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COMPOSITIONS OF COSPECTRALITY GRAPHS OF SMITH
GRAPHS

DRAGOŠ M. CVETKOVIĆ1 AND MARIJA JEROTIJEVIĆ2

Abstract. Graphs whose spectrum belongs to the interval [−2, 2] are called Smith
graphs. Vertices of the cospectrality graph C(H) of a Smith graph H are all graphs
cospectral with H with two vertices adjacent if there exists a certain transformation
transforming one to another. We study how the cospectrality graph of the union of
two Smith graphs can be composed starting from cospectrality graphs of starting
graphs.

1. Introduction

In this section we present standard basic facts on graph spectra and on Smith
graphs.

Let G be a graph with n vertices and adjacency matrix A. The characteristic
polynomial det(xI − A) of A is also called the characteristic polynomial of G. The
eigenvalues and the spectrum of A (which consists of n eigenvalues) are called the
eigenvalues and the spectrum of G, respectively. Since A is real and symmetric, its
eigenvalues are real. The eigenvalues of G (in non-increasing order) are denoted by
λ1, . . . , λn. In particular, λ1, as the largest eigenvalue of G, will be called the spectral
radius (or index) of G. For general information on spectra of graphs see, for example,
[2].

The spectrum of G (as a family of reals) will be denoted by Ĝ. The disjoint union
of graphs G1 and G2 will be denoted by G1 + G2, while the union of their spectra (i.e.,
the spectrum of G1 + G2) will be denoted by Ĝ1 + Ĝ2. In addition, kG (kĜ) stands
for the union of k copies of G (resp. Ĝ).
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Figure 1. Some of the Smith graphs

We say that two (non-isomorphic) graphs are cospectral if their spectra coincide.
They are also called cospectral mates. On the other hand, we say that a graph is
determined by its spectrum if it is a unique graph having this spectrum.

The cospectral equivalence class of a graph G is the set of all graphs cospectral to
G (including G itself).

We consider the class of graphs whose spectral radius is at most 2. This class
includes, for example, the graphs whose each component is either a path or a cycle.

All graphs with the spectral radius at most 2 have been constructed by J. H. Smith
[5].

A path (cycle) on n vertices will be denoted by Pn (resp. Cn).
A connected graph with index ≤ 2 is either a cycle Cn (n = 3, 4, . . .), or a path

Pn (n = 1, 2, . . .), or one of the graphs depicted in Fig. 1 (see [5]). Note that W1
coincide with the star K1,4, while Z1 with P3. In addition, the graphs Cn, Wn, T4, T5,
and T6 are connected graphs with index equal to 2. All other graphs, namely, Pn, Zn,
T1, T2 and T3 are the induced subgraphs of these graphs (so the index of each of them
is less than 2). The graph Zn is called a snake while Wn is a double snake. The trees
T1, T2, T3, T4, T5, and T6 will be called exceptional Smith graphs.

The spectrum of each of these graphs can be found (in an explicit form) in [3].
A Smith graph has connected Smith graphs as components.
We denote the set of all Smith graphs by S∗. The set of those which are bipartite,

so odd cycles are excluded, will be denoted by S.
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Let G be any graph each component of which belongs to S∗, we can write
G =

∑
H∈S∗

r(H)H,(1.1)

where r(H) ≥ 0 is a repetition factor (tells how many times H is appearing as a
component in G).

The repetition factor r(Si) of some of the graph Si ∈ S∗ for any relevant index i
will be denoted by si. So we have non-negative integers

p1, p2, p3, . . . , z2, z3, . . . , w1, w2, w3, . . . , t1, t2, t3, t4, t5, t6.

We have omitted z1 since Z1 = P3 and the variable p3 is relevant. We shall use
c2, c3, . . . , for repetition factors of the even cycles C4, C6, . . .

For non-bipartite graphs from S∗ we have to introduce variables o3, o5, o7, . . . count-
ing the numbers of odd cycles C3, C5, C7, . . .

