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A STABILITY RESULT FOR A TIMOSHENKO SYSTEM WITH
INFINITE HISTORY AND DISTRIBUTED DELAY TERM

ZINEB KHALILI'! AND DJAMEL OUCHENANE!

ABSTRACT. This manuscript is mainly focusing on a general stability of solution
for one-dimensional Timoshenko system with infinite history and distributed delay
term regardless also of the speeds of wave propagation. We prove our result by using
the energy method combined with some properties of convex functions.

1. INTRODUCTION

In this paper, we consider the following Timoshenko system with infinite history

and distributed delay term

P1Pit (ZC,t) - K (9090 + w)x (ZC,t) = 07
(1.1) Pt (,t) — bibyy (2,8) + [5° g (S) Yuu (x, 8 — ) ds

+K (sor + ¢) (ZE, t) + M1¢t (ZL’, t) + f;? 2 (S) 1/}13 (Jf7t - 8) ds = 07
where ¢ € (0,00) denotes the time variable and x € (0,1) is the space variable,
the functions ¢ and 1 are respectively, the transverse displacement of the solid
elastic material and the rotation angle, and p;, ps, 1, K are positive constants,
2 : [11, 2] = R is a bounded function satisfying

(1.2) [ Iz () ds < g,

where 7 and 75 two real numbers satisfying 0 < 73 < 75 and the relaxation function
g satisfies the folowing assumptions.
(G1) g: Ry — R, is a C! function satisfying

g(0) >0, b—/oog(s)ds:b—gozL>O.
0
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(G2) There exists a positive constant ¢ such that
(1.3) g (t) < —Cg(t), forallt>0.

System (1.1) is provided with the following initial and boundary conditions

{ p(2,0) =wo (), @ilz,0) =1 (x), ¥(x,0)=vo(z), ¢u(x,0)=1h(z),
Uiz, —t) = fo(x,t) in (0,1) X (0,72),
and
©(0,t) = p(1,t) =¢(0,t) =(1,t) =0, forallt >0,
where x € (0,1) and fj is the history function.

Let us first recall some result related to the problem we address. Said-Houari and
Rahali [12] considered the following Timoshenko system with infinite history and a
delay term in the internal feedback

P1Ptt (l’, t) - K (9090 + dj)a: (1'71;) = 07
(1.4) pothie (T,1) — bihyy (,1) + [57 9 (8) Yuw (2,8 — 5) ds
+K (90:1: + W (xat) + Ml% (xat) + M2wt ('Tat - T) = 0.

They established the well-posedness of problem (1.4) and the exponential stability
of solution. In the absence of the viscoelastic damping (g = 0), problem (1.4) has
been studied recently by Said-Houari and Laskri [11]. Under some assumption, they
proved the well-posedness and established for p; > o an exponential decay result for
the case of equal-speed wave propagation, i.e.,

k b

pP1 - P2

Subsequently, the work in [11] has been extended to the case of time-varying delay
of the form ¢ (z,t — 7 (t)) by Kirane, Said-Houari and Anwar [6]. First, by using the
variable norm technique of Kato and under some restriction on the parameters i, s
and on the delay function 7 (t), the system has been shown to be well-posed. Second,
under relationship between the weight of the delay term in the feedback, the weight
of the term without delay and the wave speeds, an exponential decay result of the
total energy has been proved.

In [6,11], the authors have extended some works on the wave equation with delay
to the Timoshenko system with delay. The stability of the wave equation with delay
has become recently an active area of research and many authors have shown that
delays can destabilize a system that is asymptotically stable in the absence of delays
(see [2] for more details).

Kafini et al. [5] considered the following Timoshenko system of thermoelasticity of
type III with delay

P1Ptt — U(@x,@b)a; + H1P¢ ('I7t) + 2P (fl',t — S) = O’
P2y — Day + K (pz + ) + 70, = 0,
p30tt - keﬂ?fﬁ + watx - ketmﬁ =0.
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The authors established well-posedness and stability of the system for the cases of
equal and nonequal speeds of wave propagation, they showed that the energy decays
exponentially in the case of equal wave speeds in spite of the existence of the delay and
in the opposite case it decays polynomially. Also, Kafini et al. [4] concerned with the
following Timoshenko system of thermoelasticity of type III with distributive delay

