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ON THE SEMIGROUP OF BI-IDEALS OF AN ORDERED

SEMIGROUP

SUSMITA MALLICK1 AND KALYAN HANSDA2

Abstract. The purpose of this paper is to characterize an ordered semigroup S

in terms of the properties of the associated semigroup B(S) of all bi-ideals of S.
We show that an ordered semigroup S is a Clifford ordered semigroup if and only
if B(S) is a semilattice. The semigroup B(S) is a normal band if and only if the
ordered semigroup S is both regular and intra regular. For each subvariety V of
bands, we characterize the ordered semigroup S such that B(S) ∈ V.

1. Introduction and Preliminaries

The passage from semigroup without order to ordered semigroup is not straightfor-
ward. Regular rings and semigroups have been inĆuenced many authors to study the
order structure on regular semigroups as well as to introduce a natural notion of reg-
ularity which arises out of a combination of the partial order and binary operation on
an ordered semigroup. Bhuniya and Hansda [1] presented a natural analogy between
these two regularities. Thus it is quite obvious to explore a natural analogy between
the subclasses of these two regularities.

An ordered semigroup (S, ·, ≤) is a partially ordered set (S, ≤) and at the same
time a semigroup (S, ·) such that for all a, b and x ∈ S, a ≤ b implies xa ≤ xb and
ax ≤ bx. Let (S, ·, ≤) be an ordered semigroup, (∅ ≠)A ⊆ S is called a subsemigroup
of S if for every a, b ∈ A, ab ∈ A. Every subsemigroup A of S with the relation ≤A

on A deĄned by ≤A=≤ ∩¶(a, b) ∈ A × A♢ is an ordered semigroup (called an ordered

Key words and phrases. Bi-ideal, regular, Clifford, left Clifford, locally testable, left normal band,
normal band, rectangular band.
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340 S. MALLICK AND K. HANSDA

subsemigroup of S). Clearly, ≤A=≤ ∩A×A. For an ordered semigroup S and H ⊆ S,
denote (H] := ¶t ∈ H : t ≤ h for some h ∈ H♢.

Let I be a non-empty subset of an ordered semigroup S. I is a left(right) ideal of
S, if SI ⊆ I(IS ⊆ I) and (I] = I. We call I is an ideal of S if it is both a left and a
right ideal of S. We denote the set of all left and right ideals of S by L(S) and R(S)
respectively. Following Kehayopulu and Tsingelis [9], a subsemigroup B of S is called
a bi-ideal of S if BSB ⊆ B and (B] = B. We denote the set of all bi-ideals of S by
B(S). The principal left ideal, right ideal, ideal and bi-ideal generated by a ∈ S are
denoted by L(a), R(a), I(a) and B(a) respectively and deĄned by L(a) = (a ∪ Sa],
R(a) = (a ∪ aS], I(a) = (a ∪ Sa ∪ aS ∪ SaS], B(a) = (a ∪ a2 ∪ aSa].

Characterizations of a semigroup (without order) S by the set of all bi-ideals
of S, were beautifully presented by S. Lajos [11]. Here our approach allows one to
characterize an ordered semigroup S by the set B(S) of all bi-ideals of S as a semigroup
without order. We show that product of two bi-ideals in an ordered semigroup S

is again a bi-ideal of S. Thus, B(S) is closed under this product. The main object
of this paper is to study the semigroup B(S) of all bi-ideals of S whenever S is in
different important subclasses of the regular ordered semigroups.

Kehayopulu [6] deĄned GreenŠs relations L,R, J and H on an ordered semigroup
S in the following way: for a, b ∈ S aLb if L(a) = L(b); aRb if R(a) = R(b); aJb if
I(a) = I(b) and H = L ∩ R. These four are equivalence relations on S. An ordered
semigroup S is said to be regular if for every a ∈ S, a ∈ (aSa] and is intra-regular if
for every a ∈ S, a ∈ (Sa2S]. An ordered semigroup S is group like ordered semigroup
[1] if for all a, b ∈ S there are x, y ∈ S such that a ≤ xb and a ≤ by. A regular
ordered semigroup S is called a left group like ordered semigroup [1] if for all a, b ∈ S

there is x ∈ S such that a ≤ xb. Right group like ordered semigroup deĄned dually.
Class of Clifford [4] as well as left Clifford [4] ordered semigroups are subclasses
of class of regular ordered semigroups. A regular ordered semigroup S is called a
Clifford (left Clifford) [4] ordered semigroup if for all a, b ∈ S there is x ∈ S such that
ab ≤ bxa (ab ≤ xa). Following results have been given for the sake of convenience of
general readers.

Theorem 1.1. Let S be an ordered semigroup. Then following conditions hold in S.

(1) If S is regular, then B = (BSB] for every bi-ideal B of S (see [8]).
(2) If S is regular, then a nonempty subset B of S is a bi-ideal of S if and only if

B = (RL] for some right ideal R and left ideal L of S (see [5]).

Theorem 1.2 ([1]). An ordered semigroup S is a group like ordered semigroup if and

only if it is both left group like and right group like ordered semigroup.

For the sake of convenience of general readers we give some deĄnitions and results
from semigroup theory. By a band F we mean a semigroup (F, ·) with the property
a2 = a for every a ∈ F . A band (F, ·) is called rectangular if for every a, b ∈ F aba = a.
A left(right) zero band is a band (F, ·) with the property ab = a (ba = a) for every
a, b ∈ F . A band (F, ·) is said to be left (right) normal band if for every a, b, c ∈ F ,
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abc = acb (abc = bac) and F is said to be normal if abca = acba. A commutative band
is called a semilattice. A semigroup in which every Ąnitely generated subsemigroup
is Ąnite called locally Ąnite. A locally Ąnite semigroup S is called locally testable [3]
if for every idempotent f of S, fSf is a semilattice.

2. Semigroup of Bi-Ideals in Regular Ordered Semigroups

First we deĄne a product of two bi-ideals of an ordered semigroup S. Let (S, ·, ≤)
be an ordered semigroup and P (S) be the set of all subsets of S. We deĄne a binary
operation ∗ on S as follows: For A, B ∈ P (S), A ∗ B = (AB], where AB={ab : a ∈
A, b ∈ B♢. It is easy to check that (P (S), ∗) forms semigroup. Throughout the paper
A ∗ A will be denoted by A2, for every bi-ideal A of S. It is also noted that A2 is not
AA rather A2 = (AA]. Followed by above, it is a routine task to verify that L(S),
R(S) and B(S) are semigroups with respect to ∗.

In the following proposition we show that regularity of an ordered semigroup is
equivalent to the regularity of the semigroup B(S).

Proposition 2.1. Let S be an ordered semigroup. Then S is regular if and only if

the semigroup B(S) of all bi-ideals is regular.

Proof. First assume that B(S) is a regular semigroup. Let a ∈ S. Then B(a) ∈ B(S).
Since B(S) is regular, there is C ∈ B(S) such that B(a) = B(a) ∗ C ∗ B(a) =
(B(a)CB(a)]. Since a ∈ B(a), there are b ∈ B(a), x ∈ C and c ∈ B(a) such that
a ≤ bxc. Also, for b, c ∈ B(a) there are s1, s2 ∈ S such that b ≤ a or b ≤ as1a and
c ≤ a or c ≤ as2a. Thus, in either case a ≤ bxc gives that a ∈ (aSa] and therefore S

is a regular ordered semigroup.
The converse follows directly from Theorem 1.1. □

Theorem 2.1. Let S be a regular ordered semigroup. Then R(S)(L(S)) is a band

and B(S) = R(S)L(S).

Proof. Let R ∈ R(S) and a ∈ R. Since S is regular there exist x ∈ S such that
a ≤ axa. Also ax ∈ R which gives that a ∈ (RR] = R ∗R = R2 and so R ⊆ R2. Thus,
R2 = R. Hence, R(S) is a band. Similarly, L(S) is a band.

Choose R ∈ R(S) and L ∈ L(S). Let B = R ∗ L. Then B = (RL] and B is a
subsemigroup of S. Now BSB = (RL]S(RL] ⊆ (RLSRL] ⊆ (RL] = B, by Theorem
1.1. This shows that B ∈ B(S) and so R(S)L(S) ⊆ B(S). Next choose D ∈ B(S).
Now D ∈ B(S) ⊆ R(S)L(S). Thus, B(S) = R(S)L(S). Hence, the theorem is
proved. □

Theorem 2.2. An ordered semigroup S is both regular and intra-regular if and only

if B(S) is a band.

Proof. Suppose S is both regular and intra-regular ordered semigroup. Let B ∈ B(S)
and a ∈ B. Then a ≤ axa ≤ axaxa for some x ∈ S. Since S is intra-regular there are
s1, s2 ∈ S such that a ≤ s1a

2s2 which implies that a ≤ axs1a
2s2xa ≤ (axs1a)(as2xa).
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Since axs1a ∈ BSB ⊆ B, axs1a
2s2xa ∈ B2 so that a ∈ (BB] = B ∗ B = B2. Also,

B2 ⊆ B and thus B2 = B.
Conversely, assume that B(S) is a band. Let a ∈ S. Then B(a) ∈ B(S) and so

a ∈ B(a) = B(a)2 = B(a) ∗ B(a) = (B(a)B(a)]. Thus, a ≤ bc for some b, c ∈ B(a).
This gives that b ≤ a or b ≤ asa for some s ∈ S1 and c ≤ a or c ≤ ata for some t ∈ S1.
Then a ≤ bc implies that either a ≤ a2 or a ∈ (aSa2Sa] which gives that a is both
regular and intra-regular. Thus, S is both regular and intra-regular. □

Lemma 2.1. Let S is a both regular and intra-regular ordered semigroup. Then

(1) for every B, C, D ∈ B(S), ((BCB](BDB]] = (BCB] ∩ (BDB];
(2) B(S) is locally testable semigroup.

Proof. (1) We have, ((BCB](BDB]] ⊆ ((BCB](B]] ⊆ ((BCB]] ⊆ (BCB]. Similarly,
((BCB](BDB]] ⊆ (BDB]. Thus, ((BCB](BDB]] ⊆ (BCB] ∩ (BDB]. Now let
u ∈ (BCB] ∩ (BDB]. Then there are b ∈ B, c ∈ C, d ∈ D such that u ≤ bcb

and u ≤ bdb. Since S is both regular and intra-regular, then there are x, t, s ∈ S

such that u ≤ uxu, b ≤ btb and b ≤ s1b
2s2 this implies u ≤ bcbxbdb ≤ bcbtbxbdb ≤

bcbts1b
2s2xbdb ≤ (bcbts1b)(bs2xbdb). So, u ∈ ((BCB](BDB]]. Hence, (BCB] ∩

(BDB] ⊆ ((BCB](BDB]]. Thus, ((BCB](BDB]] = (BCB] ∩ (BDB].
(2) Consider B ∈ B(S). Then BB(S)B is a subsemigroup of B(S) and so a band.

Now for every C, D ∈ B(S), (BCB]∗(BDB] = ((BCB](BDB]] = (BCB]∩(BDB] =
(BDB] ∩ (BCB] = ((BDB](BCB]] = (BDB] ∗ (BCB] shows that BB(S)B is a
semilattice. Thus, B(S) is locally testable. □

Nambooripad [3] proved that a regular semigroup S is locally testable if and only
if for every f ∈ E(S), fSf is a semilattice. Also, following Zalcstein [12] a locally
testable semigroup is a band if and only if it is a normal band.

Corollary 2.1. Let S be an ordered semigroup. If S is both regular and intra-regular

then B(S) is a band if and only if B(S) is a normal band.

This follows from Theorem 2.2, Lemma 2.1 and Theorem 5 of [12].

Theorem 2.3. Let S be an ordered semigroup. Then B(S) is a rectangular band if

and only if S is regular and simple.

Proof. First suppose that B(S) is a rectangular band. Let a, b ∈ S. Then B(a), B(b) ∈
B(S). Since B(S) is rectangular band, we have B(a) = B(a) ∗ B(b) ∗ B(a) and
B(b) = B(b) ∗ B(a) ∗ B(b). Also, by Theorem 2.2, S is regular. Since a ∈ B(a) =
B(a) ∗ B(b) ∗ B(a) = (B(a)B(b)B(a)], there are w, z ∈ B(a), u ∈ B(b) such that
a ≤ zuw. Since w, z ∈ B(a), z ≤ as1a and w ≤ as2a for some s1, s2 ∈ S. Also, for
u ∈ B(b) there is s3 ∈ S such that u ≤ bs3b. Thus, a ≤ (as1abs3)b(as2a), i.e., a ≤ xby

for some x, y ∈ S. Hence, S is simple.
Conversely, let S is a regular and simple ordered semigroup. Consider, a ∈ S. Now

by given condition we have a ∈ (Sa2S] so that S is intra-regular. So by Theorem
2.2, B(S) is a band. Next let A, B ∈ B(S). We show that A = A ∗ B ∗ A. For
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this let a ∈ A and b ∈ B. Since a, aba ∈ S and aJb so a ≤ y1abay2 for some
y1, y2 ∈ S. The regularity of S yields that a ≤ axa ≤ axaxa for some x ∈ S. Then
a ≤ (axy1a)b(ay2xa) so that a ∈ ((ASA)B(ASA)] ⊆ (ABA] = A ∗ B ∗ A that is,
A ⊆ A ∗ B ∗ A. Again A ∗ B ∗ A ⊆ (ASA] = A. Thus, A = A ∗ B ∗ A hence B(S) is a
rectangular band. □

Theorem 2.4. Let S be an ordered semigroup. Then B(S) is a left (right) zero band

if and only if S is a left (right) group like ordered semigroup.

Proof. Let B(S) is a left zero band. Then by Proposition 2.2, S is regular. Let
a, b ∈ S. Then B(a), B(b) ∈ B(S). Since B(S) is a left zero band, B(a) = B(a)∗B(b),
so a ∈ (B(a)B(b)]. Then there are z ∈ B(a) and w ∈ B(b) such that a ≤ zw. Also,
w ≤ bsb for some s ∈ S. Therefore, a ≤ (zbs)b and hence S is a left group like ordered
semigroup.

Conversely, let S be a left group like ordered semigroup. Let B, C ∈ B(S). Let
u ∈ B ∗ C, then there are b ∈ B and c ∈ C such that u ≤ bc. Since S is a left group
like ordered semigroup we have c ≤ tb for some t ∈ S. Then for c ≤ tb together
with u ≤ bc ≤ btb gives u ∈ B. Thus, B ∗ C ⊆ B. Now for any d ∈ B, d ≤ dtd

for some t ∈ S. Since d, dc ∈ S, d ≤ t1dc for some t1 ∈ S. So, d ≤ dtt1dc. Clearly
d ∈ BSB ⊆ B so that d ∈ (BC] = B ∗ C. Hence, B = B ∗ C and so B is a left zero
band. □

Thus, it is very logical step to study the set of all bi-ideals B(S) for a group like
ordered semigroup S.

Theorem 2.5. Let S be an ordered semigroup. Then B(S) is both left zero and right

zero band if and only if S is a group like ordered semigroup.

Proof. This is similar to the proof of the Theorem 2.4. □

We now focus on the characterization of Clifford and left Clifford ordered semigroup
S by the semigroup B(S).

Theorem 2.6. Let S be an ordered semigroup. Then the following statements are

equivalent:

(1) S is a Clifford ordered semigroup;

(2) B1 ∗ B2 = B1 ∩ B2 for all B1, B2 ∈ B(S);
(3) (B(S), ∗) is a semilattice.

Proof. (1) ⇒ (2) First suppose that S is a Clifford ordered semigroup. Let B1, B2 ∈
B(S) and u ∈ B1 ∗ B2. Then u ≤ b1b2 for b1 ∈ B1 and b2 ∈ B2. Since S is regular
there is x ∈ S such that u ≤ uxu ≤ b1b2xb1b2. Since S is Clifford, there is x1 ∈ S

such that b1b2 ≤ b2x1b1, so that u ≤ b1b2xb2x1b1. This implies u ∈ B1. Similarly
u ∈ B2. Hence, B1 ∗ B2 ⊆ B1 ∩ B2. Next let b ∈ B1 ∩ B2. Since S is regular, there is
y ∈ S such that b ≤ byb ≤ bybyb. Since S is Clifford, yb ≤ bzy for some z ∈ S. Thus,



344 S. MALLICK AND K. HANSDA

b ≤ bbzy2b. Since b ∈ B2 and B2 is a bi-ideal of S it yields that bzy2b ∈ B2SB2 ⊆ B2.
Also, b ∈ B1 so that b ∈ (B1B2] = B1 ∗ B2. Hence, B1 ∗ B2 = B1 ∩ B2.

(2) ⇒ (3) This is obvious.
(3) ⇒ (1) Assume that (B(S), ∗) is a semilattice. Then S is a regular ordered

semigroup (by Theorem 2.2). Consider a, b ∈ S. Then ab ∈ B(a) ∗ B(b) = B(b) ∗ B(a)
implies that ab ≤ vu for some u ∈ B(a) and v ∈ B(b). Since S is regular, there are
s, t ∈ S such that u ≤ asa and v ≤ btb. Thus, ab ≤ btbasa = bza where z = tbas ∈ S.
Hence, S is a Clifford ordered semigroup. □

Theorem 2.7. Let S be an ordered semigroup. Then B(S) is a left normal band if

and only if S is a left Clifford ordered semigroup.

Proof. First suppose that S is a left Clifford ordered semigroup. Let A, B and C ∈
B(S) and x ∈ A ∗ B ∗ C. Then x ∈ (ABC] so x ≤ abc for some a ∈ A, b ∈ B and
c ∈ C. Since S is regular, there is s ∈ S such that x ≤ xsx so that x ≤ abcsabc.
Since S is a left Clifford ordered semigroup, it follows bc ≤ s1b for some s1 ∈ S, so
x ≤ abc(sas1)b ≤ abs2cb for s2 ∈ S. Since S is regular there is t ∈ S such that a ≤ ata

implies x ≤ atabs2cb. Also there are s3, s4 ∈ S, x ≤ ats3as2cb ≤ ats3s4acb implies
x ∈ A ∗ C ∗ B. Therefore, A ∗ B ∗ C ⊆ A ∗ C ∗ B. Similarly it can be shown that
A ∗ C ∗ B ⊆ A ∗ B ∗ C. Hence, A ∗ B ∗ C = A ∗ C ∗ B and so B(S) is a left normal
band.

Conversely, assume that B(S) is a left normal band. Then S is regular, by The-
orem 2.2. Let a, b ∈ S. Then there is x ∈ S such that ab ≤ abxab which implies
ab ∈ (B(abx)B(a)B(b)] = (B(abx)B(b)B(a)], since B(S) is a left normal band. Then
ab ≤ uvw, where u ∈ B(abx), v ∈ B(b), w ∈ B(a). Again, w ≤ asa for some s ∈ S.
Now ab ≤ uvw ≤ (uvas)a ≤ s1a, where s1 = uvas ∈ S. Thus, S is left Clifford
ordered semigroup. □
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L∞−ASYMPTOTIC BEHAVIOR OF A FINITE ELEMENT
METHOD FOR A SYSTEM OF PARABOLIC

QUASI-VARIATIONAL INEQUALITIES WITH NONLINEAR
SOURCE TERMS

DJABER CHEMSEDDINE BENCHETTAH1,2

Abstract. This paper is an extension and a generalization of the previous results,
cf. [3,6,8,11]. It is devoted to studying the finite element approximation of the non
coercive system of parabolic quasi-variational inequalities related to the manage-
ment of energy production problem. Specifically, we prove optimal L

∞-asymptotic
behavior of the system of evolutionary quasi-variational inequalities with nonlinear
source terms using the finite element spatial approximation and the subsolutions
method.

1. Introduction

This paper is concerned with the semi-implicit time scheme combined with a finite
element spatial approximation for a system of parabolic quasi-variational inequalities

with nonlinear source terms: Find (u1, . . . , uJ) ∈ (L2 ((0, T ) , H1
0 (Ω)))

J
satisfying

(1.1)





∂ui

∂t
+ Aiui ≤ f i

(
ui
)

in Φ,

ui ≤ Mui, i = 1, . . . , J,
(

∂ui

∂t
+ Aiui − f i

(
ui
) (

ui − Mui
)

= 0 in Φ,

ui (x, 0) = ui
0 in Ω, ui = 0 on Σ.

Key words and phrases. Quasi-variational inequalities, asymptotic behavior, subsolutions method,
finite elements approximation, L

∞-error estimate.
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Here Ai denotes uniformly second order elliptic operators on a bounded convex domain
Ω in R

J , J ≥ 1 with smooth boundary ∂Ω and Φ set in R
J ×R defined as Φ = Ω×[0, T ],

with T < +∞, Σ = ∂Ω × [0, T ].
f i (ui) are J nonlinear and Lipschitz functions with Lipschitz constant α < β and

satisfying the following condition
(1.2)

f i ∈
(
L2 ((0, T ) , L∞ (Ω)) ∩ C1

(
(0, T ) , H−1 (Ω)

))J
, f i > 0, also is increasing.

