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GRAPHS WITH AT MOST FOUR SEIDEL EIGENVALUES

MODJTABA GHORBANI1, MARDJAN HAKIMI-NEZHAAD1, AND BO ZHOU2

Abstract. Let G be a graph of order n with adjacency matrix A(G). The eigen-
values of matrix S(G) = Jn − In − 2A(G), where Jn is the n by n matrix with all
entries 1, are called the Seidel eigenvalues of G. Let G(n, r) be the set of all graphs
of order n with a single Seidel eigenvalue with multiplicity r. In the present work,
we will characterize all graphs in the class G(n, n − i) for i = 1, 2 and for the case
i = 3 our characterization is done by this condition that the nullity of S(G) is zero.
If the nullity of S(G) is not zero the problem is solved in special cases.

1. Introduction

Let G be a simple graph on n vertices with adjacency matrix A(G). The roots of
the characteristic polynomial PG(λ) = det(λIn − A(G)) of G, where In is the identity
matrix of order n, are called the eigenvalues of G. The spectrum of an adjacency
matrix A(G) of G is the multiset of its eigenvalues and forms the spectrum of G
denoted by Spec(G).

Lint and Seidel in [13] introduced a symmetric (0, −1, 1)-adjacency matrix for a
graph G called the Seidel matrix of G as S(G) = Jn − In − 2A(G), where Jn is the n
by n matrix with entries 1 in every position.

The rank of the matrix S(G) denoted by rank(S(G)) is equal to the maximum
number of linearly independent columns of S(G). The multiplicity of the eigenvalue
zero of A(G) is called the nullity of G denoted by η(G).

Let µ1(G), . . . , µn(G) be the Seidel eigenvalues of G, namely the roots of det(µI −
S(G)), arranged in non-increasing order. The multiset of distinct Seidel eigenvalues
of G composes the Seidel spectrum of G and we denote it by SpecS(G). If G has
exactly s distinct Seidel eigenvalues µ1(G), . . . , µs(G) with multiplicities t1, . . . , ts,
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respectively, then we write SpecS(G) = {[µ1(G)]t1 , . . . , [µs(G)]ts}. We encourage the
interested readers to consult papers [7,9] for more information about the mathematical
properties of this matrix.

A Seidel switching of graph G can be constructed as follows. Let V (G) = U1 ∪ U2
be a partition of vertices of G and G′ be a graph obtained from G by removing all
edges between U1 and U2 and adding all edges between them not presented in G. We
say that G′ is a Seidel switching of G with respect to U1 and in this case G′ and G
are Seidel co-spectral, see [8]. Two graphs G and G′ are called switching equivalent,
if G′ is constructed by a sequence of Seidel switching from G.

The Figure 1 contains the class of graphs of order n, 2 ≤ n ≤ 6, and their Seidel
switching together with their Seidel spectra, see [13]. For example, in Figure 1 three
switching equivalent classes of all graphs of order 4 are presented.

We proceed as follows. In the rest of this section, further definition are given and
known results needed are stated. In Section 2, we provide some preparatory results.
Section 3 contains the main results of this paper. In other words, in this section, we
give the characterization of some graphs in G(n, n − i) for i = 1, 2, 3 in terms of their
Seidel eigenvalues.

The complement of graph G is denoted by G. Also, the complete graph, cycle graph
and path graph on n vertices are denoted by Kn, Cn and Pn, respectively. A complete
bipartite graph with a bipartition of sizes a and b is denoted by Ka,b, where a + b = n.

A graph obtained by removing a perfect matching from Ka,b is denoted by K−
a,b.

The union of two disjoint graphs G and H is denoted by G ∪ H. The join G + H is
the graph obtained from G ∪ H by connecting all vertices from V (G) with all vertices
from V (H).

The graph G + e is a new graph obtained from G by adding an edge e.
Let A = (aij)m×n and B = (bij)p×q be two arbitrary matrices. A new mp × nq

product matrix constructed from A by replacing each element aij with the block aijB
is called as Kronecker product or Tensor product of them and we denote it by A ⊗ B.

