)] = 0 for all x1, . . . , xn ∈ U .
Conclusions follow from inner case.
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Now suppose α is an outer automorphism. Then for zσ(1) = xσ(1) and zσ(i) = 0 for
i > 1 in (5.8) we get

[bfα(t1, . . . , tn), f(x1, . . . , xn)] = 0,(5.9)

for all t1, . . . , tn, x1, . . . , xn ∈ U . By Remark 4.1 we get bfα(t1, . . . , tn) ∈ C for all
t1, . . . , tn ∈ U . By Remark 4.2 we get b = 0, a contradiction.

d and δ be C-Linearly Dependent Modulo SDin

Since d and δ be C-linearly dependent modulo SDin there are some λ, µ ∈ C, q′ ∈ U
such that λd(x) + µδ(x) = q′x − α(x)q′ for all x ∈ R.

If λ = 0 and µ ̸= 0 then δ(x) = qx − α(x)q, where q = µ−1q′ is a skew inner
derivation, a contradiction.

If λ ̸= 0 and µ = 0 then d(x) = qx − α(x)q, where q = λ−1q′ is a skew inner
derivation, a contradiction.

Suppose λ ≠ 0 and µ ≠ 0 and we write d(x) = βδ(x)+qx−α(x)q, where β = −λ−1µ,
q = λ−1q′. Now from our hypothesis we have

[

P, [af(x1, . . . , xn) + bβδ(f(x1, . . . , xn)) + bqf(x1, . . . , xn) − bα(f(x1, . . . , xn))q,

f(x1, . . . , xn)]
]

= [cf(x1, . . . , xn) + bδ(f(x1, . . . , xn)), f(x1, . . . , xn)].

Substituting the value of δ(f(x1, . . . , xn)) from (3.1) in above expression we get


P,



af(x1, . . . , xn) + bβf δ(x1, . . . , xn)

+ bβ
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))zσ(j+1)xσ(j+2) . . . xσ(n) + bqf(x1, . . . , xn)

− bα(f(x1, . . . , xn))q, f(x1, . . . , xn)







(5.10)

=



cf(x1, . . . , xn) + bf δ(x1, . . . , xn)

+ b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))zσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)



,

where zσ(j+1) = δ(xσ(j+1)). In particular, U satisĄes the blended component


P,
[

bβ
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))zσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)
]





=



b
∑

σ∈Sn

α(γσ)
n−1
∑

j=0

α(xσ(1) . . . xσ(j))zσ(j+1)xσ(j+2) . . . xσ(n), f(x1, . . . , xn)



.(5.11)
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Suppose α is an inner automorphism. Replacing zσ(1) = xσ(1) and zσ(i) = 0 for i > 1
in (5.11) we get

[

P, [bβf(x1, . . . , xn), f(x1, . . . , xn)]
]

= [bf(x1, . . . , xn), f(x1, . . . , xn)],

for all x1, . . . , xn ∈ U . Conclusions follow from inner case.
Suppose α is an outer automorphism. Replace zσ(n) = α(xσ(n)), α(xσ(i)) = tσ(i) for

all i and zσ(i) = 0 for i < n in (5.11) we get
[

P, [bβfα(t1, . . . , tn), f(x1, . . . , xn)]
]

= [bfα(t1, . . . , tn), f(x1, . . . , xn)],

for all t1, . . . , tn, x1, . . . , xn ∈ U . By Remark 4.1 we get bβfα(t1, . . . , tn) ∈ C and
bfα(t1, . . . , tn) ∈ C for all t1, . . . , tn ∈ U . In both cases bfα(t1, . . . , tn) ∈ C for all
t1, . . . , tn, since 0 ̸= β ∈ C. By Remark 4.2 we get b = 0, a contradiction.

Similarly, if we consider δ(x) = βd(x) + qx − α(x)q for all x ∈ R then we get a
contradiction.

Acknowledgements. Author thanks to the referees for their valuable comments and
suggestions. Author is partially supported by Department of Science and Technology
Research Grant-SERB EMR/2016/001550.
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(FUZZY) FILTERS OF SHEFFER STROKE BL-ALGEBRAS

TAHSIN ONER1, TUGCE KATICAN1, AND ARSHAM BORUMAND SAEID2

Abstract. In this study, some (fuzzy) filters of a Sheffer stroke BL-algebra and
its properties are presented. To show a relationship between a filter and a fuzzy
filter of Sheffer stroke BL-algebra, we prove that f is a fuzzy (ultra) filter of C if
and only if fp is either empty or a (ultra) filter of C for each p ∈ [0, 1], and it is
satisfied for p = f(1) and for the characteristic function of a nonempty subset of a
Sheffer stroke BL-algebra.

1. Introduction

The idea of fuzzy set theory as well as fuzzy logic was propounded by Lotfi Zadeh
([20, 21]). The interest in foundations of fuzzy logic has been rapidly proceeding
recently and many new algebras playing the role of the structures of truth values have
been introduced.

The most important task of artificial intelligence is to make computers which
simulate human behaviors. The classical logic deals with certain information while
nonclassical logic such as many valued logics and fuzzy logic engages in uncertainty,
or fuzziness and randomness. Since fuzziness and randomness are closely related to
human’s intelligence and behaviors, the fuzzy theory using in many various areas from
science to technology plays an important role in improving artificial intelligence.

Filters have fundamental importance in algebra and play significant role in studying
fuzzy logics. From logical point of view, they correspond to sets of provable formulas.
Besides, they have a variety of some applications in logic and topology. Different
approaches of fuzzy filters have been investigated by many authors ([6, 9, 10, 18]).

Petr Hájek introduced the axiom system of basic logic (BL) for fuzzy propositional
logic and defined the class of BL-algebras [5]. He presented filters and prime filters
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on this algebraic structure and gave the completeness proof of basic logic by using
these prime filters [5]. Since the filters and fuzzy filters have an important place in the
logical algebra theory, Boolean, positive implicative, maximal, prime, proper filters
and implicative deductive systems on BL-algebras are researched ([6, 8]). In recent
times, Liu and Li studied on fuzzy filters on a BL-algebra ([9, 10]), and Saeid et al.
analyzed some kinds of filters, open problems on fuzzy filters and double complemeted
elements of BL-algebras ([1–3]). Also, Xueling et al. generalized fuzzy filters of BL-
algebras [18] and Zhan et al. examined on their some types [17]. Moreover, Yin and
Zhan researched new types of fuzzy filters in these algebras [19]. Indeed, Haveshki
and Eslami investigated n-fold filters of BL-algebras [7] and Motamed et al. studied
on n-fold obstinate filters [12] and radicals of filters in BL-algebras [13]. Besides, H.
M. Sheffer introduced Sheffer operation [16], and then McCune et al. showed that
every Boolean function or axiom may be restated by this operation [11]. Since the
Sheffer operation is a commutative, it satisfies that many algebraic structures have
more useful axiom system. Recently, Sheffer stroke Hilbert algebras and filters a
strong Sheffer stroke non-associative MV-algebras are studied (for details [14] and
[15], respectively).

We first give basic definitions and notions related to a Sheffer stroke BL-algebra, and
present new properties. Then some kind of (fuzzy) filters are defined and exemplified.
Besides, we prove that f is a fuzzy (ultra) filter of a Sheffer stroke BL-algebra if and
only if fp = ¶c1 ∈ C : p ≤ f(c1)♢ ̸= ∅ is its (ultra) filter for any p ∈ (0, 1], and it is
satisfied for p = f(1) and for the characteristic function χP of P in which P is the
nonempty subset of a Sheffer stroke BL-algebra.

2. Preliminaries

In this section, we give fundamental definitions and notions about Sheffer stroke
BL-algebras, BL-algebras, filters and fuzzy filters of BL-algebras.

Definition 2.1 ([4]). Let C = ⟨C, ♣⟩ be a groupoid. The operation ♣ is said to be a
Sheffer stroke if it satisfies the following conditions:

(S1) c1♣c2 = c2♣c1;
(S2) (c1♣c1)♣(c1♣c2) = c1;
(S3) c1♣((c2♣c3)♣(c2♣c3)) = ((c1♣c2)♣(c1♣c2))♣c3;
(S4) (c1♣((c1♣c1)♣(c2♣c2)))♣(c1♣((c1♣c1)♣(c2♣c2))) = c1.

Definition 2.2. A Sheffer stroke BL-algebra is an algebra (C, ∨, ∧, ♣, 0, 1) of type
(2, 2, 2, 0, 0) satisfying the following conditions:

(sBL − 1) (C, ∨, ∧, 0, 1) is a bounded lattice;
(sBL − 2) (C, ♣) is a groupoid with the Sheffer stroke;
(sBL − 3) c1 ∧ c2 = (c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2)));
(sBL − 4) (c1♣(c2♣c2)) ∨ (c2♣(c1♣c1)) = 1,

for all c1, c2 ∈ C.
1 = 0♣0 is the greatest element and 0 = 1♣1 is the least element of C.
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Example 2.1. Consider a structure (C, ∨, ∧, ♣, 0, 1) with the following Hasse diagram
(see Figure 1), where C = ¶0, u, v, 1♢.

Figure 1.

The binary operations ♣, ∨ and ∧ on C have Cayley tables as follow in Table 1, 2
and 3.

Table 1. The table of a Sheffer stroke ♣

♣ 0 u v 1
0 1 1 1 1
u 1 v 1 v
v 1 1 u u
1 1 v u 0

Table 2. The table of ∨

∨ 0 u v 1
0 0 u v 1
u u u 1 1
v v 1 v 1
1 1 1 1 1

Table 3. The table of ∧

∧ 0 u v 1
0 0 0 0 0
u 0 u 0 u
v 0 0 v v
1 0 u v 1

Then this structure is a Sheffer stroke BL-algebra.



42 T. ONER, T. KATICAN, AND A. BORUMAND SAEID

Figure 2.

Example 2.2. Consider a structure (C, ∨, ∧, ♣, 0, 1) with the following Hasse diagram
(see Figure 2), where C = ¶0, a, b, c, d, e, f, 1♢.

The binary operations ♣, ∨ and ∧ on C have Cayley tables as follow in Table 4, 5
and 6. Then this structure is a Sheffer stroke BL-algebra.

Table 4. The table of a Sheffer stroke ♣

♣ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a 1 f 1 1 f f 1 f
b 1 1 e 1 e 1 e e
c 1 1 1 d 1 d d d
d 1 f e 1 c f e c
e 1 f 1 d f b d b
f 1 1 e d e d a a
1 1 f e d c b a 1

Table 5. The table of ∨

∨ 0 a b c d e f 1
0 0 a b c d e f 1
a a a d e d e 1 1
b b d b f d 1 f 1
c c e f c 1 e f 1
d d d d 1 d 1 1 1
e e e 1 e 1 e 1 1
f f 1 f f 1 1 f 1
1 1 1 1 1 1 1 1 1

Proposition 2.1. In any Sheffer stroke BL-algebra C, the following features hold,

for all c1, c2, c3 ∈ C:
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Table 6. The table of ∧

∧ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 a 0 0 a a 0 a
b 0 0 b 0 b 0 b b
c 0 0 0 c 0 c c c
d 0 a b 0 d a b d
e 0 a 0 c a e c e
f 0 0 b c b c f f
1 0 a b c d e f 1

(1) c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) = c2♣((c1♣(c3♣c3))♣(c1♣(c3♣c3)));
(2) c1♣(c1♣c1) = 1;
(3) 1♣(c1♣c1) = c1;
(4) c1♣(1♣1) = 1;
(5) (c1♣1)♣(c1♣1) = c1;
(6) (c1♣c2)♣(c1♣c2) ≤ c3 ⇔ c1 ≤ c2♣(c3♣c3);
(7) c1 ≤ c2 if and only if c1♣(c2♣c2) = 1;

(8) c1 ≤ c2♣(c1♣c1);
(9) c1 ≤ (c1♣c2)♣c2;

(10) (a) (c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))) ≤ c1;

(b) (c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))) ≤ c2;

(11) if c1 ≤ c2, then

(i) c3♣(c1♣c1) ≤ c3♣(c2♣c2);
(ii) (c1♣c3)♣(c1♣c3) ≤ (c2♣c3)♣(c2♣c3);

(iii) c2♣(c3♣c3) ≤ c1♣(c3♣c3);
(12) c1♣(c2♣c2) ≤ (c3♣(c1♣c1))♣((c3♣(c2♣c2))♣(c3♣(c2♣c2)));
(13) c1♣(c2♣c2) ≤ (c2♣(c3♣c3))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3)));
(14) ((c1 ∨ c2)♣c3)♣((c1 ∨ c2)♣c3) = ((c1♣c3)♣(c1♣c3)) ∨ ((c2♣c3)♣(c2♣c3));
(15) c1 ∨ c2 = ((c1♣(c2♣c2))♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1)).

Proof. (1) It follows from (S1) and (S3).
(2) We get c1♣(c1♣c1) = (c1♣(c1♣c1)) ∨ (c1♣(c1♣c1)) = 1 from (sBL − 1) and (sBL − 4).
(3) We have 1♣(c1♣c1) = (c1♣(c1♣c1))♣(c1♣c1) = c1 from (2), (S1) and (S2).
(4) It is obtained from (3), (S1) and (S2) that c1♣(1♣1) = (1♣(c1♣c1))♣(1♣1) = 1.
(5) It follows from (S1), (S2) and (3) that

(c1♣1)♣(c1♣1) = (1♣((c1♣c1)♣(c1♣c1)))♣(1♣((c1♣c1)♣(c1♣c1))) = (c1♣c1)♣(c1♣c1) = c1.

(6) (⇒) Let (c1♣c2)♣(c1♣c2) ≤ c3. Then it follows from (sBL − 1), (sBL − 3), (S1)
and (S3) that

(c1♣c2)♣(c1♣c2) = ((c1♣c2)♣(c1♣c2)) ∧ c3

= (((c1♣c2)♣(c1♣c2))♣(((c1♣c2)♣(c1♣c2))♣(c3♣c3)))
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♣(((c1♣c2)♣(c1♣c2))♣(((c1♣c2)♣(c1♣c2))♣(c3♣c3)))

= (c2♣((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))))♣

(c2♣((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))))) (∗1),

for all c1, c2, c3 ∈ C. Thus, we have

c1 ∧ (c2♣(c3♣c3)) =(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))) (sBL − 3)

=(c1♣(((c1♣c2)♣(c1♣c2))♣(c3♣c3)))

♣(c1♣(((c1♣c2)♣(c1♣c2))♣(c3♣c3))) (S3)

=(c1♣(((c2♣((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))))

♣(c2♣((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))))))

♣(c3♣c3)))♣(c1♣(((c2♣((c1♣(c1♣((c2♣(c3♣c3))

♣(c2♣(c3♣c3)))))♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))))

♣(c2♣((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))♣

(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))))))♣(c3♣c3))) (∗1)

=(c1♣(((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))))♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))))

♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))) ((S1) and (S3))

=(c1♣((c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))♣((c1♣((c2♣(c3♣c3))

♣(c2♣(c3♣c3))))♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))))

♣(c1♣((c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))♣((c1♣((c2♣(c3♣c3))

♣(c2♣(c3♣c3))))♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))))) ((S1) and (S3))

=(c1♣1)♣(c1♣1) (2)

=c1 (5),

i.e., c1 ≤ c2♣(c3♣c3) from (sBL − 1).
(⇐) Let c1 ≤ c2♣(c3♣c3). Then we obtain from (sBL − 1) and (sBL − 3) that

c1 = c1 ∧ (c2♣(c3♣c3))

= (c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))) (∗2),
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for all c1, c2, c3 ∈ C. Thus, it follows

((c1♣c2)♣(c1♣c2)) ∧ c3 =(((c1♣c2)♣(c1♣c2))♣(((c1♣c2)♣(c1♣c2))♣(c3♣c3)))

♣(((c1♣c2)♣(c1♣c2))♣(((c1♣c2)♣(c1♣c2))♣(c3♣c3))) (sBL − 3)

=(c2♣((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))))

♣(c2♣((c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))))

♣(c1♣(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))))) ((S1) and (S3))

=(c1♣c2)♣(c1♣c2) ((∗2) and (S1))

i.e., (c1♣c2)♣(c1♣c2) ≤ C3 from (sBL − 1).
(7) Let c1 ≤ c2. Then we obtain from (5) and (S1) that c1 = (1♣c1)♣(1♣c1) ≤ c2.

So, it follows from (6) that 1 ≤ c1♣(c2♣c2). Since it is known c1♣(c2♣c2) ≤ 1 for all
c1, c2 ∈ A, we have c1♣(c2♣c2) = 1.

Conversely, let c1♣(c2♣c2) = 1. Because it is known c1 ≤ 1 for all c1 ∈ C, we
get c1 ≤ 1 = c1♣(c2♣c2) by the hypothesis. Thus, it follows from (6) and (S2) that
c1 = (c1♣c1)♣(c1♣c1) ≤ c2.

(8) Since it is known that c2 ≤ 1 for all c2 ∈ C, we have

c2 ≤ 1 ⇔ c2 ≤ c1♣(c1♣c1) (2)

⇔ (c1♣c2)♣(c1♣c2) ≤ c1 ((6) and (S1))

⇔ c1 ≤ c2♣(c1♣c1) (6).

(9) For all c1, c2 ∈ C, it follows from (6), (S2) and (S1), respectively, that
(c1♣c2)♣(c1♣c2) ≤ (c1♣c2)♣(c1♣c2) ⇔ c1 ≤ (c1♣c2)♣c2.

(10)

(a) Because c1 ≤ c1 for all c1 ∈ C, we get from (S2), (S1) and (6), respectively,
that

c1 ≤ c1 ⇔ c1 ≤ (c1♣(c2♣c2))♣(c1♣c1) ⇔ (c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))) ≤ c1.

(b) Since c1♣(c2♣c2) ≤ c1♣(c2♣c2) for all c1, c2 ∈ C, it is obtained from (6) and (S1)
that

c1♣(c2♣c2) ≤ c1♣(c2♣c2) ⇔ (c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))) ≤ c2.

(11) Let c1 ≤ c2.

(i) We have (c3♣(c3♣(c1♣c1)))♣(c3♣(c3♣(c1♣c1))) ≤ c1 ≤ c2 from 10 (b) and the hypoth-
esis. So, we get from (S1) and (6) that c3♣(c1♣c1) ≤ c3♣(c2♣c2).

(ii) We know c1 ≤ c2 ≤ (c2♣c3)♣c3 by (9) and the hypothesis. Therefore, it follows
from (S1), (S2) and (6) that (c1♣c3)♣(c1♣c3) ≤ (c2♣c3)♣(c2♣c3).

(iii) It is obtained from (ii) and (10) (b) that

c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) ≤ c2♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) ≤ c3.

Then we get from (S1) and (6) that c2♣(c3♣c3) ≤ c1♣(c3♣c3).
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(12) Because we know (c3♣(c3♣(c1♣c1)))♣(c3♣(c3♣(c1♣c1))) ≤ c1 from (10) (b), we have
from (11) (i) that c1♣(c2♣c2) ≤ ((c3♣(c3♣(c1♣c1)))♣(c3♣(c3♣(c1♣c1))))♣(y♣y). Then it is
obtained from (S1) and (S3) that c1♣(c2♣c2) ≤ (c3♣(c1♣c1))♣((c3♣(c2♣c2))♣(c3♣(c2♣c2))).

(13) Since it is known (c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))) ≤ c2 from (10) (b), it is ob-
tained from (11); (i) that c2♣(c3♣c3) ≤ ((c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))))♣(c3♣c3). Then
we get c2♣(c3♣c3) ≤ (c1♣(c2♣c2))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))) from (S1) and (S3). Thus, it
follows from (6) and (S1) that c1♣(c2♣c2) ≤ (c2♣(c3♣c3))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))).

(14) Because c1, c2 ≤ c1 ∨ c2, we obtain from (11) (ii) that (c1♣c3)♣(c1♣c3), (c2♣c3)♣(c2♣
c3) ≤ ((c1 ∨ c2)♣c3)♣((c1 ∨ c2)♣c3). Then it follows

((c1♣c3)♣(c1♣c3)) ∨ ((c2♣c3)♣(c2♣c3)) ≤ ((c1 ∨ c2)♣c3)♣((c1 ∨ c2)♣c3).

Since (c1♣c3)♣(c1♣c3), (c2♣c3)♣(c2♣c3) ≤ ((c1♣c3)♣(c1♣c3))∨((c2♣c3)♣(c2♣c3)), we have from
(6) that

c1, c2 ≤ c3♣((((c1♣c3)♣(c1♣c3)) ∨ ((c2♣c3)♣(c2♣c3)))♣(((c1♣c3)♣(c1♣c3)) ∨ ((c2♣c3)♣(c2♣c3)))).

Then

c1 ∨ c2 ≤ c3♣((((c1♣c3)♣(c1♣c3)) ∨ ((c2♣c3)♣(c2♣c3)))♣(((c1♣c3)♣(c1♣c3)) ∨ ((c2♣c3)♣(c2♣c3)))).

So, it follows from (6) that ((c1∨c2)♣c3)♣((c1∨c2)♣c3) ≤ ((c1♣c3)♣(c1♣c3))∨((c2♣c3)♣(c2♣c3)).
(15) We have c1, c2 ≤ (c1♣(c2♣c2))♣(c2♣c2) and c1, c2 ≤ (c2♣(c1♣c1))♣(c1♣c1). Then

c1, c2 ≤ ((c1♣(c2♣c2))♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1)), and so

c1 ∨ c2 ≤ ((c1♣(c2♣c2))♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1)).

Also, we obtain

((c1♣(c2♣c2))♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1))

=((((c1♣(c2♣c2))♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1)))

♣((c1♣(c2♣c2)) ∨ (c2♣(c1♣c1))))♣((((c1♣(c2♣c2))♣(c2♣c2))

∧ ((c2♣(c1♣c1))♣(c1♣c1)))♣((c1♣(c2♣c2)) ∨ (c2♣(c1♣c1)))) ((5) and (sBL − 4))

=(((c1♣(c2♣c2))♣(((c1♣(c2♣c2))♣♣(c2♣c2)) ∧ ((c2♣(c1♣c1))

♣(c1♣c1))))♣((c1♣(c2♣c2))♣(((c1♣(c2♣c2))♣♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1)))))

♣(((c2♣(c1♣c1))♣(((c1♣(c2♣c2))♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1))))♣((c2♣(c1♣c1))

♣(((c1♣(c2♣c2))♣♣(c2♣c2)) ∧ ((c2♣(c1♣c1))♣(c1♣c1))))) ((S1) and (14))

≤(((c1♣(c2♣c2))♣((c1♣(c2♣c2))♣♣(c2♣c2)))♣((c1♣(c2♣c2))

♣((c1♣(c2♣c2))♣♣(c2♣c2)))) ∨ (((c2♣(c1♣c1))♣((c2♣(c1♣c1))♣(c1♣c1)))♣

((c2♣(c1♣c1))♣((c2♣(c1♣c1))♣♣(c1♣c1)))) ((S1) and (11) (ii))

=((c1♣(c2♣c2)) ∧ c2) ∨ ((c2♣(c1♣c1)) ∧ c1) (sBL − 3)

=c2 ∨ c1 (8)

=c1 ∨ c2. □
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Lemma 2.1. Let C be a Sheffer stroke BL-algebra. Then (c1♣(c2♣c2))♣(c2♣c2) =
(c2♣(c1♣c1))♣(c1♣c1) for all c1, c2 ∈ C.

Proof. Let C be a Sheffer stroke BL-algebra. Then it is obtained from Proposition
2.1 (13), (S1) and (S2) that

(c1♣(c2♣c2))♣(c2♣c2) ≤ (c2♣(c1♣c1))♣(((c1♣(c2♣c2))♣(c1♣c1))♣((c1♣(c2♣c2))♣(c1♣c1)))

= (c2♣(c1♣c1))♣(c1♣c1),

and similarly, (c2♣(c1♣c1))♣(c1♣c1) ≤ (c1♣(c2♣c2))♣(c2♣c2). Therefore, (c1♣(c2♣c2))♣(c2♣c2) =
(c2♣(c1♣c1))♣(c1♣c1) for all c1, c2 ∈ C. □

Corollary 2.1. Let C be a Sheffer stroke BL-algebra. Then c1∨c2 = (c1♣(c2♣c2))♣(c2♣c2)
for all c1, c2 ∈ C.

Lemma 2.2. Let C be a Sheffer stroke BL-algebra. Then ((c1♣(c2♣c2))♣(c2♣c2))♣(c2♣c2) =
c1♣(c2♣c2) for all c1, c2 ∈ C.

Proof. Let C be a Sheffer stroke BL-algebra. Then it is known from Proposition 2.1
(9) that c1♣(c2♣c2) ≤ ((c1♣(c2♣c2))♣(c2♣c2))♣(c2♣c2). Also, it follows from Proposition 2.1
(12) and (1)–(3), respectively, that

((c1♣(c2♣c2))♣(c2♣c2))♣(c2♣c2) ≤(c1♣(((c1♣(c2♣c2))♣(c2♣c2))♣((c1♣(c2♣c2))

♣(c2♣c2))))♣((c1♣(c2♣c2))♣(c1♣(c2♣c2)))

=((c1♣(c2♣c2))♣((c1♣(c2♣c2))♣(c1♣(c2♣c2))))

♣((c1♣(c2♣c2))♣(c1♣(c2♣c2)))

=(c1♣(c2♣c2)).

Thus, ((c1♣(c2♣c2))♣(c2♣c2))♣(c2♣c2) = c1♣(c2♣c2) for all c1, c2 ∈ C. □

Lemma 2.3. Let C be a Sheffer stroke BL-algebra. Then c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) =
(c1♣(c2♣c2))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))) for all c1, c2, c3 ∈ C.

Proof. Let C be a Sheffer stroke BL-algebra. Since c2 ≤ c1♣(c2♣c2) from Proposition
2.1 (8), it is obtained from Proposition 2.1 (11) (iii) and (1), respectively, that

(c1♣(c2♣c2))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))) ≤c2♣((c1♣(c3♣c3))♣(c1♣(c3♣c3)))

=c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))).

Besides, it follows from Proposition 2.1 (1), (12), (S3) and (S2), respectively, that

c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) =c2♣((c1♣(c3♣c3))♣(c1♣(c3♣c3)))

≤(c1♣(c2♣c2))♣((c1♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))))

♣(c1♣((c1♣(c3♣c3))♣(c1♣(c3♣c3)))))

=(c1♣(c2♣c2))♣((((c1♣c1)♣(c1♣c1))♣(c3♣c3))

♣(((c1♣c1)♣(c1♣c1))♣(c3♣c3)))

=(c1♣(c2♣c2))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))).
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Therefore, c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) = (c1♣(c2♣c2))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))). □

3. Various Filters of Sheffer Stroke BL-Algebras

In this section, we give some types of filters on a Sheffer stroke BL-algebra. Unless
orherwise specified, C represents a Sheffer stroke BL-algebra.

Definition 3.1. A filter of C is a nonempty subset P ⊆ C satisfying
(SF − 1) if c1, c2 ∈ P , then (c1♣c2)♣(c1♣c2) ∈ P ;
(SF − 2) if c1 ∈ P and c1 ≤ c2, then c2 ∈ P .

Example 3.1. For the Sheffer stroke BL-algebra in Example 2.2, C, ¶1♢, ¶a, d, e, 1♢
and ¶c, e, f, 1♢ are filters of C.

Proposition 3.1. Let P be a nonempty subset of C. Then P is a filter of C if and

only if the following hold:

(SF − 3) 1 ∈ P ;

(SF − 4) c1 ∈ P and c1♣(c2♣c2) ∈ P imply c2 ∈ P.

Lemma 3.1. Let P be a filter of C. Then c3♣(((c2♣(c1♣c1))♣(c1♣c1))♣((c2♣(c1♣c1))♣(c1♣c1)))
∈ P and c3 ∈ P imply (c1♣(c2♣c2))♣(c2♣c2) ∈ P for any c1, c2, c3 ∈ C.

Proof. Let P be a filter of C. Since c3♣(((c1♣(c2♣c2))♣(c2♣c2))♣((c1♣(c2♣c2))♣(c2♣c2))) =
c3♣(((c2♣(c1♣c1))♣(c1♣c1))♣((c2♣(c1♣c1))♣(c1♣c1))) ∈ P, from Lemma 2.1 and c3 ∈ P , it
follows from (SF − 4) that (c1♣(c2♣c2))♣(c2♣c2) ∈ P . □

Lemma 3.2. Let P be a filter of C. Then

(a) c3♣((c2♣(c1♣c1))♣(c2♣(c1♣c1))) ∈ P and c3 ∈ P imply ((c1♣(c2♣c2))♣(c2♣c2))♣(c1♣c1) ∈
P ;

(b) c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) ∈ P and c1♣(c2♣c2) ∈ P imply c1♣(c3♣c3) ∈ P ;

(c) c1♣(((c2♣(c3♣c3))♣(c2♣c2))♣((c2♣(c3♣c3))♣(c2♣c2))) ∈ P and c1 ∈ P imply c2 ∈ P ,

for any c1, c2, c3 ∈ C.

Proof. Let P be a filter of C.
(a) Because c3♣((c2♣(c1♣c1))♣(c2♣(c1♣c1))) ∈ P and c3 ∈ P , we get from Lemma 2.1,
Lemma 2.2 and (SF − 4) that

((c1♣(c2♣c2))♣(c2♣c2))♣(c1♣c1) = ((c2♣(c1♣c1))♣(c1♣c1))♣(c1♣c1) = c2♣(c1♣c1) ∈ P.

(b) Since (c1♣(c2♣c2))♣((c1♣(c3♣c3))♣(c1♣(c3♣c3))) = c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) ∈ P
from Lemma 2.3 and c1♣(c2♣c2) ∈ P , it follows from (SF − 4) that c1♣(c3♣c3) ∈ P .

(c) Because

c1♣(((c2♣(c3♣c3))♣(c2♣c2))♣((c2♣(c3♣c3))♣(c2♣c2)))

=c1♣(((c2♣c2)♣(c2♣(c3♣c3)))♣((c2♣c2)♣(c2♣(c3♣c3))))

=c1♣(c2♣c2) ∈ P,

from (S1)-(S2) and c1 ∈ P , we have from (SF − 4) that c2 ∈ P . □
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Lemma 3.3. Let P be a filter of C. Then c ∨ (c♣c) ∈ P for any c ∈ C.

Proof. Let P be a filter of C, and c be any element of C. Since

c ∨ (c♣c) = (c♣((c♣c)♣(c♣c)))♣((c♣c)♣(c♣c)) (Corollary 2.1)

= (c♣(c♣c)) (S1)-(S2)

= 1 (Proposition 2.1 (2))

and 1 ∈ P , it is obtained c ∨ (c♣c) ∈ P . □

Definition 3.2. Let P be a filter of C. Then P is called an ultra filter of C if it
satisfies c ∈ P or c♣c ∈ P for all c ∈ C.

Example 3.2. Consider the Sheffer stroke BL-algebra in Example 2.2. Then the filter
¶a, d, e, 1♢ of C is ultra while the filter ¶1♢ of C is not an ultra filter of C.

Lemma 3.4. A filter P of C is an ultra filter of C if and only if c1 /∈ P and c2 /∈ P
imply c1♣(c2♣c2) ∈ P for all c1, c2 ∈ C.

Proof. (⇒) Let P be an ultra filter of C. Assume that c1 /∈ P and c2 /∈ P . Because P
is an ultra filter of C, c1♣c1 ∈ P and c2♣c2 ∈ P . Then c1♣c1 ≤ (c2♣c2)♣((c1♣c1)♣(c1♣c1)) =
c1♣(c2♣c2) from Proposition 2.1 (8) and (S1)-(S2). So, c1♣(c2♣c2) ∈ P .

(⇐) Let c1 /∈ P and c2 /∈ P . Then c1♣(c2♣c2) ∈ P for c1, c2 ∈ C. Suppose that
c♣c /∈ P and c /∈ P for any c ∈ C. Then (c♣c)♣(c♣c) = c ∈ P by the hypothesis and
(S2), which is a contradiction. Hence, c♣c ∈ P and c ∈ P for any c ∈ C, i.e., P is an
ultra filter of C. □

Lemma 3.5. A filter P of C is an ultra filter of C if and only if c1 ∨ c2 ∈ P implies

c1 ∈ P or c2 ∈ P for all c1, c2 ∈ C.

Proof. (⇒) Let P be an ultra filter of C and c1 ∨ c2 ∈ P . Suppose that c1 /∈ P or
c2 /∈ P . Then we have c1♣(c2♣c2) ∈ P from Lemma 3.4. Since (c1♣(c2♣c2))♣(c2♣c2) ∈ P ,
from Corollary 2.1 and c1♣(c2♣c2) ∈ P , we get c2 ∈ P which is a contrradiction. Thus,
c1 ∈ P or c2 ∈ P .