This system arises from the management of energy production problems (see [4]
and the references therein). In the case studied here, Mui represents a “cost function”
and the prototype encountered is

(1.3) Mui(x) = k + inf
µ ̸=i

uµ, where k > 0 and µ > 0,

and we know by [25] on page 243 that M satisfies some proprieties as M is a concave
operator, i.e.,

M (δu + (1 − δ) v) ≥ δM (u) + (1 − δ) M (v) , for all u, v ∈ C (Ω) ,

and it also satisfies

M (u + η) = M (u) + η, for all η ∈ R,

where k represents the switching cost. It is positive when the unit is “turned on” and
equal to zero when the unit is “turned off”.

Many results on error estimates for the classical obstacle problems, system of
stationary and evolutionary quasi-variational and variational inequalities have been
achieved in this norm, (cf., e.g., [1–3,5, 9, 18, 20,22]).

Moreover, in [11] Boulaaras, Bencheikh and Haiour established quasi-optimal L∞-
asymptotic behavior of the system of parabolic quasi-variational inequality related
the management of energy production problems with mixed boundary condition using
a discrete algorithm based on a θ-scheme combined with a finite element spatial
approximation, that is, for θ ≥ 1

2

∥ Un
h − U∞ ∥∞ ≤ C

[
h2 ♣ log h ♣3 +

(
1

1 + θ∆t

)n
,

and for 0 ≤ θ < 1
2

∥Un
h − U∞∥∞ ≤ C


h2 ♣ log h ♣3 +

(
2

2 + βθ (1 − 2θ) ρ (Ai)

n]
,

where ρ (Ai) is the spectral radios of the elliptic operator Ai and Un
h , the discrete

solution of the system of QVIs calculated at the moment-end T = n∆t for an index
of the time discretization k = 1, . . . , n, and U∞, the asymptotic continuous solution
of the system of QVIs.

Also, in [8] Boulaaras, Haiour proved quasi-optimal L∞-asymptotic behavior of the
evolutionary Hamilton-Jacobi-Bellman equations using the semi-implicit scheme with
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respect to the t-variable combined with a finite element spatial approximation where
k = ∆t, that is

∥Un
h − U∞∥∞ ≤ C∗


h2 ♣log h♣3 +

(
1 + kc

1 + kβ

n]
,

where Un
h , the discrete solution of the evolutionary Hamilton-Jacobi-Bellman equations

calculated at the moment-end T = n∆t for an index of the time discretization k =
1, . . . , n and U∞, the asymptotic continuous solution of the evolutionary Hamilton-
Jacobi-Bellman equations.

In [14] Boulbrachene, Cortey Dumont established optimal L∞-error estimate of a
finite element approximation of the Hamilton-Jacobi-Bellman (HJB) equations using
the discrete regularity introduced by Cortey Dumont in [20], that is

∥u − uh ∥∞ ≤ Ch2 ♣log h♣2 ,

where u, the continuous solution of the Hamilton-Jacobi-Bellman (HJB) equations,
and uh, the discrete solution of the Hamilton-Jacobi-Bellman (HJB) equations.

In a recent work in [7] Bencheikh, Boulaaras and Haiour also established optimal L∞-
asymptotic behavior for a system of parabolic quasi-variational inequalities related to
stochastic control problems using the regularization of the obstacles appearing in the
discrete system of QVIs “the discrete regularity”, they have the following estimation

∥Uh (T, ·) − U∞ (·)∥∞ ≤ C


h2 ♣log h♣2 +

(
1

1 + θ∆t

)N
]

,

where Uh (T, ·), the discrete solution of the system of parabolic quasi-variational
inequalities related to stochastic control problems calculated at the moment-end
T = N∆t for an index of the time discretization k = 1, . . . , N , and U∞ (·), the
asymptotic continuous solution of the system of parabolic quasi-variational inequalities
related to stochastic control problems.

In this paper we propose a new proof to get the optimal L∞-asymptotic behavior
of the system of parabolic QVIs with nonlinear source terms without going through
the discrete regularity of the obstacles appearing in the discrete system of QVIs and
we improve the convergence order in works of Boulaaras, Haiour [8, 9] and Boulaaras,
Bencheikh and Haiour [11] for the system of parabolic quasi-variational inequalities.

The subsolutions method (see [14,17,21]) characterizes the continuous solution (resp.
the discrete solution) as the least upper bound of the set of continuous subsolutions
(resp. the discrete subsolution) will also be crucial to determine the convergence order.

The approximation method developed in this paper stands on the construction a
sequence of continuous subsolution denoted βk = (β1,k, . . . , βJ,k) such that

βi,k ≤ ui,k and
∥∥∥βi,k − u

i,k
h

∥∥∥
∞

≤ Ch2♣ ln h♣2, for all k ≥ 1, i = 1, 2, . . . , J,
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and the construction of a sequence of discrete subsolution αk
h = (α1,k

h , . . . , α
J,k
h ) such

that

α
i,k
h ≤ u

i,k
h and

∥∥∥αi,k
h − ui,k

∥∥∥
∞

≤ Ch2♣ ln h♣2, for all k ≥ 1, i = 1, 2, . . . , J,

to obtain
max
1≤i≤J

∥∥∥ui,k − u
i,k
h

∥∥∥
∞

≤ Ch2♣ ln h♣2, for all k ≥ 1.

In this situation, we establish the optimal L∞-asymptotic behavior of the system
of parabolic QVIs, that is

∥ UN
h − U∞ ∥∞ = max

1≤i≤J
∥ u

i,N
h − ui,∞ ∥∞≤ C


h2 ln h♣2 +

(
1 + α∆t

1 + β∆t

N

 .

The paper is organized as follows. In Section 2, we consider system of continuous
quasi-variational inequalities and we give some related qualitative properties. In
Section 3, we characterize the discrete solution as a fixed point of a contraction. In
Section 4, we introduce two auxiliary problems which allow us to define sequences of
continuous and discrete subsolutions. In Section 5, we present the main result of the
paper.

2. The Continuous Problem

2.1. Notations, Assumptions. Let ai
jp(x), ai

p(x), ai
0(x) in L∞ (Ω) ∩ C2(Ω), x ∈

Ω̄, j, p = 1, . . . , S, are sufficiently smooth coefficients and satisfying the following
conditions:

S∑

j,p=1

ai
jp (x) ζjζp ≧ γ ♣ζ♣2 , for all ζ ∈ R

S, γ > 0, x ∈ Ω,

and

(2.1) ai
jp = ai

pj, ai
0 (x) ⩾ β > 0, β is a constant.

We define the second order differential operators Ai:

Ai = −
S∑

j,p=1

ai
jp (x)

∂2

∂xj∂xp

+
S∑

p=1

ai
p (x)

∂

∂xp

+ ai
0 (x) ,

and the associated variational forms for any u, v ∈ H1
0 (Ω)

ai(u, v) =
∫

Ω




S∑

j,p=1

ai
jp(x)

∂u

∂xj

∂v

∂xp

+
S∑

p=1

ai
p(x)

∂u

∂xp

v + ai
0(x)uv


 dx.

We shall also need the following notations

∥W∥∞ = max
1≤i≤J

∥∥∥wi
∥∥∥

∞
, for all W =

(
w1, w2, . . . , wJ

)
∈

J∏

i=1

L∞ (Ω) ,

where ∥·∥∞ denotes the well-known L∞-norm, (·, ·) be the inner product in L2 (Ω).
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2.2. The system of continuous parabolic quasi-variational inequalities. The

problem (1.1) can be approximated by the following system of continuous parabolic
quasi-variational inequalities: Find U = (u1, u2, . . . , uJ) ∈ (L2 ((0, T ) , H1

0 (Ω)))J solu-

tion for:

(2.2)





(
∂ui

∂t
, vi − ui


+ ai

(
ui, vi − ui

)
≧
(
f i
(
ui
)

, vi − ui
)

,

ui ≤ Mui, vi ≤ Mui, 1 ≤ i ≤ J,

ui (x, 0) = ui
0 in Ω, ui = 0 on ∂Ω.

Now, we apply the semi-implicit scheme of the system to the continuous parabolic
quasi-variational inequalities (2.2). Therefore, we seek a sequence of elements ui,k ∈

(H1
0 (Ω))

J
, 1 ≤ i ≤ J , which approaches ui (tk), tk = k∆t, with initial data ui,0. Thus,

we have k = 1, . . . , N ,

(2.3)





(
ui,k − ui,k−1

∆t
, vi − ui,k


+ ai

(
ui,k, vi − ui,k

)
≧
(
f i,k

(
ui,k

)
, vi − ui,k

)
,

ui,k ≤ Mui,k, vi ≤ Mui,k, 1 ≤ i ≤ J,

ui (x, 0) = ui
0 in Ω, ui = 0 on ∂Ω.

2.2.1. Existence and uniqueness of continuous solution of the system of parabolic QVIs.

Let us recall just the main steps leading to the existence of a unique solution to system
(2.3). For more details, we refer the reader to [4].

A fixed point mapping associated with the continuous problem.
Let H

+ = (L∞
+ (Ω))J = ¶ V = (v1, . . . , vJ) such that vi ∈ L∞

+ (Ω)♢, where L∞
+ (Ω) is

the positive cone of L∞(Ω).
We introduce the following mapping:

T : H+ → (L∞(Ω))J ,(2.4)

W → TW = ζk = (ζ1,k, . . . , ζJ,k),

we note ζ i,k = ∂(F i,k (wi) , Mwi) ∈ (H1
0 (Ω))

J
for all i = 1, . . . , J , the solution of the

following problem:




bi
(
ζ i,k, vi − ζ i,k

)
≧
(
f i,k

(
wi
)

+ λwi, vi − ζ i,k
)

, for all vi ∈
(
H1

0 (Ω)
)J

,

ζ i,k ≤ Mwi, vi ≤ Mwi,

where F i,k (wi) = f i,k (wi) + λwi.
An iterative continuous algorithm.
Let us also define the vector U0 = (u1,0, . . . , uJ,0), where ui,0 is the solution to the

continuous equation:

bi
(
ui,0, vi

)
=
(
gi,0, vi

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

where gi,0 is a linear and a regular function.
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Now we give the following continuous algorithm

(2.5) ui,k = Tui,k−1, k = 1, . . . , N, i = 1, . . . , J,

or

Uk = TUk−1,

where Uk =
(
u1,k, . . . , uJ,k

)
is the solution of the problem (2.3).

Remark 2.1. We denote

C =
{
W ∈ H

+ ♣ 0 ≤ W ≤ U0
}

,

where U0 = U0 =
(
u1

0, . . . , uJ
0

)
, H

+ = (L∞
+ (Ω))J . Since f i,k (·) ≥ 0, combining

comparison results in variational inequalities with simple induction, we obtain Uk =(
u1,k, . . . , uJ,k

)
≥ 0 for all k = 1, . . . , N and TW ≥ 0.

Similarly as in [12], the mapping T is monotone increasing for the stationary free
boundary problem with nonlinear source term. Then it can be easily verified that

U2 = TU1 ≤ TU0 = U1 ≤ U0,

thus, inductively,

Uk+1 = TUk ≤ Uk ≤ · · · ≤ U0, for all k = 1, . . . , N,

and also it can be seen that the sequence Uk stays in C.

According to assumption (1.2), f is increasing, for k = 1, . . . , N , i = 1, . . . , J , and
using the Remark 2.1, we have

f
(
Uk
)

≤ f
(
Uk−1

)

or

f
(
ui,k

)
≤ f

(
ui,k−1

)
,

which implies

(2.6)





(
ui,k

∆t
, vi − ui,k


+ ai

(
ui,k, vi − ui,k

)
≧

(
f i,k

(
ui,k−1

)
+

ui,k−1

∆t
, vi − ui,k


,

ui,k ≤ Mui,k, vi ≤ Mui,k, 1 ≤ i ≤ J,

ui (x, 0) = ui
0 in Ω, ui = 0 on ∂Ω.

Then, the problem (2.6) can be reformulated into the following coercive continuous
system of elliptic quasi-variational inequalities (EQVIs)

(2.7)





bi
(
ui,k, vi − ui,k

)
≧
(
f i,k

(
ui,k−1

)
+ λui,k−1, vi − ui,k

)
, ui,k ∈

(
H1

0 (Ω)
)J

,

ui,k ≤ Mui,k, vi ≤ Mui,k, 1 ≤ i ≤ J,

ui (x, 0) = ui
0 in Ω, ui = 0 on ∂Ω,
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where




bi
(
ui,k, vi − ui,k

)
= λ

(
ui,k, vi − ui,k

)
+ ai

(
ui,k, vi − ui,k

)
, ui,k ∈

(
H1

0 (Ω)
)J

,

λ =
1

∆t
=

N

T
, k = 1, . . . , N.

Then the bilinear form b (·, ·) is strongly coercive see [26]. There exist two constants
λ > 0 and γ > 0 such that:

bi (v, v) = ai (v, v) + λ ∥v∥2
L2(Ω) ≧ γ ∥v∥2

H1

0
(Ω) , for all v ∈ H1

0 (Ω).

Let C = ¶W ∈ H
+ ♣ 0 ≤ W ≤ U0♢, where U0 = U0 =

(
u1

0, . . . , uJ
0

)
and F i,k (wi) =

f i,k (wi) + λwi, F̃ i,k (w̃i) = f i,k (w̃i) + λw̃i ∈ (L∞ (Ω))J be the corresponding right-

hand sides to the continuous PQVIs and k and k̃ be two parameters that are defined
in (1.2) and (1.3).

A monotonicity property

Proposition 2.1 ([16,20]). If F i,k (wi) ≤ F i,k (w̃i) and k ≤ k̃, then

ui,k = ∂
(
F i,k

(
wi
)

, k
)

≤ ũi,k = ∂
(
F i,k

(
w̃i
)

, k̃
)

.

Proposition 2.2 ([8,12]). Under the previous assumption and notations (1.2), (2.1),
(2.4), the mapping T is a contraction in H

+ with contraction constant α+λ
β+λ

. Therefore,

T admits a unique fixed point which coincides with the continuous solution of the

system of parabolic QVIs (2.7).

Proposition 2.3 ([8]). Under the conditions of Proposition 2.2 and notations (1.2),
(2.1), (2.4), we have the following estimate of geometric convergence

∥ Uk − U∞ ∥∞= max
1≤i≤J

∥ ui,k − ui,∞ ∥∞≤

(
1 + α∆t

1 + β∆t

k

∥ U∞ − U0 ∥∞,

where U∞ is an asymptotic continuous solution of the following system of QVIs




bi
(
ui,∞, vi − ui,∞

)
≥
(
f i
(
ui,∞

)
+ λui,∞, vi − ui,∞

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ui,∞ ≤ Mui,∞, i = 1, . . . , J.

Lipschitz dependence with respect to the right-hand sides and the pa-
rameter k

Proposition 2.4 ([14,21]). Under the conditions of Proposition 2.1. Then we have:

max
1≤i≤J

∥ ui,k − ũi,k ∥∞≤ C max
1≤i≤J

(∣∣∣k − k̃
∣∣∣+ ∥ F i,k − F̃ i,k ∥∞

)
.

Characterization of the solution of the system (2.7) as the envelope of
continuous subsolutions
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Definition 2.1 ([4]). Z = (z1, . . . , zJ) ∈ (H1
0 (Ω))J is said to be a continuous subso-

lution for the system of quasi-variational inequalities (2.7) if




bi
(
zi,k, vi

)
≤
(
f i,k

(
zi,k−1

)
+ λzi,k−1, vi

)
, for all vi ∈

(
H1

0 (Ω)
)J

, vi ≧ 0,

zi,k ≤ Mzi,k, i = 1, . . . , J, k = 1, . . . , N.

Let Y denote the set of such continuous subsolutions.

Theorem 2.1 ([4, 21]). The solution of the system (2.7) is the maximum element of

the set Y.

3. The Discrete Problem

Let Ω be decomposed into triangles and let τh denote the set of all those elements,
h > 0 is the mesh size. We assume the family τh is regular and quasi-uniform. We
consider φl, l = 1, 2, . . . , m(h), are the nodal basis functions defined by φl (Ms) = δls

where Ms, s = 1, . . . , m (h), is a vertex of the considered triangulation and rh is the
usual interpolation operator.

Let Vh denote the standard piecewise linear finite element space

Vh =¶ui ∈ (L2
(
0, T, H1

0 (Ω)
)

∩ C
(
0, T, H1

0 (Ω̄)
)
)J ♣ ui ♣ki

∈ P1,

ki ∈ τ i
h and ui (·, 0) = ui

0 in Ω, ui = 0 on ∂Ω♢.

P1 denotes the space of polynomials with degree no more than 1 and B
i, 1 ≤ i ≤ J ,

denote the finite element matrices defined by

(Bi)ls = bi(φl, φs), 1 ≤ l, s ≤ m(h).

The Discrete Maximum Principle Assumption (dmp) (cf. [19]). We assume
that the matrices (Bi)ls = bi(φl, φs) = ai(φl, φs) + λ(φl, φs) are M-matrices.

Under the dmp, we shall achieve a similar study to that devoted to the continuous
problem.

We discretize in space the problem (2.2), i.e., that we approach the space H1
0 by

a space discretization of finite dimensional Vh ⊂ H1
0 . In a second step, we discretize

the problem with respect to time using the semi-implicit scheme. Therefore, we seek
a sequence of elements u

i,k
h ∈ (Vh)J , 1 ≤ i ≤ J , which approaches ui

h (tk) , tk = k∆t

with initial data ui,0. Thus, we have k = 1, . . . , N ,

(3.1)





(
u

i,k
h − u

i,k−1
h

∆t
, vi

h − u
i,k
h


+ ai

(
u

i,k
h , vi

h − u
i,k
h

)
≧
(
f i,k

(
u

i,k−1
h

)
, vi

h − u
i,k
h

)
,

u
i,k
h ≤ rhMu

i,k
h , vi

h ≤ rhMu
i,k
h , 1 ≤ i ≤ J.
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Then we can write (3.1) as follows:

(3.2)





(
u

i,k
h

∆t
, vi

h − u
i,k
h


+ ai

(
u

i,k
h , vi

h − u
i,k
h

)
≧

(
f i,k

(
u

i,k−1
h

)
+

u
i,k−1
h

∆t
, vi

h − u
i,k
h


.

u
i,k
h ≤ rhMu

i,k
h , vi

h ≤ rhMu
i,k
h , 1 ≤ i ≤ J.

The problem (3.2) can be reformulated into the following coercive system of discrete
elliptic quasi-variational inequalities:
(3.3)




bi
(
u

i,k
h , vi

h − u
i,k
h

)
≧
(
f i,k

(
u

i,k−1
h

)
+ λu

i,k−1
h , vi

h − u
i,k
h

)
, for all vi

h ∈ (Vh)J
,

u
i,k
h ≤ rhMu

i,k
h , vi

h ≤ rhMu
i,k
h ,

such that



bi
(
u

i,k
h , vi

h − u
i,k
h

)
= λ

(
u

i,k
h , vi

h − u
i,k
h

)
+ ai

(
u

i,k
h , vi

h − u
i,k
h

)
, u

i,k
h ∈ (Vh)J

,

λ =
1

∆t
=

N

T
, k = 1, . . . , N.

3.0.1. Existence and uniqueness for discrete solution of the system of PQVI. As in
the continuous problem, we shall characterize the discrete solution of system of PQVI
as the unique fixed point of a contraction.

A fixed point mapping associated with discrete problem
We introduce the following mapping:

Th : H+ → (Vh)J ,(3.4)

W → ThW = ζk
h = (ζ1,k

h , . . . , ζ
J,k
h ),

we keep the precedent notation, i.e., ζ
i,k
h = ∂h(F i,k (wi) , rhMwi) ∈ (Vh)J for all

i = 1, . . . , J , the solution to the following problem:




bi
(
ζ

i,k
h , vi

h − ζ
i,k
h

)
≧
(
f i,k

(
wi
)

+ λwi, vi
h − ζ

i,k
h

)
, for all vi

h ∈ (Vh)J
,

ζ
i,k
h ≤ rhMwi, vi

h ≤ rhMwi,

where F i,k (wi) = f i,k (wi) + λwi.
An iterative discrete algorithm
Let us also define the vector U0

h = (u1,0
h , . . . , u

J,0
h ), where u

i,0
h is the solution of the

continuous equation:

bi
(
u

i,0
h , vi

)
=
(
gi,0, vi

)
, for all vi ∈ (Vh)J

,

where gi,0 is a linear and a regular function.
Now we give the following discrete algorithm

(3.5) u
i,k
h = Thu

i,k−1
h , k = 1, . . . , N, i = 1, . . . , J,

or

Uk
h = ThUk−1

h ,
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where Uk
h =

(
u

1,k
h , . . . , u

J,k
h

)
is the solution of the problem (3.3).

