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BELL GRAPHS ARE DETERMINED BY THEIR LAPLACIAN
SPECTRA

ALI ZEYDI ABDIAN1

Abstract. A graph G is said to be determined by the spectrum of its Laplacian
spectrum (DLS, for short) if every graph with the same spectrum is isomorphic to
G. An ∞-graph is a graph consisting of two cycles with just a vertex in common.
Consider the coalescence of an ∞-graph and the star graph K1,s, with respect to
their unique maximum degree. We call this a bell graph. In this paper, we aim to
prove that all bell graphs are DLS.

1. Introduction

As usual G = (V (G), E(G)) is a simple graph having n vertices and m edges, with
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. The complement of G is denoted by G.

The degree sequence of G, denoted by deg(G), is the sequence of vertex degrees;
in fact deg(G) = (d1, d2, . . . , dn) in which di = di(G) = dG(vi) for i = 1, . . . , n, is the
degree of the vertex vi so that d1 ≥ d2 ≥ · · · ≥ dn.

Let A(G) and D(G) = Diag(d1, d2, . . . , dn) denote the adjacency matrix and the
diagonal matrix of vertex degrees of G, respectively. The Laplacian matrix of G is
defined as L(G) = A(G) − D(G). The polynomial φL(G)(x) = det(xIn − L(G)), where
In is the identity matrix of order n, is called the Laplacian characteristic polynomial
of G. Any root of φL(G)(x) is called a Laplacian eigenvalue of G. The multi-set of
Laplacian eigenvalue of G is called the Laplacian spectrum or L-spectrum of G. Note
that L(G) is a symmetric, positive semidefinite matrix, and thus its eigenvalues are
all real non-negative numbers. We denote its eigenvalues in the non-increasing order
µ1 ≥ µ2 ≥ · · · ≥ µn = 0.
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Although, the spectral graph theory originated with the eigenvalues of the adjacency
matrices, but Laplacian matrices have come to have comparable importance.

The coalescence of two graphs G1 and G2, with respect to u1 ∈ V (G1) and u2 ∈
V (G1), is the graph obtained by identifying u1 and u2 in the disjoint union of G1 and
G2. We denote it by (G1 ◦ G2)(u1, u2). In the case when it does not make deference
which vertex in G1 and G2 is identified to obtain a coalescence, we denote this graph
by G1 ◦G2. This operation is extended, inductively, to any arbitrary number of graphs.
For example, the coalescence of k arbitrary cycles is called a k-rose graph; in fact, this
is a graph with k ≥ 1 cycles meeting in one vertex. For i, j ≥ 3, Ci ◦ Cj is a 2-rose
graph called an ∞-graph.

Van Dam and Haemers [12] conjectured that almost all graphs are determined by
their Laplacian spectrum, that is, they are the only graph (up to isomorphism) with
that spectrum. However, very few graphs are known to have that property, and so
discovering new classes of such graphs is an interesting problem. Formally, we define
two graphs G and H to be L-cospectral if they have the same L-spectrum, and a
graph G is determined by its Laplacian spectrum, abbreviated by DLS, if no other
graphs are L-cospectral with G. Let us mention some known DLS graphs obtained
by coalescence of other DLS graphs:

• Liu et al. [10] proved that any rose graph, each cycle of which is a triangle, is
DLS;

• Wang et al. [14] showed that triangle-free 2-rose graphs are almost DLS (notice
that not all 2-rose graphs are DLS (see [9]);

• Wang et al. [15] proved that all 3-rose graphs, having at least one triangle, are
DLS.

It is known that the Laplacian eigenvalues of a graph give the Laplacian eigenvalues
of its complement. Therefore, complement of a DLS graph, is also DLS. Hence, all
the complements of the above graphs are DLS.

In the current article, we consider a new graph being coalescence of a 2-rose graph
and a star graph with respect to their vertices of maximum degree. In fact, this graph
is the coalescence of Ci ◦ Cj, with the vertex v1 of maximum degree 4 and the star
graph K1,s with the vertex v2 of maximum degree s. Let us call this graph a bell
graph and denote it by BG(Ci, Cj, s), i ≤ j, see Figure 1.

Figure 1. The bell graph BG(Ci, Cj, s)
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In this paper, it is proved that bell graphs and their complements are DLS. The
rest of this article is organized as follows: In Section 2, we recall some previously
established results playing a crucial role throughout this paper. In Section 3, we fisrt
prove that no two non-isomorphic bell graphs are L-cospectral, and then we determine
the degree sequence of graphs L-cospectral with the bell graphs. Finally, we obtain
all bell graphs are DLS.

