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GENERALIZED MIXED TYPE BERNOULLI-GEGENBAUER
POLYNOMIALS

YAMILET QUINTANA1

Abstract. The generalized mixed type Bernoulli-Gegenbauer polynomials of order
α > − 1

2 are special polynomials obtained by use of the generating function method.
These polynomials represent an interesting mixture between two classes of special
functions, namely generalized Bernoulli polynomials and Gegenbauer polynomials.
The main purpose of this paper is to discuss some of their algebraic and analytic
properties.

1. Introduction

Bernoulli and Gegenbauer polynomials are among classical families of algebraic
polynomials whose history goes back centuries. Each one of these polynomials, as
well as their natural generalizations, have showed their useful in several disciplines
[1–3, 6–9, 16, 17, 19–21, 23–25, 27–29]. In this paper we shall be concerned with the
some of the main properties of the generalized mixed type Bernoulli-Gegenbauer
polynomials V (α)

n (x) of order α ∈ (−1/2, ∞), n ≥ 0 (GBG polynomials, in short).
This is a special family of polynomials defined through the generating functions and
series expansions as follows:

(1.1)
 z

(ez − 1)
(
1 − xz

π
+ z2

4π2

)
α

exz =
∞∑

n=0
V (α)

n (x)zn

n! ,
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where |z| < 2π, |x| ≤ 1 and α ∈ (−1/2, ∞) \ {0},

(1.2)
[

2π − xz

1 − xz
π

+ z2

4π2

]
exz =

∞∑
n=0

V (0)
n (x)zn

n! , |z| < 2π, |x| ≤ 1.

The polynomials
{
V (α)

n (x)
}

n≥0
represent an interesting mixture between two classes

of special functions, namely generalized Bernoulli polynomials and Gegenbauer poly-
nomials. The separate emergence of these families of polynomials in different fields
as such as physical mathematics, information theory, combinatorics, approximation
theory, number theory, numerical analysis and partial differential equations and so on,
has been a well-known fact and documented [1,3,4,6,7,12,14,18–20,27,28]. However,
in recent years new connections between these families of polynomials have been given
(see, for instance [2, 9, 29]). The aim of this note is to investigate some properties
of the GBG polynomials, focusing our attention on their explicit expressions, deriva-
tives formulas, matrix representations, matrix-inversion formulas, and other relations
connecting them with Gegenbauer polynomials.

The paper is organized as follows. In Section 2 some relevant properties of the
generalized Bernoulli polynomials and the Gegenbauer polynomials are given. Section
3 contains the main algebraic and analytic properties of the GBG polynomials (see e.g.,
Proposition 3.1, Lemmas 3.1 and 3.2, and Theorem 3.1), as well as, some illustrative
examples.

2. Basic Facts: Generalized Bernoulli Polynomials and Gegenbauer
Polynomials

This section is devoted to present some structural properties of the generalized
Bernoulli polynomials and Gegenbauer polynomials which will be useful in the sequel.
We will begin with the generalized Bernoulli polynomials. As is well known, these
polynomials play an important role in the calculus of finite differences since the
coefficients in all the usual central-difference formulas for interpolation, numerical
differentiation and integration, and differences in terms of derivatives can be expressed
in terms of them (see e.g., [10] and the references therein).

Recent and interesting works dealing with generalized Bernoulli and Euler polynomi-
als, Appell and Apostol type polynomials, their properties and applications in several
areas can be found by reviewing the current literature on this subject. For a broad in-
formation on old literature and new research trends about these classes of polynomials
we strongly recommend to the interested reader see [8, 10,13,14,16,17,20,21,24,25].

From now on, we denote by Pn the linear space of polynomials with real coefficients
and degree less than or equal to n.

2.1. Generalized Bernoulli Polynomials. The classical Bernoulli polynomials
Bn(x) and the generalized Bernoulli polynomials B(α)

n (x) of (real or complex) order
α, are usually defined as follows (see, for details, [3, 14,20,23]):
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(2.1)
(

z

ez − 1

)α

exz =
∞∑

n=0
B(α)

n (x)zn

n! , |z| < 2π, 1α := 1,

and
(2.2) Bn(x) := B(1)

n (x), n ∈ N0,

where N0 := N ∪ {0}.
The numbers B(α)

n := B(α)
n (0) are called generalized Bernoulli numbers of order α,

n ∈ N0. Clearly, we have
B(α)

n (x) = (−1)nB(α)
n (x − α),

so that
(2.3) B(α)

n (α) = (−1)nB(α)
n .