P1Ptt (ZL‘, t) - K (9095 + ¢)x (Iv t) =0,

p2¢tt (:E7t) - b¢mx (l‘, t) + K (@x + ’QZ)) (l’,t) + 7090 (:E7t) - 0,

p39tt - 599590 - K'etxx - f:f g (S) etxoc (ZE,t — 3) ds + /thx = O,
where 71 < 7, are non-negative constants. They proved an exponential decay in the
case of equal wave speeds and a polynomial decay result in the case of nonequal wave
speeds with smooth initial data. Very recently, Hao and Wang [3] considered the
following Timoshenko-type system with distributed delay and past history

P11 — k(92 V)x + B0 = 0,
(1.5) patbye — by + k(@0 +00) = B0, + [° 9 (8) e (x, T — 5) ds + f () =0,
P30 — 00,0 + Y1 — 10100 + Y1 + f:f 1 (C) Ye (2t — ¢)d¢ = 0.

The authors proved well-posedness and stability of the system (1.5) for the cases of
equal and nonequal speeds of wave propagation. Their results show that the damping
effect is strong enough to uniformly stabilize the system even in the existence of time
delay under suitable conditions.

Motivated by the works mentioned above, we investigate system (1.1) under suitable
assumptions and show that even in the presence of the viscoelastic term (g # 0), we
can establish a general energy decay regardless also of the speeds of wave propagation.
To achieve our goals we make use the energy method combined with some properties
of convex functions. The arguments of convexity were introduced by Lasiecka and
Tataru [7] and used by Liu and Zuazua [8] and others.

2. PRELIMINARIES

The main aim in this section is to present some materials needed in the proof of our
result. We also state, without proof, a local existence result for problem (1.1). The
proof can be established by using Faedo-Galerkin method as in [9]. Let us introduce
the following new dependent variable

z(x,p,s,t) = (x,t —sp), in (0,1) x (0,1) x (74, 72) x (0,00).
Then, we get the following system

{ sz (x,p,8,t) + 2, (z,p,s5,t) =0,
2(2,0,7,t) = (x,t) .
We then set an auxiliary variable as in [1]
0 (z,8) =9 (x,t) = (vt —s), s>0.
Then
(@, 8) + g (2, 8) = ¥y (2,1).



284 Z. KHALILI AND D. OUCHENANE

Hence, we can rewrite the problem (1.1) as

P1Ptt (*T?t) - K (pr + w>z (I‘j) = 07

p2¢tt - bwzz + K (9096 + ¢) + f()oo g (S) Uix (ZE, 8) dS
(2.1) Fpae (2, ) + [72 pa () (z,t — s)ds = 0,

sz (x,p,s,t) + 2, (x,p,s,t) =0,

77; (ZL‘, S) + 77§ (1’, 3) = wt (Qf,t) )
where z € (0,1), p € (0,1) and ¢ > 0. System (2.1) subjected to the following initial
conditions

@(xyo):SOO (.I‘), §0t<x7 ) =
¢<I70) :¢0 (I>7 wt('ra )

(2.2) z(z,p,s,0) = fo(z,ps), in (0,1) x (0,1) x (0,72),
n' (x,0) =0, forallt>0,
n° (x,s) =mny(s) =0, foralls>0.

In addition, we consider the following boundary conditions
©(0,t) =p(1,t) = (0,t) =(1,t) =0, forallt >0,
(2.3) n'(0,8) =n' (1,s) =0, forall s > 0.
We now define the energy space
H := [Hy (0,1) x L* (0, 1)}2 x L2((0,1) x (0,1) x (r1,72)) x L% (R, H} (0,1))
where L? (R*, Hj (0,1)) denotes the Hilbert space of Hj-valued functions on R¥.
3. EXPONENTIAL STABILITY

The functional energy of the solution of problem (2.1)—(2.3) is given by
1/t 1/t
:5/ plgpf + pgz/zf dx + 5/0 {K (g +)* + bwi} dx

wal [
2/// s s (8)] 22 (w, p, 5, t) dsdpda.

We multiply (2.1); by ¢, (2.1)3 by ¢ and (2.1)3 by |us (s)| z, integrating by parts
over (0,1), using Young and Cauchy-Schwarz’s inequality we get

s
(3.2) —C{/ wt/ pe (s) z (x, 1, s,t) —|—/ 2 :L’t)dx}

where C' > 0, which implies that the energy E is a non-increasing function with
respect to t.