(⇐) Let c1 and c2 be any elements in C such that c1 ∨ c2 ∈ P implies c1 ∈ P or
c2 ∈ P . Because c ∨ (c♣c) ∈ P for all c ∈ C from Lemma 3.3, it follows c ∈ P or
c♣c ∈ P , i.e., P is an ultra filter of C. □

4. Some Fuzzy Filters of Sheffer Stroke BL-Algebras

In this section, we introduce some fuzzy filters in Sheffer stroke BL-algebras. Unless
orherwise specified, C represents a Sheffer stroke BL-algebra.

Definition 4.1. A fuzzy filter of C is a fuzzy subset f of C such that for all c1, c2 ∈ C
(1) f(c1) ≤ f(1);
(2) f(c1) ∧ f(c1♣(c2♣c2)) ≤ f(c2).

Example 4.1. Consider the Sheffer stroke BL-algebra C in Example 2.1. Let f(0) =
f(u) = f(v) = 0, 5 and f(1) = 1. Then f is a fuzzy filter of C.
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Proposition 4.1. Let f be a fuzzy subset of C. f is a fuzzy filter of C if and only if

for all c1, c2, c3 ∈ C c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) = 1 implies f(c1) ∧ f(c2) ≤ f(c3).

Proof. (⇒) Let f be a fuzzy filter of C and c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) = 1. Since

f(c1) = f(c1) ∧ f(1) (Definition 4.1 (1))

= f(c1) ∧ f(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))))

≤ f(c2♣(c3♣c3)) (Definition 4.1 (2)),

it follows from Definition 4.1 (2) that

f(c1) ∧ f(c2) ≤ f(c2♣(c3♣c3)) ∧ f(c2) = f(c2) ∧ f(c2♣(c3♣c3)) ≤ f(c3).

(⇐) Let c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3))) = 1 imply f(c1) ∧ f(c2) ≤ f(c3). By substituting
[c2 := c1] and [c3 := 1], it is obtained from Proposition 2.1 (4) that c1♣((c1♣(1♣1))♣(c1♣(1♣
1))) = 1 implies f(c1) = f(c1) ∧ f(c1) ≤ f(1). Besides, substituting [c2 := c1♣(c2♣c2)]
and [c3 := c2], simultaneously, it is concluded from (S1), (S3) and Proposition
2.1 (2) that c1♣(((c1♣(c2♣c2))♣(c2♣c2))♣((c1♣(c2♣c2))♣(c2♣c2))) = 1, which implies f(c1) ∧
f(c1♣(c2♣c2)) ≤ f(c2). Thus, f is a fuzzy filter of C. □

Corollary 4.1. Let f be a fuzzy subset of C. f is a fuzzy filter of C if and only if

for all c1, c2, c3 ∈ C (c1♣c2)♣(c1♣c2) ≤ c3 implies f(c1) ∧ f(c2) ≤ f(c3).

Proposition 4.2. Let f be a fuzzy subset of C. f is a fuzzy filter of C if and only if

(1) f is order-preserving;

(2) f(c1) ∧ f(c2) ≤ f((c1♣c2)♣(c1♣c2)) for any c1, c2 ∈ C.

Proof. (⇒) Let f be a fuzzy filter of C.
(1) Assume that c1 ≤ c2, i.e., c1♣(c2♣c2) = 1 from Proposition 2.1 (7). Then

f(c1) = f(c1) ∧ f(1) (Definition 4.1 (1))

= f(c1) ∧ f(c1♣(c2♣c2))

≤ f(c2) (Definition 4.1 (2)).

(2) Since

c1♣((c2♣(((c1♣c2)♣(c1♣c2))♣((c1♣c2)♣(c1♣c2))))♣(c2♣(((c1♣c2)♣(c1♣c2))♣((c1♣c2)♣(c1♣c2)))))

=c1♣((c2♣(c1♣c2))♣(c2♣(c1♣c2))) (S2)

=((c1♣c2)♣(c1♣c2))♣(c1♣c2) (S3)

=1, ((S1) and Proposition 2.1 (2))

it follows from Proposition 4.1 that f(c1) ∧ f(c2) ≤ f((c1♣c2)♣(c1♣c2)).
(⇐) Let f be a fuzzy subset of C satisfying (1) and (2) for all c1, c2, c3 ∈ C. By (1)

and the fact that c1 ≤ 1 for all c1 ∈ C, f(c1) ≤ f(1). It is known from Proposition
2.1 (9) that c1 ≤ (c1♣(c2♣c2))♣(c2♣c2), and so (c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))) ≤ c2 by
Proposition 2.1 (6). Then it is obtained from (1) − (2) that f(c1) ∧ f(c1♣(c2♣c2)) ≤
f((c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2)))) ≤ f(c2). Therefore, f is a fuzzy filter of C. □
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Corollary 4.2. Let f be an order-preserving fuzzy subset of C. f is a fuzzy filter of

C if and only if f((c1♣c2)♣(c1♣c2)) = f(c1) ∧ f(c2) for any c1, c2 ∈ C.

Proof. (⇒) Let f be a fuzzy filter of C. By Proposition 4.2 (2), it is sufficient to
show that f((c1♣c2)♣(c1♣c2)) ≤ f(c1) ∧ f(c2) for any c1, c2 ∈ C. Since c1 ≤ 1 for all
c1 ∈ C, it follows from (S1), Proposition 2.1 (2) and (6) that (c1♣c2)♣(c1♣c2) ≤ c1, c2

for all c1, c2 ∈ C. Because f is order-preserving, f((c1♣c2)♣(c1♣c2)) ≤ f(c1), f(c2), so
f((c1♣c2)♣(c1♣c2)) ≤ f(c1) ∧ f(c2).

(⇐) It is clear by Proposition 4.2. □

Corollary 4.3. Let f be a fuzzy filter of C. Then f(c1 ∧ c2) = f(c1) ∧ f(c2) for any

c1, c2 ∈ C.

Proof. Let f be a fuzzy filter of C. Since c1 ∧ c2 ≤ c1, c1 ∧ c2 ≤ c2 and f is an
order-preserving, it is obtained f(c1 ∧ c2) ≤ f(c1) and f(c1 ∧ c2) ≤ f(c2). Then
f(c1 ∧ c2) ≤ f(c1) ∧ f(c2). Because we know c2 ≤ c1♣(c2♣c2) from Proposition 2.1 (8),
it follows from Proposition 2.1 (11) (ii), (S1), and (sBL − 3) that (c1♣c2)♣(c1♣c2) ≤
(c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2))) = c1 ∧ c2. Thus, f(c1) ∧ f(c2) ≤ f(c1 ∧ c2) from
Corollary 4.1. □

Theorem 4.1. Let f be a fuzzy filter of C.

(a) If f(c1♣(c2♣c2)) = f(1), then f(c1) ≤ f(c2).
(b) f(c3♣(((c2♣(c1♣c1))♣(c1♣c1))♣((c2♣(c1♣c1))♣(c1♣c1)))) ∧ f(c3) ≤ f((c1♣(c2♣c2))♣(c2♣c2)).
(c) f(c3♣((c2♣(c1♣c1))♣(c2♣(c1♣c1)))) ∧ f(c3) ≤ f(((c1♣(c2♣c2))♣(c2♣c2))♣(c1♣c1)).
(d) f(c1♣((c2♣(c3♣c3))♣(c2♣(c3♣c3)))) ∧ f(c1♣(c2♣c2)) ≤ f(c1♣(c3♣c3)),

for any c1, c2, c3 ∈ C.

Proof. (a) Since

f(c1) = f(c1) ∧ f(1) (Definition 4.1)

= f(c1) ∧ f(c1♣(c2♣c2))

= f((c1♣(c1♣(c2♣c2)))♣(c1♣(c1♣(c2♣c2)))) (Corollary 4.2)

= f(c1 ∧ c2) (sBL − 3)

= f(c1) ∧ f(c2), (Corollary 4.3),

we get f(c1) ≤ f(c2).
(b) It is proved from Definition 4.1 (2) and Lemma 2.1.
(c) We have from Definition 4.1 (2), Lemma 2.2 and Lemma 2.1 that

f(c3♣((c2♣(c1♣c1))♣(c2♣(c1♣c1)))) ∧ f(c3) ≤ f(c2♣(c1♣c1))

= f(((c2♣(c1♣c1))♣(c1♣c1))♣(c1♣c1))

= f(((c1♣(c2♣c2))♣(c2♣c2))♣(c1♣c1)).

(d) It is proved from Lemma 2.3 and Definition 4.1 (2). □
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Definition 4.2. A fuzzy subset f of C is called a fuzzy ultra filter of C if it is a fuzzy
filter of C that satisfies the following conditions f(c1) = f(1) or f(c1♣c1) = f(1), for
all c1 ∈ C.

Example 4.2. Consider the Sheffer stroke BL-algebra C in Example 2.2. Let the fuzzy
filter f of C be defined by f(a) = f(d) = f(e) = f(1) = 1 and f(b) = f(c) = f(f) =
f(0) = 0. Since f(a) = f(d) = f(e) = f(1) = 1 and 1 = f(a) = f(d) = f(e) = f(1) =
f(f ♣f) = f(c♣c) = f(b♣b) = f(0♣0), f is a fuzzy ultra filter of C.

Theorem 4.2. A fuzzy subset f of C is a fuzzy ultra filter of C if and only if

f(c1) ̸= f(1) and f(c2) ̸= f(1) imply f(c1♣(c2♣c2)) = f(1) and f(c2♣(c1♣c1)) = f(1) for

all c1, c2 ∈ C.

Proof. Let f(c1) ̸= f(1) and f(c2) ̸= f(1) imply f(c1♣(c2♣c2)) = f(1) and f(c2♣(c1♣c1))
= f(1). Supoose that f(c1) ̸= f(1) and f(1♣1) ̸= f(1) for any c1 ∈ C. Then
we have from Proposition 2.1 (4)-(5) and (S1)-(S2) that f(c1♣c1) = f(c1♣1) =
f(c1♣((1♣1)♣(1♣1))) = f(1) and f(1) = f((c1♣c1)♣(1♣1)) = f((1♣1)♣(c1♣c1)) = f(1). Sim-
ilarly, f(c1) = f(1) whenever f(c1♣c1) ̸= f(1) and f(1♣1) ̸= f(1). Thus, f is a fuzzy
ultra filter of C.

Conversely, let f be a fuzzy ultra filter of C. Assume that c1 and c2 are any elements
in C such that f(c1) ̸= f(1) and f(c2) ̸= f(1). So, f(c1♣c1) = f(1) and f(c2♣c2) = f(1).
Because

(c1♣c1)♣((c1♣(c2♣c2))♣(c1♣(c2♣c2))) = (c2♣c2)♣((c1♣(c1♣c1))♣(c1♣(c1♣c1))) = 1,

from (S1), (S3), Proposition 2.1 (2) and (4), it is obtained

f(1) = f(1) ∧ f(1)

= f(c1♣c1) ∧ f((c1♣c1)♣((c1♣(c2♣c2))♣(c1♣(c2♣c2))))

≤ f(c1♣(c2♣c2)) (Definition 4.1 (2)),

which gives f(c1♣(c2♣c2)) = f(1). Similarly, f(c2♣(c1♣c1)) = f(1). □

Theorem 4.3. A fuzzy subset f of C is a fuzzy ultra filter of C if and only if

f(c1 ∨ c2) ≤ f(c1) ∨ f(c2) for all c1, c2 ∈ C.

Proof. Let f be a fuzzy ultra filter of C. When f(c1) = f(1) or f(c2) = f(1), the
proof is completed from Definition 4.1 (1). So, let f(c1) ̸= f(1) or f(c2) ̸= f(1). Then
f(c1♣(c2♣c2)) = f(1) and f(c2♣(c1♣c1)) = f(1) by Theorem 4.2. Since

f(c1 ∨ c2) = f(1) ∧ f(c1 ∨ c2) (Definition 4.1 (1))

= f(c1♣(c2♣c2)) ∧ f((c1♣(c2♣c2))♣(c2♣c2)) (Corollary 2.1)

≤ f(c2) (Definition 4.1 (2))

and

f(c1 ∨ c2) = f(c2 ∨ c1)

= f(1) ∧ f(c2 ∨ c1) (Definition 4.1 (1))
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= f(c2♣(c1♣c1)) ∧ f((c2♣(c1♣c1))♣(c1♣c1)) (Corollary 2.1)

≤ f(c1) (Definition 4.1 (2)),

f(c1 ∨ c2) ≤ f(c1), f(c2) and so, f(c1 ∨ c2) ≤ f(c1) ∨ f(c2).
Conversely, let c1 and c2 be any elements in C such that f(c1 ∨ c2) ≤ f(c1) ∨ f(c2).

Then

f(1) = f(c♣(c♣c)) (Proposition 2.1 (2))

= f((c♣((c♣c)♣(c♣c)))♣((c♣c)♣(c♣c))) (S2)

= f(c ∨ (c♣c)) (Corollary 2.1)

≤ f(c) ∨ f(c♣c),

i.e., f(c) ∨ f(c♣c) = f(1). Thus, f(c) = f(1) or f(c♣c) = f(1), which implies that f is
a fuzzy ultra filter of C. □

Proposition 4.3. f is a fuzzy filter of C if and only if fp = ¶c1 ∈ C : p ≤ f(c1)♢ ≠ ∅
is a filter of C for any p ∈ (0, 1].

Proof. (⇒) Let f be a fuzzy filter of C.
• Since fp ̸= ∅, there exists some c ∈ C such that p ≤ f(c). Then we obtain from

Definition 4.1 (1) that p ≤ f(c) ≤ f(1), i.e., 1 ∈ fp.
• Let c1, c1♣(c2♣c2) ∈ fp, i.e., p ≤ f(c1), f(c1♣(c2♣c2)). It is concluded from Definition

4.1 (2) that p ≤ f(c1) ∧ f(c1♣(c2♣c2)) ≤ f(c2), that is, c2 ∈ fp. Therefore, fp is a filter
of C.

(⇐) Let fp ̸= ∅ is a filter of C.

• Let c ∈ C such that f(c) > f(1). If p = f(c)+f(1)
2

, then f(1) < p < f(c). So,
1 /∈ fp which contradicts with (SF − 3). Hence, f(c) ≤ f(1).

• Suppose that c1, c2 ∈ C such that f(c2) < f(c1) ∧ f(c1♣(c2♣c2)). If f(c1) = γ,
f(c2) = θ and f(c1♣(c2♣c2)) = λ, then θ < min(γ, λ). Consider λ1 = 1

2
(θ + min(γ, λ)).

Then θ < λ1 < γ and θ < λ1 < λ. For p = λ1 ∈ (0, 1], c1 ∈ fp and c1♣(c2♣c2) ∈ fp but
c2 /∈ fp which contradicts with (SF − 4). Thus, f(c1) ∧ f(c1♣(c2♣c2)) ≤ f(c2). □

Theorem 4.4. Let f be a fuzzy filter of C. Then f is a fuzzy ultra filter of C if and

only if fp is either empty or an ultra filter of C for each p ∈ [0, 1].

Proof. Assume that f is a fuzzy ultra filter of C, and fp ̸= ∅. Let c1 ∨ c2 ∈ fp, i.e.,
p ≤ f(c1 ∨ c2). Then p ≤ f(c1 ∨ c2) ≤ f(c1) ∨ f(c2) from Theorem 4.3. So, p ≤ f(c1)
or p ≤ f(c2), i.e., c1 ∈ fp or c2 ∈ fp. Hence, fp is an ultra filter of C.

Conversely, suppose that fp is an ultra filter of C. Let p = f(c1 ∨ c2), i. e.,
c1 ∨ c2 ∈ fp. Then c1 ∈ fp or c2 ∈ fp from Lemma 3.5. Thus, f(c1 ∨ c2) = p ≤ f(c1)
or f(c1 ∨ c2) ≤ f(c2), and so, f(c1 ∨ c2) ≤ f(c1) ∨ f(c2). Therefore, f is a fuzzy ultra
filter of C. □

Corollary 4.4. Let f be a fuzzy filter of C. Then f is a fuzzy ultra filter of C if and

only if ff(1) is an ultra filter of C.
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Corollary 4.5. Let P be a nonempty subset of C. Then P is an ultra filter of C if

and only if χP is a fuzzy ultra filter of C in which χP is the characterictic function

of P .

5. Conclusion

In the present work, we have studied on (fuzzy) filters of Sheffer stroke BL-algebras,
and the relationships between them. After giving basic definitions and notions about
Sheffer stroke BL-algebra, we introduce some types of (fuzzy) filters of a Sheffer stroke
BL-algebra, and present their some properties. Then we show that f is a fuzzy filter
of a Sheffer stroke BL-algebra if and only if fp is empty or is its filter for any p ∈ (0, 1],
and it holds in the case of (fuzzy) ultra filter. Indeed, it is concluded that above
property holds for p = f(1) and for the characteristic function of a nonempty subset
of a Sheffer stroke BL-algebra. In a similar way, it can be examined relationships
between them by defining some kinds of (fuzzy) ideals of Sheffer stroke BL-algebras.
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GENERALIZED EXTENDED RIEMANN-LIOUVILLE TYPE

FRACTIONAL DERIVATIVE OPERATOR
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AND MOHAMMED BELMEKKI4

Abstract. In this paper, we present new extensions of incomplete gamma, beta,
Gauss hypergeometric, conĆuent hypergeometric function and Appell-Lauricella hy-
pergeometric functions, by using the extended Bessel function due to Boudjelkha [4].
Some recurrence relations, transformation formulas, Mellin transform and integral
representations are obtained for these generalizations. Further, an extension of the
Riemann-Liouville fractional derivative operator is established.

1. Introduction

In recent years, incomplete gamma functions have been used in many problems in
applied mathematics, statistics, engineering and many other fields including physics
and biology. Most generally, special functions became powerful tools to treat all these
areas. Classical gamma and Euler’s beta functions are defined by

γ(α, x) =

∫ x

0

tα−1e−tdt, Re(α) > 0,(1.1)

Γ(α, x) =

∫ ∞

x

tα−1e−tdt,(1.2)

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt, Re(x) > 0, Re(y) > 0.(1.3)

Key words and phrases. Generalized extended incomplete gamma function, generalized extended
beta function, extended Riemann-Liouville fractional derivative, Mellin transform, extended Gauss
hypergeometric function, integral representation.
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Using an exponential regulazing term, Chaudhry et al. [9] extended the incomplete
gamma function as follows

γ(α, x; p) =

∫ x

0

tα−1e−t− p

t dt, Re(p) > 0; p = 0, Re(α) > 0,(1.4)

Γ(α, x; p) =

∫ ∞

x

tα−1e−t− p

t dt.(1.5)

They proved the following recurrence formula

γ(α, x; p) + Γ(α, x; p) = 2pα/2Kα(2
√

p), Re(p) > 0,

where Kα(z) is the Macdonald function, known also as modified Bessel function of
the third kind, defined for any Re(z) > 0 by

Kα(z) =
(z/2)α

2

∫ ∞

0

t−α−1e−t−z2/4tdt.

A first extension of Euler’s beta function is given by Chaudhry et al. [8] as follows
(1.6)

B(x, y, p) =

∫ 1

0

tx−1(1 − t)y−1e
−p

t(1−t) dt, Re(p) > 0; p = 0, Re(x) > 0, Re(y) > 0.

These extensions are useful and provide new connections with error and Whittaker
functions. For p = 0, (1.4), (1.5) and (1.6) will be reduced to known incomplete
gamma and beta functions (1.1), (1.2) and (1.3), respectively. Instead of using the
exponential function, Chaudhry and Zubair [11] proposed a generalized extension of
(1.4), (1.5) in the following form

γµ(α, x; p) =

√

2p

π

∫ x

0

tα− 3
2 e−tKµ+ 1

2

(p

t

)

dt,(1.7)

Γµ(α, x; p) =

√

2p

π

∫ ∞

x

tα− 3
2 e−tKµ+ 1

2

(p

t

)

dt,(1.8)

where Re(x) > 0, Re(p) > 0, −∞ < α < ∞.
Nowadays, many authors are developing new extensions of Euler’s gamma, beta

and hypergeometric functions based on the paper of Chaudhry and Zubair [11] by
considering an exponential kernel and some modified special functions (see for more
details [13,14,20,22,23,25–27]). Very recently, Agarwal et al. [1] developed an extension
of the Euler’s beta function as follows

(1.9) Bµ(x, y; p; m) =

√

2p

π

∫ 1

0

tx− 3
2 (1 − t)y− 3

2 Kµ+ 1
2

(

p

tm(1 − t)m

)

dt,

where x, y ∈ C, m > 0 and Re(p) > 0.
In the present paper, we introduce a new generalized incomplete gamma and Euler’s

beta functions by substituting in (1.7), (1.8) and (1.9) the Macdonald function Kα(z)



GENERALIZED EXTENDED RL FRACTIONAL DERIVATIVE 59

by it’s extended one developed by Boudjelkha [4], namely

(1.10) RK(z, α, q, λ) =
(z/2)α

2

∫ ∞

0

t−α−1 e−qt−z2/4t

1 − λe−t
dt,

where ♣ arg z2♣ < π/2, 0 < q ≤ 1 and −1 ≤ λ ≤ 1.
Clearly, when λ = 0 and q = 1, RK(z, α, q, λ) is reduced to Kα(z). Moreover,

Boudjelkha proved that the RK(z, −α, q, λ) function can be expanded in terms of
Kα(z) as follows

RK(z, −α, q, λ) =
∞
∑

n=0

λn Kα(z
√

q + n)

(q + n)α/2
, Re(z2) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1,

and showed that the behavior of the function RK(z, −α, q, λ) for small values of z is
described by the asymptotic formulas:

RK(z, −α, q, λ) ∼
{

1
2

Γ(−z)
(z/2)−α (1 − λ)−1, z → 0, −1 < λ < 1, Re(α) < 0,

1
2

Γ(z)
(z/2)α Φ(λ, α, q), z → 0, −1 ≤ λ ≤ 1, Re(α) > 1,

where Φ(λ, α, q) stands for the Lerch function. As for the asymptotic behavior of this
function, when z → ∞, it is given by

RK(z, −α, q, λ) ∼
√

π

2z
· e−z

√
q

qα/2+1/4
, as z → ∞, ♣ arg z♣ <

π

4
, −1 ≤ λ ≤ 1.

In particular, when q = 1, we have

RK(z, −α, 1, λ) ∼
√

π

2z
e−z, as z → ∞, ♣ arg z♣ <

π

4
,

which is the same asymptotic formula as that of Kα.
Further, by using the generalized extended beta function we get other extensions

of Gauss hypergeometric, confluent hypergeometric, Appell and Lauricella hypergeo-
metric functions and we investigate some of their properties.

Recently, fractional derivative operators become significant research topics due to
their wide applications in various areas including mathematical, physical, life sciences
and engineering problems. To cite only a few of this operator’s applications, we refer
to [5–7,16, 29] and the references therein. The use of fractional derivative operators
in obtaining generating relations for some special functions can be found in [22, 28].
There are two important fractional derivatives operators: Riemann-Liouville and
Caputo operators. Undoubtedly, the difference between them is very important for
applications to differential equations because of required initial conditions which are
of different types (see e.g [19] and [31]). It is worth being pointed out that nowadays
a great attention is devoted to develop extensions of fractional differential operators,
readers may refer to [1–3, 5–7, 17, 18, 21–23, 30]. Making use of the RK function and
inspired by the work of Agarwal et al. [1], we introduce new generalized incomplete
Riemann-Liouville fractional derivative operators, and we obtain some generating
relations involving generalized extended Gauss hypergeometric function.
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The paper is organized as follows. In Section 2, we introduce the generalized
extended incomplete Gamma and Euler’s beta functions, some of their properties
are investigated. Section 3 is devoted to introduce extended hypergeometric and
confulent hypergeometric functions by the extended Euler’s beta function given in
Section 2, their related properties are established. The extended Appell and Lauricella
hypergeometric functions are given in Section 4. In Section 5, we give another result
which consits to introduce the generalized extended Riemann Liouville fractional
derivative operator and establish most important properties such Mellin transform
among others. Finally, in the last section, we obtain linear and bilinear generating
relations for the generalized extended hypergeometric functions.

2. The Generalized Extended Incomplete Gamma and Euler’s Beta
Functions

In this section, we define new extended incomplete Gamma and Euler’s beta func-
tions based on the extension of Bessel function (1.10) and we give some properties.

2.1. The generalized extended incomplete Gamma function.

Definition 2.1. The generalized extended incomplete gamma functions are given by

γµ(α, x; q; λ; p) =

√

2p

π

∫ x

0

tα− 3
2 e−tRK

(

p

t
, −µ − 1

2
, q, λ

)

dt,(2.1)

Γµ(α, x; q; λ; p) =

√

2p

π

∫ ∞

x

tα− 3
2 e−tRK

(

p

t
, −µ − 1

2
, q, λ

)

dt,(2.2)

where Re(x) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1 and Re(p) > 0.

Remark 2.1. When λ = 0 and q = 1, (2.1) and (2.2) are respectively reduced to
the extended incomplete gamma functions (1.7) and (1.8) defined by Chaudhry and
Zubair [10, 11].

Proposition 2.1 (Decomposition theorem).

Γµ(α, x; q; λ; p) + γµ(α, x; q; λ; p) =
Γ(α + µ)√

π

(p

2

)−µ

Φ1−
α+µ

2
, 1

2
−

α+µ

2

(

λ, µ +
1

2
, q,

p2

16

)

+
Γ
(

−α+µ
2

)

2
√

π

(p

2

)α

Φ 1
2

, α+µ+2
2

(

λ,
µ − α + 1

2
, q,

p2

16

)

− Γ
(

−α+µ+1
2

)

2
√

π

(p

2

)α+1

Φ 3
2

, α+µ+3
2

(

λ,
µ − α

2
, q,

p2

16

)

,

with Re(p) > 0, −∞ < α < ∞ and

Φb1,b2(λ, s, q, ξ) =

∫ ∞

0

ts−1e−qt

1 − λe−t 0F2





−
; − ξ

t
b1, b2



 dt
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=

∫ ∞

0

ts−1e−(q−1)t

et − λ
0F2





−
; − ξ

t
b1, b2



 dt,(2.3)

s ∈ C, Re(ξ) > 0 and b1, b2 ∈ C \ Z
−
0 .

Proof. We have

Γµ(α, x; q; λ; p) + γµ(α, x; q; λ; p)

=

√

2p

π

∫ ∞

0

tα− 3
2 e−tRK

(

p

t
, −µ − 1

2
, q, λ

)

dt

=
1√
π

(p

2

)−µ
∫ ∞

0

tα+µ−1e−t





∫ ∞

0

τµ− 1
2
e−qτ−

p2

4t2τ

1 − λe−τ
dτ



 dt

=
1√
π

(p

2

)−µ
∫ ∞

0

τµ− 1
2 e−qτ

1 − λe−τ

(∫ ∞

0

tα+µ−1e−te−
p2

4t2τ dt

)

dτ.(2.4)

Using the integral [24, page 31, (6)], we obtain

∫ ∞

0

tα+µ−1e−te−
p2

4t2τ dt =Γ(α + µ) 0F2





−
; − p2

16τ

1 − α+µ
2

, 1
2

− α+µ
2





(2.5)

+
Γ
(

−α+µ
2

)

2

(

p2

4τ

)
α+µ

2

0F2





−
; − p2

16τ
1
2
, α+µ+2

2





− Γ
(

−α+µ+1
2

)

2

(

p2

4τ

)
α+µ+1

2

0F2





−
; − p2

16τ
3
2
, α+µ+3

2



 .

Finally, substituting (2.5) in (2.4) and by using the notation (2.3) we get the desired
result. □

Proposition 2.2 (Recurrence relation).

Γµ(α + 1, x; q; λ; p) =(α + µ)Γµ(α, x; q; λ; p) + pΓµ−1(α − 1, x; q; λ; p)

+

√

2p

π
xα− 1

2 e−xRK

(

p

x
, −µ − 1

2
, q, λ

)

,

where Re(p) > 0, −∞ < α < ∞.

Proof. We have

d

dt
RK

(

p

t
, −µ − 1

2
, q, λ

)

=
d

dt





(

p
2t

)−µ− 1
2

2

∫ ∞

0

τµ− 1
2
e−qτ−

p2

4t2τ

1 − λe−τ
dτ




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=
µ + 1

2

t
RK

(

p

t
, −µ − 1

2
, q, λ

)

+
p

t2
RK

(

p

t
, −µ +

1

2
, q, λ

)

.(2.6)

Differentiating tα− 1
2 e−tRK

(

p
t
, −µ − 1

2
, q, λ

)

with respect to t and by using (2.6), we
get

d

dt

[

tα− 1
2 e−tRK

(

p

t
, −µ − 1

2
, q, λ

)]

(2.7)

=(α + µ)tα− 3
2 e−tRK

(

p

t
, −µ − 1

2
, q, λ

)

+ p tα− 5
2 e−tRK

(

p

t
, −µ +

1

2
, q, λ

)

(2.8)

− tα− 1
2 e−tRK

(

p

t
, −µ − 1

2
, q, λ

)

.

Multiplying both sides of (2.7) by
√

2p
π

and integrating from x to ∞ and using

(2.2), we find

0 −
√

2p

π
xα− 1

2 e−xRK

(

p

x
, −µ − 1

2
, q, λ

)

=(α + µ)Γµ(α, x; q; λ; p) + pΓµ−1(α − 1, x; q; λ; p) − Γµ(α + 1, x; q; λ; p),

which can be also written as

Γµ(α + 1, x; q; λ; p) =(α + µ)Γµ(α, x; q; λ; p) + pΓµ−1(α − 1, x; q; λ; p)

+

√

2p

π
xα− 1

2 e−xRK

(

p

x
, −µ − 1

2
, q, λ

)

. □

Proposition 2.3. The following formula holds

Γµ−1(α, x; 1; λ; p) − Γµ+1(α, x; 1; λ; p) +
2µ + 1

p
Γµ(α + 1, x; 1; λ; p)

=λ
∂

∂λ
Γµ+1(α, x; 1; λ; p),

where Re(p) > 0, −∞ < α < ∞.

Proof. By using (2.2), for q = 1 and the following relation [4, (22)], we get

RK(z, −α+1, 1, λ)−RK(z, −α−1, 1, λ)+
2α

z
RK(z, −α, 1, λ) = λ

∂

∂λ
RK(z, −α−1, 1, λ).

□

Proposition 2.4 (Laplace transform). Let

H(τ) =

{

1, τ > 0,
0, τ < 0,

be the Heaviside unit step function and L be the Laplace transform operator. Then

(2.9) L

{

tα− 3
2 RK

(

p

t
, −µ − 1

2
, q, λ

)

H(t − x); s

}

=

√

π

2p
s−αΓµ(α, sx; q; λ; sp),
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(2.10)

L

{

tα− 3
2 RK

(

p

t
, −µ − 1

2
, q, λ

)

H(t − x)H(t); s

}

=

√

π

2p
s−αγµ(α, sx; q; λ; sp),

where x > 0, Re(p) > 0, −∞ < α < ∞.

Proof. We have

L

{

tα− 3
2 RK

(

p

t
, −µ − 1

2
, q, λ

)

H(t − x); s

}

=

∫ ∞

0

tα− 3
2 RK

(

p

t
, −µ − 1

2
, q, λ

)

e−stH(t − x)dt

=

∫ ∞

x

tα− 3
2 RK

(

p

t
, −µ − 1

2
, q, λ

)

e−stdt.

Substituting t = τ
s
, dt = dτ

s
, we get

∫ ∞

x

tα− 3
2 RK

(

p

t
, −µ − 1

2
, q, λ

)

e−stdt

=s−α+ 1
2

∫ ∞

sx

τα− 3
2 e−τ RK

(

sp

τ
, −µ − 1

2
, q, λ

)

dt =

√

π

2p
s−αΓµ(α, sx; q; λ; sp).

The proof of (2.10) is omitted since it is quite similar as that of (2.9). □

Proposition 2.5 (Parametric differentiation).

∂

∂p
(Γµ(α, x; q; λ; p)) = −1

p
[µΓµ(α, x; q; λ; p) + pΓµ−1(α − 1, x; q; λ; p)] .

Proof.

∂

∂p
(Γµ(α, x; q; λ; p)) =

1

2p

√

2p

π

∫ ∞

x

tα− 3
2 e−tRK

(

p

t
, −µ − 1

2
, q, λ

)

dt(2.11)

+

√

2p

π

∫ ∞

x

tα− 3
2 e−t ∂

∂p

(

RK

(

p

t
, −µ − 1

2
, q, λ

))

dt.

