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LIGHTLIKE HYPERSURFACES IN SEMI-RIEMMANIAN
MANIFOLDS ADMITTING AFFINE CONFORMAL VECTOR

FIELDS

SAMUEL SSEKAJJA1

Abstract. Lightlike hypersurfaces with integrable screen distributions are very
important as far as lightlike geometry is concerned. They include, among others,
screen conformal and screen totally umbilic ones. In this paper, we show that any
lightlike hypersurface of a semi-Riemannian manifold admitting a certain closed
affine conformal vector field has an integrable screen distribution. Several examples
are furnished in support of the main results.

1. Introduction

Lightlike submanifolds are very important and their numerous applications, partic-
ularly to mathematical physics-like in general relativity and electromagnetism moti-
vated the study of lightlike geometry in semi-Riemannian manifolds. More precisely,
lightlike submanifolds have been shown to represent different black hole horizons (see
[3] and [4] for details). Among other motivations for investing in lightlike geometry
by many physicists is the idea that the universe we are living in can be viewed as
a 4-dimensional hypersurface embedded in (4 +m)-dimensional spacetime manifold,
where m is any arbitrary integer. There are significant differences between lightlike
geometry and Riemannian geometry as shown in [3] and [4], and many more refer-
ences therein. Some of the pioneering work on this topic is due to Duggal-Bejancu [3],
Duggal-Sahin [4] and Kupeli [15]. It is upon those books that many other researchers,
including but not limited to [1, 5, 7–10,12,13] have extended their theories.
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Although a lot has been done on the geometry of lightlike submanifolds of semi-
Riemannian manifolds, we remark that very little, see [3, page 259], efforts has
been dedicated towards understanding what affine conformal vector fields, on semi-
Riemmanian manifolds, can offer as far as characterising lightlike hypersurfaces. The
present paper is directed towards achieving a characterisation of lightlike hypersurfaces
in such spaces. The paper is arranged as follows. In Section 2, we quote some basic
notions required in the rest of the paper. In Section 3, we prove some preliminary
results on affine conformal vector fields, and Section 4 is dedicated to the main results
of the study.

2. Preliminaries

An (n+ 2)-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth tensor field
g of type (0, 2) such that, for each point p ∈ M , the tensor gp : TpM × TpM −→ R
is a non-degenerate inner product of signature (−,+, . . . ,+), where TpM denotes
the tangent vector space of M at p and R is the real number space. A non-zero
vector field v ∈ TpM is said to be timelike (resp., non-spacelike, null and spacelike)
if it satisfies gp(v, v) < 0 (resp., ≤ 0, = 0 and > 0) [11]. Let (M, g) be a (n + 2)-
dimensional semi-Riemannian manifold and let M be a hypersurface of M . Let g
be the induced tensor field by g on M . Then, M is called a lightlike hypersurface of
M if g is of constant rank n [3]. Consider the vector bundle TM⊥ whose fibers are
defined by TxM

⊥ = {Yx ∈ TxM : gx(Xx, Yx) = 0 for all Xx ∈ TxM}, for any x ∈ M .
Hence, a hypersurface M of M is lightlike if and only if TM⊥ is a distribution of
rank 1 on M . Let M be a lightlike hypersurface. We consider the complementary
distribution S(TM) to TM⊥ in TM , which is called a screen distribution. It is well-
known that S(TM) is non-degenerate (see [3]). Thus, we have the decomposition
TM = S(TM) ⊥ TM⊥.

As S(TM) is non-degenerate with respect to g, we have TM = S(TM) ⊥ S(TM)⊥,
where S(TM)⊥ is the complementary vector bundle to S(TM) in TM |M . Let (M, g)
be a lightlike hypersurface of (M, g). Then there exists a unique vector bundle tr(TM),
called the lightlike transversal bundle [3] of M with respect to S(TM), of rank 1 over
M such that for any non-zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M ,
there exists a unique section N of tr(TM) on U satisfying

g(ξ,N) = 1, g(N,N) = g(N,Z) = 0,(2.1)

for any section Z of S(TM). Consequently, we have the following decomposition of
TM

TM |M = S(TM) ⊥ {TM⊥ ⊕ tr(TM)} = TM ⊕ tr(TM).