(x s)‘ dsdx

)| (z 3)‘ dsdx
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Our main stability result reads as follows.

Theorem 3.1. Let Uy € D (A). Assume that [ |po (s)|ds < py and

K b

pr P2
Then there exist two positive constants C' and ~ independent of t such that
(3.3) E(t)<Ce™™, forallt>0.

Remark 3.1. To derive the exponential decay of the solution, it is enough to construct
a functional L(t), equivalent to the energy E(t), satisfying
dL (t ( )

dt
where A is a positive constant. In order to obtain such a functional L, we need several
lemmas.

< —AL(t), forallt>0,

Let us first define the following functional

(3.4) 1) == [ (g + ) do =2 [ 2

Then we have the following estimate.

Lemma 3.1. Let (p, 9, z,n") be the solution of (2.1)-(2.3), then for any €,6; > 0,
we have

35 O

dt

1
<- / (pr? + pzwf) dx

L

+(b+51)/0 ¢§dx+2€2/0 /T1 po (8) V7 (z,t — s) dsdx

(z,s) dsdx—l—c—gz/ Vi

+K/01 (2 + ) de,

where ¢ = 1/7% is the Poincaré’s constant.

Proof. Taking the derivative of (3.4), integrating by parts, we obtain

dI 1 1 1
(3.6) ;t(” == [ (e + ) de = [ (prpugi + potiutie) de = | wnode.

Therefore, by using (2.1)1, (2.1)9, integration by parts, we obtain from (3.6)
dI: (¢ 1 1 1
(3.7) clit( ) _ — [ (et o) do+ K [ (oo +v)du+b [ vl

+/01@/)/T1T2,u2(3)¢t(x,t—s)dsd:v

[ [T

'z, s)‘ dsdz.
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By exploiting Young and Poincaré’s inequalities, we get for any ¢ > 0
1 T2
(3.8) / w/ o (8) Uy (z,t — ) dsdx
g%/ 2z + —/ / 15 (8) 02 (2, ¢ — 5) dsde.

Moreover, Young, Holder’s inequalities and (1.3) imply that for any §; > 0

(39 [ et /°°g(s>

nt (z, s)’ dsdzx

<51/ V2 (2, d:E+ / / (z s)’ dsdzx.
Inserting the estimates (3.8) and (3.9) into (3.7), then (3.5) is fulfilled. O
Now, let w be the solution of
(3.10) — Wep = Uz, w(0) =w(1) =0,

then

~[Twwndy e ([ ow0d).

We have the following inequalities.

Lemma 3.2. The solution of (3.10) satisfies

1 1
/ wrdr < / Vi
0 0
and
1 1
/ w?dr < / Yid.
0 0
Proof. We multiply (3.10) by w, integrate by parts and use the Cauchy-Schwarz’s
inequality to obtain
1 1
/ widx < / w2d:c.
0 0
Next, we differentiate (3.10) with respect to ¢ and by the same procedure, we obtain
1 1
/ wide < / V2dz. 0
0 0

Let w be the solution of (3.10). We introduce the following functional

(3.11) I (1) = /01 (P20t + propyw) d + */ V.

Then, we have the following estimate.



TIMOSHENKO SYSTEM WITH INFINITE HISTORY AND DISTRIBUTED DELAY 287

Lemma 3.3. Let (¢,, z,n") be the solution of (2.1)—(2.3). Then we have for any
g3 >0,

d[2 (t) ! 2 ! 2
< _ =S
25 < (01— b) / D2z + pua / o2+ / 2

P Y7o oy / 2
(3.12) + ( P2 + )/ %dx * (2/455 + 2/{53> qdu

25 / / lpa (8)| 2% (2,1, 5, 1) dsdx+%/ / (x s)‘ dsdzx.
Proof. By taking the derivative of (3.11), we conclude
dls (
2 _—b/ 02 dx—K/ 1/12dx—|—p2/ ¢§dx+K/ wida

o [ e+ / Uo(a,t) [ g ()0t (2, ) dsda
—/1/}/ pa (8) z (z, 1, s,t) dsdzx.

