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GRAPHS WITH AT MOST FOUR SEIDEL EIGENVALUES

MODJTABA GHORBANI1, MARDJAN HAKIMI-NEZHAAD1, AND BO ZHOU2

Abstract. Let G be a graph of order n with adjacency matrix A(G). The eigen-
values of matrix S(G) = Jn − In − 2A(G), where Jn is the n by n matrix with all
entries 1, are called the Seidel eigenvalues of G. Let G(n, r) be the set of all graphs
of order n with a single Seidel eigenvalue with multiplicity r. In the present work,
we will characterize all graphs in the class G(n, n − i) for i = 1, 2 and for the case
i = 3 our characterization is done by this condition that the nullity of S(G) is zero.
If the nullity of S(G) is not zero the problem is solved in special cases.

1. Introduction

Let G be a simple graph on n vertices with adjacency matrix A(G). The roots of
the characteristic polynomial PG(λ) = det(λIn − A(G)) of G, where In is the identity
matrix of order n, are called the eigenvalues of G. The spectrum of an adjacency
matrix A(G) of G is the multiset of its eigenvalues and forms the spectrum of G

denoted by Spec(G).
Lint and Seidel in [13] introduced a symmetric (0, −1, 1)-adjacency matrix for a

graph G called the Seidel matrix of G as S(G) = Jn − In − 2A(G), where Jn is the n

by n matrix with entries 1 in every position.
The rank of the matrix S(G) denoted by rank(S(G)) is equal to the maximum

number of linearly independent columns of S(G). The multiplicity of the eigenvalue
zero of A(G) is called the nullity of G denoted by η(G).

Let µ1(G), . . . , µn(G) be the Seidel eigenvalues of G, namely the roots of det(µI −
S(G)), arranged in non-increasing order. The multiset of distinct Seidel eigenvalues
of G composes the Seidel spectrum of G and we denote it by SpecS(G). If G has
exactly s distinct Seidel eigenvalues µ1(G), . . . , µs(G) with multiplicities t1, . . . , ts,

Key words and phrases. Interlacing theorem, Seidel eigenvalue, Seidel switching, nullity.
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respectively, then we write SpecS(G) = ¶[µ1(G)]t1 , . . . , [µs(G)]ts♢. We encourage the
interested readers to consult papers [7,9] for more information about the mathematical
properties of this matrix.

A Seidel switching of graph G can be constructed as follows. Let V (G) = U1 ∪ U2

be a partition of vertices of G and G′ be a graph obtained from G by removing all
edges between U1 and U2 and adding all edges between them not presented in G. We
say that G′ is a Seidel switching of G with respect to U1 and in this case G′ and G

are Seidel co-spectral, see [8]. Two graphs G and G′ are called switching equivalent,
if G′ is constructed by a sequence of Seidel switching from G.

The Figure 1 contains the class of graphs of order n, 2 ≤ n ≤ 6, and their Seidel
switching together with their Seidel spectra, see [13]. For example, in Figure 1 three
switching equivalent classes of all graphs of order 4 are presented.

We proceed as follows. In the rest of this section, further definition are given and
known results needed are stated. In Section 2, we provide some preparatory results.
Section 3 contains the main results of this paper. In other words, in this section, we
give the characterization of some graphs in G(n, n − i) for i = 1, 2, 3 in terms of their
Seidel eigenvalues.

The complement of graph G is denoted by G. Also, the complete graph, cycle graph
and path graph on n vertices are denoted by Kn, Cn and Pn, respectively. A complete
bipartite graph with a bipartition of sizes a and b is denoted by Ka,b, where a + b = n.

A graph obtained by removing a perfect matching from Ka,b is denoted by K−

a,b.
The union of two disjoint graphs G and H is denoted by G ∪ H. The join G + H is

the graph obtained from G ∪ H by connecting all vertices from V (G) with all vertices
from V (H).

The graph G + e is a new graph obtained from G by adding an edge e.
Let A = (aij)m×n and B = (bij)p×q be two arbitrary matrices. A new mp × nq

product matrix constructed from A by replacing each element aij with the block aijB

is called as Kronecker product or Tensor product of them and we denote it by A ⊗ B.

2. Auxiliary Results

Lemma 2.1 ([3]). For any graph G with n vertices, where n ≥ 2, we have

i)
∑n

i=1 µi(G) = 0;

ii)
∑n

i=1 µ2
i (G) = n(n − 1).

Lemma 2.2 ([3]). If G is a graph on n vertices, then rank(S(G)) = n − 1 or n.

Theorem 2.1 (Interlacing Theorem, [3]). Let G be a graph of order n with induced

subgraph H of order m. Let µ1(G) ≥ · · · ≥ µn(G) and µ1(H) ≥ · · · ≥ µm(H)
be eigenvalues of G and H, respectively. Then for every i, 1 ≤ i ≤ m, we have

µi(G) ≥ µi(H) ≥ µn−m+i(G).

Let G(n, r) be the set of a graphs on n vertices which has a single Seidel eigenvalue
with multiplicity r. Here, we give the characterization of some graphs in G(n, n − i)
for i = 1, 2, 3 in terms of their Seidel eigenvalues.
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Figure 1. Each graph in above diagram is a representative of a
class of graphs of order n (2 ≤ n ≤ 6) together with their switching
equivalent graphs which have the same Seidel spectra. Also, all Seidel
eigenvalues are written in the right hand side of each graph.

Theorem 2.2. A graph of order n ≥ 2 has exactly one positive Seidel eigenvalue if

and only if it is a complete bipartite graph or an empty graph.

Proof. Let G be a graph of order n. If G ̸= Kn1,n2
, where n1 + n2 = n and n ≥ 2,

then we have

SpecS(Kn1,n2
) = ¶[−1]n−1, [n − 1]1♢,
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∼ ∼

∼ ∼ ∼ ∼

∼ ∼

Figure 2. Three switching equivalent classes of graphs of order 4

thus µ2(G) = −1. Now suppose that G is connected graph, where µ2(G) < 0 and
G ̸= Kn1,n2

. Hence, either K3 or P4 are as an induced subgraph of G. Since

SpecS(K3) = ¶[−2]1, [1]2♢
and

SpecS(P4) = ¶[−
√

5]1, [−1]1, [1]1, [
√

5]1♢,

the interlacing theorem yields that µ2(G) ≥ µ2(K3) = 1 or µ2(G) ≥ µ2(P4) = 1, a
contradiction. If G is a disconnected graph with exactly one positive Seidel eigenvalue,
then G is Seidel equivalent to a connected graph (e.g., by letting U1 be the vertex set
of a component), thus G is Seidel equivalent to a complete bipartite graph (by the
first part of the proof) and consequently to an empty graph. □

Corollary 2.1. If G ̸= Kn1,n2
, n1 + n2 = n, is a connected graph with at least two

vertices, then µ2 ≥ 1.

Corollary 2.2. A connected graph G has exactly two positive Seidel eigenvalues if

and only if it has K3 or P4 as an induced subgraph.

Theorem 2.3. A graph of order n ≥ 3 has exactly one negative Seidel eigenvalue if

and only if it is a complete graph or it is isomorphic with Kn1
∪Kn2

, where n1 +n2 = n.

Proof. By regarding S(G) = −S(G), one can see that if G has exactly one negative
Seidel eigenvalue then G has exactly one positive Seidel eigenvalue. By Theorem 2.2
the proof is complete. □

Corollary 2.3. If G ̸= Kn is a connected graph with at least three vertices, then

µn−1(G) ≤ −1.

Corollary 2.4. The connected graph G has exactly two negative Seidel eigenvalues if

and only if it has graph P3 as an induced subgraph.
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3. Main Results

The main goal of this paper is to classify some classes of graphs G ∈ G(n, n − i) for
i = 1, 2, 3. For i = 1, 2 the problem is completely solved but for i = 3, in the case that
η(G) = 0, we are done. But if η > 0, we characterized the graphs in special cases. At
first, suppose G is a graph with a single eigenvalue with multiplicity n − 1 or n − 2.
The following result can be obtained.

Theorem 3.1.

(i) For n ≥ 2, G(n, n − 1) = ¶Kn, Kn, Kn1,n2
, Kn1

∪ Kn2
♢, where n1 + n2 = n.

(ii) For n ≥ 3, G(n, n − 2) = ¶K3, K3, P3, K2 ∪ K1♢.

Proof. (i) If G ∈ G(n, n − 1), then G has exactly two distinct Seidel eigenvalues and
so G has one single positive or one single negative Seidel eigenvalue. By Theorems 2.2
and 2.3, G is Seidel equivalent to one of graphs Kn, Kn, Kn1,n2

or Kn1
∪ Kn2

, where
n1 + n2 = n. This completes the proof of the first claim.

(ii) If G ∈ G(n, n − 2), then G has at most three distinct Seidel eigenvalues and
thus we can consider the following cases.

Case 1. SpecS(G) = ¶[α]n−2, [β]2♢, where α ̸= β are two real numbers.
Subcase 1. If β < 0 < α, then by Lemma 2.1, we obtain

α =
1

n − 2

√

2(n − 1)(n − 2) and β = −1

2

√

2(n − 1)(n − 2).(3.1)

Suppose G is a graph of order greater than 2. If K3 or K2 ∪K1 is an induced subgraph
of G, then by interlacing theorem we have α = 1 and β ≤ −2. Hence (3.1) implies
that n = 0, a contradiction. If K3 or P3 is an induced subgraph of G, then interlacing
theorem yields that α = 2 and β ≤ −1. Thus, (3.1) implies that n = 3 and so G is
Seidel equivalent to one of graphs K3 or P3.

Subcase 2. If α < 0 < β, then a similar argument shows that G is isomorphic to
one of graphs K3 or K2 ∪ K1.

Case 2. SpecS(G) = ¶[α]n−2, [β]1, [γ]1♢ and α, β, γ are distinct Seidel eigenvalues.
Lemma 2.2 implies that the multiplicity of the Seidel eigenvalue zero is at most 1. If
[0]1 ∈ SpecS(G), then G has a single positive or a single negative Seidel eigenvalue
and by Theorem 2.2 and 2.3 we conclude that G is Seidel equivalent to one of graphs
Kn, Kn, Kn1,n2

or Kn1
∪ Kn2

, where n1 + n2 = n, both of them are contradictions. By
a similar argument, the cases β < 0 < α < γ and γ < α < 0 < β and β < 0 < γ < α

and α < γ < 0 < β are impossible. Also, if either α < 0 < β < γ or γ < β < 0 < α,
then G is Seidel equivalent to one of graphs K3, K2 ∪ K1, K3 or P3, all of which are
impossible, and we are done. □

For the graph G in G(n, n − 3), we know that G has at most four distinct Seidel
eigenvalues. In terms of the number and multiplicity of Seidel eigenvalues, we can
divide all graphs in G(n, n − 3) into three classes:

G1(n, n − 3) =
{

G ∈ G(n, n − 3)
∣
∣
∣ SpecS(G) = ¶[α]n−3, [β]3♢

}

,
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G2(n, n − 3) =
{

G ∈ G(n, n − 3)
∣
∣
∣ SpecS(G) = ¶[α]n−3, [β]2, [γ]1♢

}

,

G3(n, n − 3) =
{

G ∈ G(n, n − 3)
∣
∣
∣ SpecS(G) = ¶[α]n−3, [β]1, [γ]1, [ρ]1♢

}

.

Theorem 3.2 ([6]). Let G be a graph of order n. Let d ≥ 1 and S(G) be a Seidel

matrix of order n ≥ 2 with smallest eigenvalue µn(G) of multiplicity n − d ≥ 1 and

suppose µ2
n(G) ≥ d + 2. Then

n ≤ d(µ2
n(G) − 1)

µ2
n(G) − d

,

with equality holds if and only if the spectrum of S(G) is
{

[µn(G)]n−d, [µn(G)
d

(n − d)]d
}

.

Example 3.1. Suppose G ∈ G(5, 2) and rank(S(G)) = 4. Then by Figure 1, G(5, 2) =
¶G1, G2, C5, P4 ∪ K1♢, where G1 and G2 are as depicted in Figure 3. Furthermore,
their Seidel spectra are SpecS(G) = ¶[−

√
5]2, [0]1, [

√
5]2♢.

G1 G2

Figure 3. Two graphs G1 and G2 in Theorem 3.3

Theorem 3.3. Let G ∈ G(n, n−3) be a graph of order n ≥ 6 and rank(S(G)) = n−1.

Then G(n, n − 3) is empty.

Proof. If rank(S(G)) = n − 1, then [0]1 ∈ SpecS(G). Hence, we have the following
cases.

Case 1. SpecS(G) = ¶[α]n−3, [0]1, [β]2♢, α ̸= β ̸= 0. If α < β, then by Lemma 2.1,
obtain

α = − 1

n − 3

√

2n(n − 3) and β =
1

2

√

2n(n − 3).(3.2)

Suppose G is a graph of order at least 6 and contains one of graphs K4 or K2 ∪ K2

or K1 ∪ K3 as an induced subgraph. First, notice that

SpecS(K4) = SpecS(K2 ∪ K2) = SpecS(K1 ∪ K3) = ¶[−3]1, [1]3♢.

Hence, interlacing theorem, yields that α = −3, β ≥ 1 and 1 ≤ 0, a contradiction.
Suppose K4 or C4 or K1,3 is an induced subgraph of G. Since

SpecS(K4) = SpecS(C4) = SpecS(K1,3) = ¶[−1]3, [3]1♢,

the interlacing theorem implies that α = −1 and β ≥ 3. Hence, by (3.2), we
find n = −3 which contradicts this fact that n ≥ 6. If there is no graph with
either Seidel eigenvalues ¶[−1]3, [3]1♢ or ¶[−3]1, [1]3♢ as an induced subgraph of G,
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then, by Figure 1, every induced subgraph on 4 vertices has the Seidel spectrum
¶[−

√
5]1, [−1]1, [1]1, [

√
5]1♢. Hence, the interlacing theorem implies that α = −

√
5,

β ≥
√

5 and so by (3.2) we obtain n = 5 and β =
√

5, a contradiction. Now, suppose
α > β. By a similar argument, we can show that this case is also impossible.

Case 2. SpecS(G) = ¶[α]n−3, [0]1, [β]1, [γ]1♢, where α, β, γ are three distinct non-
zero real numbers. Suppose that G is not a graph with a single negative (positive)
Seidel eigenvalue. Then we yield n ≥ 6 and the following cases hold.

Subcase 2.1. If α < 0 < β < γ, then we can suppose either K4, K2 ∪ K2 or
K1 ∪ K3 is an induced subgraph of G. The interlacing theorem yields that α = −3
and γ > β ≥ 1, a contradiction. Also, we may assume one of graphs K4 or C4 or
K1,3 is an induced subgraph of G. Again, interlacing theorem implies that α = −1,

β > 0 and γ ≥ 3. Thus by Lemma 2.1 we find β = γ = 1
2
(n − 3 +

√
n2 + 2n − 3), a

contradiction. This means that P4, C4 + e, K3 + e, K2 ∪ K2 or P3 ∪ K1 is an induced
subgraph of G. Then interlacing theorem implies that α = −

√
5, β ≥ 1 and γ ≥

√
5.

Hence, by Lemma 2.1, we obtain β = γ = 1
2
(
√

5(n − 3) +
√

−3n2 + 18n − 15) which
contradicts this fact that β < γ.

Subcase 2.2. Let β < γ < 0 < α. Since S(G) = −S(G) a similar argument with
Subcase 2.1 shows that this case is also impossible. This completes the proof. □

Theorem 3.4. Let G ∈ G1(n, n − 3) be a graph of order n ≥ 4. Then

G1(n, n − 3) =¶K4, K4, C4, K1,3, K2 ∪ K2, K3 ∪ K1, C5 ∪ K1, H1, H2, H3♢,

where Hi, 1 ≤ i ≤ 3, are as depicted in Figure 4.

Proof. Let SpecS(G) = ¶[α]n−3, [β]3♢. If α < β, then by Lemma 2.1, we get

α =
−1

n − 3

√

3(n − 1)(n − 3) and β =
1

3

√

3(n − 1)(n − 3).(3.3)

Similar to the Theorem 3.3, we can show that one of graphs K4, K2 ∪ K2 or K1 ∪ K3

is an induced subgraph of G and thus α = −3 and β ≥ 1. Hence, (3.3) implies that
n = 4, β = 1 and G has either K4, K2 ∪ K2 or K1 ∪ K3 as an induced subgraph of
G. If K4 or C4 or K1,3 is an induced subgraph of G, then we have α = −1, β ≥ 3
and so by (3.3), we find n = 0 or n = 3, a contradiction with n ≥ 4. If G has one
of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 as an induced subgraph,
by interlacing theorem, we conclude that α = −

√
5, β ≥

√
5 and (3.3) yields n = 6.

Hence, SpecS(G) = ¶[−
√

5]3, [
√

5]3♢. By Figure 1, G is Seidel equivalent to one of
graphs C5 ∪ K1, H1, H2 or H3. Next suppose that β < α. It is not difficult to see
that G is Seidel equivalent to one of graphs K4 or C4 or K1,3 or C5 ∪ K1 or H1 or H2

or H3. This completes the proof. □



180 M. GHORBANI, M. HAKIMI-NEZHAAD, AND B. ZHOU

H1 H2 H3

Figure 4. Three graphs H1, H2 and H3 in Theorem 3.4

Theorem 3.5. There is no graph in G2(n, n − 3) of order n ≥ 4 with Seidel spectrum

¶[α]n−3, [β]2, [γ]1♢, where α, β and γ satisfy in the following conditions:

(i) γ < 0 < α < β or γ < 0 < β < α or β < α < 0 < γ or α < β < 0 < γ;

(ii) α < 0 < β < γ or γ < β < 0 < α;

(iii) β < 0 < γ < α or α < γ < 0 < β;

(iv) β < γ < 0 < α or α < 0 < γ < β.

Proof. (i) If G has a single positive or a single negative Seidel eigenvalue with multi-
plicity 1, then Theorems 2.2 and 2.3 yield that G2(n, n − 3) is empty.

(ii) Suppose that α < 0 < β < γ and n ≥ 5 (if n = 4 then G has only one negative
Seidel eigenvalue and G2(n, n − 3) is empty). If one of graphs K4 or K2 ∪ K2 or
K1 ∪ K3 is an induced subgraph of G, then by interlacing theorem, we get α = −3
and γ > β ≥ 1. Thus Lemma 2.1 implies that

{

−3(n − 3) + 2β + γ = 0,

9(n − 3) + 2β2 + γ2 = n(n − 1).

Consequently, γ = 3(n − 3) − 2β and so β = 1
3
(3n − 3 ±

√

−3n(n − 4)). Thus,

−3n(n−4) ≥ 0 if and only if n = 4. This means that β = 1 and γ = 1, a contradiction.
Now, suppose one of graphs K4 or C4 or K1,3 is an induced subgraph of G. Thus,
α = −1, β > 0 and γ ≥ 3. Thus, by Lemma 2.1, we find γ = n − 1 and β = −1,
a contradiction. If one of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 is
an induced subgraph of G, again one can prove that α = −

√
5, β ≥ 1 and γ ≥

√
5.

Hence, Theorem 3.2 implies that n ≤ 6. There is no graph with these conditions and
thus in this case G2(n, n − 3) is empty.

By a similar argument, we can show that in all cases (ii)-(iv), G2(n, n−3) is empty
and the proof is complete. □

Theorem 3.6 ([3]). Let G be a k-regular graph of order n. Then the Seidel spectrum

of G is ¶[n − 1 − 2k]1, [−1 − 2λn−1]
1, . . . , [−1 − 2λ1]

1♢, where λi (1 ≤ i ≤ n) are

eigenvalues of adjacency matrix A(G).

Theorem 3.7 ([4]). Suppose that G is a graph of order n without isolated vertices.

Then η(G) = n − 3 if and only if G is isomorphic to the complete tripartite graph

Kn1,n2,n3
, where n1 + n2 + n3 = n, n1, n2, n3 > 0.
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In continuing by Qn(4, 2) we mean the collection of all connected regular graphs of
order n with spectrum ¶[λ1]

1, [λ2]
1, [λ3]

t1 , [λ4]
t2♢, t1 + t2 = n − 2. Also, Qn(4, 2, −1)

(resp. Qn(4, 2, 0)) denotes the set of all graphs in Qn(4, 2), in which −1 (resp. 0) is an
eigenvalue.

Let G be a graph of order n and adjacency matrix A. By G⊛Jm we mean a new
graph obtained from G by replacing every vertex of G with a clique Km and two such
cliques are adjacent (namely for two cliques Q1 and Q2 all vertices of Q1 are adjacent
with all vertices of Q2) if and only if their corresponding vertices are joined in G, see
[11]. One can see that the adjacency matrix of G⊛Jm is A⊛Jm = (A+ In)⊗Jm − Inm.

Theorem 3.8 ([11]). The connected regular graph G is in Qn(4, 2, 0) if and only if

G = K−

s,s⊛Jt, where n = 2st, s ≥ 3 and t ≥ 1.

Theorem 3.9 ([11]). The connected regular graph G is in Qn(4, 2, −1) if and only if

G = Ks,s⊛Jt, where s, t ≥ 2, or G = K−

s,s⊛Jt, where n = 2st, s ≥ 3 and t ≥ 1.

Theorem 3.10 ([11]). There is no connected k-regular graph of order n ≥ 4 with

adjacency spectrum ¶[k]1, [λ2]
1, [λ3]

1, [λ4]
n−3♢.

Theorem 3.11. Let G ∈ G2(n, n − 3) be a connected regular graph of order n ≥ 4.

Then the following cases hold.

(i) If γ < α < β, then G is isomorphic to the one of graphs Kn

3
, n

3
, n

3
, n ≡ 0

(mod 3) or K−

3,3⊛Jn

6
, n ≡ 0 (mod 6).

(ii) If β < α < γ, then G is isomorphic to K−

3,3⊛Jn

6
, n ≡ 0 (mod 6).

Proof. (i) Let G be a graph of order n. By Theorem 3.5, we can assume that
γ < α < 0 < β. If one of graphs K4 or K2 ∪ K2 or K1 ∪ K3 is an induced subgraph of
G, then by interlacing theorem we get α = 1, a contradiction. If G has one of graphs
P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 as an induced subgraph of G, then
we obtain γ ≤ −

√
5, α = −1, β ≥

√
5 and so by Lemma 2.1, we get β = 2n

3
− 1 and

γ = −n
3

− 1. As well as, if one of graphs K4 or C4 or K1,3 is an induced subgraph of

G, Lemma 2.1 implies that β = 2n
3

− 1 and γ = −n
3

− 1. Therefore,

SpecS(G) =

{−n

3
− 1

1

, [−1]n−3,


2n

3
− 1

2
}

,

where n ≡ 0 (mod 3). By Theorem 3.6, the adjacency spectrum of G is

Spec(G) =
 −n

3

2

, [0]n−3,


2n

3

1 

or

Spec(G) =
 −n

3

2

, [0]n−4,


n

6

1

,


n

2

1 

.

Suppose Spec(G) = ¶[−n
3

]2, [0]n−3, [2n
3

]1♢, since η(G) = n − 3, by Theorem 3.7, G

is isomorphic to Kn

3
, n

3
, n

3
. If Spec(G) = ¶[−n

3
]2, [0]n−4, [n

6
]1, [n

2
]1♢, then Theorem 3.8

implies that G is isomorphic to K−

3,3 ⊛ Jn

6
, where n ≡ 0 (mod 6).
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(ii) Assume that β < 0 < α < γ. It is not difficult to see that α = 1 and Lemma
2.1 yields that γ = n

3
+ 1 and β = 1 − 2n

3
. By Theorem 3.6, we obtain

Spec(G) =

{−n

6
− 1

1

, [−1]n−3,


n

3
− 1

1

,


5n

6
− 1

1
}

(3.4)

or

Spec(G) =

{−n

6
− 1

1

, [−1]n−4,


n

3
− 1

2

,


n

2
− 1

1
}

.(3.5)

Theorem 3.10 implies that (3.4) is impossible. If (3.5) holds, then Theorem 3.9
yields that G is isomorphic to the graph K−

3,3 ⊛Jn

6
, n ≡ 0 (mod 6) and this completes

the proof. □

Example 3.2. Suppose n ≡ 0 (mod 3). For two graphs G1 = Kn

3
, n

3
∪ K n

3
and G2 =

Kn

3
, n

3
∪ K n

3
, we obtain

SpecS(G1) =

{−n

3
− 1

1

, [−1]n−3,


2n

3
− 1

2
}

,

SpecS(G2) =

{−2n

3
+ 1

2

, [1]n−3,


n

3
+ 1

1
}

.

This implies that both graphs G1 and G2 are in G2(n, n − 3).

Example 3.3. Suppose n = 6. By using a program in SageMath software [12], we
conclude that all graphs in G2(6, 3) are as depicted in Figures 5 and 6.

Figure 5. All graphs in G2(6, 3) with Seidel spectrum ¶[3]2, [−1]3, [−3]1♢

Figure 6. All graphs in G2(6, 3) with Seidel spectrum ¶[3]1, [1]3, [−3]2♢

In what follows, by mG we mean the disjoint union of m copies of G, namely
G ∪ · · · ∪ G
︸ ︷︷ ︸

m times

.
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Theorem 3.12 ([3]). (i) A graph G with the smallest Seidel eigenvalue larger than

−3 is switching equivalent to graphs Kn or K2 ∪ Kn−2 or one of graphs depicted in

Figure 7.

(ii) A graph G with smallest Seidel eigenvalue greater than or equal with −3 is

Seidel equivalent to a subgraph of mK2, m ≥ 2, or of T (8) (namely the complement

of the line graph of K8).

U1 U2

U3 U4 U5

U6 U7 U8 U9 U10

Figure 7. Ten graphs with the smallest Seidel eigenvalue larger
than −3.

Table 1. Graphs together with the Seidel spectra in Theorem 3.12.

Graphs Seidel spectrum
Kn ¶[−1]n−1, [n − 1]1♢
K2 ∪ Kn−2 ¶[ n

2
− 2 − 1

2

√

(n + 6)(n − 2)]1, [−1]n−3, [1]1, [ n

2
− 2 + 1

2

√

(n + 6)(n − 2)]1♢
U1 ¶[−2.56]1, [−1]2, [1.56]1, [3]1♢
U2 ¶[−

√
5]2, [0]1, [

√
5]2♢

U3 ¶[−2.75]1, [−1]3, [1.69]1, [4.06]1♢
U3 ¶[−

√
5]3, [

√
5]3♢

U5 ¶[−2.6]1, [−2.24]1, [−1], [0.11]1, [2.24]1, [3.49]1♢
U6 ¶[−2.78]1, [−2.46]1, [−1]2, [0.29]1, [2.49]1, [4.46]1♢
U7 ¶[−2.9]1, [−1]4, [1.74]1, [5.15]1♢
U8 ¶[−2.83]1, [−2.24]1, [−1]2, [0.15]1, [2.24]1, [4.68]1♢
U9 ¶[−2.6]2, [−2]1, [0.11]2, [3.49]2♢
U10 ¶[−2.7]1, [−2.24]1, [−1]1, [2.24]2, [3.7]1♢
mK2 (m ≥ 2) ¶[−3]m−1, [1]m, [n − 3]1♢
T (8) ¶[−3]21, [9]7♢

Example 3.4. Suppose G ∈ G3(4, 1), then we have G3(4, 1) = ¶K2 ∪ K2, P3 ∪ K1, K3 +
e, P4, C4 + e♢ and SpecS(G) = ¶[−

√
5]1, [−1]1, [1]1, [

√
5]1♢.
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Theorem 3.13. Let G ∈ G3(n, n − 3) be a graph of order n ≥ 5. Then the following

cases hold.

(i) There is no graph in G3(n, n − 3) which satisfies in the following conditions:

α < β < γ < 0 < ρ or β < α < γ < 0 < ρ or β < γ < α < 0 < ρ or

ρ < 0 < γ < β < α or ρ < 0 < γ < α < β or ρ < 0 < α < γ < β or

α < β < 0 < γ < ρ or ρ < γ < 0 < β < α.

(ii) If α < 0 < β < γ < ρ or ρ < γ < β < 0 < α, then G is Seidel equivalent to a

subgraph of mK2, m ≥ 2, or of T (8).

Proof. (i) If G has a single positive or a single negative Seidel eigenvalue with mul-
tiplicity 1, then by Theorems 2.2 and 2.3, G3(n, n − 3) is empty. Now, suppose
α < β < 0 < γ < ρ and n ≥ 5. If one of graphs K4 or K2 ∪ K2 or K1 ∪ K3 is an
induced subgraph of G, then by interlacing theorem, we get α = −3 and β ≥ 1, a
contradiction. If G has one of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1

as an induced subgraph, then we yield α = −
√

5, −1 ≤ β < 0, γ ≥ 1 and ρ ≥
√

5.
As well as, if one of graphs K4 or C4 or K1,3 is an induced subgraph of G, then we
obtain α = −1, −1 ≤ β < 0, γ > 0 and ρ ≥ 3. Since, α > −3, applying Theorem
3.12 (i) and Table 1, we achieve a contradiction. By a similar argument the case
ρ < γ < 0 < β < α is impossible.

(ii) Suppose α < 0 < β < γ < ρ and n ≥ 5. If one of graphs P4 or C4 + e or K3 + e

or K2 ∪ K2 or P3 ∪ K1 is an induced subgraph of G, then α = −
√

5, β > 0, γ ≥ 1
and ρ ≥

√
5 and if one of graphs K4 or C4 or K1,3 is an induced subgraph of G, then

α = −1, β, γ > 0 and ρ ≥ 3, a contradiction with α > −3. If one of graphs K4 or
K2 ∪ K2 or K1 ∪ K3 is an induced subgraph of G, then interlacing theorem, yields
α = −3 and β, γ, ρ ≥ 1. Theorem 3.12 (ii) implies that G is Seidel equivalent to a
subgraph of mK2, m ≥ 2, or of T (8). Let ρ < γ < β < 0 < α. Since S(G) = −S(G),
a similar argument shows that in this case G is Seidel equivalent to a subgraph of
mK2, m ≥ 2, or of T (8). □

Example 3.5. Suppose n = 5. By Figure using a method described in 1, we conclude
that all graphs in G3(5, 2), where β < α < 0 < γ < ρ and ρ < γ < 0 < α < β, are as
depicted in Figures 8 and 9, respectively.

Figure 8. All graphs in G3(5, 2) with Seidel spectrum
¶[−2.37]1, [−1]2, [1]1, .37]1♢
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Figure 9. All graphs in G3(5, 2) with Seidel spectrum
¶[−3.37]1, [−1]1, [1]2, [2.37]1♢

Conjecture 3.1. Let G ∈ G3(n, n − 3) be a graph of order n ≥ 6. Then the following
cases hold:

i) if β < α < 0 < γ < ρ, then G is Seidel equivalent to Ki,j ∪ Kp;

ii) if ρ < γ < 0 < α < β, then G is Seidel equivalent to Ki,j ∪ Kp,

where 1 ≤ i ≤ [n
3
], i ≤ j ≤ n − 3 and 3 ≤ p ≤ n − (i + j) unless n ≡ 0 (mod 3) and

i = j = p = n
3
.

Remark 3.1. Suppose G ∈ G3(n, n − 3) is a graph of order n ≥ 6. If the Seidel
eigenvalues of G are ordered as β < α < 0 < γ < ρ, then it is not difficult to see that
one of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 or K4 or C4 or K1,3 is
an induced subgraph of G and by interlacing theorem, we have α = −1. Also, if the
Seidel eigenvalues of G satisfy in ρ < γ < 0 < α < β, by a similar argument we can
show that α = 1.
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GROWTH OF SOLUTIONS OF A CLASS OF LINEAR
DIFFERENTIAL EQUATIONS NEAR A SINGULAR POINT

SAMIR CHERIEF1 AND SAADA HAMOUDA1

Abstract. In this paper, we investigate the growth of solutions of the differential
equation

f ′′ + A (z) exp



a

(z0 − z)
n



f ′ + B (z) exp



b

(z0 − z)
n



f = 0,

where A (z), B (z) are analytic functions in the closed complex plane except at z0

and a, b are complex constants such that ab ̸= 0 and a = cb, c > 1. Another case has
been studied for higher order linear differential equations with analytic coefficients
having the same order near a finite singular point.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution the-
ory of meromorphic function on the complex plane C and in the unit disc D =
¶z ∈ C : ♣z♣ < 1♢ (see [11, 15, 20]). The importance of this theory has inspired many
authors to find modifications and generalizations to different domains. Extensions of
Nevanlinna Theory to annuli have been made by [2,12–14,16]. Recently in [6,10], Fet-
touch and Hamouda investigated the growth of solutions of certain linear differential
equations near a finite singular point. In this paper, we continue this investigation
near a finite singular point to study other types of linear differential equations.

First, we recall the appropriate definitions. Set C = C ∪ ¶∞♢ and suppose that
f (z) is meromorphic in C \ ¶z0♢, where z0 ∈ C. Define the counting function near z0

Key words and phrases. Linear differential equations, growth of solutions, finite singular point.
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by

(1.1) Nz0 (r, f) = −

r
∫

∞

n (t, f) − n (∞, f)

t
dt − n (∞, f) log r,

where n (t, f) counts the number of poles of f (z) in the region ¶z ∈ C : t ≤ ♣z − z0♣♢∪
¶∞♢ each pole according to its multiplicity and the proximity function by

(1.2) mz0 (r, f) =
1

2π

2π
∫

0

ln+
∣

∣

∣f


z0 − reiϕ
∣

∣

∣ dφ.

The characteristic function of f is defined in the usual manner by

(1.3) Tz0 (r, f) = mz0 (r, f) + Nz0 (r, f) .

In addition, the order of meromorphic function f (z) near z0 is defined by

(1.4) σT (f, z0) = lim sup
r→0

log+ Tz0 (r, f)

− log r
.

For an analytic function f (z) in C \ ¶z0♢, we have also the definition

(1.5) σM (f, z0) = lim sup
r→0

log+ log+ Mz0 (r, f)

− log r
,

where Mz0 (r, f) = max ¶♣f (z)♣ : ♣z − z0♣ = r♢ .
If f (z) is meromorphic in C \ ¶z0♢ of finite order 0 < σT (f, z0) = σ < ∞, then we

can define the type of f as the following:

τT (f, z0) = lim sup
r→0

rσTz0 (r, f) .

If f (z) is analytic in C \ ¶z0♢ of finite order 0 < σM (f, z0) = σ < ∞, we have also
another definition of the type of f as the following:

τM (f, z0) = lim sup
r→0

rσ log+ Mz0 (r, f) .

In the usual manner, we define the hyper order near z0 as follows:

σ2,T (f, z0) =lim sup
r→0

log+ log+ Tz0 (r, f)

− log r
,(1.6)

σ2,M (f, z0) =lim sup
r→0

log+ log+ log+ Mz0 (r, f)

− log r
.(1.7)

Remark 1.1. It is shown in [6] that if f is a non-constant meromorphic function in

C \ ¶z0♢ and g (w) = f


z0 − 1
w



then g (w) is meromorphic in C and we have

T (R, g) = Tz0



1

R
, f


,

and so σ (f, z0) = σ (g) . Also, if f (z) is analytic in C \ ¶z0♢ , then g (w) is entire and
thus σT (f, z0) = σM (f, z0) and σ2,T (f, z0) = σ2,M (f, z0) .
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So, we can use the notation σ (f, z0) without any ambiguity. But concerning the
type, as in the complex plane, τT (f, z0) does not equal to τM (f, z0) . For example, for

the function f (z) = exp
{

1
z0−z

}

, we have Mz0 (r, f) = exp
{

1
r

}

, then σM (f, z0) = 1

and τM (f, z0) = 1. On the other side, we have

Tz0 (r, f) = mz0 (r, f) =
1

2π

2π
∫

0

ln+
∣

∣

∣f


z0 − reiϕ

∣

∣

∣ dφ =
1

πr
,

so σT (f, z0) = 1 and τT (f, z0) = 1
π
.

Definition 1.1. The linear measure of a set E ⊂ (0, ∞) is defined as
∫∞

0 χE (t) dt and

the logarithmic measure of E is defined by
∫∞

0
χE(t)

t
dt, where χE (t) is the characteristic

function of the set E.

The linear differential equation

(1.8) f ′′ + A (z) eazf ′ + B (z) ebzf = 0,

where A (z) and B (z) are entire functions, is investigated by many authors; see for
example [1, 3, 4, 7]. In [3], Chen proved that if ab ≠ 0 and arg a ≠ arg b or a = cb,
0 < c < 1 or c > 1, then every solution f (z) ̸≡ 0 of (1.8) is of infinite order. In 2012,
Hamouda proved results similar to (1.8) in the unit disc concerning the differential
equation

(1.9) f ′′ + A (z) e
a

(z0−z)µ f ′ + B (z) e
b

(z0−z)µ f = 0,

where µ > 0 and arg a ̸= arg b or a = cb, 0 < c < 1, see [8]. Recently, Fettouch and
Hamouda proved the following two results.

Theorem 1.1 ([6]). Let z0, a, b be complex constants such that arg a ≠ arg b or a = cb
(0 < c < 1) and n be a positive integer. Let A (z) , B (z) ̸≡ 0 be analytic functions

in C \ ¶z0♢ with max ¶σ (A, z0) , σ (B, z0)♢ < n. Then every solution f (z) ̸≡ 0 of the

differential equation

f ′′ + A (z) exp

{

a

(z0 − z)n

}

f ′ + B (z) exp

{

b

(z0 − z)n

}

f = 0

satisfies σ (f, z0) = ∞, with σ2 (f, z0) = n.

Theorem 1.2 ([6]). Let A0 (z) ̸≡ 0, A1 (z) , . . . , Ak−1 (z) be analytic functions in

C\¶z0♢ satisfying max ¶σ (Aj, z0) : j ̸= 0♢ < σ (A0, z0) . Then every solution f (z) ̸≡ 0
of the differential equation

(1.10) f (k) + Ak−1 (z) f (k−1) + · · · + A1 (z) f ′ + A0 (z) f = 0

satisfies σ (f, z0) = ∞, with σ2 (f, z0) = σ (A0, z0) .

In this paper, we will investigate the case c > 1 to complete the remaining case in
Theorem 1.1, in the following two results.
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Theorem 1.3. Let n ∈ N \ ¶0♢ , A (z) ̸≡ 0, B (z) ̸≡ 0 be analytic functions in

C \ ¶z0♢ such that max ¶σ (A, z0) , σ (B, z0)♢ < n. Let a, b be complex constants such

that ab ≠ 0 and a = cb, c > 1. Then every solution f (z) ̸≡ 0 of the differential

equation

(1.11) f ′′ + A (z) exp

{

a

(z0 − z)n

}

f ′ + B (z) exp

{

b

(z0 − z)n

}

f = 0,

that is analytic in C \ ¶z0♢ satisfies σ (f, z0) = ∞.

Theorem 1.4. Let n ∈ N \ ¶0♢ , A (z) ̸≡ 0, B (z) ̸≡ 0 be polynomials. Let a, b be

complex constants such that ab ≠ 0 and a = cb, c > 1. Then every solution f (z) ̸≡ 0
of the differential equation

(1.12) f ′′ + A


1

z0 − z



exp

{

a

(z0 − z)n

}

f ′ + B


1

z0 − z



exp

{

b

(z0 − z)n

}

f = 0,

that is analytic in C \ ¶z0♢ satisfies σ (f, z0) = ∞, with σ2 (f, z0) = n.

In the following result, we will improve Theorem 1.2 by studying the case when
max ¶σ (Aj, z0) : j ̸= 0♢ ≤ σ (A0, z0) .

Theorem 1.5. Let A0 (z) ̸≡ 0, A1 (z) , . . . , Ak−1 (z) be analytic functions in C \ ¶z0♢
satisfying the following conditions

i) 0 < σ (Aj, z0) ≤ σ (A0, z0) < ∞, j = 1, . . . , k − 1;

ii) max ¶τM (Aj, z0) : σ (Aj, z0) = σ (A0, z0)♢ < τM (A0, z0).
Then every solution f (z) ̸≡ 0 of (1.10) that is analytic in C\ ¶z0♢ satisfies σ (f, z0) =
∞, with σ2 (f, z0) = σ (A0, z0) .

Remark 1.2. If we replace τM by τT in the condition ii) in Theorem 1.5 we get the
same result.

We can find the analogs of Theorem 1.5 in the complex plane and in the unit disc
in ([18, Theorem 1], [9, Theorem 3]).

We signal here that when the coefficients A0 (z) ̸≡ 0, A1 (z) , . . . , Ak−1 (z) are
analytic functions in C \ ¶z0♢ , it may happen that the solution f of (1.10) is not
analytic in C \ ¶z0♢ . For example, f (z) = z is a solution of the differential equation

(1.13) f ′′ − exp


1

z



f ′ +
1

z
exp



1

z



f = 0,

where the coefficients of (1.13) are analytic in C \ ¶0♢ , but the solution f (z) = z is
not analytic in C \ ¶0♢ . That’s why we wrote in our results (every solution f (z) ̸≡ 0
of (1.10), that is analytic in C \ ¶z0♢ , . . . ) So, it is a priori assumed that f is analytic
in Theorem 1.1 and Theorem 1.2. It is similar to the case when the coefficients
are meromorphic in C, it is well known that the solutions of (1.10) may be non
meromorphic in C.
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2. Preliminary Lemmas

To prove these results we need the following lemmas.

Lemma 2.1 ([6]). Let A (z) ̸≡ 0 be analytic function in C \ ¶z0♢, with σ (A, z0) <

n, n is a positive integer. Set g (z) = A (z) exp
{

a
(z0−z)n

}

, where a = α + iβ ̸=

0 is complex number, z0 − z = reiϕ, δa (φ) = α cos (nφ) + β sin (nφ) and H =
¶φ ∈ [0, 2π) : δa (φ) = 0♢ (obviously, H is of linear measure zero). Then for any given

ε > 0 and for any φ ∈ [0, 2π) \H, there exists r0 > 0 such that for 0 < r < r0, we

have

(i) if δa (φ) > 0, then

(2.1) exp


(1 − ε) δa (φ)
1

rn



≤ ♣g (z)♣ ≤ exp


(1 + ε) δa (φ)
1

rn



;

(ii) if δa (φ) < 0, then

(2.2) exp


(1 + ε) δa (φ)
1

rn



≤ ♣g (z)♣ ≤ exp


(1 − ε) δa (φ)
1

rn



.

Lemma 2.2 ([6]). Let f be a non constant meromorphic function in C \ ¶z0♢ . Let

α > 0, ε > 0 be given real constants and j ∈ N. Then

i) there exists a set E1 ⊂ (0, 1) that has finite logarithmic measure and a constant

A > 0 that depends on α and j such that for all r = ♣z − z0♣ satisfying r ∈ (0, 1) \ E1

we have

(2.3)

∣

∣

∣

∣

∣

f (j) (z)

f (z)

∣

∣

∣

∣

∣

≤ A


1

r2
Tz0 (αr, f) log Tz0 (αr, f)

j

;

ii) there exists a set E2 ⊂ [0, 2π) that has a linear measure zero and a constant

A > 0 that depends on α and j such that for all θ ∈ [0, 2π)\E2 there exists a constant

r0 = r0 (θ) > 0 such that (2.3) holds for all z satisfying arg (z − z0) ∈ [0, 2π) \ E2 and

r = ♣z − z0♣ < r0.