We have

∂

∂p

(

RK

(

p

t
, −µ − 1

2
, q, λ

))

= − µ + 1
2

p

(p/2t)−µ− 1
2

2

∫ ∞

0

τµ− 1
2
e−qτ−

p2

4t2τ

1 − λe−τ
dτ

− 1

t

(p/2t)−µ+ 1
2

2

∫ ∞

0

τµ− 3
2
e−qτ−

p2

4t2τ

1 − λe−τ
dτ

= − µ + 1
2

p
RK

(

p

t
, −µ − 1

2
, q, λ

)

− 1

t
RK

(

p

t
, −µ +

1

2
, q, λ

)

,(2.12)

Finally, by substituting (2.12) into (2.11) we get the desired result. □



64 H. ABBAS, A. AZZOUZ, M. B. ZAHAF, AND M. BELMEKKI

2.2. The generalized extended beta function.

Definition 2.2. The generalized extended beta function is given by
(2.13)

Bµ(x, y; q; λ; p; m) =

√

2p

π

∫ 1

0

tx− 3
2 (1 − t)y− 3

2 RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt,

where x, y ∈ C, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0 and Re(p) > 0.

Remark 2.2. Taking λ = 0 and q = 1, (2.13) is reduced to the extended Euler’s beta
function (1.9) defined by Agarwal et al. [1].

Proposition 2.6 (Functional relations). 1. The following formula holds

(2.14) Bµ(x, y; q; λ; p; m) = Bµ(x + 1, y; q; λ; p; m) + Bµ(x, y + 1; q; λ; p; m).

2. Let n ∈ N. Then the following summation formula holds

(2.15) Bµ(x, y; q; λ; p; m) =
n
∑

k=0

Bµ(x + k, y + n − k; q; λ; p; m).

Proof. 1. The right-hand side of (2.14) yields to
√

2p

π

∫ 1

0

{

tx− 1
2 (1 − t)y− 3

2 + tx− 3
2 (1 − t)y− 1

2

}

RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt,

which, after simplification, implies
√

2p

π

∫ 1

0

tx− 3
2 (1 − t)y− 3

2 RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt,

which is equal to the left-hand side of (2.14).
2. The case n = 0 of (2.15) holds easily. The case n = 1 of (2.15) is just (2.14).

For the other cases we can easily proceed by induction on n. □

Proposition 2.7. The following formula holds

(2.16) Bµ(x, 1 − y; q; λ; p; m) =
∞
∑

n=0

(y)n

n!
Bµ(x + n, 1; q; λ; p; m).

Proof. We have
(2.17)

Bµ(x, 1 − y; q; λ; p; m) =

√

2p

π

∫ 1

0

tx− 3
2 (1 − t)−y− 1

2 RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt.

By substituting the formula

(1 − t)−y =
∞
∑

n=0

(y)n
tn

n!
, ♣t♣ < 1, y ∈ C,

in the right-hand of (2.17) and after interchanging the order of integral and summation,
we get (2.16). □
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Proposition 2.8. The following formula holds

Bµ(x, y; q; λ; p; m) =
∞
∑

n=0

Bµ(x + n, y + 1; q; λ; p; m).

Proof. By substituting again the formula

(1 − t)y−1 = (1 − t)y

∞
∑

n=0

tn, ♣t♣ < 1,

in the right-hand of (2.13) and similarly as in the proof of Proposition 2.7 we get the
desired result. □

Lemma 2.1. Let M be the Mellin transform operator. Then

M¶RK(z, −α, q, λ), z → s♢ = 2s−2Γ

(

s − α

2

)

Γ

(

s + α

2

)

Φ

(

λ,
s + α

2
, q

)

,

where 0 < q ≤ 1, or −1 ≤ λ < 1, Re(s) > ♣Re(α)♣ or λ = 1, Re(s) > max¶Re(α), 2 −
Re(α)♢ and Φ

(

λ, s+α
2

, q
)

stands for the Lerch function (see [12, 15]).

Proof.

M¶RK(z, −α, q, λ), z → s♢ =

∫ ∞

0

zs−1RK(z, −α, q, λ)dz

= 2α−1

∫ ∞

0

zs−α−1

(

∫ ∞

0

tα−1 e−qt−z2/4t

1 − λe−t
dt

)

dz

= 2α−1

∫ ∞

0

tα−1 e−qt

1 − λe−t

(∫ ∞

0

zs−α−1e−z2/4tdz

)

dt

= 2s−2Γ

(

s − α

2

)∫ ∞

0

t
s+α

2
−1 e−qt

1 − λe−t
dt

= 2s−2Γ

(

s − α

2

)

Γ

(

s + α

2

)

Φ

(

λ,
s + α

2
, q

)

. □

Proposition 2.9 (Mellin transform). The following expression holds true

M¶Bµ(x, y; q; λ; p; m), p → s♢ =
2s−1

√
π

B

(

x + ms +
m − 1

2
, y + ms +

m − 1

2

)

× Γ

(

s − µ

2

)

Γ

(

s + µ + 1

2

)

Φ

(

λ,
s + µ + 1

2
, q

)

,

where x, y ∈ C, m > 0 and 0 < q ≤ 1 or 1 ≤ λ < 1,

Re(s) > max

{

Re(µ), −1 − Re(µ), −1

2
+

1

2m
− Re(x)

m
, −1

2
+

1

2m
− Re(y)

m

}

,

or λ = 1,

Re(s) > max

{

Re(µ), 1 − Re(µ), −1

2
+

1

2m
− Re(x)

m
, −1

2
+

1

2m
− Re(y)

m

}

.
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Proof.

M¶Bµ(x, y; q; λ; p; m), p → s♢

=

∫ ∞

0

ps−1Bµ(x, y; q; λ; p; m)dp

=

∫ ∞

0

ps−1

√

2p

π

(∫ 1

0

tx− 3
2 (1 − t)y− 3

2 RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt

)

dp

=

√

2

π

∫ 1

0

tx− 3
2 (1 − t)y− 3

2

(∫ ∞

0

ps+ 1
2

−1RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dp

)

dt

=

√

2

π

∫ 1

0

tx+m(s+ 1
2

)− 3
2 (1 − t)y+m(s+ 1

2
)− 3

2 dt

∫ ∞

0

us+ 1
2

−1RK

(

u, −µ − 1

2
, q, λ

)

du

=

√

2

π
B

(

x + ms +
m − 1

2
, y + ms +

m − 1

2

)∫ ∞

0

us+ 1
2

−1RK

(

u, −µ − 1

2
, q, λ

)

du.

Finally, by using Lemma 2.1 we get the desired result. □

3. Extended Gauss Hypergeometric and Confluent Hypergeometric
Functions

We use the generalized extended beta function (2.13) to extend hypergeometric and
confluent hypergeometric functions, respectively, as follows.

Definition 3.1. The extended Gauss hypergeometric function Fµ(a, b; c; z; q; λ; p; m)
and the confluent hypergeometric function Φµ(b; c; z; q; λ; p; m) are respectively defined
by

(3.1) Fµ(a, b; c; z; q; λ; p; m) =
∞
∑

n=0

(a)n
Bµ(b + n, c − b; q; λ; p; m)

B(b, c − b)
· zn

n!
,

♣z♣ < 1, Re(c) > Re(b) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0,

Φµ(b; c; z; q; λ; p; m) =
∞
∑

n=0

Bµ(b + n, c − b; q; λ; p; m)

B(b, c − b)
· zn

n!
,

z ∈ C, Re(c) > Re(b) > 0, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0.

Remark 3.1. Taking λ = 0 and q = 1, (3.1) reduces to the extended Gauss hypergeo-
metric function defined by Agarwal et al. [1, Definition 2.8].

Proposition 3.1 (Integral representation). 1. The following integral representation

for the extended Gauss hypergeometric function Fµ(a, b; c; z; q; λ; p; m) is valid

Fµ(a, b; c; z; q; λ; p; m) =

√

2p

π

1

B(b, c − b)

∫ 1

0

tb− 3
2 (1 − t)c−b− 3

2 (1 − zt)−a(3.2)

× RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt,
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where arg(1 − z) < π, Re(c) > Re(b) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0.

2. The following integral representation for the extended confluent hypergeometric

function Φµ(b; c; z; q; λ; p; m) is valid

Φµ(b; c; z; q; λ; p; m) =

√

2p

π

1

B(b, c − b)

∫ 1

0

tb− 3
2 (1 − t)c−b− 3

2 ezt(3.3)

× RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt,

where Re(c) > Re(b) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0.

Proof. 1. By using (2.13) and the generalized binomial expansion

(1 − zt)−a =
∞
∑

n=0

(a)n
(zt)n

n!
, ♣zt♣ < 1,

we get the required result.
2. Similarly as in the proof of 1. □

Proposition 3.2 (Differentiation formula). (a) For n ∈ N

(3.4)
dn

dzn
¶Fµ(a, b; c; z; q; λ; p; m)♢ =

(a)n(b)n

(c)n

Fµ(a + n, b + n; c + n; z; q; λ; p; m),

where ♣z♣ < 1, Re(c) > Re(b) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0.

(b) For n ∈ N

dn

dzn
¶Φµ(b; c; z; q; λ; p; m)♢ =

(b)n

(c)n

Φµ(b + n; c + n; z; q; λ; p; m),

where z ∈ C, Re(c) > Re(b) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0.

Proof. (a) For n = 1, we have

d

dz
¶Fµ(a, b; c; z; q; λ; p; m)♢ =

∞
∑

n=1

(a)n
Bµ(b + n, c − b; q; λ; p; m)

B(b, c − b)
· zn−1

(n − 1)!

=
∞
∑

n=0

(a)n+1
Bµ(b + n + 1, c − b; q; λ; p; m)

B(b, c − b)
· zn

n!
.(3.5)

Using identities B(b, c − b) =
c

b
B(b + 1, c − b) and (a)n+1 = a(a + 1)n in (3.5), we

get

d

dz
¶Fµ(a, b; c; z; q; λ; p; m)♢ =

ab

c

∞
∑

n=0

(a + 1)n
Bµ(b + n + 1, c − b; q; λ; p; m)

B(b + 1, c − b)
· zn

n!

=
ab

c
Fµ(a + 1, b + 1; c + 1; z; q; λ; p; m),
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and hence

(3.6)
d

dz
¶Fµ(a, b; c; z; q; λ; p; m)♢ =

ab

c
Fµ(a + 1, b + 1; c + 1; z; q; λ; p; m).

Then, by using (3.6) repeatedly, we get (3.4).
The proof of part (b) is similar as that of part (a). □

Proposition 3.3 (Transformation formulas).
1. For arg(1 − z) < π we have

Fµ(a, b; c; z; q; λ; p; m) = (1 − z)−aFµ

(

a, c − b; c;
z

z − 1
; q; λ; p; m

)

,

where Re(c) > Re(b) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0.

2. Φµ(b; c; z; q; λ; p; m) = ezΦµ(c−b; c; −z; q; λ; p; m), where z ∈ C, Re(c) > Re(b) >
0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0.

Proof. Replacing t by 1 − t in the integral representations (3.2) and (3.3). □

4. Extended Appell and Lauricella Hypergeometric Functions

Definition 4.1. Extended Appell hypergeometric functions F1,µ, F2,µ and the Lauri-
cella hypergeometric function F 3

D,µ are, respectively, defined by
(4.1)

F1,µ(a, b, c; d; x, y; q; λ; p; m) =
∞
∑

n,k=0

(b)n(c)k
Bµ(a + n + k, d − a; q; λ; p; m)

B(a, d − a)
· xn

n!
· yk

k!
,

where ♣x♣ < 1, ♣y♣ < 1, Re(d) > Re(a) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0, Re(p) > 0,

F2,µ(a, b, c; d, e; x, y; q; λ; p; m) =
∞
∑

n,k=0

(a)n+k
Bµ(b + n, d − b; q; λ; p; m)

B(b, d − b)
(4.2)

× Bµ(c + k, e − c; q; λ; p; m)

B(c, e − c)
· xn

n!
· yk

k!
,

where ♣x♣ + ♣y♣ < 1, Re(d) > Re(b) > 0, Re(e) > Re(c) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1,
m > 0, Re(p) > 0,

F 3
D,µ(a, b, c, d; e; x, y, z; q; λ; p; m)(4.3)

=
∞
∑

n,k,r=0

(b)n(c)k(d)r
Bµ(a + n + k + r, e − a; q; λ; p; m)

B(a, e − a)
· xn

n!
· yk

k!
· zr

r!
,

where ♣x♣ < 1, ♣y♣ < 1, ♣z♣ < 1, Re(e) > Re(a) > 0, 0 < q ≤ 1, −1 ≤ λ ≤ 1, m > 0,
Re(p) > 0.

Remark 4.1. Taking λ = 0 and q = 1, (4.1), (4.2) and (4.3) are reduced to extended
Appell hypergeometric functions F1,µ, F2,µ and the Lauricella hypergeometric function
F 3

D,µ, defined by Agarwal et al. [1, Definitions 2.9, 2.10, 2.11].
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Proposition 4.1 (Integral representation). The following integral representations for

the extended Appell hypergeometric functions F1,µ, F2,µ and the Lauricella hypergeo-

metric function F 3
D,µ are, respectively, valid

F1,µ(a, b, c; d; x, y; q; λ; p; m)

=

√

2p

π

1

B(a, d − a)

∫ 1

0

ta− 3
2 (1 − t)d−a− 3

2 (1 − xt)−b × (1 − yt)−c

× RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt,

F2,µ(a, b, c; d; x, y; q; λ; p; m)

=
2p

π
· 1

B(b, d − b)B(c, e − c)

×
∫ 1

0

∫ 1

0

tb− 3
2 (1 − t)d−b− 3

2 × wb− 3
2 (1 − w)e−c− 3

2 (1 − xt − yw)−a

× RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

RK

(

p

wm(1 − w)m
, −µ − 1

2
, q, λ

)

dtdw,

F 3
D,µ(a, b, c, d; e; x, y, z; q; λ; p; m)

=

√

2p

π

1

B(a, e − a)

∫ 1

0

ta− 3
2 (1 − t)e−a− 3

2 (1 − xt)−b × (1 − yt)−c(1 − zt)−d

× RK

(

p

tm(1 − t)m
, −µ − 1

2
, q, λ

)

dt.

Proof. The proofs are very similar to those of Theorems 2.13, 2.15 and 2.16 in [1]. □

5. The Generalized Extended Riemann-Liouville Fractional
Derivative Operator

The classical Riemann-Liouville fractional derivative operator is defined by

(5.1) Dδ
zf(z) :=

1

Γ(−δ)

∫ z

0

(z − t)−δ−1f(t)dt,

where Re(δ) < 0. It coincides with the fractional integral of order −δ. In the case
n − 1 < Re(δ) < n, n ∈ N, we write

Dδ
zf(z) :=

dn

dzn
Dδ−n

z f(z) =
dn

dzn

{

1

Γ(n − δ)

∫ z

0

(z − t)n−δ−1f(t)dt

}

.

Definition 5.1. The generalized extended Riemann-Liouville fractional derivative is
defined as follows
(5.2)

Dδ,µ;p;q;λ;m
z f(z) :=

1

Γ(−δ)

√

2p

π

∫ z

0

(z − t)−δ−1f(t)RK

(

pz2m

tm(z − t)m
, −µ − 1

2
, q, λ

)

dt,
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where Re(δ) < 0, Re(p) > 0, Re(m) > 0, Re(µ) ≥ 0 and 0 < q ≤ 1, −1 ≤ λ ≤ 1.
For n − 1 < Re(δ) < n, n ∈ N, we have

Dδ,µ;p;q;λ;m
z f(z) :=

dn

dzn
Dδ−n,µ;p;q;λ;m

z f(z) =
dn

dzn

{

1

Γ(n − δ)

√

2p

π

∫ z

0

(z − t)n−δ−1f(t)

×RK

(

pz2m

tm(z − t)m
, −µ − 1

2
, q, λ

)

dt

}

.

Remark 5.1. 1. Taking λ = 0 and q = 1, the generalized extended Riemann-Liouville
fractional derivative operator (5.2) is reduced to the extended Riemann-Liouville
fractional derivative operator given by Agarwal et al. [1]

Dδ,µ;p;m
z f(z) :=

1

Γ(−δ)

√

2p

π

∫ z

0

(z − t)−δ−1f(t)Kµ+ 1
2

(

pz2m

tm(z − t)m

)

dt,

where Re(δ) < 0, Re(p) > 0, Re(m) > 0, Re(µ) > 0.
2. If λ = 0, q = 1, m = 0, µ = 0 and p → 0, then the generalized extended Riemann-

Liouville fractional derivative operator (5.2) reduces to the classical Riemann-Liouville
fractional derivative operator (5.1).

In order to calculate generalized extended fractional derivatives for some functions,
we give two results concerning the generalized extended Riemann-Liouville fractional
derivative operator of some elementary functions which will be useful in the sequel.

Lemma 5.1. Let Re(δ) < 0. Then we have

Dδ,µ;p;q;λ;m
z ¶zβ♢ =

zβ−δ

Γ(−δ)
Bµ

(

β +
3

2
, −δ +

1

2
; p; q; λ; m

)

.

Proof. Using Definition 5.1 and a local setting t = zu, we obtain

Dδ,µ;p;q;λ;m
z ¶zβ♢ =

1

Γ(−δ)

√

2p

π

∫ z

0

(z − t)−δ−1tβRK

(

pz2m

tm(z − t)m
, −µ − 1

2
, q, λ

)

dt

=
zβ−δ

Γ(−δ)

√

2p

π

∫ 1

0

(1 − u)(−δ+ 1
2

)− 3
2 u(β+ 3

2
)− 3

2

× RK

(

p

um(1 − u)m
, −µ − 1

2
, q, λ

)

du

=
zβ−δ

Γ(−δ)
Bµ(β +

3

2
, −δ +

1

2
; p; q; λ; m). □

More generally, we give the generalized extended Riemann-Liouville fractional de-
rivative of an analytic function f(z) at the origin.

Lemma 5.2. Let Re(δ) < 0. If a function f(z) is analytic at the origin, then

Dδ,µ;p;q;λ;m
z ¶f(z)♢ =

∞
∑

n=0

anDδ,µ;p;q;λ;m
z ¶zn♢.
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Proof. Since f is analytic at the origin, its Maclaurin expansion is given by f(z) =
∑∞

n=0 anzn (for ♣z♣ < ρ with ρ ∈ R
+ is the convergence radius). By substituting entire

power series in Definition 5.1, we obtain

Dδ,µ;p;q;λ;m
z ¶f(z)♢ =

1

Γ(−δ)

√

2p

π

∫ z

0

(z − t)−δ−1

× RK

(

pz2m

tm(z − t)m
, −µ − 1

2
; q; λ

) ∞
∑

n=0

antndt.

By virtue of the uniform continuity on the convergence disk, we can do integration
term by term in the equation above. Thus

Dδ,µ;p;q;λ;m
z ¶f(z)♢ =

∞
∑

n=0

an

{

1

Γ(−δ)

√

2p

π

∫ z

0

(z − t)−δ−1

×RK

(

pz2m

tm(z − t)m
, −µ − 1

2
; q; λ

)

tndt

}

=
∞
∑

n=0

anDδ,µ;p;q;λ;m
z ¶zn♢.

□

Corollary 5.1.

Dδ,µ;p;q;λ;m
z ¶(1 − z)−α♢ =

z−δ

Γ(−δ)
B

(

3

2
, −δ +

1

2

)

Fµ

(

α,
3

2
, −δ + 2; z; q; λ; p; m

)

,

where Re(α) > 0 and Re(δ) < 0.

Proof. Using binomial theorem for (1 − z)−α and Lemma 5.1, we obtain:

Dδ,µ;p;q;λ;m
z ¶(1 − z)−α♢ = Dδ,µ;p;q;λ;m

z

{

∞
∑

n=0

(α)n
zn

n!

}

=
∞
∑

n=0

(α)n

n!
Dδ,µ;p;q;λ;m

z ¶zn♢

=
z−δ

Γ(−δ)

∞
∑

n=0

(α)nBµ

(

n +
3

2
, −δ +

1

2
; p, q; λ; m

)

zn

n!
.

Hence, the result. □

Combining previous lemmas, we obtain the generalized extended derivative of the
product of analytic function with a power function.

Theorem 5.1. Let Re(δ) < 0. Suppose that a function f(z) is analytic at the origin

with its Maclaurin expansion given by f(z) =
∑∞

n=0 anzn, ♣z♣ < ρ, for some ρ ∈ R
+.

Then we have

Dδ,µ;p;q;λ;m
z ¶zβ−1f(z)♢ =

∞
∑

n=0

anDδ,µ;p;q;λ;m
z ¶zβ+n−1♢
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=
zβ−δ−1

Γ(−δ)

∞
∑

n=0

anBµ

(

β + n +
1

2
, −δ +

1

2
; p; q; λ; m

)

zn.

A subsequent result can be given as follows.

Theorem 5.2. For Re(δ) > Re(β) > −1
2
, we have

Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1 − z)−α♢

=
zδ−1

Γ(δ − β)
B

(

β +
1

2
, δ − β +

1

2

)

Fµ

(

α, β +
1

2
; δ + 1; z; q; λ; p; m

)

,

where ♣z♣ < 1, α ∈ C.

Proof. The result is easily established by taking f(z) = (1 − z)−α, so we have

Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1 − z)−α♢ = Dβ−δ,µ;p;q;λ;m

z

{

zβ−1

∞
∑

k=0

(α)k
zk

k!

}

=
∞
∑

k=0

(α)k

k!
Dβ−δ,µ;p;q;λ;m

z ¶zβ+k−1♢

=
∞
∑

k=0

(α)k

k!

Bµ(β + k + 1
2
, δ − β + 1

2
; p; q; λ; m)

Γ(δ − β)
zδ+k−1.

By the expression (3.1), we get

Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1 − z)−α♢ =

zδ−1

Γ(δ − β)
B

(

β +
1

2
, δ − β +

1

2

)

× Fµ

(

α, β +
1

2
; δ + 1; z; q; λ; p; m

)

. □

Theorem 5.3. For Re(δ) > Re(β) > −1
2
, Re(α) > 0, Re(γ) > 0, ♣az♣ < 1 and

♣bz♣ < 1. Then, the following generating relation holds true

Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1 − az)−α(1 − bz)−γ♢

=
zδ−1

Γ(δ − β)
B

(

β +
1

2
, δ − β +

1

2

)

F1,µ

(

β +
1

2
, α, γ; δ + 1; az, bz; q; λ; p; m

)

.

Proof. By applying the binomial Theorem to (1 − az)−α and (1 − bz)−γ and making
use of Lemmas 5.1 and 5.2, we obtain

Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1 − az)−α(1 − bz)−γ♢

=Dβ−δ,µ;p;q;λ;m
z

{

zβ−1

∞
∑

k=0

∞
∑

r=0

(α)k(γ)r
(az)k

k!
· (bz)r

r!

}

=
∞
∑

k,r=0

(α)k(γ)rD
β−δ,µ;p;q;λ;m
z ¶zβ+k+r−1♢ak

k!
· br

r!
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=zδ−1

∞
∑

k,r=0

(α)k(γ)r

Bµ(β + k + r + 1
2
, δ − β + 1

2
; p; q; λ; m)

Γ(δ − β)
· (az)k

k!
· (bz)r

r!
.

By using (4.1), we can get

Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1 − az)−α(1 − bz)−γ♢

=
zδ−1

Γ(δ − β)
B

(

β +
1

2
, δ − β +

1

2

)

F1,µ

(

β +
1

2
, α, γ; δ + 1; az, bz; q; λ; p; m

)

. □

Theorem 5.4. For Re(δ) > Re(β) > −1
2
, Re(α) > 0, Re(γ) > 0, Re(τ) > 0, ♣az♣ < 1,

♣bz♣ < 1 and ♣cz♣ < 1, we have

Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1 − az)−α(1 − bz)−γ(1 − cz)−τ ♢

=
zδ−1

Γ(δ − β)
B

(

β +
1

2
, δ − β +

1

2

)

F 3
D,µ

(

β +
1

2
, α, γ, τ ; δ + 1; az, bz; q; λ; p; m

)

.

Proof. The proof is similar to that of Theorem 5.3, it is sufficient to use the binomial
Theorem for (1−az)−α, (1−bz)−γ , (1−cz)−τ , then applying Lemmas 5.1 and 5.2. □

Theorem 5.5. For Re(δ) > Re(β) > −1
2
, Re(α) > 0, Re(τ) > Re(γ) > 0,

∣

∣

x
1−z

∣

∣ < 1
and ♣x♣ + ♣z♣ < 1, we have

Dβ−δ,µ;p;q;λ;m
z

{

zβ−1(1 − z)−αFµ

(

α, γ; τ ;
x

1 − z
; q; λ; p; m

)}

=zδ−1 B(β + 1
2
, δ − β + 1

2
)

Γ(δ − β)
F2,µ

(

α, γ, β +
1

2
, τ ; δ + 1; x, z; q; λ; p; m

)

.

Proof. By the binomial formula and according to Definition 3.1, we expand zβ−1(1 −
z)−αFµ(α, γ; τ ; x

1−z
; q; λ; p; m) to get

Dβ−δ,µ;p;q;λ;m
z

{

zβ−1(1 − z)−αFµ

(

α, γ; τ ;
x

1 − z
; q; λ; p; m

)}

=Dβ−δ,µ;p;q;λ;m
z

{

zβ−1(1 − z)−α

∞
∑

n=0

(α)n

n!
· Bµ(γ + n, τ − γ; q; λ; p; m)

B(γ, τ − γ)

(

x

1 − z

)n
}

=
∞
∑

n=0

(α)n
Bµ(γ + n, τ − γ; q; λ; p; m)

B(γ, τ − γ)
Dβ−δ,µ;p;q;λ;m

z ¶zβ−1(1 − z)−α−n♢xn

n!
.

In order to exhibit F2,µ, we apply Theorem 5.2 for Dβ−δ,µ;p;q;λ;m
z ¶zβ−1(1− z)−α−n♢ and

substitute the extended hypergeometric function Fµ by its series representation, we
obtain

Dβ−δ,µ;p;q;λ;m
z

{

zβ−1(1 − z)−αFµ

(

α, γ; τ ;
x

1 − z
; q; λ; p; m

)}

=
zδ−1

Γ(δ − β)
B

(

β +
1

2
, δ − β +

1

2

) ∞
∑

n,k=0

(α)n+k
Bµ(γ + n, τ − γ; q; λ; p; m)

B(γ, τ − γ)
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× Bµ(β + k + 1
2
, δ − β + 1

2
; q; λ; p; m)

B(β + 1
2
, δ − β + 1

2
)

· xnzk

n!z!

=
zδ−1

Γ(δ − β)
B

(

β +
1

2
, δ − β +

1

2

)

F2,µ

(

α, γ, β +
1

2
, τ ; δ + 1; x, z; q; λ; p; m

)

.

This completes the proof. □

Proposition 5.1 (Mellin transform). The following expression holds true

M¶Dδ,µ,p;q;λ;m
z zβ, p → s♢ =2s−1zβ−δ 1√

π
B

(

β + m

(

s +
1

2

)

+ 1, −δ + m

(

s +
1

2

))

× Γ

(

s − µ

2

)

Γ

(

s + µ + 1

2

)

Φ

(

λ,
s + µ + 1

2
, q

)

,

for Re(µ) ≥ 0, m > 0 and Re(s) > max
{

Re(µ), −1
2

− 1
m

− Re(β)
m

, Re(δ)
m

− 1
2

}

.

Proof. We can prove this result by applying Mellin transform and using Lemma 5.1.

M¶Dδ,µ,p;q;λ;m
z zβ, p → s♢ =

1

Γ(−δ)

∫ ∞

0

ps−1zβ−δBµ

(

β +
3

2
, −δ +

1

2
; p; q; λ; m

)

dp

=
zβ−δ

Γ(−δ)

∫ ∞

0

ps−1Bµ

(

β +
3

2
, −δ +

1

2
; p; q; λ; m

)

dp.

As the last integral is the Mellin transform of Bµ(β + 3
2
, −δ + 1

2
; p; q; λ; m), the result

immediately follows via Proposition 2.9. □

Proposition 5.2. The following expression holds true

M¶Dδ,µ,p;q;λ;m
z (1 − z)−β, p → s♢

=2s−1z−δ 1√
π

B

(

m

(

s +
1

2

)

+ 1, −δ + m

(

s +
1

2

))

Γ

(

s − µ

2

)

Γ

(

s + µ + 1

2

)

× Φ

(

λ,
s + µ + 1

2
, q

)

2F1

(

β, m

(

s +
1

2

)

+ 1; −δ + m(2s + 1) + 1; z

)

,

where Re(µ) ≥ 0, Re(δ) < 0, m > 0, ♣z♣ < 1, Re(s) > max
{

Re(µ), −1
2

+ 1
m

, δ
m

− 1
2

}

and 2F1 is the well-known Gauss hypergeometric function.

Proof. The result can be proved using the Binomial theorem for (1 − z)−α and the
Mellin transform of the general term. Indeed,

M¶Dδ,µ;p;q;λ;m
z ¶(1 − z)−α♢, p → s♢

=M

{

Dδ,µ;p;q;λ;m
z

{

∞
∑

n=0

(α)n
zn

n!

}

, p → s

}

=
∞
∑

n=0

(α)n

n!
M¶Dδ,µ;p;q;λ;m

z zn, p → s♢
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=
∞
∑

n=0

(α)n

n!
2s−1zn−δ 1√

π
B

(

n + m

(

s +
1

2

)

+ 1, −δ + m

(

s +
1

2

))

× Γ

(

s − µ

2

)

Γ

(

s + µ + 1

2

)

Φ

(

λ,
s + µ + 1

2
, q

)

.

=2s−1z−δ 1√
π

Γ

(

s − µ

2

)

Γ

(

s + µ + 1

2

)

Φ

(

λ,
s + µ + 1

2
, q

)

×
∞
∑

n=0

(α)n

n!
B

(

n + m

(

s +
1

2

)

+ 1, −δ + m

(

s +
1

2

))

zn

=2s−1z−δ 1√
π

B

(

m

(

s +
1

2

)

+ 1, −δ + m

(

s +
1

2

))

Γ

(

s − µ

2

)

Γ

(

s + µ + 1

2

)

× Φ

(

λ,
s + µ + 1

2
, q

)

2F1

(

β, m

(

s +
1

2

)

+ 1; −δ + m(2s + 1) + 1; z

)

. □

6. Generating Function Involving the Extended Generalized Gauss
Hypergeometric Function

In this section, we establish some generating functions for the generalized Gauss
hypergeometric functions.

Theorem 6.1. Let Re(β) > 0 and Re(γ) > Re(α) > −1
2
. Then we have

∞
∑

n=0

(β)n

n!
Fµ

(

β + n, α +
1

2
; γ + 1; z; q; p; λ; m

)

tn(6.1)

= (1 − t)−βFµ

(

β, α +
1

2
; γ + 1;

z

1 − t
; q; p; λ; m

)

,

where ♣z♣ < min¶1, ♣1 − t♣♢.

Proof. By considering the following elementary identity

(1 − z)−β

(

1 − t

1 − z

)−β

= (1 − t)−β

(

1 − z

1 − t

)−β

and expanding its left-hand side to give

(6.2) (1 − z)−β

∞
∑

n=0

(β)n

n!

(

t

1 − z

)n

= (1 − t)−β

(

1 − z

1 − t

)−β

, for ♣t♣ < ♣1 − z♣.

Multiplying both sides of (6.2) by zα−1 and applying the extended Riemann-Liouville
fractional derivative operator Dα−γ;µ;q;p;λ;m, we find

Dα−γ;µ;q;p;λ;m

{

∞
∑

n=0

(β)ntn

n!
zα−1(1 − z)−β−n

}
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=Dα−γ;µ;q;p;λ;m

{

(1 − t)−βzα−1

(

1 − z

1 − t

)−β
}

.

Uniform convergence of the involved series allows us to permute the summation and
fractional derivative operator to get

∞
∑

n=0

(β)n

n!
Dα−γ;µ;q;p;λ;m¶zα−1(1 − z)−β−n♢tn

=(1 − t)−βDα−γ;µ;q;p;λ;m

{

zα−1

(

1 − z

1 − t

)−β
}

.

The result easily follows using Theorem 5.2. □

Theorem 6.2. Let Re(β) > 0, Re(τ) > 0 and Re(γ) > Re(α) > −1
2
. Then we have

∞
∑

n=0

(β)n

n!
Fµ

(

β − n, α +
1

2
; γ + 1; z; q; p; λ; m

)

tn

=(1 − t)−βF1,µ

(

α +
1

2
, τ, β; γ + 1; z;

−zt

1 − t
; q; p; λ; m

)

,

where ♣z♣ < 1, ♣t♣ < ♣1 − z♣ and ♣z♣♣t♣ < ♣1 − t♣.