Let ∇ and ∇∗ denote the induced connections on M and S(TM), respectively, and
P be the projection of TM onto S(TM), then the local Gauss-Weingarten equations
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of M and S(TM) are the following [3]
∇XY = ∇XY +B(X, Y )N, ∇XN = −ANX + τ(X)N,(2.2)

∇XPY = ∇∗
XPY + C(X,PY )ξ, ∇Xξ = −A∗

ξX − τ(X)ξ,(2.3)

for all X, Y ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)), where ∇ is the Levi-Civita
connection on M . In the above setting, B is the local second fundamental form of M
and C is the local second fundamental form on S(TM). AN and A∗

ξ are the shape
operators on TM and S(TM) respectively, while τ is a 1-form on TM . The above
shape operators are related to their local fundamental forms by

B(ξ,X) = 0, g(A∗
ξX, Y ) = B(X, Y ), g(ANX,PY ) = C(X,PY ),

for any X, Y ∈ Γ(TM). Moreover, g(A∗
ξX,N) = 0 and g(ANX,N) = 0 for all

X ∈ Γ(TM). From these relations, we notice that A∗
ξ and AN are both screen-valued

operators. Moreover, it is easy to show that
(∇Xg)(Y, Z) = B(X, Y )θ(Z) +B(X,Z)θ(Y ),(2.4)

for all X, Y, Z ∈ Γ(TM). Consequently, ∇ is generally not a metric connection with
respect to g. However, the induced connection ∇∗ on S(TM) is a metric connection.

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold (M, g) is
screen conformal [4, Definition 2.2.1, p. 51] if the shape operators AN and A∗

ξ of M and
S(TM), respectively, are related by AN = ψA∗

ξ , where ψ is a non-vanishing smooth
function on a neighbourhood U in M . In particular, if ψ is a non-zero constant, M is
called screen homothetic. When AN and A∗

ξ are instead linked by AN = ψ1A
∗
ξ + ψ2P ,

for some smooth functions ψ1 and ψ2, then M is called quasi screen conformal [12]. It
is easy to see that a quasi screen conformal lightlike hypersurface is screen conformal
when ψ2 ≡ 0. A semi-Riemannian manifold (M, g) of constant sectional curvature c
is called a semi-Riemannian space form (see [11, p. 80]) and denoted by M(c). The
curvature tensor field R of M(c) is given by
(2.5) R(X, Y )Z = c{g(Y, Z)X − g(X,Z)Y }, for all X, Y, Z ∈ Γ(TM).

3. Some Basic Results

A smooth vector field V on a semi-Riemannian manifold (M, g) is said to be an
affine conformal vector (ACV) field if there exists a smooth function ρ : M → R,
called the potential, on M that satisfies

(£V ∇)(X, Y ) = (Xρ)Y + (Y ρ)X − g(X, Y ) grad ρ,(3.1)

where £V is the Lie derivative with respect V and the affinity tensor (£V ∇) of V
defined by

(£V ∇)(X, Y ) = £V ∇XY − ∇£LXY − ∇X£ZY,

for all X, Y ∈ Γ(TM). In particular, V is an affine vector field if ρ is constant, that
is if £V ∇ = 0. The following result is well-known for an ACV field V .
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Theorem 3.1 ([2, 3]). A vector field V on M is an ACV if and only if
£V g = 2ρg(X, Y ) +K, ∇K = 0,(3.2)

where K is a covariant constant (∇K = 0) symmetric and therefore, Killing tensor
(abbreviated K-tensor) of second order.