From the generating relation (2.1), it is fairly straightforward to deduce the addition
formula:

(2.4) B(α+β)
n (x + y) =

n∑
k=0

(
n

k

)
B

(α)
k (x)B(β)

n−k(y).

Making the substitution β = 0 into (2.4) and interchanging x and y, we obtain the
well known representation:

(2.5) B(α)
n (x) =

n∑
k=0

(
n

k

)
B

(α)
k xn−k.

The following theorem summarizes some properties of the generalized Bernoulli
polynomials.

Theorem 2.1. (a) ([26, (3)]) Explicit formula for the generalized Bernoulli polyno-
mials in terms of the Gaussian hypergeometric function:

B(α)
n (x) =

n∑
k=0

(
n

k

)(
α + k − 1

k

)
k!

(2k)!

k∑
j=0

(−1)j

(
k

j

)
j2k(x + j)n−k(2.6)

× 2F1(k − n, k − α; 2k + 1; j/(x + j)),
where 2F1 denotes the Gaussian hypergeometric function given by

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

· zn

n! , c /∈ {0, −1, −2, . . . },

with (a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1), n ∈ N, being the Pochhammer’s symbol.
(b) ([26, (13)]) The substitution x = 0 into (2.6) yields the following representation

for the generalized Bernoulli numbers:

(2.7) B(α)
n =

n∑
k=0

(
α + n

n − k

)(
α + k − 1

k

)
n!

(n + k)!

k∑
j=0

(−1)j

(
k

j

)
jn+k.
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The interested reader also may consult [20,22,26] for detailed proofs of the above
assertions.

In addition to (2.2) classical Bernoulli polynomials Bn(x) admit a variety of different
representations. For instance, we recall that the classical Bernoulli polynomials Bn(x)
may be inverted in order to give a representation of the monomial basis (cf., [17, Eq.
(4)] and the references therein). This resulting representation is commonly called
inversion formula:

xn = 1
n + 1

n∑
k=0

(
n + 1

k

)
Bk(x)

= 1
n + 1

n∑
k=0

(
n + 1
k + 1

)
Bn−k(x), n ≥ 0.(2.8)

Consequently, the set {B0(x), B1(x), . . . , Bn(x)} is a basis for Pn.
In the next lemma we show an inversion formula for a subfamily of generalized

Bernoulli polynomials.
Lemma 2.1. For a fixed m ∈ N, let

{
B(m)

n (x)
}

n≥0
be the sequence of generalized

Bernoulli polynomials of order m. Then we have

(2.9) xn = 1
(n + 1)m

n∑
r=0

(
n + m

r + m

)
ar(m)B(m)

n−r(x), n ≥ 0,

where the coefficients ar(m) are given by

ar(m) =
r∑

k1=0

k1∑
k2=0

· · ·
km−2∑

km−1=0

(
r + m

k1 + m − 1

)(
k1 + m − 1
k2 + m − 2

)
· · ·
(

km−2 + 2
km−1 + 1

)
, r = 0, . . . , n.

Proof. From (2.1) it follows that

zmexz = (ez − 1)m
∞∑

n=0
B(m)

n (x)zn

n! .(2.10)

It is not difficult to show by repeated application of the Cauchy product of series that

(ez − 1)m =
∞∑

n=0
an(m) zn+m

(n + m)! ,

where

an(m) =
n∑

k1=0

k1∑
k2=0

· · ·
km−2∑

km−1=0

(
n + m

k1 + m − 1

)(
k1 + m − 1
k2 + m − 2

)
· · ·

(
km−2 + 2
km−1 + 1

)
.

Thus, the right-hand side of (2.10) becomes

(ez − 1)m
∞∑

n=0
B(m)

n (x)zn

n! =
[ ∞∑

n=0
an(m) zn+m

(n + m)!

] [ ∞∑
n=0

B(m)
n (x)zn

n!

]

=
∞∑

n=0

[
n∑

r=0

(
n + m

r + m

)
ar(m)B(m)

n−r(x)
]

zn+m

(n + m)! .(2.11)
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Likewise, the left-hand side of (2.10) can be expressed by use of the Cauchy product
of series as follows

zmexz =
∞∑

n=0
xn zn+m

n! =
∞∑

n=0
(n + 1)m xn zn+m

(n + m)! .(2.12)

From (2.11) and (2.12) we obtain

(2.13)
∞∑

n=0
(n + 1)m xn zn+m

(n + m)! =
∞∑

n=0

[
n∑

r=0

(
n + m

r + m

)
ar(m)B(m)

n−r(x)
]

zn+m

(n + m)! ,

and comparing the coefficients on both sides of (2.13), we get the desired inversion
formula (2.9). □

As a straightforward consequence of the inversion formula (2.9) we obtain an ex-
pected algebraic property.