Proof. By considering the following identity

[1 − (1 − z)t]−β = (1 − t)−β

(

1 +
zt

1 − t

)−β

,

and expanding its left-hand side as power series, we get

∞
∑

n=0

(β)n

n!
(1 − z)ntn = (1 − t)−β

(

1 − −zt

1 − t

)−β

, for ♣t♣ < ♣1 − z♣.

Multiplying both sides by zα−1(1 − z)−τ and applying the definition of the extended
Riemann-Liouville fractional derivative operator Dα−γ;µ;q;p;λ;m

z on both sides, we find

Dα−γ;µ;q;p;λ;m
z

{

∞
∑

n=0

(β)n

n!
zα−1(1 − z)−τ (1 − z)ntn

}

=Dα−γ;µ;q;p;λ;m
z

{

(1 − t)−βzα−1(1 − z)−τ

(

1 − −zt

1 − t

)−β
}

.

Interchanging the order of the summation and fractional derivative under the given
conditions, we obtain

∞
∑

n=0

(β)n

n!
Dα−γ;µ;q;p;λ;m¶zα−1(1 − z)−τ+n♢tn
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=(1 − t)−βDα−γ;µ;q;p;λ;m

{

zα−1(1 − z)−τ

(

1 − z

1 − t

)−β
}

.

Finally, the desired result follows by Theorems 5.2 and 5.3. □

Theorem 6.3. Let Re(ξ) > Re(υ) > −1
2
, Re(γ) > Re(α) > −1

2
and Re(β) > 0. Then

we have
∞
∑

n=0

(β)n

n!
Fµ

(

β + n, α +
1

2
; γ + 1; z; q; λ; p; m

)

Fµ

(

−n, υ +
1

2
; ξ + 1; u; q; λ; p; m

)

tn

=(1 − t)−βF2,µ

(

β, α +
1

2
, υ +

1

2
; γ + 1, ξ + 1;

z

1 − t
,

−ut

1 − t
; q; λ; p; m

)

,

where ♣z♣ < 1, ♣1−u
1−z

t♣ < 1 and ♣ z
1−t

♣ + ♣ ut
1−t

♣ < 1.

Proof. By replacing t by (1 − u)t in (6.1) and multiplying both sides of the resulting
identity by uυ−1, we get

∞
∑

n=0

(β)n

n!
Fµ

(

β + n, α +
1

2
; γ + 1; z; q; λ; p; m

)

uυ−1(1 − u)ntn(6.3)

=uυ−1[1 − (1 − u)t]−βFµ

(

β, α +
1

2
; γ + 1;

z

1 − (1 − u)t
; q; λ; p; m

)

,

where Re(β) > 0 and Re(γ) > Re(α) > −1
2
.

Next, applying the fractional derivative Dυ−ξ,µ;q;λ;p;m to both sides of (6.3) and
changing the order of the summation and the fractional derivative under conditions
♣z♣ < 1, ♣1−u

1−z
t♣ < 1 and ♣ z

1−t
♣ + ♣ ut

1−t
♣ < 1, yields

∞
∑

n=0

(β)n

n!
Fµ

(

β + n, α +
1

2
; γ + 1; z; q; λ; p; m

)

Dυ−ξ,µ;q;λ;p;m¶uυ−1(1 − u)n♢tn

=Dυ−ξ,µ;q;λ;p;m

{

uυ−1[1 − (1 − u)t]−βFµ

(

β, α +
1

2
; γ + 1;

z

1 − (1 − u)t
; q; λ; p; m

)}

,

The last identity can be written as follows:
∞
∑

n=0

(β)n

n!
Fµ

(

β + n, α +
1

2
; γ + 1; z; q; λ; p; m

)

Dυ−ξ,µ;q;λ;p;m¶uυ−1(1 − u)n♢tn

=(1 − t)−βDυ−ξ,µ;q;λ;p;m

{

uυ−1

[

1 − −ut

1 − t

]−β

×Fµ

(

β + n, α +
1

2
; γ + 1;

z
1−t

1 − −ut
1−t

; q; λ; p; m

)}

.

Thus, by using Theorems 5.2 and 5.5 in the resulting identity, we obtain the desired
result. □
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7. Concluding remarks

In this paper, by using an extension of macdonald given by Boudjekha function
we developed a generalized extension of some special functions namely: incomplete
gamma, beta, hypergeomtric and confluent functions and we obtained a new extended
Riemann-Liouville fractional derivative operator. We conclude first, for λ = 0 and q =
1, that extended incomplete gamma functions are respectively reduced to incomplete
gamma functions (see [9]) and all the results established here will coincide with those
obtained in [1]. Finally, if we letting λ = m = µ = 0, q = 1 and p → 0 then all the
results established in this paper will reduce to the results associated with classical
Riemann-Liouville fractional derivative operator (see [16]).

We intend to investigate aslo some other extensions based on Lerch and Hurwitz
functions and Pochhammer Symbol, recently initiated in [25,27].

Acknowledgements. The authors are very grateful to the anonymous referees for
their valuable comments and suggestions which helped to improve this work.
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NECESSARY AND SUFFICIENT CONDITIONS FOR

OSCILLATIONS TO A SECOND-ORDER NEUTRAL

DIFFERENTIAL EQUATIONS WITH IMPULSES

ARUN KUMAR TRIPATHY1 AND SHYAM SUNDAR SANTRA2∗

Abstract. In this work, we obtain necessary and sufficient conditions for oscillation
of solutions of second-order neutral impulsive differential system









r(t)
(

z′(t)
)γ

)

′

+
∑m

i=1
qi(t)x

αi(σi(t)) = 0, t ≥ t0, t ̸= λk,

∆


r(λk)
(

z′(λk)
)γ

)

+
∑m

i=1
hi(λk)xαi(σi(λk)) = 0, k = 1, 2, 3, . . . ,

where z(t) = x(t) + p(t)x(τ(t)). Under the assumption
∫

∞

0

(

r(η)
)

−1/γ
dη = ∞, we

consider two cases when γ > αi and γ < αi. Our main tool is Lebesgue’s Dominated
Convergence theorem. Examples are given to illustrate our main results and we
state an open problem.

1. Introduction

In this article we consider the neutral impulsive differential system














(

r(t)


z′(t)
)γ

)′

+
∑m

i=1 qi(t)x
αi(σi(t)) = 0, t ≥ t0, t ̸= λk,

∆
(

r(λk)


z′(λk)
)γ

)

+
∑m

i=1 hi(λk)xαi(σi(λk)) = 0, k = 1, 2, 3, . . . ,
(1.1)

where

z(t) = x(t) + p(t)x(τ(t)), ∆x(a) = lim
s→a+

x(s) − lim
s→a−

x(s),

the functions p, qi, hi, r, σi, τ are continuous that satisfy the conditions stated below
and assume that the sequence ¶λk♢ satisfies 0 < λ1 < λ2 < · · · λk < · · · as k → ∞

Key words and phrases. Oscillation, non-oscillation, neutral, delay, Lebesgue’s dominated conver-
gence theorem, impulses.
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and γ and αi are the quotient of two odd positive integers and λk’s are fixed moment
of impulsive effects..

(A1) σi ∈ C([0, ∞),R+), τ ∈ C2([0, ∞),R+), σi(t) < t, τ(t) < t, limt→∞ σi(t) = ∞,
limt→∞ τ(t) = ∞.

(A2) r ∈ C1([0, ∞),R+), qi, hi ∈ C([0, ∞),R+), 0 < r(t), 0 ≤ qi(t), 0 ≤ hi(t) for all
t ≥ 0 and i = 1, 2, . . . , m,

∑

qi(t) is not identically zero in any interval [b, ∞).
(A3)

∫ ∞

0 r−1/γ(s) ds = ∞ and let Π(t) =
∫ t

0 r−1/γ(η) dη.
(A4) −1 < −p0 ≤ p(t) ≤ 0 for t ≥ t0.
(A5) There exists a differentiable function σ0(t) such that 0 < σ0(t) = min¶σi(t) :

t ≥ t∗♢ and σ′
0(t) ≥ α for t ≥ t∗, α > 0, i = 1, 2, . . . , m.

The main feature of this article is having conditions that are both necessary and
sufficient for the oscillation of all solutions to (1.1). Sufficient conditions for the
oscillation and nonoscillation of all solutions to the first and second order neutral
impulsive differential systems are provided in [12–15, 18–22]. The necessary and
sufficient conditions for oscillation of all solutions to the first order neutral impulsive
differential systems are discussed in [20,21]. In this work, our main aim is to present
the necessary and sufficient conditions for oscillation of all solutions of (1.1).

In 2011, Dimitrova and Donev [13–15] have considered the first order impulsive
differential system of the form









x(t) + p(t)x(τ(t))
)′

+ q(t)x(σ(t)) = 0, t ̸= λk, k ∈ N,

∆


x(λk) + p(λk)x(τ(λk))
)

+ q(λk)x(σ(λk)) = 0, k ∈ N,
(1.2)

and established several sufficient conditions for oscillation of the solutions of (1.2).
In 2014, Tripathy [19] have established sufficient conditions for oscillation of all

solutions of








x(t) + p(t)x(t − τ)
)′

+ q(t)f


x(t − σ)
)

= 0, t ̸= λk, k ∈ N,

∆


x(λk) + p(λk)x(τ(λk − τ))
)

+ q(λk)f


x(σ(λk − σ))
)

= 0, k ∈ N.
(1.3)

In 2015, Tripathy and Santra [20] obtained the necessary and sufficient conditions
for oscillatory and asymptotic behavior of solutions of









x(t) + p(t)x(t − τ)
)′

+ q(t)f


x(t − σ)
)

= g(t), t ̸= λk, k ∈ N,

∆


x(λk) + p(λk)x(λk − τ)
)

+ q(λk)f


x(λk − σ)
)

= h(λk), k ∈ N.

In 2016, Tripathy, Santra and Pinelas [21] obtained necessary and sufficient condi-
tions of (1.3). In the subsequent year, Tripathy and Santra [22] established sufficient
conditions for oscillation and existence of positive solutions of









r(t)


x(t) + p(t)x(t − τ)
)′)′

+ q(t)f


x(t − σ)
)

= 0, t ̸= λk, k ∈ N,

∆


r(λk)


x(λk) + p(λk)x(λk − τ)
)′)

+ q(λk)f


x(λk − σ)
)

= 0, k ∈ N.
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In 2018, Santra [18] established sufficient conditions for oscillations of solutions of








r(t)


x(t) + p(t)x(τ(t))
)′)′

+ q(t)f


x(σ(t))
)

= 0, t ̸= λk, k ∈ N,

∆


r(λk)


x(λk) + p(λk)x(τ(λk))
)′)

+ q(λk)f


x(σ(λk))
)

= 0, k ∈ N.

By a solution x we mean a function differentiable on [t0, ∞) such that z(t) and z′(t)
are differentiable for t ≠ tk, and z(t) is left continuous at λk and has right limit at λk,
and x satisfies (1.1). We restrict our attention to solutions for which supt≥b ♣x(t)♣ > 0
for every b ≥ 0. A solution is called oscillatory it has arbitrarily large zeros; otherwise
is non-oscillatory.

To define a particular solution, we need an initial function ϕ(t) which is twice
differentiable for t in the interval

min
{

inf¶τ(t) : t0 ≤ t♢, inf¶σi(t) : t0 ≤ t, i = 1, 2, . . . , m♢
}

≤ t.

Then a solution is obtained using the method of steps: When replacing x(τ(t)) by
ϕ(τ(t)), and x(σi(t)) by ϕ(σi(t)) in (1.1), we obtain a second-order differential equation.
We solve this equation taking into account discrete equation of (1.1), say on an interval
[t0, t1]. Then repeat the process starting at t = t1.

2. Necessary and Sufficient Conditions

Lemma 2.1. Assume that (A1)-(A4) hold for t ≥ t0. If x is an eventually positive

solution of (1.1), then z satisfies any one of the following two cases:

(i) z(t) < 0, z′(t) > 0,


r(z′)γ
)′

(t) ≤ 0;

(ii) z(t) > 0, z′(t) > 0,


r(z′)γ
)′

(t) ≤ 0,

for all sufficiently large t.

Proof. Let x be an eventually positive solution. Then by (A1) there exists a t∗ such
that x(t) > 0, x(τ(t)) > 0 and x(σi(t)) > 0 for all t ≥ t∗ and i = 1, 2, . . . , m. From
(1.1) it follows that

(

r(t)


z′(t)
)γ

)′

= −
m

∑

i=1

qi(t)x
αi(σi(t)) ≤ 0, for t ̸= λk,

∆
(

r(λk)


z′(λk)
)γ

)

= −
m

∑

i=1

hi(λk)xαi(σi(λk)) ≤ 0, for k = 1, 2, . . .

(2.1)

Therefore, r(t)


z′(t)
)γ

is non-increasing for t ≥ t∗, including jumps of discontinuity.

Next we show the r(t)


z′(t)
)γ

is positive. By contradiction assume that r(t)


z′(t)
)γ

≤

0 at a certain time t ≥ t∗. Using that
∑

qi is not identically zero on any interval
[b, ∞), and by (2.1), there exists t2 ≥ t∗ such that

r(t)


z′(t)
)γ

≤ r(t2)


z′(t2)
)γ

< 0, for all t ≥ t2.
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Recall that γ is the quotient of two positive odd integers. Then

z′(t) ≤
(

r(t2)

r(t)

)1/γ

z′(t2), for t ≥ t2.

Since r(λk)


z′(λk)
)γ

≤ r(t2)


z′(t2)
)γ

< 0 for all λk ≥ t2. Integrating from t2 to t, we

have

z(t) ≤ z(t2) +
∑

t2≤λk<∞

z′(λk) +


r(t2)
)1/γ

z′(t2)


Π(t) − Π(t2)
)

≤ z(t2) +


r(t2)
)1/γ

z′(t2)


Π(t) − Π(t2)
)

→ −∞,

as t → ∞ due to (A3). Now, we consider the following two possibilities.
If x is unbounded, then there exists a sequence ¶ηk♢ → ∞ such that x(ηk) =

sup¶x(η) : η ≤ ηk♢. By τ(ηk) ≤ ηk, we have x(τ(ηk)) ≤ x(ηk) and hence

z(ηk) = x(ηk) + p(ηk)x(τ(ηk)) ≥ (1 + p(ηk))x(ηk) ≥ (1 − p0))x(ηk) ≥ 0,

which contradicts limk→∞ z(t) = −∞. Recall that ¶λk♢ are the sequence of points for
t ≥ λk, then by similar argument we can show that z(λk) ≥ 0 to get a contradiction

to limk→∞ z(t) = −∞. Therefore, r(t)


z′(t)
)γ

> 0 for all t ≥ t∗.

If x is bounded, then z is also bounded, which is a contradiction to limk→∞ z(t) =
−∞.

From r(t)


z′(t)
)γ

> 0 and r(t) > 0, it follows that z′(t) > 0. Then there is t1 ≥ t∗

such that z satisfies only one of two cases (i) and (ii). This completes the proof. □

Lemma 2.2. Assume that (A1)-(A4) hold. If x is an eventually positive solution of

(1.1), then any one of following two cases exists:

(1) if z satisfies (i), limt→∞ x(t) = 0;

(2) if z satisfies (ii), there exist t1 ≥ t0 and δ > 0 such that

0 <z(t) ≤ δΠ(t),(2.2)



Π(t) − Π(t1)
)

[
∫ ∞

t

m
∑

i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

λk≥t

m
∑

i=1

hi(λk)xαi(σi(λk))
1/γ

(2.3)

≤z(t) ≤ x(t),

for all t ≥ t1.

Proof. Let x be an eventually positive solution. Then by (A1) there exists a t∗ such
that x(t) > 0, x(τ(t)) > 0 and x(σi(t)) > 0 for all t ≥ t∗ and i = 1, 2, . . . , m. Then
Lemma 2.1 holds and we have following two possible cases.
Case 1. Let z satisfies (i) for all t ≥ t1. Note that limt→∞ z(t) exists and by (A1),
lim supt→∞ x(t) = lim supt→∞ x(τ(t)). Then 0 > z(t) ≥ x(t) − p0x(τ(t)) implies

0 ≥ lim
t→∞

z(t) ≥ lim
t→∞

[

x(t) − p0x(τ(t))
]

≥ (1 − p0) lim sup
t→∞

x(t).
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Since (1 − p0) > 0, it follows that lim supt→∞ x(t) = 0, hence limt→∞ x(t) = 0 for
t ̸= λk, k ∈ N. We may note that ¶x(λk − 0)♢k∈N and ¶x(λk + 0)♢k∈N are sequences
of real numbers and because of continuity of x

lim
k→∞

x(λk − 0) = 0 = lim
k→∞

x(λk + 0)

due to lim inft→∞ x(t) = 0 = lim supt→∞ x(t). Hence, limt→∞ x(t) = 0 for all t and λk,
k ∈ N.

Case 2. Let z satisfies (ii) for all t ≥ t1. Note that x(t) ≥ z(t) and z is positive and

increasing so x cannot converge to zero. From r(t)


z′(t)
)γ

being non-increasing, there

exists a constant δ > 0 and t ≥ t1 such that


r(t)
)1/γ

z′(t) ≤ δ and hence z(t) ≤ δΠ(t)

for t ≥ t1.

Since r(t)


z′(t)
)γ

is positive and non-increasing, limt→∞ r(t)


z′(t)
)γ

exists and is

non-negative. Integrating (1.1) from t to a, we have

r(a)


z′(a)
)γ

− r(t)


z′(t)
)γ

= −
∫ a

t

m
∑

i=1

qi(η)xαi(σi(η)) dη +
∑

t≤λk<a

∆


r(λk)z′(λk)
)γ

.

Computing the limit as a → ∞

r(t)


z′(t)
)γ

≥
∫ ∞

t

m
∑

i=1

qi(η)xαi(σi(η)) dη +
∑

λk≥t

m
∑

i=1

hi(λk)xαi(σi(λk)).(2.4)

Then

z′(t) ≥
[

1

r(t)

[
∫ ∞

t

m
∑

i=1

qi(η)xαi(σi(η)) dη +
∑

t≤λk

m
∑

i=1

hi(λk)xαi(σi(λk))
1/γ

.

Since z(t1) > 0, integrating the above inequality yields

z(t) ≥
∫ t

t1

[

1

r(η)

[
∫ ∞

η

m
∑

i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

η≤λk

m
∑

i=1

hi(λk)xαi(σi(λk))
1/γ

dη.

Since the integrand is positive, we can increase the lower limit of integration from η
to t, and then use the definition of Π(t), to obtain

z(t) ≥


Π(t) − Π(t1)
)

[
∫ ∞

t

m
∑

i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

t≤λk

m
∑

i=1

hi(λk)xαi(σi(λk))
1/γ

,

which yields (2.3). □

2.1. The Case αi < γ. In this subsection, we assume that there exists a constant β1,
the quotient of two positive odd integers such that 0 < αi < β1 < γ.

Theorem 2.1. Under assumptions (A1)-(A4), each solution of (1.1) is either oscil-

latory or converge to zero if and only if
∫ ∞

0

m
∑

i=1

qi(η)Παi(σi(η)) dη +
∞

∑

k=1

m
∑

i=1

hi(λk)Παi(σi(λk)) = ∞.(2.5)
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Proof. We prove the sufficiency by contradiction. Initially, we assume that a solution
x is eventually positive which does not converge to zero. So, Lemma 2.1 holds
and z satisfies any one of two cases (i) and (ii). In Lemma 2.2, Case 1 leads to
limt→∞ x(t) = 0 which is a contradiction.

For Case 2, we can find a t1 > 0 such that

x(t) ≥ z(t) ≥


Π(t) − Π(t1)
)

w1/γ(t) ≥ 0, for t ≥ t1,

where

w(t) =
∫ ∞

t

m
∑

i=1

qi(ζ)xαi(σi(ζ)) dζ +
∑

λk≥t

m
∑

i=1

hi(λk)xαi(σi(λk)) ≥ 0.

As limt→∞ Π(t) = ∞, there exists t2 ≥ t1, such that Π(t) − Π(t1) ≥ 1
2
Π(t) for t ≥ t2

and hence

z(t) ≥
1

2
Π(t)w1/γ(t).(2.6)

Note that w is left continuous at λk,

w′(t) = −
m

∑

i=1

qi(t)x
αi(σi(t)), for t ̸= λk,

∆w(λk) = −
m

∑

i=1

hi(λk)xαi(σi(λk)) ≤ 0.

Thus w is non-negative and non-increasing for t ≥ t2. Using (2.2), αi − β1 < 0 and
(2.6), we have

xαi(t) ≥ zαi−β1(t)zβ1(t) ≥ (δΠ(t))αi−β1zβ1(t)

≥


δΠ(t)
)αi−β1

(

Π(t)w1/γ(t)

2

)β1

=
δαi−β1

2β1
Παi(t)wβ1/γ(t), for t ≥ t2.

Since w is non-increasing, β1

γ
> 0, and σi(η) < η, it follows that

xαi(σi(η)) ≥
δαi−β1

2β1
Παi(σi(η))wβ1/γ(σi(η)) ≥

δαi−β1

2β1
Παi(σi(η))wβ1/γ(η).(2.7)

Now, we have
(

w1−β1/γ(t)
)′

=
(

1 −
β1

γ

)

w−β1/γ(t)
(

−
m

∑

i=1

qi(t)x
αi(σi(t))

)

, for t ̸= λk.(2.8)

To estimate the discontinuities of w1−β1/γ we use a Taylor polynomial of order 1 for
the function h(x) = x1−β1/γ, with 0 < β1 < γ about x = a

b1−β1/γ − a1−β1/γ ≤
(

1 −
β1

γ

)

a−β1/γ(b − a).
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Then ∆w1−β1/γ(λk) ≤


1 − β1

γ

)

w−β1/γ(λk)∆w(λk). Integrating (2.8) from t2 to t, we

have

w1−β1/γ(t2) ≥
(

1 −
β1

γ

)



 −
∫ t

t2

w−β1/γ(η)w′(η) dη −
∑

t2≤λk<t

w−β1/γ(λk)∆w(λk)





=
(

1 −
β1

γ

)





∫ t

t2

w−β1/γ(η)
( m

∑

i=1

qi(η)xαi(σi(η))
)

dη

+
∑

t2≤λk<t

w−β1/γ(λk)
m

∑

i=1

hi(λk)xαi(σi(λk))





≥
1 − β1

γ

2β1δ(β1−αi)





∫ t

t2

m
∑

i=1

qi(η)Παi(σi(η))) dη +
∑

t2≤λk<t

m
∑

i=1

hi(λk)Παi(σi(λk)))



,

(2.9)

which contradicts (2.5) as t → ∞ and completes the proof of sufficiency for eventually
positive solutions.

For an eventually negative solution x, we introduce the variables y = −x so that
we can apply the above process for the solution y.

Next we show the necessity part by a contrapositive argument. Let (2.5) do not
hold. Then it is possible to find t1 > 0 such that

∫ ∞

η

m
∑

i=1

qi(ζ)Παi(σi(ζ)) dζ +
∑

λk≥η

m
∑

i=1

hi(λk)Παi(σi(λk)) ≤
ϵ

δαi

,(2.10)

for all η ≥ t1 and δ, ϵ > 0 satisfying the relation

(2ϵ)1/γ = (1 − p0)δ,(2.11)

so that 0 < ϵ1/γ ≤ (1 − p0)δ/21/γ < δ. Define the set of continuous functions

M = ¶x ∈ C([0, ∞)) : ϵ1/γ


Π(t) − Π(t1)
)

≤ x(t) ≤ δ


Π(t) − Π(t1)
)

, t ≥ t1♢,

and define an operator Φ on M by

(Φx)(t) =



































0, if t ≤ t1,

−p(t)x(τ(t)) +
∫ t

t1

[

1

r(η)

[

ϵ +
∫ ∞

η

m
∑

i=1

qi(ζ)xαi(σi(ζ)) dζ

+
∑

λk≥η

m
∑

i=1

hi(λk)xαi(σi(λk))
1/γ

dη, if t > t1.

We need to show that if x is a fixed point of Φ, i.e., Φx = x, then x is a solution of
(1.1).
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First we estimate (Φx)(t) from below. For x ∈ M , we have 0 ≤ ϵ1/γ


Π(t)−Π(t1)
)

≤

x(t) and by (A2) and (A3) we have

(Φx)(t) ≥ 0 +
∫ t

t1

[

1

r(η)
[ϵ + 0 + 0]

1/γ

dη = ϵ1/γ


Π(t) − Π(t1)
)

.

Now we estimate (Φx)(t) from above. For x in M , by definition of the set M we
have xαi(σi(η)) ≤ (δΠ(σi(η)))αi . Therefore, by (2.10),

(Φx)(t) ≤p0δ(Π(t) − Π(t1)) +
∫ t

t1

[

1

r(η)

[

ϵ + δαi

∫ ∞

η

m
∑

i=1

qi(ζ)Παi(σi(ζ)) dζ

+ δαi

∑

λk≥η

m
∑

i=1

hi(λk)Παi(σi(λk))
1/γ

dη

≤p0δ


Π(t) − Π(t1)
)

+ (2ϵ)1/γ


Π(t) − Π(t1)
)

= δ


Π(t) − Π(t1)
)

.

Therefore, Φ maps M to M .
To find a fixed point for Φ in M , let us define a sequence of functions in M by the

recurrence relation

u0(t) =0, for t = 0,

u1(t) =(Φu0)(t) =







0, if t < t1,

ϵ1/γ


Π(t) − Π(t1)
)

, if t ≥ t1,

un+1(t) =(Φun)(t), for n ≥ 1, t ≥ t1.

Note that for each fixed t, we have u1(t) ≥ u0(t). Using mathematical induction, we
can show that un+1(t) ≥ un(t). Therefore, the sequence ¶un♢ converges pointwise to
a function u. Using the Lebesgue Dominated Convergence Theorem, we can show
that u is a fixed point of Φ in M . This shows under assumption (2.10), there a
non-oscillatory solution that does not converge to zero. □

Corollary 2.1. Under the assumptions of Theorem 2.1, every unbounded solution of
(1.1) is oscillatory if and only if (2.5) holds.

Proof. The proof of the corollary is an immediate consequence of Theorem 2.1. □

2.2. The Case αi > γ. In this subsection, we assume that there exists a constant β2,
the quotient of two positive odd integers such that γ < β2 < αi.

Theorem 2.2. Under assumptions (A1)-(A5) and r(t) is non-decreasing, every solu-

tion of (1.1) is either oscillatory or converges to zero if and only if
∫ ∞

0

[

1

r(η)

[
∫ ∞

η

m
∑

i=1

qi(ζ) dζ +
∞

∑

k=1

m
∑

i=1

hi(λk)
1/γ

dη = ∞.(2.12)

Proof. We prove the sufficiency by contradiction. Initially, we assume that x is an
eventually positive solution not converging to zero. So, Lemma 2.1 holds and z satisfies
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any one of two cases (i) and (ii). In Lemma 2.2, Case 1 leads to limt→∞ x(t) = 0,
which is a contradiction.

For Case 2, z(t) > 0 is non-decreasing for t ≥ t1 and

xαi(t) ≥ zαi(t) ≥ zαi−β2(t)zβ2(t) ≥ zαi−β2(t1)z
β2(t)

implies that

xαi(σi(t)) ≥ zαi−β2(t1)z
β2(σi(t)), for t ≥ t2 > t1.(2.13)

Using (2.4), (2.13) and σi(t) ≥ σ0(t), we have

r(t)


z′(t)
)γ

≥ zαi−β2(t1)





∫ ∞

t

m
∑

i=1

qi(η) dη +
∑

λk≥t

m
∑

i=1

hi(λk)



zβ2(σ0(t)),(2.14)

for t ≥ t2. Being r(t)


z′(t)
)γ

non-increasing and σ0(t) ≤ t, we have

r(σ0(t))


z′(σ0(t))
)γ

≥ r(t)


z′(t)
)γ

.

Using the last inequality in (2.14) and then dividing by zβ2/γ(σ0(t)) > 0, we get

z′(σ0((t))

zβ2/γ(σ0(t))
≥





zαi−β2(t1)

r(σ0(t))





∫ ∞

t

m
∑

i=1

qi(η) dη +
∑

λk≥t

m
∑

i=1

hi(λk)









1/γ

,

for t ≥ t2. Multiplying the left-hand side by σ′
0(t)/α ≥ 1 and integrating from t2 to t,

we find

1

α

∫ t

t2

z′(σ0(η))σ′
0(η)

zβ2/γ(σ0(η))
dη ≥z(αi−β2)/γ(t1)

∫ t

t2





1

r(σ0(η))





∫ ∞

η

m
∑

i=1

qi(ζ) dζ

+
∑

η≤λk

m
∑

i=1

hi(λk)









1/γ

dη, for t ≥ t2.

(2.15)

Since γ < β2, r(σ0(η)) ≤ r(η) and

1

α(1 − β2/γ)

[

z1−β2/γ(σ0(η))
t

η=t2

≤
1

α(β2/γ − 1)
z1−β2/γ(σ0(t2)),

then (2.15) becomes

∫ t

t2





1

r(η)





∫ ∞

η

m
∑

i=1

qi(ζ) dζ +
∑

η≤λk

m
∑

i=1

hi(λk)









1/γ

dη < ∞,

which is a contradiction to (2.12). This contradiction implies that the solution x cannot
be eventually positive. The case with an eventually negative solution is proved.
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To prove the necessity part, we assume that (2.12) does not hold. For given

ϵ =


2/(1 − p0)
)−αi/γ

> 0, we can find a t1 > 0 such that

∫ ∞

t1





1

r(η)





∫ ∞

η

m
∑

i=1

qi(ζ) dζ +
∑

λk≥s

m
∑

i=1

hi(λk)









1/γ

dη < ϵ.(2.16)

Consider

M =

{

x ∈ C([0, ∞)) : 1 ≤ x(t) ≤
2

1 − p0

for t ≥ t1

}

.

Define the operator

(Φx)(t) =















































0, if t < t1,

1 − p(t)x(τ(t))

+
∫ t

t1

[

1

r(η)

[
∫ ∞

η

m
∑

i=1

qi(ζ)xαi(σi(ζ)) dζ

+
∑

λk≥η

m
∑

i=1

hi(λk)xαi(σi(λk))
1/γ

dη, if t ≥ t1.

Indeed, Φx = x implies that x is a solution of (1.1).
First we estimate (Φx)(t) from below. Let x ∈ M . Then 1 ≤ x implies that

(Φx)(t) ≥ 1, on [t1, ∞). Estimating (Φx)(t) from above. Let x ∈ M . Then x ≤
2/(1 − p0) and thus

(Φx)(t) ≤1 − p(t)
2

1 − p0

+
∫ t

t1





1

r(η)





∫ ∞

η

m
∑

i=1

qi(ζ)
(

2

1 − p0

)αi

dζ

+
∑

λk≥η

m
∑

i=1

hi(λk)
(

2

1 − p0

)αi









1/γ

dη.

Since σ0(η) ≤ η and r(·) is non-decreasing, we can replace r(η) by r(σ0(η)) and the
above inequality is still valid. By (2.16) and the definition of ϵ, we have

(Φx)(t) ≤ 1 +
2p0

1 − p0

+


2/(1 − p0)
)αi/γ

ϵ = 1 +
2p0

1 − p0

+ 1 =
2

1 − p0

.

Therefore, Φ maps M to M .
To find a fixed point for Φ in M , we define a sequence of functions by the recurrence

relation

u0(t) =0, for t = 0,

u1(t) =(Φu0)(t) = 1, for t ≥ t1,

un+1(t) =(Φun)(t), for n ≥ 1, t ≥ t1.

Note that for each fixed t, we have u1(t) ≥ u0(t). Using that f is non-decreasing
and mathematical induction, we can prove that un+1(t) ≥ un(t). Therefore, ¶un♢
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converges pointwise to a function u in M . Then u is a fixed point of Φ and a positive
solution to (1.1) that does not converge to zero. □

Corollary 2.2. Under the assumptions of Theorem 2.2, every unbounded solution of
(1.1) is oscillatory if and only if (2.12) hold.

Example 2.1. Consider the neutral differential equation















(

e−t


x(t) − e−tx(τ(t))
)′)11/3

)′

+ 1
t+1

(x(t − 2))1/3 + 1
t+2

(x(t − 1))5/3 = 0,
(

e−k


x(k) − e−kx(τ(k))
)′)11/3

)′

+ 1
t+4

(x(k − 2))1/3 + 1
t+5

(x(k − 1))5/3 = 0.