A sub case is the conformal killing vector (CKV) when K = 0 and ρ;a = Xaρ ̸= 0,
a = 0, 1, 2, . . . , n + 1. This also includes homothetic vector fields (HV) and killing
vector fields (KV) when ρ;a = 0 and ρ = 0, respectively. See [2, p. 276] or [3, p. 264],
and many more references cited therein, for more details.
Example 3.1 (K. L. Duggal [2]). Let M be a four-dimensional Einstein static fluid
spacetime with metric

ds2 = −dt2 + (1 − r2)−1dr2 + r2(dθ2 + sin2 θd, ϕ2)
and the fluid 4-velocity vector ua = δa

a, a = 0, 1, 2, 3. This spacetime admits a CKV
V a

1 = (1 − r2)1/2 cos tδ1
0 − r(1 − r2)1/2 sin tδa

0

and a proper affine vector V a
2 = tδa

0 . As the spacetime metric is reducible, the
combination V a = V a

1 + V a
2 is a proper ACV [2, p. 279] such that

V =(t+ (1 − r2)1/2 cos t)δa
0 − r(1 − r2)1/2 sin tδa

1 ,

ρ = − (1 − r2)1/2 sin t, Kab = −2t;at;b.
Utilising Koszul’s formula [11, Theorem 11, p. 61], we have

2g(∇XV, Y ) = (£V g)(X, Y ) + dη(X, Y ),(3.3)
for all X, Y ∈ Γ(TM), where η is the 1-form dual to V , that is, η(X) = g(V,X),
X ∈ Γ(TM). Define a skew symmetric tensor field φ of type (1, 1) on M by

dη(X, Y ) = 2g(φX, Y ),(3.4)
for all X, Y ∈ Γ(TM). The skew symmetric tensor field φ in the above equation is
called the associate tensor field [6] of the affine conformal vector field V . We say that
V is a closed affine conformal vector field if η is closed, that is dη = 0. Also, define a
symmetric tensor field AK of type (1, 1) on M by

K(X, Y ) = g(AKX, Y ),(3.5)
for all X, Y ∈ Γ(TM), where K is the symmetric (0, 2) tensor of Theorem 3.1. Then,
using (3.2)–(3.5), and the fact that g is nondegenerate, we get the following result.
Lemma 3.1. A vector field V on a semi-Riemannian manifold (M, g) is an ACV
field if and only if

∇XV = ρX + 1
2AKX + φX and (∇XAK) = 0,(3.6)

for all X ∈ Γ(TM), where AK and φ are tensor fields of type (1, 1) on M , in which
AK is symmetric and φ is skew-symmetric.
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Proof. From (3.2)–(3.5), we have

g(∇XV, Y ) = ρg(X, Y ) + 1
2g(AKX, Y ) + g(φX, Y ),

from which the first relation of (3.6) follows by utilising the fact that g is non-
degenerate. On the other hand, using the second condition of (3.2), that is ∇K = 0,
together with (3.5), we get

Xg(AKY, Z) = g(AK∇XY, Z) + g(AKY,∇XZ),(3.7)

for any X, Y, Z ∈ Γ(TM). As ∇ is Levi-Civita, it then follows from (3.7) that

g(∇XAKY, Z) + g(AKY,∇XZ) = g(AK∇XY, Z) + g(AKY,∇XZ),

from which one gets

g((∇XAK)Y, Z) = 0, for all X, Y, Z ∈ Γ(TM).(3.8)

Then (3.8) shows that (∇AK) = 0, as g is non-degenerate, which proves the second
relation in (3.6), and completing the proof. □

Lemma 3.2. Let V be an ACV field on a semi-Riemannian manifold (M, g), then
the covariant derivative of φ satisfies

(∇Xφ)(Y ) = R(X, V )Y + (Y ρ)X − g(X, Y ) grad ρ,(3.9)

where (∇Xφ)(Y ) = ∇XφY − φ∇XY for any X, Y ∈ Γ(TM).