We denote Ch = ¶W ∈ H
+ ♣ 0 ≤ W ≤ U0

h♢, where U0
h =

(
u1

h0, . . . , uJ
h0

)

and F i,k (wi) = f i,k (wi) + λwi F̃ i,k (w̃i) = f i,k (w̃i) + λw̃i ∈ (L∞ (Ω))J are the corre-

sponding right-hand sides to the discrete PQVIs and k and k̃ be two parameters.
As in the continuous case, we give some related qualitative properties of the discrete

solution of the system of parabolic QVIs (3.3).
A monotonicity property

Proposition 3.1 ([16,20]). If F i,k (wi) ≤ F i,k (w̃i) and k ≤ k̃, then

u
i,k
h = ∂h

(
F i,k

(
wi
)

, k
)

≤ ũ
i,k
h = ∂h

(
F i,k

(
w̃i
)

, k̃
)

.

Proposition 3.2 ([8, 12]). Under the previous assumption, notations (1.2), (2.1),
(3.4) and the dmp, the mapping Th is a contraction in H

+ with contraction constant
α+λ
β+λ

. Therefore, Th admits a unique fixed point which coincides with the discrete

solution of the system of parabolic QVIs (3.3).

Proposition 3.3 ([8]). Under the conditions of Proposition 3.2 and notations (1.2),
(2.1), (3.4), we have the following estimate of geometric convergence

∥ Uk
h − U∞

h ∥∞= max
1≤i≤J

∥ u
i,k
h − u

i,∞
h ∥∞≤

(
1 + α∆t

1 + β∆t

k

∥ U∞
h − U0

h ∥∞,

where U∞
h is an asymptotic discrete solution of the following system of QVIs





bi(ui,∞
h , vi

h − u
i,∞
h ) ≥

(
f i
(
u

i,∞
h

)
+ λu

i,∞
h , vi

h − u
i,∞
h

)
, for all vi

h ∈ (Vh)J
,

u
i,∞
h ≤ rhMu

i,∞
h , i = 1, . . . , J.

Lipschitz dependence with respect to the right-hand sides and the pa-
rameter k

Proposition 3.4 ([14,21]). Under the dmp and the Proposition 3.1, we have:

max
1≤i≤J

∥ u
i,k
h − ũ

i,k
h ∥∞≤ C max

1≤i≤J

(∣∣∣k − k̃
∣∣∣+ ∥ F i,k − F̃ i,k ∥∞

)
.

Characterization of the solution of system (3.3) as the envelope of discrete
subsolutions

Definition 3.1 ([4]). Zh = (z1
h, . . . , zJ

h ) ∈ (Vh)J is said to be a discrete subsolution
for the system of quasi-variational inequalities (3.3) if





bi
(
z

i,k
h , φl

)
≤
(
f i,k

(
z

i,k−1
h

)
+ λz

i,k−1
h , φl

)
, for all vi

h ∈ (Vh)J
, φl ≥ 0,

l = 1, . . . , m (h) ,

z
i,k
h ≤ rhMz

i,k
h , i = 1, . . . , J, k = 1, . . . , N.

Let Yh denote the set of such discrete subsolutions.

Theorem 3.1 ([4, 21]). The discrete solution of the system (3.3) is the maximum

element of the set Yh.
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4. L∞-Error Estimates

In this section, we first introduce the following two auxiliary systems of variational
inequalities and next we prove a fundamental lemma of the subsolutions method.

4.1. Two auxiliary sequences of system of variational inequalities. We define

the sequence
{
Ūk
}

k≥1
=
(
ū1,k, . . . , ūJ,k

)
such that Ūk solves the continuous system of

V.I.



bi
(
ūi,k, vi − ūi,k

)
≧
(
f i
(
u

i,k−1
h

)
+ λu

i,k−1
h , vi − ūi,k

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ūi,k ≤ Mu
i,k−1
h , vi ≤ Mu

i,k−1
h ,

where Uk−1
h =

(
u

1,k−1
h , . . . , u

J,k−1
h

)
is defined in (3.5), and the sequence

{
Ūk

h

}

k≥1
=

(
ū

1,k
h , . . . , ū

J,k
h

)
is such that Ūk

h solves the discrete system of V.I.




bi
(
ū

i,k
h , vi

h − ū
i,k
h

)
≧
(
f i
(
ui,k−1

)
+ λui,k−1, vi

h − ū
i,k
h

)
, for all vi

h ∈ (Vh)J
,

ū
i,k
h ≤ rhMui,k−1, vi

h ≤ rhMui,k−1,

where Uk−1 =
(
u1,k−1, . . . , uJ,k−1

)
is defined in (2.5).

Lemma 4.1 ([20,21]). There exists a constant C independent of h and k such that

max
1≤i≤J

∥ ūi,k − u
i,k
h ∥∞ ≤ Ch2♣ ln h♣2

and

max
1≤i≤J

∥ ū
i,k
h − ui,k ∥∞ ≤ Ch2♣ ln h♣2.

4.2. Optimal L∞-error estimates. Now, we obtain the optimal L∞-error estimate
between the k-th continuous iterates ui,k and k-th discrete iterates u

i,k
h defined in (2.7)

and (3.3), respectively.
In this theorem, we exploit the idea of Boulbrachene in [13] given for variational

inequalities with noncoercive operators, where we have adapted it to a system of QVIs
related to the management of energy production problem.

Theorem 4.1.
∥∥∥Uk − Uk

h

∥∥∥
∞

= max
1≤i≤J

∥∥∥ui,k − u
i,k
h

∥∥∥
∞

≤ Ch2♣ ln h♣2.

The following lemma plays crucial role in proving the Theorem 4.1.

Lemma 4.2. There exists a sequence of continuous subsolutions
(
βk
)

k≥1
=

(
β1,k, . . . , βJ,k

)
, such that

βi,k ≤ ui,k, 1 ≤ k ≤ N, 1 ≤ i ≤ J,

and ∥∥∥βi,k − u
i,k
h

∥∥∥
∞

≤ Ch2♣ ln h♣2,
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and a sequence of discrete subsolutions
(
αk

h

)

k≥1

=
(
α

1,k
h , . . . , α

J,k
h

)
, such that

α
i,k
h ≤ u

i,k
h , 1 ≤ k ≤ N, 1 ≤ i ≤ J,

and
∥∥∥αi,k

h − ui,k
∥∥∥

∞
≤ Ch2♣ ln h♣2.

Proof. Let Ū1 be continuous solution of the system of V.I.





bi
(
ūi,1, vi − ūi,1

)
≧
(
f i
(
u

i,0
h

)
+ λu

i,0
h , vi − ūi,1

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ūi,1 ≤ k + inf
µ ̸=i

u
µ,0
h , vi ≤ k + inf

µ ̸=i
u

µ,0
h .

Then, as Ū1 = (ūi,1)1≤i≤J is a solution to a system of V.I. it is also a subsolution,
i.e.,





bi
(
ūi,1, vi

)
≤
(
f i
(
u

i,0
h

)
+ λu

i,0
h , vi

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ūi,1 ≤ k + inf
µ ̸=i

u
µ,0
h , vi ≤ k + inf

µ ̸=i
u

µ,0
h ,

and




bi
(
ūi,1, vi

)
≤
(
f i
(
u

i,0
h

)
+ λu

i,0
h − λui,0 + λui,0, vi

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ūi,1 ≤ k + inf
µ ̸=i

u
µ,0
h − inf

µ ̸=i
uµ,0 + inf

µ ̸=i
uµ,0.

We have

(4.1)
∥∥∥ui,0

h − ui,0
∥∥∥

∞
≤ Ch2 ♣ln h♣

3

2 (see [23]),

then




bi(ūi,1, vi) ≤
(
f i
(
u

i,0
h

)
+ λ

∥∥∥ui,0
h − ui,0

∥∥∥
∞

+ λui,0, vi
)

, for all vi ∈
(
H1

0 (Ω)
)J

,

ūi,1 ≤ k +
∥∥∥∥inf

µ ̸=i
u

µ,0
h − inf

µ ̸=i
uµ,0

∥∥∥∥
∞

+ inf
µ ̸=i

uµ,0,

and using (4.1), we get




bi(ūi,1, vi) ≤
(
f i
(
u

i,0
h

)
+ λCh2 ♣ln h♣

3

2 + λui,0, vi
)

, for all vi ∈
(
H1

0 (Ω)
)J

,

ūi,1 ≤ k + Ch2 ♣ln h♣
3

2 + inf
µ ̸=i

uµ,0.

As Ū1 = (ūi,1)1≤i≤J is a subsolution for the system of V.I., where the solution is

Ũ1 = (ũi,1)1≤i≤J = ∂
(
f i
(
u

i,0
h

)
+ λCh2 ♣ln h♣

3

2 + λui,0, k + Ch2 ♣ln h♣
3

2

)
.
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Let U1 = (ui,1)
1≤i≤J

= ∂
(
f i
(
u

i,0
h

)
+ λui,0, k

)
using the Proposition 2.4, we get

∥∥∥ũi,1 − ui,1
∥∥∥

∞
≤C

(∥∥∥f i
(
u

i,0
h

)
+ λCh2 ♣ln h♣

3

2 + λui,0 − f i
(
u

i,0
h

)
− λui,0

∥∥∥
∞

+
∥∥∥k + Ch2 ♣ln h♣

3

2 − k
∥∥∥

∞

)

≤C
(
λCh2 ♣ln h♣

3

2 + Ch2 ♣ln h♣
3

2

)

≤Ch2 ♣ln h♣
3

2 ,

and using the Theorem 2.1, we have

ūi,1 ≤ ũi,1 ≤ ui,1 + Ch2 ♣ln h♣
3

2 .

Now taking βi,1 = ūi,1 − Ch2 ♣ln h♣
3

2 , we have

(4.2) βi,1 ≤ ui,1,

and
∥∥∥βi,1 − u

i,1
h

∥∥∥
∞

≤
∥∥∥ūi,1 − Ch2 ♣ln h♣

3

2 − u
i,1
h

∥∥∥
∞

(4.3)

≤
∥∥∥ūi,1 − u

i,1
h

∥∥∥
∞

+ Ch2 ♣ln h♣
3

2

≤Ch2 ♣ln h♣2 + Ch2 ♣ln h♣
3

2

≤Ch2 ♣ln h♣2 .

Let Ū1
h be the discrete solution of the system of V.I.





bi
(
ū

i,1
h , vi

h − ū
i,1
h

)
≧
(
f i
(
ui,0

)
+ λui,0, vi

h − ū
i,1
h

)
, for all vi

h ∈ (Vh)J
,

ū
i,1
h ≤ rh

(
k + inf

µ ̸=i
uµ,0

)
, vi

h ≤ rh

(
k + inf

µ ̸=i
uµ,0

)
.

Then, as Ū1
h =

(
ū

i,1
h

)

1≤i≤J
is a solution to a system of V.I. it is also a subsolution,

i.e., 



bi
(
ū

i,1
h , φs

)
≤
(
f i
(
ui,0

)
+ λui,0, φs

)
, for all φs, s = 1, . . . , m(h),

ū
i,1
h ≤ rh

(
k + inf

µ ̸=i
uµ,0

)
, vi

h ≤ rh

(
k + inf

µ ̸=i
uµ,0

)
,

and



bi
(
ū

i,1
h , φs

)
≤
(
f i
(
ui,0

)
+ λui,0 − λu

i,0
h + λu

i,0
h , φs

)
, for all φs, s = 1, . . . , m(h),

ū
i,1
h ≤ rh

(
k + inf

µ ̸=i
uµ,0

)
.

Then



bi
(
ū

i,1
h , φs

)
≤
(
f i
(
ui,0

)
+ λui,0 − λu

i,0
h + λu

i,0
h , φs

)
, for all φs, s = 1, . . . , m(h),

ū
i,1
h ≤ k + rh

(
inf
µ ̸=i

uµ,0
)

− rh

(
inf
µ ̸=i

u
µ,0
h

)
+ rh

(
inf
µ ̸=i

u
µ,0
h

)
,
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and




bi
(
ū

i,1
h , φs

)
≤
(
f i
(
ui,0

)
+ λ

∥∥∥ui,0 − u
i,0
h

∥∥∥
∞

+ λu
i,0
h , φs

)
, for all φs, s = 1, . . . , m(h),

ū
i,1
h ≤ k +

∥∥∥∥rh

(
inf
µ ̸=i

uµ,0
)

− rh

(
inf
µ ̸=i

u
µ,0
h

)∥∥∥∥
∞

+ rh

(
inf
µ ̸=i

u
µ,0
h

)
,

using (4.1) , we get




bi
(
ū

i,1
h , φs

)
≤
(
f i
(
ui,0

)
+ λCh2 ♣ln h♣

3

2 + λu
i,0
h , φs

)
, for all φs, s = 1, . . . , m(h),

ū
i,1
h ≤ k + Ch2 ♣ln h♣

3

2 + rh

(
inf
µ ̸=i

u
µ,0
h

)
.

As Ū1
h =

(
ū

i,1
h

)

1≤i≤J
is a subsolution for the system of V.I., where the solution is

Ũ1
h =

(
ũ

i,1
h

)

1≤i≤J
= ∂h

(
f i (ui,0) + λCh2 ♣ln h♣

3

2 + λu
i,0
h , k + Ch2 ♣ln h♣

3

2

)
.

Let U1
h =

(
u

i,1
h

)

1≤i≤J

= ∂h

(
f i (ui,0) + λu

i,0
h , k

)
. Using Proposition 3.4, we have

∥∥∥ũi,1
h − u

i,1
h

∥∥∥
∞

≤C
(∥∥∥f i

(
ui,0

)
+ λCh2 ♣ln h♣

3

2 + λu
i,0
h − f i

(
ui,0

)
− λu

i,0
h

∥∥∥
∞

+
∥∥∥k + Ch2 ♣ln h♣

3

2 − k
∥∥∥

∞

)

≤C
(
λCh2 ♣ln h♣

3

2 + Ch2 ♣ln h♣
3

2

)

≤Ch2 ♣ln h♣
3

2 ,

and using Theorem 3.1, we get

ū
i,1
h ≤ ũ

i,1
h ≤ u

i,1
h + Ch2 ♣ln h♣

3

2 .

Now taking α
i,1
h = ū

i,1
h − Ch2 ♣ln h♣

3

2 , we get

(4.4) α
i,1
h ≤ u

i,1
h

and
∥∥∥αi,1

h − ui,1
∥∥∥

∞
≤
∥∥∥ūi,1

h − Ch2 ♣ln h♣
3

2 − ui,1
∥∥∥

∞
(4.5)

≤
∥∥∥ūi,1

h − ui,1
∥∥∥

∞
+ Ch2 ♣ln h♣

3

2

≤Ch2 ♣ln h♣2 + Ch2 ♣ln h♣
3

2

≤Ch2 ♣ln h♣2 .

Then, according to (4.2), (4.3) and (4.4), (4.5), we get

ui,1 ≤α
i,1
h + Ch2 ♣ln h♣2 ≤ u

i,1
h + Ch2 ♣ln h♣2 ,

u
i,1
h ≤βi,1 + Ch2 ♣ln h♣2 ≤ ui,1 + Ch2 ♣ln h♣2 .

Thus, ∥∥∥ui,1 − u
i,1
h

∥∥∥
∞

≤ Ch2 ♣ln h♣2 .
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Therefore,

max
1≤i≤J

∥∥∥ui,1 − u
i,1
h

∥∥∥
∞

≤ Ch2 ♣ln h♣2 .

For k we assume that

(4.6)
∥∥∥ui,k−1 − u

i,k−1
h

∥∥∥
∞

≤ Ch2 ♣ln h♣2

and we prove that
∥∥∥ui,k − u

i,k
h

∥∥∥
∞

≤ Ch2 ♣ln h♣2 .

For that, consider the following system of continuous V.I.




bi
(
ūi,k, vi − ūi,k

)
≧
(
f i
(
u

i,k−1
h

)
+ λu

i,k−1
h , vi − ui,k

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ūi,k ≤ k + inf
µ ̸=i

u
µ,k−1
h , vi ≤ k + inf

µ ̸=i
u

µ,k−1
h .

Then, as Ūk =
(
ūi,k

)

1≤i≤J
be a solution to a system of V.I. it is also a subsolution

i.e.,




bi
(
ūi,k, vi

)
≤
(
f i
(
u

i,k−1
h

)
+ λu

i,k−1
h , vi

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ūi,k ≤ k + inf
µ ̸=i

u
µ,k−1
h , vi ≤ k + inf

µ ̸=i
u

µ,k−1
h .

Then 



bi
(
ūi,k, vi

)
≤
(
f i
(
u

i,k−1
h

)
+ λu

i,k−1
h − λui,k−1 + λui,k−1, vi

)
,

for all vi ∈
(
H1

0 (Ω)
)J

,

ūi,k ≤ k + inf
µ ̸=i

u
µ,k−1
h − inf

µ ̸=i
uµ,k−1 + inf

µ ̸=i
uµ,k−1,

and 



bi
(
ūi,k, vi

)
≤
(
f i
(
u

i,k−1
h

)
+ λ

∥∥∥ui,k−1
h − ui,k−1

∥∥∥
∞

+ λui,k−1, vi
)

,

for all vi ∈
(
H1

0 (Ω)
)J

,

ūi,k ≤ k +
∥∥∥∥inf

µ ̸=i
u

µ,k−1
h − inf

µ ̸=i
uµ,k−1

∥∥∥∥
∞

+ inf
µ ̸=i

uµ,k−1.

Using (4.6), we get





bi
(
ūi,k, vi

)
≤
(
f i
(
u

i,k−1
h

)
+ λCh2 ♣ln h♣2 + λui,k−1, vi

)
, for all vi ∈

(
H1

0 (Ω)
)J

,

ūi,k ≤ k + Ch2 ♣ln h♣2 + inf
µ ̸=i

uµ,k−1.

Let Ūk =
(
ūi,k

)

1≤i≤J
be a subsolution for the system of V.I. whose solution is

Ũk =
(
ũi,k

)

1≤i≤J
= ∂

(
f i
(
u

i,k−1
h

)
+ λCh2 ♣ln h♣2 + λui,k−1, k + Ch2 ♣ln h♣2

)
.
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Then, as Uk =
(
ui,k

)

1≤i≤J

= ∂
(
f i
(
u

i,k−1
h

)
+ λui,k−1, k

)
making use of Proposition

2.4, we have
∥∥∥ũi,k − ui,k

∥∥∥
∞

≤C
(∥∥∥f i

(
u

i,k−1
h

)
+ λCh2 ♣ln h♣2 − f i

(
u

i,k−1
h

)∥∥∥
∞

+
∥∥∥k + Ch2 ♣ln h♣2 − k

∥∥∥
∞

)

≤C(λCh2 ♣ln h♣2 + Ch2 ♣ln h♣2)

≤Ch2 ♣ln h♣2 ,

and, using Theorem 2.1, we have

ūi,k ≤ ũi,k ≤ ui,k + Ch2 ♣ln h♣2 .

Now putting βi,k = ūi,k − Ch2 ♣ln h♣2 , we get

(4.7) βi,k ≤ ui,k

and
∥∥∥βi,k − u

i,k
h

∥∥∥
∞

≤
∥∥∥ūi,k − Ch2 ♣ln h♣2 − u

i,k
h

∥∥∥
∞

(4.8)

≤
∥∥∥ūi,k − u

i,k
h

∥∥∥
∞

+ Ch2 ♣ln h♣2

≤Ch2 ♣ln h♣2 + Ch2 ♣ln h♣2

≤Ch2 ♣ln h♣2 .

Let Ūk
h be the discrete solution of the following system of V.I.





bi
(
ū

i,k
h , vi

h − ū
i,k
h

)
≧
(
f i
(
ui,k−1

)
+ λui,k−1, vi

h − ū
i,k
h

)
, for all vi

h ∈ (Vh)J
,

ū
i,k
h ≤ rh

(
k + inf

µ ̸=i
uµ,k−1

)
, v ≤ rh

(
k + inf

µ ̸=i
uµ,k−1

)
.

Then, as Ūk
h =

(
ū

i,k
h

)

1≤i≤J
is a solution to a system of V.I. it is also a subsolution, i.e.,





bi
(
ū

i,k
h , φs

)
≤
(
f i
(
ui,k−1

)
+ λui,k−1, φs

)
, for all φs, s = 1, . . . , m(h),

ū
i,k
h ≤ rh

(
k + inf

µ ̸=i
uµ,k−1

)
, v ≤ rh

(
k + inf

µ ̸=i
uµ,k−1

)
.