Corollary 2.1. For a fixed m ∈ N and each n ≥ 0, the set
{
B

(m)
0 (x), . . . , B(m)

n (x)
}

is a basis for Pn, i.e.,

Pn = span
{
B

(m)
0 (x), B

(m)
1 (x), . . . , B(m)

n (x)
}

.

2.2. Gegenbauer polynomials. For α > −1
2 we denote by {Ĉ(α)

n }n≥0 the sequence
of Gegenbauer polynomials, orthogonal on [−1, 1] with respect to the measure dµ(x) =
(1 − x2)α− 1

2 dx (cf., [27, Chapter IV]), normalized by

Ĉ(α)
n (1) = Γ(n + 2α)

n!Γ(2α) .

More precisely,∫ 1

−1
Ĉ(α)

n (x)Ĉ(α)
m (x) dµ(x) =

∫ 1

−1
Ĉ(α)

n (x)Ĉ(α)
m (x)(1 − x2)α− 1

2 dx = Mα
n δn,m, n, m ≥ 0,

where the constant Mα
n is positive. It is clear that the normalization above does not

allow α to be zero or a negative integer. Nevertheless, the following limits exist for
every x ∈ [−1, 1] (see [27, (4.7.8)])

lim
α→0

Ĉ
(α)
0 (x) = T0(x), lim

α→0

Ĉ(α)
n (x)
α

= 2
n

Tn(x),

where Tn(x) is the nth Chebyshev polynomial of the first kind. In order to avoid
confusing notation, we define the sequence {Ĉ(0)

n (x)}n≥0 as follows

Ĉ
(0)
0 (1) = 1, Ĉ(0)

n (1) = 2
n

, Ĉ(0)
n (x) = 2

n
Tn(x), n ≥ 1.

We denote the nth monic Gegenbauer orthogonal polynomial by

C(α)
n (x) = (kα

n)−1Ĉ(α)
n (x),
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where the constant kα
n (cf., [27, formula (4.7.31)]) is given by

kα
n = 2nΓ(n + α)

n!Γ(α) , α ̸= 0,

k0
n = lim

α→0

kα
n

α
= 2n

n
, n ≥ 1.

Then for n ≥ 1, we have C(0)
n (x) = limα→0(kα

n)−1Ĉ(α)
n (x) = 1

2n−1 Tn(x).

It is well known that the Gegenbauer polynomials are closely connected with axially
symmetric potentials in n dimensions and contain the Legendre and Chebyshev poly-
nomials as special cases [6, 7]. Furthermore, they inherit practically all the formulae
known in the classical theory of Legendre polynomials.

Proposition 2.1. ([15, cf., Proposition 2.1]) Let {C(α)
n }n≥0 be the sequence of monic

Gegenbauer orthogonal polynomials. Then the following statements hold.
(a) Three-term recurrence relation.

(2.14) xC(α)
n (x) = C

(α)
n+1(x) + γ(α)

n C
(α)
n−1(x), α > −1

2 , α ̸= 0,

with initial conditions C
(α)
0 (x) = 1, C

(α)
1 (x) = x and recurrence coefficient γ(α)

n =
n(n+2α−1)

4(n+α)(n+α−1) .
(b) For every n ∈ N (see [27, (4.7.15)])

(2.15) hα
n := ∥C(α)

n ∥2
µ =

∫ 1

−1
[C(α)

n (x)]2dµ(x) = π21−2α−2n n!Γ(n + 2α)
Γ(n + α + 1)Γ(n + α) .

(c) Rodrigues formula.

(1 − x2)α− 1
2 C(α)

n (x) = (−1)nΓ(n + 2α)
Γ(2n + 2α)

dn

dxn

[
(1 − x2)n+α− 1

2
]

, x ∈ (−1, 1).

(d) Structure relation (see [27, (4.7.29)]). For every n ≥ 2

C(α−1)
n (x) = C(α)

n (x) + ξ
(α)
n−2C

(α)
n−2(x),

where

ξ(α)
n = (n + 2)(n + 1)

4(n + α + 1)(n + α) , n ≥ 0.