(2.17)

Here γ = 11/3, r(t) = e−t, −1 < p(t) = −e−t ≤ 0, σ1(t) = t − 2, σ2(t) = t − 1, λk = k

for k ∈ N, Π(t) =
∫ t

0 e11s/3 ds = 3
11



e11t/3 − 1
)

, α1 = 1/3 and α2 = 5/3. For β1 = 7/3,

we have 0 < max¶α1, α2♢ < β1 < γ, and uαi−β1 = u−2 and uα2−β1 = u−2/3 which both
are decreasing functions. To check (2.5) we have

∫ ∞

0

m
∑

i=1

qi(η)Παi(σi(η)) dη +
∞

∑

k=1

m
∑

i=1

hi(λk)Παi(σi(λk))

≥
∫ ∞

0

m
∑

i=1

qi(s)Παi(σi(η))) dη

≥
∫ ∞

0
q1(η)Παi(σ1(η))) dη

=
∫ ∞

0

1

η + 1

(

3

11



e5(η−2)/3 − 1
)

)1/3

dη = ∞,

since the integral approaches +∞ as η → +∞. So, all the conditions of Theorem 2.1
hold, and therefore, each solution of (2.17) is oscillatory or converges to zero.

Example 2.2. Consider the neutral differential equation















(



x(t) − e−tx(τ(t))
)′)1/3

)′

+ t(x(t − 2))7/3 + (t + 1)(x(t − 1))11/3 = 0,
(



x(2k) − e−2k

x(τ(2k))
)′)1/3

)′

+ t
2
(x(2k − 2))7/3 + t

3
(x(2k − 1))11/3 = 0.

(2.18)

Here γ = 1/3, r(t) = 1, σ1(t) = t − 2, σ2(t) = t − 1, α1 = 7/3 and α2 = 11/3. For
β2 = 5/3, we have min¶α1, α2♢ > β2 > γ and uα1−β2 = u2/3 and uα2−β2 = u2, which
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both are increasing functions. To check (2.12) we have

∫ ∞

t1

[

1

r(η)

[
∫ ∞

η

m
∑

i=1

qi(ζ) dζ +
∑

λk≥η

m
∑

i=1

hi(λk)
1/γ

dη

≥
∫ ∞

t0

[

1

r(η)

[
∫ ∞

η

m
∑

i=1

qi(ζ) dζ
1/γ

dη

≥
∫ ∞

t0

[

1

r(η)

[
∫ ∞

η
q1(ζ) dζ

1/γ

dη ≥
∫ ∞

2

[
∫ ∞

η
ζ dζ

3

dη = ∞.

So, all the conditions of of Theorem 2.2 hold. Thus, all solution of (2.18) is oscillatory
or converges to zero.

Remark 2.1. Based on this work and [13–15,18–22] an open problem that arises is to
establish necessary and sufficient conditions for the oscillation of the solutions of the
second-order nonlinear neutral differential equation (1.1) for p > 0 and −∞ < p ≤ −1.
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ON CONTACT CR-SUBMANIFOLD OF A KENMOTSU

MANIFOLD WITH KILLING TENSOR FIELD

SAMEER1 AND PRADEEP KUMAR PANDEY2

Abstract. The object of this paper is to study the Contact CR-submanifold of a
Kenmotsu manifold with the help of a killing tensor field and deduce some results.

1. Introduction

K. Kenmotsu [5] introduced the notion of Kenmotsu manifold and later several
authors studied this manifold [2, 14, 15]. M. Kobayashi and N. Papaghuic [10, 11]
investigated the geometry of semi-invariant submanifolds of a Kenmotsu manifold.
The geometry of Contact CR-submanifolds, invariant and anti-invariant submanifolds
of an almost contact metric structure are studied by A. Bejancu [1].

Gupta et al. [13] studied the intrinsic characterization of a slant submanifold of a
Kenmotsu manifold in case of induced metric and obtained some examples of the slant
submanifold of a Kenmotsu manifold. Avik De [2] studied and obtained few examples
of a 3-dimensional Kenmotsu manifold with parallel Ricci tensor and obtained killing
condition for a vector field in Kenmotsu manifold.

Moreover, the Contact CR-submanifolds of Kenmotsu manifolds are studied by
some other authors [8, 9]. The notion of a killing tensor field was introduced by
Professor D. E. Blair [4]. In [12], we have investigated and characterized a slant
submanifold of a Kenmotsu manifold using killing tensor fields. In this paper, we
have studied Contact CR-submanifold of a Kenmotsu manifold using the notion of a
killing tensor field and obtained some results.

Key words and phrases. Contact manifold, CR-submanifold, Kenmotsu manifold, killing tensor
field.

2010 Mathematics Subject Classification. Primary: 53C15. Secondary: 53C40.
DOI 10.46793/KgJMat2301.095P
Received: January 17, 2020.
Accepted: July 16, 2020.

95



96 SAMEER AND P. K. PANDEY

2. Preliminaries

A (2m + 1)-dimensional manifold M is said to admit an almost contact metric
structure if there exist a (1, 1)-tensor field φ, a vector field ξ, a 1-form η and a
Riemannian metric g such that

(2.1) φξ = 0, φ2U = −U + η (U) ξ, η (ξ) = 1, η (φU) = 0,

(2.2) g (φU, φV ) = g (U, V ) − η (U) η (V ) , g (U, ξ) = η(U),

where U and V are vector fields on M [3, 7].
Moreover, if

(2.3)


∇Uφ


V = −g (U, φV ) ξ − η (V ) φU, ∇Uξ = U − η (U) ξ,

where ∇ be a Levi-Civita connection on M , then the structure (M, φ, ξ, η, g) is said
to be a Kenmotsu manifold [5].

Suppose M is an isometrically immersed submanifold in M and ∇, ∇ be the
Riemannian connections on M , M , respectively. Then the Gauss and Weingarten
formulae are given by

(2.4) ∇UV = ∇UV + h(U, V )

and

(2.5) ∇UW = −AW U + ∇⊥

UW,

for any vector fields U, V ∈ Γ(TM) and W ∈ Γ(T ⊥M), where ∇⊥ be the normal
connection on T ⊥M , A and h be the shape operator and second fundamental form of
M in M .

Both h and A are related as

(2.6) g(AW U, V ) = g(h(U, V ), W ).

In Kenmotsu manifold, M is isometrically immersed submanifold. For any vector field
U tangent to M , we put

(2.7) φU = pU + fU,

where pU and fU denote the tangent and normal component of φU , respectively.
The covariant derivative of p, f are given by

(∇Up)V =∇UpV − p∇UV,

(∇Uf)V =∇⊥

UfV − f∇UV.

Similarly, for any vector field W normal to M , we have

(2.8) φW = bW + cW,

where bW and cW are the tangent and normal component of φW .
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The covariant derivative of b, c are given by

(∇Ub)W =∇UbW − b∇⊥

UW,

(∇Uc)W =∇⊥

UcW − c∇⊥

UW.

Let p be the endomorphism defined by (2.7), then we have

(2.9) g (pU, V ) + g (U, pV ) = 0.

Definition 2.1 ([9]). Let M be a submanifold of a Kenmotsu manifold M . Then M

is said to be a contact CR-submanifold of M if there exists a differentiable distribution
D : x → Dx ⊆ Tx(M) on M satisfying the following conditions:

(i) TM = D ⊕ D⊥, ξ ∈ D;
(ii) D is invariant with respect to φ, that is, φDx ⊂ Tx(M);
(iii) the orthogonal complementary distribution D⊥ : x → D⊥

x ⊆ Tx(M) satisfies
φD⊥

x ⊆ T ⊥

x (M) for each x ∈ M .
A contact CR-submanifold is said to be proper if neither Dx = ¶0♢ nor D⊥

x = ¶0♢. If
Dx = ¶0♢, then M is anti-invariant submanifold and if D⊥

x = ¶0♢, then M becomes
invariant submanifold.

Now, let M is a contact CR-submanifold of a Kenmotsu manifold M . For any
U, V ∈ Γ(TM), by (2.3), (2.7), (2.8) together with the Gauss and Weingarten formulae
[9], we have

(2.10)


∇Uφ


V = ∇UφV − φ∇UV

or

−g (U, φV ) − η (V ) φU = ∇UpV + ∇UfV − φ∇UV − φh(U, V ).

By comparing the tangent and normal component of the above equation, we have

(2.11) (∇Up)V = AfV U + bh (U, V ) + g (pU, V ) ξ − η (V ) pU

and

(2.12) (∇Uf) V = ch (U, V ) − h (U, pV ) − η (V ) fU.

If ξ be the structure vector field tangent to submanifold M , then by (2.3) and (2.6),
we have

(2.13) AW ξ = h (U, ξ) = 0,

for all U ∈ Γ(TM) and W ∈ Γ(T ⊥M). Thus, (2.11) reduces to

(2.14) (∇Up)V = g (pU, V ) ξ − η (V ) pU,

for any U, V ∈ Γ (D) . This shows that, the induced structure p is a Kenmotsu
structure on M [9].

Let M is a contact CR-submanifold of a Kenmotsu manifold M , then equation
(2.11) reduces to

(2.15) (∇Up)V = bh (U, V ) + g (pU, V ) ξ − η (V ) pU,
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for any U, V ∈ Γ(D) [8].
If the second fundamental form h is zero, then submanifold M is totally geodesic.

A submanifold M is totally umbilical if

h (U, V ) = g (U, V ) H,

where H is the mean curvature vector. In addition, if H = 0, then the submanifold
M is minimal.

A tensor field φ is called killing [4], if it satisfies the following condition

(2.16)


∇Uφ


V +


∇V φ


U = 0.

3. Contact CR-Submanifold of a Kenmotsu Manifold M with Killing
Tensor Field

In this section, we discuss some results on contact CR-submanifold of a Kenmotsu
manifold with killing tensor field.

Theorem 3.1. Let M be a contact CR-submanifold of a Kenmotsu manifold M with

killing tensor field φ, then

(3.1) (∇UpV + ∇V pU) +


∇UfV + ∇V fU


= p(∇UV + ∇V U) + f(∇UV + ∇V U).

Proof. From the equation (2.10), we have

(∇Uφ)V = ∇UφV − φ∇UV.

By swapping U and V , above equation becomes


∇V φ


U = ∇V φU − φ∇V U.

On clubbing above equations, we get


∇Uφ


V +


∇V φ


U = ∇UφV − φ∇UV + ∇V φU − φ∇V U.

Using (2.16), we get

(3.2) 0 = ∇UφV − φ∇UV + ∇V φU − φ∇V U.

Using (2.7), above equation yields

(∇UpV + ∇V pU) + (∇UfV + ∇V fU) = p(∇UV + ∇V U) + f(∇UV + ∇V U). □

Theorem 3.2. Suppose M denotes a contact CR-submanifold with killing tensor field

φ of a Kenmotsu manifold M , then

(3.3) η (V ) pU + η (U) pV = 0

and

(3.4) η (V ) fU + η (U) fV = 0.
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Proof. From equation (2.3), we have


∇Uφ


V = g (φU, V ) ξ − η (V ) φU.

By swapping U and V , above equation becomes


∇V φ


U = −g (φU, V ) ξ − η (U) φV.

Clubbing above two equations, we get


∇Uφ


V +


∇V φ


U = −η (V ) φU − η (U) φV.

By using (2.16), we get

(3.5) − η (V ) φU − η (U) φV = 0.

By using (2.7) in above equation, then comparing the tangential and normal compo-
nents, we get the result. □

Theorem 3.3. Let M be a contact CR-submanifold of a Kenmotsu manifold M with

killing tensor field φ, then the induced structure p satisfies

(3.6) (∇Up)V + (∇V p)U = 0.

Proof. From (2.14), we have

(∇Up)V = −g (U, pV ) ξ − η (V ) pU.

By swapping U and V in above equation, we get

(∇V p)U = g (U, pV ) ξ − η (U) pV.

On clubbing above two equations, we have

(∇Up)V + (∇V p)U = −η (V ) pU − η (U) pV.

By using (3.3) in above equation, we get the result. □

Theorem 3.4. Let M be a contact CR-submanifold of a Kenmotsu manifold M

with killing tensor field φ. If second fundamental form h is parallel then contact

CR-submanifold M is a totally geodesic.

Proof. By swapping U and V in (2.15), we have

(3.7) (∇V p)U = bh (U, V ) − g (V, pU) ξ − η (U) pV.

Combining (2.15) and (3.7), we have

(∇Up)V + (∇V p)U = 2bh (U, V ) − η (V ) pU − η (U) pV.

Now, using (3.3) and (3.6), yields h (U, V ) = 0 for any U, V ∈ Γ(TM). □

Lemma 3.1. Let M be a contact CR-submanifold of a Kenmotsu manifold M with

killing tensor field φ, then

(3.8) AfV U + AfUV + 2bh (U, V ) = 0.
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Proof. By swapping U and V in (2.11), we have

(3.9) (∇V p)U = AfUV + bh (U, V ) + g (pV, U) ξ − η (U) pV.

On clubbing (2.11) and (3.9), we get

(∇Up)V + (∇V p)U =AfV U + AfUV + 2bh (U, V ) + g (pU, V ) ξ

+ g (pV, U) ξ − η (U) pV − η (V ) pU.

By using (2.9), it follows that

(∇Up)V + (∇V p)U = AfV U + AfUV + 2bh (U, V ) − η (U) pV − η (V ) pU.

Since p satisfies (3.3) and (3.6), we get the desired result. □

Proposition 3.1. Suppose M be a contact CR-submanifold of a Kenmotsu manifold

M with killing tensor field φ. Then M is anti-invariant submanifold in M if the

endomorphism p is parallel.

Proof. By interchanging U and V in (2.15), we get

(∇V p) U = bh (U, V ) + g (pV, U) ξ − η (U) pV,

for any U, V ∈ Γ(D).
Clubbing above equation with (2.15), we get

(∇Up) V + (∇V p) U = 2bh (U, V ) + g (pU, V ) ξ + g (pV, U) ξ − η (V ) pU − η (U) pV.

By using (2.9) and (3.6), above equation yields

2bh (U, V ) − η (V ) pU − η (U) pV = 0.

Setting V = ξ and taking into account (2.1) and (2.13), we get pU = 0, which
establishes our assertion. □

Proposition 3.2. Let M be a contact CR-submanifold of a Kenmotsu manifold M .

Then M is invariant (submanifold) in M if the endomorphism f is parallel.

Proof. By swapping U and V in (2.12), we get

(3.10) (∇V f) U = ch (U, V ) − h (V, pU) − η (U) fV,

for any U, V ∈ Γ(TM).
Clubbing (2.12) and (3.10), we get

(∇Uf) V + (∇V f) U = 2ch (U, V ) − h (U, pV ) − h (V, pU) − η (V ) fU − η (U) fV.

If f is parallel, then above equation becomes

2ch (U, V ) − h (U, pV ) − h (V, pU) − η (V ) fU − η (U) fV = 0.

Setting V = ξ and taking into account (2.1) and (2.13), it follows that fU = 0. □
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Lemma 3.2. Let M be a contact CR-submanifold of a Kenmotsu manifold M with

killing tensor field φ, then

(3.11) (∇Uf) V + (∇V f) U = 0

if and only if

(3.12) 2ch (U, V ) = h (U, pV ) + h (V, pU) .

Proof. Taking into consideration (2.12) and (3.10), we get

(∇Uf) V + (∇V f) U = 2ch (U, V ) − h (U, pV ) − h (V, pU) − η (V ) fU − η (U) fV.

By using (3.4), above equation yields

(∇Uf) V + (∇V f) U = 2ch (U, V ) − h (U, pV ) − h (V, pU) .

Hence, the result. □

4. Examples

In this section, we give a few examples of Kenmotsu manifolds with killing φ.

Example 4.1. Let us consider the three dimensional manifold M = ¶(x, y, z) ∈ R
3, z ̸=

0♢, where (x, y, z) are the standard coordinates in R
3. Suppose metric g on M is

given by

g = η ⊗ η + e2z(dx ⊗ dx + dy ⊗ dy).

Now, we choose

e1 = e−z ∂

∂x
, e2 = e−z ∂

∂y
, e3 =

∂

∂z
= ξ.

The above vector fields are linearly independent at the each point of M such that
g(ei, ej) = 0 for i ̸= j and g(ei, ej) = 1 for i = j, for 1 ≤ i, j ≤ 3. The 1-form η is
given by η(U) = g(U, e3) for chosen U on M . Let φ be a tensor field of type (1, 1),
defined by φ(e1) = 0, φ(e2) = 0, φ(e3) = 0. Now, using the linearity property of φ

and g, we get

φ2U = −U + η(U)ξ, η(e3) = 1, g(φU, φV ) = g(U, V ) − η(U)η(V ),

for chosen vector fields U and V on M .
A simple computation yields,

∇e1
e1 = − e3, ∇e1

e2 = 0, ∇e1
e3 = e1,

∇e2
e1 =0, ∇e2

e2 = −e3, ∇e2
e3 = e2,

∇e3
e1 =e1, ∇e3

e2 = e2, ∇e3
e3 = 0.

By using the above relations, it follows that the manifold satisfies the equation
∇Uξ = U − η (U) ξ for ξ = e3. Hence, the manifold is a Kenmotsu manifold. From
the above relations, we obtain the following equations
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(4.1)







































(∇e1
φ)e1 + (∇e1

φ)e1 = 0, (∇e1
φ)e2 + (∇e2

φ)e1 = 0,

(∇e1
φ)e3 + (∇e3

φ)e1 = 0, (∇e2
φ)e1 + (∇e1

φ)e2 = 0,

(∇e2
φ)e2 + (∇e2

φ)e2 = 0, (∇e2
φ)e3 + (∇e3

φ)e2 = 0,

(∇e3
φ)e1 + (∇e1

φ)e3 = 0, (∇e3
φ)e2 + (∇e2

φ)e3 = 0,

(∇e3
φ)e3 + (∇e3

φ)e3 = 0.

From the equations (4.1), it follows that φ is the killing tensor field. Hence, the
manifold M is a Kenmotsu manifold with the killing tensor field φ. Moreover, we
have

(4.2)



















































































∇e1
φe1 − φ∇e1

e1 + ∇e1
φe1 − φ∇e1

e1 = 0,

∇e1
φe2 − φ∇e1

e2 + ∇e2
φe1 − φ∇e2

e1 = 0,

∇e1
φe3 − φ∇e1

e3 + ∇e3
φe1 − φ∇e3

e1 = 0,

∇e2
φe1 − φ∇e2

e1 + ∇e1
φe2 − φ∇e1

e2 = 0,

∇e2
φe2 − φ∇e2

e2 + ∇e2
φe2 − φ∇e2

e2 = 0,

∇e2
φe3 − φ∇e2

e3 + ∇e3
φe2 − φ∇e3

e2 = 0,

∇e3
φe1 − φ∇e3

e1 + ∇e1
φe3 − φ∇e1

e3 = 0,

∇e3
φe2 − φ∇e3

e2 + ∇e2
φe3 − φ∇e2

e3 = 0,

∇e3
φe3 − φ∇e3

e3 + ∇e3
φe3 − φ∇e3

e3 = 0,

and

(4.3)







































η(e1)φ(e1) + η(e1)φ(e1) = 0, η(e2)φ(e1) + η(e1)φ(e2) = 0,

η(e3)φ(e1) + η(e1)φ(e3) = 0, η(e1)φ(e2) + η(e2)φ(e1) = 0,

η(e2)φ(e2) + η(e2)φ(e2) = 0, η(e3)φ(e2) + η(e2)φ(e3) = 0,

η(e1)φ(e3) + η(e3)φ(e1) = 0, η(e2)φ(e3) + η(e3)φ(e2) = 0,

η(e3)φ(e3) + η(e3)φ(e3) = 0.

The equations (4.1) and (4.2) satisfy the equation (3.2) and the equations (4.1) and
(4.3) satisfy the equation (3.5).

Analogous to [14], we have the following example of five-dimensional Kenmotsu
manifold with the killing tensor field.

Example 4.2. Let us consider the five dimensional manifold M = ¶(x1, x2, x3, x4, v) ∈
R

5, v ̸= 0♢, where (x1, x2, x3, x4, v) are the standard coordinates in R
5. Suppose metric

g on M is given by

g = η ⊗ η + e2v
4

∑

i=1

dxi ⊗ dxi.

Now, we choose

e1 = e−v ∂

∂x1

, e2 = e−v ∂

∂x2

, e3 = e−v ∂

∂x3

, e4 = e−v ∂

∂x4

, e5 =
∂

∂v
= ξ.



ON CONTACT CR-SUBMANIFOLD OF A KENMOTSU MANIFOLD 103

The above vector fields are linearly independent at the each point of M such that
g(ei, ej) = 0 for i ̸= j and g(ei, ej) = 1 for i = j, where i, j = 1, 2, 3, 4, 5. The 1-form
η is given by η(U) = g(U, e5) for chosen U on M . Let φ be a tensor field of type (1, 1),
defined by φ(e1) = 0, φ(e2) = 0, φ(e3) = 0, φ(e4) = 0, φ(e5) = 0.

Now, using the linearity property of φ and g, we have

φ2U = −U + η(U)ξ, η(e5) = 1, g(φU, φV ) = g(U, V ) − η(U)η(V ),

for chosen vector fields U and V on M .
A simple computation yields

∇e1
e1 = − e5, ∇e1

e2 = 0, ∇e1
e3 = 0, ∇e1

e4 = 0, ∇e1
e5 = e1,

∇e2
e1 =0, ∇e2

e2 = −e5, ∇e2
e3 = 0, ∇e2

e4 = 0, ∇e2
e5 = e2,

∇e3
e1 =0, ∇e3

e2 = 0, ∇e3
e3 = −e5, ∇e3

e4 = 0, ∇e3
e5 = e3,

∇e4
e1 =0, ∇e4

e2 = 0, ∇e4
e3 = 0, ∇e4

e4 = −e5, ∇e4
e5 = e4,

∇e5
e1 =e1, ∇e5

e2 = e2, ∇e5
e3 = e3, ∇e5

e4 = e4, ∇e5
e5 = 0.

By using the above relations, it follows that the manifold satisfies the equation
∇Uξ = U − η (U) ξ for ξ = e5. Moreover, on the similar pattern of Example 4.1,
it follows that φ is a killing tensor field. Hence M is a five-dimensional Kenmotsu
manifold with the killing tensor field. Also, analogous to Example 4.1, it can be seen
that the equations (3.2) and (3.5) are satisfied.

Acknowledgments. We express our profound gratitude towards the anonymous
referees for their valuable inputs to improve the quality of the paper.
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SOME MATHEMATICAL PROPERTIES FOR MARGINAL MODEL

OF POISSON-GAMMA DISTRIBUTION

MAGED G. BIN-SAAD1, JIHAD A. YOUNIS1, AND ANVAR HASANOV2

Abstract. Recently, Casadei [4] provided an explicit formula for statistical mar-
ginal model in terms of Poisson-Gamma mixture. This model involving certain
polynomials which play the key role in reference analysis of the signal and back-
ground model in counting experiments. The principal object of this paper is to
present a natural further step toward the mathematical properties concerning this
polynomials. We Ąrst obtain explicit representations for these polynomials in form
of the Laguerre polynomials and the conĆuent hyper-geometric function and then
based on these representations we derive a number of useful properties including
generating functions, recurrence relations, differential equation, Rodrigueś formula,
Ąnite sums and integral transforms.

1. Introduction

In statistics, marginal models [7] are a technique for obtaining regression estimates
in multilevel modeling, also called hierarchical linear models. People often want
to know the effect of a predictor/explanatory variable X, on a response variable Y.
One way to get an estimate for such effects is through regression analysis. Marginal
model is generally compared to conditional model (random-effects model). Casadei [4],
(see also [5]) investigated the model representing two independent Poisson processes,
labeled as signal and background and both contributing additively to the total number
of counted events, is considered from a Bayesian point of view (see [2] and [3]). This
is a widely used model for the searches of rare or exotic events in presence of a
background source, as for example in the searches performed by high energy physics
experiments. The starting point in [4] is the marginal model p(k♣s), specifying the

Key words and phrases. Poisson-Gamma distribution, marginal models, Laguerre polynomials,
hyper-geometric functions.
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probability of counting k ≥ 0 events in the hypothesis that the signal yield is s ≥ 0
with the assumed knowledge about the background contribution:

(1.1) p(k♣s) =
∫

∞

0
Poi(k♣s + b)Ga(b♣α, β)db,

where Ga(b♣α, β) is a Gamma density of the form

(1.2) p(b) = Ga(b♣α, β) =
βα

Γ(α)
bα−1e−αβ, α > 0, β ̸= −1,

and Poi(k♣s + b) is Poisson probability given by the formula (see [4])

(1.3) Poi(k♣s + b) = e−s−b
k
∑

n=0

sk−nbn

n!(k − n)!
.

Now, in view of (1.2) and (1.3) we Ąnd from (1.1) that

p(k♣s) =
k
∑

n=0

sk−nβαe−s

n!(k − n)!Γ(α)

∫

∞

0
e−(1+β)bbα+n−1db,

which on using the EulerŠs integral [6]
∫

∞

0
e−attν−1dt = a−νΓ(ν), ν > 0,

yields the marginal model (see [4])

(1.4) p(k♣x) =



β

1 + β

α

e−xfn(x; α, β),

where

(1.5) fn(x; α, β) =
n
∑

k=0



α + k − 1

k



xn−k

(n − k)!(1 + β)k
.

The model Poi(k♣s + b) is used to compute the FisherŠs information (see [4, page 5,
(1.4)])

(1.6) I(s) = E







∂

∂s
log p(k♣s)

2


 = −E



∂2

∂s2
logp(k♣s)

]

,

and the reference prior [16]

π(s) ∝ ♣I(s)♣1/2.

Starting from equation (1.6) and after certain mathematical computations, Casadei
[4] derived the following expression for the FisherŠs information:

(1.7) I(s) =



β

1 + β

α

e−s
∞
∑

n=0

[fn(s; α, β)]2

fn+1(s; α, β)
− 1.

From equation (1.7) one obtains

(1.8) ♣I(s)♣1/2 =

∣

∣

∣

∣

∣



β

1 + β

α

e−s
∞
∑

n=0

[fn(s; α, β)]2

fn+1(s; α, β)
− 1

∣

∣

∣

∣

∣

1/2

.
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The function ♣I(s)♣1/2 has its single maximum at zero, hence a possible deĄnition of
the reference prior π(s) for the signal is (see [4, page 9, (4.3)])

(1.9) π(s) =
♣I(s)♣1/2

♣I(0)♣1/2
.

Because π(s) does not explicitly depend on b (see (1.1)), the marginal posterior is
proportional to the product of the reference prior (1.9) and the marginal likelihood
(1.4)

(1.10) p(k♣x) ∝



β

1 + β

α

e−xfn(x; α, β)π(s).

Casadei [4] derived a number of interesting properties for the polynomials fn(x; α, β)
which were useful in his investigation and following the prescription by [16], the
reference prior for the signal parameter s is computed from the conditional model (1.1).
Clearly, from (1.6), the polynomials fn(x; α, β) play the key role in implementing all
results in the work of Casadei [4]. For the evaluation of fn(x; α, β) the author suggested
some methods based on the logarithms, because this avoids rounding problems related
to expressions featuring very big and very small values. Motivated by the important
role of the marginal model p(k♣s) in several diverse Ąelds of physics, analysis and
statistical methods and the contributions in [4, 5] toward the the marginal model-
polynomials fn(x; α, β), this work aims at introducing several representations and
properties for the polynomials fn(x; α, β) in terms of known hyper-geometric functions
and polynomials, for example, conĆuent hypergeometric function 1F1 and Laguerre
polynomials, which will be useful for the evaluation of the marginal model p(k♣s).

2. Explicit and Integral Representations

Based on the formulas


α

n



=
Γ(α + 1)

n!Γ(α − n + 1)

and
Γ(α + n)

Γ(α)
= (α)n,

where (α)n = α(α + 1) · · · (α + n − 1) denotes the Pochhammer symbol, the assertion
(1.5) can be written in the form

(2.1) fn(x; α, β) =
n
∑

k=0

(α)kxn−k

k!(n − k)!(1 + β)k
.

By exploiting the result [1]

(2.2) (−n)k =











(−1)kn!

(n − k)!
, 0 ≤ k ≤ n,

0, k > n,
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and the deĄnition of the hyper-geometric function 2F0 (see [1])

2F0[a, b; −; x] =
∞
∑

n=0

(a)n(b)nxn

n!
,

we Ąnd from (2.1) that

fn(x; α, β) =
xn

n!
2F0



−n, α; −;
−1

x(1 + β)

]

.

Now, with help of the representations of the hyper-geometric function 2F0 (see [12,
page 614])

2F0[−n, a; −; z] = (a)n(−z)n
1F1[−n; 1 − a − n; −z−1] = n!znL−a−n

n (−z−1),

we can easily establish the explicit representations

(2.3) fn(x; α, β) =
(α)n

n!(1 + β)n 1F1[−n; 1 − α − n; x(1 + β)],

or equivalently

(2.4) fn(x; α, β) =



−1

(1 + β)

n

L(−a−n)
n (x(1 + β)),

where 1F1 is the conĆuent hyper-geometric function [6]

(2.5) 1F1[a; c; z] =
∞
∑

n=0

(a)nzn

(c)nn!
,

and L(α)
n is the associated Laguerre polynomials (see [1] or [13])

L(α)
n (x) =

n
∑

k=0

(−1)kΓ(α + n + 1)xk

k!(n − k)!Γ(α + k + 1)
.

Since the polynomials fn(x; α, β) can be expressed in terms of representation involving
the conĆuent hypergeometric function 1F1 and the Laguerre polynomials L(α)

n , the
properties of these function and polynomials assume noticeable importance. Indeed,
each of these properties will naturally lead to various other needed properties for the
polynomials fn(x; α, β). In this work formula (2.3) will play the key role in obtaining
a number of main results for the polynomials fn(x; α, β). Next, according to the
relation between Laguerre polynomials L(α)

n and Jacobi polynomials P (α,β)
n (x) [1, page

294, (35)]

L(α)
n = lim

λ→∞

P (α,λ)
n

(

1 −
2x

λ

)

and the assertion (2.4), we can obtain the explicit relation

fn(x; α, β) =



−1

(1 + β)

n

lim
λ→∞

P (−α−n,λ)
n



1 −
2x(1 + β)

λ



.
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Further, the Laguerre polynomials have the following asymptotic representation which
describe their behavior for large value of the degree n [8, page 87, (4.22.18)]; see also
[9]:

(2.6) L(α)
n (x) ≈

Γ(α + n + 1)

n!
e

x
2 (Nx)

−α
2 Jα

(

2
√

(Nx)
)

, n → ∞, N = n +
α + 1

2
.

In view of the explicit representation (2.4) it follows from (2.6) that

fn(x; α, β) ≈



−1

(1 + β)

n
Γ(1 − α)

n!
e

x(1+β)
2 (Nx(1 + β))

α+n
2 J−α−n

(

2
√

(Nx(1 + β))
)

,

n → ∞, N = n−α+1
2

. From (2.3), we can easily seen that

(2.7) fn(0; α, β) =
(α)n

n!(1 + β)n

and

(2.8) fn+1(x; α, β) =
(α)n+1

(n + 1)!(1 + β)n+1
.