Lemma 2.3 ([10]). Let f be a non-constant meromorphic function in C\¶z0♢ of finite

order σ (f, z0) < ∞. Let ε > 0 be a given constant. Then there exists a set E1 ⊂ (0, 1)
that has finite logarithmic measure such that for all r = ♣z − z0♣ ∈ (0, 1) \E1 we have

(2.4)

∣

∣

∣

∣

∣

f (k) (z)

f (z)

∣

∣

∣

∣

∣

≤
1

rk(σ+1)+ε
, k ∈ N.

Lemma 2.4. Let f (z) be a non-constant meromorphic function in C \ ¶z0♢ . Then

σ (f ′, z0) = σ (f, z0) .

Proof. By Remark 1.1, g (w) = f


z0 − 1
w



is meromorphic in C and σ (g) = σ (f, z0) .

It is well known that for a meromorphic function in C we have σ (g′) = σ (g) (see
[17, 19]). We have f ′ (z) = 1

w2 g′ (w). Set h (w) = 1
w2 g′ (w) . Obviously, we have

σ (h) = σ (g′) . In the other hand, by Remark 1.1, we have σ (h) = σ (f ′, z0) . So, we
conclude that σ (f ′, z0) = σ (f, z0) . □
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Lemma 2.5. Let f be a non-constant meromorphic function in C \ ¶z0♢ and suppose

that
∣

∣

∣f (k) (z)
∣

∣

∣ is unbounded on some ray arg (z0 − z) = θ. Then there exists an infinite

sequence of points zm = z0 −rmeiθ, m = 1, 2, . . . , where rm → 0, such that f (k) (zm) →
∞ and

(2.5)

∣

∣

∣

∣

∣

f (j) (zm)

f (k) (zm)

∣

∣

∣

∣

∣

≤ M, M > 0, j = 0, 1, . . . , k − 1.

Proof. Let M


r, θ, f (k)


denotes the maximum modulus of f (k) on the line segment
[

z0 − r1e
iθ, z0 − reiθ

]

. Clearly, we may construct a sequence of points zm = z0 − rmeiθ,

m ≥ 1, rm → 0, such that M


r, θ, f (k)


= f (k) (zm) → ∞. For each m, by (k − j)-fold

iteration integration along the line segment [z1, zm] we have

f (j) (zm) =f (j) (z1) + f (j+1) (z1) (zm − z1)

+ · · · +
1

(k − j − 1)
f (k−1) (z1) (zm − z1)

k−j−1 +

zm
∫

z1

· · ·

y
∫

z1

f (k) (x) dxdy · · · dt,

and by an elementary triangle inequality estimate we obtain
∣

∣

∣f (j) (zm)
∣

∣

∣ ≤
∣

∣

∣f (j) (z1)
∣

∣

∣+
∣

∣

∣f (j+1) (z1)
∣

∣

∣ ♣zm − z1♣(2.6)

+ · · · +
1

(k − j − 1)

∣

∣

∣f (k−1) (z1)
∣

∣

∣ ♣zm − z1♣
k−j−1

+
1

(k − j)

∣

∣

∣f (k) (zm)
∣

∣

∣ ♣zm − z1♣
k−j .

From (2.6) and by taking into account that when m → ∞, f (k) (zm) → ∞, zm → z0,
we obtain

∣

∣

∣

∣

∣

f (j) (zm)

f (k) (zm)

∣

∣

∣

∣

∣

≤ M, M > 0. □

Lemma 2.6. Let f be a non-constant analytic function in C \ ¶z0♢ of finite order

σ (f, z0) = σ > 0 and finite type τM (f, z0) = τ > 0. Then for any given 0 < β < τ
there exists a set F ⊂ (0, 1) of infinite logarithmic measure such that for all r ∈ F we

have

log Mz0 (r, f) >
β

rσ
.

Proof. By the definition of τM (f, z0) , there exists a decreasing sequence ¶rm♢ → 0
satisfying m

m+1
rm > rm+1 and

lim
m→∞

rσ
m log Mz0 (rm, f) = τ.

Then there exists m0 such that for all m > m0 and for a given ε > 0 we have

(2.7) log Mz0 (rm, f) >
τ − ε

rσ
m

.
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There exists m1 such that for all m > m1 and for a given 0 < ε < τ − β, we have

(2.8)


m

m + 1

σ

>
β

τ − ε
.

By (2.7) and (2.8), for all m > m2 = max ¶m0, m1♢ and for any r ∈
[

m
m+1

rm, rm

]

, we

have

log Mz0 (r, f) > log Mz0 (rm, f) >
τ − ε

rσ
m

>
τ − ε

rσ



m

m + 1

σ

>
β

rσ
.

Set F =
∞
⋃

m=m2

[

m
m+1

rm, rm

]

. Then we have

∞
∑

m=m2

rm
∫

m
m+1

rm

dt

t
=

∑

m>m2

log
m + 1

m
= ∞. □

Lemma 2.7. Let f be a non-constant analytic function in C \ ¶z0♢ of infinite order

with hyper-order σ2 (f, z0) = σ and let Vz0 (r) be the central index of f (see [10]). Then

(2.9) lim sup
r→0

log+ log+ Vz0 (r)

− log r
= σ.

Proof. Set g (w) = f


z0 − 1
w



. Then g (w) is entire function of infinite order with the

hyper-order σ2 (g) = σ2 (f, z0) = σ and if V (R) denotes the central index of g, then

Vz0 (r) = V


1
r



. From [5, Lemma 2], we have

(2.10) lim sup
R→+∞

log+ log+ V (R)

log R
= σ.

Substituting R by 1
r

in (2.10), we get (2.9). □

Lemma 2.8. Let Aj (z), j = 0, . . . , k − 1, be analytic functions in C \ ¶z0♢ such that

σ (Aj, z0) ≤ α < ∞. If f is a solution of

(2.11) f (k) + Ak−1 (z) f (k−1) + · · · + A1 (z) f ′ + A0 (z) f = 0,

that is analytic in C \ ¶z0♢ , then σ2 (f, z0) ≤ α.

Proof. For any given ε > 0, there exists r0 > 0 such that for 0 < r = ♣z0 − z♣ < r0, we
have

(2.12) ♣Aj (z)♣ ≤ exp


1

rα+ε



.

By the Wiman-Valiron near a finite singular point (see [10]), we have

(2.13)
f (j) (zr)

f (zr)
= (1 + o (1))



Vz0 (r)

z0 − zr

j

, j = 0, . . . , k − 1,
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where Vz0 (r) is the central index of f and ♣f (zr)♣ = M (r, f) = max
♣z0−z♣=r

♣f (z)♣ . From

(2.11), we can write

(2.14) −
f (k)

f
= Ak−1 (z)

f (k−1)

f
+ · · · + A1 (z)

f ′

f
+ A0 (z) .

Substituting (2.12) and (2.13) into (2.14), we obtain

(1 + o (1))
(Vz0 (r))k

rk
≤ k exp



1

rα+ε



(Vz0 (r))k−1

rk−1
(1 + o (1)) ,

and so

(2.15) Vz0 (r) ≤ kr exp


1

rα+ε



(1 + o (1)) .

By (2.15), we get
σ2 (f, z0) ≤ α. □

It is easy to prove the following lemma.

Lemma 2.9. Let P (z) = anzn + · · · + a0, with an ̸= 0 be a polynomial and A (z) =

P


1
z0−z



. Then, for every ε > 0, there exists r0 > 0 such that for all 0 < r =

♣z0 − z♣ ≤ r0, the inequalities

(1 − ε)
♣an♣

rn
≤ ♣P (z)♣ ≤ (1 + ε)

♣an♣

rn

hold.

Lemma 2.10. Let f be a non-constant analytic function in C \ ¶z0♢ of infinite order

with the hyper-order σ2 (f, z0) = α, and let Vz0 (r) be the central index of f. Let

E ⊂ (0, 1] be a set of finite logarithmic measure. Then, there exists a sequence of

points
{

zm = z0 − rmeiθm

}

, m ≥ 1, such that ♣f (zm)♣ = Mz0 (rm, f) , lim
m→∞

θm = θ∗ ∈

[0, 2π) , rm /∈ E, rm → 0 and for any given ε > 0, we have

lim sup
r→0

log+ Vz0 (r)

− log r
= ∞,(2.16)

exp


1

rα−ε



≤ Vz0 (r) ≤ exp


1

rα+ε



.(2.17)

Proof. Set g (w) = f


z0 − 1
w



. Then g (w) is entire function of infinite order with the

hyper-order σ2 (g) = σ2 (f, z0) = α and if V (R) denotes the central index of g then

Vz0 (r) = V


1
r



. From [3, Remark 1] we have

lim sup
R→∞

log+ Vz0 (R)

log R
= ∞,(2.18)

exp
{

Rα−ε
}

≤ V (R) ≤ exp
{

Rα+ε
}

.(2.19)

Substituting R by 1
r

in (2.18) and (2.19), we get (2.16) and (2.17). □
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3. Proof of Theorems

Proof of Theorem 1.3. We assume that σ (f, z0) = σ < ∞, and we prove that is failing.
By Lemma 2.3, for any given ε > 0 there exists a set E ⊂ [0, 2π) that has a linear
measure zero such that for all θ ∈ [0, 2π) \E there exists a constant r0 = r0 (θ) > 0
such that for all z satisfying arg (z − z0) ∈ [0, 2π) \E and r = ♣z − z0♣ < r0, we have

(3.1)

∣

∣

∣

∣

∣

f ′′ (z)

f ′ (z)

∣

∣

∣

∣

∣

≤
1

rσ+1+ε
.

Set a = α + iβ, z0 − z = reiθ, δ = δa (θ) = α cos (nθ) + β sin (nθ) ,

(3.2) H = ¶θ ∈ [0, 2π) : δa (θ) = 0♢ ,

(obviously, H is of linear measure zero). By Lemma 2.1, for any given 0 < ε < 1 and
for any θ ∈ [0, 2π) \E ∪ H, there exists r0 > 0 such that for 0 < r < r0, (2.1) and
(2.2) hold.

Now we take θ ∈ [0, 2π) \E ∪ H (obviously, E ∪ H is of linear measure zero). Then
we have two cases: δa (θ) < 0 or δa (θ) > 0.

Case (i). δa = δ < 0. By a = cb, c > 1, δb (θ) = 1
c
δa (θ) = 1

c
δ. By (1.11), we get

(3.3) 1 ≤

∣

∣

∣

∣

∣

A (z) exp

{

a

(z0 − z)n

}∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f ′

f ′′

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B (z) exp

{

b

(z0 − z)n

}∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f

f ′′

∣

∣

∣

∣

∣

.

If ♣f ′′ (z)♣ is unbounded on the ray arg (z0 − z) = θ, then by Lemma 2.5 there exists

an infinite sequence of points
{

zm = z0 − rmeiθ
}

, m ≥ 1, where rm → 0 such that

f ′′ (zm) → ∞ and

(3.4)

∣

∣

∣

∣

∣

f (zm)

f ′′ (zm)

∣

∣

∣

∣

∣

≤ M1,

∣

∣

∣

∣

∣

f ′ (zm)

f ′′ (zm)

∣

∣

∣

∣

∣

≤ M2.

Using Lemma 2.1 and (3.4) into (3.3), we get as m → ∞

1 ≤ M1 exp

{

(1 − ε)
δ

rn
m

}

+ M2 exp

{

(1 − ε)
1

c

δ

rn
m

}

→ 0,

a contradiction. Hence,

(3.5) ♣f ′′ (z)♣ ≤ C1,

holds on arg (z0 − z) = θ, where C1 is a constant. By integration along the line

segment
[

z0 − r1e
iθ, z0 − reiθ

]

, from (3.5) and the equality

f ′ (z) = f ′ (z1) +

z
∫

z1

f ′′ (t) dt,

we obtain

(3.6) ♣f ′ (z)♣ ≤ C2 + C1 ♣z − z1♣ ≤ C3,
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as z → z0. Analogously, by (3.6), we can obtain

(3.7) ♣f (z)♣ ≤ C4,

holds on arg (z0 − z) = θ as z → z0.
Case (ii). δ > 0. We have δb (θ) = 1

c
δa (θ) = 1

c
δ > 0. By (1.11), we have

(3.8)

∣

∣

∣

∣

∣

A (z) exp

{

a

(z0 − zk)n

}∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

f ′′ (z)

f ′ (z)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B (z) exp

{

b

(z0 − zk)n

}∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f (z)

f ′ (z)

∣

∣

∣

∣

∣

.

If ♣f ′ (z)♣ is unbounded on the ray arg (z0 − z) = θ, then by Lemma 2.5, there exists

an infinite sequence of points
{

zm = z0 − rmeiθ
}

, m ≥ 1, where rm → 0 such that

f ′ (zm) → ∞ and

(3.9)

∣

∣

∣

∣

∣

f (zm)

f ′ (zm)

∣

∣

∣

∣

∣

≤ M3.

Substituting (3.1) and (3.9) into (3.8) and by Lemma 2.1, we obtain

exp

{

(1 − ε)
δ

rn
m

}

≤
1

rσ+1+ε
m

+ M3 exp

{

(1 + ε)
1

c
·

δ

rn
m

}

≤
M3

rσ+1+ε
m

exp

{

(1 + ε)
1

c
·

δ

rn
m

}

,

which implies that

(3.10) 1 ≤
M3

rσ+1+ε
m

exp

{



(1 + ε)
1

c
− (1 − ε)



δ

rn
m

}

.

By taking 0 < ε < c−1
1+c

, a contradiction follows in (3.10) as m → ∞. So, ♣f ′ (z)♣ ≤ C5.
As above, we obtain that ♣f (z)♣ ≤ C6, holds on arg (z0 − z) = θ as z → z0.

Now, we proved that ♣f (z)♣ ≤ C on any ray arg (z0 − z) = θ ∈ [0, 2π) \E ∪ H.
Set g (w) = f (z) such that w = 1

z0−z
. g (w) is entire function in C and ♣g (w)♣ ≤

C ′ (C ′ > 0) on any ray arg (w) = −θ such that θ ∈ [0, 2π) \E ∪ H. By Phragmen-
Lindelof theorem in sectors, we get that ♣g (w)♣ ≤ C ′ in C and By Liouville theorem
we conclude that g (w) is a constant. So, f (z) is constant. We know that the only
constant solution of (1.11) is f ≡ 0. Hence, every solution f (z) ̸≡ 0 of (1.11) is of
infinite order. □

Proof of Theorem 1.4. Assume that f ̸≡ 0 is an analytic solution in C \ ¶z0♢ of (1.12).
By Theorem 1.3 and Lemma 2.8, we have σ (f, z0) = ∞ and σ2 (f, z0) = α ≤ n. We
assume that σ2 (f, z0) = α < n, and we prove that is failing. Since the Wiman-Valiron
near a finite singular point (see [10]), we have

(3.11)
f (j) (zr)

f (zr)
= (1 + o (1))



Vz0 (r)

z0 − zr

j

, j = 1, 2,
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where ♣f (zr)♣ = Mz0 (r, f) = max♣z0−z♣=r ♣f (z)♣ . By Lemma 2.10, there is a sequence
{

zm = z0 − rmeiθm

}

, m ≥ 1, such that ♣f (zm)♣ = Mz0 (rm, f) , limm→∞ θm = θ∗ ∈

[0, 2π) , rm /∈ E, rm → 0 and for any given ε > 0, we have

lim sup
m→∞

log Vz0 (rm)

− log rm

= ∞,

exp

{

1

rα−ε
m

}

≤ Vz0 (rm) ≤ exp

{

1

rα+ε
m

}

.(3.12)

Set a = α + iβ, z0 − z = reiθ0 , δ = δa (θ∗) = α cos (nθ∗) + β sin (nθ∗) . Since a = cb,
c > 1, we have δb (θ∗) = 1

c
δa (θ∗) = 1

c
δ. There is three cases: (i) δ < 0; (ii) δ > 0; (iii)

δ = 0.
Case (i). δ < 0. By limm→∞θm = θ∗, as m is sufficiently large, we have δb (θm) =

δm < 0, δa (θm) = cδm < 0. From (1.12), we can write
(3.13)
∣

∣

∣

∣

∣

exp

{

−b

(z0 − zm)n

}
∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f ′′

f

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

A


1

z0 − zm



exp

{

a − b

(z0 − zm)n

}
∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

B


1

z0 − zm


∣

∣

∣

∣

.

Substituting (3.11)–(3.12) into (3.13) and by Lemma 2.1 and Lemma 2.9, for any
given ε (0 < ε < n − α) as m is sufficiently large, we have

exp

{

(1 − ε)
−δm

rn
m

}

exp

{

2

rα−ε
m

}

1

r2
m

(1 + o (1))

≤

∣

∣

∣

∣

∣

exp

{

−b

(z0 − zm)n

}
∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f ′′

f

∣

∣

∣

∣

∣

≤ exp

{

(1 − ε) (c − 1)
δm

rn
m

}

exp

{

1

rα+ε
m

}

1 + o (1)

rm

+
1

rd+1
m

≤ exp

{

(1 − ε) (c − 1)
δm

rn
m

}

exp

{

1

rα+ε
m

}

1

rd+2
m

,

where d = deg B, which implies

(3.14) exp

{

2

rα−ε
m

}

(1 + o (1)) ≤ exp

{

(1 − ε) c
δm

rn
m

}

exp

{

1

rα+ε
m

}

1

rd
m

.

By taking 0 < ε < max ¶1, n − α♢ , the right side of inequality (3.14) tends to zero as
m → ∞. This is a contradiction.

Case (ii). δ > 0. By limm→∞θm = θ∗, as m is sufficiently large, we have δb (θm) =
δm > 0, δa (θm) = cδm > 0. By (1.12), we can write
(3.15)
∣

∣

∣

∣

∣

A


1

z0 − zm



exp

{

a

(z0 − zm)n

}∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

f ′′

f

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B


1

z0 − zm



exp

{

b

(z0 − zm)n

}∣

∣

∣

∣

∣

.
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Substituting (3.11)–(3.12) into (3.15) and by Lemma 2.1, as m is sufficiently large,we
have

exp

{

(1 − ε)
cδm

rn
m

}

exp

{

1

rα−ε
m

}

(1 + o (1))

rm

≤

∣

∣

∣

∣

∣

A


1

z0 − zm



exp

{

a

(z0 − zm)n

}
∣

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

∣

≤ exp

{

2

rα+ε
m

}

(1 + o (1))

r2
m

+ exp

{

(1 + ε)
δm

rn
m

}

≤
1

r2
m

exp

{

2

rα+ε
m

}

exp

{

(1 + ε)
δm

rn
m

}

,

which implies the following inequality

(3.16) exp

{

1

rα−ε
m

}

(1 + o (1)) ≤
1

rm

exp

{

2

rα+ε
m

}

exp

{

[(1 + ε) − (1 − ε) c]
δm

rn
m

}

.

By taking 0 < ε < max
{

c−1
c+1

, n − α
}

, the right side of inequality (3.16) tends to zero

as m → ∞ and so a contradiction follows.
Case (iii) δ = 0. Since arg (z0 − z) = θ∗ is an asymptotic line of a

(z0−zm)n , there is

m0 > 0 such that as m > m0 we have

e−1 ≤

∣

∣

∣

∣

∣

exp

{

a

(z0 − zm)n

}∣

∣

∣

∣

∣

≤ e,(3.17)

e
−1
c ≤

∣

∣

∣

∣

∣

exp

{

b

(z0 − zm)n

}
∣

∣

∣

∣

∣

≤ e
1
c .(3.18)

By (1.12), (3.11) and (3.17)–(3.18), we obtain

−



Vz0 (rm)

z0 − zm

2

(1 + o (1)) =A


1

z0 − zm



exp

{

a

(z0 − zm)n

}

Vz0 (r)

z0 − zm



(1 + o (1))

+ B


1

z0 − zm



exp

{

b

(z0 − zm)n

}

.(3.19)

By (3.17)–(3.19) and Lemma 2.1, for m large enough, we have


Vz0 (rm)

rm

2

(1 + o (1)) ≤
1

rd+1
m



Vz0 (rm)

rm



(1 + o (1)) ,

and so

(3.20) Vz0 (rm) ≤
1

rd
m

(1 + o (1)) ,

where d = max ¶deg A, deg B♢ . (3.20) contradicts (3.12). Thus, σ2 (f, z0) ≥ n and by
Lemma 2.8, we obtain σ2 (f, z0) = n. □
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Proof of Theorem 1.5. Assume that f ̸≡ 0 is an analytic solution of (1.10) in C \ ¶z0♢.
From (1.10), we can write

(3.21) ♣A0 (z)♣ ≤

∣

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

∣

+ ♣Ak−1 (z)♣ ·

∣

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

∣

+ · · · + ♣A1 (z)♣ ·

∣

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

∣

.

By Lemma 2.2, for any given α > 0 there exists a set E1 ⊂ (0, 1) that has finite
logarithmic measure and a constant λ > 0 that depends only on α such that for all
r = ♣z − z0♣ satisfying r /∈ E1, we have

(3.22)

∣

∣

∣

∣

∣

f (j) (z)

f (z)

∣

∣

∣

∣

∣

≤ λ


1

r
Tz0 (αr, f)

2j

, j = 1, . . . , k.

There exist β1, β2 such that max ¶τM (Aj, z0) : σ (Aj, z0) = σ (A0, z0)♢ < β1 < β2 <
τM (A0, z0). There exists a set E2 ⊂ (0, 1) that has finite logarithmic measure such
that for all r = ♣z − z0♣ satisfying r /∈ E2, we have

(3.23) ♣Aj (z)♣ ≤ exp

{

β1

rσ

}

, j = 1, . . . , k.

By Lemma 2.6, there exists a set F ⊂ (0, 1) of infinite logarirhmic measure such that
for all r ∈ F we have

(3.24) Mz0 (r, A0) > exp

{

β2

rσ

}

.

From (3.21)–(3.24), for all z satisfying r = ♣z − z0♣ ∈ F\E1 ∪ E2 and ♣A0 (z)♣ =
Mz0 (r, A0) , we obtain

exp

{

β2

rσ

}

≤ kλ


1

r
Tz0 (αr, f)

2k

exp

{

β1

rσ

}

,

and thus

(3.25) exp

{

β2 − β1

rσ

}

≤ kλ


1

r
Tz0 (αr, f)

2k

.

From (3.25), it is easy to obtain that σ2 (f, z0) ≥ σ and combining this with Lemma
2.8, we get the equality σ2 (f, z0) = σ = σ (A0, z0) . □
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BELL GRAPHS ARE DETERMINED BY THEIR LAPLACIAN

SPECTRA

ALI ZEYDI ABDIAN1

Abstract. A graph G is said to be determined by the spectrum of its Laplacian
spectrum (DLS, for short) if every graph with the same spectrum is isomorphic to
G. An ∞-graph is a graph consisting of two cycles with just a vertex in common.
Consider the coalescence of an ∞-graph and the star graph K1,s, with respect to
their unique maximum degree. We call this a bell graph. In this paper, we aim to
prove that all bell graphs are DLS.

1. Introduction

As usual G = (V (G), E(G)) is a simple graph having n vertices and m edges, with
V = ¶v1, v2, . . . , vn♢ and E = ¶e1, e2, . . . , em♢. The complement of G is denoted by G.

The degree sequence of G, denoted by deg(G), is the sequence of vertex degrees;
in fact deg(G) = (d1, d2, . . . , dn) in which di = di(G) = dG(vi) for i = 1, . . . , n, is the
degree of the vertex vi so that d1 ≥ d2 ≥ · · · ≥ dn.

Let A(G) and D(G) = Diag(d1, d2, . . . , dn) denote the adjacency matrix and the
diagonal matrix of vertex degrees of G, respectively. The Laplacian matrix of G is
defined as L(G) = A(G) − D(G). The polynomial φL(G)(x) = det(xIn − L(G)), where
In is the identity matrix of order n, is called the Laplacian characteristic polynomial
of G. Any root of φL(G)(x) is called a Laplacian eigenvalue of G. The multi-set of
Laplacian eigenvalue of G is called the Laplacian spectrum or L-spectrum of G. Note
that L(G) is a symmetric, positive semidefinite matrix, and thus its eigenvalues are
all real non-negative numbers. We denote its eigenvalues in the non-increasing order
µ1 ≥ µ2 ≥ · · · ≥ µn = 0.

Key words and phrases. Bell graph, Laplacian spectrum, L-cospectral, cospectral graphs, spectral
characterization.
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Although, the spectral graph theory originated with the eigenvalues of the adjacency
matrices, but Laplacian matrices have come to have comparable importance.

The coalescence of two graphs G1 and G2, with respect to u1 ∈ V (G1) and u2 ∈
V (G1), is the graph obtained by identifying u1 and u2 in the disjoint union of G1 and
G2. We denote it by (G1 ◦ G2)(u1, u2). In the case when it does not make deference
which vertex in G1 and G2 is identified to obtain a coalescence, we denote this graph
by G1 ◦G2. This operation is extended, inductively, to any arbitrary number of graphs.
For example, the coalescence of k arbitrary cycles is called a k-rose graph; in fact, this
is a graph with k ≥ 1 cycles meeting in one vertex. For i, j ≥ 3, Ci ◦ Cj is a 2-rose
graph called an ∞-graph.

Van Dam and Haemers [12] conjectured that almost all graphs are determined by
their Laplacian spectrum, that is, they are the only graph (up to isomorphism) with
that spectrum. However, very few graphs are known to have that property, and so
discovering new classes of such graphs is an interesting problem. Formally, we define
two graphs G and H to be L-cospectral if they have the same L-spectrum, and a
graph G is determined by its Laplacian spectrum, abbreviated by DLS, if no other
graphs are L-cospectral with G. Let us mention some known DLS graphs obtained
by coalescence of other DLS graphs:

• Liu et al. [10] proved that any rose graph, each cycle of which is a triangle, is
DLS;

• Wang et al. [14] showed that triangle-free 2-rose graphs are almost DLS (notice
that not all 2-rose graphs are DLS (see [9]);

• Wang et al. [15] proved that all 3-rose graphs, having at least one triangle, are
DLS.

It is known that the Laplacian eigenvalues of a graph give the Laplacian eigenvalues
of its complement. Therefore, complement of a DLS graph, is also DLS. Hence, all
the complements of the above graphs are DLS.

In the current article, we consider a new graph being coalescence of a 2-rose graph
and a star graph with respect to their vertices of maximum degree. In fact, this graph
is the coalescence of Ci ◦ Cj, with the vertex v1 of maximum degree 4 and the star
graph K1,s with the vertex v2 of maximum degree s. Let us call this graph a bell

graph and denote it by BG(Ci, Cj, s), i ≤ j, see Figure 1.

Figure 1. The bell graph BG(Ci, Cj, s)
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In this paper, it is proved that bell graphs and their complements are DLS. The
rest of this article is organized as follows: In Section 2, we recall some previously
established results playing a crucial role throughout this paper. In Section 3, we fisrt
prove that no two non-isomorphic bell graphs are L-cospectral, and then we determine
the degree sequence of graphs L-cospectral with the bell graphs. Finally, we obtain
all bell graphs are DLS.

2. Preliminaries

In this section, we recall some previously established results playing a crucial role
throughout this paper.

Theorem 2.1 ([12,13]). The following can be obtained from the Laplacian spectrum

of a graph:

(i) the number of vertices;

(ii) the number of edges;

(iii) the number of spanning trees;

(iv) the number of components;

(v) the sum of the squares of the degrees of the vertices.

Lemma 2.1 ([3]). For a graph G, we have µn−1 ≥ 0 with equality if and only if G is

connected.

Theorem 2.2 ([7]). Let µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and µ1 ≥ µ2 ≥ · · · ≥ µn = 0 be the

Laplacian spectra of G and G, respectively. Then µi = n − µn−i for i = 1, 2, . . . , n − 1.

For any two graphs G and H, we denote by NG(H) and WG(i), the number of
subgraphs of G being isomorphic to H, and the number of closed walks of length i in
G, respectively. Note that the trace of a matrix M is denoted by tr(M).

Theorem 2.3 ([1, 13]). Suppose G is a graph with m edges. The number of closed

walks of lengths 2, 3, and 4 in G can be computed by the following formulas:

(a) WG(2) = 2m;

(b) WG(3) = tr(A3(G)) = 6NG(C3);

(c) WG(4) = 2m + 4NG(P3) + 8NG(C4).

Theorem 2.4 ([6]). If G is a non-empty graph with n vertices, then

(2.1) µ1(G) ≥ d1(G) + 1.

Furthermore, if G is connected, then the equality in (2.1) holds if and only if d1(G) =
n − 1.

A graph G is called regular if d1(G) = · · · = dn(G). A bipartite graph is called
semi-regular if the degrees of vertices in each part, are constant.

The next result uses the quantity θG(u) =
∑

v∈NG(u)
dG(v)
dG(u)

, where NG(u) denotes the

set of neighbors of the vertex u in G.
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Theorem 2.5 ([13]). For a connected graph G, we have

(2.2) µ1(G) ≤ max¶dG(u) + θG(u) ♣ u ∈ V (G)♢.

Besides, the equality in (2.2) holds if and only if G is either regular or semi-regular,

bipartite graph.

Theorem 2.6 ([1, 8]). Let G be a non-empty graph. Then µ1(G) ≤ d1(G) + d2(G).
Moreover, G is connected only if µ2(G) ≥ d2(G).

Cevetcovic et al. in [2] obtained the first three coefficients of the Laplacian charac-
teristic polynomials, while the forth one, was obtained by Oliveira et al. in [11].

Theorem 2.7 ([2,11]). Let G be a graph with n vertices and m edges with the degree

set deg(G) = (d1, d2, . . . , dn). Then we have the following: φL(G)(x) =
∑n

i=0 li(G)xi,

are obtained as follows:

l0(G) =1, l1(G) = −2m, l2(G) = 2m2 − m −
1

2

n∑

i=1

d2
i ,

l3(G) =
1

3



−4m3 + 6m2 + 3m
n∑

i=1

d2
i −

n∑

i=1

d3
i − 3

n∑

i=1

d2
i + 6NG(C3)



.

As an immediate consequence of Theorem 2.7, we have following result.

Corollary 2.1. If G and H are L-cospectral graphs such that deg(H) = deg(G), then

they have the same number of triangles, i.e., NG(C3) = NH(C3).

Let G and H be two L-cospectral graphs. It follows from Theorem 2.1 (i), (ii), (iv),
(v) and Theorem 2.7 and Corollary 2.1 that

tr(A3(G)) −
n∑

i=1

d3
i (G) = tr(A3(H)) −

n∑

i=1

d3
i (H).

Based on this, Liu and Huang [9] defined the following invariant for a graph G:

ε(G) = tr(A3(G)) −
n∑

i=1

(di(G) − 2)3.

Theorem 2.8 ([13]). If G and H are L-cospectral, then ε(G) = ε(H).

Theorem 2.9 ([3]). If u is a vertex of G and G − u is the subgraph obtained from G

by deleting u, then µi(G) ≥ µi(G − u) ≥ µi+1(G) − 1, i = 1, 2, . . . , n − 1.

3. Main Results

In this section, we establish bound on the first and the second largest Laplacian
eigenvalues of bell graphs.

Lemma 3.1. For a bell graph G with s pendent vertices, we have

(i) 5 + s ≤ µ1(G) < 6 + s;

(ii) µ2(G) < 5.
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Proof. (i) It follows from Theorems 2.4 and 2.5 that

5 + s ≤ µ1(G) ≤ 4 + s +
4 + s + 4

4 + s
= 5 + s +

4

4 + s
< 6 + s.

(ii) This is a direct consequence of Theorem 2.9 and this fact that the greatest
eigenvalue of a path is less than 4. □

Let G be a connected graph with n vertices and m edges. Then G is called k-cyclic

if m = n+k−1. For a bell graph G = BG(Ci, Cj, s), we have n = n(G) = (i+j)−1+s

and m = m(G) = (i + j) + s and so m = m(G) = n + 1 = n + 2 − 1, implying that G

is a 2-cyclic graph.

Lemma 3.2. If H is L-cospectral with G = BG(Ci, Cj, s), then H is connected, and

deg(H) = deg(G) = (s + 4, 2, . . . , 2
︸ ︷︷ ︸

i+j−2 times

, 1, . . . , 1
︸ ︷︷ ︸

s times

).

Proof. Connectedness of H is clear by Theorem 2.1 (iv) and Lemma 3.1 (iii). Let us
determine its degree sequence. By Lemma 3.1, µ2(H) < 5, and thus, it follows from
Theorem 2.6 that d2(H) ≤ 4. Since H and G are L-cospectral, by Theorem 2.1, H

is also connected, and has the same order, size, and sum of the squares of its degrees
as G. Let ni denote the number of vertices of degree i in H for i = 1, 2, . . . , d1(H).
Then

d1(H)
∑

i=1

ni =n(G) = (i + j) − 1 + s,(3.1)

d1(H)
∑

i=1

ini =2m(G) = 2((i + j) + s),(3.2)

d1(H)
∑

i=1

i2ni =n′

1 + 4n′

2 + d2
1(G),(3.3)

where n
′

i is the number of vertices of G of degree i for i = 1, 2. By adding up (3.1),
(3.2) and (3.3) with coefficients 2, −3, 1, respectively, we get:

(3.4)
d1(H)
∑

i=1

(i2 − 3i + 2)ni = (s + 2)(s + 3).

By Lemma 3.1, 5 + s ≤ µ1(G) < 6 + s. From Theorem 2.4 it follows that

d1(H) + 1 ≤ µ1(H) = µ1(G) < 6 + s,

which leads to d1(H) ≤ 4 + s. On the other hand, by Lemma 3.1 and Theorem 2.6,
one can conclude that

5 + s ≤ µ1(G) = µ1(H) ≤ d1(H) + d2(H) ≤ d1(H) + 4,
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from which we have d1(H) ≥ s + 1. Therefore, we have s + 1 ≤ d1(H) ≤ s + 4. From
Theorem 2.8 it follows that

(3.5) 6NH(C3) −
n∑

i=1

(di(H) − 2)3 = 6NG(C3) − ((s + 2)3 − s).

Therefore,

(3.6) NH(C3) =
1

6


n∑

i=1

(di(H) − 2)3 + 6NG(C3) − ((s + 2)3 − s)



.

We consider the following three main cases.
Case A. d1(H) = s + 4. By (3.4) one can deduce that

(3.7) ((s + 4)2 − 3(s + 4) + 2) + 2n3 + 6n4 = (s + 2)(s + 3),

from which it follows that n3 = 0. Combining (3.2) and (3.3), we find that n1 = s

and n2 = n − (s + 1). Therefore, deg(H) = deg(G). In this case, it follows from (3.6)
that NH(C3) = NG(C3). Obviously, d1(H) ≥ 5 > 4 ≥ d2(H) or ns+4 = 1.

Case B. s + 3 = d1(H). Then ns+3 = 1. By an argument similar to that of (3.6),
we have the following:

(3.8) ((s + 3)2 − 3(s + 3) + 2) + 2n3 = (s + 2)(s + 3),

By (3.1), (3.2) and (3.4) we get






n1 = 2s + 11,

n2 = −3s + n − 20,

n3 = s + 8.

It follows from (3.6) that NH(C3) = 6NG(C3)−s3
−6s2

−12s−11
6

. Therefore, NH(C3) < 0,
since 0 ≤ NG(C3) ≤ 2. We assume that ns+3 ≥ 2. Then

s + 3 = d1(H) = d2(H) ≤ 3,

which is a contradiction, since s ≥ 1.
Case C. d1(H) = s + 2. We first assume that ns+2 = 1. In this case, s + 2 =

d1(H) > 3 ≥ d2(H) and as a result s ≥ 2. From (3.4) and by a straightforward
calculation, we get:

(3.9) ((s + 2)2 − 3(s + 2) + 2) + 2n3 = (s + 2)(s + 3).

By (3.1), (3.2) and (3.4) we get:






n1 = 3s + 1,

n2 = −5s + n − 5,

n3 = 2s + 3.

It follows from (3.6) that

NH(C3) =
6NG(C3) − s3 − 6s2 − 12s − 10

6
.
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Therefore, NH(C3) < 0, since 0 ≤ NG(C3) ≤ 2. Next we assume that ns+2 ≥ 2. Then
s + 2 = d1(H) = d2(H) ≤ 3 implying that s = 1. By (3.1), (3.2) and (3.4) we get







n1 = 4,

n2 = n − 10,

n3 = 6.

It follows from (3.6) that NH(C3) = NG(C3) − 14
3

< 0, since 0 ≤ NG(C3) ≤ 2, which
is a contradiction.

Case D. d1(H) = s + 1. By a similar argument, we will have a contradiction. □

In the following, we show that any graph L-cospectral with a bell graph G, is also
a bell graph with the same degree sequence as G.

Corollary 3.1. Let H be a graph L-cospectral with a bell graph G = BG(Ci, Cj, s).
Then H is a bell graph with the same degree sequence as G.

Proof. By Lemma 3.2, deg(H) = deg(G) = (s + 4, 2, . . . , 2
︸ ︷︷ ︸

i+j−2 times

, 1, . . . , 1
︸ ︷︷ ︸

s times

). So, H has a

unique vertex of degree greater than 2, say dH(v) = s + 4 > 2. It is clear that the
maximum degree of H − v is most 2, i.e., d1(H − v) ≤ 2. Moreover, H − v contains
no cycles, otherwise, since it is connected, there would be another vertex of degree
greater than 2. Consequently, H − v must be a forest each component of which is a
path. Therefore, H consists of exactly 2 cycles intersecting in a single vertex. Hence,
H must be a bell graph. □

Before proving our main result, we state some essential lemmas and notations.

Lemma 3.3 ([4]). Let G be a graph with a set of vertices X = ¶u1, u2, . . . , uk♢ such

that

NG(u1) = NG(u2) = · · · = NG(uk) = ¶w1, w2, . . . , wp♢ .

If G∗ is the graph obtained from G by adding any q, 1 ≤ q ≤ k(k−1)
2

, edges among

¶u1, u2, . . . , uk♢, then the eigenvalues of L(G∗) are as follows: those eigenvalues of

L(G) which are equal to p are incremented by λi(G
∗[X]), i = 1, 2, . . . , k − 1, and the

remaining eigenvalues are the same.

Lemma 3.4 ([5]). No two non-isomorphic starlike trees are L-cospectral.

Suppose that H = BG(Ci, Cj, s) is a bell graph, and let v be the vertex of H

such that dH(v) = s + 4. Now, we remove an arbitrary edge not being adjacent
to v, from cycle Ci and Cj. Then we obtain a starlike tree, say, S(H). Hereafter,
S(H) = (s, l1, l2) means S(H) − v = Pl1 ∪ Pl2 ∪ Ks such that l1 + l2 = (i + j) − 1.

Note that in the proof of Lemma 3.4, it was shown that if S1 = S(l1, . . . , lt) and
S2 = S(j1, . . . , jt) are two non-isomorphic starlike trees, then µ1(S1) ̸= µ1(S2), where
l1 ≥ l2 ≥ · · · ≥ lt ≥ 1 and j1 ≥ j2 ≥ · · · ≥ jt ≥ 1.
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Corollary 3.2. If S(G) = (s, l1, l2) and S(H) = (s, j1, j2) are two non-isomorphic

starlike trees, then µ1(S(G)) ̸= µ1(S(H)).

Now we express our main result.

Theorem 3.1. Bell graphs are determined by their Laplacian spectrum.

Proof. Let H be a graph L-cospectral with a bell graph G = BG(Ct1
, Ct2

, s). It follows
from Corollary 3.1 that H is also a bell graph with the same degree sequence as G.
Assuming that H = BG(Ck1

, Ck2
, s) we need to prove that ¶t1, t2♢ = ¶k1, k2♢. To do

so, consider the corresponding starlike trees S(G) = (s, l1, l2) and S(H) = (s, j1, j2).
We claim that H and G are isomorphic, otherwise, µ1(S(G)) ̸= µ1(S(H)) and so
µ1(G) ̸= µ1(H), contradicting Lemma 3.2. □

From Theorem 2.2, it follows that the Laplacian eigenvalues of a graph give the
Laplacian eigenvalues of its complement. Therefore, the complement of a DLS graph,
is also DLS. Hence, the following fact is immediately follows from Theorem 3.1.

Corollary 3.3. The complements of bell graphs are also DLS.
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KONTSEVICH GRAPHONS

ALI SHOJAEI-FARD1

Abstract. The article applies graph functions to extend the Kontsevich differential
graded Lie algebraic formalism (in Deformation Quantization) to infinite Kontsevich
graphs on the basis of the Connes-Kreimer Hopf algebraic renormalization and the
theory of noncommutative differential geometry.

1. Introduction

The motivation of this work has been inspired from the recent progresses about
the mathematical foundations of the Connes-Kreimer renormalization theory of gauge
field theories under two different settings. The one setting concerns finding a new
interpretation of the BPHZ Hopf algebraic perturbative renormalization in the context
of the Kontsevich Deformation Quantization theory. In this direction, the Hopf-
Birkhoff factorization of Feynman rules characters has been described in terms of
the Baker-Campbell-Hausdorff formula and the Kontsevich’s bi-differential symplectic
operator for quantum deformations [5, 12, 16]. The other setting concerns finding
some new applications of the theory of graphons in dealing with large Feynman
diagrams (namely, infinite Feynman graphs) as sparse graphs generated by sequences
of expansions of Feynman diagrams. In this direction, solutions of combinatorial
Dyson-Schwinger equations in Quantum Field Theory have been described in terms of
graph limits of sequences of random graphs derived from graphon models [17–19]. In
addition, in arXiv:1811.05333: A mathematical perspective on the phenomenology of

non-perturbative Quantum Field Theory, 2020, The MPIM Preprint Series 2018 (65),
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the author has addressed some recent applications of graphon models in Quantum
Field Theory.

Thanks to the combination of these topics, in this work we aim to show the existence
of a new class of infinite Kontsevich graphs generated by sequences of finite Kont-
sevich’s admissible graphs. These infinite graphs allow us to extend the Hochschild-
Kontsevich products to a non-perturbative setting. One immediate consequence of
this investigation is the formulation of a new class of non-commutative differential
calculi which can encode some geometric information (such as quantized motion in-
tegral equations) about the evolution of sequences of Kontsevich’s admissible graphs.
Our main task in this work is to formulate a new non-perturbative modification of
the Kontsevich deformation theory via infinite combinatorial tools and the Connes-
Kreimer renormalization Hopf algebra. We first apply the theory of graphons for
sparse graphs [1–3,9,14,15] to determine a new compact Hausdorff sub-space of graph
functions namely, the space of Kontsevich graphons equipped with the cut-distance
topology. This topological space can encode the convergent limits of sequences of finite
Kontsevich’s admissible graphs. Thanks to the Kreimer’s renormalization coproduct
and Kontsevich graphons, we explain the structure of a new topological Hopf algebra
Hcut

Kont on Kontsevich’s admissible graphs which is closely related to the structure of
a new topological Hopf algebra SKont

graphon on Kontsevich graphons. Then we apply this
Hopf algebraic setting together with the BPHZ perturbative renormalization to build
a new noncommutative differential calculus machinery on Kontsevich’s admissible
graphs on the basis of the Nijenhuis property of the minimal subtraction map as the
renormalization scheme. This study enables us to formulate a new class of quantized
motion integrals associated to Kontsevich’s admissible graphs. This formalism can be
modified for Kontsevich graphons which leads us to obtain a new non-perturbative
version of Kontsevich ⋆-products. Finally, we lift the Maurer-Cartan equations onto
the level of Kontsevich graphons and their corresponding infinite Kontsevich graphs.