Proof. Note, from (3.4), that the smooth 2-form g(φX, Y ) is closed. Thus, a direct
calculation gives

g((∇Xφ)(Y ), Z) + g((∇Y φ)(Z), X) + g((∇Zφ)(X), Y ) = 0,(3.10)

for all X, Y, Z ∈ Γ(TM). Then, using Lemma 3.1, we derive

R(X, Y )V =(Xρ)Y − (Y ρ)X + 1
2(∇XAK)Y − 1

2(∇YAK)X + (∇Xφ)Y − (∇Y φ)X

=(Xρ)Y − (Y ρ)X + (∇Xφ)Y − (∇Y φ)X,(3.11)

in which we have used the fact that ∇AK = 0 (see second relation of (3.6)). Substi-
tuting (3.11) in (3.10) and noting that ∇φ is skew-symmetric, we get

g(R(X, Y )V − (Xρ)Y + (Y ρ)X,Z) + g((∇Zφ)X, Y ) = 0,

which reduces to

g(R(Z, V )X + (Xρ)Z − g(X,Z)gradρ− (∇Zφ)X, Y ) = 0,(3.12)

for all X, Y, Z ∈ Γ(TM). Finally, our result follows from (3.12) using the non-
degeneracy of g, which completes the proof. □
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Lemma 3.3. Let V be an ACV on a semi-Riemannian manifold (M, g). Then Hessian
of the function α := g(V, V ) is given by

Hessα(X, Y ) = − 2g(R(X, V )V, Y ) − 2(V ρ)g(X, Y )
+ 2g(∇XV,∇Y V ) + 2(Xρ)η(Y ) + 2(Y ρ)η(X),(3.13)

for all X, Y ∈ Γ(TM).

Proof. By virtue of (3.6), we derive

g(∇X∇Y V − ∇∇XY V, V ) = g((Xρ)Y + 1
2(∇XAK)Y + (∇Xφ)Y, V )

= g((Xρ)Y + (∇Xφ)Y, V ),(3.14)

for any X, Y ∈ Γ(TM), in which we have used the fact ∇AK = 0. On the other hand,

g(∇X∇Y V, V ) = 1
2X(Y α) − g(∇XV,∇Y V ),(3.15)

g(∇∇XY V, V ) = 1
2(∇XY )α.(3.16)

Replacing (3.15) and (3.16) in (3.14), leads to

Hessα(X, Y ) = 2g(∇XV,∇Y V ) + 2(Xρ)η(Y ) + 2g(∇Xφ)Y, V ).(3.17)

Hence, the result follows from (3.17) and Lemma 3.2. □

4. Main Results

Consider a complementary vector bundle E of TM⊥ in S(TM)⊥ and take V ∈
Γ(E|U). Then g(V, ξ) ̸= 0 on U otherwise S(TM)⊥ will be degenerate at a point of U.
Define on U, a vector field

N = 1
g(V, ξ)

{
V − g(V, V )

2g(V, ξ)ξ
}
,(4.1)

where V ∈ Γ(E|U), such that g(V, ξ) ̸= 0. It is easy to see that N , given by (4.1),
satisfies (2.1). See more details in [4, p. 45] on the construction of N .

The vector field V , appearing in (4.1), is fundamental to the study of lightlike
hypersyrfaces, and submanifolds in general. Its choice on M determines, to some
extent, the geometry of the underlying lightlike hypersurface. For example, it has
been proved in [4, Theorem 2.3.5, p. 63] that if E admits a covariant constant timelike
vector field V , then with respect to a section ξ ∈ TM⊥, (M, g, S(TM)) is screen
conformal. Thus, M can admit an integrable unique screen distribution. A concrete
example in this category include the lightlike Monge hypersurface (see Example 6 in
[4, p. 62]). Thus, we ask the following general question.