2. Auxiliary Results

Lemma 2.1 ([3]). For any graph G with n vertices, where n ≥ 2, we have
i) ∑n

i=1 µi(G) = 0;
ii) ∑n

i=1 µ2
i (G) = n(n − 1).

Lemma 2.2 ([3]). If G is a graph on n vertices, then rank(S(G)) = n − 1 or n.
Theorem 2.1 (Interlacing Theorem, [3]). Let G be a graph of order n with induced
subgraph H of order m. Let µ1(G) ≥ · · · ≥ µn(G) and µ1(H) ≥ · · · ≥ µm(H)
be eigenvalues of G and H, respectively. Then for every i, 1 ≤ i ≤ m, we have
µi(G) ≥ µi(H) ≥ µn−m+i(G).

Let G(n, r) be the set of a graphs on n vertices which has a single Seidel eigenvalue
with multiplicity r. Here, we give the characterization of some graphs in G(n, n − i)
for i = 1, 2, 3 in terms of their Seidel eigenvalues.
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Figure 1. Each graph in above diagram is a representative of a
class of graphs of order n (2 ≤ n ≤ 6) together with their switching
equivalent graphs which have the same Seidel spectra. Also, all Seidel
eigenvalues are written in the right hand side of each graph.

Theorem 2.2. A graph of order n ≥ 2 has exactly one positive Seidel eigenvalue if
and only if it is a complete bipartite graph or an empty graph.

Proof. Let G be a graph of order n. If G ̸= Kn1,n2 , where n1 + n2 = n and n ≥ 2,
then we have

SpecS(Kn1,n2) = {[−1]n−1, [n − 1]1},
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Figure 2. Three switching equivalent classes of graphs of order 4

thus µ2(G) = −1. Now suppose that G is connected graph, where µ2(G) < 0 and
G ̸= Kn1,n2 . Hence, either K3 or P4 are as an induced subgraph of G. Since

SpecS(K3) = {[−2]1, [1]2}

and

SpecS(P4) = {[−
√

5]1, [−1]1, [1]1, [
√

5]1},

the interlacing theorem yields that µ2(G) ≥ µ2(K3) = 1 or µ2(G) ≥ µ2(P4) = 1, a
contradiction. If G is a disconnected graph with exactly one positive Seidel eigenvalue,
then G is Seidel equivalent to a connected graph (e.g., by letting U1 be the vertex set
of a component), thus G is Seidel equivalent to a complete bipartite graph (by the
first part of the proof) and consequently to an empty graph. □

Corollary 2.1. If G ̸= Kn1,n2, n1 + n2 = n, is a connected graph with at least two
vertices, then µ2 ≥ 1.

Corollary 2.2. A connected graph G has exactly two positive Seidel eigenvalues if
and only if it has K3 or P4 as an induced subgraph.

Theorem 2.3. A graph of order n ≥ 3 has exactly one negative Seidel eigenvalue if
and only if it is a complete graph or it is isomorphic with Kn1 ∪Kn2, where n1 +n2 = n.

Proof. By regarding S(G) = −S(G), one can see that if G has exactly one negative
Seidel eigenvalue then G has exactly one positive Seidel eigenvalue. By Theorem 2.2
the proof is complete. □

Corollary 2.3. If G ̸= Kn is a connected graph with at least three vertices, then
µn−1(G) ≤ −1.

Corollary 2.4. The connected graph G has exactly two negative Seidel eigenvalues if
and only if it has graph P3 as an induced subgraph.
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3. Main Results

The main goal of this paper is to classify some classes of graphs G ∈ G(n, n − i) for
i = 1, 2, 3. For i = 1, 2 the problem is completely solved but for i = 3, in the case that
η(G) = 0, we are done. But if η > 0, we characterized the graphs in special cases. At
first, suppose G is a graph with a single eigenvalue with multiplicity n − 1 or n − 2.
The following result can be obtained.

Theorem 3.1.
(i) For n ≥ 2, G(n, n − 1) = {Kn, Kn, Kn1,n2 , Kn1 ∪ Kn2}, where n1 + n2 = n.