Then we have




bi
(
ū

i,k
h , φs

)
≤
(
f i
(
ui,k−1

)
+ λui,k−1 − λu

i,k−1
h + λu

i,k−1
h , φs

)
, for all φs,

ū
i,k
h ≤ k + rhinf

µ ̸=i
uµ,k−1 − rhinf

µ ̸=i
u

µ,k−1
h + rhinf

µ ̸=i
u

µ,k−1
h ,

and




bi
(
ū

i,k
h , φs

)
≤
(
f i
(
ui,k−1

)
+ λ

∥∥∥ui,k−1 − u
i,k−1
h

∥∥∥
∞

+ λu
i,k−1
h , φs

)
, for all φs,

ū
i,k
h ≤ k +

∥∥∥∥rhinf
µ ̸=i

uµ,k−1 − rhinf
µ ̸=i

u
µ,k−1
h

∥∥∥∥
∞

+ rhinf
µ ̸=i

u
µ,k−1
h .
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Using (4.6), we obtain




bi
(
ū

i,k
h , φs

)
≤
(
f i
(
ui,k−1

)
+ λCh2 ♣ln h♣2 + λu

i,k−1
h , φs

)
, for all φs,

ū
i,k
h ≤ k + Ch2 ♣ln h♣2 + rhinf

µ ̸=i
u

µ,k−1
h .

So, Ūk
h =

(
ū

i,k
h

)

1≤i≤J
is a subsolution for the system of V.I. whose solution is Ũk

h =
(
ũ

i,k
h

)

1≤i≤J
= ∂h

(
f i
(
ui,k−1

)
+ λCh2 ♣ln h♣2 + λu

i,k−1
h , k + Ch2 ♣ln h♣2

)
. Then, as Uk

h =
(
u

i,k
h

)

1≤i≤J

= ∂h

(
f i
(
ui,k−1

)
+ λu

i,k−1
h , k

)
making use of Proposition 3.4, we have

∥∥∥ũi,k
h − u

i,k
h

∥∥∥
∞

≤C
(∥∥∥f i

(
ui,k−1

)
+ λCh2 ♣ln h♣2 − f i

(
ui,k−1

)∥∥∥
∞

+
∥∥∥k + Ch2 ♣ln h♣2 − k

∥∥∥
∞

)

≤C(λCh2 ♣ln h♣2 + Ch2 ♣ln h♣2)

≤Ch2 ♣ln h♣2 ,

and, using Theorem 3.1, we have

ū
i,k
h ≤ ũ

i,k
h ≤ u

i,k
h + Ch2 ♣ln h♣2 .

Now, putting α
i,k
h = ū

i,k
h − Ch2 ♣ln h♣2 , we have

(4.9) α
i,k
h ≤ u

i,k
h

and
∥∥∥αi,k

h − ui,k
∥∥∥

∞
≤
∥∥∥ūi,k

h − Ch2 ♣ln h♣2 − ui,k
∥∥∥

∞
(4.10)

≤
∥∥∥ūi,k

h − ui,k
∥∥∥

∞
+ Ch2 ♣ln h♣2

≤Ch2 ♣ln h♣2 + Ch2 ♣ln h♣2

≤Ch2 ♣ln h♣2 .

Then, combining (4.7), (4.8) and (4.9), (4.10), we get

ui,k ≤α
i,k
h + Ch2 ♣ln h♣2 ≤ u

i,k
h + Ch2 ♣ln h♣2 ,

u
i,k
h ≤βi,k + Ch2 ♣ln h♣2 ≤ ui,k + Ch2 ♣ln h♣2 .

Thus,
∥∥∥ui,k − u

i,k
h

∥∥∥
∞

≤ Ch2 ♣ln h♣2 .

Therefore,
∥∥∥Uk − Uk

h

∥∥∥
∞

= max
1≤i≤J

∥∥∥ui,k − u
i,k
h

∥∥∥
∞

≤ Ch2 ♣ln h♣2 . □
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5. Asymptotic Behavior in L∞-Norm

This section is devoted to the proof of the main result of the present paper, where
we prove the optimal L∞-asymptotic behavior for the system of parabolic quasi-
variational inequalities with nonlinear source terms. More precisely, we evaluate the
variation in L∞ between UN

h , the discrete solution calculated at the moment T = N∆t

and U∞, the stationary continuous solution of the system of QVIs.

Theorem 5.1. Under the results of the Proposition 2.3 and Theorem 4.1, we have

(5.1)
∥∥∥UN

h − U∞
∥∥∥

∞
≤ C


h2 ♣ln h♣2 +

(
1 + α∆t

1 + β∆t

N

 ,

where C is a constant independent of h and N , β > 0 is constant and α < β Lipschitz

constant.

Proof. We have
u

i,k
h = ui

h (t, x) , for t ∈ ](k − 1) t, kt[ .

Thus,
u

i,N
h = ui

h (T, x) ,

then
∥∥∥ui,N

h − ui,∞
∥∥∥

∞
=
∥∥∥ui,N

h − ui,N + ui,N − ui,∞
∥∥∥

∞

≤
∥∥∥ui,N

h − ui,N
∥∥∥

∞
+
∥∥∥ui,N − ui,∞

∥∥∥
∞

.

Using Theorem 4.1 and Proposition 2.3, we get,

∥∥∥ui,N
h − ui,∞

∥∥∥
∞

≤ C


h2 ♣ln h♣2 +

(
1 + α∆t

1 + β∆t

N

 ,

which yields the following estimate:

∥∥∥UN
h − U∞

∥∥∥
∞

= max
1≤i≤J

∥∥∥ui,N
h − ui,∞

∥∥∥
∞

≤ C


h2 ♣ln h♣2 +

(
1 + α∆t

1 + β∆t

N

 . □

Remark 5.1. In the previous estimate (5.1),
(

1+α∆t
1+β∆t

)N
tends to 0 when N → +∞.

Then, we obtain the optimal L∞-error estimate for the system of elliptic quasi-
variational inequalities related to management of energy production problems (cf.
[16]):

∥U∞
h − U∞∥∞ ≤ Ch2 ♣ln h♣2 .

If we replace Mui in (1.3) by Mu = k+ inf
ξ≥0,x+ξ∈Ω̄

(u + ξ) and f (u) by f , the problem

(2.2) reduces to the parabolic quasi-variational inequalities related to impulse control
problem with linear source term (cf. [10]). Find u ∈ K(u)

(
∂u

∂t
, v − u


+ a (u, v − u) ≥ (f, v − u) , for all v ∈ K(u),
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with
K(u) =

{
u ∈ L2

(
0, T ; H1

0 (Ω)
)

♣ u ≤ Mu, u (0, x) = u0 in Ω
}

.

In this case, the error estimate given in (5.1) becomes

∥∥∥uN
h − u∞

∥∥∥
∞

≤ C


h2 ♣ln h♣2 +

(
1

1 + β∆t

N

 .

If we replace Mui in (1.3) by Mui = l + ui+1, where Mui = l + ui+1 represents the
obstacle of Hamilton Jacobi Bellman equation, the problem (2.2) reduces to the system
of evolutionary Hamilton Jacobi Bellman (HJB) equation with nonlinear source terms

(cf [8]): Find a victor U =
(
u1, . . . , uJ

)
∈ (L2 (0, T ; H1

0 (Ω)))
J

such that




(
∂ui

∂t
, vi − ui


+ ai

(
ui, vi − ui

)
≧
(
f i
(
ui
)

, vi − ui
)

,

ui ≤ l + ui+1, vi ≤ l + ui+1, uJ+1 = u1, 1 ≤ i ≤ J,

ui (x, 0) = ui
0 in Ω, ui = 0 on ∂Ω.

In this case, we get the following error estimate:

max
1≤i≤J

∥∥∥ui,N
h − ui,∞

∥∥∥
∞

≤ C


h2 ♣ln h♣2 +

(
1 + α∆t

1 + β∆t

N

 .

Conclusion 1. We have introduced a new approach and we have obtained the opti-
mal L∞-asymptotic behavior for the finite element approximation of the system of
parabolic quasi-variational inequalities with nonlinear source terms. This method
stands on the Bensoussan-Lions algorithm and the concept of subsolutions. A future
work will consolidate our theoretical results by numerical simulation, where efficient
numerical monotone algorithms will be treated.

Acknowledgements. The author would like to thank the referees and the editors
for reading, and suggestions.

References

[1] C. Baiocchi, Estimation d’erreur dans L
∞ pour les inequations a obstacle, Mathematical Aspects

of Finite Methods 606 (1977), 27–34. https://doi.org/10.1007/BFb0064453

[2] D. C. Benchettah and M. Haiour, L
∞-asymptotic behavior of the variational inequality related

to American options problem, Applied Mathematics 5(8) (2014), 1299–1309. https://doi.org/

10.4236/am.2014.58122

[3] D. C. Benchettah and M. Haiour, Sub-solution approach for the asymptotic behavior of a parabolic

variational inequality related to American options problem, Global Journal of Pure and Applied
Mathematics, 11(4) (2015), 1727–1745.

[4] A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Gauthier
Villars, Paris, 1984.

[5] A. Bensoussan and J. L. Lions, Applications des inèquations variationnelles en contrôle stochas-

tique, Dunod, Paris, 1978.

https://doi.org/10.1007/BFb0064453
https://doi.org/10.4236/am.2014.58122
https://doi.org/10.4236/am.2014.58122


366 D. C. BENCHETTAH

[6] M. A. Bencheikh le Hocine, S. Boulaaras and M. Haiour, An optimal L
∞-error estimate for an

approximation of a parabolic variational inequality, Numer. Funct. Anal. Optim. 37(1) (2015),
1–18. https://doi.org/10.1080/01630563.2015.1109520

[7] M. A. Bencheikh le Hocine, S. Boulaaras and M. Haiour, On finite element approximation of

system of parabolic quasi-variationnal inequalities related to stochastic control problems, Cogent
Math. 3(1) (2016), Paper ID 1251386. https://doi.org/10.1080/23311835.2016.1251386

[8] S. Boulaaras and M. Haiour, The finite element approximation of evolutionary Hamilton-Jacobi-

Bellman equations with nonlinear source terms, Indag. Math. 24(1) (2013), 161–173. https:

//doi.org/10.1016/j.indag.2012.07.005

[9] S. Boulaaras and M. Haiour, The theta time scheme combined with a finite-element spatial

approximation in the evolutionary Hamilton-Jacobi-Bellman equation with linear source terms,
Comput. Math. Model. 25(3) (2014), 423–438.

[10] S. Boulaaras and M. Haiour, L
∞-asymptotic behavior for a finite element approximation in

parabolic quasi-variational inequalities related to impulse control problem, Appl. Math. Comput.
217(14) (2011), 6443–6450. https://doi.org/10.1016/j.amc.2011.01.025

[11] S. Boulaaras, M. A. Bencheikh le Hocine and M. Haiour, The finite element approximation in a

system of parabolic quasi-variationnal inequalities related to management of energy production

with mixed boundary condition, Comput. Math. Model. 25(4) (2014), 530–543.
[12] M. Boulbrachene, Pointwise error estimates for a class of elliptic quasi-variational inequalities

with nonlinear source terms, Appl. Math. Comput. 161(1) (2005), 129–138.
[13] M. Boulbrachene, On the finite element approximation of variational inequalities with nonco-

ercive operators, Numer. Funct. Anal. Optim. 36(9) (2015), 1107–1121. https://doi.org/10.

1080/01630563.2015.1056913

[14] M. Boulbrachene and P. Cortey Dumont, Optimal L
∞-error estimate of a finite element method

for Hamilton Jacobi Bellman equations, Numer. Funct. Anal. Optim. 30(5–6) (2009), 421–435.
https://doi.org/10.1080/01630560902987683

[15] M. Boulbrachene, On the finite element approximation of variational inequalities with noncoer-

cive operators, Numer. Funct. Anal. Optim. 36(9) (2015), 1107–1121.
[16] M. Boulbrachene, Pointwise error estimate for a noncoercive system of quasi-variational in-

equalities related to the management of energy production, Journal of Inequalities in Pure and
Applied Mathematics 3(5) (2002), Article ID 79.

[17] M. Boulbrachene, On variational inequalities with vanishing zero term, J. Inequal. Appl. (2013),
Article ID 438. https://doi.org/10.1186/1029-242X-2013-438

[18] F. Brezzi and L. A. Caffarelli, Convergence of the discrete free boundaries for finite element

approximations, RAIRO Analyse Numérique 17(4) (1983), 385–395.
[19] P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for the finite

element method, Comput. Methods Appl. Mech. Engrg. 2(1) (1973), 17–31.
[20] P. Cortey-Dumont, Sur l’analyse numérique des équations de Hamilton-Jacobi-Bellman, Math.

Methods Appl. Sci. 9(1) (1987), 198–209. https://doi.org/10.1002/mma.1670090115

[21] P. Cortey-Dumont, Sur les inéquations variationnelles à opérateurs non coercif, Modélisation
mathématique et analyse numérique 19(2) (1985), 195–212.

[22] J. Hannouzet and P. Joly, Convergence uniforme des iteres definissant la solution d’une in-

équation quasi-variationnelle, C. R. Math. Acad. Sci. Paris, Serie A 286 (1978), 1 page.
https://10.5802/jedp.172

[23] J. Nitsche, L
∞-convergence of finite element approximations, mathematical aspects of finite

element methods, Lecture Notes in Math. 606 (1977), 261–274.
[24] R. H. Nochetto, A note on the approximation of free boundaries by finite element methods,

Modelisation Mathématique et Analyse Numérique 20(2) (1986), 355–368.
[25] B. Perthame, Some remarks on quasi-variational inequalities and the associated impulsive control

problem, Ann. Inst. H. Poincaré Anal. Non Linéaire 2(3) (1985), 237–260.

https://doi.org/10.1080/01630563.2015.1109520
https://doi.org/10.1080/23311835.2016.1251386
https://doi.org/10.1016/j.indag.2012.07.005
https://doi.org/10.1016/j.indag.2012.07.005
https://doi.org/10.1016/j.amc.2011.01.025
https://doi.org/10.1080/01630563.2015.1056913
https://doi.org/10.1080/01630563.2015.1056913
https://doi.org/10.1080/01630560902987683
https://doi.org/10.1186/1029-242X-2013-438
https://doi.org/10.1002/mma.1670090115
https://10.5802/jedp.172


THE MANAGEMENT OF ENERGY PRODUCTION PROBLEM 367

[26] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer,
Berlin, Heidelberg, 1994.

1Higher School of Management Sciences-Annaba,

2LANOS Laboratory, Faculty of Science,
Badji-Mokhtar-Annaba University,
P.O. Box 12, 23000 Annaba, Algeria
Email address: benchettah.djaber@essg-annaba.dz





Kragujevac Journal of Mathematics

Volume 47(3) (2023), Pages 369–385.

DENUMERABLY MANY POSITIVE SOLUTIONS FOR ITERATIVE

SYSTEM OF BOUNDARY VALUE PROBLEMS WITH

N-SINGULARITIES ON TIME SCALES

K. R. PRASAD1, MAHAMMAD KHUDDUSH2, AND K. V. VIDYASAGAR3

Abstract. In this paper we consider a iterative system of two-point boundary value
problems with integral boundary conditions having n singularities and involve an
increasing homeomorphism, positive homomorphism operator. By applying Hölder’s
inequality and Krasnoselskii’s cone fixed point theorem in a Banach space, we
derive sufficient conditions for the existence of denumerably many positive solutions.
Finally we provide an example to check validity of our obtained results.

1. Introduction

Theory of time scales was created to unify continuous and discrete analysis. Differ-
ence and differential equations can be studied simultaneously by studying dynamic
equations on time scales. Since a time scale is any closed and nonempty subset of the
real numbers set. So, by this theory, we can extend known results from continuous
and discrete analysis to a more general setting. As a matter of fact, this theory allows
us to consider time scales which possess hybrid behaviours (both continuous and dis-
crete). These types of time scales play an important role for applications, since most
of the phenomena in the environment are neither only discrete nor only continuous,
but they possess both behaviours. Moreover, basic results on this issue have been
well documented in the articles [1, 2] and monographs of Bohner and Peterson [7, 8].

The study of turbulent flow through porous media is important for a wide range
of scientific and engineering applications such as fluidized bed combustion, compact

Key words and phrases. Iterative system, time scale, singularity, homeomorphism, homomorphism,
cone, Krasnoselskii’s fixed point theorem, positive solutions.
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heat exchangers, combustion in an inert porous matrix, high temperature gas-cooled
reactors, chemical catalytic reactors [9] and drying of different products such as iron
ore [15]. To study such type of problems, Leibenson [13] introduced the following
p-Laplacian equation



φp(ϖ′(t))
)′

= f


t, ϖ(t), ϖ′(t)
)

,

where φp(ϖ) = ♣ϖ♣p−2ϖ, p > 1, is the p-Laplacian operator its inverse function is
denoted by φq(τ), with φq(τ) = ♣τ♣q−2τ and p, q satisfy 1

p
+ 1

q
= 1. It is well known fact

that the p-Laplacian operator and fractional calculus arises from many applied fields
such as turbulant filtration in porous media, blood flow problems, rheology, modelling
of viscoplasticity, material science, it is worth studying the fractional differential
equations with p-Laplacian operator.

In this paper, we consider an operator φ called increasing homeomorphism and
positive homomorphism operator (IHPHO), which generalizes and improves the p-
Laplacian operator for some p > 1 and φ is not necessarily odd. Liang and Zhang [14]
studied countably many positive solutions for nonlinear singular m–point boundary
value problems on time scales with IHPHO,



φ(ϖ∆(t))
)∇

+ a(t)f


ϖ(t)
)

= 0, t ∈ [0, T ]T,

ϖ(0) =
m−2
∑

i=1

aiϖ(ξi), ϖ∆(T ) = 0,

by using the fixed-point index theory and a new fixed-point theorem in cones.
In [10], Dogan considered second order p-boundary value problem on time scales,



φp(ϖ∆(t))
)∇

+ ω(t)f


t, ϖ(t)
)

= 0, t ∈ [0, T ]T,

ϖ(0) =
m−2
∑

i=1

aiϖ(ξi), φp(ϖ∆(T )) =
m−2
∑

i=1

biφp(ϖ∆(ξi)),

and established existence of multiple positive solutions by applying fixed-point index
theory.

Inspired by aforementioned works, in this paper by applying Hölder’s inequality and
Krasnoselskii’s cone fixed point theorem in a Banach space, we establish the existence
of denumerably many positive solutions for dynamical iterative system of two-point
boundary value problem with n singularities and involving IHPHO on time scales,

(1.1)
φ


ϖ∆∇
j (t)

)

+ χ(t)fj



ϖj+1(t)
)

= 0, 1 ≤ j ≤ ℓ, t ∈ [0, 1]T,

ϖℓ+1(t) = ϖ1(t), t ∈ [0, 1]T,







(1.2)
αϖj(0) − βϖ∆

j (0) =
∫ 1

0
κ1(τ)ϖj(τ)∇τ, 1 ≤ j ≤ ℓ,

γϖj(1) + δϖ∆
j (1) =

∫ 1

0
κ2(τ)ϖj(τ)∇τ, 1 ≤ j ≤ ℓ,
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where ℓ ∈ N, χ(t) =
∏n

i=1 χi(t) and each χi(t) ∈ Lpi

∇([0, 1]T), pi ≥ 1, has a singularity

in the interval


0, 1
2

)

T
and φ : R → R is an IHPHO with φ(0) = 0.

A projection φ : R → R is called a IHPHO, if the following three conditions are
fulfilled:

(a) φ(τ1) ≤ φ(τ2) whenever τ1 ≤ τ2, for any real numbers τ1, τ2;
(b) φ is a continuous bijection and its inverse φ−1 is continuous;
(c) φ(τ1τ2) = φ(τ1)φ(τ2) for any real numbers τ1, τ2.