(e) For every n ∈ N (see [27, formula (4.7.14)])

d

dx
C(α)

n (x) = nC
(α+1)
n−1 (x).

As is well known the monic Gegenbauer orthogonal polynomials admit other diffe-
rent definitions [1,4,27,28]. In order to deal with the definitions (1.1) and (1.2) of the
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GBG polynomials, we also are interested in the definition of the monic Gegenbauer
orthogonal polynomials by means of the following generating functions:
(2.16)(

1 − xz

π
+ z2

4π2

)−α

=
∞∑

n=0

Γ(n + α)
πnΓ(α) C(α)

n (x)zn

n! , |z| < 2π, |x| ≤ 1, α ∈ (−1/2, ∞)\{0},

and
(2.17)

2π − xz

1 − xz
π

+ z2

4π2

=
∞∑

n=0

1
πn−1 C(0)

n (x)zn =
∞∑

n=0

Γ(n + 1)
πn−1 C(0)

n (x)zn

n! , |z| < 2π, |x| ≤ 1.

Remark 2.1. Note that (2.16) and (2.17) are suitable modifications of the generating
functions for the Gegenbauer polynomials Ĉ(α)

n (x):

(
1 − 2xz + z2

)−α
=

∞∑
n=0

Ĉ(α)
n (x)zn, |z| < 1, |x| ≤ 1, α ∈ (−1/2, ∞) \ {0},

1 − xz

1 − xz + z2 = 1 +
∞∑

n=1

n

2 Ĉ(0)
n (x)zn, |z| < 1, |x| ≤ 1.

3. Some Algebraic and Analytic Properties of the GBG Polynomials

Now we are in a position to investigate some properties of the GBG polynomials
as follows.

Proposition 3.1. For α ∈ (−1/2, ∞), let
{
V (α)

n (x)
}

n≥0
be the sequence of GBG

polynomials of order α. Then the following explicit formulas hold.

V (α)
n (x) =

n∑
k=0

(
n

k

)
Γ(k + α)
πkΓ(α) C

(α)
k (x)B(α)

n−k(x), n ≥ 0, α ̸= 0,(3.1)

V (0)
n (x) =

n∑
k=0

(
n

k

)
k!

πk−1 C
(0)
k (x)B(0)

n−k(x)(3.2)

=
n∑

k=0

(
n

k

)
k!

πk−1 C
(0)
k (x)xn−k, n ≥ 0.

Proof. On account of the generating functions (1.1) and (2.16), it suffices the appro-
priate use of Cauchy product of series in order to deduce the expression (3.1).

Similarly, taking into account the generating functions (1.2) and (2.17), we can use
an analogous reasoning to the previous one for getting the expression (3.2). □
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Thus, the suitable use of (2.3), (2.5), (2.7), (2.14) and (3.1) allow us to check that
for α ∈ (−1/2, ∞) \ {0} the first four GBG polynomials are:

V (α)
0 (x) =1,

V (α)
1 (x) =

(
1 + α

π

)
x − α

2 ,

V (α)
2 (x) =

(
1 + 2α

π
+ (α + 1)α

π2

)
x2 −

(
α + α2

π

)
x + α(3α − 1)

12 − α

2π2 ,

V (α)
3 (x) =

( 3∑
k=0

(
3
k

)
(α)k

πk

)
x3 − 3α

2

( 2∑
k=0

(
2
k

)
(α)k

πk

)
x2

+
(

(3α − 1)α
4 + (3α − 1)α2

4π
− 3α

2π2 − 3(α + 1)α
2π3

)
x + α2(1 − α)

8 + 3α2

4π2 .

It is worth pointing out that the left hand side of (1.1) can be expressed as
G(α)(z)(1 − xg(z))−αexz, where

G(α)(z) =
[

4π2z

(ez − 1)(z2 + 4π2)

]α

and g(z) = 2πz

z2 + 4π2 ,

hence the polynomials
{
V (α)

n (x)
}

n≥1
are not generalized Appell polynomials (cf., [5,

Chapters I, III]). Also, in contrast to the generalized Bernoulli polynomials and
Gegenbauer polynomials, the GBG polynomials neither satisfy a Hanh condition nor
an Appell condition. More precisely, we have the following result.