Problem 1. Classify lightlike hypersurfaces (M, g, S(TM)) of a semi-riemannian man-
ifold (M, g) relative to the geometry of the vector field V ∈ Γ(E|U).
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We partially respond to the above problem by considering a lightlike hypersurface
(M, g, S(TM)) of a semi-Riemannian manifold (M, g), admitting an affine conformal
vector field (ACV), V ∈ Γ(E|U). To that end, let us set

α := g(V, V ) and β := g(V, ξ).(4.2)

Then, using (4.2), we see that (4.1) give V as

V = βN + α

2β ξ.(4.3)

Then, we have the following result.

Theorem 4.1. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian
manifold (M, g), admitting a closed ACV field, V ∈ Γ(E|U) given by (4.3). Then, M
admits an integrable screen distribution and, therefore, locally isometric to product
manifold ξc ×M∗, where ξc is a lightlike curve tangent to TM⊥ and M∗ a leaf of its
screen distribution. Moreover, M is quasi screen conformal lightlike hypersurface if
AK ◦ P = 0 or AK = 0.

Proof. First note that when V is a closed ACV field, then φ = 0 which follows from
(3.4). It then follows from Lemma 3.1 that

∇XV = ρX + 1
2AKX and (∇XAK) = 0.(4.4)

Using (4.3) and (4.4), together with the Weingarten formulae (4.16) and (2.3), we get

− βANX − α

2βA
∗
ξX +

{
X

(
α

2β

)
− α

2β τ(X)
}
ξ + {X(β) + βτ(X)}N

=ρX + 1
2AKX,(4.5)

for any X ∈ Γ(TM). Taking the inner product of (4.5) with Y ∈ Γ(S(TM)), one gets

βC(X, Y ) + α

2βB(X, Y ) = −ρg(X, Y ) − 1
2K(X, Y ),(4.6)

for any X ∈ Γ(TM) and Y ∈ Γ(S(TM)). As B and K are symmetric, it follows from
(4.6) that C is symmetric on S(TM) too. Hence, by a direct calculation, using (2.3),
we get

θ([X, Y ]) = C(X, Y ) − C(Y,X) = 0,

for all X, Y ∈ Γ(S(TM)), from which we conclude that S(TM) is an integrable
distribution over M . Then, the product assertions follows from [5, Remark 5, p.
215]. Finally, when AKY = 0 for any Y ∈ Γ(S(TM)), then K(X, Y ) = 0 for any
X ∈ Γ(TM). This shows that βC(X, Y ) + α

2β
B(X, Y ) = −ρg(X, Y ). The case

AK = 0 follows in the similar manner. Hence, M is locally quasi screen conformal,
which completes the proof. □
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Example 4.1 (Lightlike hypersurface of generalised Robertson-Walker space). Consider
(F, gF ) to be an (n+ 1)-dimensional, connected, Riemmanian manifold, (I,−dt2) an
open interval of R with its usual metric reversed, and f = eλ (> 0) a smooth function
on I. A Generalized Robertson-Walker (GRW) spacetime with base (I,−dt2), and
fibre (F, gF ) and warping function f is the product manifold M(k, f) = I ×f F
endowed with the Lorentz metric

g = −π∗
Idt

2 + (f ◦ πI)2π∗
FgF ≡ −dt2 + f 2(t)gF ,(4.7)

where πI and πF are the natural projections of I × F onto I and F , respectively, and
k the constant sectional curvature of F . The the GRW metric (4.7) can be rewritten
as

g = f 2(t){−f−2(t)dt2 + gF } = f 2(s){−ds2 + gF },(4.8)

where the variable t is changed by s, define by ds = dt/f(t). Thus, the warped metric
g is conformal to the product metric g̃ = −ds2 + FF . One of the consequences of this
simple fact is: the vector field V = f∂t is parallel for g̃. That is ∇̃V = 0, where ∇̃
is the Levi-Civita connection for g. So, this vector filed is conformal for any metric
conformal to g̃. Thus, for g, we have

£V g = 2ρg,(4.9)

where ρ = f ′ ◦ πI ≡ f ′. From [11, Corollary 8, p. 344], we get

∇XV = f ′X, for all X ∈ Γ(TM).(4.10)