The Connes-Kreimer renormalization Hopf algebra of Feynman diagrams in Quan-
tum Field Theory is derived from the Bogoliubov-Zimmermann forest formula in per-
turbative renormalization [4,10,11]. This Hopf algebra has been applied by Ionescu in
arXiv:hep-th/0307062: Perturbative Quantum Field Theory and configuration space

integrals, 2003 and [8] to build a differential graded Hopf algebra of the Kontsevich’s
graph complex. In this work, we determine a new class of graphon models for Kont-
sevich’s admissible graphs namely, Kontsevich graphons and then we apply these
graphon representations to build a new topological Hopf algebra on the space of Kont-
sevich’s admissible graphs. We equip also the space of Kontsevich graphons with a new
compact Hausdorff topological Hopf algebra structure where objects in the boundary
region enable us to determine a new collection of infinite Kontsevich graphs. These
infinite graphs can be studied in terms of graphon models. The resulting topological
Hopf algebra might be useful to search for a completion of the differential graded Hopf
algebra of the Kontsevich’s graph complex with respect to the cut-distance topology.
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Deformation Quantization focuses on the construction of a mathematical model
for the description of quantum systems under Dirac’s correspondence principle. The
model is actually based on quantizing the space of observables on a Poisson manifold
in terms of defining a new associative multiplication as a deformation of pointwise
multiplication in the direction of the Poisson bracket. The Kontsevich approach has
provided a universal deformation quantization for any open domain in Rd via a graph-
ical representation for bi-differential operators [12,13]. In this work we apply our new
topological Hopf algebraic setting to formulate a new non-perturbative generalization
for Deformation Quantization. For this purpose we explain the construction of a
new class of noncommutative differential calculi on Kontsevich’s admissible graphs
originated from the Connes-Kreimer renormalization theory of gauge field theories
[4, 21] and the theory of noncommutative differential geometry [6]. We show that the
Connes-Kreimer Renormalization Group can provide a new class of quantized inte-
grable systems which can encode the evolution of sequences of Kontsevich’s admissible
graphs. We then extend this study to the level of Kontsevich graphons which enable
us to formulate a new non-perturbative generalization for the Kontsevich ⋆-products
in Deformation Quantization. These quantized star type of products are actually the
results of the quantization of Poisson structures which are generated by the minimal
subtraction map in the BPHZ renormalization theory. Furthermore, we formulate a
new version of the Maurer-Cartan equations on infinite Kontsevich graphs in terms
of their graphon models.

2. Graphons

We can study a dense or sparse graph in terms of the ratio between the number
of its edges and the maximal number of possible edges. Passing from discrete graphs
to dense graphs requires to apply sequences of edge weighted graphs such that their
vertex sets tend to a continuum set of vertices. The notion of convergence for an
arbitrary sequence of graphs with the growing number of vertices can be formulated
via graph functions or graphons. At first, the theory of graphons has been initiated
in infinite combinatorics for the study of dense graphs derived from sequences of
finite weighted graphs with growing density values. The basic idea was to build a
convergent limit for any sequence of this type in terms of the behavior of subgraph
densities. Homomorphism densities play the fundamental rules for the construction
of graph limits in this setting. However this theory has been developed immediately
for the study of graph limits of sequences of finite sparse graphs in the context of
random graphs and measure theoretic tools. The basic idea in this setting was to
generate non-zero graph limits from sequences of graphs with almost zero densities.
[1–3,9, 14,15]

The convergence of a sequence of pixel pictures can provide the most fundamental
example for graphons. It is possible to generate different pixel picture presentations
(as labeled graphons) for a graph in terms of the rescaling of the ground measure
space or relabeling procedures. However we can encapsulate all these pixel picture



216 A. SHOJAEI-FARD

presentations into a suitable isomorphic class to achieve the notion of uniqueness for
this class of graph limits. Graphons, as analytic objects in infinite combinatorics, can
be redefined in terms of a class of graph functions.

Definition 2.1. For a given measure space or a probability space (J, µJ), a graphon
is a symmetric bounded measurable function such as W : J × J → [a, b] ⊂ R. It is
called a bigraphon if we remove the symmetric property.

In the standard graphon models, we can work on the closed interval J = [0, 1]
equipped with the Lebesgue measure as the ground measure space to build graphons.
In this setting, invertible Lebesgue measure preserving transformations on [0, 1] such
as ρ can generate relabeled versions of a given graphon. In other words, a relabeled
graphon W ρ is defined by W ρ(x, y) := W (ρ(x), ρ(y)).

In general, graphons W1, W2 are called weakly isomorphic (or weakly equivalent), if
there exist µJ -measure preserving transformations σ1, σ2 on J such that W σ1

1 and W σ2
2

are the same almost everywhere. We can define an equivalence class [W ], known as
unlabeled graphon class, which contains all relabeled graphons and weakly isomorphic
versions with respect to a fixed graphon W .

We can define the cut-norm (as a semi-norm) on the space of labeled graphons. It
is given by

(2.1) ∥W ρ∥cut := supA,B⊊J

∣

∣

∣

∣

∫

A×B
W ρ(x, y)dµJ(x)dµJ(y)

∣

∣

∣

∣

.

This semi-norm is the key tool to define graph limits where we need to work on the
space of unlabeled graphon classes to define the notion of unique convergence for the
space of finite graphs. The cut-norm (2.1) gives us a metric structure on the space of
unlabeled graphon classes. It is defined by

(2.2) dcut([W1], [W2]) := infρ1,ρ2 ∥W ρ1
1 −W ρ2

2 ∥cut,

such that the resulting topological space is compact and Hausdorff [9, 14].

Lemma 2.1. Each finite simple weighted graph can determine a unique unlabeled

graphon class.

Proof. We consider labeled graphons on the closed interval [0, 1] equipped with the
Lebesgue measure. Each finite simple weighted graph G = (V,E) can determine a
class of labeled graph functions generated via its corresponding adjacency matrix AG.
They are pixel picture presentations. The set of vertices V can be seen as a finite
probability space with the uniform measure and the set of edges E as the indicator of
adjacency. Then we define the labeled graph function W σ

G by fixing a partition σ on
the closed interval such as dividing [0, 1] into ♣V ♣ equal sub-intervals Iis. Now define
W σ

G(x, y) := aij ∈ AG for x ∈ Ii and y ∈ Ij. Up to the weakly isomorphic relation,
now we can associate an unlabeled graphon class [W σ

G] to the graph G which contains
all possible labeled graph functions W σ

G which are equivalent in terms of relabeling
via invertible measure preserving transformations or they are weakly isomorphic. □
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The metric (2.2) is the key tool for the study of the behavior of extremely large
graphs or complex networks whenever the vertex set of these graphs goes to infinity.
In this setting, we can check that two graphons are weakly isomorphic if they have zero
cut-distance from each other. Graphons generated by relabeling are weakly isomorphic.
The graphon corresponding to the empty graph (i.e., 0-graphon) is identified by the
class [W σ

I ] of graph functions such that
∫

[0,1]×[0,1] W
σ
I (x, y)dxdy = 0. Graph limits can

be interpreted as objects of the boundary region of the topological space of all finite
graphs with respect to the cut-distance topology [9, 14,15].

The theory of graphons has also been developed for the study of sparse graphs where
we need to renormalize graph functions or rescale the base measure of the ground
measure space to build non-zero graphons via the convergent limits of sequences of
sparse graphs with weak densities [1–3,15]. We recently applied this class of graphon
models to formulate an analytic generalization for Feynman diagrams in Quantum
Field Theory. These graphon models have led us to find some new combinatorial
tools in dealing with Dyson-Schwinger equations as fixed point equations of Green’s
functions. It is then shown that non-perturbative solutions of quantum motions
in gauge field theories can be described in terms of cut-distance convergent limits
of sequences of random graphs generated by graphon representations of Feynman
diagrams and their formal expansions [17–19].

3. Topological Hopf Algebra Structures on Kontsevich’s Admissible
Graphs and their Graphon Models

In this part, we study the fundamental elements of Deformation Quantization
namely, Kontsevich’s admissible graphs, Hochschild-Kontsevich products and their
connection to the Connes-Kreimer insertion operator on Feynman diagrams. We then
define Kontsevich graphons which are useful to study graph limits of Kontsevich’s
admissible graphs. We then equip the space of finite Kontsevich’s admissible graphs
and the space of their corresponding graphon models with the cut-distance topology
together with some new Hopf algebra structures derived from the Connes-Kreimer
renormalization Hopf algebra of Feynman diagrams. The Hopf algebra of Kontsevich’s
admissible graphs is topologically completed via the topology of graphons which can
lead us to formulate the concept of convergence for sequences of these graphs. Our
study provides a new class of infinite Kontsevich graphs which can be described
in terms of convergent limits of sequences of random graphs derived from graphon
models.

Definition 3.1. A Kontsevich’s admissible graph is a simple oriented graph which
contains two classes of totally ordered disjoint sets of vertices called internal and
boundary vertices. Boundary vertices are leaves while there are no multiple edges or
self-loops in the graph. There is also a total order on the set of all edges.
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Remark 3.1. A Kontsevich’s admissible graph can be presented via a disk such that
internal vertices live inside the disk and boundary vertices live on the boundary region
of the disk.

Definition 3.2. Let Gp,q be the set of isomorphism classes of all Kontsevich’s admis-
sible graphs such as K with q internal vertices such that v(K) − e(K) − 1 = p. Set
g

•,• as the bigraded vector space generated by
⋃∞

p,q=0 G
p,q.

A subgraph G of K is called a normal subgraph if the quotient graph H = K/G as
the result of collapsing the subgraph G to a vertex vG is itself a graph in g

•,•. Each
normal subgraph G should be a full subgraph which means that every edge of K
connecting two vertices of G is an edge of G [7, 12].

Remark 3.2. We can describe K as an extension of H by G in terms of inserting
the graph G into a vertex of H. This process can be summarized by the notation
G →֒ K ↠ H such that the extension is called internal or boundary with respect to
the type of that vertex which G is inserted into.

Definition 3.3. We can define two different Hochschild-Kontsevich products on g
•,•

in terms of types of vertices. They are given by

(3.1) H •G :=
∑

G→֒K↠H, internal

±K, H ◦G :=
∑

G→֒L↠H, boundary

±L

such that • is a (0,−1) degree product and ◦ is a bigraded product.

Feynman diagrams in Quantum Field Theory are finite oriented labeled graphs
which contains two classes of edges namely, internal and external edges. Each internal
edge has begining and ending points while each external edge has only begining
or ending point. Decorations in each Feynman diagram can encode fundamental
data of physical systems such as conservation of momenta while vertices encode
interactions among elementary particles (i.e., edges). Each Feynman diagram is a
simplified model for a complicated iterated ill-defined integral which exists in the
Green’s functions of the physical theory. In Connes-Kreimer theory, we can describe
the perturbative renormalization machinery in terms of a factorization algorithm
on Feynman diagrams originated from the insertion operator. Rebuilding Feynman
diagrams from the components of this factorization might not be unique in gauge field
theories where we need to apply some new shuffle type products on Feynman diagrams
or some identities among Feynman diagrams to generate a uniqueness [10, 11,20].

Lemma 3.1. The Hochschild-Kontsevich products • and ◦ can determine a pre-Lie

operator on the set of Feynman diagrams.

Proof. In terms of types of vertices and types of edges, we can glue Feynman diagrams
to obtain a new diagram or decompose a complicated Feynman diagram into its
primitive components. For any given Feynman diagrams Γ1, Γ2, suppose there exists
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a vertex vi ∈ Γ1 such that fvi
∼ Γ

[1],ext
2 . Then we can define the insertion of Γ2 inside

Γ1 via vi in terms of the formula

(3.2) Γ1 ∗vi
Γ2 := Γ1/¶vi♢ ∪ Γ2/Γ

[1],ext
2 ,

which is a new graph such that for each edge ej ∈ fi, ¶vej
♢ contains only one vertex

of Γ2. The sum over all possible vertices which have equivalent type with Γ
[1],ext
2 gives

us the insertion of Γ2 inside Γ1. We have

(3.3) Γ1 ∗ins Γ2 :=
∑

v∈Γ1,fv∼Γ
[1],ext
2

Γ1 ∗v Γ2,

which is known as the Connes-Kreimer insertion operator and it provides a pre-Lie
algebra structure on Feynman diagrams. The commutator with respect to the insertion
operator defines a Lie algebra structure on Feynman diagrams which leads us to build
the Connes-Kreimer renormalization Hopf algebra [4, 10,21]. The insertion operator
∗ins is a non-homogeneous product which can be described as a combination of the
Hochschild-Kontsevich products • and ◦ (3.1). □

We can formulate an analytic generalization for Kontsevich’s admissible graphs in
the context of the theory of graphons.

Lemma 3.2. Any Kontsevich’s admissible graph K can determine a unique unlabeled

(bi)graphon class [WK ].

Proof. We need to update Lemma 2.1. We choose the closed interval [0, 1] equipped
with the Lebesgue measure as the ground measure space. Thanks to Definition 3.1,
we can build the adjacency matrix AK corresponding to the graph K. This matrix
can be presented by a pixel picture PK presentation built by the scaling of [0, 1]2

where 1’s in AK turn into black squares and 0’s in AK turn into white squares. This
class of presentations can be encoded by choosing partitions σ on [0, 1] together with
symmetric bounded Lebesgue measurable maps W σ

K defined on [0, 1]2.
We call [WK ] the unlabeled Kontsevich graphon class corresponding to the graph

K. This class contains all relabeled Kontsevich graphons corresponding to K and all
other Kontsevich graphons which are weakly isomorphic to WK . □

Definition 3.4. A sequence ¶Kn♢n≥0 of finite Kontsevich’s admissible graphs is
called convergent when n tends to infinity, if the corresponding sequence ¶[WKn

]♢n≥0

of unlabeled Kontsevich graphon classes converges to a non-zero unlabeled Kontsevich
graphon class [W∞] with respect to the cut-distance topology.

The non-zero graph limit W∞ can be built by rescaling methods explained in
[1–3,15] which enable us to renormalize the canonical graphons.

Definition 3.5. The Kontsevich’s admissible graph generated by the information of
the Kontsevich graphon W∞ is an infinite graph KW∞

. It contains infinite number of
internal or boundary vertices or (infinite) number of edges. We call KW∞

an infinite
Kontsevich graph.
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Kontsevich graphons are useful to study the asymptotic behavior of growing se-
quences of Kontsevich normal subgraphs with respect to the cut distance topology.

Proposition 3.1. We can lift products ◦ and • onto the level of Kontsevich graphons.

Proof. Let ¶Kn♢n≥0 be a sequence of Kontsevich’s admissible graphs which is cut-
distance convergent to the unlabeled Kontsevich graphon class [WK∞

] with the corre-
sponding infinite Kontsevich graph K∞. Let ¶Gn♢n≥0 be another sequence of Kont-
sevich’s admissible graphs such that for each n, Gn is a normal subgraph of Kn. Let
the sequence ¶Gn♢n≥0 is cut-distance convergent to the unlabeled Kontsevich graphon
class [WG∞

] with the corresponding infinite Kontsevich graph G∞.
We can build a new sequence ¶Hn♢n≥0 := ¶Kn/Gn♢n≥0 of quotient graphs which

is cut-distance convergent to the infinite Kontsevich graph H∞. Thanks to Kontse-
vich graphon representations WK∞

, WG∞
and WK∞/G∞

, we can show that WH∞
∈

[WK∞/G∞
]. Therefore, H∞ = K∞/G∞. Now for each n, we can define

(3.4) Hn •Gn =
∑

Gn →֒Kn↠Hn, internal

±Kn, Hn ◦Gn =
∑

Gn →֒Kn↠Hn, boundary

±Kn.

As the result, we can define H∞ •G∞ as the infinite Kontsevich graph corresponding
to the cut-distance convergent limit of the sequence ¶Hn •Gn♢n≥0 and define H∞ ◦G∞

as the infinite Kontsevich graph corresponding to the cut-distance convergent limit
of the sequence ¶Hn ◦Gn♢n≥0. □

Definition 3.6. The bigraded vector space g
•,• (i.e., Definition 3.2) together with the

cut-distance topology give us a topological vector space. We present this new space
with g

•,•
cut such that its objects have graphon representations determined by Lemma

3.2, Definition 3.4 and Definition 3.5.

Remark 3.3. H∞ • G∞ or H∞ ◦ G∞ could have infinite terms in their series. The
compactness of the topology of graphons enables us to describe these infinite series
in terms of objects in the boundary of the space g

•,•
cut.

Ionescu in arXiv:hep-th/0307062: Perturbative Quantum Field Theory and con-

figuration space integrals, 2003 and [8] has applied the Kreimer’s renormalization
coproduct to build a differential graded Hopf algebra structure on Kontsevich’s graph
complex. Thanks to our explained graphon models, now we can formulate a new
topological Hopf algebra structure on Kontsevich’s admissible graphs which can be
completed in terms of the cut-distance topology.

Proposition 3.2. The completion map with respect to normal subgraphs together

with the graphon representations of Kontsevich’s admissible graphs can determine a

topological Hopf algebra structure on g
•,•
cut.

Proof. Thanks to the Connes-Kreimer renormalization Hopf algebra of Feynman dia-
grams, the structure of a differential graded Hopf algebra on Kontsevich’s admissible
graphs has been explained in [8]. We work on the free commutative algebra generated



KONTSEVICH GRAPHONS 221

by Kontsevich’s admissible graphs over the field Q or R such that the empty graph is
its unit. For any given Kontsevich’s admissible graph K, define

(3.5) ∆(K) = I ⊗K +K ⊗ I +
∑

G

G⊗K/G,

as a coproduct such that the sum is over all non-trivial normal subgraphs of K and
I is the empty graph. Terms in this expansion are in an one to one correspondence
with all possible internal or boundary extensions of normal subgraphs of the original
graph.

The counit is defined by ε(I) = 1 and ε(K) = 0 for K ≠ I. If we apply the
graduation parameter on Kontsevich’s admissible graphs given by Definition 3.1 and
Definition 3.2, then we can define an antipode recursively. This completes the con-
struction of the renormalization Hopf algebra of Kontsevich’s admissible graphs.

Now we plan to topologically complete this Hopf algebra in terms of graphon
representations of Kontsevich’s admissible graphs (i.e., Lemma 3.2 and Definition 3.4).
It is enough to show the continuity of the coproduct and antipode with respect to the
topology of graphons.

We work on the free commutative algebra generated by unlabeled Kontsevich
graphon classes over the field Q or R such that [WI] corresponding to the empty graph
is its unit. Thanks to the coproduct (3.5), for any unlabeled Kontsevich graphon class
[WK ] corresponding to a finite graph K, its coproduct is given by

(3.6) ∆([WK ]) = [WI] ⊗ [WK ] + [WK ] ⊗ [WI] +
∑

[WG] ⊗ [WK/G],

such that the sum is controlled by Kontsevich graphons associated to non-trivial
normal subgraphs of K. This coproduct is a bounded and linear map which makes it
a continuous map with respect to the cut-distance topology.

In addition, let K∞ be an infinite Kontsevich graph as the graph limit of the
sequence ¶Kn♢n≥0 of finite Kontsevich’s admissible graphs. Let [W∞] be the unique
unlabeled Kontsevich graphon class corresponding to K∞. This means that the
sequence ¶[WKn

]♢n≥1 is cut-distance convergent to [W∞]. Thanks to the continuity of
the coproduct (3.6), ∆([W∞]) can be defined as the cut-distance convergent limit of
the sequence ¶∆([Kn])♢n≥0.

The counit is defined by ε([WI]) = 1 and ε([WK ]) = 0, for K ≠ I. We can also
define the antipode map on unlabeled Kontsevich graphon classes recursively in terms
of the cut-distance convergent limit of a sequence of antipodes of finite Kontsevich
graphs. The compactness of the cut-distance topology is enough to observe that the
defined coproduct and antipode are bounded. The linearity and boundary condition
guarantee the continuity of the coproduct and antipode.

We use the notation SKont
graphon for the resulting topological Hopf algebra of unlabeled

Kontsevich graphon classes. We also use the notation Hcut
Kont for the resulting topolog-

ical Hopf algebra of Kontsevich’s admissible graphs which is generated by g
•,•
cut as a

vector space.
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Any linear combination α1K1 + · · · + αnKn of Kontsevich’s admissible graphs can
generate a Kontsevich graphon class in SKont

graphon. The corresponding labeled Kontsevich
graphon Wα1K1+···+αnKn

can be determined in terms of the normalizing or rescaling
methods used on each WαiKi

. In other words, for each 1 ≤ i ≤ n, we first project
the labeled Kontsevich graphon WαiKi

into the subinterval Ii of [0, 1] where ¶Ii♢i is a
partition for [0, 1]. We present the resulting labeled graphons with Wα̃iK̃i

. Then we
can define

(3.7) Wα̃1K̃1+···+α̃nK̃n
:=

Wα̃1K̃1
+ · · · +Wα̃nK̃n

∥Wα̃1K̃1
+ · · · +Wα̃nK̃n

∥cut

.

Thanks to the correspondences K 7→ [WK ] and ¶Kn♢n≥0 7→ K[W∞], we can com-
plete the Hopf algebra of Kontsevich’s admissible graphs and formulate a surjective
topological Hopf algebra homomorphism

□(3.8) ΨKont : SKont
graphon → Hcut

Kont.

Thanks to this study, now it is possible to define the notion of distance between
Kontsevich’s admissible graphs via their graphon representations.

Definition 3.7. The distance between Kontsevich’s admissible graphs K1 and K2 is
defined in terms of the cut-distance between their corresponding unlabeled Kontsevich
graphon classes. In other words, thanks to the metric (2.2), we have

(3.9) d(K1, K2) := dcut([WK1 ], [WK2 ]).

Corollary 3.1. A sequence of Kontsevich’s admissible graphs is convergent if and

only if it is a cut-distance Cauchy sequence.

Corollary 3.2. For a given Kontsevich graphon W∞, there exists a sequence of finite

random graphs which is cut-distance convergent to W∞.

Proof. For each n, we can define a finite random graph G(W∞, n) which contains n
points x1, . . . , xn from the Kontsevich graphon W∞ such that the existence of an edge
between xi and xj is determined by the probability W∞(xi, xj). Thanks to [9, 19], we
can show that the sequence ¶G(W∞, n)♢n≥0 is cut-distance convergent to W∞. □

Infinite polydifferential operators can be described in terms of multiplication of
functions and infinite vector fields which act as polyderivations on infinite functions.
We can define these operators as the cut-distance convergent limit of sequences of finite
operators. In this setting, the multiplication of infinite functions is represented by the
Kontsevich graphon b0,∞ with no internal vertices and infinite (countable) boundary
vertices. The resulting Kontsevich graphon is actually the cut-distance convergent
limit of Kontsevich’s admissible graphs which belong to Gm−1,0 when m tends to
infinity. In addition, ∞-vector field with infinite polyderivations is represented by the
Kontsevich graphon b1,∞ with one internal vertex and infinite countable boundary
vertices with infinite countable edges.
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4. Noncommutative Differential Calculi on Kontsevich’s Admissible
Graphs and their Graphon Models via the Renormalization Map

In [12] it is shown that the Hopf-Birkhoff factorization of Feynman rules characters
in the Connes-Kreimer perturbative renormalization process can be interpreted as a
deformation of the pointwise multiplication of some exponential functions under the
Kontsevich product. In this part we plan to work on the space of linear functionals on
the topological Hopf algebra of Kontsevich’s admissible graphs or Kontsevich graphons
with values in the algebra Adr of Laurent series with finite pole parts equipped with
the minimal subtraction map to build a new class of differential graded Lie algebras
and Poisson structures with respect to deformed versions of the convolution product.

The Rota-Baxter algebra (Adr, Rms) determines a class of deformed convolution
products on the space L(Hcut

Kont, Adr) of linear maps given by

(4.1) ϕ1 ◦λ ϕ2 := Rλ(ϕ1) ∗ ϕ2 + ϕ1 ∗ Rλ(ϕ2) − Rλ(ϕ1 ∗ ϕ2),

such that Rλ := R− λ(Id −R), where R is the extension of Rms on L(Hcut
Kont, Adr) and

λ is a real number.
The convolution product ∗ is defined in terms of the coproduct (3.5) on Kontsevich’s

admissible graphs. In other words, for any ϕ1, ϕ2 ∈ L(Hcut
Kont, Adr) and any Kontsevich’s

admissible graph K, we have

(4.2) ϕ1 ∗ ϕ2(K) := ϕ1(I)ϕ2(K) + ϕ1(K)ϕ2(I) +
∑

G

ϕ1(G)ϕ2(K/G),

such that G are non-trivial normal subgraphs of K.
Let an infinite Kontsevich graph K∞ is the result of the cut-distance convergent

limit of a sequence ¶Kn♢n≥1 of finite Kontsevich’s admissible graphs. Thanks to
the continuity of the coproduct (3.5) with respect to the cut-distance topology and
Proposition 3.1, we can show that the sequence ¶

∑

Gn
ϕ1(Gn)ϕ2(Kn/Gn)♢n≥1 is cut-

distance convergent to
∑

G∞

ϕ1(G∞)ϕ2(K∞/G∞). This means that we can extend the
convolution product ∗ on infinite Kontsevich graphs where ϕ1 ∗ϕ2(K∞) can be defined
as the convergent limit of the sequence ¶ϕ1 ∗ ϕ2(Kn)♢n≥1.

The associative products ◦λ on L(Hcut
Kont, Adr) are actually the direct consequence

of the Nijenhuis property of the map Rλ. The non-cocommutativity of Hcut
Kont ensures

that each product ◦λ is noncommutative. Therefore we can define a new Lie bracket
[·, ·]λ via the commutator with respect to ◦λ.

Proposition 4.1. There exists a noncommutative differential calculus on H∧λ

Kont :=
(L(Hcut

Kont, Adr), ◦λ).

Proof. Set Z(H∧λ

Kont) as the center of the algebra and Derλ
Kont as the space of all linear

maps θ : H∧λ

Kont → H∧λ

Kont which obey the Leibniz rule. The Lie bracket [·, ·]λ, which
satisfies the Jacobi identity, can determine the corresponding Poisson bracket ¶·, ·♢λ.
For each ϕ ∈ H∧λ

Kont, define ψ 7→ ¶ϕ, ψ♢λ as the corresponding Hamiltonian derivation.
Set Hamλ

Kont as the Z(H∧λ

Kont)-module generated by all Hamiltonian derivations.
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Thanks to the theory of noncommutative differential geometry on the basis of
the space of derivations [6], for n ≥ 1, define Ωn

Kont,λ as the space of all Z(H∧λ

Kont)-

multilinear anti-symmetric maps from Hamλ
Kont × · · ·n × Hamλ

Kont to H∧λ

Kont. We have
the differential graded algebra (Ω•

Kont,λ, dλ) such that the degree one anti-derivative
differential operator dλ is given by

dλω(θ0, . . . , θn) :=
n

∑

k=0

(−1)kθkω(θ0, . . . , θ̂k, . . . , θn)

+
∑

0≤r<s≤n

(−1)r+sω([θr, θs]λ, θ0, . . . , θ̂r, . . . , θ̂s, . . . , θn). □

Corollary 4.1. There exists a new class of integrable systems which can geometrically

evaluate Kontsevich’s admissible graphs.

Proof. We apply the renormalization map Rms : Adr → Adr and work on the noncom-
mutative deRham complex derived from Proposition 4.1. We have

(4.3) DR•
Kont,λ :=

Ω•
Kont,λ

[Ω•
Kont,λ,Ω

•
Kont,λ]λ

.

The deformed Lie bracket [·, ·]λ allows us to define a class of Z(H∧λ

Kont)-bilinear anti-
symmetric non-degenerate closed 2-forms for the presentation of the Poisson bracket
¶·, ·♢λ. For any derivations θ1 =

∑

ui ◦λ ham(fi), θ2 =
∑

vj ◦λ ham(hj), define the
symplectic form

(4.4) ωλ(θ1, θ2) =
∑

i,j

ui ◦λ vj ◦λ [fi, hj]λ,

such that ¶f1, . . . , fn, h1, . . . , hm♢ ⊊ H∧λ

Kont, ¶u1, . . . , un, v1, . . . , vm♢ ⊊ Z(H∧λ

Kont).
If θλ

f is the symplectic vector field associated to the symplectic form ωλ, then we
have

(4.5) ¶f, g♢λ = ωλ(θλ
f , θ

λ
g ),

as the quantization of the Poisson structure on Kontsevich’s admissible graphs and
Kontsevich graphons in the direction of the minimal subtraction scheme.

Thanks to [4, 21], we can build the Connes-Kreimer Renormalization Group ¶Ft♢t

of the topological Hopf algebra Hcut
Kont of Kontsevich’s admissible graphs. This is a

1-parameter subgroup of the Lie group Hom(Hcut
Kont, Adr) of characters. Then we can

check that ¶Ft, Fs♢0 = 0. □

Remark 4.1. Thanks to the surjective homomorphism ΨKont (3.8), Proposition 4.1 and

Corollary 4.1, we can build a noncommutative differential calculus on S
Kont,∧λ

graphon and

then we can show that the Connes-Kreimer Renormalization Group of SKont
graphon can

determine a new class of integrable systems.

Corollary 4.2. The Kontsevich’s Deformation Quantization [7, 12] can be lifted onto

the level of Kontsevich graphons.
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Proof. For the algebra

(4.6) S∧λ

Kont := (L(SKont
graphon, Adr), ◦λ),

we work on the Lie algebra derλ
Kont of all derivations ρ : SKont

graphon → Adr. This space is
generated by infinitesimal characters such as ρ[W ] corresponding to each Kontsevich

graphon [W ]. Let Ad as the space of functions with the domain derλ
Kont ×· · ·d ×derλ

Kont

and with the images in SKont
graphon.

For any Kontsevich graphon [WK ] corresponding to the graph K ∈ Hcut
Kont, we can

define the bi-differential operator B[WK ],λ : Ad ×Ad −→ Ad in terms of the differential
operator dλ (determined by the Poisson structure ¶·, ·♢λ) and derivations ρK .

Set Gn, n ≥ 0, as the collection of all Kontsevich graphs with n + 2 vertices
¶1, . . . , n♢ ∪ ¶X, Y ♢ and 2n edges such that for each vertex k, there exist two edges
staring at k. We can now define a new ⋆-product on Ad as the Kontsevich’s quantiza-
tion of ◦λ. For any functions F,G ∈ Ad, F ⋆λ G is defined as the convergent limit of
the sequence

(4.7)







n
∑

j=0

ϵj
∑

L∈Gj

ωK(L)B[WK ],λ(F,G)







n≥0

,

with respect to the cut-distance topology defined on Kontsevich graphons when n
tends to infinity. □

The quantization F ⋆λ G can contain an infinite formal expansion of growing Kont-
sevich’s admissible graphs which can not be handled by the perturbative setting.
Therefore we name it a non-perturbative generalization of the standard Kontsevich’s
Deformation Quantization. Thanks to the compactness of the topology of graphons
[9, 14], we can search for cut-distance graph limits for these infinite expansions.

5. Maurer-Cartan Equations on Kontsevich Graphons

In this section, we aim to formulate a new generalization of the Maurer-Cartan
equations for infinite Kontsevich graphs (i.e., Definition 3.5) generated as the graph
limits of sequences of finite Kontsevich’s admissible graphs.

The commutator with respect to the operation ◦ gives a Lie algebraic structure
on g

•,•
cut. This Lie bracket is actually obtained as an extension of the Hochschild-

Kontsevich Lie bracket with respect to the cut-distance topology. It determines
the differential operator d1 of degree (1, 0). In addition, we can also extend the
Kontsevich’s vertical differential operator on g

•,•
cut to define the differential operator d2

on infinite Kontsevich’s admissible graphs. For a given infinte Kontsevich graph K[U∞]

corresponding to the unlabeled Kontsevich graphon class [U∞], d2(K[U∞]) is the result
of the cut-distance convergent limit of the sequence ¶d2(Kn)♢n≥0, where for each n

(5.1) d2(Kn) :=
∑

e→֒G↠Kn, internal

±G = Kn • e,



226 A. SHOJAEI-FARD

which is expanding the internal vertices of Kn by the insertion of an additional edge.
d2 is a differential operator of degree (0, 1).

Proposition 5.1. There exists a Hochschild-Kontsevich differential graded Lie algebra

on Kontsevich graphons.

Proof. Set g
n
cut := ⊕p+q=ng

p,q as the graded vector space equipped with the cut-
distance topology. We can show that differential operators d1, d2 commute on the
total complex g

•
cut and therefore d := d1 ± d2 is a total differential operator which is

compatible with the graded Lie bracket [·, ·]◦ induced by ◦. □

Now we can formulate the Maurer-Cartan equations on an infinite generalization
of Kontsevich’s admissible graphs.

Corollary 5.1. There exists a modified version of the Maurer-Cartan equation on

infinite Kontsevich graphs.

Proof. The topological Hopf algebra Hcut
Kont of Kontsevich’s admissible graphs (built

by Proposition 3.2) and the noncommutative differential calculus (i.e., Proposition
4.1) can be applied to associate the 1-form

(5.2) αMC(K) =
∑

G

S(G)dλθK/G,

such that S is the antipode of Hcut
Kont, the sum is taken over all normal subgraphs G

of K and θK/G is the infinitesimal characters with respect to Kontsevich’s admissible
quotient graphs K/G. We can check that

(5.3) αMC(KL) = αMC(K)ε(L) + ε(K)αMC(L).

Therefore, a general presentation of the Maurer-Cartan equation has the form

(5.4) dλαMC(K) = −
∑

G

αMC(G)αMC(K/G).

Now suppose ¶Kn♢n≥0 be a sequence of finite Kontsevich’s admissible graphs which
satisfy the equation (5.4) for each n ≥ 0 and the sequence is cut-distance convergent
to the Kontsevich graphon W∞. Then it can be seen that the infinite Kontsevich
graph K[W∞] is also a solution for (5.4). □

It is possible to define a new morphism Ū of differential graded Lie algebras (as a
generalization of the map U given in [7]) between g

•,•
cut and the Chevalley-Eilenberg

complex CE•,•
cut(T

•
poly, D

•
poly) equipped with the cut-distance topology. This enables us

to formulate the Maurer-Cartan equations on the complex of Kontsevich graphons in
the language of morphisms between T •

poly and D•
poly.
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6. Conclusion

The main achievement of this work is to provide some new mathematical tools
for the study of the Kontsevich Deformation Quantization under a non-perturbative
setting. We applied graphon models for the study of the space of Kontsevich’s ad-
missible graphs to formulate some new topological Hopf algebra structures Hcut

Kont on
these graphs and SKont

graphon on their corresponding graphon models. Then we worked
on the basis of this Hopf algebraic setting to build a new class of noncommutative
differential calculi on Kontsevich’s admissible graphs originated from the BPHZ pertur-
bative renormalization. This study has led us to determine a new class of quantized
integrable systems which can geometrically describe the evolution of sequences of
Kontsevich’s admissible graphs. In addition, thanks to the topologically completion of
our Hopf algebra model, we formulated the Kontsevich’s Deformation Quatization for
Kontsevich graphons which has led us to obtain a non-perturbative generalization for
deformation quantization procedure. Furthermore, we have obtained a new modified
version of the Maurer-Cartan equations on infinite Kontsevich graphs.

As the final note, the topological Hopf algebras Hcut
Kont and SKont

graphon are also useful to
work on combinatorial Dyson-Schwinger equations on Kontsevich’s admissible graphs
in the context of Hochschild type of equations. Solutions of these equations can be de-
scribed in terms of random graphs generated by Kontsevich graphons. This study can
be useful to find some new interconnections between combinatorial Dyson-Schwinger
equations and the non-perturbative generalization of the Kontsevich Deformation
Quantization.

Acknowledgements. The author would like to thank the Reviewer because of the
important comments and advices which were useful to clarify the results of this work.
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SOME L1-BICONSERVATIVE LORENTZIAN HYPERSURFACES IN

THE LORENTZ-MINKOWSKI SPACES

FIROOZ PASHAIE1

Abstract. The biconservative hypersurfaces of Euclidean spaces have conserva-
tive stress-energy with respect to the bienergy functional. We study Lorentzian
hypersurfaces of Minkowski spaces, satisfying an extended condition (namely, L1-
biconservativity condition), where L1 (as an extension of the Laplace operator
∆ = L0) is the linearized operator arisen from the Ąrst normal variation of 2nd
mean curvature vector Ąeld. A Lorentzian hypersurface x : Mn

1 → L
n+1 is said

to be L1-biconservative if the tangent component of vector Ąeld L2
1x is identically

zero. The geometric motivation of this subject is a well-known conjecture of Bang-
Yen Chen saying that the only biharmonic submanifolds (i.e., satisfying condition
L2

0x = 0) of Euclidean spaces are the minimal ones. We discuss on L1-biconservative
Lorentzian hypersurfaces of the Lorentz-Minkowski space L

n+1. After illustrating
some examples, we prove that these hypersurfaces, with at most two distinct prin-
cipal curvatures and constant ordinary mean curvature, have constant 2nd mean
curvature.

1. Introduction

The main geometric motivation of the subject of biconservative hypersurfaces is
a well-known conjecture of Bang-Yen Chen (in 1987) which states that every bihar-
monic submanifold of a Euclidean space is harmonic. Further, Chen proved that his
conjecture is true for biharmonic surfaces in E

3. In 1992, Dimitrić proved that any
biharmonic hypersurface in E

m with at most two distinct principal curvatures is mini-
mal ([10]). Let x : Mn → E

n+1 denotes an isometric immersion of a hypersurface Mn

into the (n + 1)-dimensional Euclidean space with the Laplace operator ∆, the shape
operator A associated to a unit normal vector Ąeld n and the ordinary mean curvature
H on Mn. The hypersurface Mn is said to be harmonic if x satisĄes condition ∆x = 0.

Key words and phrases. Lorentzian hypersurface, L1-biconservative, Lorentz-Minkowski space.
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It is said to be biharmonic if x satisĄes condition ∆2x = 0. Also, Mn is said to be
biconservative if the tangential part of ∆2x vanishes identically. A famous law due to
Beltrami says that ∆x = −nHn, so the condition ∆x = 0 is equivalent to H ≡ 0 and
the condition ∆2x = 0 is equivalent to ∆(Hn) = 0. In 1995, Hasanis and Vlachos
proved an extension of ChenŠs result to the hypersurfaces in Euclidean 4-space ([11]).
As an extended case, a hypersurface x : M3

p → E
4
s, whose mean curvature vector Ąeld

is an eigenvector of the Laplace operator ∆, has been studied, for instance, in [8, 9]
for the Euclidean case (where p = s = 0), and for the Lorentz case in [4, 5] (for s = 1
and p = 0, 1). On the other hand, Chen himself had found a nice relation between the
Ąnite type hypersurfaces and biharmonic ones. The theory of Ąnite type hypersurfaces
is a well-known subject initiated by Chen (for instance, in [6, 7]) and also studied by
L. J. Alias, S. M. B. Kashani and others. In [12], Kashani has studied the notion of
L1-Ąnite type Euclidean hypersurfaces as an extension of Ąnite type ones. One can
see main results in Chapter 11 of ChenŠs book ([6]).

The map L1 is an extension of the Laplace operator L0 = ∆, which stands for the
linearized operator of the Ąrst variation of the 2th mean curvature of the hypersurface
(see, for instance, [1,17,20]). This operator is deĄned by L1(f) = tr(P1 ◦ ∇2f) for any
f ∈ C∞(M), where P1 = nHI −A denotes the Ąrst Newton transformation associated
to the second fundamental from of the hypersurface and ∇2f is the hessian of f . It is
interesting to generalize the deĄnition of biharmonic hypersurface by replacing ∆ by
L1. Recently, in [15], we have studied the L1-biharmonic spacelike hypersurfaces in 4-
dimentional Minkowski space L

4. In this paper, we show that every L1-biconservative
Lorentzian hypersurfaces in the Lorentz-Minkowski space L

n+1, with constant mean
curvature and at most two distinct principal curvatures, has constant 2nd mean
curvature.

We present the organization of paper. In Section 2, we remember some prelim-
inaries which will be needed in paper. In Section 3, we present some examples of
L1-biconservative Lorentzian hypersurfaces in L

n+1. Section 4 is dedicated to L1-
biconservative Lorentzian hypersurfaces of Ln+1. First, in Theorem 4.1, 4.2 and 4.3
we discuss on L1-biconservative Lorentzian hypersurfaces of L

n+1 with diagonaliz-
able shape operator. The other cases that the shape operator of hypersurface is
non-diagonalizable will be seen in Theorem 4.4, 4.5 and 4.6.

2. Preliminaries

In this section, we recall preliminaries from [1, 13, 14] and [16Ű19]. The m-dimen-
sional Lorentz-Minkowski space L

m means the pseudo-Euclidean space with index
1, Em

1 , which is the real vector space R
m endowed with the scalar product deĄned

by ⟨x, y⟩ := −x1y1 + Σm
i=2xiyi for every x, y ∈ R

m. Throughout the paper, we
study on every Lorentzian hypersurface of Ln+1, deĄned by an isometric immersion
x : Mn

1 → L
n+1. The symbols ∇̃ and ∇̄ stand for the Levi-Civita connection on Mn

1

and L
n+1, respectively. For every tangent vector Ąelds X and Y on M , the Gauss

formula is given by ∇̄XY = ∇̃XY + ⟨AX, Y ⟩n for every X, Y ∈ χ(M), where n is
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a (locally) unit normal vector Ąeld on M and A is the shape operator of M relative
to n. For each non-zero vector X ∈ L

n+1, the real value ⟨X, X⟩ may be a negative,
zero or positive number and then, the vector X is said to be time-like, light-like or
space-like, respectively.

Definition 2.1. For a n-dimensional Lorentzian vector space V n
1 , a basis B :=

¶e1, . . . , en♢ is said to be orthonormal if it satisĄes ⟨ei, ej⟩ = ϵiδ
j
i for i, j = 1, . . . , n,

where ϵ1 = −1 and ϵi = 1 for i = 2, . . . , n. As usual, δ
j
i stands for the Kronecker delta.

B is called pseudo-orthonormal if it satisĄes ⟨e1, e1⟩ = ⟨e2, e2⟩ = 0, ⟨e1, e2⟩ = −1 and
⟨ei, ej⟩ = δ

j
i for i = 1, . . . , n and j = 3, . . . , n.