Lemma 3.1. For α ∈ (−1/2, ∞) \ {0}, let
{
V (α)

n (x)
}

n≥0
be the sequence of GBG

polynomials of order α. Then we have

(3.3) d

dx
V (α)

n+1(x) = (n + 1)!
n∑

k=0

V (α)
k (x)

k! A
(α)
n−k(x), n ≥ 0,

where

A(α)
n (x) =


1 + α

π
, n = 0,

α

πn+1 C(1)
n (x), n ≥ 1.

Proof. The identity (3.3) it is a straightforward consequence of (1.1) and (2.16). □

Also, it is possible to obtain some integral relations between the GBG polynomials
and monic Gegenbauer polynomials.

Lemma 3.2. For α ∈ (−1/2, ∞) \ {0}, let
{
V (α)

n (x)
}

n≥0
be the sequence of GBG

polynomials of order α. Then the following formula holds.

(3.4)
∫ 1

−1
V (α)

n (x)C(α)
n (x)dµ(x) = n!Γ(n + 2α)

π2α+2nΓ(n + α + 1)Γ(n + α)

n∑
k=0

(
n

k

)
(α)k

πk−1 ,

whenever n ≥ 0.
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Proof. In order to obtain (3.4) it suffices to use the orthogonality of the monic Gegen-
bauer polynomials, (2.5), (2.15) and (3.1). □

Finally, from a matrix framework we can use the expression (3.1) in order to obtain
a matrix form of V (α)

r (x), r = 0, 1, . . . , n, as follows.
The expression (3.1) yields

(3.5) V (α)
r (x) = C(α)

r (x)B(α)(x),

where

C(α)
r (x) =

[(
r
r

)
Γ(r+α)
πrΓ(α) C(α)

r (x)
(

r
r−1

)
Γ(r−1+α)
πr−1Γ(α) C

(α)
r−1(x) · · · C

(α)
0 (x) 0 · · · 0

]
,

the null entries of the matrix C(α)
r (x) appear (n − r)-times and the matrix B(α)(x) is

given by B(α)(x) =
(
B

(α)
0 (x) B

(α)
1 (x) · · · B(α)

r (x) · · · B(α)
n (x)

)T
.

Then, by (3.5) the matrix V(α)(x) =
(
V (α)

0 (x) V (α)
1 (x) · · · V (α)

n (x)
)T

, can be
expressed as follows:

V(α)(x) = C(α)(x)B(α)(x),(3.6)

where C(α)(x) is the following (n + 1) × (n + 1) matrix

C(α)(x) =



C
(α)
0 (x) 0 0 · · · 0(1

1

)Γ(1+α)
πΓ(α) C

(α)
1 (x) C

(α)
0 (x) 0 · · · 0(2

2

)Γ(2+α)
π2Γ(α) C

(α)
2 (x)

(2
1

)Γ(1+α)
πΓ(α) C

(α)
1 (x) C

(α)
0 (x) · · · 0

...
...

...
. . .

...(
n
n

)Γ(n+α)
πnΓ(α) C

(α)
n (x)

(
n

n−1

)Γ(n−1+α)
πn−1Γ(α) C

(α)
n−1(x)

(
n

n−2

)Γ(n−2+α)
πn−2Γ(α) C

(α)
n−2(x) · · · C

(α)
0 (x)


.

The following theorem summarizes the ideas described above.

Theorem 3.1. For α ∈ (−1/2, ∞) \ {0}, let
{
V (α)

n (x)
}

n≥0
be the sequence of GBG

polynomials of order α. Then, the matrix V(α)(x) =
(
V (α)

0 (x) · · · V (α)
n (x)

)T
has

the following matrix form:

V(α)(x) = C(α)(x)B(α)(x).

Remark 3.1. Note that according to (3.5) the rows of the matrix C(α)(x) are precisely
the matrices C(α)

r (x) for r = 0, . . . , n. Furthermore, the matrix C(α)(x) is an (n+1)×
(n + 1) lower triangular matrix for each x ∈ R, so that

det
(
C(α)(x)

)
=
(
C

(α)
0 (x)

)n+1
= (1)n+1 = 1.

Therefore, C(α)(x) is an invertible matrix for each x ∈ R.