It then follows from (4.9), (4.10), (3.4) and Lemma 3.1 that V = f∂t is CKV and
the 1-form η dual to V is closed, that is V is a closed CKV vector field. Next,
consider a lightlike hypersurface (M, g) of (M, g). Along M , consider the timelike
section V = f∂t ∈ Γ(TM) such that g(V, ξ) = 1, where ξ ∈ Γ(TM⊥). This means
that V is not tangent to M . Therefore, the vector bundle H spanned by V and ξ is
non-degenerate on M . The complementary orthogonal vector bundle S(TM) to H
in TM is a non-degenerate distribution on M and is complementary to TM⊥. Thus,
S(TM) is a screen distribution on M . The unique lightlike transversal vector bundle
tr(TM) is spanned by N = V + 1

2f
2ξ. By direct calculation, using (4.10), we have

ANX − 1
2f

2A∗
ξX = −f ′PX, τ(X) = 0, Xf = −(ln f)′θ(X),(4.11)

for all X ∈ Γ(TM). Then from the first relation in (4.11) we see that M is a quasi
screen conformal lightlike hypersurface.

When M has constant curvature c, we have the following.

Theorem 4.2. Let (M, g, S(TM)) be a lightlike hypersurface of an (n+2)-dimensional
semi-Riemannian manifold (M(c), g) of constant curvature c, admitting a closed ACV
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field V ∈ Γ(E|U), given by (4.3). Then, M is flat if and only if V is an affine vector
field. Moreover, the function α := g(V, V ) satisfies the differential equations

αV (V α) − (V α)2 + 2cα3 − αV K(V, V ) + (V α)K(V, V ) = 0.(4.12)

Proof. From (3.4), the closure of η implies that φ = 0. Therefore, Lemma 3.2 leads to
R(X, V )Y + (Y ρ)X − g(X, Y )gradρ = 0,(4.13)

for all X, Y ∈ Γ(TM). As M has constant curvature c, (4.13) and (2.5) leads to
c{g(V, Y )g(X,Z) − g(X, Y )g(V, Z)} + (Y ρ)g(X,Z) − (Zρ)g(X, Y ) = 0,

for any X, Y, Z ∈ Γ(TM). From the above relation, one gets
{Y ρ+ cg(V, Y )}X = {Xρ+ cg(V,X)}Y.(4.14)

Then it follows from (4.14) that
Xρ+ cg(V,X) = 0, for all X ∈ Γ(TM),(4.15)

which proves the first assertion in the theorem. Letting X = V in (4.15) and using
the obvious fact that ρ = V α−K(V,V )

2α
(comes from the first relation in (3.6) of Lemma

3.1), we get

V

(
V α−K(V, V )

α

)
+ 2cα = 0,

from which (4.12) follows by differentiation, which end the proof. □

Example 4.2. For M(c) = M(k, f), the GRW of Example 4.1, we have ρ = f ′, V = f∂t,
α = g(V, V ) = −f 2 and AK = 0. Then, from these quantities, we have

V α = −2f 2f ′ and V (V α) = −2f 2{2(f ′)2 + ff ′′}.(4.16)
Replacing (4.16) in (4.12), we get

2f ′′ − 2cf = 0.(4.17)
Multiplying (4.17) by f ′ leads to

d

dt
((f ′)2 − cf 2) = 0.(4.18)

Integrating (4.2) gives
(f ′)2 + k = cf 2,(4.19)

where k is a some constant. It then follows from (4.19) that

c = (f ′)2 + k

f 2 .(4.20)

Indeed, relation (4.20) gives the constant sectional curvature of a GRW manifold as
seen in [11, Corollary 9, p. 345]. The parameter k represents the constant sectional
curvature of F .
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Corollary 4.1. Let (M, g, S(TM)) be a lightlike hypersurface of an (n+2) dimensional
semi-Riemannian manifold (M(c), g) of constant curvature c, admitting a closed affine
vector field V ∈ Γ(E|U), given by (4.3). Then M is a flat.