We apply Young and Poincaré’s inequalities, we find

1 o] 1
/ Wy (x,t)/ g (s)nt (x,s)dsdx < (51/ V2 (2,1) / / (x s)‘ dsdzx,
0 0 0 4(51
and for any Ay > 0 we have
1 1
P / prthyda < prhs / Pz + L / Yide. O
0 0 4)\2
Now, we define the functional I3
(3. 13)

—P2/ Yy (0 + 1)) do ‘i‘ /@Dm@tcm—i-K/ got/ s)n (z, s) dsdx.

Lemma 3.4. Let (,1,2z,n") be the solution of (2.1)-(2.3). Assume that

P1 P2 P2
3.14 == — =
( ) K b+go b

Then, for any €4 > 0, we have

dlg() [ (bwﬁ/ )1t (2, 9) )]xl_(K—zg4)/(]l (oo + ) da

(3.15) + <p2+>/ wtdx+€4/ go?da:+—/ / o (8) 2% (z,1,s,t) dsdx

—QOC<€4)/O /0

Proof. Differentiating I3 (t), we obtain

d[
3 _pg/ @ZJtt @x+¢ dI‘i‘pQ/ wt (,03;+1/))

b (x, s)‘ dsdzx.
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/ Vypoudr + K/ sot/ (x,s)dsdx

/ Yerpedr + K/ ‘Ptt/ s)nt, (x,8) dsdz.

Then, by using (2.1), we find
dI. 1
S0y [t 0) (e 1) — K (2o ) (2,)

—pyy (x,t) — /T2 e (8) Wy (z,t — s) ds) dx

T1

1 oo 1
[t 0) [T gt @) dsdo tpy [ vido

+ b/ Op + V), Ypdr + < - P2> / Yigprdx
/ SOt/ @/)tm (t,z) —nt, (x,s)) dsdx

+% (%+w)x/0 g ()1, (,5) dsda.
By (3.14), we obtain
dlg ——K/ dI—Ml/Ol(901+¢)1/Jtdx+p2/01¢t2dx
—/ (s%ﬂb)/l pa (5) U (,t = 5) dsda
(3.16) / Pt /  (w, 5) dsda

e}

+ DnipadeliZ) + [% @.t) [ g (s)nt () ds).

For any ¢4 > 0, Young’s inequality leads to

0

1 1
817) o [ et 0| s [ et o 2 [ yta
and
1 T2
/0 (0 + 1) /T1 e (s) ¢y (x,t — s) dsdx

(3.18) _% 01( dx+—/ / pa (8) 2% (z,1,5,t) dsdx
and

(3.19) / gpt/ s)nt (z, s) dsdx

p ! /
<4K154/o </0 g(s)n (z, s)ds) dx+54/ Sptdx
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C (g4 / / )7 (z s)‘ dsdx+s4/ Oldx.

Plugging (3.17)7 (3.18) and (3.19) into (3.16), then inequality (3.15) holds. O

Next, in order to handle the boundary terms appearing in (3.15) we use, as in [10],
the function
q(x)=2—4z, z€(0,1).
So, we have the following result.

Lemma 3.5. Let (p, v, z,n") be the solution of (2.1). Then we have that for a positive
constant €g

(3.20)
[sox (bwm - / T g (5) v (t—5) dSﬂ::;
S_?%/ P14 () prpadr + K 56/01 (0o + 1) da
-iﬁioq@w4wfj"Mﬁ%@—ﬂwywﬁmfﬁwx

b 1
+ (56 +— (4 + )) / Yidr + — (202 (b+ go) + 4pieg + pacs / vide
4 6 2€6 4

- OB [Ty
*m( )//

254// pa (8) 2% (z,1,5,t) dsda.

Proof. By using Young and Poincaré inequalities, we obtain for any g > 0

(3.21) [ga,(b¢g-+t/' 8) s ( t——s)ds)]z:;
=@q ( <b¢x +/ 1,t—s) ds)
— ¢, (0) (b%()—l—/ g (s) 0,t—5)ds)

_%6l@%7 +/ wx1t—@d)2

b (o 04 [T e s)as) | e o (0 40 0F].