We use following notations in the entire paper: i = 1, 2, z ∈ (0, 1/2)T,

a(t) = γ + δ − γt, b(t) = β + αt, d = αγ + αδ + βγ,

ℵ0(t, τ) =
1

d

{

a(τ)b(t), t ≤ τ,
a(t)b(τ), τ ≤ t,

ci =
∫ 1

0


∫ 1

0
ℵ0(τ1, τ2)κi(τ1)∇τ1



χ(τ2)∇τ2,

ua =
1

d

∫ 1

0
κ1(τ)a(τ)∇τ, ub =

1

d

∫ 1

0
κ1(τ)b(τ)∇τ, κ∗

i =
∫ 1

0
κi(τ)∇τ,

va =
1

d

∫ 1

0
κ2(τ)a(τ)∇τ, vb =

1

d

∫ 1

0
κ2(τ)b(τ)∇τ, κi(z) =

∫ 1−z

z
κi(τ)∇τ,

η(t) =
(1 − vb)a(t) + vab(t)

d[(1 − ua)(1 − vb) − ubva]
, λ(t) =

(1 − ua)b(t) + uba(t)

d[(1 − ua)(1 − vb) − ubva]
,

η∗ = max
t∈[0,1]T

η(t), η(z) = max
t∈[z,1−z]T

η(t), λ∗ = max
t∈[0,1]T

λ(t), λ(z) = max
t∈[z,1−z]T

λ(t).

We assume the following conditions are true in the entire paper:

(H1) fj : [0, +∞) → [0, +∞) and κ1, κ2 : [0, 1]T → [0, +∞) are continuous;
(H2) there exists a sequence ¶tr♢

∞
r=1 such that 0 < tr+1 < tr < 1

2
,

lim
r→∞

tr = t∗ <
1

2
, lim

t→tr

χi(t) = +∞, i = 1, 2, . . . , n, r ∈ N,

and each χi(t) does not vanish identically on any subinterval of [0, 1]T. Moreover,
there exists δi > 0 such that

δi < φ−1 (χi(t)) < ∞ a.e. on [0, 1]T, i = 1, 2, . . . , n.

2. Preliminaries

In this section, we introduce some basic definitions and lemmas which are useful for
our later discussions; for details, see [3–5,7, 12,17,18].

Definition 2.1. A time scale T is a nonempty closed subset of the real numbers R.
T has the topology that it inherits from the real numbers with the standard topology.
It follows that the jump operators σ, ρ : T → T, and the graininess µ : T → R

+ are
defined by σ(t) = inf¶τ ∈ T : τ > t♢, ρ(t) = sup¶τ ∈ T : τ < t♢ and µ(t) = ρ(t) − t,
respectively.

• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, σ(t) > t, respectively.

• If T has a right-scattered minimum m, then Tk = T\¶m♢. Otherwise, Tk = T.
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• If T has a left-scattered maximum m, then T
k = T\¶m♢. Otherwise, Tk = T.

• A function f : T → R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
all rd-continuous functions f : T → R is denoted by Crd = Crd(T) = Crd(T,R).

• A function f : T → R is called ld-continuous provided it is continuous at left-dense
points in T and its right-sided limits exist (finite) at right-dense points in T. The set
of all ld-continuous functions f : T → R is denoted by Cld = Cld(T) = Cld(T,R).

• By an interval time scale, we mean the intersection of a real interval with a given
time scale, i.e., [a, b]T = [a, b] ∩ T other intervals can be defined similarly.

Definition 2.2. Let µ∆ and µ∇ be the Lebesgue ∆-measure and the Lebesgue ∇-
measure on T, respectively. If A ⊂ T satisfies µ∆(A) = µ∇(A), then we call A is
measurable on T, denoted µ(A) and this value is called the Lebesgue measure of A.
Let P denote a proposition with respect to t ∈ T.

(i) If there exists Γ1 ⊂ A with µ∆(Γ1) = 0 such that P holds on A\Γ1, then P is
said to hold ∆-a.e. on A.

(ii) If there exists Γ2 ⊂ A with µ∇(Γ2) = 0 such that P holds on A\Γ2, then P is
said to hold ∇-a.e. on A.

Definition 2.3. Let E ⊂ T be a ∇-measurable set and p ∈ R̄ ≡ R ∪ ¶−∞, +∞♢ be
such that p ≥ 1 and let f : E → R̄ be ∇-measurable function. We say that f belongs
to Lp

∇(E) provided that either
∫

E
♣f ♣p(s)∇s < ∞ if p ∈ R,

or there exists a constant M ∈ R such that

♣f ♣ ≤ M ∇-a.e. on E, if p = +∞.

Lemma 2.1. Let E ⊂ T be a ∇-measurable set. If f : T → R is a ∇-integrable on

E, then
∫

E
f(s)∇s =

∫

E
f(s)ds +

∑

i∈IE



ti − ρ(ti)
)

f(ti),

where IE := ¶i ∈ I : ti ∈ E♢ and ¶ti♢i∈I , I ⊂ N, is the set of all left-scattered points

of T.

Lemma 2.2. For any ϱ(t) ∈ C([0, 1]T), the boundary value problem,

−φ(ϖ∆∇
1 (t)) = ϱ(t), t ∈ [0, 1]T,(2.1)

(2.2)
αϖ1(0) − βϖ∆

1 (0) =
∫ 1

0
κ1(τ)ϖ1(τ)∇,

γϖ1(1) + δϖ∆
1 (1) =

∫ 1

0
κ2(τ)ϖ1(τ)∇,



















has a unique solution

ϖ1(t) =
∫ 1

0
ℵ(t, τ)φ−1(ϱ(τ))∇τ,



DENUMERABLY MANY POSITIVE SOLUTIONS FOR ITERATIVE SYSTEM 373

where

ℵ(t, τ) = ℵ0(t, τ) + η(t)
∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1.

Proof. Suppose ϖ1 is a solution of (2.1), then

ϖ1(t) = −
∫ t

0

∫ τ

0
φ−1(ϱ(τ1))∇τ1∆τ + At + B

= −
∫ t

0
(t − τ)φ−1(ϱ(τ))∇τ + A1t + A2,

where A1 = ϖ∆
1 (0) and A2 = ϖ1(0). By the conditions (2.2), we get

A1 =
1

d

∫ 1

0
[ακ2(τ) − γκ1(τ)]ϑ1(τ)∇τ +

1

d

∫ 1

0
α[γ(1 − τ) + δ]φ−1(ϱ(τ))∇τ

and

A2 =
1

d

∫ 1

0
[(γ + δ)κ1(τ) + βκ2(τ)]ϑ1(τ)∇τ +

1

d

∫ 1

0
β[γ(1 − τ) + δ]φ−1(ϱ(τ))∇τ.

So, we have
(2.3)

ϖ1(t) =
∫ 1

0
ℵ0(t, τ)φ−1(ϱ(τ))∇τ +

a(t)

d

∫ 1

0
κ1(τ)ϑ1(τ)∇τ +

b(t)

d

∫ 1

0
κ2(τ)ϑ1(τ)∇τ.

By simple computations, we find that
∫ 1

0
κ1(τ)ϑ1(τ)∇τ =

c1(1 − vb) + c2ub

(1 − ua)(1 − vb) − ubva

,(2.4)

∫ 1

0
κ2(τ)ϑ1(τ)∇τ =

c2(1 − ua) + c1va

(1 − ua)(1 − vb) − ubva

.(2.5)

Plugging (2.4) and (2.5) into (2.3), we received

ϖ1(t) =
∫ 1

0
ℵ0(t, τ)φ−1(ϱ(τ))∇τ + c1η(t) + c2λ(t)

=
∫ 1

0



ℵ0(t, τ) + η(t)
∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1

]

× φ−1(ϱ(τ))∇τ

=
∫ 1

0
ℵ(t, τ)φ−1(ϱ(τ))∇τ.

This completes the proof. □

Lemma 2.3. Suppose (H1)-(H2) hold. For z ∈ (0, 1
2
)T, let

L(z) = min

{

αz + β

α + β
,
γz + δ

γ + δ

}

< 1.

Then ℵ0(t, τ) have the following properties:

(i) 0 ≤ ℵ0(t, τ) ≤ ℵ0(τ, τ) for all t, τ ∈ [0, 1]T;
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(ii) L(z)ℵ0(τ, τ) ≤ ℵ0(t, τ) for all t ∈ [z, 1 − z]T and τ ∈ [0, 1]T.

Proof. (i) is evident. We establish (ii), for this, let t ∈ [z, 1 − z]T and t ≤ τ. Then

ℵ0(t, τ)

ℵ0(τ, τ)
=

b(t)

b(τ)
=

αt + β

ατ + β
≥

αz + β

α + β
≥ L(z).

For τ ≤ t,
ℵ0(t, τ)

ℵ0(τ, τ)
=

a(t)

a(τ)
=

γ + δ − γt

γ + δ − γz
≥

γz + δ

γ + δ
≥ L(z).

This completes the proof. □

Lemma 2.4. Suppose (H1)-(H2) hold. Then ℵ(t, τ) satisfies properties:

(i) 0 ≤ ℵ(t, τ) ≤ Ξ ℵ0(τ, τ) for all t, τ ∈∈ [0, 1]T;

(ii) 0 ≤ Ξzℵ0(τ, τ) ≤ ℵ(t, τ) for all t ∈ [z, 1 − z]T and τ ∈ [0, 1]T, where

Ξ = 1 + η∗κ∗
1 + λ∗κ∗

2

and

Ξz = L(z)
[

1 + η(z)κ1(z) + λ(z)κ2(z)
]

.

Proof. From Lemma 2.3, we get

ℵ(t, τ) = ℵ0(t, τ) + η(t)
∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1

≤ ℵ0(τ, τ) + η(t)
∫ 1

0
ℵ0(τ, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ, τ)κ2(τ1)∇τ1

≤


1 + η(t)
∫ 1

0
κ1(τ1)∇τ1 + λ(t)

∫ 1

0
κ2(τ1)∇τ1



ℵ0(τ, τ)

≤
[

1 + η∗κ∗
1 + λ∗κ∗

2

]

ℵ0(τ, τ).

On the other hand, for t ∈ [z, 1 − z]T and τ ∈ [0, 1]T, we have

ℵ(t, τ) = ℵ0(t, τ) + η(t)
∫ 1

0
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1

0
ℵ0(τ1, τ)κ2(τ1)∇τ1

≥ ℵ0(t, τ) + η(t)
∫ 1−z

z
ℵ0(τ1, τ)κ1(τ1)∇τ1 + λ(t)

∫ 1−z

z
ℵ0(τ1, τ)κ2(τ1)∇τ1

≥L(z)


1 + η(t)
∫ 1−z

z
κ1(τ1)∇τ1 + λ(t)

∫ 1−z

z
κ2(τ1)∇τ1



ℵ0(τ, τ)

≥L(z)
[

1 + η∗∗κ∗∗
1 + λ∗∗κ∗∗

2

]

ℵ0(τ, τ).

This completes the proof. □

Notice that an ℓ-tuple (ϖ1(t), ϖ2(t), ϖ3(t), . . . , ϖℓ(t)) is a solution of the iterative
boundary value problem (1.1)–(1.2) if and only if

ϖj(t) =
∫ 1

0
ℵ(t, τ)φ−1

[

χ(τ)fj(ϖj+1(τ))
]

∇τ, t ∈ [0, 1]T, 1 ≤ j ≤ ℓ,

ϖℓ+1(t) = ϖ1(t), t ∈ [0, 1]T,



DENUMERABLY MANY POSITIVE SOLUTIONS FOR ITERATIVE SYSTEM 375

i.e.,

ϖ1(t) =
∫ 1

0
ℵ(t, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)f2



∫ 1

0
ℵ(τ2, τ3)

× φ−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·

× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1.

Let B be the Banach space Cld([0, 1]T,R) with the norm ∥ϖ∥ = maxt∈[0,1]T ♣ϖ(t)♣.

For z ∈


0, 1
2

)

, we define the cone Kz ⊂ B as

Kz =

{

ϖ ∈ B : ϖ(t) is nonnegative and min
t∈[z, 1−z]T

ϖ(t) ≥
Ξz

Ξ
∥ϖ(t)∥

}

.

For any ϖ1 ∈ Kz, define an operator Ω : Kz → B by

(Ωϖ1)(t) =
∫ 1

0
ℵ(t, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)f2



∫ 1

0
ℵ(τ2, τ3)

× φ−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·

× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1.

Lemma 2.5. Assume that (H1)-(H2) hold. Then for each z ∈


0, 1
2

)

, Ω(Kz) ⊂ Kz and

Ω : Kz → Kz is completely continuous.

Proof. From Lemma 2.3, ℵ(t, τ) ≥ 0 for all t, τ ∈ [0, 1]T. So, (Ωϖ1)(t) ≥ 0. Also, for
ϖ1 ∈ K, we have

(Ωϖ1)(t) ≤ Ξ
∫ 1

0
ℵ0(τ1, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)

× f2



∫ 1

0
ℵ(τ2, τ3)φ

−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·

× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1.

So,

∥Ωϖ1∥ ≤ Ξ
∫ 1

0
ℵ0(τ1, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)

× f2



∫ 1

0
ℵ(τ2, τ3)φ

−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·
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× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1.

Again from Lemma 2.3, we get

min
t∈[z,1−z]T

¶(Ωϖ1)(t)♢

≥Ξz

∫ 1

0
ℵ0(τ1, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)

× f2



∫ 1

0
ℵ(τ2, τ3)φ

−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·

× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1.

It follows from the above two inequalities that

min
t∈[z,1−z]T

¶(Ωϖ1)(t)♢ ≥
Ξz

Ξ
∥Ωϖ1∥.

So, Ωϖ1 ∈ Kz and thus Ω(Kz) ⊂ Kz. Next, by standard methods and Arzela-Ascoli
theorem, it can be proved easily that the operator Ω is completely continuous. The
proof is complete. □

3. Denumerably Many Positive Solutions

For the existence of denumerably many positive solutions for iterative system of
boundary value problem (1.1), we apply following theorems.

Theorem 3.1 ([11]). Let E be a cone in a Banach space X and M1, M2 are open sets

with 0 ∈ M1, M1 ⊂ M2. Let A : E ∩ (M2\M1) → E be a completely continuous operator

such that

(a) ∥Az∥ ≤ ∥z∥, z ∈ E ∩ ∂M1, and ∥Az∥ ≥ ∥z∥, z ∈ E ∩ ∂M2, or

(b) ∥Az∥ ≥ ∥z∥, z ∈ E ∩ ∂M1, and ∥Az∥ ≤ ∥z∥, z ∈ E ∩ ∂M2.

Then A has a fixed point in E ∩ (M2\M1).

Theorem 3.2 ([8, 16]). Let f ∈ Lp
∇(J), with p > 1, g ∈ Lq

∇(J), with q > 1, and
1
p

+ 1
q

= 1. Then fg ∈ L1
∇(J) and ∥fg∥L1

∇

≤ ∥f∥L
p

∇
∥g∥L

q

∇
, where

∥f∥L
p

∇
:=
















∫

J
♣f ♣p(s)∇s


1
p

, p ∈ R,

inf
{

M ∈ R / ♣f ♣ ≤ M ∇-a.e. on J
}

, p = ∞,

and J = (a, b]T.
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Theorem 3.3 (Hölder’s). Let f ∈ Lpi

∇(J), with pi > 1, for i = 1, 2, . . . , n and
∑n

i=1
1
pi

= 1. Then
∏n

i=1 fi ∈ L1
∇(J) and

∥

∥

∥

∥

∥

n
∏

i=1

fi

∥

∥

∥

∥

∥

1

≤
n
∏

i=1

∥fi∥pi
.

Further, if f ∈ L1
∇(J) and g ∈ L∞

∇ (J), then fg ∈ L1
∇(J) and ∥fg∥1 ≤ ∥f∥1∥g∥∞.

Consider the following three possible cases for χi ∈ Lpi

∇([0, 1]T) :

(i)
∑n

i=1
1
pi

< 1;

(ii)
∑n

i=1
1
pi

= 1;

(iii)
∑n

i=1
1
pi

> 1.

Firstly, we seek denumerably many positive solutions for the case
∑n

i=1
1
pi

< 1.

Theorem 3.4. Suppose (H1)-(H3) hold, let ¶zr♢
∞
r=1 be a sequence with zr ∈ (tr+1, tr).

Let ¶Γr♢
∞
r=1 and ¶Θr♢

∞
r=1 be such that

Γr+1 <
Ξzr

Ξ
Θr < Θr < ZΘr < Γr, r ∈ N,

where

Z = max

{

Ξz1

n
∏

i=1

δi

∫ 1−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}

.

Assume that f satisfies

(C1) fj(ϖ) ≤ φ(N1Γr) for all t ∈ [0, 1]T, 0 ≤ ϖ ≤ Γr, where

N1 <



Ξ ∥ℵ0∥L
q

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L
pi
∇

]−1

;

(C2) fj(ϖ) ≥ φ(ZΘr) for all t ∈ [zr, 1 − zr]T,
Ξzr

Ξ
Θr ≤ ϖ ≤ Θr.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions

¶(ϖ
[r]
1 , ϖ

[r]
2 , . . . , ϖ

[r]
ℓ )♢∞

r=1 such that ϖ
[r]
j (t) ≥ 0 on [0, 1]T, j = 1, 2, . . . , ℓ and r ∈ N.

Proof. Let

M1,r = ¶ϖ ∈ B : ∥ϖ∥ < Γr♢,

M2,r = ¶ϖ ∈ B : ∥ϖ∥ < Θr♢,

be open subsets of B. Let ¶zr♢
∞
r=1 be given in the hypothesis and we note that

t∗ < tr+1 < zr < tr <
1

2
,

for all r ∈ N. For each r ∈ N, we define the cone Kzr
by

Kzr
=
{

ϖ ∈ B : ϖ(t) ≥ 0, min
t∈[zr, 1−zr]T

ϖ(t) ≥
Ξzr

Ξ
∥ϖ(t)∥

}

.
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Let ϖ1 ∈ Kzr
∩ ∂M1,r. Then ϖ1(τ) ≤ Γr = ∥ϖ1∥ for all τ ∈ [0, 1]T. By (C1) and for

τℓ−1 ∈ [0, 1]T, we have
∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ ≤ Ξ
∫ 1

0
ℵ0(τℓ, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ

≤ ΞN1Γr

∫ 1

0
ℵ0(τℓ, τℓ)φ

−1
[

χ(τℓ)
]

∇τℓ

≤ ΞN1Γr

∫ 1

0
ℵ0(τℓ, τℓ)φ

−1



n
∏

i=1

χi(τℓ)

]

∇τℓ

≤ ΞN1Γr

∫ 1

0
ℵ0(τℓ, τℓ)

n
∏

i=1

φ−1(χi(τℓ))∇τℓ.

There exists a q > 1 such that 1
q

+
∑n

i=1
1
pi

= 1. So,

∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ ≤ ΞN1Γr

∥

∥

∥

∥

ℵ0

∥

∥

∥

∥

L
q

∇

∥

∥

∥

∥

∥

n
∏

i=1

φ−1(χi)

∥

∥

∥

∥

∥

L
pi
∇

≤ ΞN1Γr∥ℵ0∥L
q

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L
pi
∇

≤ Γr.

It follows in similar manner for τℓ−2 ∈ [0, 1]T that
∫ 1

0
ℵ(τℓ−2, τℓ−1)φ

−1



χ(τℓ−1)fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ

]

∇τℓ−1

≤
∫ 1

0
ℵ(τℓ−2, τℓ−1)φ

−1
[

χ(τℓ−1)fℓ−1(Γr)
]

∇τℓ−1

≤Ξ
∫ 1

0
ℵ0(τℓ−1, τℓ−1)φ

−1
[

χ(τℓ−1)fℓ−1(Γr)
]

∇τℓ−1

≤ΞN1Γr

∫ 1

0
ℵ0(τℓ−1, τℓ−1)φ

−1
[

χ(τℓ−1)
]

∇τℓ−1

≤ΞN1Γr

∫ 1

0
ℵ0(τℓ−1, τℓ−1)φ

−1



n
∏

i=1

χi(τℓ−1)

]

∇τℓ−1

≤ΞN1Γr

∫ 1

0
ℵ0(τℓ−1, τℓ−1)

n
∏

i=1

φ−1(χi(τℓ−1))∇τℓ−1

≤ΞN1Γr∥ℵ0∥L
q

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L
pi
∇

≤Γr.

Continuing with this bootstrapping argument, we get

(Ωϖ1)(t) =
∫ 1

0
ℵ(t, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)f2



∫ 1

0
ℵ(τ2, τ3)
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× φ−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·

× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1

≤ Γr.

Since Γr = ∥ϖ1∥ for ϖ1 ∈ Kzr
∩ ∂M1,r we get

∥Ωϖ1∥ ≤ ∥ϖ1∥.(3.1)

Let t ∈ [zr, 1 − zr]T. Then

Θr = ∥ϖ1∥ ≥ ϖ1(t) ≥ min
t∈[zr,1−zr]T

ϖ1(t) ≥
Ξzr

Ξ
∥ϖ1∥ ≥

Ξzr

Ξ
Θr.