When the smooth function α = g(V, V ) has a critical point on M , we prove the
following result, analogous to [14, Theorem 3.1, p. 98] for projective vector fields.

Theorem 4.3. Let (M, g, S(TM)) be a lightlike hypersurface of an (n+2)-dimensional
Lorentzian manifold, (M, g), admitting a timelike ACV field Vp ∈ Γ(E|U), given by
(4.3). Assume that α := g(V, V ) attains a local maximum at p ∈ M . Then

g(R(X, Vp)Vp, X) + (Vpρ)g(X,X) ≥ 0,(4.21)

for all X ∈ TpM orthogonal to Vp. Hence,
Ric(Vp, Vp) + (n+ 1)Vpρ ≥ 0,(4.22)

where Ric is the Ricci tensor of M . Furthermore, the sectional curvature, κ(π), of
any non-degenerate plane π containing Vp satisfies

κ(π) + Vpρ

α
≤ 0.(4.23)

Moreover, if the equality holds for all such planes, then V is an affine vector field,
that is ρ is constant. The underlying lightlike hypersurface M has an integrable screen
distribution S(TM), and therefore locally isometric to product manifold ξc×M∗, where
ξc is a lightlike curve tangent to TM⊥ and M∗ a leaf of its screen distribution. In
case ANξ = 0, then M is locally screen conformal.

Proof. For the function α = g(V, V ) having a critical point means that Y α = 0, for
any Y ∈ TpM . This means that g(∇Y V, Vp) = 0. Since Vp is timelike, it then follows
that

g(∇Y V,∇Y V ) ≥ 0, for all Y ∈ TpM.(4.24)
On the other hand, (Hessα)p must be negative semi-definite if p is assumed to be a
local maximum. Therefore, from (3.3) and (4.24), we get

g(R(X, Vp)Vp, X) + (Vpρ)g(X,X) ≥ g(∇XV,∇XV ) ≥ 0,(4.25)

for all X ∈ TpM , orthogonal to Vp at p ∈ M . Then (4.21) and (4.22) follows directly
from (4.25). Furthermore, as V is timelike, we divide (4.25) by αg(X,X) to get (4.23).
If equality holds for all such planes, it easy to see, from (4.24), that

∇XV = 0,(4.26)
for all X orthogonal to Vp. Thus, from (3.6) of Lemma 3.1 and (4.26), we get

2ρX + AKX + 2φX = 0.(4.27)
Applying the second condition of Lemma 3.1 to (4.27), we get

(∇Y φ)(X) + (Y ρ)X = 0,(4.28)
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for all Y ∈ Γ(TM). The inner product of (4.28) with X and noting that (∇Y φ) is
skew-symmetric, leads to Y ρ = 0. Hence, V is an affine vector field. On the other
hand, we know that V is orthorgonal to any X ∈ Γ(S(TM)). Hence, using (4.26),
(4.3), (4.16) and (2.3), we derive

βANX + α

2βA
∗
ξX −

{
X

(
α

2β

)
− α

2β τ(X)
}
ξ − {X(β) + βτ(X)}N = 0,

for all X ∈ Γ(S(TM)). It then follows that

βANX + α

2βA
∗
ξX = 0,(4.29)

and X(β) + βτ(X) = 0, and thus AN is symmetric on S(TM). Thus, S(TM) is
integrable and therefore a product manifold by Remark 5 of [5, p. 215]. Finally if
ANξ = 0, we see, from (4.29) that M is locally screen conformal, which completes the
proof. □

The following is a direct consequence of Theorem 4.3.

Corollary 4.2. Under the assumptions of Theorem 4.3, there exist no any Einstein
manifold Mn+2, n ≥ 1, that is Ric = γg, such that α := g(V, V ) attains a maximum,
γ > 0 and V ρ ≤ 0.