(ii) For n ≥ 3, G(n, n − 2) = {K3, K3, P3, K2 ∪ K1}.

Proof. (i) If G ∈ G(n, n − 1), then G has exactly two distinct Seidel eigenvalues and
so G has one single positive or one single negative Seidel eigenvalue. By Theorems 2.2
and 2.3, G is Seidel equivalent to one of graphs Kn, Kn, Kn1,n2 or Kn1 ∪ Kn2 , where
n1 + n2 = n. This completes the proof of the first claim.

(ii) If G ∈ G(n, n − 2), then G has at most three distinct Seidel eigenvalues and
thus we can consider the following cases.

Case 1. SpecS(G) = {[α]n−2, [β]2}, where α ̸= β are two real numbers.
Subcase 1. If β < 0 < α, then by Lemma 2.1, we obtain

α = 1
n − 2

√
2(n − 1)(n − 2) and β = −1

2
√

2(n − 1)(n − 2).(3.1)

Suppose G is a graph of order greater than 2. If K3 or K2 ∪K1 is an induced subgraph
of G, then by interlacing theorem we have α = 1 and β ≤ −2. Hence (3.1) implies
that n = 0, a contradiction. If K3 or P3 is an induced subgraph of G, then interlacing
theorem yields that α = 2 and β ≤ −1. Thus, (3.1) implies that n = 3 and so G is
Seidel equivalent to one of graphs K3 or P3.

Subcase 2. If α < 0 < β, then a similar argument shows that G is isomorphic to
one of graphs K3 or K2 ∪ K1.

Case 2. SpecS(G) = {[α]n−2, [β]1, [γ]1} and α, β, γ are distinct Seidel eigenvalues.
Lemma 2.2 implies that the multiplicity of the Seidel eigenvalue zero is at most 1. If
[0]1 ∈ SpecS(G), then G has a single positive or a single negative Seidel eigenvalue
and by Theorem 2.2 and 2.3 we conclude that G is Seidel equivalent to one of graphs
Kn, Kn, Kn1,n2 or Kn1 ∪ Kn2 , where n1 + n2 = n, both of them are contradictions. By
a similar argument, the cases β < 0 < α < γ and γ < α < 0 < β and β < 0 < γ < α
and α < γ < 0 < β are impossible. Also, if either α < 0 < β < γ or γ < β < 0 < α,
then G is Seidel equivalent to one of graphs K3, K2 ∪ K1, K3 or P3, all of which are
impossible, and we are done. □

For the graph G in G(n, n − 3), we know that G has at most four distinct Seidel
eigenvalues. In terms of the number and multiplicity of Seidel eigenvalues, we can
divide all graphs in G(n, n − 3) into three classes:

G1(n, n − 3) =
{
G ∈ G(n, n − 3)

∣∣∣ SpecS(G) = {[α]n−3, [β]3}
}
,
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G2(n, n − 3) =
{
G ∈ G(n, n − 3)

∣∣∣ SpecS(G) = {[α]n−3, [β]2, [γ]1}
}
,

G3(n, n − 3) =
{
G ∈ G(n, n − 3)

∣∣∣ SpecS(G) = {[α]n−3, [β]1, [γ]1, [ρ]1}
}
.

Theorem 3.2 ([6]). Let G be a graph of order n. Let d ≥ 1 and S(G) be a Seidel
matrix of order n ≥ 2 with smallest eigenvalue µn(G) of multiplicity n − d ≥ 1 and
suppose µ2

n(G) ≥ d + 2. Then

n ≤ d(µ2
n(G) − 1)

µ2
n(G) − d

,

with equality holds if and only if the spectrum of S(G) is
{
[µn(G)]n−d, [µn(G)

d
(n − d)]d

}
.

Example 3.1. Suppose G ∈ G(5, 2) and rank(S(G)) = 4. Then by Figure 1, G(5, 2) =
{G1, G2, C5, P4 ∪ K1}, where G1 and G2 are as depicted in Figure 3. Furthermore,
their Seidel spectra are SpecS(G) = {[−

√
5]2, [0]1, [

√
5]2}.