For a given graph G ∈ S∗ the above variables which do not vanish, together with
their values, are called parameters of G. Parameters of a graph indicate the actual
number of components of particular types present in G.

The rest of the paper is organized as follows.
Section 2 contains some earlier results on Smith graphs necessary for handling the

phenomenon of cospectrality of Smith graphs by means of the so called cospectrality
graphs. In Section 3 we present some properties of cospectrality graphs. Section 4
contains description of some compositions of cospectrality graphs. At the end, in
Section 5, we describe a computer program for generating cospectral Smith graphs
and include some examples of the work of the program.

2. Preliminary Results

Let H ∈ S. Let
Ĥ = σ0Ĉ4 +

m∑
i=1

σiP̂i,

be the canonical representation (as defined in [1]) of the spectrum Ĥ of a bipartite
Smith graph H. Here σ0, σ1, σ2, . . . σm are integers with σ0 ≥ 0. This representation
always exists and is unique. The expression

σ0C4 +
m∑

i=1
σiPi,

is called canonical representation of H. It defines a graph if σ0, σ1, σ2, . . . σm are
non-negative, otherwise it is just a formal expression. In the first case H is cospectral
to its canonical representation but not necessarily isomorphic.

If all quantities σi are non-negative, the graph H is called a Smith graph of type A,
otherwise it is of type B. Let I (resp. J) be the set of indices i for which σi in a graph
of type B is negative (resp. positive).

Obviously, cospectral Smith graphs are of the same type.



274 D. M. CVETKOVIĆ AND M. JEROTIJEVIĆ

Let PH = ∑
i∈I |σi|Pi. Components of the graph PH are paths whose spectra appear

with a negative sign in the canonical representation of the spectrum of H. The graph
PH is called the basis of H. The basis of a graph of type A is empty. If we add
components from its basis to a graph of type B, it becomes a graph of type A.

The graph KH = σ0C4 + ∑
i∈J σiPi is called the kernel of H.

Following [1] we shall consider the corresponding component transformations:

(γ1) Wn ⇄ C4 + Pn, (δ1)
(γ2) Zn + Pn ⇄ P2n+1 + P1, (δ2)
(γ3) C2n + 2P1 ⇄ C4 + 2Pn−1, n ≥ 3 (δ3)
(γ4) T1 + P5 + P3 ⇄ P11 + P2 + P1, (δ4)
(γ5) T2 + P8 + P5 ⇄ P17 + P2 + P1, (δ5)(2.1)
(γ6) T3 + P14 + P9 + P5 ⇄ P29 + P4 + P2 + P1, (δ6)
(γ7) T4 + P1 ⇄ C4 + 2P2, (δ7)
(γ8) T5 + P1 ⇄ C4 + P3 + P2, (δ8)
(γ9) T6 + P1 ⇄ C4 + P4 + P2. (δ9)

They are of the form A → B or B → A meaning that in a graph the group of
components A is replaced with the group of components B or vice versa. These
transformations are called G-transformations. Those of the form A→ B are denoted
by γ1, γ2, . . . , γ9 and are called C-transformations. For each C-transformation A→ B
we define the corresponding opposite transformation B → A, also denoted by A← B.
Transformations A← B are called D-transformations and are denoted by δ1, δ2, . . . , δ9.

Graphs C4, P1, P2, . . . , appearing in canonical representations of bipartite Smith
graphs, are called basic graphs. All other connected bipartite Smith graphs are called
non-basic graphs. Non-basic graphs are of two types. Graphs Wn (n = 1, 2, . . . ),
C2k (k = 3, 4, . . . ) and T4, T5, T6 are non-basic graphs of type I while graphs Zn

(n = 2, 3, . . . ), T1, T2, T3 are non-basic graphs of type II. Note that non-basic graphs
of type I have spectral radius equal to 2 while for those of type II spectral radius is
less than 2.