By (C2) and for τℓ−1 ∈ [zr, 1 − zr]T, we have

∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ ≥ Ξzr

∫ 1−zr

zr

ℵ0(τℓ, τℓ)φ
−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ

≥ Ξzr
ZΘr

∫ 1−zr

zr

ℵ0(τℓ, τℓ)φ
−1(χ(τℓ))∇τℓ

≥ Ξzr
ZΘr

∫ 1−zr

zr

ℵ0(τℓ, τℓ)
n
∏

i=1

φ−1(χi(τℓ))∇τℓ

≥ Ξz1ZΘr

n
∏

i=1

δi

∫ 1−z1

z1

ℵ0(τℓ, τℓ)∇τℓ

≥ Θr.

Continuing with bootstrapping argument we get

(Ωϖ1)(t) =
∫ 1

0
ℵ(t, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)f2



∫ 1

0
ℵ(τ2, τ3)

× φ−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·

× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1

≥ Θr.

Thus, if ϖ1 ∈ Kzr
∩ ∂K2,r, then

∥Ωϖ1∥ ≥ ∥ϖ1∥.(3.2)

It is evident that 0 ∈ M2,k ⊂ M2,k ⊂ M1,k. From (3.1) and (3.2), it follows from Theorem

3.1 that the operator Ω has a fixed point ϖ
[r]
1 ∈ Kzr

∩


M1,r\M2,r

)

such that ϖ
[r]
1 (t) ≥ 0
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on [0, 1]T, and r ∈ N. Next setting ϖℓ+1 = ϖ1, we obtain denumerably many positive

solutions ¶(ϖ
[r]
1 , ϖ

[r]
2 , . . . , ϖ

[r]
ℓ )♢∞

r=1 of (1.1)–(1.2) given iteratively by

ϖj(t) =
∫ 1

0
ℵ(t, τ)φ−1

[

χ(τ)fj(ϖj+1(τ))
]

∇τ, t ∈ [0, 1]T, j = ℓ, ℓ − 1, . . . , 1.

The proof is completed. □

For
∑n

i=1
1
pi

= 1, we have the following theorem.

Theorem 3.5. Suppose (H1)-(H3) hold, let ¶zr♢
∞
r=1 be a sequence with zr ∈ (tr+1, tr).

Let ¶Γr♢
∞
r=1 and ¶Θr♢

∞
r=1 be such that

Γr+1 <
Ξzr

Ξ
Θr < Θr < ZΘr < Γr, r ∈ N,

where

Z = max

{

Ξz1

n
∏

i=1

δi

∫ 1−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}

.

Assume that f satisfies

(C3) fj(ϖ) ≤ φ(N2Γr) for all t ∈ [0, 1]T, 0 ≤ ϖ ≤ Γr, where

N2 < min









Ξ ∥ℵ0∥L∞

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L
pi
∇

]−1

,Z







;

(C4) fj(ϖ) ≥ φ(ZΘr) for all t ∈ [zr, 1 − zr]T,
Ξzr

Ξ
Θr ≤ ϖ ≤ Θr.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions

¶(ϖ
[r]
1 , ϖ

[r]
2 , . . . , ϖ

[r]
ℓ )♢∞

r=1 such that ϖ
[r]
j (t) ≥ 0 on [0, 1]T, j = 1, 2, . . . , ℓ, and r ∈ N.

Proof. For a fixed r, let M1,r be as in the proof of Theorem 3.4 and let ϖ1 ∈ Kzr
∩∂M2,r.

Again ϖ1(τ) ≤ Γr = ∥ϖ1∥ for all τ ∈ [0, 1]T. By (C3) and for τℓ−1 ∈ [0, 1]T, we have
∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ ≤ Ξ
∫ 1

0
ℵ0(τℓ, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ

≤ ΞN2Γr

∫ 1

0
ℵ0(τℓ, τℓ)φ

−1
[

χ(τℓ)
]

∇τℓ

≤ ΞN2Γr

∫ 1

0
ℵ0(τℓ, τℓ)φ

−1



n
∏

i=1

χi(τℓ)

]

∇τℓ

≤ ΞN2Γr

∫ 1

0
ℵ0(τℓ, τℓ)

n
∏

i=1

φ−1(χi(τℓ))∇τℓ

≤ ΞN2Γr∥ℵ0∥L∞

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L
pi
∇

≤ Γr.

It follows in similar manner for τℓ−2 ∈ [0, 1]T that
∫ 1

0
ℵ(τℓ−2, τℓ−1)φ

−1



χ(τℓ−1)fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ

]

∇τℓ−1
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≤
∫ 1

0
ℵ(τℓ−2, τℓ−1)φ

−1
[

χ(τℓ−1)fℓ−1(Γr)
]

∇τℓ−1

≤Ξ
∫ 1

0
ℵ0(τℓ−1, τℓ−1)φ

−1
[

χ(τℓ−1)fℓ−1(Γr)
]

∇τℓ−1

≤ΞN2Γr

∫ 1

0
ℵ0(τℓ−1, τℓ−1)φ

−1
[

χ(τℓ−1)
]

∇τℓ−1

≤ΞN2Γr

∫ 1

0
ℵ0(τℓ−1, τℓ−1)φ

−1



n
∏

i=1

χi(τℓ−1)

]

∇τℓ−1

≤ΞN2Γr

∫ 1

0
ℵ0(τℓ−1, τℓ−1)

n
∏

i=1

φ−1(χi(τℓ−1))∇τℓ−1

≤ΞN2Γr∥ℵ0∥L∞

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L
pi
∇

≤Γr.

Continuing with this bootstrapping argument, we get

(Ωϖ1)(t) =
∫ 1

0
ℵ(t, τ1)φ

−1



χ(τ1)f1



∫ 1

0
ℵ(τ1, τ2)φ

−1



χ(τ2)f2



∫ 1

0
ℵ(τ2, τ3)

× φ−1



χ(τ3)f3



∫ 1

0
ℵ(τ3, τ4) · · ·

× fℓ−1



∫ 1

0
ℵ(τℓ−1, τℓ)φ

−1
[

χ(τℓ)fℓ(ϖ1(τℓ))
]

∇τℓ



· · · ∇τ3

]

∇τ2

]

∇τ1

≤ Γr.

Since Γr = ∥ϖ1∥ for ϖ1 ∈ Kzr
∩∂M1,r, we get ∥Ωϖ1∥ ≤ ∥ϖ1∥. Now define M2,r = ¶ϖ1 ∈

B : ∥ϖ1∥ < Θr♢. Let ϖ1 ∈ Kzr
∩ ∂M2,r and let τ ∈ [zr, 1 − zr]T. Then the argument

leading to (3.2) can be done to the present case. Hence, the theorem is proved. □

Lastly, the case
∑n

i=1
1
pi

> 1.

Theorem 3.6. Suppose (H1)-(H2) hold, let ¶zr♢
∞
r=1 be a sequence with zr ∈ (tr+1, tr).

Let ¶Γr♢
∞
r=1 and ¶Θr♢

∞
r=1 be such that

Γr+1 <
Ξzr

Ξ
Θr < Θr < ZΘr < Γr, r ∈ N,

where

Z = max

{

Ξz1

n
∏

i=1

δi

∫ 1−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}

.

Assume that f satisfies

(C5) fj(ϖ) ≤ φ(N3Γr) for all t ∈ [0, 1]T, 0 ≤ ϖ ≤ Γr, where

N3 < min









Ξ ∥ℵ0∥L∞

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L1
∇

]−1

,Z







;
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(C6) fj(ϖ) ≥ φ(ZΘr) for all t ∈ [zr, 1 − zr]T,
Ξzr

Ξ
Θr ≤ ϖ ≤ Θr.

Then the iterative boundary value problem (1.1)–(1.2) has denumerably many solutions

¶(ϖ
[r]
1 , ϖ

[r]
2 , . . . , ϖ

[r]
ℓ )♢∞

r=1 such that ϖ
[r]
j (t) ≥ 0 on [0, 1]T, j = 1, 2, . . . , ℓ, and r ∈ N.

Proof. The proof is similar to the proof of Theorem 3.1. So, we omit the details
here. □

4. Examples

In this section, we present an example to check validity of our main results.
Example 4.1. Consider the following boundary value problem on T = [0, 1]

(4.1)
φ(ϖ′′

j (t)) + χ(t)fj(ϖj+1(t)) = 0, j = 1, 2, t ∈ [0, 1],

ϖ3(t) = ϖ1(t),

}

(4.2)
ϖj(0) − ϖ′

j(0) =
∫ 1

0

1

2
ϖj(τ)dτ,

ϖj(1) + ϖ′
j(1) =

∫ 1

0

1

2
ϖj(τ)dτ,



















where

φ(ϖ) =











ϖ3

1 + ϖ2
, ϖ ≤ 0,

ϖ2, ϖ > 0,

χ(t) =χ1(t) · χ2(t),

in which

χ1(t) =
1

♣t − 1
4
♣

1
2

and χ2(t) =
1

♣t − 1
3
♣

1
2

,

f1(ϖ) = f2(ϖ)

=



















































0.05 × 10−8, ϖ ∈ (10−4, +∞),
5604×10−(8r+6)−0.05×10−8r

10−(4r+3)−10−4r (ϖ − 10−4r)

+0.05 × 10−8r, ϖ ∈
[

10−(4r+3), 10−4r
]

,

5604 × 10−(8r+6), ϖ ∈


0.98 × 10−(4r+3), 10−(4r+3)
)

,
5604×10−(8r+6)−0.05×10−8r

0.98×10−(4r+3)−10−(4r+4) (ϖ − 10−(4r+4))

+0.05 × 10−8r, ϖ ∈


10−(4r+4), 0.98 × 10−(4r+3)
]

.

Let

tr =
31

64
−

r
∑

k=1

1

4(k + 1)4
, zr =

1

2
(tr + tr+1), for r = 1, 2, 3, . . . ,

then

z1 =
15

32
−

1

648
<

15

32
and tr+1 < zr < tr, zr >

1

5
, for r = 1, 2, 3, . . .
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Therefore, zr

1
= zr > 1

5
, j = 1, 2, 3, . . . It is clear that

t1 =
15

32
<

1

2
, tr − tr+1 =

1

4(r + 2)4
, r = 1, 2, 3, . . .

Since
∑∞

x=1
1

x4 = π4

90
and

∑∞
x=1

1
x2 = π2

6
, it follows that

t∗ = lim
r→∞

tr =
31

64
−

∞
∑

k=1

1

4(r + 1)4
=

47

64
−

π4

360
= 0.4637941914,

χ1, χ2 ∈ Lp[0, 1] for 0 < p < 2, so δ1 = δ2 = 1√
3
,

a(t) = 2 − t, b(t) = 1 + t, d = 3, ℵ0(t, τ) =
1

3

{

(2 − τ)(1 + t), t ≤ τ,
(2 − t)(1 + τ), τ ≤ t,

ci =
∫ 1

0


∫ 1

0
ℵ0(τ1, τ2)κi(τ1)∇τ1



χ(τ2)∇τ2 = 2.774076198,

ua = ub = va = vb =
1

4
, κ∗

1 = κ∗
2 =

1

2
, κ1(z1) = κ2(z1) = 0.06558641976,

L(z1) = min

{

αz1 + β

α + β
,
γz1 + δ

γ + δ

}

=
1 + z1

2
= 0.7336033950,

η(t) =
(1 − vb)a(t) + vab(t)

d[(1 − ua)(1 − vb) − ubva]
=

7 − 2t

6
, η∗ =

7

6
, η(z1) = 1.010931070,

λ(t) =
(1 − ua)b(t) + uba(t)

d[(1 − ua)(1 − vb) − ubva]
=

5 − 2t

6
, λ∗ =

5

6
, λ(z1) = 0.6775977366,

Ξ = 1 + η∗κ∗
1 + λ∗κ∗

2 = 2,

Ξz1 = L(z1)
[

1 + η(z1)κ1(z1) + λ(z1)κ2(z1)
]

= 0.8148459802.

Note that Ξz is increasing, it follows that 1.969391539 = Ξz∞
< Ξzr

< Ξz1 = 2,

0.9846957695 ≤ Ξzr

Ξ
≤ 2 and

∫ 1−z1

z1

ℵ0(τ, τ)∇τ =
∫ 1− 15

32
+ 1

648

15
32

− 1
648

(2 − τ)(1 + τ)

3
dτ = 0.04918197800.

Thus, we get

Z = max

{

Ξz1

n
∏

i=1

δi

∫ 1−z1

z1

ℵ0(τ, τ)∇τ

]−1

, 1

}

= max

{

74.85826138, 1

}

= 74.85826138

and

∥ℵ0∥L
q

∇
=

∫ 1

0
♣ℵ0(τ, τ)♣qdτ



1
q

< 1, for 0 < q < 2.

Next, let 0 < a < 1 be fixed. Then χ1, χ2 ∈ L1+a[0, 1]. It follows that

∥φ−1(χ1)∥1+a =


1

3 − a



3
3−a

4 + 1
)

2
1+a

2



1
1+a
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and

∥φ−1(χ2)∥1+a =


4

3 − a



2
3−a

4 + 1
)

(1/3)
3−a

4



1
1+a

.

So, for 0 < a < 1, we have

0.2509961333 ≤



Ξ ∥ℵ0∥L
q

∇

n
∏

i=1

∥

∥

∥φ−1(χi)
∥

∥

∥

L
pi
∇

]−1

≤ 0.2856331500.

Taking N1 = 0.2. In addition, if we take

Γr = 10−4r, Θr = 10−(4r+3),

then

Γr+1 = 10−(4r+4) < 0.9846957695 × 10−(4r+3) <
Ξzr

Ξ
Θr < Θr = 10−(4r+3)

< Γr = 10−4r,

ZΘr = 74.85826138 × 10−(4r+3) < 0.2 × 10−4r = N1Γr, r = 1, 2, 3, . . . ,

and f1, f2 satisfies the following growth conditions:

f1(ϖ) = f2(ϖ) ≤ φ(N1Γr) = N2
1Γ

2
r = 0.04 × 10−8r, ϖ ∈

[

0, 10−4r
]

f1(ϖ) = f2(ϖ) ≥ φ(ZΘr) = Z2Θ2
r

= 5603.759297 × 10−(8r+6), ϖ ∈
[

0.98 × 10−(4r+3), 10−(4r+3)
]

.

Then all the conditions of Theorem 3.4 are satisfied. Therefore, by Theorem 3.4,
the iterative boundary value problem (4.1)–(4.2) has denumerably many solutions
{

ϖ
[r]
1 , ϖ

[r]
2

)}∞

r=1
such that ϖ

[r]
j (t) ≥ 0 on [0, 1], j = 1, 2 and r ∈ N.
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ESTIMATES FOR INITIAL COEFFICIENTS OF CERTAIN

SUBCLASSES OF BI-CLOSE-TO-CONVEX ANALYTIC

FUNCTIONS

SARBESWAR BARIK1 AND AKSHYA KUMAR MISHRA2

Abstract. In this paper we Ąnd bounds on the modulii of the second, third and
fourth Taylor-MaclaurinŠs coefficients for functions in a subclass of bi-close-to-convex

analytic functions, which includes the class studied by Srivastava et al. as particular
case. Our estimates on the second and third coefficients improve upon earlier bounds.
The result on the fourth coefficient is new. Our bounds are obtained by reĄning
well known estimates for the initial coefficients of the Carthéodory functions.

1. Introduction and definitions

Let A denote the class of functions f(z) represented by the following normalized

Taylor-MaclaurinŠs series:

(1.1) f(z) = z +
∞
∑

n=2

anzn,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} . A function f ∈ A

is said to be univalent in U if f(z) is one-to-one in U. As usual, we denote by S

the subclass of functions in A which are univalent in U. The function f ∈ S has a
compositional inverse f−1, deĄned by

f−1(f(z)) = z (z ∈ U)

and
f(f−1(w)) = w (w ∈ range of f).

Key words and phrases. Analytic functions, analytic continuation, univalent functions, bi-univalent
functions, coefficient bounds.
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It is well known that for every function f ∈ S the compositional inverse function
f−1(w) is analytic in some disc |w| < r0(f), r0(f) ≥ 1

4
. Moreover, f−1(w) has the

Taylor-Maclaurin series expansion of the form:

f−1(w) = w +
∞
∑

n=2

bnwn (|w| < r0(f)),

where

bn =
(−1)n+1

n!
|Aij|

and |Aij| is the (n − 1)th order determinant whose entries are deĄned, in terms of the
coefficients of f(z), by the following:

|Aij| =







[(i − j + 1)n + j − 1]ai−j+2, if i + 1 ≥ j,

0, if i + 1 < j.

For initial values of n we, therefore, have:

(1.2) b2 = −a2, b3 = 2a2
2 − a3, b4 = 5a2a3 − 5a3

2 − a4,

and so on.
The function f ∈ A is said to be bi-univalent in U if f ∈ S and f−1(w) has univalent

analytic continuation to the unit disk U. For example, the function

f(z) = ze−Az

is bi-univalent in U if |A| ≤ 1
e

[10]. For some more examples see [12,15,19]. We denote
by σ, the class of analytic bi-univalent functions in U given by (1.1). Investigation on
the class σ was initiated by Lewin [14]. He showed that |a2| ≤ 1.51 for every f ∈ σ.

Subsequently, Brannan and Clunie [3] surmised that |a2| ≤
√

2. Netanyahu [16] Ąnally
proved that |a2| ≤ 4

3
(f ∈ σ). Later Brannan and Taha [4] introduced and studied

new sub-classes of bi-univalent functions (also see Taha [20]). For a detailed history
of the developments on the class of functions σ see [2, 13].

In this paper we shall also investigate bi-univalent functions deĄned on

∆ = {z ∈ C : 1 < |z| < ∞}.

Let Σ denote the class of analytic functions of the form:

(1.3) h(z) = z +
∞
∑

n=0

bn

zn
(z ∈ ∆),

which are univalent in ∆. The inverse of a function in Σ is represented by

(1.4) h−1(w) = w +
∞
∑

n=0

Bn

wn
(M < |w| < ∞, M > 1).

We say that the function h ∈ Σ is bi-univalent in ∆ if h−1(w) has analytic continuation
to ∆.
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In order to describe certain sub classes of S and Σ we shall also need the class P

consisting of functions P (z) which are analytic in U, satisfy | arg(P (z))| ≤ π
2

(z ∈ U)
and P (0) = 1. The functions P (z) ∈ P are named after Carthéodory.

It is well known that if f in A is such that f ′ ∈ P, then f ∈ S. In fact, f is
close-to-convex [7, 10]. We denote the class of these functions by Q. Chichra [6]
studied the class of functions Qλ (λ ≥ 0) consisting of functions f ∈ A and satisfying

(1 − λ)f(z)
z

+ λf ′(z) ∈ P. We observe that in the particular case λ = 1, we have
Q1 := Q. Chichra [6] further more, proved that

Qλ1
⊆ Qλ2

(0 ≤ λ2 ≤ λ1) (also see [8]).

Therefore,

Qλ ⊆ Q1 := Q ⊂ S (λ ≥ 1).

Frasin and Aouf [9] introduced the following subclass of bi-close-to-convex analytic
functions analogous to the subclass Qλ studied by Chichra [6].

Definition 1.1 (See [9]). The function f(z) given by (1.1) is said to be in the class
σQα

λ (0 < α ≤ 1, λ ≥ 1) if the following conditions are satisĄed:

(1.5) f ∈ σ and

∣

∣

∣

∣

∣

arg

(

(1 − λ)
f(z)

z
+ λf ′(z)

∣

∣

∣

∣

∣

<
απ

2
(z ∈ U)

and

(1.6)

∣

∣

∣

∣

∣

arg

(

(1 − λ)
g(w)

w
+ λg′(w)

∣

∣

∣

∣

∣

<
απ

2
(w ∈ U),

where g is the analytic continuation of f−1 to U.

We observe that in the particular case λ = 1, the class σQα
1 := σQα was earlier

studied by Srivastava et al. [19]. More recently, Çağlar et al. [5] introduced a more
general class of bi-univalent analytic functions than the class σQα

λ (also see Srivastava
et al. [1, 18, 21]). However, in this paper we shall restrict our attention to the class
σQα

λ .

In addition to the class σQα
λ , in this paper we shall also study the following subclass

of Σ.

Definition 1.2. The function h(z) given by (1.3) is said to be in the class ΣΘα
λ (0 <

α ≤ 1, λ ≥ 1) if h ∈ Σ and the following conditions are satisĄed:

(1.7)

∣

∣

∣

∣

∣

arg

(

(1 − λ)
h(z)

z
+ λh′(z)

∣

∣

∣

∣

∣

<
απ

2
(z ∈ ∆)

and

(1.8)

∣

∣

∣

∣

∣

arg

(

(1 − λ)
H(w)

w
+ λH ′(w)

∣

∣

∣

∣

∣

<
απ

2
(w ∈ ∆),

where H is the analytic continuation of h−1 to ∆.
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In the present paper we develop an elementary method to Ąnd new estimates for
|a2| and |a3| for f ∈ σQα

λ , which improve upon bounds of Frasin and Aouf [9] and
afortiori, the bounds obtained earlier by Srivastava et al. [19]. We also extend a result
of Hayami and Owa [12] and Ąnd estimate on |a4| for f ∈ σQα

λ . Further more, we Ąnd
estimates on the initial coefficients |b0|, |b1| and |b2| for functions in the class ΣΘα

λ .