On the other hand, it is clear that

& oty (b + [~ g(s) (. 5) ds ) do

2
s)’ dsdx + p;(ﬁ ; gofdx

s)‘2 dsdz
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- / o () (b + [ g (5) o (@) ds )
+ [ o @yo (b + [0 ()t (w5)ds )
Now, using (2.1)s, we find

(3.22) ;i/l 02q (2 (bwﬁ/ (z, s ds) dz
= [ (@) (bs — k(o + ) — v
—/ o (8) 2 (2, 1, 1) ds+/ syt (x, s)ds)
< (e = [ g ()t (2,5 s ) do

+/ p2q () (bwt$+/ s\t (z,s) ds) dx.
By the fact that

(3.23) / 4(@) (bwm JATICT e ds) (b + [~ g () 2,5 ds ) o
(b¢x+/ (x,s ds) dx
[ (bwz +/ s)n (z, s ds)T x_:.

The last term in (3.22) can be treated as follows
(3.24)

/ p2q () Uy (Iﬂﬁm +/ s)nt (x,s ds) dx
—pr/ wtwmdx+p2/ q(x) z/Jt/O g (s)nt, (z,s)dsdx
=2 [ @y gianon [ @) [ 9(5)nka ) dsda

2
bt ! >
=22 [ @ide+pn [ q@)vn [ g(s) (v —nt) dsde
b ! ! ! >
=— % ; ¢ (z)Yidr + 0290/0 q (z) Yethreda — /02/0 q(x) wt/o 9 (s) niydsdw
b ! ! >
_ P2 ( 2"‘90) /0 q/ (x) @D?dl’ + 02/0 q (:B) q/;t/o g/ (s) n;deSB.

Inserting (3.23) and (3.24) in (3.22), we arrive at

(3.25) (bwm (0,1) +/ )1t (0, s) ds) (b% (1,4) +/ (1,5) ds)2
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= [ s (bt [ o) xs)ds)d:c+2p2 b+ o) [ vide
—K/ (go + ) (bwﬁ/ xs)ds)dx

o [Lavn [ ) o 9) s

g [Ca @i (vt [T g ()l (o) ds) da

+2(b¢x+/ ) (x s)ds)de

—/ /MQ )@Dt(mt—s)ds(wﬁ/ nrxs)ds>d

Now, we estimate terms in the RHS of (3.25) as follows.
First, using Minkowski and Young’s inequalities, we have

(3.26) (b@/}m—l— / )1t (2, 5) ds> dz

<4’ / V2dx + 4go / /
0 0 JO

Second, by Young’s inequality and (3.26), we have for any A > 0
1
K [Ca@) et o) (w0t [T g ()0t (,9)ds ) do
<2K‘/ (e + ) <b¢x+/ s)nt (z s)ds) dx’

b (x, 3)’2 dsdzx.

1
<4K2>\/ (¢ + ) daz—i— (b%—l—/ s)nt (z, s ds) dx

§4K2/\/0 (2 + ) dw+*/¢d + )\/0/0

Similarly, we get

ul/ ()wt(wa—l—/ nxxs)ds>dx

§4u1>\/0 ¢tdx+—/ vide+ 5 //

[ [ ) et = s)ds (v [T g ()t (2, 5)ds)

1

<b/ x/ e (8) Wy (z,t — s) dsdx
—i—/o (q(x)/n MZ(s)wt(x’t—s)ds/ooog(s)ni(x,s)d8> dx

(x 5)‘ dsdx

and

nk (x, s)‘2dsdx.

291
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72 B
§450)\/ po (s) 2% (z,1,5,t) ds + o wgd:c—l— / / (x s)‘ dsdzx.
T1

For any €5 > 0, we have

1 e’}
PZ/O qwt/o g (s)nt (x, ) dsdx’

1 1 roo
<poo [ WEdr —pag (0)C () [ [/ (s

Inserting all the above estimates into (3.25), we obtain
(3.27) <b¢x (0,1) +/ s)nt (0, s) ds> (wa (1,%) +/ s)nt (1, s) ds)2
/ p2q (b%« +/ s)nt (z, s ds) dx
+ (202 (b+ go) + 412X+ o /0 W2z

1 1
e (4 + ;’A) / V2o + 4K2)\/ (0o + 9)2 dz

et f [+
o <4+2/\>/ /

On the other hand, we have

(3.28) [e2(1) =2 (0)] < - %%/ p1q () prpuda

1
+3/ %dwr/ wgdwrﬂ/ o2
0 0 k Jo

Consequently, substituting (3.27) and (3.28) into (3.21), our desired estimate (3.20)
holds. O

. (z, 5)‘2d3da:.