G1 G2

Figure 3. Two graphs G1 and G2 in Theorem 3.3

Theorem 3.3. Let G ∈ G(n, n−3) be a graph of order n ≥ 6 and rank(S(G)) = n−1.
Then G(n, n − 3) is empty.

Proof. If rank(S(G)) = n − 1, then [0]1 ∈ SpecS(G). Hence, we have the following
cases.

Case 1. SpecS(G) = {[α]n−3, [0]1, [β]2}, α ̸= β ̸= 0. If α < β, then by Lemma 2.1,
obtain

α = − 1
n − 3

√
2n(n − 3) and β = 1

2
√

2n(n − 3).(3.2)

Suppose G is a graph of order at least 6 and contains one of graphs K4 or K2 ∪ K2
or K1 ∪ K3 as an induced subgraph. First, notice that

SpecS(K4) = SpecS(K2 ∪ K2) = SpecS(K1 ∪ K3) = {[−3]1, [1]3}.

Hence, interlacing theorem, yields that α = −3, β ≥ 1 and 1 ≤ 0, a contradiction.
Suppose K4 or C4 or K1,3 is an induced subgraph of G. Since

SpecS(K4) = SpecS(C4) = SpecS(K1,3) = {[−1]3, [3]1},

the interlacing theorem implies that α = −1 and β ≥ 3. Hence, by (3.2), we
find n = −3 which contradicts this fact that n ≥ 6. If there is no graph with
either Seidel eigenvalues {[−1]3, [3]1} or {[−3]1, [1]3} as an induced subgraph of G,
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then, by Figure 1, every induced subgraph on 4 vertices has the Seidel spectrum
{[−

√
5]1, [−1]1, [1]1, [

√
5]1}. Hence, the interlacing theorem implies that α = −

√
5,

β ≥
√

5 and so by (3.2) we obtain n = 5 and β =
√

5, a contradiction. Now, suppose
α > β. By a similar argument, we can show that this case is also impossible.

Case 2. SpecS(G) = {[α]n−3, [0]1, [β]1, [γ]1}, where α, β, γ are three distinct non-
zero real numbers. Suppose that G is not a graph with a single negative (positive)
Seidel eigenvalue. Then we yield n ≥ 6 and the following cases hold.

Subcase 2.1. If α < 0 < β < γ, then we can suppose either K4, K2 ∪ K2 or
K1 ∪ K3 is an induced subgraph of G. The interlacing theorem yields that α = −3
and γ > β ≥ 1, a contradiction. Also, we may assume one of graphs K4 or C4 or
K1,3 is an induced subgraph of G. Again, interlacing theorem implies that α = −1,
β > 0 and γ ≥ 3. Thus by Lemma 2.1 we find β = γ = 1

2(n − 3 +
√

n2 + 2n − 3), a
contradiction. This means that P4, C4 + e, K3 + e, K2 ∪ K2 or P3 ∪ K1 is an induced
subgraph of G. Then interlacing theorem implies that α = −

√
5, β ≥ 1 and γ ≥

√
5.

Hence, by Lemma 2.1, we obtain β = γ = 1
2(

√
5(n − 3) +

√
−3n2 + 18n − 15) which

contradicts this fact that β < γ.
Subcase 2.2. Let β < γ < 0 < α. Since S(G) = −S(G) a similar argument with

Subcase 2.1 shows that this case is also impossible. This completes the proof. □

Theorem 3.4. Let G ∈ G1(n, n − 3) be a graph of order n ≥ 4. Then

G1(n, n − 3) ={K4, K4, C4, K1,3, K2 ∪ K2, K3 ∪ K1, C5 ∪ K1, H1, H2, H3},

where Hi, 1 ≤ i ≤ 3, are as depicted in Figure 4.