G-transformations γ1, γ2, γ3 and their opposite transformations δ1, δ2, δ3 are not
unique since they depend on the index n of the involved non-basic graphs Wn, Zn, C2n.
If we want to specify this index in the name of the G-transformation, we shall use
superscripts (for example, γn

1 or δn
2 ).

Application of any G-transformation does not change the spectrum of the corre-
sponding graph. Moreover, we have the following theorem from [1].
Theorem 2.1. Let H1 and H2 be bipartite Smith graphs with corresponding bases
PH1 and PH2. If graphs H1 and H2 are cospectral, then the graph H1 + PH1 can be
transformed into H2 + PH2 by a finite number of G-transformations.

Cospectrality graphs have been introduced in [4] as follows.
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For any A-type graph G we define its cospectrality graph C(G) in the following
way. Vertices of C(G) are all graphs cospectral with G, i.e. the set of vertices of
C(G) is the cospectral equivalence class of G. Two vertices x and y are adjacent if
there exists a G-transformation transforming one to another. Of course, if x can be
transformed into y by a G-transformation, then y can be transformed into x by the
opposite transformation. Hence, C(G) is an undirected graph without multiple edges
or loops.

By Theorem 2.1 the cospectrality graph is connected.
We shall also consider general cospectrality graphs. Such graphs have mutually

cospectral vertex weights, the adjacency relation being defined as above.
It can be easily seen that identifying two vertices with same weights in a general

cospectrality graph leads again to a regular general cospectrality graph. When identi-
fying such vertices, all edges which were going to particular vertices, go now to the
new single vertex.

3. Some Properties of Cospectrality Graphs

Let G be an A-type graph and let G∗ be its canonical representation. We have
C(G) = C(G∗) and the later will be considered as a standard denotation for a
cospectrality graph. Let C(G∗) = C.

Cospectrality graph C is a double weighted graph. Both vertices and edges carry
some weights. Weights of vertices are some Smith graphs while weights of edges
are pairs of mutually opposite G-transformations. Vertex weights determine edge
weights since weights of adjacent vertices determine the pair of mutually opposite
G-transformations transforming one vertex to another.

A cospectrality graph C, which is considered as an undirected graph, defines the
following two directed weighted graphs: Cγ obtained from C by replacing edges with
arcs with corresponding γ-transformations as weights and corresponding orientations,
and Cδ, defined analogously.

Note that Cγ and Cδ, as digraphs, are mutually converse.
In considering cospectrality problems for Smith graphs we can treat together C, Cγ

and Cδ and pass from one to another as appropriate.
Also we can treat incomplete cospectrality graphs, i.e., double weighted graphs in

which the vertex set does not contain all mutually cospectral graphs. Sometimes we
allow in such graphs vertices with the same weights.

Next theorem characterizes Smith graphs whose cospectrality graphs have just one
vertex.

Theorem 3.1. If the cospectrality graph of a Smith graph G of type A consists just
of one vertex, then G is one of the following graphs:

- multiple cycles kC4, (k ∈ N);
- kP1 (k ∈ N) in the union with any collection of paths P2, P3, P4, P6, P8, . . . ;
- any collection of paths without P1.
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Proof. Clearly, graph G is characterized by the spectrum. Since any Smith graph
is cospectral to its canonical representation, graph G must be itself in the form of
canonical representation. If G is one of the graphs kC4 (k ∈ N), then there is no
G-transformation producing a cospectral mate. G cannot contain C4 and a path
because of the transformation δ1. In the remaining cases G is just a collection of
paths. If P1 is present, transformation δ2 prevents the presence of any path P2k+1 for
k ≥ 2. If P1 is excluded, any collection of other paths is feasible. □

One can also classify graphs whose cospectrality graphs consist of two vertices. In
fact, for each of nine types of D-transformations one can consider cospectrality graphs
in which exactly this transformation appears.

4. Building Cospectrality Graphs

We present several ways in which new cospectrality graphs can be obtained from
starting ones.