)7k (z s)‘ dsdx

(x S)‘ dsdx + 450)\/ po (8) 2% (x,1,5,t) ds.

Now, we define the functional

1 r1 pr
(3.29) Iy (t) = / / / " semor 2 (5)] 22 (2,1, 5, ) dsdpdz.
0 0 Jm
Then the following result holds.
Lemma 3.6. Let (p,, z,n") be the solution of (2.1)-(2.3). Then for Cy > 0 we have

I 1 r1 p7o
(3.30) d ilt(t) < - C’l/ / / se % |y (s)| 2% (w, 1, 5,t) dsdpdx

—C’l// |2 (s m,l,st)dsdx+p1/ Yide,

where C is a positive constant.
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Proof. Differentiating (3.29) and using z (z,0, s,t) = ¢y, e < e~ we get for all
p € [0,1]

d] T 1
1 / / g (5)] 2% (2,1, s, 1) dsdx—l—/ : | 112 (s)|ds/ Vidw
1 1 0

—/ / / se” 5 iy ()| 22 (z,1, 5,t) dsdpdz.
0 JO 1

Since s — —e~*® is an increasing function, we have —e™* < —e™™ for all s € [, o).
Finally, setting, C; = —e~™ and recalling (1.2), we obtain (3.30). O

Proof of Theorem 3.1. We are now ready to define the Lyapunov functional L(t) as
follows

1 g 1
L(t):=NE((t)+ 111 (t) + Nolo (t) + I3 (t) + *2/ P1qPepad

+—/ paq (2 m(b%ﬂr/ Tlmx5>d3)dx+N4I4()

where N, Ny, N, are positive real numbers which will be chosen later.
Consequently, the estimates (3.2), (3.5), (3.12), (3.15), (3.20) and (3.30) together
with (1.3) and the following inequality

1 1 1
/ ©2dr < 2/ (pz + ¢)2 dx + 2/ Vid,
0 0 0

lead to
(3.31)
d P1 [ad]
—L(t MC — — + N. T
alls { T 2<p2+4)\2)+<p2+41
4 (2P2 (b+90)+4ﬂ162+P2€2) + Nypi + 5= }/ Vide
{ 2644_254_01]\[4}/ /T1 |2 (8)| 2% (x, 1, 5, ) dsdx
+{ + Nopi Ao + '01 2 + }/ go?dx
K 9 2
{4 +01) + Na (01 + p12C" Ag — b) + Tey

i (1) [ (55 [ e
+{451 <4+Ng>+42<4+22€2>
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(gt EOCEN
-4 /01 /01 /: se” % |y (S)|z2 (z,1,s,t)dsdpdz.

At this point, we have to choose our constants very carefully.
First, let us choose € small enough such that

< 3K
9 —_—.
- 8

(x s)‘ dsdx

Then, we take €5 = €1 and choose €5 small enough such that
K/8 p1/8
(K2+6) (2p1/K)+1]"
Then, we choose Ay = d; and choose g5 small enough such that
b/2
o< 2
1+ ,LLQC*

Once all the above constants are fixed, we fix Ny large enough such that

gq < min{

b1 b 3
Noo > = (b+6,) + Tes+ — 4+ —
2y 2 g 6o+ 52+452<+252>

After that, we pick Ay so small that

1
Ny < ——
2= 32N,

Finally, we choose M large enough so that, there exists a positive constant 7;, such
that (3.31) becomes

FUE —"1/1(¢?+w2+w3+(%+¢)2+¢2)dx
_771/ /

+771// \p2 (8)| 2% (w, 1, 5, ) dsdx
T1

_”1/ / / se” |ug ()| 2% (2,1, 5, 1) dsdpdz,
0o Jo Jn

which implies by (3.1), that there exists also 72 > 0, such that

(x 3)‘ dsdx

d
%L (t) < —mpE (), forallt>0.

In addition, we can choose M large enough so that

(3.33) GLE (t) < L(t) < BE(t), forallt>0.

(3.32)
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Combining (3.32) and (3.33), we conclude that there exists A > 0 such that

(3.34) th (t) < —=AL(t), forallt>0.

A simple integration of (3.34) leads to

(3.35) L(t) < L(0)e ™ forallt>0.

Again, (3.33) and (3.35) yeilds the desired result (3.3). This completes the proof of
Theorem 3.1. U
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