The following example shows how Theorem 3.1 can be used.
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Example 3.1. Let us consider n = 3 and α = 1. From (2.14), (3.1), (3.6) and a
standard computation we obtain

B(x) := B(1)(x) =



1 0 0 0

x
π

1 0 0

4x2−1
2π2

2x
π

1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π

1



−1

V(1)(x),(3.7)

where

V(1)(x) =



1(
1 + 1

π

)
x − 1

2(
1 + 2

π + 2
π2

)
x2 −

(
1 + 1

π

)
x + 1

6 − 1
2π2(

1 + 3
π + 6

π2 + 6
π3

)
x3 − 3

2

(
1 + 2

π + 2
π2

)
x2 + 1

2

(
1 + 1

π − 3
π2 − 6

π3

)
x + 3

4π2


.

Since 

1 0 0 0

x
π 1 0 0

4x2−1
2π2

2x
π 1 0

6x3−3x
π3

3(4x2−1)
2π2

3x
π 1



−1

=



1 0 0 0

− x
π 1 0 0

1
2π2 −2x

π 1 0

0 3
2π2 −3x

π 1


,

then (3.7) becomes

B(x) =



1

x − 1
2

x2 − x + 1
6

x3 − 3
2x2 + 1

2x


.

That is the entries of the matrix B(x) are the first four classical Bernoulli polynomials (2.2).

Another interesting algebraic property of the GBG polynomials is related to the
inversion formula satisfied by the classical Bernoulli polynomials (2.8). The following
example shows the inversion formula for the GBG polynomials Vn(x) := V (1)

n (x),
n ≥ 0.
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Example 3.2. Making the substitution α = 1 into (2.5), we obtain the well known
representation:

Bn(x) =
n∑

k=0

(
n

k

)
Bkxn−k.

Then the matrix B(x) can be expressed as follows (cf., [17, (8)]):
B(x) = MT(x),

where

M =



B0 0 0 0 · · · 0(
1
1

)
B1

(
1
0

)
B0 0 0 · · · 0(

2
2

)
B2

(
2
1

)
B1

(
2
0

)
B0 0 · · · 0(

3
3

)
B3

(
3
2

)
B2

(
3
1

)
B1

(
3
0

)
B0 · · · 0

... ... ... ... . . . ...(
n
n

)
Bn

(
n

n−1

)
Bn−1

(
n

n−2

)
Bn−2

(
n

n−3

)
Bn−3 · · ·

(
n
0

)
B0


,

and T(x) =
(
1 x · · · xn

)T
. It is clear that det (M) = (B0)n+1 = (1)n+1 = 1. So,

M is an invertible matrix.
Making the substitution α = 1 into (3.6), we get the matrix representation:

V(x) := V(1)(x) = C(1)(x)B(x) = C(1)(x)MT(x).
It follows that

T(x) =
[
C(1)(x)M

]−1
V(x) = M−1

(
C(1)(x)

)−1
V(x).

On the account of (2.8), we can deduce the following matrix equation
(3.8) T(x) = QB(x),
where

Q =



1 0 0 0 · · · 0
1
2! 1 0 0 · · · 0
2!
3!

2!
2! 1 0 · · · 0

3!
4!

3!
3!

3
2! 1 · · · 0

... ... ... ... . . . ...
n!

(n+1)!
n!
n!

n!
2!(n−1)!

n!
3!(n−2)! · · · 1


=



1 0 0 0 · · · 0
1
2 1 0 0 · · · 0
1
3 1 1 0 · · · 0
1
4 1 3

2 1 · · · 0
... ... ... ... . . . ...
1

n+1 1 n
2

n(n−1)
6 · · · 1


.

Notice that M−1 = Q. Consequently, from (3.8) we deduce a matrix-inversion
formula for V(x) as follows

T(x) = QB(x) = Q
(
C(1)(x)

)−1
V(x).(3.9)

Also, the matrix identity (3.9) allows us to conclude that the set {V0(x), . . . , Vn(x)}
is a basis for Pn, i.e.,

Pn = span {V0(x), V1(x), . . . , Vn(x)} .
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Remark 3.2. In view of (2.9) it is possible to deduce a matrix-inversion formula for
B(m)(x) as follows

T(x) = Q(m)B(m)(x),
where Q(m) is an (n + 1) × (n + 1) lower triangular and invertible matrix, for m ∈ N
fixed.

Applying Theorem 3.1 (or equivalently, making the substitution α = m into (3.6))
we obtain the following matrix-inversion formula for V(m)(x)

T(x) = Q(m)
[
C(m)(x)

]−1
V(m)(x).

Finally, we leave to the reader the formulation of the analogous identities for the
GBG polynomials V (0)

n (x), n ≥ 0.
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