Let G1 and G2 be two Smith graphs and let C and D be cospectrality graphs
such that C = C(G∗

1) and D = C(G∗
2). Corresponding directed graphs with arcs

whose weights are δ−transformations will be denoted Cδ and Dδ, respectively. Let
V (Cδ) = {1, 2, . . . , m} with weights {c1, c2, ..., cm} and V (Dδ) = {1, 2, . . . , n} with
weights {d1, d2, ..., dn} be the corresponding vertex sets. Note that ci are graphs
cospectral with G1 and dj are graphs cospectral with G2.

Given cospectrality graphs C(G1) and C(G2) of graphs G1 and G2 we want to
construct the cospectrality graph C(G1 + G2) of the graph G1 + G2. The construction
is not straightforward and we need several definitions. In particular, we shall define the
sum of cospectrality graphs, merging vertices in a cospectrality graph and extending
cospectrality graphs. All these operations can occur when constructing C(G1 + G2).

First, we use Cartesian product × of sets to define, similarly as in the sum of graphs
(see, for example, [2], page 65), the sum Cδ ⊕Dδ of cospectrality graphs Cδ and Dδ.
The operation ⊕ is called the cospectrality sum.

The vertex set V (Cδ ⊕ Dδ) of Cδ ⊕ Dδ is V (Cδ) × V (Dδ) and vertices (i, j) and
(k, l) are adjacent if i = k and j and l are adjacent in Dδ or j = l and i and k
are adjacent in Cδ. Weights w(a) of arcs (or vertices) a are defined as follows (with
subscript indicating the actual graph):

w((i, j), (i, l)) = wD(j, l),

w((i, j), (k, j)) = wC(i, k),
for i, k ∈ {1, . . . , m} and j, l ∈ {1, . . . , n} and

w(i, j) = ci + dj, i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.

The definition of Cγ ⊕Dγ is analogous and leads to a directed graph converse to
Cδ ⊕Dδ with weights being the corresponding γ-transformations.
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We might also consider the corresponding undirected graph C ⊕D obtained from
considered digraphs by replacing arcs with edges with corresponding pairs of opposite
G-transformations as weights.

All three objects C ⊕ D, Cγ ⊕ Dγ and Cδ ⊕ Dδ will be considered as the sum of
cospectrality graphs C and D.

A subgraph of a cospectrality graph is called a partial cospectrality graph.

Theorem 4.1. Let C = C(G∗
1) and D = C(G∗

2). The sum Cδ ⊕Dδ of cospectrality
graphs Cδ and Dδ, after merging vertices wth the same weights, is a partial cospectrality
graph of the graph C(G1 + G2).

Proof. By definition of the sum, the weight ci + dj of a vertex (i, j) is transformed
either in the part ci or in the part dj giving in both cases the weight of a vertex
cospectral to ci + dj. □

Let us introduce the notion of an empty graph Gϕ. It is a graph without vertices
or edges and represents a neutral element for the operation of union of graphs. For
any (non-weighted) graph G let also Q(G) be a weighted graph consisting of a single
vertex with vertex weight G.

It can easily be verified that Q(Gϕ) behaves as a neutral element for the cospectrality
sum ⊕, i.e, for any (partial) cospectrality graph C we have Q(Gϕ)⊕C = C⊕Q(Gϕ) =
C.

Let S be any bipartite Smith graph and consider the cospectrality sum Q(S)⊕ C.
The resulting cospectrality graph is isomorphic to C with each vertex weight being
the union of the weight of the corresponding vertex in C and S.

We shall also consider extending - finding new vertices and arcs in a general cospec-
trality graph.