Formulas (2.7) and (2.8) are useful in computing the reference prior π(s) in (1.9). It is
often convenient to identify the various special functions and polynomials with contour
integrals along certain paths in the complex plane. These integrals provide recursion
formulas, asymptotic forms, and analytic continuations of the special functions. Also,
they are sometimes used as deĄnitions of special functions and polynomials . Now,
we consider some integral representations for the polynomials fn(x; α, β). To obtain
integral representations, we Ąrst recall the results (see [1, page 300, (9.13) and (9.17)],
[6, (6.11.1)(3)])

1F1[a; c; x] =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
extta−1(1 − t)c−a−1dt,(2.9)

1F1[a; c; x] =
Γ(c)

Γ(a)Γ(c − a)
exx( 1−c

2 )
∫ 1

0
e−tt

1
2

(c−1)−aJc−1(2
√

(xt))dt(2.10)

and

(2.11) 1F1[a; c; x] =
Γ(γ)Γ(1 − a)

2πiΓ(c − a)

∮

γ
exs

(

s

s − 1

)a

(1 − s)c−1 ds

s
,

where c is a positive integer and the contour γ starts and ends at the point s = 1 on
the s − axis and encircles the origin in a positive sense and that Re(c) > Re(a). Also,
a fourth representation can be obtained from equation (6.11.1) (7) of [6], for Re(c) > 0,
γ > 1 and a ̸= 1, 2, 3, . . . , c − 1. This is achieved with b = c = n + 1, n = 0, 1, . . . , in
(6.11.2) (6) of [6], where the integrand is a one-valued function of the parameter s and
the path of integration may be replaced by a contour, for instance a circle ♣s♣ = ρ > 1.
This representation is given by (see [6])

(2.12) 1F1[a; c; x] =
Γ(c)

2πixc−1

∮

γ
exs

(

s

s − 1

)a ds

sc
.
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Directly from the results (2.9), (2.10), (2.11) and (2.12) and based on the deĄnition
(2.3), we can establish the following integral representations:

fn(x; α, β) =
(−1)n

n!(1 + β)nΓ(−n)

∫ 1

0
ex(β+1)tt−(n+1)(1 − t)−αdt,

fn(x; α, β) =
(−1)nex(1+β)[x(1 + β)]

α+n
2

n!(1 + β)nΓ(−n)

∫ 1

0
e−tt

n−α
2 J−(α+n)(2

√

(x(1 + β)t))dt,

fn(x; α, β) =
(α)nΓ(γ)Γ(1 + n)

2πi n!(1 + β)nΓ(1 − α)

∮

γ
ex(1+β)s(s − 1)−α ds

sn+1

and

fn(x; α, β) =
(α)nΓ(1 − α − n)

2πi n!(1 + β)−αx−α−n

∮

γ
ex(1+β)s(s − 1)n ds

s1−α
,

respectively. By using the previous explicit and integral representations the computing
of the conditional model will be more easily. In this regard by virtue of the results
(2.7) and (2.8), in conjunction with (1.7), we Ąnd that

I(0) =
(1 + β)Γ(α)

Γ(α + 1)



β

1 + β

α ∞
∑

n=0

(α)n(α)n(2)n

n!(α + 1)n(1)n



1

1 + β

n

− 1(2.13)

=
(1 + β)Γ(α)

Γ(α + 1)



β

1 + β

α

3F2



α, α, 2; α + 1, 1;
1

(1 + β)

]

− 1,

where 3F2 is special case of the generalized hypergeometric series pFq (see [1]). Hence,
from the assertions (2.13) and (2.3), we Ąnd the following elegant explicit representa-
tion for the marginal posterior deĄned by (1.10):

p(k♣x) ∝



β

1 + β

α
(α)ne−x

n!(1 + β)n 1F1[−n; 1 − α − n; x(1 + β)]

×

∣

∣

∣



β
1+β

)α
e−x∑∞

n=0
(n+1)(α)n(1F1[−n;1−α−n;x(1+β)])2

n!(α+n)1(β+1)n−1
1F1[−n−1;−α−n;x(1+β)]

− 1
∣

∣

∣

1/2

∣

∣

∣

βα

α(1+β)α−1 3F2[α, α, 2; α + 1, 1; 1/(1 + β)] − 1
∣

∣

∣

1/2
.

3. Generating Functions

A generating function is a way of encoding an inĄnite sequence of numbers (an) by
treating them as the coefficients of a power series. The sum of this inĄnite series is the
generating function. Generating functions are often expressed in closed form (rather
than as a series), by some expression involving operations deĄned for formal series.
These expressions in terms of the indeterminate x may involve arithmetic operations,
differentiation with respect to x and composition with (i.e., substitution into) other
generating functions; since these operations are also deĄned for functions, the result
looks like a function of x. Indeed, the closed form expression can often be interpreted
as a function that can be evaluated at (sufficiently small) concrete values of x, and
which has the formal series as its series expansion. Also, the generating functions offer
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a direct way to investigate the properties of the polynomials they deĄne. Directly
from (2.1) of the prececding section we obtain

∞
∑

n=0

fn(x; α, β)tn =
∞
∑

n=0

n
∑

k=0

(α)kxn−ktn

k!(n − k)!(1 + β)k
.

On replacing n by n + k, we obtain

∞
∑

n=0

fn(x; α, β)tn =
∞
∑

n=0

(xt)n

n!

n
∑

k=0

(α)ktk

k!(1 + β)k
.

Hence the polynomials fn(x; α, β) have the following generating relation:

(3.1) ext



1 −
t

1 + β



−α

=
∞
∑

n=0

fn(x; α, β)tn.

A set of other generating functions for these polynomials is easily obtained. Let λ be
arbitrary and proceed as follows:

∞
∑

n=0

(λ)nfn(x; α, β)tn =
∞
∑

n=0

n
∑

k=0

(α)k(λ)nxn−ktn

k!(n − k)!(1 + β)k

=
∞
∑

n=0

∞
∑

k=0

(α)k(λ)n+kxntn+k

k!n!(1 + β)k

=
∞
∑

k=0

(α)k(λ)ktk

k!(1 + β)k

∞
∑

n=0

(λ + k)n(xt)n

n!
.

We thus arrive at the generating function

∞
∑

n=0

(λ)nfn(x; α, β)tn = (1 − xt)−λ
2F0



α, λ; −;
t

(1 + β)(1 − xt)

]

.

The following two formulas are well-known consequences of the derivative operator
D̂x = ∂

∂x
and the integral operator D̂−1

x (see [10]):

D̂n
xxλ =

Γ(λ + 1)

Γ(λ − n + 1)
xλ−n, D̂−n

x xλ =
Γ(λ + 1)

Γ(λ + n + 1)
xλ+n,

m ∈ N ∪ ¶0♢, λ ∈ C − ¶−1, −2, . . . ♢. Since

D̂k
xxn =

n!xn−k

(n − k)!
,

formula (2.1) yields the operational relation

(3.2) fn(x; α, β) =
1

n!

∞
∑

k=0

(α)kD̂k
xxn

k!(1 + β)k
=

1

n!



1 −
D̂x

1 + β

−α

xn.
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On multiplying both sides of (3.2) by tn and taking the sum, we then get the generating
relation

∞
∑

n=0

fn(x; α, β)tn =



1 −
D̂x

1 + β

−α

ext.

On the other hand, since
D̂k

xxα+k−1 = (α)kxα−1,

we get from (2.1) the operational relation

fn(x; α, β) =
xn−α+1

n!



1 −
D̂xx

x(1 + β)

n

xα−1.

Now, we can easily derive the following generating relation:
∞
∑

n=0

fn(x; α, β)tn = x1−αexp



x



1 −
tD̂xx

x(1 + β)

]

xα−1.

From (2.1), we can easily derive the m − th partial derivative of fn(x; α, β) with
respect to x as follows:

(3.3) D̂m
x fn(x; α, β) = fm

n (x; α, β) =
n−m
∑

k=0

(α)kxn−k−m

k!(n − k − m)!(1 + β)k
= fn−m(x; α, β).

Hence, from assertions (3.1) and (3.3), we get the result

(3.4) ext



1 −
t

1 + β



−α

=
∞
∑

n=0

fn−m(x; α, β)tn−m.

Remark 3.1. If in the generating functions (3.1) and (3.4), we let t = 1, we Ąnd that
∞
∑

n=0

fn(x; α, β) =
∞
∑

n=0

fn−m(x; α, β) = ex



1 + β

β

α

,

which are the properties 1 and 3 of the polynomials in (2.1) derived by Casadei (see
[4, pages 6Ű7]).

Remark 3.2. From (3.3), we have

(3.5) fm
n (x; α, β) =

n−m
∑

k=0

(−1)k+m(−n)k+m(α)kxn−k−m

n!k!(1 + β)k
.

We know that [13]

(3.6) (−n)k+m =











0, if k > n or m > n,
(−1)k+mn!

(n − k − m)!
, if 0 ≤ k + m ≤ n.

Hence, equation (3.5), in conjunction with (3.6), gives

fn(x; α, β) =











0, if m > n,
fm

n (x; α, β) = fn−m(x; α, β), if 0 ≤ m ≤ n,
1, if n = m,
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which is the tired property for the polynomials in (2.1) proved by Casadei [4, page
6, (2.7)]. Note that the proofs of the properties 1, 2 and 3 above are very short in
compare with their proofs in [4]. In fact these three properties have their origin in
the properties of Laguerre polynomials and the conĆuent hyper-geometric series 1F1

(see [13, pages 200Ű213]).

4. Recurrence Relations and Differential Equation

First, in view of deĄnition (2.1), we Ąnd that

(4.1) D̂xfm
n (x; α, β) = fn−1(x; α, β)

and

D̂−1
x fm

n (x; α, β) = fn+1(x; α, β).

Secondly, differentiating both the sides of (3.1) with respect to t, we get

xext



1 −
t

1 + β



−α

+



α

1 + β − t



ext



1 −
t

1 + β



−α

=
∞
∑

n=1

fn(x; α, β) ntn−1,

or

x(1 + β)
∞
∑

n=0

fn(x; α, β) tn − x
∞
∑

n=0

fn(x; α, β) tn+1 + α
∞
∑

n=0

fn(x; α, β) tn

=(1 + β)
∞
∑

n=1

fn(x; α, β) ntn−1 −
∞
∑

n=1

fn(x; α, β) ntn+1,

or

x(1 + β)
∞
∑

n=0

fn(x; α, β) tn − x
∞
∑

n=0

fn−1(x; α, β) tn + α
∞
∑

n=0

fn(x; α, β) tn

=(1 + β)
∞
∑

n=0

fn+1(x; α, β) (n + 1)tn−1 −
∞
∑

n=0

fn−1(x; α, β) (n − 1)tn.

Equating the coefficients of tn from both sides, we Ąnd

(4.2) [x(1+β)+α]fn(x; α, β)−(x−n+1)fn−1(x; α, β)−(1+β)(n+1)fn+1(x; α, β) = 0.

From [13, Section 48, (15), (18) and (20)], using p = q = 1, α1 = −n, β1 = 1 − α − n,
x 7→ x(1 + β), we obtain

α1F1[−n; 1 − α − n; x(1 + β)] = − n1F1[−n + 1; 1 − α − n; x(1 + β)](4.3)

+ (α + 1)1F1[−n; 1 − α − n; x(1 + β)],

[x(1 + β) − n]1F1[−n; 1 − α − n; x(1 + β)]

(4.4)

= − n1F1[−n; 1 − α − n; x(1 + β)] −
x(1 + β)(α − 1)

(1 − α − n)
1F1[−n; 2 − α − n; x(1 + β)],
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1F1[−n; 1 − α − n; x(1 + β)] =1F1[−n − 1; 1 − α − n; x(1 + β)](4.5)

+
x

(1 − α − n)
1F1[−n; 2 − α − n; x(1 + β)].

Since (see (2.3))

1F1[−n; 1 − α − n; x(1 + β)] =
n!(1 + β)n

(α)n

fn(x; α, β),

equations (4.3), (4.4) and (4.5) may be converted into the mixed recurrence formulas

fn(x; α, β) =
(

1 +
n

α

)

fn(x; α + 1, β) −
n

α
fn(x; α, β),

fn(x; α, β) =
n

(n − x(1 + β))
fn−1(x; α, β) +

x(1 + β)(α − 1)

(n − x(1 + β))(1 − α − n)
fn(x; α − 1, β),

fn(x; α, β) =fn+1(x; α, β) +
x

(1 − α − n)
fn(x; α − 1, β).

Next, we derive the differential equation of the polynomials fn(x; α, β). Our starting
point is the recurrence formula (4.2). We have from (4.2)

x(1 + β)fn(x; α, β) + αfn(x; α, β) − xfn−1(x; α, β) + (n − 1)fn−1(x; α, β)(4.6)

− (1 + β)(n + 1)fn+1(x; α, β) = 0.

Using (4.1), equation (4.6) yields

x(1 + β)fn(x; α, β) + αfn(x; α, β) − x
∂

∂x
fn(x; α, β) + (n − 1)

∂

∂x
fn(x; α, β)(4.7)

− (1 + β)(n + 1)fn+1(x; α, β) = 0.

Next, on differentiating equation (4.7) with respect to x and simplify we obtain the
following second order differential equation for the polynomials fn(x; α, β):

(n − x − 1)
∂2

∂x2
fn(x; α, β) + (x(1 + β) + α − 1)

∂

∂x
fn(x; α, β) − n(1 + β)fn(x; α, β) = 0.

5. Rodrigueś-Type Formula

From (2.4), we have

(5.1) fn(x; α, β) =



−1

1 + β

n n
∑

k=0

(1 − α − n)n[−x(1 + β)]k

k!(n − k)!(1 − α − n)k

.

Since

D̂n−k
x x−α =

(1 − α − n)n

(1 − α − n)k

x(−α−n+k),



SOME MATHEMATICAL PROPERTIES FOR MARGINAL MODEL OF POISSON-GAMMA 115

equation (5.1) can be written in the form

fn(x; α, β) =



−1

1 + β

n
xα+n

n!

n
∑

k=0

(−1)k(1 + β)k

k!(n − k)!
D̂n−k

x x−α

=



−1

1 + β

n
xα+n

n!

n
∑

k=0



n

k



(−1)k(1 + β)kD̂n−k
x x−α.

Again, since

D̂k
xe−(1+β)x = (−1)k(1 + β)ke−(1+β)x,

we may conclude that

(5.2) fn(x; α, β) =



−1

1 + β

n
xα+n

n!
e(1+β)x

n
∑

k=0



n

k



[D̂n−k
x x−α][D̂k

xe−(1+β)x].

Therefore, by Leibnitz theorem, equation (5.2) can be written in the following inter-
esting Rodrigueś-type formula:

fn(x; α, β) =



−1

1 + β

n
xα+n

n!
e(1+β)xD̂n

x [x−αe−(1+β)x].

6. Finite Sums and Integral Transforms

Using the result
∞
∑

n=0

n
∑

k=0

A(n, k) =
∞
∑

n=0

∞
∑

k=0

A(n + k, k),

we can write

∞
∑

n=0

n
∑

s=0

(α − λ)n−s

(n − s)!
(1 + β)n−sfs(x; λ, β)tn =

∞
∑

n=0

n
∑

s=0

(α − λ)n

n!
(1 + β)nfs(x; λ, β)tn+s

=



1 −
t

1 + β

λ−α ∞
∑

s=0

fs(x; λ, β)ts.

Now, employing the generating relation (3.1) and comparing the coefficients of tn in
the resulting expression, we get the following Ąnite sum:

n
∑

s=0

(α − λ)n−s

(n − s)!
(1 + β)n−sfs(x; λ, β) = fn(x; α, β).

Similarly, one can derive the following result:

n
∑

s=0

(α + s)n−s(1 + y)n

(n − s)!
(1 + β)n−sfs(x; α, β)



y

1 − y

s

= fn



xy(1 + β)

β − y
; α, β



.
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Since

∞
∑

p=0

fp(x + y; α + γ, β)tn = e(x+y)t



1 −
t

1 + β



−α−γ

= ext



1 −
t

1 + β



−α

eyt



1 −
t

1 + β



−γ

=
∞
∑

p=0

fp(y; γ, β)
∞
∑

n=0

fn(x; α, β)tp+n.

Now, on letting p 7→ p − n and comparing the coefficients of tp, we get the desired
result

fp(x + y; α + γ, β) =
p
∑

n=0

fn(x; α, β)fp−n(y; γ, β)tp+n.

Similarly, from the equation

∞
∑

p=0

fp(x; α, β)tn = ext



1 −
t

1 + β



−γ 

1 −
t

1 + β

γ−α

,

we can show that

fp(x; α, β) =
n
∑

p=0

(α − γ)n−pfp(x; λ, β)

(p − n)!(1 + β)p−n
.

Next, we turn to some integral transforms for the polynomials fp(x; α, β). In view of
the deĄnition (3.1), we obtain

∫

∞

0
e−ttλ−1fn(xt; α, β)dt =

n
∑

k=0

(α)kxn−k

k!(n − k)!(1 + β)k

∫

∞

0
e−ttλ+n−k−1dt.

Now, on using the formulas (1.5) and (2.2) and the result (a)n−k = (−1)k(a)n

(1−a−n)k
, and

considering the deĄnition of the Gaussian hyper-geometric function 2F1 (see [15])

(6.1) 2F1[a, b; c; z] =
∞
∑

n=0

(a)n(b)n

(c)nn!
zn,

we get the integral transform

∫

∞

0
e−ttλ−1fn(xt; α, β)dt =

Γ(λ + n)

n!
2F1



−n, α; 1 − λ − n;
1

x(1 + β)

]

.

In view of (2.1), we get

∫ t

0
(t − z)λ−1zα−λ+n−1fn(x/z; α, β)dt =

n
∑

k=0

(α)kxn−k

k!(n − k)!(1 + β)k

×
∫ t

0
(t − z)λ−1zα−λ+n+k−1dt.
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Putting (t − z) = t(1 − p), we get
∫ t

0
(t − z)λ−1zα−λ+n−1fn(x/z; α, β)dt

=
n
∑

k=0

(α)kxn−k

k!(n − k)!(1 + β)k
tα+λ+k

∫ 1

0
pα−λ+k−1(1 − p)λ−1dp.

Now, projection integral transform would occur if we use the deĄnition of Beta function

Γ(a)Γ(b)

Γ(a + b)
=
∫ 1

0
ta−1(1 − t)b−1dt,

and considering (2.5) and this asserts
∫ t

0
(t − z)λ−1zα−λ+n−1fn(x/z; α, β)dt = fn(x/t; α − λ, β).

7. Conclusions

In the previous sections we etablished a number of properties and representations
for the polynomials fn(x; α, β), which are useful tools for computing the marginal
model p(k♣x), the FisherŠs information I(x) and the reference prior π(x). In this
regard, if we make use of the series representation (2.5), the assertion (1.6) gives us

p(k♣x) =



β

1 + β

α

e−x (α)n

n!(1 + β)n 1F1[−n; 1 − α − n; x(1 + β)](7.1)

=
βα(α)n

n!(1 + β)α+n

∞
∑

k=0

n
∑

s=0

(−1)k(−n)s(1 + β)sxs+k

k!s!(1 − α − n)s

.

On letting s 7→ s − k in (7.1) and using the following relations [13]:

(a)m−n =
(−1)n(a)m

(1 − a − m)n

and (−n)k =
(−1)kn!

(n − k)!
,

we obtain

p(k♣x) =
βα(α)n

n!(1 + β)α+n

∞
∑

s=0

(−n)s[x(1 + β)]s

s!(1 − α − n)s

∞
∑

k=0

(−s)k(α + n − s)k

k!(1 + n − s)k



1

1 + β

k

.

According to the deĄnition of Gaussian hyper-geometric series in (6.1), we get

p(k♣x) =
βα(α)n

n!(1 + β)α+n

∞
∑

s=0

(−n)s[x(1 + β)]s

s!(1 − α − n)s
2F1



−s, α + n − s; 1 + n − s;
1

(1 + β)

]

.

On other hand, by letting k 7→ k − s in (7.1) and proceeding in the manner described
above, it is not difficult to obtain from the series expansion

p(k♣x) =
βα(α)n

n!(1 + β)α+n

∞
∑

k=0

xk

k!
2F1 [−n, −k; 1 − α − n; 1 + β] .

We conclude this investigation by remarking that the schema suggested in the deriva-
tion of the results in this work can be applied to Ąnd other needed properties for the
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polynomials deĄned in (2.1). Therefore, the properties of the polynomials fn(x; α, β)
assume noticeable importance.
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CHARACTERIZATION OF GRAPHS OF CONNECTED DETOUR

NUMBER 2

GASHAW A. MOHAMMEDSALEH1

Abstract. Let G = (V, E) be a connected graph of order P (G) ≥ 2. The con-
nected detour number of G, denoted cdn(G), is introduced and studied by A. P.
Santhakumaran and S. Athisayanathan [7]. In this paper, we characterize connected
graph G of cdn(G) = 2 and of detour diameter D(G) = 5, 6.

1. Introduction

Let G = (V, E) be a connected simple graph of p vertices and q edges. We assume
that p ≥ 2 and it is finite. For u, v ∈ V (G), the length of a maximum u − v path is
called detour distance between u and v, and denoted by D(u, v). A u − v path of
length D(u, v) is called u-v detour . For a vertex v ∈ V , the detour eccentricity

eD(v) is defined by:

eD (v) = max ¶D (u, v) : u ∈ V ♢ ,

diamD (G) = max ¶eD (v) : v ∈ V (G)♢ .

A vertex w ∈ V (G) is said to lie on a u − v detour Q, if w is a vertex of V (Q)
including u and v. A detour set (denoted d.s.) of G is a subset S of V (G) such that
every vertex v of G lies on x − y detour for some x, y ∈ S. The detour number of
G, denoted dn(G), is defined by:

dn (G) = min ¶♣S♣ : S is a detour set of G♢.

A detour basis of G is a detour set of order dn(G). If S is a detour set of G and
the induced subgraph G[S] is connected, then S is called connected detour set
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(denoted c.d.s.) of G. The connected detour number of G, denoted cdn(G), is
defined as:

cdn (G) = min ¶♣S♣ : S is a connected detour set of G♢ .

A connected detour basis of G is a connected detour set of G of order cdn(G). For the
definitions of the concepts not given here, we refer to [1,3–7]. There are many research
on connected detour number and edge detour graphs (see [8–10]). Ahmed and Ali
[2], determined detour number for three special classes of graphs G, namely, unicyclic
graphs, bicyclic graphs, and cog-graphs for Cp, Kp and Km,n. In [7], the authors
A. P. Santhakumaran and S. Athisayanathan characterized connected graphs G of
cdn (G) = 2 and D (G) ≤4. In this paper, we characterize graphs G of D (G) = 5 and 6
for which cdn (G) = 2.

2. Characterizations of Graphs G with D(G) = 5 and cdn(G) = 2

We start with the following proposition for graphs G having cdn(G) = 2.

Proposition 2.1. Let G be a connected graph of order P (G) ≥ 3. If cdn (G) = 2,

then G contains neither end-vertices nor cut-vertices.

Proof. (1) If v is an end-vertex of G and u is the vertex adjacent to v, then v is a
cut-vertex, and G − ¶u, v♢ contains at least one vertex, say w. Since u and v are in
every c.d.s. of G; and uv is the only u − v detour, then ¶u, v♢ is not a c.d.s. of G
[7]. Thus, cdn(G) ≥ 3, contradicting the hypothesis. Therefore, G does not contain
end-vertices.

(2) Now, assume that G contains a cut-vertex x and ¶x, y♢ is a connected detour
basis of G. By the proof of part (1), G contains no end-vertices, so y is not end-vertex.
Let H1 and H2 be components of G − ¶x♢, and let y ∈ V (H1). Since P (G) ≥ 3, then
H2 contains at least one vertex. Clearly, every x − y detour does not contain vertices
from H2, contradicting the definition of d.s. Thus, G does not contain cut-vertices. □

Now we proceed to find graphs G with detour diameter D (G) = 5 for which
cdn (G) = 2.

Theorem 2.1. Let G be a connected graph of P (G) ≥ 6 and with D (G) = 5. Then,

cdn (G) = 2 if and only if G is a cycle graph C6, with or without any number of

chords, or like the graph Gi (i = 1, 2) depicted in Figure 1.

Proof. It is easy to verify that for C6 and for each Gi (i=1,2) D(C
6
) = D(Gi)=5 and

cdn (C6) = cdn (Gi) = 2, in which a, b is a detour basis of Gi.
To prove the converse, let G be a connected graph of P (G) ≥ 6 and with D (G) = 5,

cdn (G) = 2. Then, by Proposition 2.1, G does not contain end-vertices and cut-
vertices. Since D (G) = 5 and G is connected, then the circumference of G (denoted
by cir(G)) is 3 ≤ cir(G) ≤ 6. Therefore, we shall consider four cases for cir(G).
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Figure 1.

Case (1). Let cir (G) = 3 and P = (v1, v2, . . . , v6) is a v1 − v6 detour diameter in G
(see Figure 2).

Figure 2. P for cir (G) = 3.

Then v1 is not adjacent to v4, v5, v6; and v6 is not adjacent to v2 and v3. Moreover, v1

and v6 are not adjacent to any vertex other than V (P ). Since deg vi = 2, (i = 1, . . . , 6),
then v1 must be adjacent to v3, and v6 must be adjacent to v4. By Proposition 2.1,
G contains no cut-vertices, therefore there is either a v2 − v5 path in G, or v2 − v4

path and v3 − v5 path. Each of the two possibilities implies the existence of a cycle of
length ≥ 6 in G, contradicting our assumption. Thus, in this case there is no graph
that fulfills the required conditions.

Case (2). Let cir (G) = 4, and P = (v1, v2, . . . , v6) be a v1 − v6 detour diameter of
G (see Figure 3).

Figure 3.

Then v1 is not adjacent to v5 and v6; and v6 is not adjacent to v2. Thus, v1 is adjacent
to v3 or v4, and v6 is adjacent to v3 or v4. Therefore, we consider four subcases.

(a) If v1v3, v6v4 ∈ E (G) , then, as explained in case (1), cir(G) ≥ 6, a contradiction.
(b) If v1v3, v6v3 ∈ E(G), then either there is in G a v2 − v4 path or v2 − v5 path.

Each of the two possibilities produces a graph G having cir(G) ≥ 5; a contradiction.
(c) If v1v4, v6v4 ∈ E(G), then, as in subcase (b), we arrive to a contradiction.
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(d) If v1v4, v6v3 ∈ E(G), then G contains the 6-cycle (v1, v2, v3, v6, v5, v4, v1) and so
cir(G) ≥ 6, a contradiction.

Therefore, in case (2) there is no graph that satisfies the required conditions of the
theorem.

Case (3). Let cir (G) = 5 and P = (v1, v2, . . . , v6) is a v1 − v6 detour diameter, then
v1 is not adjacent to v6, and each of v1, v6 is not adjacent to any vertex not in V (P ).
By Proposition 2.1, deg vi ≥ 2 (i = 1, 6). Therefore, we have consider the following
nine subcases.

Figure 4.

(a) If v1v5, v2v6 ∈ E(G), then such graph is like G1 with n = 0 and without the
edges u1u3, u2u4, in Figure 1.

(b) If v1v5, v3v6 ∈ E(G), then such graph is like G1 with n = 0 and without the
edges u2u4.

(c) If v1v5, v4v6 ∈ E(G), then G contains the 6-cycle (v1, v5, v6, v4, v3, v2, v1), contra-
dicting our assumption.

(d) If v1v4, v2v6 ∈ E(G), then G is like G2 with m = n = 0 and without the edge
u1u3 and u2u4.

(e) If v1v4, v3v6 ∈ E(G), then G contains the 6-cycle (v1, v2, v3, v6, v5, v4, v1), contra-
dicting our assumption.

(f) If v1v4, v4v6 ∈ E(G), then by Proposition 2.1, there must be a v3 − v5 path
or v2 − v5 path. If G contains v3 − v5 path, then G contains a cycle of length
≥6, a contradiction. Now, assume that G contains a v2 − v5 path, of length ≥
2 then G contains v2v5 ∈ E(G), then G is like G2 in Figure 1 with m = n = 0.

(g) If v1v3, v2v6 ∈ E(G), then G contains the 6-cycle (v1, v3, v4, v5, v6, v2, v1), con-
tradicting the assumption.

(h) If v1v3, v3v6 ∈ E(G), then as in subcase (f) either G is like G2 with m = n = 0,
or cir(G) ≥ 6.

(i) If v1v3, v4v6 ∈ E(G), then by Proposition 2.1, either G contains v2 − v5 path, or
v2 − v4 path and v3 − v5 path, see Figure 5.

Figure 5.
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If G contains a v2 − v5 path Q, then G contains a cycle (v1, v3, v4, v6, v5, Q, v2, v1),
of length ≥ 6, a contradiction. If G contains a v2 − v4 path R1 and v3 − v5 path R2,
then G contains a cycle (v1, v3, R2, v5, v6, v4, R1, v2, v1), of length ≥ 6 contradicting
our assumption.

In view of the explanations in the subcases (a)-(i) we deduce that G1 and G2 in
Figure 1 are of the general forms that satisfy the requirements of the theorem in this
case.

Case (4). Let cir (G) = 6, and C be a 6-cycle in G. Because D (G) = 5, then there
is no vertex in G, other than the vertices of C, adjacent to a vertex of C. Therefore,
P (G) = 6 and so G is C6 with, or without some chords. Hence, the proof of the
theorem is completed. □

3. Characterization of Graphs G with D(G) = 6 and cdn(G) = 2

In the following proposition we establish that if G is a block of D (G) = 6, then the
circumference of G is more than four.

Proposition 3.1. Let G be a block of order p ≥ 7 and with D (G) = 6, then cir (G) =
5, 6 or 7.

Proof. Let P = (u1, u2, . . . , u6, u7) be a detour diameter of G, shown in Figure 6.

Figure 6.

Since G is a block, then it does not contain cut-vertices and end-vertices. Because
D (G) = 6, then u1 and u7 each is not adjacent to any vertex other than u2, u3, . . . , u6.
It is clear that cir(G) ≤ 7. If u1 is adjacent to u5, u6 or u7, and/or u7 is adjacent
to u1, u2 or u3, then G contains a cycle of length more than four (see Figure 6). To
compute the proof we shall show that G contains a cycle of length 5, 6 or 7 if u1 is
adjacent to u3 or u4, and u7 is adjacent to u4 or u5. So, we consider the following four
cases.

Case (1). If u1u3, u7u4 ∈ E(G), then we have the following four subcases.
(a) G contains a u2 − u6 path Q1 which is edge-disjoint from P , this implies that

G contains l−cycle (u3, u1, u2, (Q
1
), u6, u7, u4, u3) of length l ≥ 6.

(b) G contains the edge u2u5 which implies that G contains the 7−cycle (u3, u1, u2,
u5, u6, u7, u4, u3).
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(c) G contains edges u2u4 and u3u5, this implies that G contains the 7−cycle
(u2, u1, u3, u5, u6, u7, u4, u2).

(d) G contains a u2 − u4 path Q2 and a u3 − u6 path Q3, which are edge-disjoint
from P ; this implies that G contains the cycle (u3, u1, u2, (Q2), u4, u5, u6, (Q3), u3) of
length l ≥ 6 (see Figure 7).

Figure 7.

Case (2). If u1u3, u7u5 ∈ E(G), then we have two subcases.
(i) G contains the edge u2u6, which implies that G contains the 7-cycle (u3, u1, u2,

u6, u7, u5, u4, u3).
(ii) G contains a u2 − u5 path R1 and a u3 − u6 path R2 which are edge disjoint

from E(P ), which implies that G contains cycle (u3, u1, u2, (R1) , u5, u7, u6, (R2) , u3)
of length l ≥ 6 (see Figure 8).

Figure 8.

Case (3). If u1u4, u5u7 ∈ E(G), then, as in case (2), G contains a cycle of length 6
or 7.

Case (4). If u1u4, u4u7 ∈ E(G), then we have four subcases for the cycles in G.
(α) G contains a u2 − u5 path F1 other than (u2, u3, u4, u5), this implies that G

contains a cycle (u2, u1, u4, u7, u6, u5, (F1) , u2) of length ≥ 6 (see Figure 9).
(β) G contains a u2−u6 path F2, this produces that G contains a cycle (u2, u3, u4, u5,

(F2) , u2) of length l ≥ 5.
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Figure 9.

(γ) G contains the edge u3u5 implying that G contains the 7-cycle (u3, u2, u1, u4, u7,
u6, u5, u3).

(δ) G contains a u3−u6 path F3, this produces that G contains a cycle (u3, u2, u1, u4,
u7, u6, (F3), u3) of length l ≥ 6.

Hence, the proof of the proposition is completed. □

Theorem 3.1. Let G be a connected graph of order p ≥ 7 and with detour diameter

D (G) = 6. Then, cdn (G) = 2 if and only if G is a cycle graph C∗

7
, with or without

any number of chords, or G belongs to the family F shown in Figure 10.

Figure 10. The family F
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Proof. It is straightforward to verify that D (C∗

7
) = D (Gi) = 6, and cdn(C∗

7
) =

cdn (Gi) = 2, in which ¶a, b♢ is a connected detour basis of Gi (1 ≤ i ≤ 7).
To prove the converse, let G be a connected graph of order p ≥ 7, D (G) = 6 and

cdn (G) = 2. Then, by the Proposition 2.1, G is a block, and by Proposition 3.1,
cir (G) = 5, 6 or 7. Thus, we shall consider three cases depending on the circumference
of G.

Case (1). Let cir (G) = 5 and C = (v1, v2, v3, v4, v5, v1). Since G is connected and
P (G) ≥ 7, then there is a vertex u1 ≠ vi (1 ≤ i ≤ 5) adjacent to a vertex, say v1, of
C. Because deg u

1
≥ 2, then either u1 is adjacent to another vertex of C not adjacent

to v1, or it is adjacent to a vertex x ≠ vi (1 ≤ i ≤ 5). If u1x ∈ E(G), then x is not
adjacent to any other vertex x /∈ V (C), and, also, it is not adjacent to any vertex of
C, because, otherwise D(G) ≥ 7 or cir(G) ≥ 6. Therefore u1 must be adjacent to
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non-adjacent vertices of C, say v1 and v3 and it is not adjacent to any other vertex
of G, that is deg u

1
= 2. It is clear that every vertex y /∈ V (C) is of degree 2 and

adjacent to two non-adjacent vertices of C.
Let w1 ∈ V (G), w1 /∈ V (C) and w1 ̸= u1, then the following hold.
(a) If w1v1, w1v3 ∈ E(G), then G is like the graph G1, in Figure 10, with n = 2

(taking u2 = w1) and with edge v2v4 or v2v5, and G may contain edge ¶v
1
v3, v1v4, v3v5♢.