2. Preliminaries

In this section, we recall some previously established results playing a crucial role
throughout this paper.

Theorem 2.1 ([12,13]). The following can be obtained from the Laplacian spectrum
of a graph:

(i) the number of vertices;
(ii) the number of edges;
(iii) the number of spanning trees;
(iv) the number of components;
(v) the sum of the squares of the degrees of the vertices.

Lemma 2.1 ([3]). For a graph G, we have µn−1 ≥ 0 with equality if and only if G is
connected.

Theorem 2.2 ([7]). Let µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and µ1 ≥ µ2 ≥ · · · ≥ µn = 0 be the
Laplacian spectra of G and G, respectively. Then µi = n − µn−i for i = 1, 2, . . . , n − 1.

For any two graphs G and H, we denote by NG(H) and WG(i), the number of
subgraphs of G being isomorphic to H, and the number of closed walks of length i in
G, respectively. Note that the trace of a matrix M is denoted by tr(M).

Theorem 2.3 ([1, 13]). Suppose G is a graph with m edges. The number of closed
walks of lengths 2, 3, and 4 in G can be computed by the following formulas:

(a) WG(2) = 2m;
(b) WG(3) = tr(A3(G)) = 6NG(C3);
(c) WG(4) = 2m + 4NG(P3) + 8NG(C4).

Theorem 2.4 ([6]). If G is a non-empty graph with n vertices, then
(2.1) µ1(G) ≥ d1(G) + 1.

Furthermore, if G is connected, then the equality in (2.1) holds if and only if d1(G) =
n − 1.

A graph G is called regular if d1(G) = · · · = dn(G). A bipartite graph is called
semi-regular if the degrees of vertices in each part, are constant.

The next result uses the quantity θG(u) = ∑
v∈NG(u)

dG(v)
dG(u) , where NG(u) denotes the

set of neighbors of the vertex u in G.
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Theorem 2.5 ([13]). For a connected graph G, we have
(2.2) µ1(G) ≤ max{dG(u) + θG(u) | u ∈ V (G)}.

Besides, the equality in (2.2) holds if and only if G is either regular or semi-regular,
bipartite graph.

Theorem 2.6 ([1, 8]). Let G be a non-empty graph. Then µ1(G) ≤ d1(G) + d2(G).
Moreover, G is connected only if µ2(G) ≥ d2(G).

Cevetcovic et al. in [2] obtained the first three coefficients of the Laplacian charac-
teristic polynomials, while the forth one, was obtained by Oliveira et al. in [11].

Theorem 2.7 ([2,11]). Let G be a graph with n vertices and m edges with the degree
set deg(G) = (d1, d2, . . . , dn). Then we have the following: φL(G)(x) = ∑n

i=0 li(G)xi,
are obtained as follows:

l0(G) =1, l1(G) = −2m, l2(G) = 2m2 − m − 1
2

n∑
i=1

d2
i ,

l3(G) =1
3

(
−4m3 + 6m2 + 3m

n∑
i=1

d2
i −

n∑
i=1

d3
i − 3

n∑
i=1

d2
i + 6NG(C3)

)
.

As an immediate consequence of Theorem 2.7, we have following result.

Corollary 2.1. If G and H are L-cospectral graphs such that deg(H) = deg(G), then
they have the same number of triangles, i.e., NG(C3) = NH(C3).

Let G and H be two L-cospectral graphs. It follows from Theorem 2.1 (i), (ii), (iv),
(v) and Theorem 2.7 and Corollary 2.1 that

tr(A3(G)) −
n∑

i=1
d3

i (G) = tr(A3(H)) −
n∑

i=1
d3

i (H).

Based on this, Liu and Huang [9] defined the following invariant for a graph G:

ε(G) = tr(A3(G)) −
n∑

i=1
(di(G) − 2)3.

Theorem 2.8 ([13]). If G and H are L-cospectral, then ε(G) = ε(H).

Theorem 2.9 ([3]). If u is a vertex of G and G − u is the subgraph obtained from G
by deleting u, then µi(G) ≥ µi(G − u) ≥ µi+1(G) − 1, i = 1, 2, . . . , n − 1.

3. Main Results

In this section, we establish bound on the first and the second largest Laplacian
eigenvalues of bell graphs.

Lemma 3.1. For a bell graph G with s pendent vertices, we have
(i) 5 + s ≤ µ1(G) < 6 + s;
(ii) µ2(G) < 5.
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Proof. (i) It follows from Theorems 2.4 and 2.5 that

5 + s ≤ µ1(G) ≤ 4 + s + 4 + s + 4
4 + s

= 5 + s + 4
4 + s

< 6 + s.