We note that very recently Hamidi et al. [11] studied coefficient estimate problem
for a class of functions similar to our class ΣΘα

λ under the additional restriction that
the initial coefficients of the functions are missing. Thus our Theorem 2.2, proved
below, on bounds of initial coefficients attempts to bridge this gap and supplements
the work in [11]. The methods adopted and developed in this paper are applicable
for Ąnding improved coefficient estimates for the several sub-classes of bi-univalent
functions studied in [5, 17] and [18].

2. Coefficient Bounds for the Function Classes σQα
λ and ΣΘα

λ

In this section we denote by g(w) the analytic continuation of the function f−1(w)
to the unit disc U. We state and prove the following.

Theorem 2.1. Let the function f(z) given by (1.1), be in the class σQα
λ (0 < α ≤

1 and λ ≥ 1). Then

(2.1) |a2| ≤






2α√
2α(1+2λ)+(1−α)(1+λ)2

, 1 ≤ λ ≤ 1 +
√

2,

2α
(1+λ)

, λ > 1 +
√

2,

(2.2) |a3| ≤ 2α

1 + 2λ

and

|a4| ≤ 2α

1 + 3λ







































1 +
2(1−α)(1+λ){6α(1+2λ)+(1−2α)(1+λ)2}

3[2α(1+2λ)+(1−α)(1+λ)2]
3

2

, 1 ≤ λ ≤ 1 +
√

2, 0 < α ≤ 1,

1 +
2(1−α){6α(1+2λ)+(5−4α)(1+λ)2}

3(1+λ)2 , 1 +
√

2 < λ ≤ λ0, 0 < α ≤ 1

or λ > λ0, 0 < α ≤ 1
2
,

1 +
2(1−α){6α(1+2λ)+4(2−α)(1+λ)2}

3(1+λ)2 , λ > λ0,
1
2

< α ≤ 1,

(2.3)

where λ0 is the positive root of the quadratic equation

2(1 − 2α)λ2 + 3(1 + 3α)λ + (1 + 3α) = 0.

Proof. Let the function f(z) be a member of the class σQα
λ (λ ≥ 1, 0 < α ≤ 1). Then

by DeĄnition 1.1, we have the following:

(2.4) (1 − λ)
f(z)

z
+ λf ′(z) = [P (z)]α
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and

(2.5) (1 − λ)
g(w)

w
+ λf ′(w) = [Q(w)]α,

respectively, where P (z) and Q(w) are members of the Carthéodory class P and have
the forms:

(2.6) P (z) = 1 + c1z + c2z
2 + c3z

3 + · · · (z ∈ U)

and

(2.7) Q(w) = 1 + l1w + l2w
2 + l3w

3 + · · · (w ∈ U),

respectively. Now, equating the coefficients of (1−λ)f(z)
z

+λf ′(z) with the coefficients
of [P (z)]α, we get

(1 + λ)a2 =αc1 or a2 =
α

1 + λ
c1,(2.8)

(1 + 2λ)a3 =αc2 +
α(α − 1)

2
c2

1,(2.9)

(1 + 3λ)a4 =αc3 + α(α − 1)c1c2 +
α(α − 1)(α − 2)

6
c3

1.(2.10)

Similarly, a comparison of coefficients of both sides of (2.5) yields:

(1 + λ)a2 = − αl1,(2.11)

(1 + 2λ)(2a2
2 − a3) =αl2 +

α(α − 1)

2
l2
1(2.12)

and

(2.13) − (1 + 3λ)(5a3
2 − 5a2a3 + a4) = αl3 + α(α − 1)l1l2 +

α(α − 1)(α − 2)

6
l3
1.

In order to Ąnd improved estimates on |a2| and |a3|, we Ąrst establish certain relations
involving c1, l1, c2 and l2. To this end we observe that (2.8) and (2.11), together give

(2.14) c1 = −l1.

We add (2.9) with (2.12), then use the relation c1 = −l1 and get the following:

2(1 + 2λ)a2
2 = α (c2 + l2) + α(α − 1)c2

1.

Putting a2 = α
(1+λ)

c1 from (2.8) we have after simpliĄcation:

(2.15) c2
1 =

(1 + λ)2

2α(1 + 2λ) + (1 − α)(1 + λ)2
(c2 + l2).

The relation (2.15) also gives the following reĄned estimates:

(2.16) |c1| ≤ 2 (1 + λ)
√

2α(1 + 2λ) + (1 − α)(1 + λ)2
(1 ≤ λ ≤ 1 +

√
2)
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and

(2.17) |c2 + l2| ≤ 4 [2α(1 + 2λ) + (1 − α)(1 + λ)2]

(1 + λ)2
(λ ≥ 1 +

√
2).

Now using the estimates (2.16) for the range 1 ≤ λ ≤ 1 +
√

2 and |c1| ≤ 2 for the
range λ > 1 +

√
2 in the expression (2.8) we get:

|a2| ≤






2α√
2α(1+2λ)+(1−α)(1+λ)2

, 1 ≤ λ ≤ 1 +
√

2,

2α
(1+λ)

, λ > 1 +
√

2.

We thus get the claimed bound of (2.1).
We now express a3 in terms of the coefficients of the functions P (z) and Q(w). For

this, we subtract (2.12) from (2.9) and get

2(1 + 2λ)(a3 − a2
2) = α(c2 − l2) +

α(α − 1)

2
(c2

1 − l2
1).

The relation c2
1 = l2

1 from (2.14), reduces the above expression to

(2.18) a3 = a2
2 +

α

2(1 + 2λ)
(c2 − l2).

Next putting a2 = α
1+λ

c1 and then using (2.15) for c2
1, we obtain

a3 =
α2

(1 + λ)2
c2

1 +
α

2(1 + 2λ)
(c2 − l2),

=
α2

2α(1 + 2λ) + (1 − α)(1 + λ)2
(c2 + l2) +

α

2(1 + 2λ)
(c2 − l2),

=α

(

α

2α(1 + 2λ) + (1 − α)(1 + λ)2
+

1

2(1 + 2λ)



c2

+ α

(

α

2α(1 + 2λ) + (1 − α)(1 + λ)2
− 1

2(1 + 2λ)



l2.

Since

α

2α(1 + 2λ) + (1 − α)(1 + λ)2
− 1

2(1 + 2λ)

=
−(1 − α)(1 + λ)2

2(1 + 2λ)(2α(1 + 2λ) + (1 − α)(1 + λ)2)
< 0,

an application of triangle inequality gives the following

|a3| ≤α

(

α

2α(1 + 2λ) + (1 − α)(1 + λ)2
+

1

2(1 + 2λ)



|c2|

+ α

(

1

2(1 + 2λ)
− α

2α(1 + 2λ) + (1 − α)(1 + λ)2



|l2|.



ESTIMATES FOR INITIAL COEFFICIENTS 393

Therefore, the well known estimates |c2| ≤ 2 and |l2| ≤ 2 (cf. [4]), give the following:

(2.19) |a3| ≤ 2α

(1 + 2λ)
.

This is precisely our assertion at (2.2).
We next derive a relation between c1(c2 − l2) and c3 + l3 for our future use. For

this purpose we add (2.13) and (2.10). After simpliĄcation we get the following:

(2.20) − (1 + 3λ)(5a3
2 − 5a2a3) = α(c3 + l3) + α(α − 1)c1(c2 − l2).

By substituting a3 = a2
2 + α

2(1+2λ)
(c2 − l2) from (2.18) and a2 = α

1+λ
c1 in the above

equation (2.20) we have

(2.21) c1(c2 − l2) = µ0(c3 + l3),

where

µ0 =
2(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
.

We observe that 0 < µ0 ≤ 2 for every λ ≥ 1 if 0 ≤ α ≤ 1
2
. However, if 1

2
≤ α < 1, then

0 < µ0 ≤ 2 for 1 < λ ≤ λ0, where λ0 is the positive root of the quadratic equation

2(1 − 2α)λ2 + 3(1 + 3α)λ + (1 + 3α) = 0.

Moreover, λ0 > 97
16

.

We are now ready to Ąnd a bound for |a4|. As in our estimate for |a3| in this case
also we shall express a4 in terms of the Ąrst three coefficients of P (z) and Q(w). For
this purpose we subtract (2.13) from (2.10) and get

2(1 + 3λ)a4 = − (1 + 3λ)(5a3
2 − 5a2a3) + α(c3 − l3) + α(α − 1)(c1c2 − l1l2)

+
α(α − 1)(α − 2)

6
(c3

1 − l3
1).

The relation c1 = −l1 reduces the above expression to

2(1 + 3λ)a4 = − (1 + 3λ)(5a3
2 − 5a2a3)(2.22)

+ α(c3 − l3) + α(α − 1)c1(c2 + l2) +
α(α − 1)(α − 2)

3
c3

1.

In (2.22) we replace −(1 + 3λ)(5a3
2 − 5a2a3) by the expression on the right hand side

of the equality of (2.20) and use the relation c1 = −l1. This gives on simpliĄcation
the following:

(2.23) 2(1+3λ)a4 = 2αc3+α(α−1)c1(c2−l2)+α(α−1)c1(c2+l2)+
α(α − 1)(α − 2)

3
c3

1.

First suppose that λ and α are constrained by the requirement 1 ≤ λ ≤ λ0 and 0 <

α ≤ 1 or λ > λ0 and 0 < α ≤ 1
2
. Then in the equation (2.23) replacing c1(c2 − l2) by
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µ0(c3 + l3) from (2.21) we get:

2(1 + 3λ)a4 =2αc3 + α(α − 1)
2(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
(c3 + l3)

+ α(α − 1)c1 (c2 + l2) +
α(α − 1)(α − 2)

3
c3

1

=
10α2(1 + 3λ) + 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
c3

− 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
l3

− α(1 − α)c1(c2 + l2) +
α(α − 1)(α − 2)

3
c1c

2
1.(2.24)

Suppose that we furthermore restrict λ in the range 1 ≤ λ ≤ 1 +
√

2 < λ0, 0 < α ≤ 1.

Then in (2.24) we substitute the expression in the right hand side of the equality of
(2.15) in place of c2

1 and get

2(1 + 3λ)a4 =
10α2(1 + 3λ) + 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
c3

− 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
l3 − α(1 − α)c1(c2 + l2)

+
α(1 − α)(2 − α)

3

(1 + λ)2

2α(1 + 2λ) + (1 − α)(1 + λ)2
c1(c2 + l2)

=
10α2(1 + 3λ) + 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
c3

− 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
l3

− α(1 − α)



{6α(1 + 2λ) + (1 − 2α)(1 + λ)2}
3[2α(1 + 2λ) + (1 − α)(1 + λ)2]

]

c1(c2 + l2).(2.25)

Now, we apply the triangle inequality in (2.25) and get the following:

2(1 + 3λ)|a4| ≤10α2(1 + 3λ) + 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
|c3|

+
2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
|l3|

+ α(1 − α)



{6α(1 + 2λ) + (1 − 2α)(1 + λ)2}
3[2α(1 + 2λ) + (1 − α)(1 + λ)2]

]

|c1(c2 + l2)|.

Note that we made use of the fact that if 1 ≤ λ ≤ 1 +
√

2 and 0 < α ≤ 1 then

6α(1 + 2λ) + (1 − 2α)(1 + λ)2 > 0.
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The well known estimates |cn| ≤ 2, |ln| ≤ 2 (n = 2, 3), and the reĄned bound (2.16)
for |c1| yields the following:

2(1 + 3λ)|a4| ≤10α2(1 + 3λ) + 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
2

+
2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
2

+ α(1 − α)



{6α(1 + 2λ) + (1 − 2α)(1 + λ)2}
3[2α(1 + 2λ) + (1 − α)(1 + λ)2]

]

× 2(1 + λ)
√

[2α(1 + 2λ) + (1 − α)(1 + λ)2]
4

or

|a4| ≤ 2α

1 + 3λ

(

1 +
2(1 − α)(1 + λ) {6α(1 + 2λ) + (1 − 2α)(1 + λ)2}

3[2α(1 + 2λ) + (1 − α)(1 + λ)2]
3

2



(1 ≤ λ ≤ 1 +
√

2, 0 < α ≤ 1).

We get the Ąrst bound of (2.3).
Next, suppose that 1 +

√
2 < λ ≤ λ0 and 0 < α ≤ 1 or λ > λ0 and 0 < α ≤ 1

2
. We

apply the triangle inequality in (2.24) and get

2(1 + 3λ)|a4| ≤10α2(1 + 3λ) + 2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
|c3|

+
2α(1 − α)(1 + λ)(1 + 2λ)

5α(1 + 3λ) + 2(1 − α)(1 + λ)(1 + 2λ)
|l3|

+ α(1 − α)|c1(c2 + l2)| +
α(α − 1)(α − 2)

3
|c3

1|.

The estimates |cn| ≤ 2 (n = 1, 3), |l3| ≤ 2 together with the estimate (2.17) for |c2 + l2|
yields the following:

|a4| ≤ 2α

(1 + 3λ)

(

1 +
2(1 − α) {6α(1 + 2λ) + (5 − 4α)(1 + λ)2}

3(1 + λ)2





1 +
√

2 ≤ λ ≤ λ0, 0 ≤ α < 1 or λ > λ0, 0 ≤ α ≤ 1

2



.

We get the second estimate in (2.3).
Lastly, if λ > λ0 and 1

2
< α < 1, then we apply the triangle inequality in (2.23)

and get

2(1+3λ)|a4| ≤ 2α|c3|+α(1−α)|c1||(c2−l2)|+α(1−α)|c1||(c2+l2)|+
α(1 − α)(2 − α)

3
|c3

1|.
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By using the well bounds |cn| ≤ 2 (n = 1, 2, 3), |l2| ≤ 2 and the reĄned estimate (2.17)
for |c2 + l2| we have

2(1 + 3λ)|a4| ≤4α + 8α(1 − α) +
8α(1 − α)[2α(1 + 2λ) + (1 − α)(1 + λ)2]

(1 + λ2

+
8α(1 − α)(2 − α)

3
or

|a4| ≤ 2α

(1 + 3λ)

(

1 +
2(1 − α) {6α(1 + 2λ) + 4(2 − α)(1 + λ)2}

3(1 + λ)2





λ > λ0,
1

2
< α < 1



.

This is precisely the third estimate in (2.3). Thus, the proof of Theorem 2.1 is
completed. □

Theorem 2.2. Let the function h(z), given by (1.3), be in the class ΣΘα
λ (λ ≥ 1, 0 <

α ≤ 1). Then

(2.26) |b1| ≤ 2α

2λ − 1

and

(2.27)

|b2| ≤






2α
3λ−1

(

1 + 2(1−α)♣1−2α♣
3



1 ≤ λ ≤ λ1, 0 < α ≤ 1 or λ > λ1, 0 < α ≤ 1
2
,

2α
3λ−1

(

1 + 4(1−α)(1+α)
3



λ > λ1,
1
2

< α ≤ 1,

where λ1 is the largest positive root of the quadratic equation

2(1 − 2α)λ2 + 3(3α − 1)λ + 1 − 3α = 0.

Proof. We adopt and suitably modify the lines of proof of Theorem 2.1 here. Therefore,
we choose to omit the details and sketch only the main steps. In this case we have
the following:

(2.28) (1 − λ)
h(z)

z
+ λh′(z) = [P (z)]α

and

(2.29) (1 − λ)
H(w)

w
+ λH ′(w) = [Q(w)]α,

respectively, where

(2.30) P (z) = 1 +
c1

z
+

c2

z2
+

c3

z3
+ · · · (z ∈ ∆)

and

(2.31) Q(w) = 1 +
l1

w
+

l2

w2
+

l3

w3
+ · · · (w ∈ ∆)
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are functions with positive real part in ∆. By comparing coefficients we get:

(1 − λ)b0 =αc1,(2.32)

(1 − 2λ)b1 =αc2 +
1

2
α(α − 1)c2

1,(2.33)

(1 − 3λ)b2 =αc3 + α(α − 1)c1c2 +
1

6
α(α − 1)(α − 2)c3

1,(2.34)

(1 − λ)b0 = − αl1,(2.35)

(1 − 2λ)b1 = − αl2 − 1

2
α(α − 1)l2

1(2.36)

and

(2.37) − (1 − 3λ)(b2 + b0b1) = αl3 + α(α − 1)l1l2 +
1

6
α(α − 1)(α − 2)l3

1.

The equations (2.32) and (2.35) give the following relation between c1 and l1:

(2.38) c1 = −l1.

Similarly, the equations (2.33) and (2.36) provide the following relation among c1, c2 and l2

(2.39) c2 + l2 = (1 − α)c2
1.

We add (2.36) and (2.33) which yields, after simpliĄcation, the following:

(2.40) 2(1 − 2λ)b1 = α(c2 − l2).

By applying the triangle inequality and using the well known estimates |c2| ≤ 2 and
|l2| ≤ 2 we obtain

(2.41) |b1| ≤ 2α

2λ − 1
.

This is precisely our assertion at (2.26).
In order to Ąnd a bound for |b2| we subtract (2.37) from (2.34) and after simpliĄca-

tion get

(2.42) 2(1−3λ)b2 = −(1−3λ)b0b1+α(c3−l3)+α(α−1)c1(c2+l2)+
1

3
α(α−1)(α−2)c3

1.

Similarly addition of (2.37) and (2.34) yields:

(2.43) − (1 − 3λ)b0b1 = α(c3 + l3) + α(α − 1)c1(c2 − l2).

By substituting b1 = α(c2−l2)
2(1−2λ)

from (2.40) and b0 = αc1

1−λ
in the above equation (2.43)

we have

(2.44) c1(c2 − l2) = µ1(c3 + l3),

where

µ1 =
2(λ − 1)(2λ − 1)

(3λ − 1)α + 2(1 − α)(λ − 1)(2λ − 1)
.
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We notice that 0 < µ1 ≤ 2 for every λ ≥ 1 if 0 < α ≤ 1
2
. However, if 1

2
< α ≤ 1, then

0 < µ1 ≤ 2 for 1 ≤ λ ≤ λ1, where λ1 is the largest positive root of the quadratic
equation

2(1 − 2α)λ2 + 3(3α − 1)λ + 1 − 3α = 0.

In (2.42) we replace −(1 − 3λ)b0b1 by the expression on the right hand side of the
equality (2.43) and use the relation c1 = −l1. This gives on simpliĄcation the following:

2(1 − 3λ)b2 = 2αc3 + α(α − 1)c1(c2 − l2) + α(α − 1)c1(c2 + l2) +
1

3
α(α − 1)(α − 2)c3

1.

By replacing c2 + l2 by (1 − α)c2
1 from the relation (2.39) we obtain

(2.45) 2(1 − 3λ)b2 = 2αc3 + α(α − 1)c1(c2 − l2) +
1

3
α(α − 1)(1 − 2α)c3

1.

We Ąrst suppose that λ and α are constrained by the requirement that 1 ≤ λ ≤
λ1 and 0 < α ≤ 1 or λ > λ1 and 0 < α ≤ 1

2
. Now, we replace c1(c2 − l2) by µ1(c3 + l3)

from (2.44) and get:

2(1 − 3λ)b2 =2αc3 − 2α(1 − α)(λ − 1)(2λ − 1)

(3λ − 1)α + 2(1 − α)(λ − 1)(2λ − 1)
(c3 + l3)

+
1

3
α(α − 1)(1 − 2α)c3

1

=
2α2(3λ − 1) + 2α(1 − α)(λ − 1)(2λ − 1)

(3λ − 1)α + 2(1 − α)(λ − 1)(2λ − 1)
c3

− 2α(1 − α)(λ − 1)(2λ − 1)

(3λ − 1)α + 2(1 − α)(λ − 1)(2λ − 1)
l3 +

α(1 − α)(2α − 1)

3
c3

1.

By applying the triangle inequality together with the estimates |cn| ≤ 1 (n = 1, 3), |l3| ≤
2 we have after simpliĄcation the following:

|b2| ≤ 2α

3λ − 1

(

1 +
2(1 − α)|1 − 2α|

3





1 ≤ λ ≤ λ1 and 0 < α ≤ 1 or λ > λ1 and 0 < α ≤ 1

2



.