As well-known, the shape operator A of the Lorentzian hypersurface Mn
1 in L

n+1,
as a self-adjoint linear map on the tangent bundle of Mn

1 , locally can be put into one
of four possible canonical matrix forms, usually denoted by I, II, III and IV . Where
in cases I and IV , with respect to an orthonormal basis of the tangent space of Mn

1 ,
the matrix representation of the induced metric on Mn

1 is G1 = diagn[−1, 1, . . . , 1]
and the shape operator of Mn

1 can be put into matrix forms B1 = diag[λ1, . . . , λn] and

B4 = diag



κ λ

−λ κ

]

, η1, . . . , ηn−2

]

,

where λ ̸= 0, respectively. For cases II and III, using a pseudo-orthonormal basis
of the tangent space of Mn

1 , the induced metric on which has matrix form G2 =
diagn[[ 0 1

1 0 ], 1, . . . , 1] and the shape operator of Mn
1 can be put into matrix forms

B2 = diagn



κ 0
1 κ

]

, λ1, . . . , λn−2

]

and

B3 = diagn













κ 0 0
0 κ 1

−1 0 κ





, λ1, . . . , λn−3





 ,

respectively. In case IV , the matrix B4 has two conjugate complex eigenvalues κ ± iλ,
but in other cases the eigenvalues of the shape operator are real numbers.

Remark 2.1. In two cases II and III, one can substitute the pseudo-orthonormal
basis B := ¶e1, e2, . . . , en♢ by a new orthonormal basis B̃ := ¶ẽ1, ẽ2, e3, . . . , en♢, where
ẽ1 := 1

2
(e1 + e2) and ẽ2 := 1

2
(e1 − e2). Therefore, we obtain new matrices B̃2 and B̃3

(instead of B2 and B3, respectively) as

B̃2 = diagn



κ + 1
2

1
2

−1
2

κ − 1
2

]

, λ1, . . . , λn−2

]

and

B̃3 = diagn

















κ 0
√

2
2

0 κ −
√

2
2

−
√

2
2

−
√

2
2

κ









, λ1, . . . , λn−3









.
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After this changes, to unify the notations we denote the orthonormal basis by B in
all cases.

Notation. According to four possible matrix representations of the shape operator
of Mn

1 , we deĄne its principal curvatures, denoted by uniĄed notations κi for i =
1, . . . , n, as follow. In case I, we put κi := λi for i = 1, . . . , n, where λiŠs are the
eigenvalues of B1. In cases II, where the matrix representation of A is B̃2, we take
κi := κ for i = 1, 2, and κi := λi−2 for i = 3, . . . , n. In case III, where the shape
operator has matrix representation B̃3, we take κi := κ for i = 1, 2, 3 and κi := λi−3

for i = 4, . . . , n. Finally, in the case IV , where the shape operator has matrix
representation B̃4, we put κ1 = κ + iλ, κ2 = κ − iλ and κi := ηi−2 for i = 3, . . . , n.

The characteristic polynomial of A on Mn
1 is of the form Q(t) =

∏n
i=1(t − κi) =

∑n
j=0(−1)jsjt

n−j, where s0 := 1, si :=
∑

1≤j1<···<ji≤n κj1
· · · κji

for i = 1, 2, . . . , n.

For j = 1, . . . , n, the jth mean curvature Hj of Mn
1 is deĄned by Hj = 1

(n
j

)
sj. When

Hj is identically null, Mn
1 is said to be (j − 1)-minimal.

Definition 2.2. (i) A Lorentzian hypersurface x : Mn
1 → L

n+1, with diagonalizable
shape operator, is said to be isoparametric if all of itŠs principal curvatures are
constant.

(ii) A Lorentzian hypersurface x : Mn
1 → L

n+1, with non-diagonalizable shape
operator, is said to be isoparametric if the minimal polynomial of itŠs shape operator
is constant.

Remark 2.2. Here we remember Theorem 4.10 from [14], which assures us that there is
no isoparametric Lorentzian hypersurface of Ln+1 with complex principal curvatures.

The well-known Newton transformations Pj : χ(M) → χ(M) on Mn
1 , is deĄned by

P0 = I, Pj = sjI − A ◦ Pj−1, j = 1, 2, . . . , n,

where I is the identity map. Using its explicit formula, Pj =
∑j

i=0(−1)isj−iA
i, where

A0 = I, which gives, by the Cayley-Hamilton theorem (stating that any operator is
annihilated by its characteristic polynomial), that Pn = 0. It can be seen that, Pj is
self-adjoint and commutative with A (see [1, 17]).

Now, we deĄne a notation as

µi1,i2,···it;k =
∑

1≤j1<···<jk≤n;jl ̸∈¶i1,i2,···it♢
κj1

· · · κjk
, i = 1, . . . , n, 1 ≤ k ≤ n − 1,

µi1,i2,···it;0 := 1 and µi1,i2,···it;s := 0 for s < 0. Corresponding to four possible forms B̃i

for 1 ≤ i ≤ 4 of A, the Newton transformation Pj has different representations. In
the case I, where A = B̃1, we have Pj = diag[µ1;j, . . . , µn;j] for j = 1, 2, . . . , n − 1.

When A = B2 (in the case II), we have

Pj = diag



µ1,2;j + (κ − 1
2
)µ1,2;j−1 −1

2
µ1,2;j−1

1
2
µ1,2;j−1 µ1,2;j + (κ + 1

2
)µ1,2;j−1

]

, µ3;j, . . . , µn;j

]

and sj = µ1,2;j + 2κµ1,2;j−1 + κ2µ1,2;j−2 for j = 1, . . . , n − 1.
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In the case III, we have A = B3 and putting

Λj :=







uj + 2κuj−1 + (κ2 − 1

2
)uj−2 − 1

2
uj−2 −

√

2

2
(uj−1 + κuj−2)

1

2
uj−2 uj + 2κuj−1 + (κ2 + 1

2
)uj−2

√

2

2
(uj−1 + κuj−2)

√

2

2
(uj−1 + κuj−2)

√

2

2
(uj−1 + κuj−2) uj + 2κuj−1 + κ2uj−2





,

we have Pj = diag[Λj, µ4;j, . . . , µn;j], where ul := µ1,2,3;l and

sj = uj + 3κuj−1 + 3κ2uj−2 + κ3uj−3, for j = 1, . . . , n − 1.

In the case IV , we have A = B4,

Pj = diag



κµ1,2;j−1 + µ1,2;j −λµ1,2;j−1

λµ1,2;j−1 κµ1,2;j−1 + µ1,2;j

]

, µ3;j, . . . , µn;j

]

and sj = µ1,2;j + 2κµ1,2;j−1 + (κ2 + λ2)µ1,2;j−2 for j = 1, . . . , n − 1.
In all cases, the following important identities occur for j = 1, . . . , n − 1, similar to

those in [1Ű3,17,18]:

sj+1 =κiµi;j + µi;j+1, 1 ≤ i ≤ n,

µi;j+1 =κlµi,l;j + µi,l;j+1, 1 ≤ i, l ≤ n, i ̸= l,

tr(Pj) =(n − j)sj = cjHj,

tr(Pj ◦ A) =(n − (n − j − 1))sj+1 = (j + 1)sj+1 = cjHj+1,

tr(Pj ◦ A2) =( n
j+1)[nH1Hj+1 − (n − j − 1)Hj+2],

where cj = (n − j)(n
j ) = (j + 1)( n

j+1).
The linearized operator of the (j + 1)th mean curvature of M , Lj : C∞(M) →

C∞(M) is deĄned by the formula Lj(f) := tr(Pj ◦ ∇2f), where ⟨∇2f(X), Y ⟩ =
⟨∇X∇f, Y ⟩ for every X, Y ∈ χ(M).

Associated to the orthonormal frame ¶e1, . . . , en♢ of tangent space on a local coor-
dinate system in the hypersurface x : Mn

1 → L
n+1 , L1(f) has an explicit expression

as L1(f) =
∑n

i=1 ϵiµi,1(eieif − ∇ei
eif). For a Lorentzian hypersurface x : Mn

1 → L
n+1,

with a chosen (local) unit normal vector Ąeld n, for an arbitrary vector a ∈ E
n+1
1 we

use the decomposition a = aT + aN , where aT ∈ TM is the tangential component of
a, aN ⊥ TM , and we have the following formulae from [1,17]:

∇⟨x, a⟩ =aT , ∇⟨n, a⟩ = −AaT ,

L1x =n(n − 1)H2n, L1n = −n(n − 1)

2
(∇(H2) + (nH1H2 − (n − 2)H3)n) ,

and Ąnally, we have

L2
1x =n(n − 1)

(

2P2∇H2 − 3

2
n(n − 1)H2∇H2

)

+ n(n − 1)

(

L1H2 − n(n − 1)

2
H2(nH1H2 − (n − 2)H3)



n.

Assume that a hypersurface x : Mn
1 → L

n+1 satisĄes the condition L2
1x = 0, then it

is said to be L1-biharmonic. By the last equalities, from the condition L1(H2n) = 0
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(which is equivalent to L1-biharmonicity) we obtain simpler conditions on Mn
1 to be

a L1-biharmonic hypersurface in L
n+1, as:

(2.1) L1H2 =
n(n − 1)

2
H2(nH1H2 − (n − 2)H3), P2∇H2 =

3

4
n(n − 1)H2∇H2.

A Lorentzian hypersurface x : Mn
1 → L

n+1 is said to be L1-bicoservative, if its 2th
mean curvature satisĄes the second condition in (2.1).

The well-known structure equations on L
n+1 are given by dωi =

∑n+1
j=1 ωij ∧ ωj,

ωij + ωji = 0 and dωij =
∑n+1

l=1 ωil ∧ ωlj. Restricted on M , we have ωn+1 = 0 and
then, 0 = dωn+1 =

∑n
i=1 ωn+1,i ∧ ωi. So, by CartanŠs lemma, there exist functions hij

such that ωn+1,i =
∑n

j=1 hijωj and hij = hji, which give the second fundamental form

of M , as B =
∑

i,j hijωiωjen+1. The mean curvature H is given by H = 1
n

∑n
i=1 hii.

Therefore, we obtain the structure equations on M as dωi =
∑n

j=1 ωij ∧ωj, ωij +ωji = 0

and dωij =
∑n

k=1 ωik ∧ ωkj − 1
2

∑n
k,l=1 Rijklωk ∧ ωl for i, j = 1, 2, . . . , n − 1, and the

Gauss equations Rijkl = (hikhjl − hilhjk), where Rijkl denotes the components of the
Riemannian curvature tensor of M . Denoting the covariant derivative of hij by hijk,
we have dhij =

∑n
k=1 hijkωk +

∑n
k=1 hkjωik +

∑n
k=1 hikωjk and by the Codazzi equation

we get hijk = hikj.

Finally, we recall the deĄnition of an L1-Ąnite type hypersurface from [12], which
is the basic notion of the paper.

Definition 2.3. An isometrically immersed hypersurface x : Mn
1 → L

n+1 is said to
be of L1-Ąnite type if x has a Ąnite decomposition x =

∑m
i=0 xi, for some positive

integer m, satisfying the condition L1xi = τixi, where τi ∈ R and xi : Mn
1 → L

n+1 is
smooth maps, for i = 1, 2, . . . , m, and x0 is constant. If all τiŠs are mutually different,
Mn

1 is said to be of L1-m-type. An L1-m-type hypersurface is said to be null if for at
least one i, 1 ≤ i ≤ m, we have τi = 0.

3. Examples

Now, we provide two families of examples of L1-biconservative Lorentzian hyper-
surfaces in L

n+1, some of them are not L1-biharmonic.

Example 3.1. Consider the subset ¶(y1, . . . , yn+1) ∈ L
n+1 ♣ −y2

1 + · · · + y2
l+1 = r2♢

representing the cylindrical hypersurface S
l
1(r) × E

n−l ⊂ L
n+1 for r > 0 and l =

1, 2, . . . , n − 1, with the Gauss map n(y) = −1
r
(y1, . . . , yn−l+1, 0, . . . , 0). Clearly, it has

two distinct constant principal curvatures κ1 = · · · = κl = 1
r

and κl+1 = · · · = κn = 0

and constant higher order mean curvatures H1 = l
n
r−1 and H2 = l(l−1)

n(n−1)
r−2. One can

see that S
1
1(r) × E

n−1 is L1-biharmonic, but S
l
1(r) × E

n−l is not L1-biharmonic for
l = 2, . . . , n − 1.

Example 3.2. Consider the subset ¶(y1, . . . , yn+1) ∈ L
n+1 ♣ y2

l+1 + · · · + y2
n+1 = r2♢ de-

noting the hypersurface L
l × S

n−l(r) ⊂ L
n+1 with n(y) = −1

r
(0, . . . , , 0, yl+1, . . . , yn+1)

as the Gauss map for r > 0 and l = 1, 2, . . . , n − 1. It has two distinct principal
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curvatures κ1 = · · · = κl = 0 and κl+1 = · · · = κn = 1
r

and constant higher order mean

curvatures H1 = n−l
n

r−1, and H2 = (n−l)(n−l−1)
n(n−1)

r−2. One can see that L
l × S

n−l(r) is

not L1-biharmonic for l = 1, 2, . . . , n − 2, but L
n−1 × S

1(r) is L1-biharmonic.

4. L1-Biconservative Lorentzian Hypersurfeces in L
n+1

In this section, we give six theorems on the L1-biconservative connected orientable
timelike hypersurface in L

n+1 with constant ordinary mean curvature. Theorem 4.1,
4.2 and 4.3 are appropriated to the case that the shape operator on hypersurface
is diagonalizable. Theorem 4.4, 4.5 and 4.6 are related to the cases that the shape
operator on hypersurface is of type II, III and IV , respectively.

4.1. Hypersurfaces with diagonalizable shape operator.

Theorem 4.1. Every L1-biconservative Lorentzian hypersurface of Ln+1 for any nat-

ural number n ≥ 2, having a diagonalizable shape operator with exactly one eigenvalue

function of multiplicity n, has constant 2nd mean curvature.

Proof. Let x : Mn
1 → L

n+1 be a L1-biconservative Lorentzian hypersurface of Ln+1

with assumed conditions. DeĄning the open subset U of M as U := ¶p ∈ Mn
1 ♣

∇H2
2 (p) ̸= 0♢, we prove that U is empty. Assuming U ̸= ∅, we consider ¶e1, . . . , en♢ as

a local orthonormal frame of principal directions of A on U such that for i = 1, . . . , n,
we have Aei = λei and

(4.1) µi,2 =
1

2
(n − 1)(n − 2)λ2, H2 = λ2.

By assumption, we have P2(∇H2) = 3
4
n(n − 1)H2∇H2, which using the polar decom-

position ∇H2 =
∑n

i=1 ϵi⟨∇H2, ei⟩ei, gives

ϵi⟨∇H2, ei⟩
(

µi,2 − 3

4
n(n − 1)H2

)

= 0

on U for i = 1, . . . , n. Hence, if for some i we have ⟨∇H2, ei⟩ ≠ 0 on U, then we get
µi,2 = 3

4
n(n − 1)H2, which, using (4.1), gives λ2 = 0 and then H2 = 0 on U, which is

a contradiction. Hence, U is empty and H2 is constant on M . □

Theorem 4.2. Let x : Mn
1 → L

n+1 be an L1-biconservative Lorentzian hypersurface

of L
n+1 with diagonalizable shape operator, constant ordinary mean curvature and

exactly two distinct principal curvature functions λ and η of multiplicities n − 1 and

1, respectively. Then Mn
1 has constant 2nd mean curvature.

Proof. Taking the open subset V of Mn
1 as V := ¶p ∈ Mn

1 ♣ ∇H2
2 (p) ̸= 0♢, we prove

that V is empty. Assuming V ̸= ∅, we consider ¶e1, . . . , en♢ as a local orthonormal
frame of principal directions of A on V such that Aei = λei for i = 1, . . . , n − 1 and
Aen = ηen. Therefore, we obtain

µ1,2 = · · · = µn−1,2 =
1

2
(n − 2)(n − 3)λ2 + (n − 2)λη,(4.2)
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µn,2 =
1

2
(n − 1)(n − 2)λ2,

nH1 =(n − 1)λ + η, n(n − 1)H2 = (n − 1)(n − 2)λ2 + 2(n − 1)λη,
(

n

3



H3 =

(

n − 1

3



λ3 +

(

n − 1

2



λ2η.

Using the polar decomposition ∇H2 =
∑n

i=1 ϵi⟨∇H2, ei⟩ei, from (2.1) we have

ϵi⟨∇H2, ei⟩
(

µi,2 − 3

4
n(n − 1)H2

)

= 0,

on V for i = 1, . . . , n. Since, by deĄnition of the subset V, we have ⟨∇H2, ei⟩ ≠ 0 on
V for some i, then we get

(4.3) µi,2 =
3

4
n(n − 1)H2,

for some i which gives one of the following states.
State 1. ⟨∇H2, ei⟩ ̸= 0, for some i ∈ ¶1, . . . , n − 1♢. Using (4.2), from (4.3) we

obtain (n − 2)(n − 9)λ2 − 4(n + l)λη = 0, which gives λ = 0 or η = − (n−2)(n+3)
2(n+1)

λ. If

λ = 0, then H2 = 0. Otherwise, we get λ = 2n(n+1)
n2−n+4

H1 and H2 = −8n(n+1)(n−2)
(n2−n+4)2 H2

1 .

State 2. ⟨∇H2, ei⟩ = 0 for all i ∈ ¶1, . . . , n − 1♢ and ⟨∇H2, en⟩ ̸= 0. By (4.2)
and (4.3), we obtain λ = 0 or η = 2−n

6
λ. If λ = 0, then H2 = 0. Otherwise, we get

λ = 6n
5n−4

H1 and H2 = 24n(n−2)
(5n−4)2 H2

1 .

Therefore, H2 is constant on Mn
1 . □

Theorem 4.3. Let x : Mn
1 → L

n+1 be an L1-biconservative Lorentzian hypersurface

of L
n+1 with diagonalizable shape operator, constant ordinary mean curvature and

exactly two distinct principal curvature functions λ and η of multiplicities n − k and

k, respectively, where 2 ≤ k ≤ n − 2. Then, the 2nd mean curvature of Mn
1 has to be

constant.

Proof. DeĄning the open subset V of Mn
1 as V := ¶p ∈ Mn

1 ♣ ∇H2
2 (p) ̸= 0♢, we prove

that V is empty. Assuming V ̸= ∅, we consider ¶e1, . . . , en♢ as a local orthonormal
frame of principal directions of A on V such that Aei = λei for i = 1, . . . , n − k and
Aei = ηei for i = n − k + 1, . . . , n. Therefore, we obtain

µ1,2 = · · · = µn−k,2(4.4)

=
1

2
(n − k − 1)(n − k − 2)λ2 +

1

2
k(k − 1)η2 + (n − k − 1)kλη,

µn−k+1,2 = · · · = µn,2

=(n − k)
(

1

2
(n − k − 1)λ2 + (k − 1)λη

)

+
1

2
(k − 1)(k − 2)η2,(4.5)

nH1 =(n − k)λ + kη,

n(n − 1)H2 =(n − k)((n − k − 1)λ2 + 2kλη) + k(k − 1)η2,
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(

n

3



H3 =

(

n − k

3



λ3 + k

(

n − k

2



λ2η + (n − k)

(

k

2



λη2 +

(

k

3



η3.

Using the polar decomposition ∇H2 =
∑n

i=1 ϵi⟨∇H2, ei⟩ei, from (2.1) we have
ϵi⟨∇H2, ei⟩(µi,2 − 3

4
n(n − 1)H2) = 0 on V for i = 1, . . . , n. Hence, ⟨∇H2, ei⟩ ≠ 0

on V for some i and then

(4.6) µi,2 =
3

4
n(n − 1)H2.

By deĄnition, we have ∇H2 ̸= 0 on U, which gives one or both of the following states.
State 1. ⟨∇H2, ei⟩ ̸= 0 for some i ∈ ¶1, . . . , n − k♢. Using (4.4), from (4.6) we

obtain (n − k − 1)(n − k + 4)λ2 + k(k − 1)η2 + 2k(n − k + 2)λη = 0, which gives
η = d0λ, where

d0 = −




n − k + 2

k − 1
±
√

kn(n − k + 3) + k(5k − 4)

k(k − 1)



 .

Hence, we get λ = n
n−k(1−d0)

H1 and η = nd0

n−k(1−d0)
H1, which give H2 = d1H

2
1 for a

Ąxed coefficient d1 (i.e., H2 is constant on Mn
1 ).

State 2. ⟨∇H2, ei⟩ = 0 for all i ∈ ¶1, . . . , n − l♢ and ⟨∇H2, ei⟩ ≠ 0 for some
i ∈ ¶n − l + 1, . . . , n♢. By (4.4) and (4.6), we obtain

(n − l)(n − l − 1)λ2 + (l + 4)(l − 1)η2 + 2(n − l)(l + 2)λη = 0,

which gives (n − 1)λ(6η + (n − 2)λ) = 0. If λ = 0, then H2 = 0. Otherwise, we have

η = −n−2
6

λ, which gives λ = 6n
(6−k)n−4k

H1 and η = − n(n−2)
(6−k)n−4k

H1 and then H2 = d2H
2
1

for a Ąxed coefficient d2 (i.e., H2 is constant on Mn
1 ). □

4.2. Hypersurfaces with non-diagonalizable shape operator. This subsection
is appropriated to cases that the Lorentzian hypersurfaces of Ln+1 have shape operator
of type II, III or IV .

Theorem 4.4. Every L1-biconservative Lorentzian hypersurface Mn
1 in L

n+1, where

n ≥ 3 with shape operator of type II, having constant ordinary mean curvature and

at most two distinct principal curvatures, has constant 2nd mean curvature.

Proof. Assume that, an isometric immersion x : Mn
1 → L

n+1 satisĄes all conditions
of the theorem. So, it is L1-biconservative with shape operator of type II, constant
ordinary mean curvature and two distinct principal curvatures. Taking the open
subset U = ¶p ∈ Mn

1 ♣ ∇H2
2 (p) ̸= 0♢, we show that U = ∅. By the assumption,

with respect to a suitable (local) orthonormal tangent frame ¶e1, . . . , en♢ on Mn
1 ,

the shape operator A has the matrix form B̃2, such that Ae1 = (κ + 1
2
)e1 − 1

2
e2,

Ae2 = 1
2
e1 + (κ − 1

2
)e2 and Aei = λei for i = 3, . . . , n. Then we have the following
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equalities:

nH1 = 2κ + (n − 2)λ, n(n − 1)H2 = 2κ2 + (n − 2)(n − 3)λ2 + 4(n − 2)κλ,

P2e1 =

(

(n − 2)(n − 3)

2
λ2 + (n − 2)(κ − 1

2
)λ



e1 +
n − 2

2
λe2,

P2e2 = −n − 2

2
λe1 +

(

(n − 2)(n − 3)

2
λ2 + (n − 2)(κ +

1

2
)λ



e2,

P2ei =

(

κ2 + 2(n − 3)κλ +
(n − 3)(n − 4)

2
λ2



ei, i = 3, . . . , n.

Using the polar decomposition ∇H2 =
n
∑

i=1
ϵiei(H2)ei, from (2.1) we get

(

(n − 3)λ2 + (2κ − 1)λ − 3n(n − 1)

2(n − 2)
H2



ϵ1e1(H2) =λϵ2e2(H2),(4.7)

(

(n − 3)λ2 + (2κ + 1)λ − 3n(n − 1)

2(n − 2)
H2



ϵ2e2(H2) = − λϵ1e1(H2),

(

κ2 + 2(n − 3)κλ +
(n − 3)(n − 4)

2
λ2 − 3

4
n(n − 1)H2



ϵiei(H2) =0, i = 3, . . . , n.

Now, we prove the main claim.
Claim. ei(H2) = 0 for i = 1, . . . , n. If e1(H2) ̸= 0, then by dividing both sides of

two equalities in (4.7) by ϵ1e1(H2) we get

(n − 2)(n − 3)

2
λ2 + (n − 2)

(

κ − 1

2

)

λ − 3

4
n(n − 1)H2 =

n − 2

2
λu,(4.8)

(

(n − 2)(n − 3)

2
λ2 + (n − 2)

(

κ +
1

2

)

λ − 3

4
n(n − 1)H2



u = − n − 2

2
λ,

where u := ϵ2e2(H2)
ϵ1e1(H2)

. From (4.8) we obtain λ(1 + u)2 = 0, then λ = 0 or u =

−1. If λ = 0. Then we obtain H2 = 0, which means H2 is constant. Otherwise,
we have u = −1, which gives (n−2)(n−3)

2
λ2 + (n − 2)κλ = 3

4
n(n − 1)H2, then we

obtain 6κ2 + (n − 2)(n − 3)λ2 + 8(n − 2)κλ = 0. Since nH1 = 2κ + (n − 2)λ is
assumed to be constant on M , by substituting which in the last equality, we get
(4 − 3n)(n − 2)λ2 + 2n(n − 2)H1λ + 3n2H2

1 = 0, which means λ, κ and the kth mean
curvatures for k = 2, . . . , n, are also constant on Mn

1 . So, we got a contradiction and
therefore, the Ąrst part of the claim is proved.

If e2(H2) ̸= 0, then by dividing both sides of two equalities in (4.7) by ϵ2e2(H2) we
get

(

(n − 2)(n − 3)

2
λ2 + (n − 2)

(

κ − 1

2

)

λ − 3

4
n(n − 1)H2



v =
n − 2

2
λ,(4.9)

(n − 2)(n − 3)

2
λ2 + (n − 2)

(

κ +
1

2

)

λ − 3

4
n(n − 1)H2 = − n − 2

2
λv,
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where v := ϵ1e1(H2)
ϵ2e2(H2)

. From (4.9) we obtain λ(1 + v)2 = 0. If λ = 0, from (4.9) we

obtain H2 = 0, which means H2 is constant. Otherwise, we have v = −1, which gives
(n−2)(n−3)

2
λ2 + (n − 2)κλ = 3

4
n(n − 1)H2, then similar to the Ąrst part, we obtain that

λ, κ and the kth mean curvatures for k = 2, . . . , n are also constant on Mn
1 . So, we

got a contradiction and therefore, the second part of the claim is proved.
Finally, each of assumptions ei(H2) ̸= 0 for i = 3, . . . , n, gives the equality κ2 +

(n−3)(n−4)
2

λ2 +2(n−3)κλ = 3
4
n(n−1)H2, which gives κ2 +n(n−3)λ2 +4(n−1)κλ = 0.

Similar to two Ąrst cases, Using formula nH1 = 2κ + (n − 2)λ, from the last equation
we obtain that λ, κ and the kth mean curvatures for k = 2, . . . , n, are also constant
on Mn

1 . The contradiction that H2 is constant on M . So, the claim is conĄrmed. □

Theorem 4.5. Every L1-biconservative timelike hypersurface Mn
1 in L

n+1 with shape

operator of type III, having at most two distinct principal curvatures and constant

ordinary mean curvature, has constant 2nd mean curvature.

Proof. Assume that, an isometric immersion x : Mn
1 → L

n+1 satisĄes all conditions
of the theorem. By the assumption, with respect to a suitable (local) orthonormal
tangent frame ¶e1, . . . , en♢ on Mn

1 , the shape operator A has the matrix form B̃3, such

that Ae1 = κe1 −
√

2
2

e3, Ae2 = κe2 −
√

2
2

e3, Ae3 =
√

2
2

e1 −
√

2
2

e2 + κe3 and Aei = λei

for i = 4, . . . , n. Then we have

nH1 =3κ + (n − 3)λ, n(n − 1)H2 = 3κ2 +
(n − 3)(n − 4)

2
λ2 + 3(n − 3)κλ,

P2e1 =

(

(n − 3)(n − 4)

2
λ2 + 2(n − 3)κλ + κ2 − 1

2



e1 +
1

2
e2 +

√
2

2
((n − 3)λ + κ) e3,

P2e2 =
1

2
e1 +

(

(n − 3)(n − 4)

2
λ2 + 2(n − 3)κλ + κ2 +

1

2



e2 +

√
2

2
((n − 3)λ + κ) e3,

P2e3 =
−

√
2

2
((n − 3)λ + κ) e1 +

√
2

2
((n − 3)λ + κ) e2

+

(

(n − 3)(n − 4)

2
λ2 + 2(n − 3)κλ + κ2



e3,

P2ei =

(

3κ2 + 3(n − 4)κλ +
(n − 4)(n − 5)

2
λ2



ei, i = 4, . . . , n.

Similar to proof of Theorem 4.4, we assume that H2 is non-constant and considering
the open subset U = ¶p ∈ Mn

1 ♣ ∇H2
2 (p) ̸= 0♢, we prove that U = ∅. Using the

polar decomposition ∇H2 =
n
∑

i=1
ϵiei(H2)ei, from (2.1) we get the following system of

conditions:

(

(n − 3)λ
(

n − 4

2
λ + 2κ

)

+ κ2 − 1

2
− 3

4
n(n − 1)H2

)

ϵ1e1(H2) +
1

2
ϵ2e2(H2)

(4.10)
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=

√
2

2
((n − 3)λ + κ) ϵ3e3(H2),

1

2
ϵ1e1(H2) +

(

(n − 3)λ
(

n − 4

2
λ + 2κ

)

+ κ2 +
1

2
− 3

4
n(n − 1)H2

)

ϵ2e2(H2)

= −
√

2

2
((n − 3)λ + κ)ϵ3e3(H2),

√
2

2
((n − 3)λ + κ)(ϵ1e1(H2) + ϵ2e2(H2))

= −
(

(n − 3)λ
(

n − 4

2
λ + 2κ

)

+ κ2 − 3

4
n(n − 1)H2

)

ϵ3e3(H2),
(

3κ2 + ((n − 3)λ
(

n − 4

2
λ + 2κ

)

− 3

4
n(n − 1)H2)

)

ϵiei(H2) = 0, i = 4, . . . , n.

Now, we prove that H2 is constant.
Claim. ei(H2) = 0 for i = 1, . . . , n.
If e1(H2) ̸= 0, then by dividing both sides of three Ąrst equalities in (4.10) by

ϵ1e1(H2), and using the notations u1 := ϵ2e2(H2)
ϵ1e1(H2)

and u2 := ϵ3e3(H2)
ϵ1e1(H2)

, we get

1

4
(α − 2) +

1

2
u1 − βu2 =0,(4.11)

1

2
+

1

4
(α + 2)u1 + βu2 =0,

β(1 + u1) +
1

4
αu2 =0,

where α := (n − 3)λ
(

n−4
2

λ − κ
)

− 5κ2 and β :=
√

2
2

((n − 3)λ + κ). From (4.11) we

obtain

(4.12) βu2(1 + u1) =
1

2
(u2

1 − 1) − u1,
1

4
α(1 + u1) = −u1.

On the other hand, since nH1 = 3κ + (n − 3)λ is assumed to be constant, we can
restate α and β in terms of κ as:

α =
1

2(n − 3)

(

(5n − 24)κ2 − (8n2 − 30n)Hκ + n2(n − 4)H2
1

)

,(4.13)

β =

√
2

2
(nH1 + 2κ).

Now, using (4.12), from (4.11) we get a polynomial equation in terms of κ as 64β2 +
α3 − 8α = 0. This result says that κ and then λ and H2 have constant values on U.

This is a contradiction and implies that, the Ąrst claim e1(H2) ≡ 0 is proved.
If e2(H2) ̸= 0, then by dividing both sides of three Ąrst equalities in (4.10) by

ϵ2e2(H2) and using the identities recalled in the Ąrst paragraph of the proof and
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notations v1 := ϵ1e1(H2)
ϵ2e2(H2)

and v3 := ϵ3e3(H2)
ϵ2e2(H2)

, we get

1

4
(α − 2)v1 +

1

2
− βv3 =0,(4.14)

1

2
v1 +

1

4
(α + 2) + βv3 =0,

β(v1 + 1) +
1

4
αv3 =0,

where α and β are as the Ąrst case. From (4.14) we obtain

(4.15) βv3(1 + v1) =
1

2
(1 − v2

1) − v1,
1

4
α(1 + v1) = −1.

Now, using (4.13) and (4.15), from the third equation in (4.14) we get a polynomial
equation in terms of κ as 64β2 + α2β − 8α = 0. This result says that κ, λ and H2

have constant values on U. This is a contradiction and implies that, the Ąrst claim
e2(H2) ≡ 0 is proved.

If e3(H2) ̸= 0, then by dividing both sides of equalities in (4.10) by ϵ3e3(H2), and

using notations w1 := ϵ1e1(H2)
ϵ3e3(H2)

and w2 := ϵ2e2(H2)
ϵ3e3(H2)

, we get

1

4
(α − 2)w1 +

1

2
w2 =β,(4.16)

1

2
w1 +

1

4
(α + 2)w2 = − β,

β(w1 + w2) = − 1

4
α,

where α and β are as the Ąrst case. From (4.16) we obtain

(4.17) β(w1 + w2) = −1

2
(w1 + w2)

2,
1

4
α(w1 + w2) = −w2.

Using (4.13) and (4.17), From (4.16) we get a polynomial equation in terms of κ as
α − 8β2 = 0. This result says that κ and then λ and H2 have constant value on U.

This is a contradiction and implies that, the Ąrst claim e3(H2) ≡ 0 is proved.
The forth stage is assumption ei(H2) ̸= 0 for some i ≥ 4. By the same manner,

from (4.10) we get α + 8κ2 = 0, which by using (4.13) gives a polynomial equation
in terms of κ. This result says that κ and then λ and H2 have constant value on U.

This is a contradiction and implies that ei(H2) ≡ 0 for i = 4, 5, . . . , n. □

Theorem 4.6. Every L1-biconservative connected orientable Lorentzian hypersurface

Mn
1 with shape operator of type IV in L

n+1, having at most two distinct principal

curvatures, has constant 2nd mean curvature.

Proof. Suppose that, H2 be non-constant. Considering the open subset U = ¶p ∈
M ♣ ∇H2

2 (p) ̸= 0♢, we try to show U = ∅. By assumption, the shape operator A of
M4

1 is of type IV with at most two distinct nonzero eigenvalue functions, then, with
respect to a suitable (local) orthonormal tangent frame ¶e1, . . . , en♢ on Mn

1 , the shape
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operator A has the matrix form B4, such that Ae1 = −λe2, Ae2 = λe1, Aei = 0 for
i = 3, . . . , n. Then we have P2e1 = P2e2 = 0, P2ei = λ2ei for i = 3, . . . , n. Using the
polar decomposition ∇H2 =

∑4
i=1 ϵiei(H2)ei, from (2.1) we get

3

4
n(n − 1)H2ϵiei(H2) =0, i = 1, 2,

(

λ2 − 3

4
n(n − 1)H2

)

ϵiei(H2) =0, i = 3, . . . , n,

which clearly gives ei(H2) = 0 for i = 1, . . . , n. Then H2 is constant on Mn
1 . □
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GENERALIZED MIXED TYPE BERNOULLI-GEGENBAUER

POLYNOMIALS

YAMILET QUINTANA1

Abstract. The generalized mixed type Bernoulli-Gegenbauer polynomials of order
α > − 1

2
are special polynomials obtained by use of the generating function method.

These polynomials represent an interesting mixture between two classes of special
functions, namely generalized Bernoulli polynomials and Gegenbauer polynomials.
The main purpose of this paper is to discuss some of their algebraic and analytic
properties.

1. Introduction

Bernoulli and Gegenbauer polynomials are among classical families of algebraic
polynomials whose history goes back centuries. Each one of these polynomials, as
well as their natural generalizations, have showed their useful in several disciplines
[1–3, 6–9, 16, 17, 19–21, 23–25, 27–29]. In this paper we shall be concerned with the
some of the main properties of the generalized mixed type Bernoulli-Gegenbauer
polynomials V (α)

n (x) of order α ∈ (−1/2, ∞), n ≥ 0 (GBG polynomials, in short).
This is a special family of polynomials defined through the generating functions and
series expansions as follows:

(1.1)





z

(ez − 1)


1 − xz
π

+ z2

4π2

)





α

exz =
∞
∑

n=0

V
(α)

n (x)
zn

n!
,

Key words and phrases. Generalized Bernoulli polynomials, Gegenbauer polynomials, GBG poly-
nomials, inversion formula, matrix representations, matrix-inversion formula.
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where ♣z♣ < 2π, ♣x♣ ≤ 1 and α ∈ (−1/2, ∞) \ ¶0♢,

(1.2)



2π − xz

1 − xz
π

+ z2

4π2

]

exz =
∞
∑

n=0

V
(0)

n (x)
zn

n!
, ♣z♣ < 2π, ♣x♣ ≤ 1.

The polynomials
{

V (α)
n (x)

}

n≥0
represent an interesting mixture between two classes

of special functions, namely generalized Bernoulli polynomials and Gegenbauer poly-
nomials. The separate emergence of these families of polynomials in different fields
as such as physical mathematics, information theory, combinatorics, approximation
theory, number theory, numerical analysis and partial differential equations and so on,
has been a well-known fact and documented [1,3,4,6,7,12,14,18–20,27,28]. However,
in recent years new connections between these families of polynomials have been given
(see, for instance [2, 9, 29]). The aim of this note is to investigate some properties
of the GBG polynomials, focusing our attention on their explicit expressions, deriva-
tives formulas, matrix representations, matrix-inversion formulas, and other relations
connecting them with Gegenbauer polynomials.

The paper is organized as follows. In Section 2 some relevant properties of the
generalized Bernoulli polynomials and the Gegenbauer polynomials are given. Section
3 contains the main algebraic and analytic properties of the GBG polynomials (see e.g.,
Proposition 3.1, Lemmas 3.1 and 3.2, and Theorem 3.1), as well as, some illustrative
examples.

2. Basic Facts: Generalized Bernoulli Polynomials and Gegenbauer
Polynomials

This section is devoted to present some structural properties of the generalized
Bernoulli polynomials and Gegenbauer polynomials which will be useful in the sequel.
We will begin with the generalized Bernoulli polynomials. As is well known, these
polynomials play an important role in the calculus of finite differences since the
coefficients in all the usual central-difference formulas for interpolation, numerical
differentiation and integration, and differences in terms of derivatives can be expressed
in terms of them (see e.g., [10] and the references therein).

Recent and interesting works dealing with generalized Bernoulli and Euler polynomi-
als, Appell and Apostol type polynomials, their properties and applications in several
areas can be found by reviewing the current literature on this subject. For a broad in-
formation on old literature and new research trends about these classes of polynomials
we strongly recommend to the interested reader see [8, 10,13,14,16,17,20,21,24,25].

From now on, we denote by Pn the linear space of polynomials with real coefficients
and degree less than or equal to n.

2.1. Generalized Bernoulli Polynomials. The classical Bernoulli polynomials
Bn(x) and the generalized Bernoulli polynomials B(α)

n (x) of (real or complex) order
α, are usually defined as follows (see, for details, [3, 14,20,23]):
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(2.1)
(

z

ez − 1

)α

exz =
∞
∑

n=0

B(α)
n (x)

zn

n!
, ♣z♣ < 2π, 1α := 1,

and

(2.2) Bn(x) := B(1)
n (x), n ∈ N0,

where N0 := N ∪ ¶0♢.
The numbers B(α)

n := B(α)
n (0) are called generalized Bernoulli numbers of order α,

n ∈ N0. Clearly, we have

B(α)
n (x) = (−1)nB(α)

n (x − α),

so that

(2.3) B(α)
n (α) = (−1)nB(α)

n .

From the generating relation (2.1), it is fairly straightforward to deduce the addition
formula:

(2.4) B(α+β)
n (x + y) =

n
∑

k=0



n

k



B
(α)
k (x)B

(β)
n−k(y).

Making the substitution β = 0 into (2.4) and interchanging x and y, we obtain the
well known representation:

(2.5) B(α)
n (x) =

n
∑

k=0



n

k



B
(α)
k xn−k.

The following theorem summarizes some properties of the generalized Bernoulli
polynomials.

Theorem 2.1. (a) ([26, (3)]) Explicit formula for the generalized Bernoulli polyno-

mials in terms of the Gaussian hypergeometric function:

B(α)
n (x) =

n
∑

k=0



n

k



α + k − 1

k



k!

(2k)!

k
∑

j=0

(−1)j



k

j



j2k(x + j)n−k(2.6)

× 2F1(k − n, k − α; 2k + 1; j/(x + j)),

where 2F1 denotes the Gaussian hypergeometric function given by

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n

(c)n

·
zn

n!
, c /∈ ¶0, −1, −2, . . . ♢,

with (a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1), n ∈ N, being the Pochhammer’s symbol.

(b) ([26, (13)]) The substitution x = 0 into (2.6) yields the following representation

for the generalized Bernoulli numbers:

(2.7) B(α)
n =

n
∑

k=0



α + n

n − k



α + k − 1

k



n!

(n + k)!

k
∑

j=0

(−1)j



k

j



jn+k.
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The interested reader also may consult [20,22,26] for detailed proofs of the above
assertions.

In addition to (2.2) classical Bernoulli polynomials Bn(x) admit a variety of different
representations. For instance, we recall that the classical Bernoulli polynomials Bn(x)
may be inverted in order to give a representation of the monomial basis (cf., [17, Eq.
(4)] and the references therein). This resulting representation is commonly called
inversion formula:

xn =
1

n + 1

n
∑

k=0



n + 1

k



Bk(x)

=
1

n + 1

n
∑

k=0



n + 1

k + 1



Bn−k(x), n ≥ 0.(2.8)

Consequently, the set ¶B0(x), B1(x), . . . , Bn(x)♢ is a basis for Pn.

In the next lemma we show an inversion formula for a subfamily of generalized
Bernoulli polynomials.

Lemma 2.1. For a fixed m ∈ N, let
{

B(m)
n (x)

}

n≥0
be the sequence of generalized

Bernoulli polynomials of order m. Then we have

(2.9) xn =
1

(n + 1)m

n
∑

r=0



n + m

r + m



ar(m)B
(m)
n−r(x), n ≥ 0,

where the coefficients ar(m) are given by

ar(m) =
r
∑

k1=0

k1
∑

k2=0

· · ·

km−2
∑

km−1=0



r + m

k1 + m − 1



k1 + m − 1
k2 + m − 2



· · ·



km−2 + 2
km−1 + 1



, r = 0, . . . , n.

Proof. From (2.1) it follows that

zmexz = (ez − 1)m
∞
∑

n=0

B(m)
n (x)

zn

n!
.(2.10)

It is not difficult to show by repeated application of the Cauchy product of series that

(ez − 1)m =
∞
∑

n=0

an(m)
zn+m

(n + m)!
,

where

an(m) =
n
∑

k1=0

k1
∑

k2=0

· · ·
km−2
∑

km−1=0



n + m

k1 + m − 1



k1 + m − 1

k2 + m − 2



· · ·



km−2 + 2

km−1 + 1



.

Thus, the right-hand side of (2.10) becomes

(ez − 1)m
∞
∑

n=0

B(m)
n (x)

zn

n!
=



∞
∑

n=0

an(m)
zn+m

(n + m)!

] 

∞
∑

n=0

B(m)
n (x)

zn

n!