(ii) This is a direct consequence of Theorem 2.9 and this fact that the greatest
eigenvalue of a path is less than 4. □

Let G be a connected graph with n vertices and m edges. Then G is called k-cyclic
if m = n+k−1. For a bell graph G = BG(Ci, Cj, s), we have n = n(G) = (i+j)−1+s
and m = m(G) = (i + j) + s and so m = m(G) = n + 1 = n + 2 − 1, implying that G
is a 2-cyclic graph.

Lemma 3.2. If H is L-cospectral with G = BG(Ci, Cj, s), then H is connected, and

deg(H) = deg(G) = (s + 4, 2, . . . , 2︸ ︷︷ ︸
i+j−2 times

, 1, . . . , 1︸ ︷︷ ︸
s times

).

Proof. Connectedness of H is clear by Theorem 2.1 (iv) and Lemma 3.1 (iii). Let us
determine its degree sequence. By Lemma 3.1, µ2(H) < 5, and thus, it follows from
Theorem 2.6 that d2(H) ≤ 4. Since H and G are L-cospectral, by Theorem 2.1, H
is also connected, and has the same order, size, and sum of the squares of its degrees
as G. Let ni denote the number of vertices of degree i in H for i = 1, 2, . . . , d1(H).
Then

d1(H)∑
i=1

ni =n(G) = (i + j) − 1 + s,(3.1)

d1(H)∑
i=1

ini =2m(G) = 2((i + j) + s),(3.2)

d1(H)∑
i=1

i2ni =n′
1 + 4n′

2 + d2
1(G),(3.3)

where n
′
i is the number of vertices of G of degree i for i = 1, 2. By adding up (3.1),

(3.2) and (3.3) with coefficients 2, −3, 1, respectively, we get:

(3.4)
d1(H)∑

i=1
(i2 − 3i + 2)ni = (s + 2)(s + 3).

By Lemma 3.1, 5 + s ≤ µ1(G) < 6 + s. From Theorem 2.4 it follows that

d1(H) + 1 ≤ µ1(H) = µ1(G) < 6 + s,

which leads to d1(H) ≤ 4 + s. On the other hand, by Lemma 3.1 and Theorem 2.6,
one can conclude that

5 + s ≤ µ1(G) = µ1(H) ≤ d1(H) + d2(H) ≤ d1(H) + 4,
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from which we have d1(H) ≥ s + 1. Therefore, we have s + 1 ≤ d1(H) ≤ s + 4. From
Theorem 2.8 it follows that

(3.5) 6NH(C3) −
n∑

i=1
(di(H) − 2)3 = 6NG(C3) − ((s + 2)3 − s).

Therefore,

(3.6) NH(C3) = 1
6

(
n∑

i=1
(di(H) − 2)3 + 6NG(C3) − ((s + 2)3 − s)

)
.

We consider the following three main cases.
Case A. d1(H) = s + 4. By (3.4) one can deduce that

(3.7) ((s + 4)2 − 3(s + 4) + 2) + 2n3 + 6n4 = (s + 2)(s + 3),
from which it follows that n3 = 0. Combining (3.2) and (3.3), we find that n1 = s
and n2 = n − (s + 1). Therefore, deg(H) = deg(G). In this case, it follows from (3.6)
that NH(C3) = NG(C3). Obviously, d1(H) ≥ 5 > 4 ≥ d2(H) or ns+4 = 1.

Case B. s + 3 = d1(H). Then ns+3 = 1. By an argument similar to that of (3.6),
we have the following:
(3.8) ((s + 3)2 − 3(s + 3) + 2) + 2n3 = (s + 2)(s + 3),
By (3.1), (3.2) and (3.4) we get

n1 = 2s + 11,

n2 = −3s + n − 20,

n3 = s + 8.

It follows from (3.6) that NH(C3) = 6NG(C3)−s3−6s2−12s−11
6 . Therefore, NH(C3) < 0,

since 0 ≤ NG(C3) ≤ 2. We assume that ns+3 ≥ 2. Then
s + 3 = d1(H) = d2(H) ≤ 3,

which is a contradiction, since s ≥ 1.
Case C. d1(H) = s + 2. We first assume that ns+2 = 1. In this case, s + 2 =

d1(H) > 3 ≥ d2(H) and as a result s ≥ 2. From (3.4) and by a straightforward
calculation, we get:
(3.9) ((s + 2)2 − 3(s + 2) + 2) + 2n3 = (s + 2)(s + 3).
By (3.1), (3.2) and (3.4) we get:

n1 = 3s + 1,

n2 = −5s + n − 5,

n3 = 2s + 3.