Acknowledgements. At this point, we would like to thank the referees for their
valuable comments and suggestions which greatly improved the quality of this paper.

References
[1] C. Atindogbé, Scalar curvature on lightlike hypersurfaces, Appl. Sci. 11 (2009), 9–18.
[2] K. L. Duggal, Affine conformal vector fields in semi-Riemannian manifolds, Acta Appl. Math.

23(3) (1991), 275–294. https://doi.org/10.1007/BF00047139
[3] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Appli-

cations, Mathematics and Its Applications 364, Kluwer Academic Publishers, Dordrecht, 1996.
[4] K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Frontiers in Mathe-

matics, Birkhauser, Basel, 2010.
[5] K. L. Duggal and D. H. Jin, Lightlike Curves and Hypersurfaces of Semi-Riemannian Manifolds,

World Scientific Publishing, Hackensack, NJ, 2007.
[6] S. Deshmukh, Geometry of conformal vector fields, Arab. J. Math. Sci. 23 (2017), 44–73. https:

//doi.org/10.1016/j.ajmsc.2016.09.003
[7] D. H. Jin, Ascreen lightlike hypersurfaces of an indefinite Sasakian manifold, J. Korean Soc. Math.

Educ. Ser. B Pure Appl. Math. 20(1) (2013), 25–35. https://doi.org/10.7468/jksmeb.2013.
20.1.25

[8] D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. Pure
Appl. Math. 41(4) (2010), 569–581. https://doi.org/10.1007/s13226-010-0032-y

[9] S. Ssekajja, Some results on lightlike hyperurfaces in (LCS)-manifolds, Kyungpook Math. J.
59(4) (2019), 783–795. https://doi.org/10.5666/KMJ.2019.59.4.783

[10] S. Ssekajja, Geometry of isoperametric lightlike hypersurfaces of Lorentzian manifolds, Korean
Math. Soc. 57(1) (2020), 195–213. https://doi.org/10.4134/JKMS.j190001

 https://doi.org/10.1007/BF00047139
https://doi.org/10.1016/j.ajmsc.2016.09.003
https://doi.org/10.1016/j.ajmsc.2016.09.003
https://doi.org/10.7468/jksmeb.2013.20.1.25
https://doi.org/10.7468/jksmeb.2013.20.1.25
https://doi.org/10.1007/s13226-010-0032-y
https://doi.org/10.5666/KMJ.2019.59.4.783
https://doi.org/10.4134/JKMS.j190001


308 S. SSEKAJJA

[11] B. O’Neill, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New
York, NY, 1983.

[12] M. Navarro, O. Palmas and D. A. Solis, Null screen isoparametric hypersurfaces in Lorentzian
space forms, Mediterr. J. Math. 15 (2018), Article ID 215. https://doi.org/10.1007/
s00009-018-1262-1

[13] T. H. Kang, On lightlike hypersurfaces of a GRW space-time, Bull. Korean Math. Soc. 49(4)
(2012), 863–874. https://doi.org/10.4134/BKMS.2012.49.4.863

[14] A. Romero and M. Sanchez, Projective vector fields on Lorentzian manifolds, Geom. Dedicata
93 (2002), 95–105. https://doi.org/10.1023/A:1020308012870

[15] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications 366,
Kluwer Academic Publishers, Kluwer, 1996.

1School of Mathematics,
University of the Witwatersrand,
Private Bag 3, Wits 2050, Johannesburg
Email address: samuel.ssekajja@wits.ac.za
Email address: ssekajja.samuel.buwaga@aims-senegal.org

https://doi.org/10.1007/s00009-018-1262-1
https://doi.org/10.1007/s00009-018-1262-1
https://doi.org/10.4134/BKMS.2012.49.4.863
https://doi.org/10.1023/A:1020308012870

	1. Introduction
	2. Preliminaries
	3. Some Basic Results
	4. Main Results
	Acknowledgements.

	References