It happens sometimes that the weight ci + dj of a vertex (i, j) of a sum Cδ ⊕Dδ

contains a Smith graph S which is contained neither in ci nor in dj and such that a
D-transformation can be applied to it. This means that ci + dj can be transformed
in some additional ways. Let ci + dj = S + S ′ for some Smith graph S ′ In fact, if
C(S) is a (partial) cospectrality graph for S, then the graph Q(S ′) ⊕ C(S) has a
vertex with the weight ci + dj. The vertex of Q(S ′)⊕C(S) and the vertex in Cδ ⊕Dδ

with the same weight ci + dj could be identified. In this way, Cδ ⊕Dδ is extended by
Q(S ′)⊕ C(S) at vertex (i, j).

5. A Computer Program

We have implemented a computer program generating all graphs cospectral to a
given bipartite Smith graph G of type A and the corresponding cospectrality graph
C(G).

The input contains a bipartite Smith graph of type A in its canonical form.
The vertex v0 representing the canonical representation of G is called the c-center

of C(G) [4].
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For any vertex v of C(G) we define H(v) to be the graph which is represented by v,
i.e., the weight of v. The rank rank H of a Smith graph H is the number of non-basic
components of H.

Vertices of C(G) are partitioned into layers according to ranks of corresponding
graphs. Layer k contains vertices v such that rank H(v) = k. The largest rank of
a vertex in C(G) is called the c-radius of C(G). The vertices with largest rank are
called peripheral vertices. Their rank is equal to the c-radius.

Applying a D-transformation on a vertex enhances its rank while C-transformations
diminish the rank. Using C-transformations we are approaching the c-center while by
D-transformations we go from c-center to peripheral vertices.

When considering a current graph the program tries to apply a D-transformation
and if this is done the program forms a new vertex of the search tree. The depth first
search is applied. Repeated graphs are not considered again.

The program is realized as a console application. The following tools are used:
.NET Framework v4.7.2, C#, XML, LinQ and Visual Studio 2019.

Example 5.1. Our program has been applied to the graph T5 + T6 + 2P1. The program
produced 25 graphs in the corresponding cospectrality graph. This shows that the
cospectrality graph of T5 + T6 + 2P1, given in [4], Figure 3, is not complete.

The program output is presented in Table 1.

Table 1.

Layer 0 2C4 2P2 P3 P4
Layer 1 1: C4 P2 P3 P4 W2, 1: C4 2P2 P4 W3, 1: C4 2P2 P3 W4,

3: C6 C4 2P1 P3 P4, 7: C4 P3 P4 T4 P1, 8: P2 C4 P4 T5 P1,
9: P2 C4 P3 T6 P1

Layer 2 1: P3 P4 2W2, 1: P2 P4 W2 W3, 1: P2 P3 W2 W4,
8: P4 W2 T5 P1, 9: P3 W2 T6 P1 | 1: P2 P4 W3 W2,
1: 2P2 W3 W4, 3: P4 W3 C6 2P1, 7: P4 W3 T4 P1,
9: P2 W3 T6 P1 | 1: P2 P3 W4 W2, 1: 2P2 W4 W3,
3: P3 W4 C6 2P1, 7: P3 W4 T4 P1, 8: P2 W4 T5 P1 |
1: P3 P4 C6 P1 W1, 1: P4 C6 2P1 W3, 1: P3 C6 2P1 W4 |
1: P3 P4 T4 W1, 1: P4 T4 P1 W3, 1: P3 T4 P1 W4 |
1: P2 P4 T5 W1, 1: P4 T5 P1 W2, 1: P2 T5 P1 W4,
9: T5 2P1 T6 | 1: P2 P3 T6 W1, 1: P3 T6 P1 W2,
1: P2 T6 P1 W3, 8: T6 2P1 T5

Generated graphs are classified within layers. Starting from layer 1, graphs in a
layer are listed in order as they are generated from the previous layer and the index i
of the used D-transformation δi is indicated. The symbol + of the union of graphs is
omitted. Graphs generated by different (and neighboring) graphs from the previous
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layer are separated by a vertical line |. Repeated graphs are underlined. There are
exactly 25 graphs in the table which are not underlined.

Example 5.2. When applied to T4 + T5 + T6 + 3P1, the program produced 86 mutually
cospectral graphs.
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