]

=
∞
∑

n=0



n
∑

r=0



n + m

r + m



ar(m)B
(m)
n−r(x)

]

zn+m

(n + m)!
.(2.11)
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Likewise, the left-hand side of (2.10) can be expressed by use of the Cauchy product
of series as follows

zmexz =
∞
∑

n=0

xn zn+m

n!
=

∞
∑

n=0

(n + 1)m xn zn+m

(n + m)!
.(2.12)

From (2.11) and (2.12) we obtain

(2.13)
∞
∑

n=0

(n + 1)m xn zn+m

(n + m)!
=

∞
∑

n=0



n
∑

r=0



n + m

r + m



ar(m)B
(m)
n−r(x)

]

zn+m

(n + m)!
,

and comparing the coefficients on both sides of (2.13), we get the desired inversion
formula (2.9). □

As a straightforward consequence of the inversion formula (2.9) we obtain an ex-
pected algebraic property.

Corollary 2.1. For a fixed m ∈ N and each n ≥ 0, the set
{

B
(m)
0 (x), . . . , B(m)

n (x)
}

is a basis for Pn, i.e.,

Pn = span
{

B
(m)
0 (x), B

(m)
1 (x), . . . , B(m)

n (x)
}

.

2.2. Gegenbauer polynomials. For α > −1
2

we denote by ¶Ĉ(α)
n ♢n≥0 the sequence

of Gegenbauer polynomials, orthogonal on [−1, 1] with respect to the measure dµ(x) =

(1 − x2)α− 1
2 dx (cf., [27, Chapter IV]), normalized by

Ĉ(α)
n (1) =

Γ(n + 2α)

n!Γ(2α)
.

More precisely,
∫ 1

−1
Ĉ(α)

n (x)Ĉ(α)
m (x) dµ(x) =

∫ 1

−1
Ĉ(α)

n (x)Ĉ(α)
m (x)(1 − x2)α− 1

2 dx = Mα
n δn,m, n, m ≥ 0,

where the constant Mα
n is positive. It is clear that the normalization above does not

allow α to be zero or a negative integer. Nevertheless, the following limits exist for
every x ∈ [−1, 1] (see [27, (4.7.8)])

lim
α→0

Ĉ
(α)
0 (x) = T0(x), lim

α→0

Ĉ(α)
n (x)

α
=

2

n
Tn(x),

where Tn(x) is the nth Chebyshev polynomial of the first kind. In order to avoid

confusing notation, we define the sequence ¶Ĉ(0)
n (x)♢n≥0 as follows

Ĉ
(0)
0 (1) = 1, Ĉ(0)

n (1) =
2

n
, Ĉ(0)

n (x) =
2

n
Tn(x), n ≥ 1.

We denote the nth monic Gegenbauer orthogonal polynomial by

C(α)
n (x) = (kα

n)−1Ĉ(α)
n (x),
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where the constant kα
n (cf., [27, formula (4.7.31)]) is given by

kα
n =

2nΓ(n + α)

n!Γ(α)
, α ̸= 0,

k0
n = lim

α→0

kα
n

α
=

2n

n
, n ≥ 1.

Then for n ≥ 1, we have C(0)
n (x) = limα→0(k

α
n)−1Ĉ(α)

n (x) = 1
2n−1 Tn(x).

It is well known that the Gegenbauer polynomials are closely connected with axially
symmetric potentials in n dimensions and contain the Legendre and Chebyshev poly-
nomials as special cases [6, 7]. Furthermore, they inherit practically all the formulae
known in the classical theory of Legendre polynomials.

Proposition 2.1. ([15, cf., Proposition 2.1]) Let ¶C(α)
n ♢n≥0 be the sequence of monic

Gegenbauer orthogonal polynomials. Then the following statements hold.

(a) Three-term recurrence relation.

(2.14) xC(α)
n (x) = C

(α)
n+1(x) + γ(α)

n C
(α)
n−1(x), α > −

1

2
, α ̸= 0,

with initial conditions C
(α)
0 (x) = 1, C

(α)
1 (x) = x and recurrence coefficient γ(α)

n =
n(n+2α−1)

4(n+α)(n+α−1)
.

(b) For every n ∈ N (see [27, (4.7.15)])

(2.15) hα
n := ∥C(α)

n ∥2
µ =

∫ 1

−1
[C(α)

n (x)]2dµ(x) = π21−2α−2n n!Γ(n + 2α)

Γ(n + α + 1)Γ(n + α)
.

(c) Rodrigues formula.

(1 − x2)α− 1
2 C(α)

n (x) =
(−1)nΓ(n + 2α)

Γ(2n + 2α)

dn

dxn

[

(1 − x2)n+α− 1
2

]

, x ∈ (−1, 1).

(d) Structure relation (see [27, (4.7.29)]). For every n ≥ 2

C(α−1)
n (x) = C(α)

n (x) + ξ
(α)
n−2C

(α)
n−2(x),

where

ξ(α)
n =

(n + 2)(n + 1)

4(n + α + 1)(n + α)
, n ≥ 0.

(e) For every n ∈ N (see [27, formula (4.7.14)])

d

dx
C(α)

n (x) = nC
(α+1)
n−1 (x).

As is well known the monic Gegenbauer orthogonal polynomials admit other diffe-
rent definitions [1,4,27,28]. In order to deal with the definitions (1.1) and (1.2) of the



GENERALIZED MIXED TYPE BERNOULLI-GEGENBAUER POLYNOMIALS 251

GBG polynomials, we also are interested in the definition of the monic Gegenbauer
orthogonal polynomials by means of the following generating functions:
(2.16)


1 −
xz

π
+

z2

4π2

−α

=
∞
∑

n=0

Γ(n + α)

πnΓ(α)
C(α)

n (x)
zn

n!
, ♣z♣ < 2π, ♣x♣ ≤ 1, α ∈ (−1/2, ∞)\¶0♢,

and
(2.17)

2π − xz

1 − xz
π

+ z2

4π2

=
∞
∑

n=0

1

πn−1
C(0)

n (x)zn =
∞
∑

n=0

Γ(n + 1)

πn−1
C(0)

n (x)
zn

n!
, ♣z♣ < 2π, ♣x♣ ≤ 1.

Remark 2.1. Note that (2.16) and (2.17) are suitable modifications of the generating

functions for the Gegenbauer polynomials Ĉ(α)
n (x):



1 − 2xz + z2
)−α

=
∞
∑

n=0

Ĉ(α)
n (x)zn, ♣z♣ < 1, ♣x♣ ≤ 1, α ∈ (−1/2, ∞) \ ¶0♢,

1 − xz

1 − xz + z2
= 1 +

∞
∑

n=1

n

2
Ĉ(0)

n (x)zn, ♣z♣ < 1, ♣x♣ ≤ 1.

3. Some Algebraic and Analytic Properties of the GBG Polynomials

Now we are in a position to investigate some properties of the GBG polynomials
as follows.

Proposition 3.1. For α ∈ (−1/2, ∞), let
{

V (α)
n (x)

}

n≥0
be the sequence of GBG

polynomials of order α. Then the following explicit formulas hold.

V
(α)

n (x) =
n
∑

k=0



n

k



Γ(k + α)

πkΓ(α)
C

(α)
k (x)B

(α)
n−k(x), n ≥ 0, α ̸= 0,(3.1)

V
(0)

n (x) =
n
∑

k=0



n

k



k!

πk−1
C

(0)
k (x)B

(0)
n−k(x)(3.2)

=
n
∑

k=0



n

k



k!

πk−1
C

(0)
k (x)xn−k, n ≥ 0.

Proof. On account of the generating functions (1.1) and (2.16), it suffices the appro-
priate use of Cauchy product of series in order to deduce the expression (3.1).

Similarly, taking into account the generating functions (1.2) and (2.17), we can use
an analogous reasoning to the previous one for getting the expression (3.2). □
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Thus, the suitable use of (2.3), (2.5), (2.7), (2.14) and (3.1) allow us to check that
for α ∈ (−1/2, ∞) \ ¶0♢ the first four GBG polynomials are:

V
(α)

0 (x) =1,

V
(α)

1 (x) =
(

1 +
α

π

)

x −
α

2
,

V
(α)

2 (x) =



1 +
2α

π
+

(α + 1)α

π2



x2 −



α +
α2

π



x +
α(3α − 1)

12
−

α

2π2
,

V
(α)

3 (x) =



3
∑

k=0



3

k



(α)k

πk



x3 −
3α

2



2
∑

k=0



2

k



(α)k

πk



x2

+



(3α − 1)α

4
+

(3α − 1)α2

4π
−

3α

2π2
−

3(α + 1)α

2π3



x +
α2(1 − α)

8
+

3α2

4π2
.

It is worth pointing out that the left hand side of (1.1) can be expressed as
G(α)(z)(1 − xg(z))−αexz, where

G(α)(z) =



4π2z

(ez − 1)(z2 + 4π2)

]α

and g(z) =
2πz

z2 + 4π2
,

hence the polynomials
{

V (α)
n (x)

}

n≥1
are not generalized Appell polynomials (cf., [5,

Chapters I, III]). Also, in contrast to the generalized Bernoulli polynomials and
Gegenbauer polynomials, the GBG polynomials neither satisfy a Hanh condition nor
an Appell condition. More precisely, we have the following result.

Lemma 3.1. For α ∈ (−1/2, ∞) \ ¶0♢, let
{

V (α)
n (x)

}

n≥0
be the sequence of GBG

polynomials of order α. Then we have

(3.3)
d

dx
V

(α)
n+1(x) = (n + 1)!

n
∑

k=0

V
(α)

k (x)

k!
A

(α)
n−k(x), n ≥ 0,

where

A(α)
n (x) =











1 +
α

π
, n = 0,

α

πn+1
C(1)

n (x), n ≥ 1.

Proof. The identity (3.3) it is a straightforward consequence of (1.1) and (2.16). □

Also, it is possible to obtain some integral relations between the GBG polynomials
and monic Gegenbauer polynomials.

Lemma 3.2. For α ∈ (−1/2, ∞) \ ¶0♢, let
{

V (α)
n (x)

}

n≥0
be the sequence of GBG

polynomials of order α. Then the following formula holds.

(3.4)
∫ 1

−1
V

(α)
n (x)C(α)

n (x)dµ(x) =
n!Γ(n + 2α)

π2α+2nΓ(n + α + 1)Γ(n + α)

n
∑

k=0



n

k



(α)k

πk−1
,

whenever n ≥ 0.
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Proof. In order to obtain (3.4) it suffices to use the orthogonality of the monic Gegen-
bauer polynomials, (2.5), (2.15) and (3.1). □

Finally, from a matrix framework we can use the expression (3.1) in order to obtain
a matrix form of V (α)

r (x), r = 0, 1, . . . , n, as follows.
The expression (3.1) yields

(3.5) V
(α)

r (x) = C(α)
r (x)B(α)(x),

where

C(α)
r (x) =

[

r

r

)

Γ(r+α)
πrΓ(α)

C(α)
r (x)



r

r−1

)

Γ(r−1+α)
πr−1Γ(α)

C
(α)
r−1(x) · · · C

(α)
0 (x) 0 · · · 0

]

,

the null entries of the matrix C(α)
r (x) appear (n − r)-times and the matrix B(α)(x) is

given by B(α)(x) =


B
(α)
0 (x) B

(α)
1 (x) · · · B(α)

r (x) · · · B(α)
n (x)

)T
.

Then, by (3.5) the matrix V(α)(x) =


V
(α)

0 (x) V
(α)

1 (x) · · · V (α)
n (x)

)T
, can be

expressed as follows:

V(α)(x) = C(α)(x)B(α)(x),(3.6)

where C(α)(x) is the following (n + 1) × (n + 1) matrix

C(α)(x) =























C
(α)
0 (x) 0 0 · · · 0

(

1
1

)

Γ(1+α)
πΓ(α)

C
(α)
1 (x) C

(α)
0 (x) 0 · · · 0

(

2
2

)

Γ(2+α)

π
2Γ(α)

C
(α)
2 (x)

(

2
1

)

Γ(1+α)
πΓ(α)

C
(α)
1 (x) C

(α)
0 (x) · · · 0

...
...

...
. . .

...
(

n

n

)

Γ(n+α)
π

nΓ(α)
C

(α)
n (x)

(

n

n−1

)

Γ(n−1+α)

π
n−1Γ(α)

C
(α)
n−1(x)

(

n

n−2

)

Γ(n−2+α)

π
n−2Γ(α)

C
(α)
n−2(x) · · · C

(α)
0 (x)























.

The following theorem summarizes the ideas described above.

Theorem 3.1. For α ∈ (−1/2, ∞) \ ¶0♢, let
{

V (α)
n (x)

}

n≥0
be the sequence of GBG

polynomials of order α. Then, the matrix V(α)(x) =


V
(α)

0 (x) · · · V (α)
n (x)

)T
has

the following matrix form:

V(α)(x) = C(α)(x)B(α)(x).

Remark 3.1. Note that according to (3.5) the rows of the matrix C(α)(x) are precisely
the matrices C(α)

r (x) for r = 0, . . . , n. Furthermore, the matrix C(α)(x) is an (n+1)×
(n + 1) lower triangular matrix for each x ∈ R, so that

det


C(α)(x)
)

=


C
(α)
0 (x)

)n+1
= (1)n+1 = 1.

Therefore, C(α)(x) is an invertible matrix for each x ∈ R.

The following example shows how Theorem 3.1 can be used.
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Example 3.1. Let us consider n = 3 and α = 1. From (2.14), (3.1), (3.6) and a
standard computation we obtain

B(x) := B(1)(x) =



























1 0 0 0

x
π

1 0 0

4x2−1
2π2

2x
π

1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π

1



























−1

V(1)(x),(3.7)

where

V
(1)(x) =



























1



1 + 1
π

)

x − 1
2



1 + 2
π

+ 2
π2

)

x2 −


1 + 1
π

)

x + 1
6 − 1

2π2



1 + 3
π

+ 6
π2 + 6

π3

)

x3 − 3
2



1 + 2
π

+ 2
π2

)

x2 + 1
2



1 + 1
π

− 3
π2 − 6

π3

)

x + 3
4π2



























.

Since
























1 0 0 0

x
π

1 0 0

4x2−1
2π2

2x
π

1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π

1

























−1

=























1 0 0 0

− x
π

1 0 0

1
2π2 −2x

π
1 0

0 3
2π2 −3x

π
1























,

then (3.7) becomes

B(x) =























1

x − 1
2

x2 − x + 1
6

x3 − 3
2x2 + 1

2x























.

That is the entries of the matrix B(x) are the Ąrst four classical Bernoulli polynomials (2.2).

Another interesting algebraic property of the GBG polynomials is related to the
inversion formula satisfied by the classical Bernoulli polynomials (2.8). The following
example shows the inversion formula for the GBG polynomials Vn(x) := V (1)

n (x),
n ≥ 0.
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Example 3.2. Making the substitution α = 1 into (2.5), we obtain the well known
representation:

Bn(x) =
n
∑

k=0



n

k



Bkxn−k.

Then the matrix B(x) can be expressed as follows (cf., [17, (8)]):

B(x) = MT(x),

where

M =



























B0 0 0 0 · · · 0


1
1

)

B1



1
0

)

B0 0 0 · · · 0


2
2

)

B2



2
1

)

B1



2
0

)

B0 0 · · · 0


3
3

)

B3



3
2

)

B2



3
1

)

B1



3
0

)

B0 · · · 0
...

...
...

...
. . .

...


n

n

)

Bn



n

n−1

)

Bn−1



n

n−2

)

Bn−2



n

n−3

)

Bn−3 · · ·


n

0

)

B0



























,

and T(x) =


1 x · · · xn
)T

. It is clear that det (M) = (B0)
n+1 = (1)n+1 = 1. So,

M is an invertible matrix.

Making the substitution α = 1 into (3.6), we get the matrix representation:

V(x) := V(1)(x) = C(1)(x)B(x) = C(1)(x)MT(x).

It follows that

T(x) =
[

C(1)(x)M
]−1

V(x) = M−1


C(1)(x)
)−1

V(x).

On the account of (2.8), we can deduce the following matrix equation

(3.8) T(x) = QB(x),

where

Q =























1 0 0 0 · · · 0
1
2!

1 0 0 · · · 0
2!
3!

2!
2!

1 0 · · · 0
3!
4!

3!
3!

3
2!

1 · · · 0
...

...
...

...
. . .

...
n!

(n+1)!
n!
n!

n!
2!(n−1)!

n!
3!(n−2)!

· · · 1























=























1 0 0 0 · · · 0
1
2

1 0 0 · · · 0
1
3

1 1 0 · · · 0
1
4

1 3
2

1 · · · 0
...

...
...

...
. . .

...
1

n+1
1 n

2
n(n−1)

6
· · · 1























.

Notice that M−1 = Q. Consequently, from (3.8) we deduce a matrix-inversion
formula for V(x) as follows

T(x) = QB(x) = Q


C(1)(x)
)−1

V(x).(3.9)

Also, the matrix identity (3.9) allows us to conclude that the set ¶V0(x), . . . , Vn(x)♢
is a basis for Pn, i.e.,

Pn = span ¶V0(x), V1(x), . . . , Vn(x)♢ .
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Remark 3.2. In view of (2.9) it is possible to deduce a matrix-inversion formula for
B(m)(x) as follows

T(x) = Q(m)B(m)(x),

where Q(m) is an (n + 1) × (n + 1) lower triangular and invertible matrix, for m ∈ N

fixed.

Applying Theorem 3.1 (or equivalently, making the substitution α = m into (3.6))
we obtain the following matrix-inversion formula for V(m)(x)

T(x) = Q(m)
[

C(m)(x)
]−1

V(m)(x).

Finally, we leave to the reader the formulation of the analogous identities for the
GBG polynomials V (0)

n (x), n ≥ 0.
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CONVERGENCE AND DIFFERENCE ESTIMATES BETWEEN

MASTROIANNI AND GUPTA OPERATORS

NEHA1 AND NAOKANT DEO1

This paper is dedicated to Prof. Dr. Gradimir V. Milovanović

Abstract. Gupta operators are a modiĄed form of Srivastava-Gupta operators
and we are concerned about investigating the difference of operators and we estimate
the difference of Mastroianni operators with Gupta operators in terms of modulus
of continuity of Ąrst order. We also study the weighted approximation of functions
and obtain the rate of convergence with the help of the moduli of continuity as well
as PeetreŠs K-functional of Gupta operators.

1. Introduction and preliminaries

Acu-Rasa [3], Aral et al. [4] and Gupta [17] studied some fascinating results for the
difference of operators in general sense. Several results on this topic are compiled in
the recent book of Gupta et al. [19]. We extend here the study for some important
operators. The Mastroianni operators [23] are mentioned below:

(1.1) Mn,c(f ; x) =
∞
∑

i=0

vn,i(x, c)Fn,i(f),

where

vn,i(x, c) =
(−x)i

i!
τ (i)

n,c(x), Fn,i(f) = f


i

n



,

with individual cases, which are mentioned below.

(i) If τn,0(x) = exp(−nx), then vn,i(x, 0) = exp(−nx) (nx)i

i!
and the operators Mn,0

becomes Szász operators.

Key words and phrases. Mastroianni operator, modulus of continuity, Gupta operator.
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(ii) If c ∈ N and τn,c(x) = 1
(1+cx)n/c , then we have vn,i(x, c) = (n/c)i

i!
· (cx)i

(1+cx)
n
c +i and

we obtain classical Baskakov operators.

(iii) If τn,−1(x) = (1 − x)n, then vn,i(x, −1) =


n
i



xi(1 − x)n−i and the operators

(1.1) reduce to Bernstein polynomials,

where Fn,i : S → R is a functional (linear and positive) defined on S and S ⊂ C[0, ∞).
Case (iii) has not been considered here, we will continue with this case in our next
upcoming paper.

Srivastava-Gupta operator (see [10,29]) reproduce only constant functions, recently
Gupta in [16] studied few examples of the genuine operators (operators preserving
linear functions), we consider here following operators

(1.2) Gn;c(f ; x) =
∞
∑

i=0

vn,i(x, c)Hn,i(f),

where vn,i(x, c) is defined in (1.1) and

Hn,i(f) = (n + c)
∫ ∞

0
vn+2c,i−1(t, c)f(t)dt, 1 ≤ i < ∞, Hn,0(f) = f(0).

Remark 1.1. For operators (1.1), we have Fn,i(f) = f


i
n



such that

Fn,i(e0) = 1 and bFn,i := Fn,i(e1).

If we denote T
Fn,i
r = Fn,i(e1 − bFn,ie0)

r, r ∈ N, then by simple computation, we have

T Fn,i
r = Fn,i(e1 − bFn,ie0)

r = 0, r = 2, 4.

2. Preliminaries

Remark 2.1. For the Gupta type operators (1.2), by simple computation, we have

Hn,i(er) =
(i + r − 1)!

(i − 1)!
·

Γ


n
c

− r + 1


crΓ


n
c

+ 1
 ,

where Hn,i(e0) = 1, bHn,i := Hn,i(e1) = i
n
. If we denote T

Hn,i
r = Hn,i(e1−bHn,ie0)r, r ∈

N, then after simple computation, we have

T
Hn,i

2 := Hn,i(e1 − bHn,ie0)
2 =

ci2 + ni

n2(n − c)

and

T
Hn,i

4 :=Hn,i(e1 − bHn,ie0)
4

=Hn,i(e4, x) − 4Hn,i(e3, x)


i

n



+ 6Hn,i(e2, x)


i

n

2

− 4Hn,i(e1, x)


i

n

3

+ Hn,i(e0, x)


i

n

4
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=
(i + 3)(i + 2)(i + 1)i

n(n − c)(n − 2c)(n − 3c)
− 4

(i + 2)(i + 1)i2

n2(n − c)(n − 2c)
+ 6

(i + 1)i3

n3(n − c)
−

3i4

n4
.

Lemma 2.1. Few moments of Mastroianni operators are given by

Mn(e0; x) =1,

Mn(e1; x) =x,

Mn(e2; x) =
x

n
[x(n + c) + 1],

Mn(e3; x) =
x

n2
[x2(n + c)(n + 2c) + 3x(n + c) + 1],

Mn(e4; x) =
x

n3
[x3(n + c)(n + 2c)(n + 3c) + 6x2(n + c)(n + 2c) + 7x(n + c) + 1],

Mn(e5; x) =
x

n4
[x4(n + c)(n + 2c)(n + 3c)(n + 4c) + 10x3(n + c)(n + 2c)(n + 3c)

+ 25x2(n + c)(n + 2c) + 15x(n + c) + 1],

Mn(e6; x) =
x

n5
[x5(n + c)(n + 2c)(n + 3c)(n + 4c)(n + 5c) + 15x4(n + c)(n + 2c)

× (n + 3c)(n + 4c) + 65x3(n + c)(n + 2c)(n + 3c) + 90x2(n + c)(n + 2c)

+ 31x(n + c) + 1].

Lemma 2.2. Let f(t) = ei, i = 0, 1, 2, 3, 4, and c is the element of the set ¶0, 1, 2♢,

then we have

Gn,c(e0; x) =1,

Gn,c(e1; x) =x,

Gn,c(e2; x) =
(n + c)

(n − c)
x2 +

2

(n − c)
x, n > c,

Gn,c(e3; x) =
(n + c) (n + 2c)

(n − c) (n − 2c)
x3 +

6 (n + c)

(n − c) (n − 2c)
x2 +

6

(n − c) (n − 2c)
x, n > 2c,

Gn,c(e4; x) =
(n + c) (n + 2c) (n + 3c)

(n − c) (n − 2c) (n − 3c)
x4 +

12 (n + c) (n + 2c)

(n − c) (n − 2c) (n − 3c)
x3

+
36 (n + c)

(n − c) (n − 2c) (n − 3c)
x2 +

24

(n − c) (n − 2c) (n − 3c)
x, n > 3c.

Consequently,

Gn,c ((e1 − x); x) =0,

Gn,c



(e1 − x)2; x


=
2x (1 + cx)

n − c
, n > c,

Gn,c



(e1 − x)4; x


=
12c2 (n + 7c)

(n − c) (n − 2c) (n − 3c)
x4 +

24c2 (13n + c)

(n − c) (n − 2c) (n − 3c)
x3

+
12c2 (n + 9c)

(n − c) (n − 2c) (n − 3c)
x2
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+
24

(n − c) (n − 2c) (n − 3c)
x, n > 3c.

Very recently, Pratap and Deo [28] considered genuine Gupta-Srivastava opera-
tors and studied fundamental properties, the rate of convergence, Voronovskaya type
estimates, convergence estimates and weighted approximation. In the year 2018,
Garg et al. [13] studied the weighted approximation properties for Stancu gener-
alized Baskakov operators. In the same year, Acu et al. [2] also studied the or-
der of approximation for Srivastava-Gupta operators via Peetre’s K-functional and
weighted approximation properties and some numerical considerations regarding the
approximation properties, were considered. Several researchers studied approximation
operators and its variants, and they were given some impressive results like asymp-
totic formula, Voronovskaya-type formula, rate of convergence and bounded variation
(see [1, 2, 4–9,11,12,14,18,24–27]).

The purpose of this paper to study the approximation properties of Gupta operators
and the approximation of difference of operators and find an estimate for the difference
of Mastroianni operators with Gupta operators in terms of modulus of continuity of
first order. In the third section, we give the rate of convergence with the help of the
moduli of continuity and the Peetre’s K-functional and the last section of this paper
the weighted approximation of functions are studied.

3. Difference of Operators

Let CB[0, ∞) be the class of bounded continuous functions defined on the interval
[0, ∞) equipped with the norm ♣♣ · ♣♣ = supx∈[0,∞) ♣f(x)♣ < ∞.

Theorem 3.1 (Theorem A). ([15, 17]). Let f (s) ∈ CB[0, ∞), s is a member of set

¶0, 1, 2♢ and x belongs to [0, ∞), then for all natural numbers n, we get

♣(Gn,c − Mn,c)(f, x)♣ ≤ ♣♣f ′′♣♣α(x) + ω(f ′′, δ1)(1 + α(x)) + 2ω(f, δ2(x)),

where

α(x) =
1

2

∞
∑

i=0

vn,i(x, c)(T
Fn,i

2 + T
Hn,i

2 ),

and

δ2
1 =

1

2

∞
∑

i=0

vn,i(x, c)(T
Fn,i

4 + T
Hn,i

4 ), δ2
2 =

∞
∑

i=0

vn,i(x, c)(bFn,i − bHn,i)2.

We give the quantitative estimate for difference of Mastroianni and Gupta type
operators as an application of Theorem A.

Theorem 3.2. Let f (j) ∈ CB[0, ∞), j is a member of set ¶0, 1, 2♢ and x belongs to

[0, ∞), then for all natural numbers n, we get

♣(Gn,c − Mn,c)(f ; x)♣ ≤ ♣♣f ′′♣♣β(x) + ω(f ′′, δ1)(1 + β(x)),
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where

β(x) =
cx[x(n + c) + 1]

2n(n − c)
+

nx

2n(n − c)

and

δ2
1 =

1

2n4(n − c)(n − 2c)(n − 3c)

[{

3c2 (n + c) (n + 2c) (n + 3c) (n + 6c)
}

x4

+ 6c (n + c) (n + 2c) ¶3c (n + 6c) + 2n (n + 2c)♢ x3

+ (n + c)
{

21c2 (n + 6c) + 36nc (n + 2c) + n2 (3n + c)
}

x2

+
{

3c2 (n + 6c) + 12nc (n + 2c) + n2 (3n + c) + 6n3
}

x
]

.

Proof. First using Remark 1.1, Remark 2.1 and applying Lemma 2.1, we get

β(x) =
1

2

∞
∑

i=0

vn,i(x, c)(T
Fn,i

2 + T
Hn,i

2 )

=
1

2

∞
∑

i=0

vn,i(x, c)
ci2 + ni

n2(n − c)

=
c

2(n − c)
Mn(e2, x) +

n

2n(n − c)
Mn(e1, x)

=
cx[x(n + c) + 1]

2n(n − c)
+

nx

2n(n − c)
.

Next, by Remark 1.1 and Remark 2.1, we get

δ2
1 =

1

2

∞
∑

i=0

vn,i(x, c)(T
Fn,i

4 + T
Hn,i

4 )

=
1

2

∞
∑

i=0

vn,i(x, c)T
Hn,i

4

=
1

2

∞
∑

i=0

vn,i(x, c)



(i + 3)(i + 2)(i + 1)i

n(n − c)(n − 2c)(n − 3c)
− 4

(i + 2)(i + 1)i2

n2(n − c)(n − 2c)

+ 6
(i + 1)i3

n3(n − c)
−

3i4

n4

]

=
1

2

∞
∑

i=0

vn,i(x, c)

n4(n − c)(n − 2c)(n − 3c)

[

i4 + 6i3 + 11i2 + 6i


n3

− 4


i4 + 3i3 + 2i2


n2(n − 3c) + 6(i4 + i3)n(n − 2c)(n − 3c)

−3i4(n − c)(n − 2c)(n − 3c)
]

=
1

2

∞
∑

i=0

vn,i(x, c)

n4(n − c)(n − 2c)(n − 3c)

[

i4
{

n3 − 4n2(n − 3c) + 6n(n − 2c)(n − 3c)

−3(n − c)(n − 2c)(n − 3c)♢ + i3
{

6n3 − 12n2 (n − 3c) + 6n (n − 2c) (n − 3c)
}
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+ i2
{

11n3 − 8n2 (n − 3c)
}

+ 6in3
]

=
1

2

∞
∑

i=0

vn,i(x, c)

n4(n − c)(n − 2c)(n − 3c)

×
[

3i4c2 (n + 6c) + 12i3nc (n + 2c) + i2n2 (3n + c) + 6in3
]

=
1

2n4(n − c)(n − 2c)(n − 3c)

[

3n4c2 (n + 6c)Mn(e4, x) + 12n4c (n + 2c)Mn(e3, x)

+n4 (3n + c)Mn(e2, x) + 6n4Mn(e1, x)
]

=
3xc2 (n + 6c) ¶x3(n + c)(n + 2c)(n + 3c) + 6x2(n + c)(n + 2c) + 7x(n + c) + 1♢

2n4(n − c)(n − 2c)(n − 3c)

+
6nc(n + 2c)x ¶x2(n + c)(n + 2c) + 3x(n + c) + 1♢

n4(n − c)(n − 2c)(n − 3c)

+
n2 (3n + c) x ¶x(n + c) + 1♢

2n4(n − c)(n − 2c)(n − 3c)
+

3n3x

n4(n − c)(n − 2c)(n − 3c)

=
1

2n4(n − c)(n − 2c)(n − 3c)

[{

3c2 (n + c) (n + 2c) (n + 3c) (n + 6c)
}

x4

+ 6c (n + c) (n + 2c) ¶3c (n + 6c) + 2n (n + 2c)♢ x3

+ (n + c)
{

21c2 (n + 6c) + 36nc (n + 2c) + n2 (3n + c)
}

x2

+
{

3c2 (n + 6c) + 12nc (n + 2c) + n2 (3n + c) + 6n3
}

x
]

and

δ2
2 =

∞
∑

i=0

vn,i(x, c)(bFn,i − bHn,i)2 = 0. □

4. Weighted Approximation

The usual first order of modulus of continuity of f on bounded interval [0, b] is
defined as:

ωb (f ; δ) = sup
0<♣t−x♣≤δ

sup
t,x∈[0,b]

♣f(t) − f(x)♣ .

Let

B2 [0, ∞) :=
{

f : [0, ∞) → R : ♣f(x)♣ ≤ Mf



1 + x2
}

,

where Mf is a constant dependant on f , with the norm

∥f∥2 = sup
x≥0

♣f(x)♣

1 + x2
.

Let

C2 [0, ∞) = C [0, ∞) ∩ B2 [0, ∞) .
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In [20], Ispir acquainted the weighted modulus of continuity Ω (f ; δ) as:

(4.1) Ω (f ; δ) = sup
0≤♣k♣<δ,x≥0

♣f (x + k) − f(x)♣

(1 + k2) (1 + x2)
, f ∈ C2 [0, ∞) .

Let

C ′
2 [0, ∞) =

{

f ∈ C2 [0, ∞) : lim
t→∞

♣f(x)♣

1 + t2
< ∞

}

.

From [20,21], if f ∈ C ′
2 [0, ∞), then lim

δ→0
Ω (f, δ) = 0 and

(4.2) Ω (f ; pδ) ≤ 2 (1 + p)


1 + δ2


Ω (f ; δ) , p > 0.

From (4.1) and (4.2) and for f ∈ C ′
2 [0, ∞), we have

♣f (t) − f (x)♣ ≤


1 + (t − x)2
 

1 + x2


Ω (f ; ♣t − x♣)

≤2



1 +
♣t − x♣

δ





1 + δ2


Ω (f ; δ)


1 + (t − x)2
 

1 + x2


.

Now we give rate of approximation of unbounded functions in theorem of first order
of modulus of continuity.

Theorem 4.1. Let f ∈ C2 [0, ∞), then we get

♣Gn,c (f, x) − f(x)♣ ≤ 4Mf



1 + b2


δ2
n(x) + 2ωb+1 (f, δ) ,

where δ = δn(x) =

√

Gn,c



(t − x)2, x


.

Proof. For x ∈ [0, b] and t ≥ 0, we have

♣f(t) − f(x)♣ ≤ 4Mf



1 + b2


(t − x)2 +



1 +
♣t − x♣

δ



ωb+1 (f, δ) , δ > 0.

Applying operator Gn,c and using Cauchy-Schwarz inequality, we have

♣Gn,c (f ; x) − f(x)♣ ≤4Mf



1 + b2


Gn,c



(t − x)2, x


+



1 +
Gn,c (♣t − x♣ , x)

δ



ωb+1 (f, δ)

≤4Mf



1 + b2


Gn,c



(t − x)2, x


+



1 +
1

δ

√

Gn,c



(t − x)2, x




ωb+1 (f, δ) .

After choosing δ =

√

Gn,c



(t − x)2, x


, we obtain the required result. □

Theorem 4.2. Let f ∈ C ′
2 [0, ∞), then we have

lim
n→∞

∥Gn,c (f) − f∥2 = 0.
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Proof. From [22], it is sufficient to verify the following by well-known Bohman-
Korovkin theorem as:

lim
n→∞

∥

∥

∥Gn,c



ti; x


− xi
∥

∥

∥

2
= 0, i = 0, 1, 2.

From Lemma 2, the result is true for i = 0, 1. Again using Lemma 2, we get
∥

∥

∥Gn,c



t2; x


− x2
∥

∥

∥

2
= sup

x≥0

∣

∣

∣

∣

∣

(n + c)

(n − c)
x2 +

2

(n − c)
x − x2

∣

∣

∣

∣

∣

.

Finally, we have

lim
n→∞

∥

∥

∥Gn,c



t2; x


− x2
∥

∥

∥

2
= 0.

Thus, we get the desired result. □

Theorem 4.3. Let g ∈ C ′
2 [0, ∞) and η > 0, we have

lim
n→∞ sup

x∈[0,∞)

♣Gn,c (g; x) − g(x)♣

(1 + x2)1+η = 0, x0 ∈ (0, ∞].

Proof. Let x0 > 0 be any arbitrary fixed value and x0 ∈ (0, ∞] then, we have

sup
x∈[0,∞)

♣Gn,c (g; x) − g(x)♣

(1 + x2)1+η ≤ sup
x≤x0

♣Gn,c (g; x) − g(x)♣

(1 + x2)1+η + sup
x>x0

♣Gn,c (g; x) − g(x)♣

(1 + x2)1+η

≤♣Gn,c (g) − g♣C[0,x0] + ∥g∥2 sup
x>x0

♣Gn,c (1 + t2; x)♣

(1 + x2)1+η

+ sup
x>x0

♣g(x)♣

(1 + x2
0)

1+η .

From Theorem 4.2, the first term of the above inequality tends to zero.
Since ♣g(x)♣ ≤ ∥g∥2 (1 + x2), we have

sup
x>x0

♣g(x)♣

(1 + x2)1+η ≤
∥g∥2

(1 + x2
0)

η .

Let ε > 0 be arbitrary and if we choose x0 very big then

(4.3)
∥g∥2

(1 + x2
0)

η <
ε

2
.

Since limn→∞ supx>x0

Gn,c(1+t2;x)
1+x2 = 1, we have

sup
x>x0

Gn,c (1 + t2; x)

1 + x2
≤

(1 + x2
0)

η

∥g∥2

·
ε

2
+ 1 as n → ∞.

Therefore,

∥g∥2 sup
x>x0

Gn,c (1 + t2; x)

(1 + x2)1+η ≤
∥g∥2

(1 + x0
2)η sup

x>x0

Gn,c (1 + t2; x)

(1 + x2)
≤

ε

2
+

∥g∥2

(1 + x2)η .

From Theorem 4.1, and for sufficient large n, we have

(4.4) ∥Gn,c(g) − g∥C[0,x0] < ε.
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Estimates from (4.3) to (4.4), the theorem is proved. □

Theorem 4.4. Let f ∈ C ′
2 [0, ∞). For sufficient large n, we have

sup
x∈[0,∞)

♣Gn,c (f ; x) − f (x)♣

(1 + x2)5/2
≤ ĈΩ



f ; n−1/2


,

where Ĉ > 0 is constant.

Proof. For x is a point of interval ∈ [0, ∞) and δ is a positive number and by using
definition of the weighted modulus of continuity and Lemma 2.2, we obtain

♣f(t) − f(x)♣ ≤


1 + (x + ♣t − x♣)2


Ω (f ; ♣t − x♣)

≤2


1 + x2
 

1 + (t − x)2




1 +
♣t − x♣

δ



Ω (f ; δ) .

Applying operator Gn,c both sides, we get

♣Gn,c (f ; x) − f (x)♣ ≤2


1 + x2


Ω (f ; δ)

{

1 + Gn,c



(t − x)2; x


+ Gn,c





1 + (t − x)2
 ♣t − x♣

δ
; x

}

.

Applying Cauchy-Schwarz inequality, Lemma 2.2 and choosing δ = 1√
n
, we obtain the

required result. □
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COMPOSITIONS OF COSPECTRALITY GRAPHS OF SMITH

GRAPHS

DRAGOŠ M. CVETKOVIĆ1 AND MARIJA JEROTIJEVIĆ2

Abstract. Graphs whose spectrum belongs to the interval [−2, 2] are called Smith
graphs. Vertices of the cospectrality graph C(H) of a Smith graph H are all graphs
cospectral with H with two vertices adjacent if there exists a certain transformation
transforming one to another. We study how the cospectrality graph of the union of
two Smith graphs can be composed starting from cospectrality graphs of starting
graphs.

1. Introduction

In this section we present standard basic facts on graph spectra and on Smith
graphs.

Let G be a graph with n vertices and adjacency matrix A. The characteristic
polynomial det(xI − A) of A is also called the characteristic polynomial of G. The
eigenvalues and the spectrum of A (which consists of n eigenvalues) are called the
eigenvalues and the spectrum of G, respectively. Since A is real and symmetric, its
eigenvalues are real. The eigenvalues of G (in non-increasing order) are denoted by
λ1, . . . , λn. In particular, λ1, as the largest eigenvalue of G, will be called the spectral

radius (or index) of G. For general information on spectra of graphs see, for example,
[2].

The spectrum of G (as a family of reals) will be denoted by Ĝ. The disjoint union
of graphs G1 and G2 will be denoted by G1 + G2, while the union of their spectra (i.e.,

the spectrum of G1 + G2) will be denoted by Ĝ1 + Ĝ2. In addition, kG (kĜ) stands

for the union of k copies of G (resp. Ĝ).

Key words and phrases. Spectral graph theory, Smith graphs, cospectrality graphs.
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Figure 1. Some of the Smith graphs

We say that two (non-isomorphic) graphs are cospectral if their spectra coincide.
They are also called cospectral mates. On the other hand, we say that a graph is
determined by its spectrum if it is a unique graph having this spectrum.

The cospectral equivalence class of a graph G is the set of all graphs cospectral to
G (including G itself).

We consider the class of graphs whose spectral radius is at most 2. This class
includes, for example, the graphs whose each component is either a path or a cycle.

All graphs with the spectral radius at most 2 have been constructed by J. H. Smith
[5].

A path (cycle) on n vertices will be denoted by Pn (resp. Cn).
A connected graph with index ≤ 2 is either a cycle Cn (n = 3, 4, . . .), or a path

Pn (n = 1, 2, . . .), or one of the graphs depicted in Fig. 1 (see [5]). Note that W1

coincide with the star K1,4, while Z1 with P3. In addition, the graphs Cn, Wn, T4, T5,
and T6 are connected graphs with index equal to 2. All other graphs, namely, Pn, Zn,
T1, T2 and T3 are the induced subgraphs of these graphs (so the index of each of them
is less than 2). The graph Zn is called a snake while Wn is a double snake. The trees
T1, T2, T3, T4, T5, and T6 will be called exceptional Smith graphs.

The spectrum of each of these graphs can be found (in an explicit form) in [3].
A Smith graph has connected Smith graphs as components.
We denote the set of all Smith graphs by S

∗. The set of those which are bipartite,
so odd cycles are excluded, will be denoted by S.
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Let G be any graph each component of which belongs to S
∗, we can write

G =
∑

H∈S∗

r(H)H,(1.1)

where r(H) ≥ 0 is a repetition factor (tells how many times H is appearing as a
component in G).

The repetition factor r(Si) of some of the graph Si ∈ S
∗ for any relevant index i

will be denoted by si. So we have non-negative integers

p1, p2, p3, . . . , z2, z3, . . . , w1, w2, w3, . . . , t1, t2, t3, t4, t5, t6.

We have omitted z1 since Z1 = P3 and the variable p3 is relevant. We shall use
c2, c3, . . . , for repetition factors of the even cycles C4, C6, . . .

For non-bipartite graphs from S
∗ we have to introduce variables o3, o5, o7, . . . count-

ing the numbers of odd cycles C3, C5, C7, . . .

For a given graph G ∈ S
∗ the above variables which do not vanish, together with

their values, are called parameters of G. Parameters of a graph indicate the actual
number of components of particular types present in G.

The rest of the paper is organized as follows.
Section 2 contains some earlier results on Smith graphs necessary for handling the

phenomenon of cospectrality of Smith graphs by means of the so called cospectrality
graphs. In Section 3 we present some properties of cospectrality graphs. Section 4
contains description of some compositions of cospectrality graphs. At the end, in
Section 5, we describe a computer program for generating cospectral Smith graphs
and include some examples of the work of the program.

2. Preliminary Results

Let H ∈ S. Let

Ĥ = σ0Ĉ4 +
m∑

i=1

σiP̂i,

be the canonical representation (as deĄned in [1]) of the spectrum Ĥ of a bipartite
Smith graph H. Here σ0, σ1, σ2, . . . σm are integers with σ0 ≥ 0. This representation
always exists and is unique. The expression

σ0C4 +
m∑

i=1

σiPi,

is called canonical representation of H. It deĄnes a graph if σ0, σ1, σ2, . . . σm are
non-negative, otherwise it is just a formal expression. In the Ąrst case H is cospectral
to its canonical representation but not necessarily isomorphic.

If all quantities σi are non-negative, the graph H is called a Smith graph of type A,
otherwise it is of type B. Let I (resp. J) be the set of indices i for which σi in a graph
of type B is negative (resp. positive).