Therefore, G1 is of a general form of this subcase, because P (G) ≥ 7.
(b) If w1v2, w1v5 ∈ E (G), then cir (G) ≥ 7, a contradiction.
(c) If w1v2, w1v4 ∈ E(G), then cir(G) ≥ 6, a contradiction.
(d) If w1v1, w1v4 ∈ E(G), (or w1v3, w1v5 ∈ E(G)), then G is like the graph G2,

in Figure 10, with m = n = 1 and G may contain some of the edges v1v4 or v1v3.
Therefore, G2 is of a general form of this subcase, because P (G) ≥ 7.

Case (2). Let cir (G) = 6, C = (v1, v2, . . . , v6, v1) and let W = V (G) − V (C). If
w ∈ W , then w S is adjacent to at least two vertices of C, for otherwise D(G) ≥ 7.
Since cir (G) = 6, then w is not adjacent to any two adjacent vertices of C. Therefore,
every vertex of W is of degree 3 or 2, and it is not adjacent to any vertex other than
the vertices of C. Thus, we shall consider G in the following three subcases.

(a) Let every vertex of W is of degree 3. If w ∈ W , and w is adjacent to v1 then it
is adjacent to v3 and v5. If in addition to w, there is w′ ∈ W adjacent to v2, v4 and v6,
then G contains the 8-cycle (v1, w, v3, v2, w

′

, v4, v5, v6, v1) (see Figure 11) contradicting
the assumption. Thus, without loss of generality every vertex of W is adjacent to v1,
v3 and v5. Therefore, G is like the graph G3 in Figure 10 with n ≥ 1 and a number
of dotted chords of C.

Figure 11.

(b) Let every vertex of W is of degree 2. Let u be any vertex in W and assume
that u is adjacent to v1. Then u is adjacent to v3, v4 or v5. Therefore, we have two
general possibilities, namely:
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(i) uv1, uv4 ∈ E(G);
(ii) uv1, uv3 (or uv1, uv5) ∈ E(G).
For subcase (i), if u′ is another vertex of W , then, for all connections of u′ with

a pair of non-adjacent vertices of C, the graph G will not satisfy the requirements
D = 6 and cdn = 2. Therefore W consists of exactly one vertex u, and so P (G) = 7.
Hence, G is like the graph G4 shown in Figure 10.

(ii) Let uv1, uv3 ∈ E (G). If each u ∈ W is adjacent to the some non-adjacent
pair of V (C) like v1, v3, then G is like G5 shown in Figure 10. If there is a vertex
u1 ∈ V (G) adjacent to, say v1, v3, and there is at least one vertex w1 ∈ V (G) adjacent
to v1, v5 (or v3, v5), then G is like G6 with n, m ≥ 1. For other connections of the
vertices of W to pairs of non-adjacent vertices of V (C), we have the following.

(a) If uv1, uv3; wv1, wv5; xv3, xv5 ∈ V (G), where x ∈ W , then we have a graph
like H1 shown in Figure 12. Clearly, cdn (H1) = 3, so H1 does not fulfill the
requirements.

(b) If uv1, uv3; wv4, wv6 ∈ V (G), then we have a graph like H2 shown in Figure 12.
Clearly, D (H2) = 7, so H2 does not fulfil the required conditions.

Figure 12.

(c) Now, assume that W consists of vertices of degree 2 and of degree 3. Let w be
a vertex in W of degree 3. Then, without loss of generality, assume that w is adjacent
to v1, v3 and v5. Let u ∈ W of degree 2, then we have the following possibilities.

(1) If u is adjacent to v1 and v3, then G is like the graph G7, with n, m ≥ 1, shown
in Figure 10.

(2) If u is adjacent to v2 and v4, then G contains a 7-cycle (v1, v6, v5, w, v3, v4, u, v2,
v1), a contradiction.

(3) If u is adjacent to v1 and v4, then cdn(G) ≥ 2, a contradiction.
(4) If u is adjacent to v3 and v5, then G is like the graph G7 in Figure 10.
Hence, the graph G in Case (2), for which cir (G) = 6, is in general construction,

is like Gi (i = 3, 4, 5, 6, 7).
Case (3). Let cir (G) = 7 and C = (v1, v2, . . . , v7, v1). If there is a vertex u in G

other than the vertices of C, then u is adjacent to a vertex of C, say v1. This implies
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that G contains a 7-path, namely u, v1, v2, . . . , v7, contradicting the hypothesis of the
theorem. Therefore, P (G) = 7, and so G is the 7-cycle graph C∗

7
with some chords

of C.
Hence, the proof of the theorem is completed. □
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ON DEGREE OF APPROXIMATION OF SIGNALS IN THE

GENERALIZED ZYGMUND CLASS BY USING (E, r)(N, qn) MEAN
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Abstract. In the present article, we have established a result on degree of approx-

imation of function (or signal) in the generalized Zygmund class Zl
(m),(l ≥ 1) by

using (E, r)(N, qn)- mean of Trigonometric Fourier series.

1. Introduction

Signal Analysis describes the field of study whose objective is to collect, understand
and deduce information and intelligence from various signals. Now-a-days the anal-
ysis of signals is a fundamental problem for many engineers and scientists. In the
recent past, we have seen the applications of mathematical methods such as Prob-
ability theory, Mathematical statistics etc. in the analysis of signals. Very recently,
approximation theory has got a large popularity as it has given a new dimension
in approximating the signals (or functions). The estimation of error functions in
Lipschitz class and Zygmund space using different summability techniques of Fourier
series and conjugate Fourier series have been of great interest among the researchers
in the last decades (for details see [2,3,9,10,13–18]). Later, the generalized Zygmund

class Zl
(m), l ≥ 1, is investigated by Leindler [8], Moricz [4], Moricz and Nemeth [5].

Very recently Nigam [7] and Singh et al. [11] proved approximation of functions in the
generalized Zygmund class by using Hausdroff means. Lal and Shireen [12] proved a
result on approximation of functions of generalized Zygmund class by Matrix Euler
summability mean of Fourier series. In the present paper, we investigate on the degree
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of approximation of a signal (or function) in the generalized Zygmund class Zl
(m),

l ≥ 1, by (E, r)(N, qn) product mean of the trigonometric Fourier series.

2. Definitions and Notations

Let h be a function, which is periodic in [0, 2π] such that
∫ 2π

0 ♣h(x)♣ldx < ∞.

We denote

Ll[0, 2π] =
{

h : [0, 2π] → R :
∫ 2π

0
♣h(x)♣ldx < ∞

}

, l ≥ 1.

The Fourier series of h(x) is given by

(2.1)
∞
∑

n=0

un(x) =
a0

2
+

∞
∑

n=1



an cos nx + bn sin nx



.

Let Sp(h; x) denotes the p-th partial sum of h(x) and is given by

Sp(h; x) =
1

π

∫ π

−π
h(x + v)

sin


p + 1
2



v

2 sin v
2

dv.

We define

∥h∥l =


1

2π

∫ 2π

0
♣h(x)♣ldx


1
l

, 1 ≤ l < ∞,

and

∥h∥l = esssup0≤x≤2π ♣h(x)♣, l = ∞.

Let the Zygmund modulus of continuity of h(x) be

m(h; r) = sup
0≤r,x∈R

♣h(x + v) + h(x − v) − 2h(x)♣ (see [1]).

Suppose B represents the Banach space of all 2π periodic functions which are contin-
uous and defined over [0, 2π] under the supremum norm. Clearly,

Z(α) =
{

h ∈ B : ♣h(x + v) + h(x − v) − 2h(x)♣ = O (♣v♣α) , 0 < α ≤ 1
}

is a Banach space under the norm ∥ · ∥(α) defined by

∥h∥(α) = sup
0≤x≤2π

♣h(x)♣ + sup
x,v ̸=0

♣h(x + v) + h(x − v) − 2h(x)♣

♣v♣α
.

For h ∈ Ll[0, 2π], l ≥ 1, the integral Zygmund modulus of continuity is defined by

ml(h; r) = sup
0<v≤r

{

1

2π

∫ 2π

0
♣h(x + v) + h(x − v) − 2h(x)♣ldx

}
1
l

,

and for h ∈ B, l = ∞,

m∞(h; r) = sup
0<v≤r

max
x

♣h(x + v) + h(x − v) − 2h(x)♣.
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Clearly, ml(h; r) → 0 as l → 0. Again,

Z(α), l =

{

h ∈ Ll[0, 2π] :
 ∫ 2π

0
♣h(x + v) + h(x − v) − 2h(x)♣ldx


1
l

= O(♣v♣α)

}

is a Banach space under the norm ∥ · ∥(α),l for 0 < α ≤ 1 and l ≥ 1. Clearly,

∥h∥(α),l = ∥h∥l + sup
v ̸=0

∥h(· + v) + h(· − v) − 2h(·)∥l

♣v♣α
.

Let

Z(m) =
{

h ∈ B : ♣h(x + v) + h(x − v) − 2h(x)♣ = O (m(v))
}

,

where m is a Zygmund modulus of continuity satisfying
(a) m(0) = 0;
(b) m(v1 + v2) ≤ m(v1) + m(v2).
Define

Z
(m)
l =

{

h ∈ Ll : 1 ≤ l < ∞, sup
v ̸=0

∥h(· + v) + h(· − v) − 2h(·)∥l

m(v)
< ∞

}

,

where

∥h∥
(m)
l = ∥h∥l + sup

v ̸=0

∥h(· + v) + h(· − v) − 2h(·)∥l

m(v)
, l ≥ 1.

Clearly, ∥ · ∥
(m)
l is a norm Z

(m)
l . Also, Z

(m)
l is complete since Ll, l ≥ 1, is complete.

So, Z
(m)
l is a Banach space under ∥ · ∥

(m)
l . Agian, suppose m(v) and µ(v) represents

the Zygmund moduli of continuity such that m(v)
µ(v)

is positive and non-decreasing then

∥h∥
(µ)
l ≤ max

{

1,
m(2π)

µ(2π)

}

∥h∥
(m)
l ≤ ∞.(2.2)

Clearly,

Z
(m)
l ⊆ Z

(µ)
l ⊆ Ll, l ≥ 1.

Let
∑

un be an infinite series with sequence of partial sums ¶sn♢. Suppose ¶qk♢
represents the sequence of non-negative integers such that

Qn =
n
∑

k=0

qk → ∞ as n → ∞.(2.3)

If

τN
n =

1

Qn

n
∑

k=0

qn−ksk, n = 0, 1, 2, . . .(2.4)

represents the (N, qn) mean of ¶sn♢ generated by the sequence ¶qn♢, then the series
∑

un is said to be summable to ‘s’ whenever

lim
n→∞

τN
n → s.
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We know, (N, qn) method is regular [6]. The (E, r) transform of ¶sn♢ is given by

Er
n =

1

(1 + r)n

n
∑

k=0

C(n, k)rn−ksk.(2.5)

If Er
n → s as n → ∞, then

∑

un is summable to ‘s’ by (E, r) summability. Also,
(E, r) method is regular [6].

The (E, r)(N, qn) transform of ¶sn♢ is given by

τEr,N
n =

1

(1 + r)n

n
∑

k=0

C(n, k)
{

1

Qk

k
∑

ν=0

qk−νsν

}

.(2.6)

The series
∑

un is summable to s by the (E, r)(N, qn) transform if τEr,N
n → s as

n → ∞.
The following notations are used in the rest part of our paper:

φ(x, v) =h(x + v) + h(x − v) − 2h(x),

κEr,N
n (v) =

1

2π(1 + r)n

n
∑

k=0

C(n, k)















1

Qk

k
∑

ν=0

qk−ν

sin


ν + 1
2



v

sin


v
2

















.

3. Known Results

Using Matrix Euler summability means, Lal and Shireen [12] proved the following
theorems.

Theorem 3.1. Let the lower triangular matrix A = (an,k) satisfy the following condi-

tions:
n
∑

k=0

an,k =1, an,k ≥ 0, n = 0, 1, 2, . . . , k = 0, 1, 2, . . . ,(3.1)

n
∑

k=0

♣∆an,k♣ =O



1

n + 1



and (n + 1)an,n = O(1).(3.2)

The best approximation of the Fourier series (2.1) by Matrix-Euler mean is given by

En(h) = inf
tn

∆,E
∥tn

∆,E − h∥µ
l = O

(

1

n + 1

∫ π

1
(n+1)

m(v)

v2µ(v)
dv

)

,(3.3)

where

tn
∆,E =

n
∑

k=0

an,k

1

2k

k
∑

ν=0

C(k, ν)sν ,

represents the Matrix-Euler mean of a 2π periodic and Lebesgue integrable function

h : [0, 2π] → R, that belongs to Z
(m)
l , l ≥ 1. Here, m and µ are the Zygmund moduli

of continuity and
m(v)
µ(v)

is positive and non-decreasing.
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Theorem 3.2. Let A = (an,k) be a lower triangular matrix satisfying (3.1) and (3.2) in

Theorem 3.1 along with the condition that
m(v)
µ(v)

is non-increasing. Then, for h ∈ Z
(m)
l ,

l ≥ 1, the best approximation by Matrix-Euler mean
(

tn
∆,E



is given by

En(h) = O









m



1
n+1



µ



1
n+1

 log(n + 1)π









.(3.4)

4. Main Theorems

Theorem 4.1. Let h : [0, 2π] → R be a periodic function (with period 2π) belonging

to Z
(m)
l , l ≥ 1, which is integrable in the sense of Lebesgue. Then the degree of

approximation of h by using (E, r)(N, qn) mean of (2.1) is given by

En(h) = inf
τn

Er,N
∥τn

Er,N − h∥µ
l = O

(

∫ π

1
n+1

m(v)

vµ(v)
dv

)

,(4.1)

where m(v) and µ(v) are the Zygmund moduli of continuity and
m(v)
vµ(v)

is positive and

non-decreasing.

Theorem 4.2. The degree of approximation of a 2π periodic and Lebesgue integrable

function h, h : [0, 2π] → R, using (E, r)(N, qn) mean of (2.1) is given by

En(h) = inf
τn

Er,N
∥τn

Er,N − h∥µ
l = O









m



1
n+1



µ



1
n+1



(

π

n + 1
−

1

(n + 1)2

)









,(4.2)

where h ∈ Z
(m)
l , l ≥ 1, m(v) and µ(v) are the Zygmund moduli of continuity and

m(v)
v µ(v)

is positive and non-increasing.

We require the below mentioned lemmas to prove our main theorems.

5. Lemmas

Lemma 5.1.

♣κEr,N
n ♣ = O(n), for 0 ≤ v ≤

1

n + 1
.

Lemma 5.2.

♣κEr,N
n ♣ = O



1

v



, for
1

n + 1
≤ v ≤ π.

Lemma 5.3. Let h ∈ Z
(m)
l . Then, for 0 < v ≤ π,

(i) ∥φ(·, v)∥l = O(m(v));
(ii) ∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l = O(m(v)) or O(m(y));
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(iii) If m(v) and µ(v) are as defined in Theorem 4.1, then

∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l = O

(

µ(y)
m(v)

µ(v)

)

,

where φ(x, v) = h(x + v) + h(x − v) − 2h(x).

6. Proof of the Lemmas

Proof of Lemma 5.1. For 0 ≤ v ≤ 1
n+1

and sin nv ≤ n sin v, we have

♣κEr,N
n (v)♣ =

1

2π(1 + r)n

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=0

C(n, k)rn−k















1

Qk

k
∑

ν=0

qk−ν

sin


ν + 1
2



v

sin v
2















∣

∣

∣

∣

∣

∣

∣

∣

≤
1

2π(1 + r)n

∣

∣

∣

∣

∣

n
∑

k=0

C(n, k)rn−k

{

1

Qk

k
∑

ν=0

qk−ν

(2ν + 1) sin v
2

sin v
2

}∣

∣

∣

∣

∣

≤
1

2π(1 + r)n

∣

∣

∣

∣

n
∑

k=0

C(n, k)rn−k(2k + 1)
{

1

Qk

k
∑

ν=0

qk−ν

}∣

∣

∣

∣

≤
(2n + 1)

2π(1 + r)n

∣

∣

∣

∣

n
∑

k=0

C(n, k)rn−k

∣

∣

∣

∣

=O(n). □

Proof of Lemma 5.2. By Jordan’s lemma

sin


v

2



≥
v

π
, sin nv ≤ 1,

1

n + 1
≤ v ≤ π.

Now,

♣κEr,N
n (v)♣ =

1

2π(1 + r)n

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=0

C(n, k)rn−k















1

Qk

k
∑

ν=0

qk−ν

sin


ν + 1
2



v

sin v
2















∣

∣

∣

∣

∣

∣

∣

∣

≤
1

2π(1 + r)n

∣

∣

∣

∣

n
∑

k=0

C(n, k) rn−k

{

1

Qk

k
∑

ν=0

π

v
qk−ν

}∣

∣

∣

∣

=
1

2v(1 + r)n

∣

∣

∣

∣

n
∑

k=0

C(n, k) rn−k

{

1

Qk

k
∑

ν=0

qk−ν

}∣

∣

∣

∣

=
1

2v(1 + r)n

∣

∣

∣

∣

n
∑

k=0

C(n, k) rn−k

∣

∣

∣

∣

=O



1

v



. □

Proof of Lemma 5.3. See [12]. □
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7. Proof of Main Theorems

Proof of Theorem 4.1. Let Sk(h; x) denotes the k-th partial sum of the series (2.1).
We have

Sk(h; x) − h(x) =
1

2π

∫ π

0
φ(x, v)

sin


k + 1
2



v

sin v
2

dv

and the (N, qn) transform of it is given by

1

Qn

n
∑

k=0

qn−k¶Sk(h; x) − h(x)♢ =
1

2π

∫ π

0
φ(x, v)

1

Qn

n
∑

k=0

qn−k

sin


k + 1
2



v

sin v
2

dv.

Let the (E, r)(N, qn) transform of Sk(h; x) by τEr,N
n . Then

τEr,N
n − h(x) =

1

2π(1 + r)n

∫ π

0
φ(x, v)

n
∑

k=0

C(n, k) rn−k















1

Qn

n
∑

k=0

qn−k

sin


k + 1
2



v

sin v
2















dv

=
∫ π

0
φ(x; v)κEr,N

n (v)dv

=χn(x).

Then

χn(x + y) + χn(x − y) − 2χn(x) =
∫ π

0

{

φ(x + y, v) + φ(x − y, v) − 2φ(x, v)
}

κEr,N
n (v)dv.

Using Minkowski’s inequality, we have

∥χn(· + y) + χn(· − y) − 2χn(·)∥l

=
{

1

2π

∫ 2π

0
♣χn(x + y) + χn(x − y) − 2χn(x)♣ldx

}
1
l

=
1

2π

 ∫ 2π

0

∣

∣

∣

∣

∫ π

0

{

φ(x + y, v) + φ(x − y, v) − 2φ(x, v)
}

κEr,N
n (v)dv

∣

∣

∣

∣

l

dx


1
l

≤
∫ π

0
♣κEr,N

n (v)♣
{

1

2π

∫ 2π

0
♣φ(x + y, v) + φ(x − y, v) − 2φ(x, v)♣ldx

}
1
l

dv

=
∫ π

0
∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l♣κ

Er,N
n (v)♣dv

=
∫ 1

n+1

0
∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l♣κ

Er,N
n (v)♣dv

+
∫ π

1
n+1

∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l♣κ
Er,N
n (v)♣dv

=Γ1 + Γ2.(7.1)
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Using Lemma 5.1, Lemma 5.3 and monotonicity of m(v)
µ(v)

, with respect to ‘v’, we have

Γ1 =
∫ 1

n+1

0
∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l♣κ

Er,N
n (v)♣dv

=
∫ 1

n+1

0
O



µ(y)
m(v)

µ(v)



O(n)dv.

By using the second mean value theorem of integral, we have

Γ1 ≤O









nµ(y)
m



1
n+1



µ



1
n+1



∫ 1
n+1

0
dv









=O









n

n + 1
µ(y)

m



1
n+1



µ



1
n+1











= O









µ(y)
m



1
n+1



µ
(

1
n+1











.(7.2)

Again, by using Lemma 5.2 and Lemma 5.3, we get

Γ2 =
∫ π

1
n+1

∥φ(· + y, v) + φ(· − y, v) − 2φ(·, v)∥l♣κ
Er,N
n (v)♣dv

≤
∫ π

1
n+1

O



µ(y)
m(v)

µ(v)



1

v
dv

=O



µ(y)
∫ π

1
n+1

m(v)

vµ(v)
dv



.(7.3)

By (7.1), (7.2) and (7.3), we have

∥χn(· + y) + χn(· − y) − 2χn(·)∥l = O









µ(y)
m



1
n+1



µ



1
n+1











+ O



µ(y)
∫ π

1
n+1

m(v)

v µ(v)
dv



.

Therefore, we have

(7.4) sup
y ̸=0

∥χn(· + y) + χn(· − y) − 2χn(·)∥l

µ(y)
= O









m



1
n+1



µ



1
n+1











+ O

 ∫ π

1
n+1

m(v)

v µ(v)
dv



.

As

φ(x, v) = ♣h(x + v) + h(x − v) − 2h(x)♣,

by applying Minkowski’s inequality, we get

(7.5) ∥φ(x, v)∥l = ∥h(x + v) + h(x − v) − 2h(x)∥l = O(m(v)).

Now, using Lemma 5.1, Lemma 5.2 and (7.5),

∥χn(.)∥l ≤
 ∫ 1

n+1

0
+
∫ π

1
n+1



∥φ(·, v)∥l♣κ
Er,N
n (v)♣dv
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=O



n

∫ 1
n+1

0
m(v) dv



+ O

 ∫ π

1
n+1

m(v)

v
dv



=O



m



1

n + 1



+ O

 ∫ π

1
n+1

m(v)

v
dv



.(7.6)

From (7.4) and (7.6), we have

∥χn(·)∥µ
l

=∥χn(·)∥l + sup
y ̸=0

∥χn(· + y) + χn(· − y) − 2χn(·)∥l

µ(y)

=O



m



1

n + 1



+ O

 ∫ π

1
n+1

m(v)

v
dv



+ O









m



1
n+1



µ



1
n+1











+ O

 ∫ π

1
n+1

m(v)

v µ(v)
dv



=
4
∑

j=1

Gj.

In view of monotonicity of µ(v) for 0 < v ≤ π, we have

m(v) =
m(v)

µ(v)
µ(v) ≤ µ(π)

m(v)

µ(v)
= O



m(v)

µ(v)



.

Therefore,

G1 = O(G3).

Again, by using monotonicity of µ(v),

G2 =
∫ π

1
n+1

m(v)

v
dv =

∫ π

1
n+1

m(v)

vµ(v)
µ(v)dv ≤ µ(π)

∫ π

1
n+1

m(v)

vµ(v)
dv = O(G4).

Since m(v)
µ(v)

is positive and increasing

G4 =
∫ π

1
n+1

m(v)

v µ(v)
dv =

m



1
n+1



µ



1
n+1



∫ π

1
n+1

dv

v
≥

m



1
n+1



µ



1
n+1

 .

Therefore,

G3 = O(G4).

Thus,

∥χn(·)∥µ
l = O(G4) = O

 ∫ π

1
n+1

m(v)

vµ(v)
dv



.

Hence,

En(h) = inf
n

∥χn(·)∥µ
l = O

 ∫ π

1
n+1

m(v)

vµ(v)
dv



.
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This completes the proof of the Theorem 4.1. □

Proof of Theorem 4.2. In this theorem, since we have assumed m(v)
vµ(v)

is positive and

decreasing, proceeding as in Theorem 4.1. We have

En(h) = inf
n

∥χn(.)∥µ
l = O









m



1
n+1



(n + 1) µ



1
n+1



∫ π

1
n+1

dv









,

i.e.,

En(h) = O









m



1
n+1



µ



1
n+1



(

π

(n + 1)
−

1

(n + 1)2

)









.

This is what we need to prove in Theorem 4.2. □
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CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS WITH

POSITIVE COEFFICIENTS ASSOCIATED WITH LINEAR

OPERATOR

OSAMAH N. KASSAR1 AND ABDUL RAHMAN S. JUMA1

Abstract. In this paper, we introduce and study certain subclass of meromorphic
univalent functions by using a linear operator by means of a Hadamard product
involving some suitably normalized meromorphically q-Hypergeometric functions,
in the punctured open unit disk. Some properties like, coefficients inequalities,
growth and distortion theorems, closure theorems, Extreme Points and Radii of
meromorphic starlikeness and meromorphic convexity are obtained.

1. Introduction

Let Σ denote the class of meromorphic functions in the punctured open unit disk
D

∗ = ¶z : z ∈ C, 0 < ♣z♣ < 1♢ = D − ¶0♢ of the form

(1.1) f(z) =
1

z
+

∞
∑

n=1

anzn, an ≥ 0,

we denote by ΣS(γ), Σk(γ) and Σ∗

S(γ), 0 ≤ γ < 1, the subclasses of Σ that are mero-
morphic univalent, meromorphically convex functions of order γ and meromorphically
starlike functions of order γ, respectively.

A function f ∈ Σk(γ) if and only if − Re
(

1 + zf ′′(z)
f ′(z)



> γ, z ∈ D. Similarly, a

function f ∈ Σ∗

S(γ) if and only if − Re
(

zf ′(z)
f(z)



> γ, z ∈ D, where f given by (1.1).

There are many other classes of meromorphically univalent functions that has been
extensively studied (see [2, 3, 7, 9] and [11]).

Key words and phrases. Meromorphic functions, Hadamard product (or convolution), convex
functions, starlike functions, hypergeometric function.
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For functions f(z) = 1
z

+
∑

∞

n=1 anzn and g(z) = 1
z

+
∑

∞

n=1 bnzn, we define the
Hadamard product or convolution of f and g by

(f ∗ g) :=
1

z
+

∞
∑

n=1

anbnzn.

Cho et al. [6] and Ghanim and Darus [8] studied the following function

(1.2) qλ,µ(z) =
1

z
+

∞
∑

n=1

(

λ

n + 1 + λ

µ

zn, λ > 0, µ ≥ 0.

For complex parameters a1, . . . , al and b1, . . . , bm, bj ∈ C, and bj ≠ 0, −1, . . ., and
j = 1, 2, . . . , m, the q-hypergeometric function lΨm(z) is defined by

(1.3)

lΨm (a1, . . . , al; b1, . . . , bm; q, z)

=
∞
∑

n=0

(a1, q)n · · · (al, q)n

(q, q)n (b1, q)n · · · (bm, q)n

×


(−1)nqq( n
2 )
1+m−l

zn,

where
(

n

2



= n(n − 1)/2, q ̸= 0 and l > m + 1, l, m ∈ N0 = N ∪ ¶0♢, z ∈ D. The q

-shifted factorial is defined for a, q ∈ C as a product of n factors by

(1.4) (a; q)n =

{

(1 − a)(1 − aq) · · · (1 − aqn−1) , n ∈ N,
1, n = 0,

and in terms of basic analogue of the gamma function

(1.5) (qa; q)n =
Γq(a + n)(1 − q)n

Γq(a)
, n > 0.

It is of interest to note that limq→−1 ((qa; q)n /(1 − q)n) = (a)n = a(a+1) · · · (a+n−1)
is the familiar Pochhammer symbol and

lΨm (a1, . . . , al; b1, . . . , bm; z2) :=
∞
∑

n=0

(a1)n · · · (al)n

(b1)n · · · (bm)
n

·
zn

n!
.

Now for z ∈ D, 0 < ♣q♣ < 1 and l = m + 1 the basic hypergeometric function defined
in (1.3) takes the form

(1.6) lΨm (a1, . . . , al; b1, . . . , bm; q, z) :=
∞
∑

n=0

(a1, q)n · · · (al, q)n

(q, q)n (b1, q)n · · · (bm, q)n

zn,

which converges absolutely in the open unit disk D (see[1]).
Corresponding to the function lΨm (a1, . . . , al; b1, . . . , bm; q, z) recently for meromor-

phic functions f ∈ Σ consisting functions of the form (1.1), Al-dweby and Darus [1]
introduce q -analogue of Liu-Srivastava operator as below
(1.7)

lΥm (a1, . . . , al; b1, . . . , bm; q, z) ∗ f(z) =
1

z
lΨm (a1, . . . , al; b1, . . . , bm; q, z) ∗ f(z)

=
1

z
+

∞
∑

n=1

∏l
i=1 (ai, q)n+1

(q, q)n+1
∏m

i=1 (bi, q)n+1

anzn,
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where
∏s

k=1 (ak, q)n+1 = (a1, q)n+1 (a2, q)n+1 · · · (as, q)n+1, z ∈ D
∗ := ¶z ∈ C : 0 <

♣z♣ < 1♢ and

lΥm (a1, . . . , al; b1, . . . , bm; q, z) =
1

z
lΨm (a1, . . . , al; b1, . . . , bm; q, z)

=
1

z
+

∞
∑

n=1

∏l
i=1 (ai, q)n+1

(q, q)n+1
∏m

i=1 (bi, q)n+1

zn.

Corresponding to the functions lΥm (a1, . . . , al; b1, . . . , bm; q, z) , and qλ,µ(z) given in
(1.2) and using the Hadamard product for f(z) ∈ Σ, we will present a generalization
to the linear operator on

∑

as follows

Gλ
µ (a1, a2, . . . al; b1, b2, . . . bm; q) : Σ → Σ

and

(1.8)

Gλ
µ (a1, a2, . . . al; b1, b2, . . . bm; q) f(z)

=f(z) ∗ lΥm (a1, . . . , al; b1, . . . , bm; q, z) ∗ qλ,µ(z)

=
1

z
+

∞
∑

n=1

∏l
i=1 (ai, q)n+1

(q, q)n+1
∏m

i=1 (bi, q)n+1

(

λ

n + 1 + λ

µ

♣an♣ zn.

For convenience, we shall henceforth denote

(1.9) Gλ
µ (a1, a2, . . . al; b1, b2, . . . bm; q) f(z) = Gλ

µ (al, bm, q) f(z).

Notice that, the linear operator (1.8) in above was introduced and studied by Challab
et al. [5]. For convenience, we let

(1.10) Λλ,µ
n =

∏l
i=1 (ai, q)n+1

(q, q)n+1
∏m

i=1 (bi, q)n+1

(

λ

n + 1 + λ

µ

.

Definition 1.1. For 0 ≤ γ < 1, k ≥ 0 and 0 ≤ η < 1
2
, we let Σ(γ, k, η) be the subclass

of ΣS(γ) consisting of functions of the form (1.1) and satisfying the analytic criterion

− Re

(

z(Gλ
µ (al, bm, q) f(z))′ + ηz2(Gλ

µ (al, bm, q) f(z))′′

(1 − η)Gλ
µ (al, bm, q) f(z) + ηz(Gλ

µ (al, bm, q) f(z))′
+ γ



(1.11)

>k

∣

∣

∣

∣

∣

z(Gλ
µ (al, bm, q) f(z))′ + ηz2(Gλ

µ (al, bm, q) f(z))′′

(1 − η)Gλ
µ (al, bm, q) f(z) + ηz(Gλ

µ (al, bm, q) f(z))′
+ 1

∣

∣

∣

∣

∣

,

where Gλ
µ (al, bm, q) f(z) is given by (1.8).

Remark 1.1. For suitable choice of parameters involved in the Definition 1.1, the
class reduces to various new subclasses in the following examples, we illustrate two
important subclasses.
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Example 1.1. For η = 0, we let Σ(γ, k, 0) = Σ(γ, k) denote a subclass of Σ(γ, k, η)
consisting functions of the form (1.1) satisfying the condition that

− Re

(

z(Gλ
µ (al, bm, q) f(z))′

Gλ
µ (al, bm, q) f(z)

+ γ



> k

∣

∣

∣

∣

∣

z(Gλ
µ (al, bm, q) f(z))′

Gλ
µ (al, bm, q) f(z)

+ 1

∣

∣

∣

∣

∣

,

where Gλ
µ (al, bm, q) f(z) is given by (1.8).