Proof. Let SpecS(G) = {[α]n−3, [β]3}. If α < β, then by Lemma 2.1, we get

α = −1
n − 3

√
3(n − 1)(n − 3) and β = 1

3
√

3(n − 1)(n − 3).(3.3)

Similar to the Theorem 3.3, we can show that one of graphs K4, K2 ∪ K2 or K1 ∪ K3
is an induced subgraph of G and thus α = −3 and β ≥ 1. Hence, (3.3) implies that
n = 4, β = 1 and G has either K4, K2 ∪ K2 or K1 ∪ K3 as an induced subgraph of
G. If K4 or C4 or K1,3 is an induced subgraph of G, then we have α = −1, β ≥ 3
and so by (3.3), we find n = 0 or n = 3, a contradiction with n ≥ 4. If G has one
of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 as an induced subgraph,
by interlacing theorem, we conclude that α = −

√
5, β ≥

√
5 and (3.3) yields n = 6.

Hence, SpecS(G) = {[−
√

5]3, [
√

5]3}. By Figure 1, G is Seidel equivalent to one of
graphs C5 ∪ K1, H1, H2 or H3. Next suppose that β < α. It is not difficult to see
that G is Seidel equivalent to one of graphs K4 or C4 or K1,3 or C5 ∪ K1 or H1 or H2
or H3. This completes the proof. □
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H1 H2 H3

Figure 4. Three graphs H1, H2 and H3 in Theorem 3.4

Theorem 3.5. There is no graph in G2(n, n − 3) of order n ≥ 4 with Seidel spectrum
{[α]n−3, [β]2, [γ]1}, where α, β and γ satisfy in the following conditions:

(i) γ < 0 < α < β or γ < 0 < β < α or β < α < 0 < γ or α < β < 0 < γ;
(ii) α < 0 < β < γ or γ < β < 0 < α;

(iii) β < 0 < γ < α or α < γ < 0 < β;
(iv) β < γ < 0 < α or α < 0 < γ < β.

Proof. (i) If G has a single positive or a single negative Seidel eigenvalue with multi-
plicity 1, then Theorems 2.2 and 2.3 yield that G2(n, n − 3) is empty.

(ii) Suppose that α < 0 < β < γ and n ≥ 5 (if n = 4 then G has only one negative
Seidel eigenvalue and G2(n, n − 3) is empty). If one of graphs K4 or K2 ∪ K2 or
K1 ∪ K3 is an induced subgraph of G, then by interlacing theorem, we get α = −3
and γ > β ≥ 1. Thus Lemma 2.1 implies that{

−3(n − 3) + 2β + γ = 0,
9(n − 3) + 2β2 + γ2 = n(n − 1).

Consequently, γ = 3(n − 3) − 2β and so β = 1
3(3n − 3 ±

√
−3n(n − 4)). Thus,

−3n(n−4) ≥ 0 if and only if n = 4. This means that β = 1 and γ = 1, a contradiction.
Now, suppose one of graphs K4 or C4 or K1,3 is an induced subgraph of G. Thus,
α = −1, β > 0 and γ ≥ 3. Thus, by Lemma 2.1, we find γ = n − 1 and β = −1,
a contradiction. If one of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 is
an induced subgraph of G, again one can prove that α = −

√
5, β ≥ 1 and γ ≥

√
5.

Hence, Theorem 3.2 implies that n ≤ 6. There is no graph with these conditions and
thus in this case G2(n, n − 3) is empty.

By a similar argument, we can show that in all cases (ii)-(iv), G2(n, n−3) is empty
and the proof is complete. □

Theorem 3.6 ([3]). Let G be a k-regular graph of order n. Then the Seidel spectrum
of G is {[n − 1 − 2k]1, [−1 − 2λn−1]1, . . . , [−1 − 2λ1]1}, where λi (1 ≤ i ≤ n) are
eigenvalues of adjacency matrix A(G).

Theorem 3.7 ([4]). Suppose that G is a graph of order n without isolated vertices.
Then η(G) = n − 3 if and only if G is isomorphic to the complete tripartite graph
Kn1,n2,n3, where n1 + n2 + n3 = n, n1, n2, n3 > 0.
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In continuing by Qn(4, 2) we mean the collection of all connected regular graphs of
order n with spectrum {[λ1]1, [λ2]1, [λ3]t1 , [λ4]t2}, t1 + t2 = n − 2. Also, Qn(4, 2, −1)
(resp. Qn(4, 2, 0)) denotes the set of all graphs in Qn(4, 2), in which −1 (resp. 0) is an
eigenvalue.