Obviously, cospectral Smith graphs are of the same type.
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Let PH =
∑

i∈I |σi|Pi. Components of the graph PH are paths whose spectra appear
with a negative sign in the canonical representation of the spectrum of H. The graph
PH is called the basis of H. The basis of a graph of type A is empty. If we add
components from its basis to a graph of type B, it becomes a graph of type A.

The graph KH = σ0C4 +
∑

i∈J σiPi is called the kernel of H.
Following [1] we shall consider the corresponding component transformations:

(γ1) Wn ⇄ C4 + Pn, (δ1)

(γ2) Zn + Pn ⇄ P2n+1 + P1, (δ2)

(γ3) C2n + 2P1 ⇄ C4 + 2Pn−1, n ≥ 3 (δ3)

(γ4) T1 + P5 + P3 ⇄ P11 + P2 + P1, (δ4)

(γ5) T2 + P8 + P5 ⇄ P17 + P2 + P1, (δ5)(2.1)

(γ6) T3 + P14 + P9 + P5 ⇄ P29 + P4 + P2 + P1, (δ6)

(γ7) T4 + P1 ⇄ C4 + 2P2, (δ7)

(γ8) T5 + P1 ⇄ C4 + P3 + P2, (δ8)

(γ9) T6 + P1 ⇄ C4 + P4 + P2. (δ9)

They are of the form A → B or B → A meaning that in a graph the group of
components A is replaced with the group of components B or vice versa. These
transformations are called G-transformations. Those of the form A→ B are denoted
by γ1, γ2, . . . , γ9 and are called C-transformations. For each C-transformation A→ B

we deĄne the corresponding opposite transformation B → A, also denoted by A← B.
Transformations A← B are called D-transformations and are denoted by δ1, δ2, . . . , δ9.

Graphs C4, P1, P2, . . . , appearing in canonical representations of bipartite Smith
graphs, are called basic graphs. All other connected bipartite Smith graphs are called
non-basic graphs. Non-basic graphs are of two types. Graphs Wn (n = 1, 2, . . . ),
C2k (k = 3, 4, . . . ) and T4, T5, T6 are non-basic graphs of type I while graphs Zn

(n = 2, 3, . . . ), T1, T2, T3 are non-basic graphs of type II. Note that non-basic graphs
of type I have spectral radius equal to 2 while for those of type II spectral radius is
less than 2.

G-transformations γ1, γ2, γ3 and their opposite transformations δ1, δ2, δ3 are not
unique since they depend on the index n of the involved non-basic graphs Wn, Zn, C2n.
If we want to specify this index in the name of the G-transformation, we shall use
superscripts (for example, γn

1 or δn
2 ).

Application of any G-transformation does not change the spectrum of the corre-
sponding graph. Moreover, we have the following theorem from [1].

Theorem 2.1. Let H1 and H2 be bipartite Smith graphs with corresponding bases

PH1
and PH2

. If graphs H1 and H2 are cospectral, then the graph H1 + PH1
can be

transformed into H2 + PH2
by a finite number of G-transformations.

Cospectrality graphs have been introduced in [4] as follows.
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For any A-type graph G we deĄne its cospectrality graph C(G) in the following
way. Vertices of C(G) are all graphs cospectral with G, i.e. the set of vertices of
C(G) is the cospectral equivalence class of G. Two vertices x and y are adjacent if
there exists a G-transformation transforming one to another. Of course, if x can be
transformed into y by a G-transformation, then y can be transformed into x by the
opposite transformation. Hence, C(G) is an undirected graph without multiple edges
or loops.

By Theorem 2.1 the cospectrality graph is connected.
We shall also consider general cospectrality graphs. Such graphs have mutually

cospectral vertex weights, the adjacency relation being deĄned as above.
It can be easily seen that identifying two vertices with same weights in a general

cospectrality graph leads again to a regular general cospectrality graph. When identi-
fying such vertices, all edges which were going to particular vertices, go now to the
new single vertex.

3. Some Properties of Cospectrality Graphs

Let G be an A-type graph and let G∗ be its canonical representation. We have
C(G) = C(G∗) and the later will be considered as a standard denotation for a
cospectrality graph. Let C(G∗) = C.

Cospectrality graph C is a double weighted graph. Both vertices and edges carry
some weights. Weights of vertices are some Smith graphs while weights of edges
are pairs of mutually opposite G-transformations. Vertex weights determine edge
weights since weights of adjacent vertices determine the pair of mutually opposite
G-transformations transforming one vertex to another.

A cospectrality graph C, which is considered as an undirected graph, deĄnes the
following two directed weighted graphs: Cγ obtained from C by replacing edges with
arcs with corresponding γ-transformations as weights and corresponding orientations,
and Cδ, deĄned analogously.

Note that Cγ and Cδ, as digraphs, are mutually converse.
In considering cospectrality problems for Smith graphs we can treat together C, Cγ

and Cδ and pass from one to another as appropriate.
Also we can treat incomplete cospectrality graphs, i.e., double weighted graphs in

which the vertex set does not contain all mutually cospectral graphs. Sometimes we
allow in such graphs vertices with the same weights.

Next theorem characterizes Smith graphs whose cospectrality graphs have just one
vertex.

Theorem 3.1. If the cospectrality graph of a Smith graph G of type A consists just

of one vertex, then G is one of the following graphs:

- multiple cycles kC4, (k ∈ N);
- kP1 (k ∈ N) in the union with any collection of paths P2, P3, P4, P6, P8, . . . ;

- any collection of paths without P1.
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Proof. Clearly, graph G is characterized by the spectrum. Since any Smith graph
is cospectral to its canonical representation, graph G must be itself in the form of
canonical representation. If G is one of the graphs kC4 (k ∈ N), then there is no
G-transformation producing a cospectral mate. G cannot contain C4 and a path
because of the transformation δ1. In the remaining cases G is just a collection of
paths. If P1 is present, transformation δ2 prevents the presence of any path P2k+1 for
k ≥ 2. If P1 is excluded, any collection of other paths is feasible. □

One can also classify graphs whose cospectrality graphs consist of two vertices. In
fact, for each of nine types of D-transformations one can consider cospectrality graphs
in which exactly this transformation appears.

4. Building Cospectrality Graphs

We present several ways in which new cospectrality graphs can be obtained from
starting ones.

Let G1 and G2 be two Smith graphs and let C and D be cospectrality graphs
such that C = C(G∗

1) and D = C(G∗

2). Corresponding directed graphs with arcs
whose weights are δ−transformations will be denoted Cδ and Dδ, respectively. Let
V (Cδ) = {1, 2, . . . , m} with weights {c1, c2, ..., cm} and V (Dδ) = {1, 2, . . . , n} with
weights {d1, d2, ..., dn} be the corresponding vertex sets. Note that ci are graphs
cospectral with G1 and dj are graphs cospectral with G2.

Given cospectrality graphs C(G1) and C(G2) of graphs G1 and G2 we want to
construct the cospectrality graph C(G1 + G2) of the graph G1 + G2. The construction
is not straightforward and we need several deĄnitions. In particular, we shall deĄne the
sum of cospectrality graphs, merging vertices in a cospectrality graph and extending
cospectrality graphs. All these operations can occur when constructing C(G1 + G2).

First, we use Cartesian product × of sets to deĄne, similarly as in the sum of graphs
(see, for example, [2], page 65), the sum Cδ ⊕Dδ of cospectrality graphs Cδ and Dδ.
The operation ⊕ is called the cospectrality sum.

The vertex set V (Cδ ⊕ Dδ) of Cδ ⊕ Dδ is V (Cδ) × V (Dδ) and vertices (i, j) and
(k, l) are adjacent if i = k and j and l are adjacent in Dδ or j = l and i and k

are adjacent in Cδ. Weights w(a) of arcs (or vertices) a are deĄned as follows (with
subscript indicating the actual graph):

w((i, j), (i, l)) = wD(j, l),

w((i, j), (k, j)) = wC(i, k),

for i, k ∈ {1, . . . , m} and j, l ∈ {1, . . . , n} and

w(i, j) = ci + dj, i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.

The deĄnition of Cγ ⊕Dγ is analogous and leads to a directed graph converse to
Cδ ⊕Dδ with weights being the corresponding γ-transformations.
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We might also consider the corresponding undirected graph C ⊕D obtained from
considered digraphs by replacing arcs with edges with corresponding pairs of opposite
G-transformations as weights.

All three objects C ⊕ D, Cγ ⊕ Dγ and Cδ ⊕ Dδ will be considered as the sum of
cospectrality graphs C and D.

A subgraph of a cospectrality graph is called a partial cospectrality graph.

Theorem 4.1. Let C = C(G∗

1) and D = C(G∗

2). The sum Cδ ⊕Dδ of cospectrality

graphs Cδ and Dδ, after merging vertices wth the same weights, is a partial cospectrality

graph of the graph C(G1 + G2).

Proof. By deĄnition of the sum, the weight ci + dj of a vertex (i, j) is transformed
either in the part ci or in the part dj giving in both cases the weight of a vertex
cospectral to ci + dj. □

Let us introduce the notion of an empty graph Gφ. It is a graph without vertices
or edges and represents a neutral element for the operation of union of graphs. For
any (non-weighted) graph G let also Q(G) be a weighted graph consisting of a single
vertex with vertex weight G.

It can easily be veriĄed that Q(Gφ) behaves as a neutral element for the cospectrality
sum ⊕, i.e, for any (partial) cospectrality graph C we have Q(Gφ)⊕C = C⊕Q(Gφ) =
C.

Let S be any bipartite Smith graph and consider the cospectrality sum Q(S)⊕ C.
The resulting cospectrality graph is isomorphic to C with each vertex weight being
the union of the weight of the corresponding vertex in C and S.

We shall also consider extending - Ąnding new vertices and arcs in a general cospec-
trality graph.

It happens sometimes that the weight ci + dj of a vertex (i, j) of a sum Cδ ⊕Dδ

contains a Smith graph S which is contained neither in ci nor in dj and such that a
D-transformation can be applied to it. This means that ci + dj can be transformed
in some additional ways. Let ci + dj = S + S ′ for some Smith graph S ′ In fact, if
C(S) is a (partial) cospectrality graph for S, then the graph Q(S ′) ⊕ C(S) has a
vertex with the weight ci + dj. The vertex of Q(S ′)⊕C(S) and the vertex in Cδ ⊕Dδ

with the same weight ci + dj could be identiĄed. In this way, Cδ ⊕Dδ is extended by
Q(S ′)⊕ C(S) at vertex (i, j).

5. A Computer Program

We have implemented a computer program generating all graphs cospectral to a
given bipartite Smith graph G of type A and the corresponding cospectrality graph
C(G).

The input contains a bipartite Smith graph of type A in its canonical form.
The vertex v0 representing the canonical representation of G is called the c-center

of C(G) [4].
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For any vertex v of C(G) we deĄne H(v) to be the graph which is represented by v,
i.e., the weight of v. The rank rank H of a Smith graph H is the number of non-basic
components of H.

Vertices of C(G) are partitioned into layers according to ranks of corresponding
graphs. Layer k contains vertices v such that rank H(v) = k. The largest rank of
a vertex in C(G) is called the c-radius of C(G). The vertices with largest rank are
called peripheral vertices. Their rank is equal to the c-radius.

Applying a D-transformation on a vertex enhances its rank while C-transformations
diminish the rank. Using C-transformations we are approaching the c-center while by
D-transformations we go from c-center to peripheral vertices.

When considering a current graph the program tries to apply a D-transformation
and if this is done the program forms a new vertex of the search tree. The depth Ąrst
search is applied. Repeated graphs are not considered again.

The program is realized as a console application. The following tools are used:
.NET Framework v4.7.2, C#, XML, LinQ and Visual Studio 2019.

Example 5.1. Our program has been applied to the graph T5 + T6 + 2P1. The program
produced 25 graphs in the corresponding cospectrality graph. This shows that the
cospectrality graph of T5 + T6 + 2P1, given in [4], Figure 3, is not complete.

The program output is presented in Table 1.

Table 1.

Layer 0 2C4 2P2 P3 P4
Layer 1 1: C4 P2 P3 P4 W2, 1: C4 2P2 P4 W3, 1: C4 2P2 P3 W4,

3: C6 C4 2P1 P3 P4, 7: C4 P3 P4 T4 P1, 8: P2 C4 P4 T5 P1,

9: P2 C4 P3 T6 P1
Layer 2 1: P3 P4 2W2, 1: P2 P4 W2 W3, 1: P2 P3 W2 W4,

8: P4 W2 T5 P1, 9: P3 W2 T6 P1 | 1: P2 P4 W3 W2,

1: 2P2 W3 W4, 3: P4 W3 C6 2P1, 7: P4 W3 T4 P1,

9: P2 W3 T6 P1 | 1: P2 P3 W4 W2, 1: 2P2 W4 W3,

3: P3 W4 C6 2P1, 7: P3 W4 T4 P1, 8: P2 W4 T5 P1 |
1: P3 P4 C6 P1 W1, 1: P4 C6 2P1 W3, 1: P3 C6 2P1 W4 |
1: P3 P4 T4 W1, 1: P4 T4 P1 W3, 1: P3 T4 P1 W4 |
1: P2 P4 T5 W1, 1: P4 T5 P1 W2, 1: P2 T5 P1 W4,

9: T5 2P1 T6 | 1: P2 P3 T6 W1, 1: P3 T6 P1 W2,

1: P2 T6 P1 W3, 8: T6 2P1 T5

Generated graphs are classiĄed within layers. Starting from layer 1, graphs in a
layer are listed in order as they are generated from the previous layer and the index i

of the used D-transformation δi is indicated. The symbol + of the union of graphs is
omitted. Graphs generated by different (and neighboring) graphs from the previous
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layer are separated by a vertical line |. Repeated graphs are underlined. There are
exactly 25 graphs in the table which are not underlined.

Example 5.2. When applied to T4 + T5 + T6 + 3P1, the program produced 86 mutually
cospectral graphs.

Acknowledgements. This work is supported by the Serbian Ministry for Educa-
tion, Science and Technological Development, Grants ON174033 and F-159. We are
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A STABILITY RESULT FOR A TIMOSHENKO SYSTEM WITH

INFINITE HISTORY AND DISTRIBUTED DELAY TERM

ZINEB KHALILI1 AND DJAMEL OUCHENANE1

Abstract. This manuscript is mainly focusing on a general stability of solution
for one-dimensional Timoshenko system with infinite history and distributed delay
term regardless also of the speeds of wave propagation. We prove our result by using
the energy method combined with some properties of convex functions.

1. Introduction

In this paper, we consider the following Timoshenko system with infinite history
and distributed delay term

(1.1)











ρ1φtt (x, t) −K (φx + ψ)
x

(x, t) = 0,
ρ2ψtt (x, t) − bψxx (x, t) +

∫

∞

0 g (s)ψxx (x, t− s) ds
+K (φx + ψ) (x, t) + µ1ψt (x, t) +

∫ τ2

τ1
µ2 (s)ψt (x, t− s) ds = 0,

where t ∈ (0,∞) denotes the time variable and x ∈ (0, 1) is the space variable,
the functions φ and ψ are respectively, the transverse displacement of the solid
elastic material and the rotation angle, and ρ1, ρ2, µ1, K are positive constants,
µ2 : [τ1, τ2] → R is a bounded function satisfying

(1.2)
∫ τ2

τ1

♣µ2 (s)♣ ds < µ1,

where τ1 and τ2 two real numbers satisfying 0 ≤ τ1 ≤ τ2 and the relaxation function
g satisfies the folowing assumptions.

(G1) g : R+ → R+ is a C1 function satisfying

g (0) > 0, b−
∫

∞

0

g (s) ds = b− g0 = L > 0.
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(G2) There exists a positive constant ζ such that

(1.3) g′ (t) ≤ −ζg (t) , for all t ≥ 0.

System (1.1) is provided with the following initial and boundary conditions
{

φ(x, 0) = φ0 (x) , φt(x, 0) = φ1 (x) , ψ(x, 0) = ψ0 (x) , ψt(x, 0) = ψ1 (x) ,
ψt(x,−t) = f0 (x, t) in (0, 1) × (0, τ2) ,

and

φ(0, t) = φ(1, t) = ψ(0, t) = ψ(1, t) = 0, for all t ≥ 0,

where x ∈ (0, 1) and f0 is the history function.

Let us first recall some result related to the problem we address. Said-Houari and
Rahali [12] considered the following Timoshenko system with infinite history and a
delay term in the internal feedback

(1.4)











ρ1φtt (x, t) −K (φx + ψ)
x

(x, t) = 0,
ρ2ψtt (x, t) − bψxx (x, t) +

∫

∞

0 g (s)ψxx (x, t− s) ds
+K (φx + ψ) (x, t) + µ1ψt (x, t) + µ2ψt (x, t− τ) = 0.

They established the well-posedness of problem (1.4) and the exponential stability
of solution. In the absence of the viscoelastic damping (g ≡ 0), problem (1.4) has
been studied recently by Said-Houari and Laskri [11]. Under some assumption, they
proved the well-posedness and established for µ1 > µ2 an exponential decay result for
the case of equal-speed wave propagation, i.e.,

k

ρ1

=
b

ρ2

.

Subsequently, the work in [11] has been extended to the case of time-varying delay
of the form ψt (x, t− τ (t)) by Kirane, Said-Houari and Anwar [6]. First, by using the
variable norm technique of Kato and under some restriction on the parameters µ1, µ2

and on the delay function τ (t), the system has been shown to be well-posed. Second,
under relationship between the weight of the delay term in the feedback, the weight
of the term without delay and the wave speeds, an exponential decay result of the
total energy has been proved.

In [6, 11], the authors have extended some works on the wave equation with delay
to the Timoshenko system with delay. The stability of the wave equation with delay
has become recently an active area of research and many authors have shown that
delays can destabilize a system that is asymptotically stable in the absence of delays
(see [2] for more details).

Kafini et al. [5] considered the following Timoshenko system of thermoelasticity of
type III with delay











ρ1φtt − σ(φx, ψ)x + µ1φt (x, t) + µ2φt (x, t− s) = 0,
ρ2ψtt − bψxx + k (φx + ψ) + γθx = 0,
ρ3θtt − kθxx + γψtx − kθtxx = 0.
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The authors established well-posedness and stability of the system for the cases of
equal and nonequal speeds of wave propagation, they showed that the energy decays
exponentially in the case of equal wave speeds in spite of the existence of the delay and
in the opposite case it decays polynomially. Also, Kafini et al. [4] concerned with the
following Timoshenko system of thermoelasticity of type III with distributive delay











ρ1φtt (x, t) −K (φx + ψ)
x

(x, t) = 0,
ρ2ψtt (x, t) − bψxx (x, t) +K (φx + ψ) (x, t) + γθx (x, t) = 0,
ρ3θtt − δθxx − κθtxx −

∫ τ2

τ1
g (s) θtxx (x, t− s) ds+ γψtx = 0,

where τ1 < τ2 are non-negative constants. They proved an exponential decay in the
case of equal wave speeds and a polynomial decay result in the case of nonequal wave
speeds with smooth initial data. Very recently, Hao and Wang [3] considered the
following Timoshenko-type system with distributed delay and past history

(1.5)











ρ1φtt − k(φx, ψ)x + βθtx = 0,
ρ2ψtt − bψxx + k (φx + ψ) − βθx +

∫

∞

0 g (s)ψxx (x, t− s) ds+ f (ψ) = 0,
ρ3θtt − δθxx + γφtx − lθtxx + γψt +

∫ τ2

τ1
µ (ζ)ψt (x, t− ζ) dζ = 0.

The authors proved well-posedness and stability of the system (1.5) for the cases of
equal and nonequal speeds of wave propagation. Their results show that the damping
effect is strong enough to uniformly stabilize the system even in the existence of time
delay under suitable conditions.

Motivated by the works mentioned above, we investigate system (1.1) under suitable
assumptions and show that even in the presence of the viscoelastic term (g ̸= 0), we
can establish a general energy decay regardless also of the speeds of wave propagation.
To achieve our goals we make use the energy method combined with some properties
of convex functions. The arguments of convexity were introduced by Lasiecka and
Tataru [7] and used by Liu and Zuazua [8] and others.

2. Preliminaries

The main aim in this section is to present some materials needed in the proof of our
result. We also state, without proof, a local existence result for problem (1.1). The
proof can be established by using Faedo-Galerkin method as in [9]. Let us introduce
the following new dependent variable

z (x, ρ, s, t) = ψt (x, t− sρ) , in (0, 1) × (0, 1) × (τ1, τ2) × (0,∞) .

Then, we get the following system
{

szt (x, ρ, s, t) + zρ (x, ρ, s, t) = 0,
z (x, 0, τ, t) = ψt (x, t) .

We then set an auxiliary variable as in [1]

ηt (x, s) = ψ (x, t) − ψ (x, t− s) , s ≥ 0.

Then
ηt

t (x, s) + ηt
s (x, s) = ψt (x, t) .
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Hence, we can rewrite the problem (1.1) as

(2.1)



























ρ1φtt (x, t) −K (φx + ψ)
x

(x, t) = 0,
ρ2ψtt − bψxx +K (φx + ψ) +

∫

∞

0 g (s) ηt
xx (x, s) ds

+µ1ψt (x, t) +
∫ τ2

τ1
µ2 (s)ψt (x, t− s) ds = 0,

szt (x, ρ, s, t) + zρ (x, ρ, s, t) = 0,
ηt

t (x, s) + ηt
s (x, s) = ψt (x, t) ,

where x ∈ (0, 1), ρ ∈ (0, 1) and t > 0. System (2.1) subjected to the following initial
conditions

(2.2)



























φ(x, 0) = φ0 (x) , φt(x, 0) = φ1 (x) ,
ψ(x, 0) = ψ0 (x) , ψt(x, 0) = ψ1 (x) ,

x ∈ (0, 1) ,

z (x, ρ, s, 0) = f0 (x, ρs) , in (0, 1) × (0, 1) × (0, τ2) ,
ηt (x, 0) = 0, for all t ≥ 0,
η0 (x, s) = η0 (s) = 0, for all s ≥ 0.

In addition, we consider the following boundary conditions

φ(0, t) =φ(1, t) = ψ(0, t) = ψ(1, t) = 0, for all t ≥ 0,

ηt (0, s) =ηt (1, s) = 0, for all s ≥ 0.(2.3)

We now define the energy space

H :=

[

H1
0 (0, 1) × L2 (0, 1)

]2

× L2 ((0, 1) × (0, 1) × (τ1, τ2)) × L2
g



R
+, H1

0 (0, 1)


,

where L2
g (R+, H1

0 (0, 1)) denotes the Hilbert space of H1
0 -valued functions on R

+.

3. Exponential Stability

The functional energy of the solution of problem (2.1)–(2.3) is given by

E (t) =E


t, φ, ψ, z, ηt


(3.1)

=
1

2

∫ 1

0



ρ1φ
2
t + ρ2ψ

2
t



dx+
1

2

∫ 1

0

{

K (φx + ψ)2 + bψ2
x

}

dx

+
1

2

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx

+
1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s ♣µ2 (s)♣ z2 (x, ρ, s, t) dsdρdx.

We multiply (2.1)1 by φt, (2.1)2 by ψt and (2.1)3 by ♣µ2 (s)♣ z, integrating by parts
over (0, 1), using Young and Cauchy-Schwarz’s inequality we get

dE (t)

dt
≤

1

2

∫ 1

0

∫

∞

0

g′ (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx

− C

∫ 1

0

ψt

∫ τ2

τ1

µ2 (s) z (x, 1, s, t) +
∫ 1

0

ψ2
t (x, t) dx

}

,(3.2)

where C > 0, which implies that the energy E is a non-increasing function with
respect to t.
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Our main stability result reads as follows.

Theorem 3.1. Let U0 ∈ D (A) . Assume that
∫ τ2

τ1
♣µ2 (s)♣ ds < µ1 and

K

ρ1

=
b

ρ2

.

Then there exist two positive constants C and γ independent of t such that

(3.3) E (t) ≤ Ce−γt, for all t > 0.

Remark 3.1. To derive the exponential decay of the solution, it is enough to construct
a functional L(t), equivalent to the energy E(t), satisfying

dL (t)

dt
≤ −ΛL (t) , for all t > 0,

where Λ is a positive constant. In order to obtain such a functional L, we need several
lemmas.

Let us first define the following functional

(3.4) I1 (t) := −
∫ 1

0

(ρ1φtφ+ ρ2ψtψ) dx−
µ1

2

∫ 1

0

ψ2dx.

Then we have the following estimate.

Lemma 3.1. Let (φ, ψ, z, ηt) be the solution of (2.1)–(2.3), then for any ε, δ1 > 0,

we have

dI1 (t)

dt
≤ −

∫ 1

0



ρ1φ
2
t + ρ2ψ

2
t



dx(3.5)

+
g0

4δ1

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx+
cε2

2

∫ 1

0

ψ2dx

+ (b+ δ1)
∫ 1

0

ψ2
xdx+

1

2ε2

∫ 1

0

∫ τ2

τ1

µ2 (s)ψ2
t (x, t− s) dsdx

+K
∫ 1

0

(φx + ψ)2 dx,

where c = 1/π2 is the Poincaré’s constant.

Proof. Taking the derivative of (3.4), integrating by parts, we obtain

dI1 (t)

dt
= −

∫ 1

0



ρ1φ
2
t + ρ2ψ

2
t



dx−
∫ 1

0

(ρ1φttφt + ρ2ψttψt) dx− µ1

∫ 1

0

ψtψdx.(3.6)

Therefore, by using (2.1)1, (2.1)2, integration by parts, we obtain from (3.6)

dI1 (t)

dt
= −

∫ 1

0



ρ1φ
2
t + ρ2ψ

2
t



dx+K
∫ 1

0

(φx + ψ)2 dx+ b
∫ 1

0

ψ2
xdx(3.7)

+
∫ 1

0

ψ
∫ τ2

τ1

µ2 (s)ψt (x, t− s) dsdx

+
∫ 1

0

ψx (x, t)
∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣ dsdx.
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By exploiting Young and Poincaré’s inequalities, we get for any ε > 0
∫ 1

0

ψ
∫ τ2

τ1

µ2 (s)ψt (x, t− s) dsdx(3.8)

≤
cε2

2

∫ 1

0

ψ2dx+
1

2ε2

∫ 1

0

∫ τ2

τ1

µ2 (s)ψ2
t (x, t− s) dsdx.

Moreover, Young, Hölder’s inequalities and (1.3) imply that for any δ1 > 0
∫ 1

0

ψx (x, t)
∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣ dsdx(3.9)

≤δ1

∫ 1

0

ψ2
x (x, t) dx+

g0

4δ1

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx.

Inserting the estimates (3.8) and (3.9) into (3.7), then (3.5) is fulfilled. □

Now, let w be the solution of

(3.10) − wxx = ψx, w (0) = w (1) = 0,

then

w (x, t) = −
∫ x

0

ψ (y, t) dy + x

∫ 1

0

ψ (y, t) dy


.

We have the following inequalities.

Lemma 3.2. The solution of (3.10) satisfies

∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx

and
∫ 1

0

w2
t dx ≤

∫ 1

0

ψ2
t dx.

Proof. We multiply (3.10) by w, integrate by parts and use the Cauchy-Schwarz’s
inequality to obtain

∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx.

Next, we differentiate (3.10) with respect to t and by the same procedure, we obtain
∫ 1

0

w2
t dx ≤

∫ 1

0

ψ2
t dx. □

Let w be the solution of (3.10). We introduce the following functional

(3.11) I2 (t) :=
∫ 1

0

(ρ2ψtψ + ρ1φtw) dx+
µ1

2

∫ 1

0

ψ2dx.

Then, we have the following estimate.
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Lemma 3.3. Let (φ, ψ, z, ηt) be the solution of (2.1)–(2.3). Then we have for any

ε3 > 0,

dI2 (t)

dt
≤ (δ1 − b)

∫ 1

0

ψ2
xdx+ ρ1λ2

∫ 1

0

φ2
tdx+

cε3

2

∫ 1

0

ψ2dx

+


ρ2 +
ρ1

4λ2


∫ 1

0

ψ2
t dx+



γτ0

2κε3

+
δγ

2κε3



∫ 1

0

q2dx(3.12)

+
1

2ε3

∫ 1

0

∫ τ2

τ1

♣µ2 (s)♣ z2 (x, 1, s, t) dsdx+
g0

4δ1

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx.

Proof. By taking the derivative of (3.11), we conclude

dI2 (t)

dt
= − b

∫ 1

0

ψ2
xdx−K

∫ 1

0

ψ2dx+ ρ2

∫ 1

0

ψ2
t dx+K

∫ 1

0

w2
xdx

+ ρ1

∫ 1

0

φtwtdx+
∫ 1

0

ψx (x, t)
∫

∞

0

g (s) ηt
x (x, s) dsdx

−
∫ 1

0

ψ
∫ τ2

τ1

µ2 (s) z (x, 1, s, t) dsdx.

We apply Young and Poincaré’s inequalities, we find
∫ 1

0

ψx (x, t)
∫

∞

0

g (s) ηt
x (x, s) dsdx ≤ δ1

∫ 1

0

ψ2
x (x, t) +

g0

4δ1

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx,

and for any λ2 > 0 we have

ρ1

∫ 1

0

φtψtdx ≤ ρ1λ2

∫ 1

0

φ2
tdx+

ρ1

4λ2

∫ 1

0

ψ2
t dx. □

Now, we define the functional I3

I3 (t) :=ρ2

∫ 1

0

ψt (φx + ψ) dx+
ρ1b

K

∫ 1

0

ψxφtdx+
ρ1

K

∫ 1

0

φt

∫

∞

0

g (s) ηt
x (x, s) dsdx.

(3.13)

Lemma 3.4. Let (φ, ψ, z, ηt) be the solution of (2.1)–(2.3). Assume that

(3.14)
ρ1

K
=

ρ2

b+ g0

=
ρ2

b
.

Then, for any ε4 > 0, we have

dI3 (t)

dt
≤


φx



bψx +
∫

∞

0

g (s) ηt
x (x, s)

x=1

x=0

− (K − 2ε4)
∫ 1

0

(φx + ψ)2 dx

+



ρ2 +
µ2

1

4ε4



∫ 1

0

ψ2
t dx+ ε4

∫ 1

0

φ2
tdx+

1

2ε4

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx(3.15)

− g0C (ε4)
∫ 1

0

∫

∞

0

g′ (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx.

Proof. Differentiating I3 (t), we obtain

dI3 (t)

dt
=ρ2

∫ 1

0

ψtt (φx + ψ) dx+ ρ2

∫ 1

0

ψt (φx + ψ)
t
dx
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+
ρ1b

K

∫ 1

0

ψxφttdx+
ρ1

K

∫ 1

0

φt

∫

∞

0

g (s) ηt
x (x, s) dsdx

+
ρ1b

K

∫ 1

0

ψxtφtdx+
ρ1

K

∫ 1

0

φtt

∫

∞

0

g (s) ηt
tx (x, s) dsdx.

Then, by using (2.1), we find

dI3 (t)

dt
=ρ2

∫ 1

0

(φx + ψ) (bψxx (x, t) −K (φx + ψ) (x, t)

−µ1ψt (x, t) −
∫ τ2

τ1

µ2 (s)ψt (x, t− s) ds


dx

+
∫ 1

0

(φx + ψ)
∫

∞

0

g (s) ηt
xx (x, s) dsdx+ ρ2

∫ 1

0

ψ2
t dx

+ b
∫ 1

0

(φx + ψ)
x
ψxdx+



ρ1b

K
− ρ2



∫ 1

0

ψtxφtdx

+
ρ1

K

∫ 1

0

φt

∫

∞

0

g (s)


ψtx (t, x) − ηt
tx (x, s)



dsdx

+
ρ1

K

∫ 1

0

(φx + ψ)
x

∫

∞

0

g (s) ηt
x (x, s) dsdx.

By (3.14), we obtain

dI3 (t)

dt
= −K

∫ 1

0

(φx + ψ)2 dx− µ1

∫ 1

0

(φx + ψ)ψtdx+ ρ2

∫ 1

0

ψ2
t dx

−
∫ 1

0

(φx + ψ)
∫ τ2

τ1

µ2 (s)ψt (x, t− s) dsdx

+
ρ1

K

∫ 1

0

φt

∫

∞

0

g′ (s) ηt
x (x, s) dsdx(3.16)

+ [bψxφxdx]x=1

x=0
+


φx (x, t)
∫

∞

0

g (s) ηt
x (x, s) ds



.

For any ε4 > 0, Young’s inequality leads to

(3.17)
∣

∣

∣

∣

µ1

∫ 1

0

(φx + ψ)ψt (x, t)
∣

∣

∣

∣

≤ ε4

∫ 1

0

(φx + ψ)2 dx+
µ2

1

4ε4

∫ 1

0

ψ2
t dx

and
∣

∣

∣

∣

∫ 1

0

(φx + ψ)
∫ τ2

τ1

µ2 (s)ψt (x, t− s) dsdx
∣

∣

∣

∣

≤
cε4

2

∫ 1

0

(φx + ψ)2 dx+
1

2ε4

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx(3.18)

and
∣

∣

∣

∣

ρ1

K

∫ 1

0

φt

∫

∞

0

g′ (s) ηt
x (x, s) dsdx

∣

∣

∣

∣

(3.19)

≤
ρ2

1

4Kε4

∫ 1

0


∫

∞

0

g′ (s) ηt
x (x, s) ds

2

dx+ ε4

∫ 1

0

φ2
tdx
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≤ − g (0)C (ε4)
∫ 1

0

∫

∞

0

g′ (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx+ ε4

∫ 1

0

φ2
tdx.

Plugging (3.17), (3.18) and (3.19) into (3.16), then inequality (3.15) holds. □

Next, in order to handle the boundary terms appearing in (3.15) we use, as in [10],
the function

q (x) = 2 − 4x, x ∈ (0, 1) .

So, we have the following result.

Lemma 3.5. Let (φ, ψ, z, ηt) be the solution of (2.1). Then we have that for a positive

constant ε6



φx



bψx −
∫

∞

0

g (s)ψx (t− s) ds
x=1

x=0

(3.20)

≤ −
ε6

K

d

dt

∫ 1

0

ρ1q (x)φtφxdx+K2ε6

∫ 1

0

(φx + ψ)2 dx

−
ρ2

4ε6

d

dt

∫ 1

0

q (x)ψt



bψx −
∫

∞

0

g (s)ψx (t− s) ds


dx+ 3ε6

∫ 1

0

φ2
xdx

+



ε6 +
b

4ε6



4 +
3

2ε2
6



∫ 1

0

ψ2
xdx+

1

4ε6



2ρ2 (b+ g0) + 4µ2
1ε

2
6 + ρ2ε6



∫ 1

0

ψ2
t dx

−
ρ2g (0)C (ε6)

4ε6

∫ 1

0

∫

∞

0

g′ (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx+
2ρ1ε6

K

∫ 1

0

φ2
tdx

+
g0

4ε6



4 +
3

2ε2
6



∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx

+
1

2ε4

∫ 1

0

∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) dsdx.

Proof. By using Young and Poincaré inequalities, we obtain for any ε6 > 0


φx



bψx +
∫

∞

0

g (s)ψx (t− s) ds
x=1

x=0

(3.21)

=φx (1)


bψx (1) +
∫

∞

0

g (s)ψx (1, t− s) ds


− φx (0)


bψx (0) +
∫

∞

0

g (s)ψx (0, t− s) ds


≤
1

4ε6





bψx (1) +
∫

∞

0

g (s)ψx (1, t− s) ds
2

+


bψx (0) +
∫

∞

0

g (s)ψx (0, t− s) ds
2
]

+ ε6

[

φx (1)2 + φx (0)2
]

.

On the other hand, it is clear that

d

dt

∫ 1

0

ρ2q (x)ψt



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx
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=
∫ 1

0

ρ2q (x)ψtt



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx

+
∫ 1

0

ρ2q (x)ψt



bψtx +
∫

∞

0

g (s) ηt
tx (x, s) ds



dx.

Now, using (2.1)2, we find

d

dt

∫ 1

0

ρ2q (x)


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx(3.22)

=
∫ 1

0

q (x)


bψxx − k (φx + ψ) − µ1ψt

−
∫ τ2

τ1

µ2 (s) z (x, 1, t) ds+
∫

∞

0

g (s) ηt
xx (x, s) ds



×


bψx −
∫

∞

0

g (s) ηt
x (x, s) ds



dx

+
∫ 1

0

ρ2q (x)ψt



bψtx +
∫

∞

0

g (s) ηt
tx (x, s) ds



dx.

By the fact that
∫ 1

0

q (x)


bψxx +
∫

∞

0

g (s) ηt
xx (x, s) ds



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx(3.23)

= −
1

2

∫ 1

0

q′ (x)


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds

2

dx

+



q (x)

2



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds

2
]x=1

x=0

.

The last term in (3.22) can be treated as follows

∫ 1

0

ρ2q (x)ψt



bψtx +
∫

∞

0

g (s) ηt
tx (x, s) ds



dx

(3.24)

=ρ2b
∫ 1

0

q (x)ψtψtxdx+ ρ2

∫ 1

0

q (x)ψt

∫

∞

0

g (s) ηt
tx (x, s) dsdx

= −
ρ2b

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2

∫ 1

0

q (x)ψt

∫

∞

0

g (s) ηt
tx (x, s) dsdx

= −
ρ2b

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2

∫ 1

0

q (x)ψt

∫

∞

0

g (s)


ψt − ηt
s



x
dsdx

= −
ρ2b

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2g0

∫ 1

0

q (x)ψtψtxdx− ρ2

∫ 1

0

q (x)ψt

∫

∞

0

g (s) ηt
sxdsdx

= −
ρ2 (b+ g0)

2

∫ 1

0

q′ (x)ψ2
t dx+ ρ2

∫ 1

0

q (x)ψt

∫

∞

0

g′ (s) ηt
xdsdx.

Inserting (3.23) and (3.24) in (3.22), we arrive at


bψx (0, t) +
∫

∞

0

g (s) ηt
x (0, s) ds

2

+


bψx (1, t) +
∫

∞

0

g (s) ηt
x (1, s) ds

2

(3.25)
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= −
d

dt

∫ 1

0

ρ2qψt



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx+ 2ρ2 (b+ g0)
∫ 1

0

ψ2
t dx

−K
∫ 1

0

q (φx + ψ)


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx

+ ρ2

∫ 1

0

qψt

∫

∞

0

g′ (s) ηt
x (x, s) dsdx

− µ1

∫ 1

0

q (x)ψt



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx

+ 2


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds

2

dx

−
∫ 1

0

q (x)
∫ τ2

τ1

µ2 (s)ψt (x, t− s) ds


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx.

Now, we estimate terms in the RHS of (3.25) as follows.
First, using Minkowski and Young’s inequalities, we have

2


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds

2

dx(3.26)

≤4b2

∫ 1

0

ψ2
xdx+ 4g0

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx.

Second, by Young’s inequality and (3.26), we have for any λ > 0
∣

∣

∣

∣

K
∫ 1

0

q (x) (φx + ψ)


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx

∣

∣

∣

∣

≤2K
∣

∣

∣

∣

∫ 1

0

(φx + ψ)


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx
∣

∣

∣

∣

≤4K2λ
∫ 1

0

(φx + ψ)2 dx+
1

4λ

∫ 1

0



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds

2

dx

≤4K2λ
∫ 1

0

(φx + ψ)2 dx+
b2

2λ

∫ 1

0

ψ2
xdx+

g0

2λ

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx.

Similarly, we get
∣

∣

∣

∣

µ1

∫ 1

0

q (x)ψt



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx

∣

∣

∣

∣

≤4µ1λ
∫ 1

0

ψ2
t dx+

b2

2λ

∫ 1

0

ψ2
xdx+

g0

2λ

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx

and
∣

∣

∣

∣

−
∫ 1

0

q (x)
∫ τ2

τ1

µ2 (s)ψt (x, t− s) ds


bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx
∣

∣

∣

∣

≤b
∫ 1

0

q (x)ψx

∫ τ2

τ1

µ2 (s)ψt (x, t− s) dsdx

+
∫ 1

0



q (x)
∫ τ2

τ1

µ2 (s)ψt (x, t− s) ds
∫

∞

0

g (s) ηt
x (x, s) ds



dx
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≤4δ0λ
∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) ds+
b2

2λ

∫ 1

0

ψ2
xdx+

g0

2λ

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx.

For any ε2 > 0, we have
∣

∣

∣

∣

ρ2

∫ 1

0

qψt

∫

∞

0

g′ (s) ηt
x (x, s) dsdx

∣

∣

∣

∣

≤ρ2ε2

∫ 1

0

ψ2
t dx− ρ2g (0)C (ε2)

∫ 1

0

∫

∞

0

g′ (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx.

Inserting all the above estimates into (3.25), we obtain


bψx (0, t) +
∫

∞

0

g (s) ηt
x (0, s) ds

2

+


bψx (1, t) +
∫

∞

0

g (s) ηt
x (1, s) ds

2

(3.27)

≤ −
d

dt

∫ 1

0

ρ2qψt



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx

+


2ρ2 (b+ g0) + 4µ2
1λ+ ρ2ε2



∫ 1

0

ψ2
t dx

+ b2



4 +
3

2λ


∫ 1

0

ψ2
xdx+ 4K2λ

∫ 1

0

(φx + ψ)2 dx

− ρ2g (0)C (ε2)
∫ 1

0

∫

∞

0

g′ (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx

+ g0



4 +
3

2λ


∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx+ 4δ0λ
∫ τ2

τ1

µ2 (s) z2 (x, 1, s, t) ds.

On the other hand, we have

[

φ2
x (1) − φ2

x (0)
]

≤ −
d

dt

1

k

∫ 1

0

ρ1q (x)φtφxdx(3.28)

+ 3
∫ 1

0

φ2
xdx+

∫ 1

0

ψ2
xdx+

2ρ1

k

∫ 1

0

φ2
tdx.

Consequently, substituting (3.27) and (3.28) into (3.21), our desired estimate (3.20)
holds. □

Now, we define the functional

(3.29) I4 (t) :=
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ ♣µ2 (s)♣ z2 (x, 1, s, t) dsdρdx.

Then the following result holds.

Lemma 3.6. Let (φ, ψ, z, ηt) be the solution of (2.1)–(2.3). Then for C1 > 0 we have

dI4 (t)

dt
≤ − C1

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ ♣µ2 (s)♣ z2 (x, 1, s, t) dsdρdx(3.30)

− C1

∫ 1

0

∫ τ2

τ1

♣µ2 (s)♣ z2 (x, 1, s, t) dsdx+ µ1

∫ 1

0

ψ2
t dx,

where C1 is a positive constant.
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Proof. Differentiating (3.29) and using z (x, 0, s, t) = ψt, e
−s ≤ e−sρ, we get for all

ρ ∈ [0, 1]

dI4 (t)

dt
≤
∫ 1

0

∫ τ2

τ1

e−s ♣µ2 (s)♣ z2 (x, 1, s, t) dsdx+
∫ τ2

τ1

♣µ2 (s)♣ ds
∫ 1

0

ψ2
t dx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−s ♣µ2 (s)♣ z2 (x, 1, s, t) dsdρdx.