Example 1.2. For η = 0, k = 0 we let Σ(γ, 0, 0) = Σ(γ) denote a subclass of Σ(γ, k, η)
consisting functions of the form (1.1) satisfying the condition that

− Re

(

z(Gλ
µ (al, bm, q) f(z))′

Gλ
µ (al, bm, q) f(z)

+ γ



> 0,

where Gλ
µ (al, bm, q) f(z) is given by (1.8).

For more details about class in the [10, Definition 1.1].

2. Set of Lemmas

We now give the preliminary lemmas that we shall employ in the proof of the main
results.

Lemma 2.1 ([4]). If γ is a real number and ω = −u − iv is a complex number, then

♣ω + (1 − γ)♣ − ♣ω − (1 + γ)♣ ≥ 0 ⇔ Re(ω) ≥ γ.

Lemma 2.2 ([4]). If ω = u + iv is a complex number and γ, k are real numbers, then

−Re(ω) ≥ ♣ω + 1♣k + γ ⇔ −Re
(

ω
(

1 + keiθ


+ keiθ


≥ γ, −π ≤ θ ≤ π.

3. Main Results

Theorem 3.1. Let f ∈ Σ be given by (1.1). Then f ∈ Σ(γ, k, η) if and only if

(3.1)
∞
∑

n=1

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n ♣an♣ ≤ (1 − γ)(1 − 2η),

where Λλ,µ
n is given by (1.10).

Proof. Let f ∈ Σ(γ, k, η). Then by definition and using Lemma 2.2, we get
(3.2)

− Re

(

z(Gλ
µ (al, bm, q) f(z))′ + ηz2(Gλ

µ (al, bm, q) f(z))′′

(1 − η)Gλ
µ (al, bm, q) f(z) + ηz(Gλ

µ (al, bm, q) f(z))′

(

1 + keiθ


+ keiθ



> γ,

where π ≤ θ ≤ π. For easiness, we let

A(z) := −


z
(

Gλ
µ (al, bm, q) f(z)



′

+ ηz2
(

Gλ
µ (al, bm, q) f(z)



′′



(1 + keiθ


− keiθ



(1 − η)Gλ
µ (al, bm, q) f(z) + ηz

(

Gλ
µ (al, bm, q) f(z)



′


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and

B(z) := (1 − η)Gλ
µ (al, bm, q) f(z) + ηz

(

Gλ
µ (al, bm, q) f(z)



′

.

Hence, the equation (3.2) is equivalent to −Re
(

A(z)
B(z)



≥ γ and from Lemma 2.1, we

only want to prove that

♣A(z) + (1 − γ)B(z)♣ − ♣A(z) − (1 + γ)B(z)♣ ≥ 0.

Therefore,

♣A(z) + (1 − γ)B(z)♣

≥(1 − 2η)(2 − γ)
1

♣z♣
−

∞
∑

n=1

[(n − 1 + γ) + k(n + 1)](1 + η(n − 1))Λλ,µ
n ♣an♣♣z♣n

and

♣A(z) − (1 + γ)B(z)♣

≤γ(1 − 2η)
1

♣z♣
+

∞
∑

n=1

[(n + 1 + γ) + k(n + 1)](1 + η(n − 1))Λλ,µ
n ♣an♣♣z♣n.

Thus,

♣A(z) + (1 − γ)B(z)♣ − ♣A(z) − (1 + γ)B(z)♣

≥2(1 − 2η)(1 − γ)
1

♣z♣
− 2

∞
∑

n=1

[n(1 + k) + (γ + k)](1 + η(n − 1))Λλ,µ
n ♣an♣♣z♣n ≥ 0,

by the provided condition (3.1). On the other hand, let f ∈ Σ(γ, k, η). Then by
Lemma 2.2, we get (3.2).

Choosing the values of z on the positive real axis the inequality (3.2) reduce to

Re





(1 − γ)(1 − 2η) 1
z2 +

∑

∞

n=1(1 + (n − 1)η)
[

n
(

1 + keiθ


+
(

γ + keiθ
]

Λλ,µ
n ♣an♣zn−1

(1 − 2η) 1
z2 −

∑

∞

n=1(1 + (n − 1)η)Λλ,µ
n ♣an♣zn−1





≥0.

Since Re
(

−eiθ


≥ −
∣

∣

∣eiθ
∣

∣

∣ = −1, the above inequality reduces to

Re





(1 − γ)(1 − 2η) 1
r2 +

∑

∞

n=1(1 + (n − 1)η)[n(k + 1)]Λλ,µ
n ♣an♣rn−1

(1 − 2η) 1
r2 −

∑

∞

n=1(1 + (n − 1)η)Λλ,µ
n ♣an♣rn−1



 ≥ 0.

Letting r → 1− and by mean value theorem we get desired inequality (3.1). □

Corollary 3.1. If f ∈ Σ(γ, k, η), then

♣an♣ ≤
(1 − γ)(1 − 2η)

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n

.

Corollary 3.2. Let f(z) ∈ Σ be given by (1.1). Then f ∈ Σ(γ, k) if and only if

∞
∑

n=1

[n(k + 1) + (k + γ)]Λλ,µ
n (α1) ♣an♣ ≤ (1 − γ),
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where η = 0, in Theorem 3.1.

4. Growth and Distortion Theorem

Theorem 4.1. Let f ∈ Σ(γ, k, η) given by (1.1). Then for 0 < ♣z♣ = r < 1 we get

1

r
−

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

r ≤ ♣f(z)♣ ≤
1

r
+

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

r

and
1

r2
−

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

≤ ♣f ′(z)♣ ≤
1

r2
+

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

.

The result is sharp for

(4.1) f(z) =
1

z
+

(1 − γ)(1 − 2λ)

(2k + γ + 1)Λλ,µ
2

z.

Proof. Since f ∈ Σ(γ, k, η) and 0 < ♣z♣ = r < 1, then

♣f(z)♣ ≤
1

♣z♣
+

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

♣z♣ ≤
1

r
+

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

r

and

♣f(z)♣ ≥
1

♣z♣
−

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

♣z♣ ≥
1

r
−

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

r.

On the other hand

♣f ′(z)♣ ≤
∣

∣

∣

∣

−1

z2

∣

∣

∣

∣

+
(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

≤
1

r2
+

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

and

♣f ′(z)♣ ≥

∣

∣

∣

∣

−1

z2

∣

∣

∣

∣

−
(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

≥
1

r2
−

(1 − γ)(1 − 2η)

(2k + γ + 1)Λλ,µ
2

.

This completes the proof of Theorem 4.1. □

5. Closure Theorems

Let fj(z), j = 1, 2, . . . , I, be the function given by

(5.1) fj(z) =
1

z
+

∞
∑

n=1

♣an,j♣z
n.

Theorem 5.1. Let the function fj(z) defined by (5.1) be in the class Σ(γ, k, η) for

every j = 1, 2, . . . , I. Then the function f(z) defined by

f(z) =
1

z
+

m
∑

n=1

qnzn,

belongs to the class Σ(γ, k, η), where qn = 1
I

∑I
n=1 ♣an,j♣, n = 1, 2, . . .
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Proof. Since fj(z) ∈ Σ(γ, k, η), it follows from Theorem 3.1 that
∞
∑

n=1

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n ♣an,j♣ ≤ (1 − γ)(1 − 2η),

for every j = 1, 2, . . . , I. Hence,
∞
∑

n=1

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n qn

=
∞
∑

n=1

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n







1

I

I
∑

j=1

♣an,j♣







=
1

I

I
∑

j=1

(

∞
∑

n=1

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n ♣an,j♣



≤
1

I

I
∑

j=1

(1 − γ)(1 − 2η) = (1 − γ)(1 − 2η),

which implies that f is in Σ(γ, k, η). □

6. Extreme Points

Theorem 6.1. Let

(6.1) f0(z) =
1

z

and

(6.2) fn(z) =
1

z
+

(1 − γ)(1 − 2η)

(1 + (n − 1)η)[n(1 + k) + (γ + k)]Λλ,µ
n

zn, n ≥ 1.

Then f ∈ Σ(γ, k, η) if and only if it can be represented in the form

(6.3) f(z) =
∞
∑

n=0

ωnfn(z),
∞
∑

n=0

ωn = 1, ωn ≥ 0.

Proof. From (6.1), (6.2) and (6.3), we have

(6.4) f(z) =
1

z
+

∞
∑

n=2

(1 − γ)(1 − 2η)ωn

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n

zn.

Since
∞
∑

n=2

(1 − γ)(1 − 2η)ωn

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n

·
(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ

n

(1 − γ)(1 − 2η)

=
∞
∑

n=2

ωn = 1 − ω1 ≤ 1,

(6.5)

it follows from Theorem 3.1 that the function f ∈ Σ(γ, k, η).
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Conversely, suppose that f is in Σ(γ, k, η), since

(6.6) an ≤
(1 − γ)(1 − 2η)

(1 + (n − 1)η)[n(k + 1) + (k + γ)]Λλ,µ
n

, n ≥ 1.

Setting

ωn =
(1 + (n − 1)η)[n(k + 1) + (k + γ)]Γn

(1 − γ)(1 − 2η)
an, ω1 = 1 −

∞
∑

n=2

ωn,(6.7)

it follows that

(6.8) f(z) =
∞
∑

n=1

ωnfn(z).

This completes the proof of the theorem. □

7. Radii of Meromorphic Starlikeness and Meromorphic Convexity

Theorem 7.1. Let f ∈ Σ(γ, k, η). Then f is meromorphically starlike of order δ,

0 ≤ δ < 1, in the unit disc ♣z♣ < r3, where

r3 = inf
n

(

1 − δ

n + 2 − δ)



(η(n − 1) + 1)[n(1 − k) + (γ + k)]Λλ,µ
n

(1 − 2η)(1 − γ)

]
1

n+1

, n ≥ 1.

The result is sharp for the extremal function f(z) given by (4.1).

Proof. We must show that
∣

∣

∣

∣

∣

zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

∣

≤ 1 − δ, ♣z♣ < r3.

Since

(7.1)

∣

∣

∣

∣

∣

zf ′(z)

f(z)
+ 1

∣

∣

∣

∣

∣

≤
(n + 1) (1−γ)(1−2η)

(1+(n−1)η)[n(1+k)+(γ+k)]Λλ,µ
n

♣z♣n+1

1 − (1−γ)(1−2η)

(1+(n−1)η)[n(1+k)+(γ+k)]Λλ,µ
n

♣z♣n+1
.

Hence, (7.1) holds true if

(n + 1)
(1 − γ)(1 − 2η)

(1 + (n − 1)η)[n(1 + k) + (γ + k)]Λλ,µ
n

♣z♣n+1

≤(1 − δ)



1 −
(1 − γ)(1 − 2η)

(1 + (n − 1)η)[n(1 + k) + (γ + k)]Λλ,µ
n

♣z♣n+1

]

or

(n + 2 − δ)
(1 − γ)(1 − 2η)

(1 + (n − 1)η)[n(1 + k) + (γ + k)]Λλ,µ
n

♣z♣n+1 ≤ (1 − δ).

Thus, for

♣z♣n+1 ≤
(1 − δ)

(n + 2 − δ)
·

(1 + (n − 1)η)[n(1 + k) + (γ + k)]Λλ,µ
n

(1 − γ)(1 − 2η)
.

Hence, f(z) is starlike of order δ. □
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Corollary 7.1. Let f ∈ Σ(γ, k, η). Then f is meromorphically convex of order δ,

0 ≤ δ < 1, in the unit disc ♣z♣ < r4, where

r4 = inf
n

(

1 − δ

n(n + 2 − δ)



(η(n − 1) + 1)[n(1 − k) + (γ + k)]Λλ,µ
n

(1 − 2η)(1 − γ)

]
1

n+1

, n ≥ 1.

The result is sharp for the extremal function f(z) given by (4.1).
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q-LAPLACE TRANSFORM ON QUANTUM INTEGRAL

NECMETTIN ALP1 AND MEHMET ZEKI SARIKAYA2

Abstract. In this paper, we present q-Laplace transform by q-integral definition on
quantum analogue. We present some properties and obtain formulaes of q-Laplace
transform with its aplications.

1. Introduction

Quantum calculus is the modern name for the investigation of calculus without
limits. The quantum calculus or q-calculus began with FH Jackson in the early
twentieth century, but this kind of calculus had already been worked out by Euler and
Jacobi. Recently it arose interest due to high demand of mathematics that models
quantum computing. q-calculus appeared as a connection between mathematics and
physics. It has a lot of applications in different mathematical areas such as number
theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and
other sciences quantum theory, mechanics and the theory of relativity.

There are many of the fundamental aspects of quantum calculus. It has been
shown that quantum calculus is a subfield of the more general mathematical field of
time scales calculus. Time scales provide a unified framework for studying dynamic
equations on both discrete and continuous domains.

In 2017, Alp and Sarikaya [1] gave a new defination of q-integral which is showed
q-integral.

The aim of this paper present Laplace transform on q-integral. In second section we
give notations and preliminaries for q-analogue. In third section we give definition of
Laplace transform on q-integral and obtain some auxiliary results. In fourth section
we calculate q-Laplace transforms of functions and some properties of q-Laplace
transform.

Key words and phrases. q-integral, Laplace transform, gamma function, beta function.
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Now remember following Laplace transform on classical analysis.
For t > 0 Laplace transform of f(t) is defined as

(1.1) L ¶f(t)♢ = F (s) =

∞
∫

0

e−stf(t)dt = lim
A→∞

A
∫

0

e−stf(t)dt.

We say that transform converges if the limit exists, and diverges if not.

2. Notations and Preliminaries

In this section, first we give definition and notations of q-analogue with q-derivates
then definition and properties of q-integral. For 0 < q < 1 here and further we use
the following notations [3, 4]:

(2.1) [n]q =
1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1,

(x − a)n
q =

n−1
∏

i=0

(

x − qia
)

= (x − a) (x − qa)
(

x − q2a
)

· · ·
(

x − qn−1a
)

, n ∈ Z
+,

(2.2)

(a : q)0 =1,

(1 − a)n
q = (a : q)n =

n

Π
i=0

(

1 − qia
)

,

(1 − a)∞

q = (a : q)
∞

=
∞

Π
i=0

(

1 − qia
)

,

(2.3)

(1 − a)n
q =

(1 − a)∞

q

(1 − qna)∞

q

=
(a : q)

∞

(qna : q)
∞

, n ∈ C.

(2.4)

Notice that, under our assumptions on q, the infinite product (2.3) is convergent.
Moreover, the definitions (2.2) and (2.4) are consistent.

Definition 2.1. In [2], for f has Dn
q f (a) , Jackson introduced the following q-

counterpart of Taylor series:

(2.5) f (x) =
∞
∑

n=0

(1 − q)n

(q; q)n

Dn
q f (a) (x − a)n

q =
∞
∑

n=0

Dn
q f (a) (x − a)n

q

[n]q!
,

Dq is the q-difference operator.

Here Ex
q and ex

q are two q-analogues of the exponential functions and their q-Taylor
series ([4]):

Ex
q =

∞
∑

n=0

q
n(n−1)

2
xn

[n]q!
= (1 + (1 − q) x)∞

q = ((q − 1) x : q)
∞

,(2.6)
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ex
q =

∞
∑

n=0

xn

[n]q!
=

1

(1 − (1 − q) x)∞

q

=
1

((1 − q) x : q)
∞

.(2.7)

Lemma 2.1 ([4]). The q-exponential functions satisfy the following properties:

ex
q E−x

q =Ex
q e−x

q = 1, Ex
q = ex

1/q.

For E−x
q = 1

ex
q

we have

lim
x→∞

E−x
q = lim

x→∞

1

ex
q

= 0.

Let J := [a, b] ⊂ R, J◦ := (a, b) be interval and 0 < q < 1 be a constant. Definiton of
q-derivative of a function f : J → R at a point x ∈ J on [a, b] as follows.

Definition 2.2 ([5]). Assume f : J → R is a continuous function and let x ∈ J .
Then the expression

aDqf (x) =
f (x) − f (qx + (1 − q) a)

(1 − q) (x − a)
, x ̸= a,(2.8)

aDqf (a) = lim
x→a

aDqf (x) ,

is called the q-derivative on J of function f at x.

We say that f is q-differentiable on J provided aDqf (x) exists for all x ∈ J . Note
that if a = 0 in (2.8), then aDqf = Dqf , where Dq is the well-known q-derivative of
the function f (x) defined by

aDqf (x) =
f (x) − f (qx)

(1 − q) x
.

For more details, see [4].

Lemma 2.2 ([5]). Let α ∈ R, then we have

(2.9) aDq (x − a)α = [α]q (x − a)α−1
.

The following definitions and theorems with respect to q-integral were referred in
[1, page 148].

Definition 2.3. Let f : J → R is continuous function. For 0 < q < 1

(2.10)

b
∫

a

f (s) adqs =
(1 − q) (b − a)

2q



(1 + q)
∞
∑

n=0

qnf (qnb + (1 − qn) a) − f (b)

]

,

which second sense quantum integral definition that call q-integral for x ∈ J.

Moreover, if c ∈ (a, x) then the definite q-integral on J is defined by
x
∫

c

f (s) adqs(2.11)
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=

x
∫

a

f (s) adqs −

c
∫

a

f (s) adqs

=
(1 − q) (x − a)

2q



(1 + q)
∞
∑

n=0

qnf (qnx + (1 − qn) a) − f (x)

]

−
(1 − q) (c − a)

2q



(1 + q)
∞
∑

n=0

qnf (qnc + (1 − qn) a) − f (c)

]

.

Theorem 2.1 ([1]). Let f : J → R be a continuous function. Then we have the

following properties of q-integral

i)

aDq

x
∫

a

f (s) adqs =
f (x) + f (qx + (1 − q) a)

2
;

ii)
1
∫

0

f (sb + (1 − s) a) 0dqs =
1

b − a

b
∫

a

f (t) adqt;

iii)

x
∫

c

aDqf (s) adqs

=
qf (x) + f (qx + (1 − q) a) − qf (c) − f (qc + (1 − q) a)

2q
, for c ∈ (a, x) ;

iv)
x
∫

a

[f (s) + g (s)] adqs =

x
∫

a

f (s) adqs +

x
∫

a

g (s) adqs;

v)
x
∫

a

(αf) (s) adqs = α

x
∫

a

f (s) adqs, α ∈ R;

vi) partial integration property:

x
∫

c

f (s) aDqg (s) adqs(2.12)

=
qf (s) g (s) + f (qs + (1 − q) a) g (qs + (1 − q) a)

2q

∣

∣

∣

∣

∣

x

c

−

x
∫

c

g (qs + (1 − q) a) aDqf (s) adqs;
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vii)
x
∫

a

(s − a)α
adqs =

1

[α + 1]q

(

1 + qα

2

)

(x − a)α+1
.

3. Auxiliary Results

For using in further theorems lets give an example on q-derivative.

Example 3.1. For s > 0, t ∈ R, we have

DqE
−st
q = − sE−qst

q ,(3.1)

DqE
−qst
q = − qsE−q2st

q .

Proof. By using q-derivative and (2.6), we obtain that:

DqE
−st
q =Dq



1 +
∞
∑

n=1

(−1)n
q

n(n−1)
2

[n]q!
(st)n





=
∞
∑

n=1

(−1)n
q

n(n−1)
2 sn

[n]q!
Dqt

n

=
∞
∑

n=1

(−1)n
q

n(n−1)
2 sn

[n − 1]q!
tn−1

=
∞
∑

n=0

(−1)n+1
q

n(n+1)
2 sn+1

[n]q!
tn

= − s
∞
∑

n=0

(−1)n
q

n(n−1)
2

[n]q!
(qst)n

= − sE−qst
q

and in the same way we have

DqE
−qst
q = −qsE−q2st

q

and the proof is completed. □

Now we present q-Laplace transform on q-integral below.

Definition 3.1. Let s > 0 and f : [0, ∞) → R be a function. Then the q-Laplace
transform is defined by

(3.2) Lq ¶f(t)♢ = F (s) =

∞
∫

0

f (t) E−qst
q dqt.

Assume f, g are two functions and α, β ∈ C by using (3.2) linearity property of
q-Laplace transform is written as follow:

Lq ¶αf(t) + βg(t)♢ = αLq ¶f(t)♢ + βLq ¶g(t)♢ .
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4. q-Laplace Transform of Functions

In this section, we proved q-Laplace transform of functions and n degrees of quantum
derivative function. Let’s first calculate the q-Laplace transformation of the constant
function as below.

Theorem 4.1. The q-Laplace transform of function f(t) = 1 is

Lq ¶1♢ = F (s) =
1 + q

2q
·

1

s
.

Proof. From definition of q-Laplace transform, it follows that

F (s) = Lq ¶1♢ = lim
α→∞

α
∫

0

E−qst
q dqt =

∞
∫

0

E−qst
q dqt.

Then calculate above integral by using the q-integral, we have
α
∫

0

E−qst
q dqt

=

α
∫

0

∞
∑

n=0

(−1)n
q

n(n−1)
2

[n]q!
(qst)n

dqt

=
∞
∑

n=0

(−1)n
q

n(n−1)
2 (qs)n

[n]q!

α
∫

0

tndqt

=
∞
∑

n=0

(−1)n
q

n(n−1)
2 (qs)n

[n]q!
·

1 + qn

2 [n + 1]q
αn+1

=
∞
∑

n=0

(−1)n
q

n(n−1)
2 (qs)n

2 [n + 1]q!
αn+1 +

∞
∑

n=0

(−1)n
q

n(n−1)
2 (qs)n

qn

2 [n + 1]q!
αn+1

= −
1

2s

∞
∑

n=0

(−1)n+1
q

n(n+1)
2

[n + 1]q!
(sα)n+1 −

1

2qs

∞
∑

n=0

(−1)n+1
q

n(n+1)
2

[n + 1]q!
(qsα)n+1

= −
1

2s

∞
∑

n=1

(−1)n
q

n(n−1)
2

[n]q!
(sα)n −

1

2qs

∞
∑

n=1

(−1)n
q

n(n−1)
2

[n]q!
(qsα)n

= −
1

2s

∞
∑

n=0

(−1)n
q

n(n−1)
2

[n]q!
(sα)n +

1

2s
−

1

2qs

∞
∑

n=0

(−1)n
q

n(n−1)
2

[n]q!
(qsα)n +

1

2qs

= −
1

2s
E−sα

q +
1

2s
−

1

2qs
E−qsα

q +
1

2qs

and by taking the limit the proof is obtained as follows

Lq ¶1♢ = F (s) = lim
α→∞

(

−
1

2s
E−sα

q +
1

2s
−

1

2qs
E−qsα

q +
1

2qs



=
1 + q

2q
·

1

s
,
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where
lim

α→∞

E−qsα
q = lim

α→∞

E−sα
q = 0. □

Theorem 4.2. For n ∈ R with n > −1, the q-Laplace transform of function f(t) = tn

is

(4.1) Lq ¶tn♢ =
[n]q
s

Lq

{

tn−1
}

.

Proof. From definition of q-Laplace transform, it follows that

Lq ¶tn♢ = F (s) = lim
α→∞

α
∫

0

tnE−qst
q dqt =

∞
∫

0

tnE−qst
q dqt.

Then, calculate above integral by using (2.12) and (3.1) with the q-integral, we have
α
∫

0

tnE−qst
q dqt = −

1

s

α
∫

0

tnDqE
−st
q dqt

= −
1

s





qtnE−st
q + (qt)n

E−qst
q

2q

∣

∣

∣

∣

∣

α

0

− [n]q

α
∫

0

tn−1E−qst
q dqt





=
[n]q
s

α
∫

0

tn−1E−qst
q dqt −

qαnE−sα
q + (qα)n

E−qsα
q

2qs

=
[n]q
s

α
∫

0

tn−1E−qst
q dqt −

qαnE−sα
q + (qα)n

E−qsα
q

2qs

and by taking the limit

Lq ¶tn♢ =F (s) = lim
α→∞

α
∫

0

tnEq(−qst)dqt

= lim
α→∞





[n]q
s

α
∫

0

tn−1E−qst
q dqt −

qαnE−sα
q + (qα)n

E−qsα
q

2qs





=
[n]q
s

∞
∫

0

tn−1E−qst
q dqt =

[n]q
s

Lq

{

tn−1
}

and the proof is completed. □

Theorem 4.3. Let n ∈ N, then the q-Laplace transform of function f(t) = tn is

Lq ¶tn♢ =
1 + q

2q
·

[n]q!

sn+1
.

Proof. By using (4.1), it follows that

Lq ¶tn♢ =
[n]q
s

Lq

{

tn−1
}
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=
[n]q
s

·
[n − 1]q

s
Lq

{

tn−2
}

...

=
[n]q
s

·
[n − 1]q

s
· · · Lq ¶1♢

=
[n]q
s

·
[n − 1]q

s
· · ·

1 + q

2q
·

1

s

=
1 + q

2q
·

[n]q!

sn+1
.

□

Theorem 4.4. The q-Laplace transform of function f(t) = eat
q is

Lq

{

eat
q

}

=
1 + q

2q
·

1

s − a
, s > a.

Proof. From definition of q-Laplace transform, it follows that

Lq

{

eat
q

}

= lim
α→∞

α
∫

0

eat
q E−qst

q dqt = lim
α→∞

∞
∑

n=0

an

[n]q!

α
∫

0

tnE−qst
q dqt

=
∞
∑

n=0

an

[n]q!
lim

α→∞

α
∫

0

tnE−qst
q dqt =

∞
∑

n=0

an

[n]q!
Lq ¶tn♢

=
∞
∑

n=0

an

[n]q!
·

1 + q

2q
·

[n]q!

sn+1
=

1 + q

2qs

∞
∑

n=0

(

a

s

)n

=
1 + q

2q
·

1

s − a
,

and the proof is completed. □

Theorem 4.5. The q-Laplace transform of function f(t) = Eat
q is

Lq

{

Eat
q

}

=
1 + q

2qs

∞
∑

n=0

q
n(n−1)

2

(

a

s

)n

, s > 0.

Proof. From definition of q-Laplace transform, it follows that

Lq

{

Eat
q

}

=

∞
∫

0

Eat
q E−qst

q dqt

=
∞
∑

n=0

q
n(n−1)

2
an

[n]q!

∞
∫

0

tnE−qst
q dqt

=
∞
∑

n=0

q
n(n−1)

2
an

[n]q!
·

1 + q

2q
·

[n]q!

sn+1

=
1 + q

2qs

∞
∑

n=0

q
n(n−1)

2

(

a

s

)n

. □
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Theorem 4.6. The q-Laplace transform of q-cosine, q-sine, q-Cosine, q-Sine func-

tions are that

Lq ¶cosq at♢ =
1 + q

2q
·

s

s2 + a2
,

Lq ¶sinq at♢ =
1 + q

2q
·

a

s2 + a2
,

Lq ¶Cosq at♢ =
1 + q

2qs

∞
∑

n=0

(−1)n
qn(2n−1)

(

a

s

)2n

,

Lq ¶Sinq at♢ =
1 + q

2qs

∞
∑

n=0

(−1)n
qn(2n+1)

(

a

s

)2n+1

.

Proof. Consider the following definition of q-cosine, q-sine, q-Cosine and q-Sine func-
tions:

cosq at =
eiat

q + e−iat
q

2
and sinq at =

eiat
q − e−iat

q

2i
,

Cosq at =
Eiat

q + E−iat
q

2
and Sinq at =

Eiat
q − E−iat

q

2i
.

Then, by using linearity of q-Laplace transform,

Lq ¶cosq at♢ =Lq

{

eiat
q + e−iat

q

2

}

=
1

2

(

Lq

{

eiat
q

}

+ Lq

{

e−iat
q

})

=
1

2

(

1 + q

2q
·

1

s − ia
+

1 + q

2q
·

1

s + ia



=
1 + q

2q
·

s

s2 + a2

and in the same way we have

Lq ¶sinq at♢ =
1 + q

2q
·

a

s2 + a2
.

Now, we obtain q-Laplace transform of q-Cosine and q-Sine functions

Lq ¶Cosq at♢ =Lq

{

Eiat
q + E−iat

q

2

}

=
1

2

(

Lq

{

Eiat
q

}

+ Lq

{

E−iat
q

})

=
1 + q

4qs

(

∞
∑

n=0

q
n(n−1)

2

(

ia

s

)n

+
∞
∑

n=0

q
n(n−1)

2

(

−ia

s

)n


=
1 + q

4qs

∞
∑

n=0

[1 + (−1)n] q
n(n−1)

2

(

ia

s

)n

=
1 + q

2qs

∞
∑

n=0

(−1)n
qn(2n−1)

(

a

s

)2n
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and

Lq ¶Sinq at♢ =Lq

{

Eiat
q − E−iat

q

2i

}

=
1

2i

(

Lq

{

Eiat
q

}

− Lq

{

E−iat
q

})

=
1 + q

4qsi

(

∞
∑

n=0

q
n(n−1)

2

(

ia

s

)n

−
∞
∑

n=0

q
n(n−1)

2

(

−ia

s

)n


=
1 + q

4qsi

∞
∑

n=0

[1 − (−1)n] q
n(n−1)

2

(

ia

s

)n

=
1 + q

2qsi

∞
∑

n=0

qn(2n+1)
(

ia

s

)2n+1

=
1 + q

2qs

∞
∑

n=0

(−1)n
qn(2n+1)

(

a

s

)2n+1

.

So, the proof is completed. □

Theorem 4.7. The q-Laplace transform of hyperbolic q-cosine, hyperbolic q-sine

functions are

Lq ¶coshq at♢ =
1 + q

2q
·

s

s2 − a2
,

Lq ¶sinhq at♢ =
1 + q

2q
·

a

s2 − a2
.

Proof. Hyperbolic q-cosine, hyperbolic q-sine are defined by

coshq at =
eat

q + e−at
q

2
and sinhq at =

eat
q − e−at

q

2
.

Then, by using linearity of q-Laplace transform,

Lq ¶coshq at♢ = Lq

{

eat
q + e−at

q

2

}

=
1

2

(

Lq

{

eat
q

}

+ Lq

{

e−at
q

})

=
1

2

(

1 + q

2q
·

1

s − a
+

1 + q

2q
·

1

s + a



=
1 + q

2q
·

s

s2 − a2

and in the same way we have

Lq ¶sinhq at♢ =
1 + q

2q
·

a

s2 − a2
. □

If f(t) is piecewise continuous on the interval (0, ∞) and of exponential order c,
then Lq ¶f(t)♢ exists for s > c. Therefore, we obtain the following theorem.
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Theorem 4.8. If f, Dqf, D2
qf, . . . , Dn−1

q f are continuous and Dn
q f is piecewise con-

tinuous on (0, ∞) and are of exponential order then we have

Lq

{

Dn
q f(t)

}

= snLq ¶f(t)♢ −
(1 + q)

2q

n−1
∑

i=0

sn−1−iDi
qf (0) .

Proof. A function f is said to be of exponential order c if there exist c, K > 0 and
T > 0 such that

♣f(t)♣ ≤ Kect, for all t < T.

Therefore, we have

(4.2) lim
t→∞

E−qst
q f (t) = 0.

Then, by using (4.2) we write

Lq ¶Dqf(t)♢ =

∞
∫

0

E−qst
q Dqf (t) dqt

=
qE−qst

q f (t) + E−q2st
q f (qt)

2q

∣

∣

∣

∣

∣

∣

∞

0

−

∞
∫

0

f (qt) DqE
−qst
q dqt

= −
(1 + q)

2q
f (0) + qs

∞
∫

0

f (qt) E−q2st
q dqt

= −
(1 + q)

2q
f (0) + s

∞
∫

0

f (u) E−qsu
q dqu

=sLq ¶f(t)♢ −
(1 + q)

2q
f (0) .

If we replace f(t) by Dqf(t) we have

Lq

{

D2
qf(t)

}

=

∞
∫

0

E−qst
q D2

qf (t) dqt

=
qE−qst

q Dqf (t) + E−q2st
q Dqf (qt)

2q

∣

∣

∣

∣

∣

∣

∞

0

−

∞
∫

0

Dqf (qt) DqE
−qst
q dqt

= −
(1 + q)

2q
Dqf (0) + qs

∞
∫

0

f (qt) E−q2st
q dqt

= −
(1 + q)

2q
Dqf (0) + s

∞
∫

0

Dqf (t) E−qst
q dqt

=sLq ¶Dqf(t)♢ −
(1 + q)

2q
Dqf (0)
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=s



sLq ¶f(t)♢ −
(1 + q)

2q
f (0)

]

−
(1 + q)

2q
Dqf (0)

=s2Lq ¶f(t)♢ −
(1 + q)

2q
(Dqf (0) + sf (0)) .

If we continue with this process, we get

Lq

{

Dn
q f(t)

}

= snLq ¶f(t)♢ −
(1 + q)

2q

n−1
∑

i=0

sn−1−iDi
qf (0) ,

and the proof is completed. □
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