Let G be a graph of order n and adjacency matrix A. By G⊛Jm we mean a new
graph obtained from G by replacing every vertex of G with a clique Km and two such
cliques are adjacent (namely for two cliques Q1 and Q2 all vertices of Q1 are adjacent
with all vertices of Q2) if and only if their corresponding vertices are joined in G, see
[11]. One can see that the adjacency matrix of G⊛Jm is A⊛Jm = (A+ In)⊗Jm − Inm.
Theorem 3.8 ([11]). The connected regular graph G is in Qn(4, 2, 0) if and only if
G = K−

s,s⊛Jt, where n = 2st, s ≥ 3 and t ≥ 1.
Theorem 3.9 ([11]). The connected regular graph G is in Qn(4, 2, −1) if and only if
G = Ks,s⊛Jt, where s, t ≥ 2, or G = K−

s,s⊛Jt, where n = 2st, s ≥ 3 and t ≥ 1.
Theorem 3.10 ([11]). There is no connected k-regular graph of order n ≥ 4 with
adjacency spectrum {[k]1, [λ2]1, [λ3]1, [λ4]n−3}.

Theorem 3.11. Let G ∈ G2(n, n − 3) be a connected regular graph of order n ≥ 4.
Then the following cases hold.

(i) If γ < α < β, then G is isomorphic to the one of graphs Kn
3 , n

3 , n
3
, n ≡ 0

(mod 3) or K−
3,3⊛Jn

6
, n ≡ 0 (mod 6).

(ii) If β < α < γ, then G is isomorphic to K−
3,3⊛Jn

6
, n ≡ 0 (mod 6).

Proof. (i) Let G be a graph of order n. By Theorem 3.5, we can assume that
γ < α < 0 < β. If one of graphs K4 or K2 ∪ K2 or K1 ∪ K3 is an induced subgraph of
G, then by interlacing theorem we get α = 1, a contradiction. If G has one of graphs
P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 as an induced subgraph of G, then
we obtain γ ≤ −

√
5, α = −1, β ≥

√
5 and so by Lemma 2.1, we get β = 2n

3 − 1 and
γ = −n

3 − 1. As well as, if one of graphs K4 or C4 or K1,3 is an induced subgraph of
G, Lemma 2.1 implies that β = 2n

3 − 1 and γ = −n
3 − 1. Therefore,

SpecS(G) =
{[−n

3 − 1
]1

, [−1]n−3,
[2n

3 − 1
]2}

,

where n ≡ 0 (mod 3). By Theorem 3.6, the adjacency spectrum of G is

Spec(G) =
{ [−n

3

]2
, [0]n−3,

[2n

3

]1 }
or

Spec(G) =
{ [−n

3

]2
, [0]n−4,

[
n

6

]1
,
[
n

2

]1 }
.

Suppose Spec(G) = {[−n
3 ]2, [0]n−3, [2n

3 ]1}, since η(G) = n − 3, by Theorem 3.7, G
is isomorphic to Kn

3 , n
3 , n

3
. If Spec(G) = {[−n

3 ]2, [0]n−4, [n
6 ]1, [n

2 ]1}, then Theorem 3.8
implies that G is isomorphic to K−

3,3 ⊛ Jn
6
, where n ≡ 0 (mod 6).