It follows from (3.6) that

NH(C3) = 6NG(C3) − s3 − 6s2 − 12s − 10
6 .
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Therefore, NH(C3) < 0, since 0 ≤ NG(C3) ≤ 2. Next we assume that ns+2 ≥ 2. Then
s + 2 = d1(H) = d2(H) ≤ 3 implying that s = 1. By (3.1), (3.2) and (3.4) we get

n1 = 4,

n2 = n − 10,

n3 = 6.

It follows from (3.6) that NH(C3) = NG(C3) − 14
3 < 0, since 0 ≤ NG(C3) ≤ 2, which

is a contradiction.
Case D. d1(H) = s + 1. By a similar argument, we will have a contradiction. □

In the following, we show that any graph L-cospectral with a bell graph G, is also
a bell graph with the same degree sequence as G.

Corollary 3.1. Let H be a graph L-cospectral with a bell graph G = BG(Ci, Cj, s).
Then H is a bell graph with the same degree sequence as G.

Proof. By Lemma 3.2, deg(H) = deg(G) = (s + 4, 2, . . . , 2︸ ︷︷ ︸
i+j−2 times

, 1, . . . , 1︸ ︷︷ ︸
s times

). So, H has a

unique vertex of degree greater than 2, say dH(v) = s + 4 > 2. It is clear that the
maximum degree of H − v is most 2, i.e., d1(H − v) ≤ 2. Moreover, H − v contains
no cycles, otherwise, since it is connected, there would be another vertex of degree
greater than 2. Consequently, H − v must be a forest each component of which is a
path. Therefore, H consists of exactly 2 cycles intersecting in a single vertex. Hence,
H must be a bell graph. □

Before proving our main result, we state some essential lemmas and notations.

Lemma 3.3 ([4]). Let G be a graph with a set of vertices X = {u1, u2, . . . , uk} such
that

NG(u1) = NG(u2) = · · · = NG(uk) = {w1, w2, . . . , wp} .

If G∗ is the graph obtained from G by adding any q, 1 ≤ q ≤ k(k−1)
2 , edges among

{u1, u2, . . . , uk}, then the eigenvalues of L(G∗) are as follows: those eigenvalues of
L(G) which are equal to p are incremented by λi(G∗[X]), i = 1, 2, . . . , k − 1, and the
remaining eigenvalues are the same.

Lemma 3.4 ([5]). No two non-isomorphic starlike trees are L-cospectral.

Suppose that H = BG(Ci, Cj, s) is a bell graph, and let v be the vertex of H
such that dH(v) = s + 4. Now, we remove an arbitrary edge not being adjacent
to v, from cycle Ci and Cj. Then we obtain a starlike tree, say, S(H). Hereafter,
S(H) = (s, l1, l2) means S(H) − v = Pl1 ∪ Pl2 ∪ Ks such that l1 + l2 = (i + j) − 1.

Note that in the proof of Lemma 3.4, it was shown that if S1 = S(l1, . . . , lt) and
S2 = S(j1, . . . , jt) are two non-isomorphic starlike trees, then µ1(S1) ̸= µ1(S2), where
l1 ≥ l2 ≥ · · · ≥ lt ≥ 1 and j1 ≥ j2 ≥ · · · ≥ jt ≥ 1.
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Corollary 3.2. If S(G) = (s, l1, l2) and S(H) = (s, j1, j2) are two non-isomorphic
starlike trees, then µ1(S(G)) ̸= µ1(S(H)).

Now we express our main result.

Theorem 3.1. Bell graphs are determined by their Laplacian spectrum.

Proof. Let H be a graph L-cospectral with a bell graph G = BG(Ct1 , Ct2 , s). It follows
from Corollary 3.1 that H is also a bell graph with the same degree sequence as G.
Assuming that H = BG(Ck1 , Ck2 , s) we need to prove that {t1, t2} = {k1, k2}. To do
so, consider the corresponding starlike trees S(G) = (s, l1, l2) and S(H) = (s, j1, j2).
We claim that H and G are isomorphic, otherwise, µ1(S(G)) ̸= µ1(S(H)) and so
µ1(G) ̸= µ1(H), contradicting Lemma 3.2. □

From Theorem 2.2, it follows that the Laplacian eigenvalues of a graph give the
Laplacian eigenvalues of its complement. Therefore, the complement of a DLS graph,
is also DLS. Hence, the following fact is immediately follows from Theorem 3.1.

Corollary 3.3. The complements of bell graphs are also DLS.
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