Since s → −e−s is an increasing function, we have −e−s ≤ −e−τ2 for all s ∈ [τ1, τ2] .
Finally, setting, C1 = −e−τ2 and recalling (1.2), we obtain (3.30). □

Proof of Theorem 3.1. We are now ready to define the Lyapunov functional L(t) as
follows

L (t) :=NE (t) +
1

4
I1 (t) +N2I2 (t) + I3 (t) +

ε2

K

∫ 1

0

ρ1qφtφxdx

+
1

4ε2

∫ 1

0

ρ2q (x)ψt



bψx +
∫

∞

0

g (s) ηt
x (x, s) ds



dx+N4I4 (t) ,

where N, N2, N4 are positive real numbers which will be chosen later.
Consequently, the estimates (3.2), (3.5), (3.12), (3.15), (3.20) and (3.30) together

with (1.3) and the following inequality
∫ 1

0

φ2
xdx ≤ 2

∫ 1

0

(φx + ψ)2 dx+ 2
∫ 1

0

ψ2
xdx,

lead to

d

dt
L (t) ≤

{

−MC −
ρ1

4
+N2



ρ2 +
ρ1

4λ2



+



ρ2 +
µ2

1

4ε1



(3.31)

+
1

4ε2



2ρ2 (b+ g0) + 4µ2
1ε

2
2 + ρ2ε2



+N4µ1 +
1

2τ

}
∫ 1

0

ψ2
t dx

+


1

8ε2

+
N2

2ε4

+
1

2ε4

− C1N4

}
∫ 1

0

∫ τ2

τ1

♣µ2 (s)♣ z2 (x, 1, s, t) dsdx

+


−
ρ1

4
+N2ρ1λ2 +

2ρ1ε2

K
+ ε1

}
∫ 1

0

φ2
tdx

+


−


3K

4
− 2ε



+K2ε2 + 6ε2 +
ε4c

2

}
∫ 1

0

(φx + ψ)2 dx− I3 (t)

+


1

4
(b+ δ1) +N2 (δ1 + µ2C

∗λ2 − b) + 7ε2

+
b2

4ε2



4 +
3

2ε2
2

}

∫ 1

0

ψ2
xdx+



cε2

8
−
cN2ε3

2

}
∫ 1

0

ψ2dx

+

{

g0

4δ1



1

4
+N2



+
g0

4ε2



4 +
2

2ε2
2


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− ζ



M

2
− g0C (ε1) −

ρ2g (0)C (ε2)

4ε2

}

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx

− C1

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ ♣µ2 (s)♣ z2 (x, 1, s, t) dsdρdx.

At this point, we have to choose our constants very carefully.
First, let us choose ε small enough such that

ε ≤
3K

8
.

Then, we take ε2 = ε1 and choose ε2 small enough such that

ε2 ≤ min

{

K/8

(K2 + 6)
,

ρ1/8

(2ρ1/K) + 1

}

.

Then, we choose λ2 = δ1 and choose ε2 small enough such that

λ2 ≤
b/2

1 + µ2C∗
.

Once all the above constants are fixed, we fix N2 large enough such that

N2

b

4
≥

1

4
(b+ δ1) + 7ε2 +

b

4ε2



4 +
3

2ε2
2



.

After that, we pick λ2 so small that

λ2 ≤
1

32N2

.

Finally, we choose M large enough so that, there exists a positive constant η1, such
that (3.31) becomes

d

dt
L (t) ≤ − η1

∫ 1

0



ψ2
t + ψ2

x + φ2
t + (φx + ψ)2 + ψ2



dx

− η1

∫ 1

0

∫

∞

0

g (s)
∣

∣

∣ηt
x (x, s)

∣

∣

∣

2

dsdx

+ η1

∫ 1

0

∫ τ2

τ1

♣µ2 (s)♣ z2 (x, 1, s, t) dsdx

− η1

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ ♣µ2 (s)♣ z2 (x, 1, s, t) dsdρdx,

which implies by (3.1), that there exists also η2 > 0, such that

(3.32)
d

dt
L (t) ≤ −η2E (t) , for all t ≥ 0.

In addition, we can choose M large enough so that

(3.33) β1E (t) ≤ L (t) ≤ β2E (t) , for all t ≥ 0.
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Combining (3.32) and (3.33), we conclude that there exists Λ > 0 such that

(3.34)
d

dt
L (t) ≤ −ΛL (t) , for all t ≥ 0.

A simple integration of (3.34) leads to

(3.35) L (t) ≤ L (0) e−Λt, for all t ≥ 0.

Again, (3.33) and (3.35) yeilds the desired result (3.3). This completes the proof of
Theorem 3.1. □
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LIGHTLIKE HYPERSURFACES IN SEMI-RIEMMANIAN

MANIFOLDS ADMITTING AFFINE CONFORMAL VECTOR

FIELDS

SAMUEL SSEKAJJA1

Abstract. Lightlike hypersurfaces with integrable screen distributions are very
important as far as lightlike geometry is concerned. They include, among others,
screen conformal and screen totally umbilic ones. In this paper, we show that any
lightlike hypersurface of a semi-Riemannian manifold admitting a certain closed
affine conformal vector field has an integrable screen distribution. Several examples
are furnished in support of the main results.

1. Introduction

Lightlike submanifolds are very important and their numerous applications, partic-
ularly to mathematical physics-like in general relativity and electromagnetism moti-
vated the study of lightlike geometry in semi-Riemannian manifolds. More precisely,
lightlike submanifolds have been shown to represent different black hole horizons (see
[3] and [4] for details). Among other motivations for investing in lightlike geometry
by many physicists is the idea that the universe we are living in can be viewed as
a 4-dimensional hypersurface embedded in (4 +m)-dimensional spacetime manifold,
where m is any arbitrary integer. There are significant differences between lightlike
geometry and Riemannian geometry as shown in [3] and [4], and many more refer-
ences therein. Some of the pioneering work on this topic is due to Duggal-Bejancu [3],
Duggal-Sahin [4] and Kupeli [15]. It is upon those books that many other researchers,
including but not limited to [1, 5, 7–10,12,13] have extended their theories.

Key words and phrases. Lightlike hypersurfaces, affine conformal vector fields, Lorentzian mani-
folds.
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Although a lot has been done on the geometry of lightlike submanifolds of semi-
Riemannian manifolds, we remark that very little, see [3, page 259], efforts has
been dedicated towards understanding what affine conformal vector fields, on semi-
Riemmanian manifolds, can offer as far as characterising lightlike hypersurfaces. The
present paper is directed towards achieving a characterisation of lightlike hypersurfaces
in such spaces. The paper is arranged as follows. In Section 2, we quote some basic
notions required in the rest of the paper. In Section 3, we prove some preliminary
results on affine conformal vector fields, and Section 4 is dedicated to the main results
of the study.

2. Preliminaries

An (n+ 2)-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth tensor field
g of type (0, 2) such that, for each point p ∈ M , the tensor gp : TpM × TpM −→ R

is a non-degenerate inner product of signature (−,+, . . . ,+), where TpM denotes
the tangent vector space of M at p and R is the real number space. A non-zero
vector field v ∈ TpM is said to be timelike (resp., non-spacelike, null and spacelike)
if it satisfies gp(v, v) < 0 (resp., ≤ 0, = 0 and > 0) [11]. Let (M, g) be a (n + 2)-

dimensional semi-Riemannian manifold and let M be a hypersurface of M . Let g
be the induced tensor field by g on M . Then, M is called a lightlike hypersurface of
M if g is of constant rank n [3]. Consider the vector bundle TM⊥ whose fibers are
defined by TxM

⊥ = ¶Yx ∈ TxM : gx(Xx, Yx) = 0 for all Xx ∈ TxM♢, for any x ∈ M .
Hence, a hypersurface M of M is lightlike if and only if TM⊥ is a distribution of
rank 1 on M . Let M be a lightlike hypersurface. We consider the complementary
distribution S(TM) to TM⊥ in TM , which is called a screen distribution. It is well-
known that S(TM) is non-degenerate (see [3]). Thus, we have the decomposition
TM = S(TM) ⊥ TM⊥.

As S(TM) is non-degenerate with respect to g, we have TM = S(TM) ⊥ S(TM)⊥,
where S(TM)⊥ is the complementary vector bundle to S(TM) in TM ♣M . Let (M, g)
be a lightlike hypersurface of (M, g). Then there exists a unique vector bundle tr(TM),
called the lightlike transversal bundle [3] of M with respect to S(TM), of rank 1 over
M such that for any non-zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M ,
there exists a unique section N of tr(TM) on U satisfying

g(ξ,N) = 1, g(N,N) = g(N,Z) = 0,(2.1)

for any section Z of S(TM). Consequently, we have the following decomposition of
TM

TM ♣M = S(TM) ⊥ ¶TM⊥ ⊕ tr(TM)♢ = TM ⊕ tr(TM).

Let ∇ and ∇∗ denote the induced connections on M and S(TM), respectively, and
P be the projection of TM onto S(TM), then the local Gauss-Weingarten equations
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of M and S(TM) are the following [3]

∇XY = ∇XY +B(X, Y )N, ∇XN = −ANX + τ(X)N,(2.2)

∇XPY = ∇∗
XPY + C(X,PY )ξ, ∇Xξ = −A∗

ξX − τ(X)ξ,(2.3)

for all X, Y ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)), where ∇ is the Levi-Civita
connection on M . In the above setting, B is the local second fundamental form of M
and C is the local second fundamental form on S(TM). AN and A∗

ξ are the shape
operators on TM and S(TM) respectively, while τ is a 1-form on TM . The above
shape operators are related to their local fundamental forms by

B(ξ,X) = 0, g(A∗
ξX, Y ) = B(X, Y ), g(ANX,PY ) = C(X,PY ),

for any X, Y ∈ Γ(TM). Moreover, g(A∗
ξX,N) = 0 and g(ANX,N) = 0 for all

X ∈ Γ(TM). From these relations, we notice that A∗
ξ and AN are both screen-valued

operators. Moreover, it is easy to show that

(∇Xg)(Y, Z) = B(X, Y )θ(Z) +B(X,Z)θ(Y ),(2.4)

for all X, Y, Z ∈ Γ(TM). Consequently, ∇ is generally not a metric connection with
respect to g. However, the induced connection ∇∗ on S(TM) is a metric connection.

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold (M, g) is
screen conformal [4, Definition 2.2.1, p. 51] if the shape operators AN and A∗

ξ of M and
S(TM), respectively, are related by AN = ψA∗

ξ , where ψ is a non-vanishing smooth
function on a neighbourhood U in M . In particular, if ψ is a non-zero constant, M is
called screen homothetic. When AN and A∗

ξ are instead linked by AN = ψ1A
∗
ξ + ψ2P ,

for some smooth functions ψ1 and ψ2, then M is called quasi screen conformal [12]. It
is easy to see that a quasi screen conformal lightlike hypersurface is screen conformal
when ψ2 ≡ 0. A semi-Riemannian manifold (M, g) of constant sectional curvature c
is called a semi-Riemannian space form (see [11, p. 80]) and denoted by M(c). The
curvature tensor field R of M(c) is given by

(2.5) R(X, Y )Z = c¶g(Y, Z)X − g(X,Z)Y ♢, for all X, Y, Z ∈ Γ(TM).

3. Some Basic Results

A smooth vector field V on a semi-Riemannian manifold (M, g) is said to be an
affine conformal vector (ACV) field if there exists a smooth function ρ : M → R,
called the potential, on M that satisfies

(£V ∇)(X, Y ) = (Xρ)Y + (Y ρ)X − g(X, Y ) grad ρ,(3.1)

where £V is the Lie derivative with respect V and the affinity tensor (£V ∇) of V
defined by

(£V ∇)(X, Y ) = £V ∇XY − ∇£LXY − ∇X£ZY,

for all X, Y ∈ Γ(TM). In particular, V is an affine vector field if ρ is constant, that
is if £V ∇ = 0. The following result is well-known for an ACV field V .
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Theorem 3.1 ([2, 3]). A vector field V on M is an ACV if and only if

£V g = 2ρg(X, Y ) +K, ∇K = 0,(3.2)

where K is a covariant constant (∇K = 0) symmetric and therefore, Killing tensor

(abbreviated K-tensor) of second order.

A sub case is the conformal killing vector (CKV) when K = 0 and ρ;a = Xaρ ̸= 0,
a = 0, 1, 2, . . . , n + 1. This also includes homothetic vector fields (HV) and killing

vector fields (KV) when ρ;a = 0 and ρ = 0, respectively. See [2, p. 276] or [3, p. 264],
and many more references cited therein, for more details.

Example 3.1 (K. L. Duggal [2]). Let M be a four-dimensional Einstein static fluid
spacetime with metric

ds2 = −dt2 + (1 − r2)−1dr2 + r2(dθ2 + sin2 θd, ϕ2)

and the fluid 4-velocity vector ua = δa
a, a = 0, 1, 2, 3. This spacetime admits a CKV

V a
1 = (1 − r2)1/2 cos tδ1

0 − r(1 − r2)1/2 sin tδa
0

and a proper affine vector V a
2 = tδa

0 . As the spacetime metric is reducible, the
combination V a = V a

1 + V a
2 is a proper ACV [2, p. 279] such that

V =(t+ (1 − r2)1/2 cos t)δa
0 − r(1 − r2)1/2 sin tδa

1 ,

ρ = − (1 − r2)1/2 sin t, Kab = −2t;at;b.

Utilising Koszul’s formula [11, Theorem 11, p. 61], we have

2g(∇XV, Y ) = (£V g)(X, Y ) + dη(X, Y ),(3.3)

for all X, Y ∈ Γ(TM), where η is the 1-form dual to V , that is, η(X) = g(V,X),
X ∈ Γ(TM). Define a skew symmetric tensor field φ of type (1, 1) on M by

dη(X, Y ) = 2g(φX, Y ),(3.4)

for all X, Y ∈ Γ(TM). The skew symmetric tensor field φ in the above equation is
called the associate tensor field [6] of the affine conformal vector field V . We say that
V is a closed affine conformal vector field if η is closed, that is dη = 0. Also, define a
symmetric tensor field AK of type (1, 1) on M by

K(X, Y ) = g(AKX, Y ),(3.5)

for all X, Y ∈ Γ(TM), where K is the symmetric (0, 2) tensor of Theorem 3.1. Then,
using (3.2)–(3.5), and the fact that g is nondegenerate, we get the following result.

Lemma 3.1. A vector field V on a semi-Riemannian manifold (M, g) is an ACV

field if and only if

∇XV = ρX +
1

2
AKX + φX and (∇XAK) = 0,(3.6)

for all X ∈ Γ(TM), where AK and φ are tensor fields of type (1, 1) on M , in which

AK is symmetric and φ is skew-symmetric.
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Proof. From (3.2)–(3.5), we have

g(∇XV, Y ) = ρg(X, Y ) +
1

2
g(AKX, Y ) + g(φX, Y ),

from which the first relation of (3.6) follows by utilising the fact that g is non-
degenerate. On the other hand, using the second condition of (3.2), that is ∇K = 0,
together with (3.5), we get

Xg(AKY, Z) = g(AK∇XY, Z) + g(AKY,∇XZ),(3.7)

for any X, Y, Z ∈ Γ(TM). As ∇ is Levi-Civita, it then follows from (3.7) that

g(∇XAKY, Z) + g(AKY,∇XZ) = g(AK∇XY, Z) + g(AKY,∇XZ),

from which one gets

g((∇XAK)Y, Z) = 0, for all X, Y, Z ∈ Γ(TM).(3.8)

Then (3.8) shows that (∇AK) = 0, as g is non-degenerate, which proves the second
relation in (3.6), and completing the proof. □

Lemma 3.2. Let V be an ACV field on a semi-Riemannian manifold (M, g), then

the covariant derivative of φ satisfies

(∇Xφ)(Y ) = R(X,V )Y + (Y ρ)X − g(X, Y ) grad ρ,(3.9)

where (∇Xφ)(Y ) = ∇XφY − φ∇XY for any X, Y ∈ Γ(TM).

Proof. Note, from (3.4), that the smooth 2-form g(φX, Y ) is closed. Thus, a direct
calculation gives

g((∇Xφ)(Y ), Z) + g((∇Y φ)(Z), X) + g((∇Zφ)(X), Y ) = 0,(3.10)

for all X, Y, Z ∈ Γ(TM). Then, using Lemma 3.1, we derive

R(X, Y )V =(Xρ)Y − (Y ρ)X +
1

2
(∇XAK)Y −

1

2
(∇YAK)X + (∇Xφ)Y − (∇Y φ)X

=(Xρ)Y − (Y ρ)X + (∇Xφ)Y − (∇Y φ)X,(3.11)

in which we have used the fact that ∇AK = 0 (see second relation of (3.6)). Substi-
tuting (3.11) in (3.10) and noting that ∇φ is skew-symmetric, we get

g(R(X, Y )V − (Xρ)Y + (Y ρ)X,Z) + g((∇Zφ)X, Y ) = 0,

which reduces to

g(R(Z, V )X + (Xρ)Z − g(X,Z)gradρ− (∇Zφ)X, Y ) = 0,(3.12)

for all X, Y, Z ∈ Γ(TM). Finally, our result follows from (3.12) using the non-
degeneracy of g, which completes the proof. □
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Lemma 3.3. Let V be an ACV on a semi-Riemannian manifold (M, g). Then Hessian

of the function α := g(V, V ) is given by

Hessα(X, Y ) = − 2g(R(X,V )V, Y ) − 2(V ρ)g(X, Y )

+ 2g(∇XV,∇Y V ) + 2(Xρ)η(Y ) + 2(Y ρ)η(X),(3.13)

for all X, Y ∈ Γ(TM).

Proof. By virtue of (3.6), we derive

g(∇X∇Y V − ∇∇XY V, V ) = g((Xρ)Y +
1

2
(∇XAK)Y + (∇Xφ)Y, V )

= g((Xρ)Y + (∇Xφ)Y, V ),(3.14)

for any X, Y ∈ Γ(TM), in which we have used the fact ∇AK = 0. On the other hand,

g(∇X∇Y V, V ) =
1

2
X(Y α) − g(∇XV,∇Y V ),(3.15)

g(∇∇XY V, V ) =
1

2
(∇XY )α.(3.16)

Replacing (3.15) and (3.16) in (3.14), leads to

Hessα(X, Y ) = 2g(∇XV,∇Y V ) + 2(Xρ)η(Y ) + 2g(∇Xφ)Y, V ).(3.17)

Hence, the result follows from (3.17) and Lemma 3.2. □

4. Main Results

Consider a complementary vector bundle E of TM⊥ in S(TM)⊥ and take V ∈
Γ(E♣U). Then g(V, ξ) ̸= 0 on U otherwise S(TM)⊥ will be degenerate at a point of U.
Define on U, a vector field

N =
1

g(V, ξ)

{

V −
g(V, V )

2g(V, ξ)
ξ

}

,(4.1)

where V ∈ Γ(E♣U), such that g(V, ξ) ̸= 0. It is easy to see that N , given by (4.1),
satisfies (2.1). See more details in [4, p. 45] on the construction of N .

The vector field V , appearing in (4.1), is fundamental to the study of lightlike
hypersyrfaces, and submanifolds in general. Its choice on M determines, to some
extent, the geometry of the underlying lightlike hypersurface. For example, it has
been proved in [4, Theorem 2.3.5, p. 63] that if E admits a covariant constant timelike

vector field V , then with respect to a section ξ ∈ TM⊥, (M, g, S(TM)) is screen
conformal. Thus, M can admit an integrable unique screen distribution. A concrete
example in this category include the lightlike Monge hypersurface (see Example 6 in
[4, p. 62]). Thus, we ask the following general question.

Problem 1. Classify lightlike hypersurfaces (M, g, S(TM)) of a semi-riemannian man-
ifold (M, g) relative to the geometry of the vector field V ∈ Γ(E♣U).
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We partially respond to the above problem by considering a lightlike hypersurface
(M, g, S(TM)) of a semi-Riemannian manifold (M, g), admitting an affine conformal

vector field (ACV), V ∈ Γ(E♣U). To that end, let us set

α := g(V, V ) and β := g(V, ξ).(4.2)

Then, using (4.2), we see that (4.1) give V as

V = βN +
α

2β
ξ.(4.3)

Then, we have the following result.

Theorem 4.1. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian

manifold (M, g), admitting a closed ACV field, V ∈ Γ(E♣U) given by (4.3). Then, M
admits an integrable screen distribution and, therefore, locally isometric to product

manifold ξc ×M∗, where ξc is a lightlike curve tangent to TM⊥ and M∗ a leaf of its

screen distribution. Moreover, M is quasi screen conformal lightlike hypersurface if

AK ◦ P = 0 or AK = 0.

Proof. First note that when V is a closed ACV field, then φ = 0 which follows from
(3.4). It then follows from Lemma 3.1 that

∇XV = ρX +
1

2
AKX and (∇XAK) = 0.(4.4)

Using (4.3) and (4.4), together with the Weingarten formulae (4.16) and (2.3), we get

− βANX −
α

2β
A∗

ξX +

{

X



α

2β



−
α

2β
τ(X)

}

ξ + ¶X(β) + βτ(X)♢N

=ρX +
1

2
AKX,(4.5)

for any X ∈ Γ(TM). Taking the inner product of (4.5) with Y ∈ Γ(S(TM)), one gets

βC(X, Y ) +
α

2β
B(X, Y ) = −ρg(X, Y ) −

1

2
K(X, Y ),(4.6)

for any X ∈ Γ(TM) and Y ∈ Γ(S(TM)). As B and K are symmetric, it follows from
(4.6) that C is symmetric on S(TM) too. Hence, by a direct calculation, using (2.3),
we get

θ([X, Y ]) = C(X, Y ) − C(Y,X) = 0,

for all X, Y ∈ Γ(S(TM)), from which we conclude that S(TM) is an integrable
distribution over M . Then, the product assertions follows from [5, Remark 5, p.
215]. Finally, when AKY = 0 for any Y ∈ Γ(S(TM)), then K(X, Y ) = 0 for any
X ∈ Γ(TM). This shows that βC(X, Y ) + α

2β
B(X, Y ) = −ρg(X, Y ). The case

AK = 0 follows in the similar manner. Hence, M is locally quasi screen conformal,
which completes the proof. □
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Example 4.1 (Lightlike hypersurface of generalised Robertson-Walker space). Consider
(F, gF ) to be an (n+ 1)-dimensional, connected, Riemmanian manifold, (I,−dt2) an
open interval of R with its usual metric reversed, and f = eλ (> 0) a smooth function
on I. A Generalized Robertson-Walker (GRW) spacetime with base (I,−dt2), and
fibre (F, gF ) and warping function f is the product manifold M(k, f) = I ×f F
endowed with the Lorentz metric

g = −π∗
Idt

2 + (f ◦ πI)2π∗
FgF ≡ −dt2 + f 2(t)gF ,(4.7)

where πI and πF are the natural projections of I × F onto I and F , respectively, and
k the constant sectional curvature of F . The the GRW metric (4.7) can be rewritten
as

g = f 2(t)¶−f−2(t)dt2 + gF ♢ = f 2(s)¶−ds2 + gF ♢,(4.8)

where the variable t is changed by s, define by ds = dt/f(t). Thus, the warped metric
g is conformal to the product metric g̃ = −ds2 + FF . One of the consequences of this
simple fact is: the vector field V = f∂t is parallel for g̃. That is ∇̃V = 0, where ∇̃
is the Levi-Civita connection for g. So, this vector filed is conformal for any metric
conformal to g̃. Thus, for g, we have

£V g = 2ρg,(4.9)

where ρ = f ′ ◦ πI ≡ f ′. From [11, Corollary 8, p. 344], we get

∇XV = f ′X, for all X ∈ Γ(TM).(4.10)

It then follows from (4.9), (4.10), (3.4) and Lemma 3.1 that V = f∂t is CKV and
the 1-form η dual to V is closed, that is V is a closed CKV vector field. Next,
consider a lightlike hypersurface (M, g) of (M, g). Along M , consider the timelike
section V = f∂t ∈ Γ(TM) such that g(V, ξ) = 1, where ξ ∈ Γ(TM⊥). This means
that V is not tangent to M . Therefore, the vector bundle H spanned by V and ξ is
non-degenerate on M . The complementary orthogonal vector bundle S(TM) to H
in TM is a non-degenerate distribution on M and is complementary to TM⊥. Thus,
S(TM) is a screen distribution on M . The unique lightlike transversal vector bundle
tr(TM) is spanned by N = V + 1

2
f 2ξ. By direct calculation, using (4.10), we have

ANX −
1

2
f 2A∗

ξX = −f ′PX, τ(X) = 0, Xf = −(ln f)′θ(X),(4.11)

for all X ∈ Γ(TM). Then from the first relation in (4.11) we see that M is a quasi
screen conformal lightlike hypersurface.

When M has constant curvature c, we have the following.

Theorem 4.2. Let (M, g, S(TM)) be a lightlike hypersurface of an (n+2)-dimensional

semi-Riemannian manifold (M(c), g) of constant curvature c, admitting a closed ACV
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field V ∈ Γ(E♣U), given by (4.3). Then, M is flat if and only if V is an affine vector

field. Moreover, the function α := g(V, V ) satisfies the differential equations

αV (V α) − (V α)2 + 2cα3 − αV K(V, V ) + (V α)K(V, V ) = 0.(4.12)

Proof. From (3.4), the closure of η implies that φ = 0. Therefore, Lemma 3.2 leads to

R(X,V )Y + (Y ρ)X − g(X, Y )gradρ = 0,(4.13)

for all X, Y ∈ Γ(TM). As M has constant curvature c, (4.13) and (2.5) leads to

c¶g(V, Y )g(X,Z) − g(X, Y )g(V, Z)♢ + (Y ρ)g(X,Z) − (Zρ)g(X, Y ) = 0,

for any X, Y, Z ∈ Γ(TM). From the above relation, one gets

¶Y ρ+ cg(V, Y )♢X = ¶Xρ+ cg(V,X)♢Y.(4.14)

Then it follows from (4.14) that

Xρ+ cg(V,X) = 0, for all X ∈ Γ(TM),(4.15)

which proves the first assertion in the theorem. Letting X = V in (4.15) and using

the obvious fact that ρ = V α−K(V,V )
2α

(comes from the first relation in (3.6) of Lemma
3.1), we get

V



V α−K(V, V )

α



+ 2cα = 0,

from which (4.12) follows by differentiation, which end the proof. □

Example 4.2. For M(c) = M(k, f), the GRW of Example 4.1, we have ρ = f ′, V = f∂t,
α = g(V, V ) = −f 2 and AK = 0. Then, from these quantities, we have

V α = −2f 2f ′ and V (V α) = −2f 2¶2(f ′)2 + ff ′′♢.(4.16)

Replacing (4.16) in (4.12), we get

2f ′′ − 2cf = 0.(4.17)

Multiplying (4.17) by f ′ leads to

d

dt
((f ′)2 − cf 2) = 0.(4.18)

Integrating (4.2) gives

(f ′)2 + k = cf 2,(4.19)

where k is a some constant. It then follows from (4.19) that

c =
(f ′)2 + k

f 2
.(4.20)

Indeed, relation (4.20) gives the constant sectional curvature of a GRW manifold as
seen in [11, Corollary 9, p. 345]. The parameter k represents the constant sectional
curvature of F .
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Corollary 4.1. Let (M, g, S(TM)) be a lightlike hypersurface of an (n+2) dimensional

semi-Riemannian manifold (M(c), g) of constant curvature c, admitting a closed affine

vector field V ∈ Γ(E♣U), given by (4.3). Then M is a flat.

When the smooth function α = g(V, V ) has a critical point on M , we prove the
following result, analogous to [14, Theorem 3.1, p. 98] for projective vector fields.

Theorem 4.3. Let (M, g, S(TM)) be a lightlike hypersurface of an (n+2)-dimensional

Lorentzian manifold, (M, g), admitting a timelike ACV field Vp ∈ Γ(E♣U), given by

(4.3). Assume that α := g(V, V ) attains a local maximum at p ∈ M . Then

g(R(X,Vp)Vp, X) + (Vpρ)g(X,X) ≥ 0,(4.21)

for all X ∈ TpM orthogonal to Vp. Hence,

Ric(Vp, Vp) + (n+ 1)Vpρ ≥ 0,(4.22)

where Ric is the Ricci tensor of M . Furthermore, the sectional curvature, κ(π), of

any non-degenerate plane π containing Vp satisfies

κ(π) +
Vpρ

α
≤ 0.(4.23)

Moreover, if the equality holds for all such planes, then V is an affine vector field,

that is ρ is constant. The underlying lightlike hypersurface M has an integrable screen

distribution S(TM), and therefore locally isometric to product manifold ξc×M∗, where

ξc is a lightlike curve tangent to TM⊥ and M∗ a leaf of its screen distribution. In

case ANξ = 0, then M is locally screen conformal.

Proof. For the function α = g(V, V ) having a critical point means that Y α = 0, for
any Y ∈ TpM . This means that g(∇Y V, Vp) = 0. Since Vp is timelike, it then follows
that

g(∇Y V,∇Y V ) ≥ 0, for all Y ∈ TpM.(4.24)

On the other hand, (Hessα)p must be negative semi-definite if p is assumed to be a
local maximum. Therefore, from (3.3) and (4.24), we get

g(R(X,Vp)Vp, X) + (Vpρ)g(X,X) ≥ g(∇XV,∇XV ) ≥ 0,(4.25)

for all X ∈ TpM , orthogonal to Vp at p ∈ M . Then (4.21) and (4.22) follows directly
from (4.25). Furthermore, as V is timelike, we divide (4.25) by αg(X,X) to get (4.23).
If equality holds for all such planes, it easy to see, from (4.24), that

∇XV = 0,(4.26)

for all X orthogonal to Vp. Thus, from (3.6) of Lemma 3.1 and (4.26), we get

2ρX + AKX + 2φX = 0.(4.27)

Applying the second condition of Lemma 3.1 to (4.27), we get

(∇Y φ)(X) + (Y ρ)X = 0,(4.28)
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for all Y ∈ Γ(TM). The inner product of (4.28) with X and noting that (∇Y φ) is
skew-symmetric, leads to Y ρ = 0. Hence, V is an affine vector field. On the other
hand, we know that V is orthorgonal to any X ∈ Γ(S(TM)). Hence, using (4.26),
(4.3), (4.16) and (2.3), we derive

βANX +
α

2β
A∗

ξX −

{

X



α

2β



−
α

2β
τ(X)

}

ξ − ¶X(β) + βτ(X)♢N = 0,

for all X ∈ Γ(S(TM)). It then follows that

βANX +
α

2β
A∗

ξX = 0,(4.29)

and X(β) + βτ(X) = 0, and thus AN is symmetric on S(TM). Thus, S(TM) is
integrable and therefore a product manifold by Remark 5 of [5, p. 215]. Finally if
ANξ = 0, we see, from (4.29) that M is locally screen conformal, which completes the
proof. □

The following is a direct consequence of Theorem 4.3.

Corollary 4.2. Under the assumptions of Theorem 4.3, there exist no any Einstein

manifold M
n+2

, n ≥ 1, that is Ric = γg, such that α := g(V, V ) attains a maximum,

γ > 0 and V ρ ≤ 0.
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ON THE SIMPLICIAL COMPLEXES ASSOCIATED TO THE

CYCLOTOMIC POLYNOMIAL

ALEKSANDRA KOSTIĆ1

Abstract. Musiker and Reiner in [9] studied coefficients of cyclotomic polynomial
in terms of topology of associated simplicial complexes. They determined homotopy
type of associated complexes for all cyclotomic polynomials, except for cyclotomic
polynomials whose degree is a product of three prime numbers. Using discrete Morse
theory for simplicial complexes we partially answer a question posed by the two
authors regarding homotopy type of the associated complexes when degree of the
cyclotomic polynomial is a product of three prime numbers.

1. Introduction

Cyclotomic polynomials are an important type of polynomials in algebraic number
theory, Galois theory and geometry. If n is a positive integer, then the nth cyclotomic
polynomial is defined as the unique monic, irreducible polynomial having all nth

primitive roots of unity as its zeros. It has degree given by Euler phi function ϕ(n),
with formula

Φn(x) =
∏

j∈(Z/nZ)×

(x − ξj),

where ξ is the nth root of unity in C. Additionally, cyclotomic polynomial Φn(x) has
integer coefficients which are well-studied. Musiker and Reiner in [9] interpreted these
coefficients topologically, as the torsion in the homology of a certain simplicial complex
associated with the degree of the cyclotomic polynomial. The idea for these simplicial
complexes originally appeared in [3] and reappeared in [1,7]. In what follows, we give
a review of associated simplicial complexes. It is sufficient to interpret the coefficients

Key words and phrases. Cyclotomic polynomial, simplicial complexes, discrete Morse theory,
homotopy type.

2010 Mathematics Subject Classification. Primary: 55U10. Secondary: 55P10, 55P15.
DOI 10.46793/KgJMat2302.309K
Received: July 16, 2020.
Accepted: August 25, 2020.

309



310 A. KOSTIC

of the cyclotomic polynomial for squarefree n. Therefore, we fix such a squarefree
n = p1 · · · pd. Let

Kp1,...,pd
:= Kp1

∗ · · · ∗ Kpd

be the simplicial join of Kp1
, . . . , Kpd

, where Kpi
is a 0-dimensional abstract simplicial

complex with pi vertices which are labeled by residues ¶0 (mod pi), 1 (mod pi), . . . ,
(pi − 1) (mod pi)♢. The facets of Kp1,...,pd

are labeled by a sequence of residues
(j1 (mod p1), . . . , jd (mod pd)) and by the Chinese Reminder Theorem, they can be de-
noted by residue j (mod n) (denote this facet by Fj (mod n)). Let A ⊆ ¶0, 1, . . . , ϕ(n)♢.
We denote by KA the subcomplex of Kp1,...,pd

which is generated by the facets
¶Fj (mod n)♢, where

j ∈ A ∪ ¶ϕ(n) + 1, ϕ(n) + 2, . . . , n − 2, n − 1♢.

It turns out that subcomplexes K∅ and K{j}, where j ∈ ¶0, . . . , ϕ(n)♢ have a very nice
feature, which Musiker and Reiner proved in the next two theorems. Let [zj (mod n)] :=
∂[Fj (mod n)] denote the (d − 2)-cycle which is its image under the simplical boundary
map ∂.

Theorem 1.1. ([9, Theorem 7.1.]). Let n = p1 · · · pd be squarefree.

(i) One has a homology isomorphism

H̃∗(K∅) ∼= H̃∗(S
d−2),

with H̃d−2(K∅) ∼= Z generated by the cycle [zϕ(n) (mod n)].

(ii) If Φn(x) =
∑ϕ(n)

j=0 cjx
j, then for j = 0, 1, . . . , ϕ(n), one has

[zj (mod n)] = cj[zϕ(n) (mod n)] in H̃d−2(K∅) ∼= Z

and a homology isomorphism

H̃∗(K{j}) ∼= H̃∗(B
d−1 ∪fj

S
d−2),

where deg(fj) = cj.

Theorem 1.2. ([9, Theorem 7.5.]). For d ≥ 4 and every A ⊆ ¶0, 1, . . . , ϕ(n)♢, the

complex KA is simply-connected. Consequently, for d ̸= 3, one has the following.

(i) The complex K∅ is homotopy equivalent to S
d−2 and contains [zϕ(n) (mod n)] as

a fundamental (d − 2)-cycle.

(ii) For j = 0, 1, . . . , ϕ(n), the cyclotomic polynomial coefficient cj gives the de-

gree of the attaching map from the oriented boundary [zj (mod n)] of the facet

Fj (mod n) into the homotopy (d − 2)-sphere K∅, with respect to the choice of

[zϕ(n) (mod n)] as the fundamental cycle.

(iii) In particular, the complex K{j} is homotopy equivalent to S
d−2 ∪fj

B
d−1, where

deg(fj) = cj.

For d ≥ 4 the fundamental group of KA is determined by its 2-skeleton, which is
the same as 2-skeleton of Kp1,...,pd

since the subcomplex K∅, and consequently every
subcomplex KA, contains the full (d − 2)-skeleton of Kp1,...,pd

[9, Proposition 5.5.].
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This skeleton is shellable [9, Proposition 5.1.], hence homotopy equivalent to a wedge
of (d − 2)-spheres.

The homotopy types of K∅ and K{j} remain as opened question when d = 3. Namely,
in Question 7.6, Musiker and Rainer ask the following.

1) Is K∅ homotopy equivalent to the circle S
1?

2) Is K{j} homotopy equivalent to B
2∪fj

S
1, where deg(fj) = cj, j = 0, 1, . . . , ϕ(n)?

In [8], authors show, giving a counter-example, that Theorem 1.2 does not follow
generally when d = 3. For n = 3 · 5 · 7, K∅ is not homotopy equivalent to the circle S

1

and K{j} is not homotopy equivalent to B
2 ∪fj

S
1 for j = 7.

In this paper, by using discrete Morse theory, we prove that for n = 3 · 5 · p, where
p ≥ 7 is an arbitrary prime number, Theorem 1.2 holds for certain classes of prime p
modulo 15, while for the others we show it does not hold. This result is given in the
following two theorems.

Theorem 1.3. Let p ≡ k (mod 15), where k ∈ ¶1, 2, 13, 14♢, and n = 3 · 5 · p.

(1) The complex K∅ is homotopy equivalent to S
1.

(2) If Φn(x) =
∑ϕ(n)

j=0 cjx
j, then for j ∈ ¶0, 1, . . . , ϕ(n)♢, the complex K{j} is homo-

topy equivalent to S ∪fj
B

2, where deg(fj) = cj.

Theorem 1.4. Let p ≡ k (mod 15), where k ∈ ¶4, 7, 8, 11♢, and n = 3 · 5 · p. The

complex K∅ is not homotopy equivalent to S
1.

The paper is organized as follows. In Section 2, we briefly introduce notation of
simplicial complexes, define an acyclic discrete vector field and its critical elements.
In Section 3 we study the structure of the subcomplex K∅. Additionally, we construct
an appropriate acyclic discrete vector field on K∅. In Section 4, we prove Theorem
1.3 by using results from Section 3. Finally, in Section 5 we prove Theorem 1.4.

2. Basic Concepts

2.1. Simplicial complex. Here, we present the basic notation and terminology con-
cerning simplicial complexes which we will use intensively in this paper. For more
details see [10].

An abstract simplicial complex K is a collection of finite non-empty sets such that,
if σ ∈ K and ∅ ̸= τ ⊆ σ, then τ ∈ K. If σ ∈ K, and σ has n + 1 elements, we refer
to σ as an n-simplex. If we want to emphasize that σ is n-dimensional simplex, i.e.,
n-simplex, we use notation σ(n).

A non-empty subset τ of σ is called a face of σ. Those simplices that are not faces
of any other simplex in K are called facets.

Definition 2.1. Let K be any simplicial complex and let σ be any face of K. The
star St(σ) of σ is the subcomplex of K consisting of all faces τ containing σ and of
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all faces of τ , i.e.,

St(σ) = ¶s ∈ K ♣ (∃τ ∈ K) (σ ⊆ τ and s ⊆ τ)♢.

Definition 2.2. The link of σ, denoted by Lk(σ), is the subcomplex of K consisting
of all faces in St(σ) that do not intersect σ, i.e.,

Lk(σ) = ¶τ ∈ K ♣ τ ∈ St(σ) and σ ∩ τ = ∅♢.

To simplify notation, if σ = ¶v♢, where v is a vertex, we write St(v) for St(¶v♢)
and Lk(v) for Lk(¶v♢). From the previous, it is clear that St(v) = v ∗ Lk(v). In order
to simplify notation we denote the union

⋃k
i=1 St(vi) by St(v1, . . . , vk).

2.2. Discrete Morse theory. This subsection aims to give a brief introduction and
some of the main results from Forman’s discrete Morse theory. Discrete Morse theory
(shorter DMT) is based on pairing faces of the complex, which actually represent
forming sequences of collapses on the complex. We will use this theory in order
to prove homotopical equivalence between certain simplicial complexes. For a more
thorough background concerning DMT, we refer the reader to [4–6].

Definition 2.3. A function F : K → R is discrete Morse function if, for every
α(p) ∈ K,

(1) f(β(p+1)) ≤ f(α(p)) for at most one β(p+1) ⊃ α(p), and
(2) f(γ(p−1)) ≥ f(α(p)) for at most one γ(p−1) ⊂ α(p).

Definition 2.4. Simplex α(p) is critical simplex if f(β(p+1)) > f(α(p)) for all β(p+1) ⊃
α(p) and f(γ(p−1)) < f(α(p)) for all γ(p−1) ⊂ α(p).

Forman proved that the topology of a simplicial complex is related to its critical
simplex in a very strong way. This connection is given in the next theorem.

Theorem 2.1 ([5]). Suppose K is a simplicial complex with a discrete Morse function.

Then, K is homotopy equivalent to a CW complex with exactly one cell of dimension

p for each critical simplex of dimension p.

The number of critical simplices is not a topological invariant as it depends on the
discrete Morse function. According to the previous theorem, the goal is to find Morse
function with as small critical simplicies as possible. For this purpose, we introduce
discrete vector field, which is (under some conditions) an equivalent concept.

Definition 2.5. Discrete vector field V on a finite simplicial complex K is the set of
pairs ¶α(p), β(p+1)♢, where α(p) ⊂ β(p+1), and each simplex is in at most one pair. We
say that ¶α(p), β(p+1)♢ is a matching in V . Simplex γ in K is critical or unmatched
with respect to V if γ is not contained in any pair in V .

For a simplicial complex K and a discrete vector field V on K, let Ck(K, V ) denote
the set of all critical k-simplices in the simplicial complex K with respect to V and
let

C(K, V ) =
dim K⋃

k=0

Ck(K, V ).
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Definition 2.6. Given a discrete vector field V on a finite simplicial complex K, a
V -path is a sequence of simplicies

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , . . . , α

(p)
r+1, β

(p+1)
r+1 ,

such that, for each i ∈ ¶0, . . . , r♢, pair ¶αi, βi♢ ∈ V and βi ⊃ αi+1 ̸= αi. This path is
non-trivially closed if r > 0 and α0 = αr+1.

If a discrete vector field V does not contain a non-trivial closed V -path we say that
V is acyclic.

Theorem 2.2 ([5]). A discrete vector field V on a finite simplicial complex K is a

discrete vector field of some Morse function if and only if V is acyclic.

Namely, for a discrete Morse function f , we can easily define a discrete vector
field in the following way: ¶α(p), β(p+1)♢ ∈ V whenever f(β(p+1)) ≤ f(α(p)). Previous
theorem give a condition when we can do the converse process.