182 M. GHORBANI, M. HAKIMI-NEZHAAD, AND B. ZHOU

(ii) Assume that β < 0 < α < γ. It is not difficult to see that α = 1 and Lemma
2.1 yields that γ = n

3 + 1 and β = 1 − 2n
3 . By Theorem 3.6, we obtain

Spec(G) =
{[−n

6 − 1
]1

, [−1]n−3,
[
n

3 − 1
]1

,
[5n

6 − 1
]1}

(3.4)

or

Spec(G) =
{[−n

6 − 1
]1

, [−1]n−4,
[
n

3 − 1
]2

,
[
n

2 − 1
]1

}
.(3.5)

Theorem 3.10 implies that (3.4) is impossible. If (3.5) holds, then Theorem 3.9
yields that G is isomorphic to the graph K−

3,3 ⊛Jn
6
, n ≡ 0 (mod 6) and this completes

the proof. □

Example 3.2. Suppose n ≡ 0 (mod 3). For two graphs G1 = Kn
3 , n

3
∪ K n

3
and G2 =

Kn
3 , n

3
∪ K n

3
, we obtain

SpecS(G1) =
{[−n

3 − 1
]1

, [−1]n−3,
[2n

3 − 1
]2}

,

SpecS(G2) =
{[−2n

3 + 1
]2

, [1]n−3,
[
n

3 + 1
]1

}
.

This implies that both graphs G1 and G2 are in G2(n, n − 3).

Example 3.3. Suppose n = 6. By using a program in SageMath software [12], we
conclude that all graphs in G2(6, 3) are as depicted in Figures 5 and 6.

Figure 5. All graphs in G2(6, 3) with Seidel spectrum {[3]2, [−1]3, [−3]1}

Figure 6. All graphs in G2(6, 3) with Seidel spectrum {[3]1, [1]3, [−3]2}

In what follows, by mG we mean the disjoint union of m copies of G, namely
G ∪ · · · ∪ G︸ ︷︷ ︸

m times

.
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Theorem 3.12 ([3]). (i) A graph G with the smallest Seidel eigenvalue larger than
−3 is switching equivalent to graphs Kn or K2 ∪ Kn−2 or one of graphs depicted in
Figure 7.

(ii) A graph G with smallest Seidel eigenvalue greater than or equal with −3 is
Seidel equivalent to a subgraph of mK2, m ≥ 2, or of T (8) (namely the complement
of the line graph of K8).

U1 U2

U3 U4 U5

U6 U7 U8 U9 U10

Figure 7. Ten graphs with the smallest Seidel eigenvalue larger
than −3.

Table 1. Graphs together with the Seidel spectra in Theorem 3.12.

Graphs Seidel spectrum
Kn {[−1]n−1, [n − 1]1}
K2 ∪ Kn−2 {[ n

2 − 2 − 1
2
√

(n + 6)(n − 2)]1, [−1]n−3, [1]1, [ n
2 − 2 + 1

2
√

(n + 6)(n − 2)]1}
U1 {[−2.56]1, [−1]2, [1.56]1, [3]1}
U2 {[−

√
5]2, [0]1, [

√
5]2}

U3 {[−2.75]1, [−1]3, [1.69]1, [4.06]1}
U3 {[−

√
5]3, [

√
5]3}

U5 {[−2.6]1, [−2.24]1, [−1], [0.11]1, [2.24]1, [3.49]1}
U6 {[−2.78]1, [−2.46]1, [−1]2, [0.29]1, [2.49]1, [4.46]1}
U7 {[−2.9]1, [−1]4, [1.74]1, [5.15]1}
U8 {[−2.83]1, [−2.24]1, [−1]2, [0.15]1, [2.24]1, [4.68]1}
U9 {[−2.6]2, [−2]1, [0.11]2, [3.49]2}
U10 {[−2.7]1, [−2.24]1, [−1]1, [2.24]2, [3.7]1}
mK2 (m ≥ 2) {[−3]m−1, [1]m, [n − 3]1}
T (8) {[−3]21, [9]7}

Example 3.4. Suppose G ∈ G3(4, 1), then we have G3(4, 1) = {K2 ∪ K2, P3 ∪ K1, K3 +
e, P4, C4 + e} and SpecS(G) = {[−

√
5]1, [−1]1, [1]1, [

√
5]1}.
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Theorem 3.13. Let G ∈ G3(n, n − 3) be a graph of order n ≥ 5. Then the following
cases hold.

(i) There is no graph in G3(n, n − 3) which satisfies in the following conditions:
α < β < γ < 0 < ρ or β < α < γ < 0 < ρ or β < γ < α < 0 < ρ or

ρ < 0 < γ < β < α or ρ < 0 < γ < α < β or ρ < 0 < α < γ < β or

α < β < 0 < γ < ρ or ρ < γ < 0 < β < α.

(ii) If α < 0 < β < γ < ρ or ρ < γ < β < 0 < α, then G is Seidel equivalent to a
subgraph of mK2, m ≥ 2, or of T (8).

Proof. (i) If G has a single positive or a single negative Seidel eigenvalue with mul-
tiplicity 1, then by Theorems 2.2 and 2.3, G3(n, n − 3) is empty. Now, suppose
α < β < 0 < γ < ρ and n ≥ 5. If one of graphs K4 or K2 ∪ K2 or K1 ∪ K3 is an
induced subgraph of G, then by interlacing theorem, we get α = −3 and β ≥ 1, a
contradiction. If G has one of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1
as an induced subgraph, then we yield α = −

√
5, −1 ≤ β < 0, γ ≥ 1 and ρ ≥

√
5.

As well as, if one of graphs K4 or C4 or K1,3 is an induced subgraph of G, then we
obtain α = −1, −1 ≤ β < 0, γ > 0 and ρ ≥ 3. Since, α > −3, applying Theorem
3.12 (i) and Table 1, we achieve a contradiction. By a similar argument the case
ρ < γ < 0 < β < α is impossible.

(ii) Suppose α < 0 < β < γ < ρ and n ≥ 5. If one of graphs P4 or C4 + e or K3 + e
or K2 ∪ K2 or P3 ∪ K1 is an induced subgraph of G, then α = −

√
5, β > 0, γ ≥ 1

and ρ ≥
√

5 and if one of graphs K4 or C4 or K1,3 is an induced subgraph of G, then
α = −1, β, γ > 0 and ρ ≥ 3, a contradiction with α > −3. If one of graphs K4 or
K2 ∪ K2 or K1 ∪ K3 is an induced subgraph of G, then interlacing theorem, yields
α = −3 and β, γ, ρ ≥ 1. Theorem 3.12 (ii) implies that G is Seidel equivalent to a
subgraph of mK2, m ≥ 2, or of T (8). Let ρ < γ < β < 0 < α. Since S(G) = −S(G),
a similar argument shows that in this case G is Seidel equivalent to a subgraph of
mK2, m ≥ 2, or of T (8). □

Example 3.5. Suppose n = 5. By Figure using a method described in 1, we conclude
that all graphs in G3(5, 2), where β < α < 0 < γ < ρ and ρ < γ < 0 < α < β, are as
depicted in Figures 8 and 9, respectively.

Figure 8. All graphs in G3(5, 2) with Seidel spectrum
{[−2.37]1, [−1]2, [1]1, .37]1}
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Figure 9. All graphs in G3(5, 2) with Seidel spectrum
{[−3.37]1, [−1]1, [1]2, [2.37]1}

Conjecture 3.1. Let G ∈ G3(n, n − 3) be a graph of order n ≥ 6. Then the following
cases hold:

i) if β < α < 0 < γ < ρ, then G is Seidel equivalent to Ki,j ∪ Kp;
ii) if ρ < γ < 0 < α < β, then G is Seidel equivalent to Ki,j ∪ Kp,

where 1 ≤ i ≤ [n
3 ], i ≤ j ≤ n − 3 and 3 ≤ p ≤ n − (i + j) unless n ≡ 0 (mod 3) and

i = j = p = n
3 .

Remark 3.1. Suppose G ∈ G3(n, n − 3) is a graph of order n ≥ 6. If the Seidel
eigenvalues of G are ordered as β < α < 0 < γ < ρ, then it is not difficult to see that
one of graphs P4 or C4 + e or K3 + e or K2 ∪ K2 or P3 ∪ K1 or K4 or C4 or K1,3 is
an induced subgraph of G and by interlacing theorem, we have α = −1. Also, if the
Seidel eigenvalues of G satisfy in ρ < γ < 0 < α < β, by a similar argument we can
show that α = 1.
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