On the other hand, matching ¶α(p), β(p+1)♢ in a discrete vector field V on a finite
simplicial complex K can be represent by an arrow from a simplex α(p) to a simplex
β(p+1) of K. According to this, a modified Hasse (directed) diagram of the complex K
corresponds to V . Hasse diagram is modified in the following way: arrows are reversed
each time when for β(p+1) and its face α(p) one has ¶α(p), β(p+1)♢ ∈ V . We denote this
diagram by D(K, V ). Directed path from α to β in D(K, V ) we denote by α → β. It
turns out that if V is an acyclic discrete vector field then D(K, V ) is acyclic directed
graph, that is, α → β and β → α implies α = β. The symbol α ̸→ β we use to denote
that a directed path from α to β does not exist in D(K, V ). Generally, for families
K1 and K2, we write K1 → K2 if there are α ∈ K1 and β ∈ K2 such that α → β.
The symbol K1 ̸→ K2 is used to denote the non-existence of such a directed path.

We will use the next theorem in further work in order to prove the existence of a
homotopical equivalence between a certain simplicial complexes.

Theorem 2.3. ([6, Theorem 4.4]). Suppose that K0 is a subcomplex of K such that

K0 ̸→ K \ K0 and such that all critical faces belong to K0. Then it is possible to

collapse K to K0. In particular, K and K0 are homotopy equivalent. Hence, K has

no homology in dimensions strictly greater than dim K0.

3. Complex K∅

Let n = 3 · 5 · p, where p is a prime. As the case when p = 7 was investigated in [8],
we can assume that p > 7. For n = 3 · 5 · p simplicial complex K3,5,p has p + 8 vertices:

0 (mod 3), 1 (mod 3), 2 (mod 3), 0 (mod 5), 1 (mod 5), 2 (mod 5),

3 (mod 5), 4 (mod 5), 0 (mod p), 1 (mod p), . . . , p − 1 (mod p).

In order to simplify the notation we label these vertices by numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, . . . , p + 7, respectively.
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Subcomplex K∅ is a two-dimensional complex built of facets:

F(8p−7) (mod n), . . . , F(8p−1) (mod n), F8p (mod n), . . . , F(9p−8) (mod n),
F(9p−7) (mod n), . . . , F(9p−1) (mod n), F9p (mod n), . . . , F(10p−8) (mod n),

...
...

...
...

F(14p−7) (mod n), . . . , F(14p−1) (mod n), F14p (mod n), . . . , F(15p−8) (mod n),
F(15p−7) (mod n), . . . , F(15p−1) (mod n).

Note that facet F(dp−i) (mod n) contains vertex (p − i) (mod p) which is labeled by
number p − i + 8 for all d ∈ ¶8, . . . , 15♢, i ∈ ¶1, . . . , 7♢. Similarly, facet F(dp+i) (mod n)

contains vertex i (mod p) which is labeled by number i + 8 for all d ∈ ¶8, . . . , 14♢,
i ∈ ¶0, . . . , p − 8♢. Let

[
ai

j, bi
j, i
]

=





F((8+j−1)p+i−8) (mod n), for i ∈ ¶8, . . . , p♢,

F((8+j−1)p+i−8−p) (mod n), for i ∈ ¶p + 1, . . . , p + 7♢.

.

Then, the above set of facets are:
[
a

p+1

1 , b
p+1

1 , p + 1
]
, . . . ,

[
a

p+7

1 , b
p+7

1 , p + 7
]

,
[
a8

1, b8
1, 8
]
, . . . ,

[
a

p

1, b
p

1, p
]
,

[
a

p+1

2 , b
p+1

2 , p + 1
]

, . . . ,
[
a

p+7

2 , b
p+7

2 , p + 7
]

,
[
a8

2, b8
2, 8
]
, . . . ,

[
a

p

2, b
p

2, p
]
,

...
...

...
...[

a
p+1

7 , b
p+1

7 , p + 1
]

, . . . ,
[
a

p+7

7 , b
p+7

7 , p + 7
]

,
[
a8

7, b8
7, 8
]
, . . . ,

[
a

p

7, b
p

7, p
]
,

[
a

p+1

8 , b
p+1

8 , p + 1
]

, . . . ,
[
a

p+7

8 , b
p+7

8 , p + 7
]

,

respectively.
As every facet of K∅ contains exactly one vertex from the set of vertices ¶8, 9, . . . , p+

7♢ it is clear that

K∅ =
p+7⋃

i=8

St(i).

Therefore, we begin our analysis of the complex K∅ with analysis of its subcomplexes
St(8), . . . , St(p + 7).

As the number of 2-simplicies of K∅ is 7p + 7, we can notice that the subcomplex

St(i) is built of facets
{
[ai

j, bi
j, i]

}7

j=1
when i ∈ ¶8, . . . , p♢ and facets

{
[ai

j, bi
j, i]

}8

j=1

when i ∈ ¶p + 1, . . . , p + 7♢. Furthermore, it follows that

ai
1 = ai

4 = ai
7, ai

2 = ai
5, ai

3 = ai
6, for i ∈ ¶8, . . . , p♢,

and

ai
1 = ai

4 = ai
7, ai

2 = ai
5 = ai

8, ai
3 = ai

6, for i ∈ ¶p + 1, . . . , p + 7♢,
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because 8p ≡ 11p ≡ 14p, 9p ≡ 12p ≡ 15p and 10p ≡ 13p modulo 3. Similarly, as
8p ≡ 13p, 9p ≡ 14p and 10p ≡ 15p modulo 5, we can conclude that

bi
1 = bi

6, bi
2 = bi

7, for i ∈ ¶8, . . . , p♢,

and

bi
1 = bi

6, bi
2 = bi

7, bi
3 = bi

8, for i ∈ ¶p + 1, . . . , p + 7♢.

Figure 1 shows subcomplex St(i) depending on the index i ∈ ¶8, . . . , p + 7♢.

i

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(a) i ∈ ¶8, . . . , p♢

i

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(b) i ∈ ¶p + 1, . . . , p + 7♢

Figure 1. Simplicial complex St(i)

3.1. Discrete vector field on K∅. In order to examine the topology of the complex
K∅, we will look for a discrete vector field such that the number of critical 2-simplices
are as small as possible. We will see below that finding an appropriate discrete
vector field on K∅ can be reduced to finding an appropriate discrete vector field on
its subcomplex St(p + 1, . . . , p + 7).

The simplicial subcomplex St(i), i ∈ ¶8, . . . , p♢, is built of facets:

[ai
1, bi

1, i], [ai
2, bi

2, i], [ai
3, bi

3, i],

[ai
1, bi

4, i], [ai
2, bi

5, i], [ai
3, bi

1, i],

[ai
1, bi

2, i].

As ai
1, ai

2, ai
3 and bi

1, bi
2, bi

3, bi
4, bi

5 are different vertices, we can define acyclic discrete
vector field on St(i) as follows:

Si = ¶¶[bi
1, i], [ai

1, bi
1, i]♢, ¶[bi

2, i], [ai
2, bi

2, i]♢, ¶[bi
3, i], [ai

3, bi
3, i]♢,

¶[bi
4, i], [ai

1, bi
4, i]♢, ¶[bi

5, i], [ai
2, bi

5, i]♢, ¶[ai
3, i], [ai

3, bi
1, i]♢,

¶[ai
1, i], [ai

1, bi
2, i]♢, ¶[i], [ai

2, i]♢♢.

Discrete vector field Si is an acyclic discrete vector field on St(i), as we can see on
Figure 2 (A). Note that C(St(i), Si) = Lk(i) ⊂ K3,5 and C2(St(i), Si) = ∅ (see Figure
2 (B)).
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i

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(a) Si-paths

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(b) C(St(i), Si)

Figure 2. Discrete vector field Si on complex St(i), i ∈ ¶8, . . . , p♢

Lemma 3.1. Let n = 3 · 5 · p, where p > 7 is a prime. If C is an arbitrary acyclic

discrete vector field on St(p + 1, . . . , p + 7), then

V =

( p⋃

i=8

Si

)
∪ C

is an acyclic discrete vector field on K∅.

Proof. It follows that



⋃

k∈{8,...,̂i,...,p+7}

St(k)


 ∩ St(i) ⊆ Lk(i).

As C(St(i), Si) = Lk(i) for all i ∈ ¶8, . . . , p♢, V is a well-defined discrete vector field
on K∅ as each simplex is in at most one pair. Additionally, for all i ∈ ¶8, . . . , p♢,

⋃

k∈{8,...,̂i,...,p+7}

St(k) ̸−→ St(i) \ Lk(i).

Hence, there are no non-trivial closed V -paths which contain simplices from the set⋃p
i=8 (St(i) \ Lk(i)). Note that

p⋃

i=8

Lk(i) \ St(p + 1, . . . , p + 7) ⊆ C(K∅, V ).

As

K∅ =

( p⋃

i=8

(St(i) \ Lk(i))

)
∪

( p⋃

i=8

Lk(i) \ St(p + 1, . . . , p + 7)

)
∪ St(p + 1, . . . , p + 7),

the discrete vector field V is acyclic on K∅. □

According to the previous lemma, in what follows, we will focus on finding an
appropriate discrete vector field on the subcomplex St(p + 1, . . . , p + 7).
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3.2. Discrete vector field on St(p + 1, . . . , p + 7). As St(p + 1, . . . , p + 7) =⋃p+7
i=p+1 St(i), we will find acyclic discrete vector fields without unpaired 2-simplices

for the subcomplexes St(i), i ∈ ¶p + 1, . . . , p + 7♢. We know that 2-simplices in St(i)
are

[ai
1, bi

1, i], [ai
2, bi

2, i], [ai
3, bi

3, i],

[ai
1, bi

4, i], [ai
2, bi

5, i], [ai
3, bi

1, i],

[ai
1, bi

2, i], [ai
2, bi

3, i].

First, we consider the following discrete vector field on St(i):

Vi = ¶¶[bi
1, i], [ai

1, bi
1, i]♢, ¶[bi

2, i], [ai
2, bi

2, i]♢, ¶[bi
3, i], [ai

3, bi
3, i]♢,

¶[bi
4, i], [ai

1, bi
4, i]♢, ¶[bi

5, i], [ai
2, bi

5, i]♢, ¶[ai
3, i], [ai

3, bi
1, i]♢,

¶[ai
1, i], [ai

1, bi
2, i]♢, ¶[ai

2, i], [ai
2, bi

3, i]♢♢.

Discrete vector field Vi is well-defined and pairs all facets of St(i), but it is not
acyclic (see Figure 3).

i

bi
2bi

4 ai
1

bi
1

ai
3 bi

3

ai
2

bi
5

Figure 3. Vi-paths on complex St(i), i ∈ ¶p + 1, . . . , p + 7♢

Namely, there is exactly one non-trivial closed Vi-path. This path contains facets
[ai

1, bi
1, i], [ai

2, bi
2, i], [ai

3, bi
3, i], [ai

3, bi
1, i], [ai

1, bi
2, i] and [ai

2, bi
3, i] (see Figure 4).

Note that if α ⊃ [bi
4, i], then α = [ai

1, bi
4, i]. Similarly, if β ⊃ [bi

5, i], then β = [ai
2, bi

5, i].
Hence, there are no facets α, β ∈ St(i) such that α → [bi

4, i] and β → [bi
5, i] in Vi.

Consequently, simplices [bi
4, i], [bi

5, i], [ai
1, bi

4, i] and [ai
2, bi

5, i] cannot be a part of a
non-trivial closed Vi-path.

i

bi
2

ai
1

bi
1 ai

3

bi
3

ai
2

[ai
2, bi

2, i] [ai
1, bi

2, i] [ai
1, bi

1, i] [ai
3, bi

1, i] [ai
3, bi

3, i] [ai
2, bi

3, i]

[ai
2, i] [bi

2, i] [ai
1, i] [bi

1, i] [ai
3, i] [bi

3, i]

Figure 4. Non-trivial closed Vi-path

However, if we perform certain changes, we can make Vi acyclic. Namely, for some
(l, k) ∈ ¶(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3)♢, if we modify Vi in a way that we pair
[ai

l, bi
k] with [ai

l, bi
k, i], instead paring [bi

k, i] or [ai
l, i], it becomes acyclic (see Figure 5).
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If ¶[bi
k, i], [ai

l, bi
k, i]♢ ∈ Vi, we replace the matching ¶[bi

k, i], [ai
l, bi

k, i]♢ by the match-
ing ¶[ai

l, bi
k], [ai

l, bi
k, i]♢. Thus, 1-simplex [bi

k, i] becomes unmatched, so we can add
matching ¶[i], [bi

k, i]♢. Analogously, if ¶[ai
l, i], [ai

l, bi
k, i]♢ ∈ Vi we replace the matching

¶[ai
l, i], [ai

l, bi
k, i]♢ by the matching ¶[ai

l, bi
k], [ai

l, bi
k, i]♢ and 1-simplex [ai

l, i] becomes
unmatched. Then, we can add matching ¶[i], [ai

l, i]♢.

i

bi
k ai

l

i

bi
k ai

l

i

ai
l bi

k

i

ai
l bi

k

Figure 5. The two type of modification in discrete vector field Vi

Note that 0-simplex [i] is not part of any non-trivial closed path in the mentioned
modification of Vi. Namely, if α → [i] for some 1-simplex α ⊃ [i], then α is not paired
with any 0-simplex. Actually, α is pared with a 2-simplex.

Let

Vi([a
i
l, bi

k]) :=
(
Vi \

{
¶[ai

l, i], [ai
l, bi

k, i]♢
}

∪
{
¶[ai

l, bi
k], [ai

l, bi
k, i]♢, ¶[i], [ai

l, i]♢
}

if ¶[ai
l, i], [ai

l, bi
k, i]♢ ∈ Vi and

Vi([a
i
l, bi

k]) :=
(
Vi \

{
¶[bi

k, i], [ai
l, bi

k, i]♢
}

∪
{
¶[ai

l, bi
k], [ai

l, bi
k, i]♢, ¶[i], [bi

k, i]♢
}

if ¶[bi
k, i], [ai

l, bi
k, i]♢ ∈ Vi.

According to the previous considerations, Vi([a
i
l, bi

k]) is an acyclic discrete vector
field on St(i), without critical 2-simplices, for all i ∈ ¶p + 1, . . . , p + 7♢. Actually,
C(St(i), Vi([a

i
l, bi

k]) = Lk(i) \ [ai
l, bi

k] ⊂ K3,5.

The choice of (l, k) will depend on the rest of the complex St(p + 1, . . . , p + 7).
Let Vi([a

i
li
, bi

ki
]) be the corresponding acyclic discrete vector field on St(i) for i ∈

¶p + 1, . . . , p + 7♢. If [ap+1
lp+1

, bp+1
kp+1

], [ap+2
lp+2

, bp+2
kp+2

], . . . , [ap+7
lp+7

, bp+7
kp+7

] are distinct 1-simplices
then

C :=
p+7⋃

i=p+1

Vi([a
i
li
, bi

ki
])

is a well-defined discrete vector field on St(p + 1, . . . , p + 7). Generally, C does not
have to be acyclic. Namely, there are no non-trivial closed C-paths which contain
simplices from the only one subcomplex St(i), but there may be non-trivial closed
paths containing simplices from the various subcomplexes St(i), i ∈ ¶p + 1, . . . , p + 7♢.

For i ∈ ¶p + 1, . . . , p + 7♢, note that the only “entrance” in St(i) with respect to
C from St(p + 1, . . . , î, . . . p + 7) is through the 1-simplex [ai

li
, bi

ki
], whereas the set of

“exits” are (
Lk(i) \ ¶[ai

li
, bi

ki
]♢


∩ ¶[aj
lj

, bj
kj

]♢
j∈{p+1,...,̂i,...,p+7}.
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The only way to reach 1-simplex [ai
1, bi

4] from the rest of the complex St(i) is through
the 1-simplex [bi

4, i], i.e., [bi
4, i] → [ai

1, bi
4, i] → [ai

1, bi
4]. Similarly, 1-simplex [ai

2, bi
5] can

be reached from the rest of the complex St(i) through the 1-simplex [bi
5, i] only, i.e.,

[bi
5, i] → [ai

2, bi
5, i] → [ai

2, bi
5]. As [bi

4, i] and [bi
5, i] do not have entrance arrows in C, we

can ignore 1-simplicies [ai
1, bi

4] and [ai
2, bi

5] as exits from St(i).

We form a directed graph Flow(C) of the “entrances/exits” through the sub-
complexes St(i), i ∈ ¶p + 1, . . . , p + 7♢, with respect to C. The graph Flow(C) =
(A ⊔ B, E) is bipartite, where:

A =¶St(i) ♣ i ∈ ¶p + 1, . . . , p + 7♢♢,

B =¶[ai
li
, bi

ki
] ♣ i ∈ ¶p + 1, . . . , p + 7♢,

and

E =
p+7⋃

i=p+1

{
(St(i), α) ♣ α ∈ B ∩ Lk(i) \ ¶[ai

li
, bi

ki
], [ai

1, bi
4], [ai

2, bi
5]♢
}

∪
{
([ai

li
, bi

ki
], St(i)) ♣ i ∈ ¶p + 1, . . . , p + 7♢

}
.

Therefore, if [alj , bkj
] ∈ St(i) \ ¶[ai

1, bi
4], [ai

2, bi
5]♢ it follows that

[ali , bki
] → St(i) → [alj , bkj

] → St(j)

is path in Flow(C), for all distinct i, j ∈ ¶p + 1, . . . , p + 7♢ (see Figure 6).

St(i) St(j)

[ai
li
, bi

ki
] [ai

lj
, bi

kj
]

i

j

ai
li

bi
ki

aj
lj

bj
kj

Figure 6. Forming a directed graph Flow(C)

It is clear that if digraph Flow(C) is acyclic then C is an acyclic discrete vector field.
In order to make C acyclic, we will choose appropriate 1-simplices ¶[ai

li
, bi

ki
]♢p+7

i=p+1.

4. Proof of Theorem 1.3

Let p1, p2 ≥ 7 be two distinct primes and n1 = 3 · 5 · p1 and n2 = 3 · 5 · p2. We
consider subcomplexes St(p1 + 1, . . . , p1 + 7) and St(p2 + 1, . . . , p2 + 7) of K∅ for n1

and n2. The subcomplex St(p1 + 1, . . . , p1 + 7) consists of facets

¶F(dp1−i) (mod n1)♢d=8,15, i=1,7,

while St(p2 + 1, . . . , p2 + 7) consists of facets

¶F(dp2−i) (mod n2)♢d=8,15, i=1,7.
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It turns out that for certain primes p1 and p2, complexes St(p1 + 1, . . . , p1 + 7) and
St(p2 + 1, . . . , p2 + 7) are isomorphic. Namely, when p1 ≡ p2 (mod 15), we can define
the map π : St(p1 + 1, . . . , p1 + 7) → St(p2 + 1, . . . , p2 + 7) such that

p1 + k
π

7→ p2 + k, for k ∈ ¶1, . . . , 7♢,

and π fixes every other vertex. Note that dp1 − i ≡15 dp2 − i when p1 ≡15 p2 for all
i ∈ ¶1, . . . , 7♢, d ∈ ¶8, . . . , 15♢. Additionally, dp1 − i ≡p1

p1 − i and dp2 − i ≡p2
p2 − i.

As π(p1 − i + 8) = p2 − i + 8, we can conclude that

π(F(dp1−i) (mod n1)) = F(dp2−i) (mod n2).

Therefore, π is an isomorphism of the complexes.
If p is a prime number, then potential reminders modulo 15 are 1, 2, 4, 7, 8, 11, 13

and 14. According to the above, for a fixed reminder r modulo 15, we do not have to
examine complexes St(p + 1, . . . , p + 7) for all primes p ≡ r (mod 15), it is enough to
examine just for one of them.

Proof of Theorem 1.3. In order to show that K∅ ≃ S
1, we will construct an acyclic

discrete vector field on K∅ without critical 2-simplices, with one critical 1-simplex
and one critical 0-simplex. If such discrete vector field exists, by Theorem 2.1, K∅

is homotopy equivalent to a CW complex with exactly one 1-cell and one 0-cell.
According to Theorem 1.1, H1(K∅) = Z. Therefore, K∅ is homotopy equivalent to S

1.
Similarly, to show that K{j} ≃ S ∪fj

B
2 we will construct an acyclic discrete vector

field on K{j} with one critical 2-simplex, one critical 1-simplex and one critical 0-
simplex. Then, by Theorem 2.1, K{j} is homotopy equivalent to a CW complex
with exactly one 2-cell, one 1-cell and one 0-cell. Consequently, as π1(K{j}) has a
presentation where the generators are the 1-cells and the relations come from the
2-cells,

π1(K{j}) = ⟨g ♣ gd = 1⟩,

where d is the degree of the attaching map from the boundary of 2-cell into the 1-cell.
By Theorem 1.1, H1(K{j}) = Z/cjZ. As H1(K{j}) is the abelianization of π1(K{j}),
it follows that d = cj. Finally, the complex K{j} is homotopy equivalent to S ∪fj

B
2,

where deg(fj) = cj.
Note that if V is an acyclic discrete vector field on K∅ with one critical 1-simplex,

one critical 0-simplex and without critical 2-simplices, then V is an acyclic discrete
vector field on K{j} with one critical 2-simplex, one critical 1-simplex and one critical
0-simplex. The complex K{j} is obtained by adding the facets Fj (mod n) to the complex
K∅, so the critical 2-simplex with respect to V is facet Fj (mod n).

Now, we divide analysis in several cases, depending on the remainder of the prime
p modulo 15. We will focus on finding an acyclic discrete vector field on K∅ without
critical 2-simplices, one critical 1-simplex and one critical 0-simplex for each case.
For each case we will find an acyclic vector field C on St(p + 1, . . . , p + 7), hence, by
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Lemma 3.1,

V =

( p⋃

i=8

Si

)
∪ C,

is an acyclic discrete vector field on K∅. For such defined discrete vector field V on
K∅ it follows that

C(K∅, V ) = (Lk(8, . . . , p) \ St(p + 1, . . . , p + 7)) ∪ C(St(p + 1, . . . , p + 7), C).

Case 1: p ≡ 1 (mod 15).

The subcomplex St(p + 1, . . . , p + 7) consists of the following 2-simplices:

[1, 4, p + 1] , [2, 5, p + 2] , [0, 6, p + 3] , [1, 7, p + 4] , [2, 3, p + 5] , [0, 4, p + 6] , [1, 5, p + 7] ,

[2, 5, p + 1] , [0, 6, p + 2] , [1, 7, p + 3] , [2, 3, p + 4] , [0, 4, p + 5] , [1, 5, p + 6] , [2, 6, p + 7] ,

[0, 6, p + 1] , [1, 7, p + 2] , [2, 3, p + 3] , [0, 4, p + 4] , [1, 5, p + 5] , [2, 6, p + 6] , [0, 7, p + 7] ,

[1, 7, p + 1] , [2, 3, p + 2] , [0, 4, p + 3] , [1, 5, p + 4] , [2, 6, p + 5] , [0, 7, p + 6] , [1, 3, p + 7] ,

[2, 3, p + 1] , [0, 4, p + 2] , [1, 5, p + 3] , [2, 6, p + 4] , [0, 7, p + 5] , [1, 3, p + 6] , [2, 4, p + 7] ,

[0, 4, p + 1] , [1, 5, p + 2] , [2, 6, p + 3] , [0, 7, p + 4] , [1, 3, p + 5] , [2, 4, p + 6] , [0, 5, p + 7] ,

[1, 5, p + 1] , [2, 6, p + 2] , [0, 7, p + 3] , [1, 3, p + 4] , [2, 4, p + 5] , [0, 5, p + 6] , [1, 6, p + 7] ,

[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .

We define discrete vector field C on St(p + 1, . . . , p + 7) in the following way:

C =Vp+1([1, 4]) ∪ Vp+2([2, 5]) ∪ Vp+3([0, 6]) ∪ Vp+4([1, 7])

∪ Vp+5([0, 5]) ∪ Vp+6([1, 6]) ∪ Vp+7([2, 7])

∪ ¶¶[1], [1, 3]♢, ¶[2], [2, 4]♢, ¶[3], [2, 3]♢, ¶[4], [0, 4]♢, ¶[5], [1, 5]♢, ¶[6], [2, 6]♢,

¶[7], [0, 7]♢♢.

Discrete vector field C is well-defined (see Figure 7). Additionally, Figure 7 shows
that there are no non-trivial closed C-paths consisting of 0-simplices and 1-simplices.
Graph Flow(C) is acyclic (see Figure 8), thus, there are no non-trivial closed C-paths
which consist of 2-simplices and 1-simplices as well. Consequently, C is an acyclic
discrete vector field on St(p + 1, . . . , p + 7).

Note that the only critical simplex in St(p + 1, . . . , p + 7) with respect to C is [0],
i.e., C(St(p + 1, . . . , p + 7), C) = ¶[0]♢. Additionally, it follows that

K3,5 \ St(p + 1, . . . , p + 7) = ¶[0, 3]♢.

On the other hand, [0, 3] ∈ K3,5 and

[0, 3] ∈ F15p (mod n) ⊂ St(8).

Consequently,

[0, 3] ∈ Lk(8) ⊂ Lk(8, . . . , p).

Since Lk(8, . . . , p) ⊂ K3,5, we conclude that

Lk(8, . . . , p) \ St(p + 1, . . . , p + 7) = ¶[0, 3]♢.
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Finally,

C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) ∪ ¶[0, 3]♢ = ¶[0], [0, 3]♢,

so V is an acyclic discrete vector field on K∅ without critical 2-simplices, with one
critical 1-simplex and one critical 0-simplex.
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Figure 7. Gradient vector field C

St(p + 1) St(p + 2) St(p + 3) St(p + 4) St(p + 5) St(p + 6) St(p + 7)

[1, 4] [2, 5] [0, 6] [1, 7] [0, 5] [1, 6] [2, 7]

Figure 8. Digraph Flow(C)

Case 2: p ≡ 2 (mod 15).
Again, we look for an acyclic discrete vector field on St(p+1, . . . , p+7) such that the

number of critical simplices are as small as possible. The subcomplex St(p+1, . . . , p+7)
consists of facets:

[0, 7, p + 1] , [1, 3, p + 2] , [2, 4, p + 3] , [0, 5, p + 4] , [1, 6, p + 5] , [2, 7, p + 6] , [0, 3, p + 7] ,

[2, 4, p + 1] , [0, 5, p + 2] , [1, 6, p + 3] , [2, 7, p + 4] , [0, 3, p + 5] , [1, 4, p + 6] , [2, 5, p + 7] ,

[1, 6, p + 1] , [2, 7, p + 2] , [0, 3, p + 3] , [1, 4, p + 4] , [2, 5, p + 5] , [0, 6, p + 6] , [1, 7, p + 7] ,

[0, 3, p + 1] , [1, 4, p + 2] , [2, 5, p + 3] , [0, 6, p + 4] , [1, 7, p + 5] , [2, 3, p + 6] , [0, 4, p + 7] ,

[2, 5, p + 1] , [0, 6, p + 2] , [1, 7, p + 3] , [2, 3, p + 4] , [0, 4, p + 5] , [1, 5, p + 6] , [2, 6, p + 7] ,

[1, 7, p + 1] , [2, 3, p + 2] , [0, 4, p + 3] , [1, 5, p + 4] , [2, 6, p + 5] , [0, 7, p + 6] , [1, 3, p + 7] ,

[0, 4, p + 1] , [1, 5, p + 2] , [2, 6, p + 3] , [0, 7, p + 4] , [1, 3, p + 5] , [2, 4, p + 6] , [0, 5, p + 7] ,

[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .
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Consider a discrete vector field

C =Vp+1([0, 7]) ∪ Vp+2([2, 3]) ∪ Vp+3([0, 4]) ∪ Vp+4([1, 5])

∪ Vp+5([2, 5]) ∪ Vp+6([0, 6]) ∪ Vp+7([1, 7])

∪ ¶¶[0], [0, 3]♢, ¶[5], [0, 5]♢, ¶[3], [1, 3]♢, ¶[4], [1, 4]♢, ¶[1], [1, 6]♢, ¶[6], [2, 6]♢,

¶[7], [2, 7]♢♢

on St(p + 1, . . . , p + 7). This discrete vector field is well-defined and acyclic. Namely,
there are no non-trivial closed C-paths consisting of 0-simplices and 1-simplices (see
Figure 9) and graph Flow(C) is acyclic (see Figure 10).

It follows that C(St(p + 1, . . . , p + 7), C) = ¶[2], [2, 4]♢. Additionally,

K3,5 ⊂ St(p + 1, . . . , p + 7).

As Lk(8, . . . , p) ⊂ K3,5, we can finally conclude that

C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) = ¶[2], [2, 4]♢.
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Figure 9. Gradient vector field C

St(p + 4) St(p + 3) St(p + 2) St(p + 1) St(p + 7) St(p + 6) St(p + 5)

[1, 5] [0, 4] [2, 3] [0, 7] [1, 7] [0, 6] [2, 5]

Figure 10. Digraph Flow(C)

Case 3: p ≡ 13 (mod 15).
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The subcomplex St(p + 1, . . . , p + 7) consists of the following 2-simplices:

[1, 5, p + 1] , [2, 6, p + 2] , [0, 7, p + 3] , [1, 3, p + 4] , [2, 4, p + 5] , [0, 5, p + 6] , [1, 6, p + 7] ,

[2, 3, p + 1] , [0, 4, p + 2] , [1, 5, p + 3] , [2, 6, p + 4] , [0, 7, p + 5] , [1, 3, p + 6] , [2, 4, p + 7] ,

[0, 6, p + 1] , [1, 7, p + 2] , [2, 3, p + 3] , [0, 4, p + 4] , [1, 5, p + 5] , [2, 6, p + 6] , [0, 7, p + 7] ,

[1, 4, p + 1] , [2, 5, p + 2] , [0, 6, p + 3] , [1, 7, p + 4] , [2, 3, p + 5] , [0, 4, p + 6] , [1, 5, p + 7] ,

[2, 7, p + 1] , [0, 3, p + 2] , [1, 4, p + 3] , [2, 5, p + 4] , [0, 6, p + 5] , [1, 7, p + 6] , [2, 3, p + 7] ,

[0, 5, p + 1] , [1, 6, p + 2] , [2, 7, p + 3] , [0, 3, p + 4] , [1, 4, p + 5] , [2, 5, p + 6] , [0, 6, p + 7] ,

[1, 3, p + 1] , [2, 4, p + 2] , [0, 5, p + 3] , [1, 6, p + 4] , [2, 7, p + 5] , [0, 3, p + 6] , [1, 4, p + 7] ,

[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .

Let

C =Vp+1([0, 6]) ∪ Vp+2([1, 7]) ∪ Vp+3([2, 3]) ∪ Vp+4([0, 4])

∪ Vp+5([1, 4]) ∪ Vp+6([2, 5]) ∪ Vp+7([1, 6])

∪ ¶¶[5], [0, 5]♢, ¶[7], [0, 7]♢, ¶[3], [1, 3]♢, ¶[1], [1, 5]♢, ¶[4], [2, 4]♢, ¶[6], [2, 6]♢,

¶[2], [2, 7]♢♢

be a discrete vector field on St(p+1, . . . , p+7). As each simplex is in at most one pair,
this discrete vector field is well-defined. Additionally, C is acyclic on St(p+1, . . . , p+7)
and such that

C(St(p + 1, . . . , p + 7), C) = ¶[0], [0, 3]♢.

Namely, corresponding digraph Flow(C) is acyclic (see Figure 12), so there are no non-
trivial closed C-paths which consist of 1-simplices and 2-simplices. Figure 11 shows
that there are no non-trivial closed C-paths consisting of 0-simplices and 1-simplices
as well.

Like in the previous case, K3,5 ⊂ St(p + 1, . . . , p + 7), and consequently,

Lk(8, . . . , p) ⊂ St(p + 1, . . . , p + 7),

because Lk(8, . . . , p) ⊂ K3,5. According to this, all critical simplices in K∅ with
recpect to V are in St(p + 1, . . . , p + 7). Hence, we conclude

C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) = ¶[0], [0, 3]♢.

Case 4: p ≡ 14 (mod 15).

The subcomplex St(p + 1, . . . , p + 7) is generated by facets:

[0, 3, p + 1] , [1, 4, p + 2] , [2, 5, p + 3] , [0, 6, p + 4] , [1, 7, p + 5] , [2, 3, p + 6] , [0, 4, p + 7] ,

[2, 7, p + 1] , [0, 3, p + 2] , [1, 4, p + 3] , [2, 5, p + 4] , [0, 6, p + 5] , [1, 7, p + 6] , [2, 3, p + 7] ,

[1, 6, p + 1] , [2, 7, p + 2] , [0, 3, p + 3] , [1, 4, p + 4] , [2, 5, p + 5] , [0, 6, p + 6] , [1, 7, p + 7] ,

[0, 5, p + 1] , [1, 6, p + 2] , [2, 7, p + 3] , [0, 3, p + 4] , [1, 4, p + 5] , [2, 5, p + 6] , [0, 6, p + 7] ,

[2, 4, p + 1] , [0, 5, p + 2] , [1, 6, p + 3] , [2, 7, p + 4] , [0, 3, p + 5] , [1, 4, p + 6] , [2, 5, p + 7] ,

[1, 3, p + 1] , [2, 4, p + 2] , [0, 5, p + 3] , [1, 6, p + 4] , [2, 7, p + 5] , [0, 3, p + 6] , [1, 4, p + 7] ,

[0, 7, p + 1] , [1, 3, p + 2] , [2, 4, p + 3] , [0, 5, p + 4] , [1, 6, p + 5] , [2, 7, p + 6] , [0, 3, p + 7] ,

[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .
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Figure 11. Gradient vector field C

St(p + 6) St(p + 2) St(p + 4) St(p + 7) St(p + 5) St(p + 1) St(p + 3)

[2, 5] [1, 7] [0, 4] [1, 6] [1, 4] [0, 6] [2, 3]

Figure 12. Digraph Flow(C)

Let us define discrete vector field on St(p + 1, . . . , p + 7) as it follows

C =Vp+1([2, 6] ∪ Vp+2([0, 7]) ∪ Vp+3([1, 3]) ∪ Vp+4([2, 4])

∪ Vp+5([1, 7]) ∪ Vp+6([2, 3]) ∪ Vp+7([0, 4])

∪ ¶¶[3], [0, 3]♢, ¶[0], [0, 5]♢, ¶[6], [0, 6]♢, ¶[4], [1, 4]♢, ¶[1], [1, 6]♢,

¶[2], [2, 5]♢, ¶[7], [2, 7]♢♢.

Discrete vector field C is well-defined (see Figure 13). Figure 14 shows that digraph
Flow(C) is acyclic. In addition, Figure 13 shows that there are no non-trivial closed
C-paths consisting of 0-simplices and 1-simplices. Therefore, C is acyclic on St(p +
1, . . . , p + 7) and C(St(p + 1, . . . , p + 7), V ) = ¶[5]♢.

It follows that
K3,5 \ St(p + 1, . . . , p + 7) = ¶[1, 5]♢.

As [1, 5] ∈ F8p (mod n) ⊂ St(8) we conclude that [1, 5] ∈ St(8) ∩ K3,5 = Lk(8). Hence,

Lk(8, . . . , p) \ St(p + 1, . . . , p + 7) = [1, 5].

From the previous considerations, we conclude

C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) ∪ ¶[1, 5]♢ = ¶[5], [1, 5]]♢.
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Figure 13. Gradient vector field C

St(p + 1) St(p + 2) St(p + 3) St(p + 4) St(p + 5) St(p + 6) St(p + 7)

[2, 6] [0, 7] [1, 3] [2, 4] [1, 7] [2, 3] [0, 4]

Figure 14. Digraph Flow(C)

□

5. Proof of Theorem 1.4

In order to prove Theorem 1.4, we will need next theorem which points out an
interesting feature of the complex K∅. Namely, under some conditions, complex K∅

is completely determined by its subcomplex St(p + 1, . . . , p + 7).

Theorem 5.1. Let n = 3 · 5 · p, where p ≥ 7 is a prime and p ≡ k (mod 15).
If k ∈ ¶2, 4, 7, 8, 11, 13♢, then complex K∅ is homotopy equivalent to its subcomplex

St(p + 1, . . . , p + 7).

Proof. Obviously, K∅ = St(p + 1, . . . , p + 7) when p = 7, therefore we consider p > 7.
Let C be an acyclic discrete vector field on St(p + 1, . . . , p + 7). Then, by Lemma 3.1,
V = (

⋃p
i=8 Si) ∪ C is an acyclic vector field on K∅. In order to prove this theorem, we

show that there are no critical simplices in K∅ \ St(p + 1, . . . , p + 7) with respect to
V and St(p + 1, . . . , p + 7) ̸→ K∅ \ St(p + 1, . . . , p + 7). Then the theorem follows by
Theorem 2.3.
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Recall that Si is an acyclic vector field on St(i) for i ∈ ¶8, . . . , p♢ (see Figure 2).
Additionally, all 1-simplices from the set Lk(i), i ∈ ¶8, . . . , p♢, are unmatched with
respect to Si. Consequently,

St(p + 1, . . . , p + 7) ̸→ K∅ \ St(p + 1, . . . , p + 7).

It follows that α ∈ K∅ \ St(p + 1, . . . , p + 7) is critical with respect to V , when
α ∈ Lk(i)\St(p+1, . . . , p+7) for some i ∈ ¶8, . . . , p♢. However, St(p+1, . . . , p+7) is
built of facets Fj (mod 15p), where j ∈ ¶dp − i♢d=8,15, i=1,7. There are 15 numbers which
are distinct modulo 15 between numbers ¶dp−i♢j=8,15, i=1,7 when k ∈ ¶2, 4, 7, 8, 11, 13♢
(see Table 1). Thus, it follows that

K3,5 ⊂ St(p + 1, . . . , p + 7).

Table 1

k 15 numbers among ¶dp − i♢j=8,15, i=1,7 which are distinct modulo 15

2
8p−1, 9p−2, 9p−1, 10p−2, 10p−1, 11p−2, 11p−1, 12p−2,12p−1,
8p − 7, 8p − 6, 8p − 5, 8p − 4, 8p − 3, 8p − 2

4
8p − 2, 8p − 1, 9p − 4, 9p − 3, 9p − 2, 9p − 1, 10p − 4, 10p − 3,
10p − 2, 10p − 1, 8p − 7, 8p − 6, 8p − 5, 8p − 4, 8p − 3

7
9p − 3, 9p − 2, 9p − 1, 10p − 7, 8p − 7, 8p − 6, 8p − 5, 8p − 4, 8p − 3,
8p − 2, 8p − 1, 9p − 7, 9p − 6, 9p − 5, 9p − 4

8
8p − 3, 8p − 2, 8p − 1, 10p − 1, 9p − 7, 9p − 6, 9p − 5, 9p − 4, 9p − 3,
9p − 2, 9p − 1, 8p − 7, 8p − 6, 8p − 5, 8p − 4

11
10p−5, 10p−4, 9p−7, 9p−6, 9p−5, 9p−4, 8p−7, 8p−6, 8p−5,
8p − 4, 8p − 3, 8p − 2, 8p − 1, 10p − 7, 10p − 6

13
12p − 6, 11p − 7, 11p − 6, 10p − 7, 10p − 6, 9p − 7, 9p − 6, 8p − 7,
8p − 6, 8p − 5, 8p − 4, 8p − 3, 8p − 2, 8p − 1, 12p − 7

As Lk(i) ⊂ K3,5, we can conclude that

Lk(i) ⊆ St(p + 1, . . . , p + 7),

for all i ∈ ¶8, . . . , p♢. Therefore, there are no simplices in K∅ \ St(p + 1, . . . , p + 7)
which are critical with respect to V . □

Remark 5.1. It is not always true that K3,5 ⊂ St(p + 1, . . . , p + 7). Namely, if
p ≡ 1 (mod 15) then [0, 3] ∈ F15p (mod n) ⊂ St(8) and [0, 3] ̸∈ St(p + 1, . . . , p + 7)
(see Case 1 in the proof of Theorem 1.3). Therefore,

[0, 3] ∈ Lk(8) \ St(p + 1, . . . , p + 7) ⊆ K3,5 \ St(p + 1, . . . , p + 7).

Similarly, when p ≡ 14 (mod 15), it follows that [1, 5] ∈ F8p (mod n) ⊂ St(8). On the
other hand, [1, 5] ̸∈ St(p + 1, . . . , p + 7) (see Case 4 in the proof of Theorem 1.3), so
it follows that

[1, 5] ∈ Lk(8) \ St(p + 1, . . . , p + 7) ⊆ K3,5 \ St(p + 1, . . . , p + 7).
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We are now prove Theorem 1.4.
Proof of Theorem 1.4. According to the above theorem and consideration from the

beginning of the previous section, it is enough to examine the smallest possible cases:
p = 19, p = 7, p = 23 and p = 11.

In [8], it was calculated that π1(K∅) = ⟨a, b ♣ ab2a−1b−2a−1bab−1a−1b−1⟩ when p = 7.
Further, it was proved that π1(K∅) is not commutative, and consequently, K∅ ̸≃ S

1 .
Here, we will use a similar idea for the remaining three cases.

Using Algorithm 1 from [8] for computing the fundamental group, for the listed
maximal spanning trees, we obtain the following results.

p maximal tree π1(K∅)

19

{[0,3], [0,4], [0,5], [0,6], [0,7], [0,8], [0,9],
[0,10], [0,11], [0,12], [0,13], [0,14], [0,15],
[0,16], [0,17], [0,18], [0,19], [0,20], [0,21],
[0,22], [0,23], [0,24], [0,25], [0,26], [1,3],
[2,3]}

⟨a, b ♣ a−1b−1a−2b−1ab = 1⟩

23

{[2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9],
[2,10], [2,11], [2,12], [2,13], [2,14], [2,15],
[2,16], [2,17], [2,18], [2,19], [2,20], [2,21],
[2,22], [2,23], [2,24], [2,25], [2,26], [2,27],
[2,28], [2,29], [2,30], [0,3], [1,3]}

⟨a, b ♣ b−1a−1b2ab−1aba−1b−1a = 1⟩

11
{[0,3], [0,4], [0,5], [0,6], [0,7], [0,8], [0,9],
[0,10], [0,11], [0,12], [0,13], [0,14], [0,15],
[0,16], [0,17], [0,18], [1,3], [2,3]}

⟨a, b ♣ a−1bab−2 = 1⟩

Note that ⟨a, b ♣ a−1b−1a−2b−1ab = 1⟩ and ⟨a, b ♣ a−1bab−2 = 1⟩ are distinct pre-
sentations of the same group. Namely, starting with ⟨a, b ♣ a−1b−1a−2b−1ab = 1⟩ and
letting x = a−1b−1a−1, y = a−1 we obtain new presentation ⟨x, y ♣ x2y−1x−1y = 1⟩ for
the same group. This group is Baumslag-Solitar group BS(1, 2) (for more details see
[2]). The group BS(1, 2) is not commutative. Namely, we can define an epimorphism
f : BS(1, 2) → S3, such that f(x) = (123), f(y) = (23). Since permutation group
S3 is not commutative, BS(1, 2) cannot be commutative. Consequently, π1(K∅) ̸≃ S1

when p = 11 and p = 19.
Now, we consider π1(K∅) when p = 23. Letting x = b−1a−1, relation

b−1a−1b2ab−1aba−1b−1a = 1

transforms into relation xb2x−1b−2x−1bxb−1x−1b−1 = 1. Thus, π1(K∅) is the same
group for p = 7 and p = 23. Therefore, K∅ ̸≃ S

1 when p = 23. □
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