We get the Ąrst estimate in (2.27). Lastly, suppose that λ > λ1 and 1
2

< α ≤ 1. We
apply the triangle inequality and the familiar estimates |cn| ≤ 2 (n = 1, 2, 3) in (2.45)
and get

|b2| ≤ 2α

3λ − 1

(

1 +
4(1 − α)(1 + α)

3





λ > λ1,
1

2
< α ≤ 1



.

This is precisely the second estimate in (2.27). The proof Theorem 2.2 is thus com-
pleted. □
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3. Concluding Remarks

By DeĄnition 1.1, to each function f ∈ σQα
λ we associate a function of the

Carthéodory class which is of the the form:

P (z) = 1 + c1z + c2z
2 + c3z

3 + · · · (z ∈ U).

Similarly, its compositional inverse function g is also associated with a function Q(z)
of the Carthéodory class which is given by:

Q(z) = 1 + l1z + l2z
2 + l3z

3 + · · · (z ∈ U).

The correspondence in both cases is one-to-one. In the present paper we derived
suitable relationships between c1 and l1, and also among c1, c2, c3 and l3. These
relations yielded reĄned bounds on |c1|, |c1(c2 − l2)|, |c2 + l2| and |c3 + l3|, in suitable
ranges of α and λ. Using the reĄned bounds we found estimates on |a3| and |a4| for
functions in the class σQα

λ . We suitably adopted and amended the lines of proof of
our Theorem 2.1 and found estimates on |b1| and |b2| for functions in the class ΣΘα

λ .

Recently Hayami and Owa [12] found bounds on |a4| and improved upon the bounds
of Srivastava et al. [19] for |a3| for the class σQα. Thus, we have

|a3| ≤ 2α

3
, |a4| ≤ α

2



1 +
2(1 − α)(2 + 5α)

3(2 + α)

√

2

2 + α



 (f ∈ σQα, 0 < α ≤ 1).

(3.1)

Also Frasin and Aouf [9] extended the work of Srivastava et al. [19] as follows:
(3.2)

|a2| ≤ 2α
√

2α(1 + 2λ) + (1 − α)(1 + λ)2
, |a3| ≤ 2α

1 + 2λ
+

4α2

(1 + λ)2
(f ∈ σQα

λ).

A comparison of (2.1) and (2.2) with (3.2) shows that our estimates on |a2| and
|a3|, for the class σQα

λ found in Theorem 2.1, improve upon the earlier bound obtained
by Frasin and Aouf [9]. Also taking λ = 1 in Theorem 2.1 we get the estimates of
Hayami and Owa [12] mentioned at (3.1).

In a recent paper Hamidi et al. [11] found bounds for functions in a class closely
related to the function class ΣΘα

λ studied in this paper, but under the restriction that
initial coefficients are missing. Our work in Theorem 2.2 on coefficient bounds for
initial coefficients supplements the results in [11].

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent

Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344Ű351. https://doi.

org/10.1016/j.aml.2011.09.012

[2] S. Barik, Estimates for initial coefficients in subclasses of bi-univalent analytic functions, Ph. D.
Thesis, Berhampur University, India, 2015.

 https://doi.org/10.1016/j.aml.2011.09.012
 https://doi.org/10.1016/j.aml.2011.09.012


400 S. BARIK AND A. K. MISHRA

[3] D. A. Brannan, and J. G. Cluine (Eds.), Aspects of Contemporary Complex Analysis, in: Proceed-

ings of the NATO Advanced Study Institute, University of Durham, Durham, July 1979, 1Ű20,
Academic Press, New York, London, 1980.

[4] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A.
Hamoui, N. S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait, February 1985,
18Ű21, KFAS Proceedings Series 3, Pergamon Press, Elsevier Science Limited, Oxford, 1998,
53Ű60. See also Studia Univ. Babes-Bolyai Math. 31(2) (1986), 70Ű77.

[5] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent

functions, Filomat 27(7) (2013), 1165Ű1171. https://doi.org/10.101610.2298/FIL1307165C

[6] P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc.
62 (1997), 37Ű43.

[7] P. L. Duren, Univalent Functions, Grundlheren der Mathematischen Wissenschaften, Band 259,
Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

[8] S. S. Ding, Y. Ling and G. J. Bao, Some properties of a class of analytic functions, J. Math.
Anal. Appl. 195(1) (1995), 71Ű81.

[9] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24

(2011), 1569Ű1573. https://doi.org/10.1016/j.aml.2011.03.048

[10] A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Co. Inc, Tampa, FL, 1983.
[11] S. G. Hamidi, T. Janani and G. Murugasundaramoorthy, Coefficient estimates for certain classes

of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 352(4) (2014), 287Ű282.
https://doi.org/10.1016/j.crma.2014.01.010

[12] T. Hayami, and S. Owa, Coefficient bounds for bi-univalent functions, PanAmer. Math. J. 22(4)
(2012), 15Ű26.

[13] S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent

functions, Tamsui Oxf. J. Inf. Math. Sci. 29(4) (2013), 487Ű504.
[14] M. Lewin, On the coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18

(1967), 63Ű68. https://doi.org/10.1090/S0002-9939-1967-0206255-1

[15] A. K. Mishra and M. M. Soren, Coefficient bounds for bi-starlike analytic functions, Bull. Belg.
Math. Soc. Simon Stevin 21(2) (2014), 157Ű161.

[16] E. Natanyahu, The minimal distance of image boundary from the origin and the second coefficient

of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100Ű112. https:

//doi.org/10.1007/BF00247676

[17] Z. Peng and Q. Han, On the coefficient of several classes of bi-univalent functions, Acta Math.
Sci. Ser. B 34(1) (2014), 228Ű240. https://doi.org/10.1016/S0252-9602(13)60140-X

[18] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general

subclass of analytic and bi-univalent functions, Filomat 27(5) (2013), 831Ű842. https://doi.

org/DOI10.2298/FIL1305831S

[19] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-

univalent functions, Appl. Math. Lett. 23 (2010), 1188Ű1192. https://doi.org/10.1016/j.aml.

2010.05.009

[20] T. S. Taha, Topics in univalent function theory, Ph. D. Thesis, University of London, 1981.
[21] Q. H. Xu, Y. C. Gui, and H. M. Srivastava, Coefficients for certain subclasses of analytic and

bi-univalent functions, Appl. Math. Lett. 25 (2012), 990Ű994. https://doi.org/10.1016/j.aml.

2011.11.013

https://doi.org/10.101610.2298/FIL1307165C
https://doi.org/10.1016/j.aml.2011.03.048
https://doi.org/10.1016/j.crma.2014.01.010
https://doi.org/10.1090/S0002-9939-1967-0206255-1
https://doi.org/10.1007/BF00247676
https://doi.org/10.1007/BF00247676
https://doi.org/10.1016/S0252-9602(13)60140-X
https://doi.org/DOI 10.2298/FIL1305831S
https://doi.org/DOI 10.2298/FIL1305831S
https://doi.org/10.1016/j.aml.2010.05.009
https://doi.org/10.1016/j.aml.2010.05.009
https://doi.org/10.1016/j.aml.2011.11.013
https://doi.org/10.1016/j.aml.2011.11.013


ESTIMATES FOR INITIAL COEFFICIENTS 401

1Department of Computer Science,
Central University of Odisha,
Koraput-763004, Odisha, India
Email address: sarbeswar1204@gmail.com

2Saankhya Kuteer,
Golunda, Jagruti Vihar,
Burla Sambalpur-768020,
Odisha, India
Email address: akshayam2001@yahoo.co.in





Kragujevac Journal of Mathematics

Volume 47(3) (2023), Pages 403–407.

ON ZERO FREE REGIONS FOR DERIVATIVES OF A

POLYNOMIAL

MOHAMMAD IBRAHIM MIR1, ISHFAQ NAZIR1, AND IRFAN AHMAD WANI2

Abstract. Let Pn denote the set of polynomials of the form

p(z) = (z − a)m

n−m
∏

k=1

(z − zk),

with |a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m. For the polynomials of the form

p(z) = z
∏

n−1

k=1
(z − zk), with |zk| ≥ 1, where 1 ≤ k ≤ n − 1, Brown [2] stated the

problem “Find the best constant Cn such that p′(z) does not vanish in |z| < Cn”. He
also conjectured in the same paper that Cn = 1

n
. This problem was solved by Aziz

and Zarger [1]. In this paper, we obtain the results which generalizes the results of
Aziz and Zarger.

1. Introduction and statement of results

Let p(z) =
∏

n

k=1(z − zk) be a complex polynomial of degree n. The classical Gauss-
Lucas theorem states that every critical point of a complex polynomial p of degree at
least 2 lies in the convex hull of its zeros. This theorem has been further investigated
and developed. About the location of critical point relative to each individual zero,
a possible answer is given by the famous conjecture known in literature as Sendov’s
conjecture.

Conjecture 1 (Sendov’s Conjecture). If all the zeros of a polynomial p(z) lie in |z| ≤ 1,
then for any zero z0 of p, the disc |z − z0| ≤ 1 contains at least one critical point of p.

This conjecture has attracted much attention. About 100 papers have been pub-
lished related to this conjecture. This conjecture has so far been verified for general

Key words and phrases. Polynomials, zeros, critical points, derivative, region.
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polynomials of degree less than or equal to 8. However the problem is still unproved
in general.

In connection with this conjecture, Brown [2] observed that, if p(z) = z(z − 1)n−1,
then p′( 1

n
) = 0 and posed the following problem.

“Let p(z) = z
∏

n−1
k=1(z − zk), with |zk| ≥ 1, where 1 ≤ k ≤ n − 1. Find the best

constant Cn such that p′(z) does not vanish in |z| < Cn”.
However, Brown himself conjectured that Cn = 1

n
. This problem has been settled

by Aziz and Zarger [1], in fact they proved the following.

Theorem 1.1. If p(z) = z
∏

n−1
k=1(z − zk) is a polynomial of degree n, with |zk| ≥ 1,

where 1 ≤ k ≤ n − 1, then p′(z) does not vanish in |z| < 1
n
.

As a generalization of Theorem 1.1, N. A. Rather and F. Ahmad [3] have proved
the following result.

Theorem 1.2. Let p(z) = (z − a)
∏

n−1
k=1(z − zk) with |a| ≤ 1 be a polynomial of degree

n with |a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − 1, then p′(z) does not vanish in the region
∣

∣

∣

∣

z −


n − 1

n



a

∣

∣

∣

∣

<
1

n
.

The result is best possible as is shown by the polynomial

p(z) = (z − a)(z − eiα)n−1, 0 ≤ α < 2π.

N. A. Rather and F. Ahmad also proved the following result in the same paper.

Theorem 1.3. Let p(z) = (z − a)m
∏

n−m

k=1 (z − zk) be a polynomial of degree n with

|a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m, then p′(z) has (m − 1) fold zero at z = a and

remaining (n − m) zeros of p′(z) lie in the region
∣

∣

∣

∣

z −


n − m

n



a

∣

∣

∣

∣

≥
m

n
.

The result is best possible as is shown by the polynomial

p(z) = (z − a)m(z − eiα)n−m, 0 ≤ α < 2π.

Zarger and Manzoor [4] have extended Theorem 1.1 to the second derivative p′′(z)
of a polynomial of the form p(z) = zm

∏

n−m

k=1 (z − zk), with |zk| ≥ 1 for 1 ≤ k ≤ n − m.

In fact they proved the following.

Theorem 1.4. If p(z) = zm
∏

n−m

k=1 (z − zk) with |zk| ≥ 1 for 1 ≤ k ≤ n − m, then the

polynomial p′′(z) does not vanish in 0 < |z| <
m(m−1)
n(n−1)

.

Zarger and Manzoor [4] also obtained the following result for the polynomial p(m)(z),
m ≥ 1.

Theorem 1.5. If p(z) = zm
∏

n−m

k=1 (z − zk) is a polynomial of degree n with |zk| ≥ 1
for 1 ≤ k ≤ n − m, then the polynomial p(m)(z), m ≥ 1, does not vanish in |z| <

m!
n(n−1)···(n−m+1)

.
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In this paper, we first prove the following theorem which generalize the result of
Theorem 1.4.

Theorem 1.6. Let p(z) = (z − a)m
∏

n−m

k=1 (z − zk) be a polynomial of degree n with

|a| ≤ 1, and |zk| ≥ 1 for 1 ≤ k ≤ n − m, then p′′(z) has (m − 2) fold zero at z = a

and remaining (n − m) zeros lie in the region
∣

∣

∣

∣

∣

z −



1 −
m(m − 1)

n(n − 1)



a

∣

∣

∣

∣

∣

≥
m(m − 1)

n(n − 1)
.

Proof. We can write
p(z) = (z − a)mQ(z),

where Q(z) =
∏

n−m

k=1 (z − zk), then by Theorem 1.3, the polynomial

p′(z) = (z − a)m−1R(z),

where R(z) = (z − a)Q′(z) + mQ(z) has (m − 1) fold zero at z = a and remaining
(n − m) zeros lie in the region

∣

∣

∣

∣

z −


n − m

n



a

∣

∣

∣

∣

≥
m

n
.

Now, consider the polynomial

(1.1) S(z) = p′



m

n
z +

n − m

n
a



or

S(z) =


m

n

m−1

(z − a)m−1R



m

n
z +

n − m

n
a



,

then S(z) is a polynomial of degree n−1 with (m−1) fold zero at z = a and remaining
(n − m) zeros lie in |z| ≥ 1.

Now, applying Theorem 1.3 to the polynomial S(z), the derivative S ′(z) has (m−2)
fold zero at z = a and remaining (n − m) zeros lie in the region

∣

∣

∣

∣

∣

z −



(n − 1) − (m − 1)

n − 1



a

∣

∣

∣

∣

∣

≥
m − 1

n − 1
,

which is equivalent to
∣

∣

∣

∣

z −


n − m

n − 1



a

∣

∣

∣

∣

≥
m − 1

n − 1
.

Replacing z by n

m
z +



m−n

m



a, in equation (1.1) and differentiating, we obtain

p′′(z) = (z − a)m−2T (z),

where T (z) = (z − a)R′(z) + (m − 1)R(z).
Applying above, we see p′′(z) has (m − 2) fold zero at z = a and remaining (n − m)

zeros lie in the region
∣

∣

∣

∣

∣

z −



1 −
m(m − 1)

n(n − 1)



a

∣

∣

∣

∣

∣

≥
m(m − 1)

n(n − 1)
.

This completes the proof. □
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Remark 1.1. For a = 0, it reduces to Theorem 1.4.

Our next result generalizes Theorem 1.5 to the polynomial of the form p(z) =
(z − a)m

∏

n−m

k=1 (z − zk) with |a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m.

Theorem 1.7. If p(z) = (z − a)m
∏

n−m

k=1 (z − zk) be a polynomial of degree n with

|a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m, then the polynomial p(m)(z), m ≥ 1, has all

its zeros in the region
∣

∣

∣

∣

∣

z −



1 −
m!

n(n − 1) · · · (n − m + 1)



a

∣

∣

∣

∣

∣

≥
m!

n(n − 1) · · · (n − m + 1)
.

Proof. We can write

p(z) = (z − a)m

n−m
∏

k=1

(z − zk)

or
p(z) = (z − a)mQ(z),

where Q(z) =
∏

n−m

k=1 (z − zk), |zk| ≥ 1, 1 ≤ k ≤ n − m.

From the proof of Theorem 1.6, we can write

p′′(z) = (z − a)m−2T (z),

where T (z) = (z − a)R′(z) + (m − 1)R(z). Also, p′′(z) has (m − 2) fold zero at z = a

and remaining (n − m) zeros lie in
∣

∣

∣

∣

∣

z −
n(n − 1) − m(m − 1)

n(n − 1)
a

∣

∣

∣

∣

∣

≥
m(m − 1)

n(n − 1)
.

Now, consider the polynomial

(1.2) U(z) = p′′



m(m − 1)

n(n − 1)
z +

n(n − 1) − m(m − 1)

n(n − 1)
a



or

U(z) =



m(m − 1)

n(n − 1)

m−2

(z − a)m−2T



m(m − 1)

n(n − 1)
z +

n(n − 1) − m(m − 1)

n(n − 1)
a



.

Then U(z) has (m − 2) fold zero at z = a and remaining (n − m) zeros lie in |z| ≥ 1.

Again, applying Theorem 1.3 to U(z), which is a polynomial of degree n − 2, the
derivative U ′(z) has (m − 3) fold zero at z = a and remaining (n − m) zeros lie in

∣

∣

∣

∣

∣

z −



n − 2 − (m − 2)

n − 2



a

∣

∣

∣

∣

∣

≥
m − 2

n − 2
,

which is equivalent to
∣

∣

∣

∣

z −


n − m

n − 2



a

∣

∣

∣

∣

≥
m − 2

n − 2
.

Replacing z by n(n−1)
m(m−1)

z + m(m−1)−n(n−1)
m(m−1)

a, in (1.2) and differentiating, we obtain

p′′′(z) = (z − a)m−3V (z),
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where V (z) = (z −a)T ′(z)+(m−2)T (z) has (m−3) fold zero at z = a and remaining
(n − m) zeros lie

∣

∣

∣

∣

∣

z −



1 −
m(m − 1)(m − 2)

n(n − 1)(n − 2)



a

∣

∣

∣

∣

∣

≥
m(m − 1)(m − 2)

n(n − 1)(n − 2)
.

Proceeding similarly, for any positive integer m = 1, 2, . . . , n − 1, we see that the
polynomial p(m)(z) has all its zeros in the region

∣

∣

∣

∣

∣

z −



1 −
m!

n(n − 1) · · · (n − m + 1)



a

∣

∣

∣

∣

∣

≥
m!

n(n − 1) · · · (n − m + 1)
.

This completes the proof. □

Remark 1.2. For a = 0, it reduces to Theorem 1.5.

Remark 1.3. For m = 1, it reduces to Theorem 1.2.

Remark 1.4. For a = 0 and m = 1, it reduces to the result of Aziz and Zarger.
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A NEW EXTENSION OF BANACH-CARISTI THEOREM AND ITS

APPLICATION TO NONLINEAR FUNCTIONAL EQUATIONS

NABANITA KONWAR1, PRADIP DEBNATH2, STOJAN RADENOVIĆ3, AND HASSEN AYDI4

Abstract. In this paper, we present a new extension of Banach-Caristi type the-
orem for multivalued mappings. We show that our result is not a consequence of
multivalued version of Banach contraction principle due to Nadler. We provide an
application of our result to the solution of functional equations.

1. Preliminaries

Caristi [4] introduced an important generalization of the Banach contraction prin-
ciple as follows.

Theorem 1.1 ([4]). Let (Λ, η) be a complete metric space (MS, in short) and ℑ :
Λ → Λ be a self-map satisfying

η(ς, ℑ(ς)) ≤ ϕ(ς) − ϕ(ℑ(ς)),

for all ς ∈ Λ, where ϕ : Λ → [0, ∞) is a lower semicontinous mapping. Then ℑ admits

a fixed point.

Caristi’s theorem has a close connection with Ekeland’s variational principle [7, 8].
Weston [20] established a characterization for the metric completeness in terms of
Caristi’s theorem. Agarwal and Khamsi [1] extended Caristi’s result to vector valued
metric spaces.

In 1969, Nadler [17] established a number of very significant fixed point results
for multivalued maps using the Hausdorff concept, i.e., by considering the distance

Key words and phrases. Fixed point, Banach contraction principle, nonlinear functional equation,
metric space, CaristiŠs theorem.
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between two arbitrary sets. Khan [12] studied some interesting common fixed points
for multivalued maps.

Let (Λ, η) be a complete MS and let CB(Λ) denote the class of all nonempty
closed and bounded subsets of Λ. Then for A,B ∈ CB(Λ), define the map H :
CB(Λ) × CB(Λ) → [0, ∞) by

H(A,B) = max

{

sup
ξ∈B

∆(ξ,A), sup
δ∈A

∆(δ,B)

}

,

where ∆(δ,B) = infξ∈B η(δ, ξ). H is called the Pompeiu-Hausdorff metric induced
by η.

Definition 1.1 ([17]). ς ∈ Λ is said to be a fixed point of the multivalued map
ℑ : Λ → CB(Λ) if ς ∈ ℑ(ς). The set of all fixed points of ℑ is denoted by Fix(ℑ).

Remark 1.1. In the MS (CB(Λ),H), ς ∈ Λ, is a fixed point of ℑ if and only if
∆(ς, ℑ(ς)) = 0.

The following results are important in the present context.

Lemma 1.1 ([3, 5]). Let (Λ, η) be a MS and U, V, W ∈ CB(Λ). Then

(a) ∆(µ, V ) ≤ η(µ, γ) for any γ ∈ V and µ ∈ Λ;

(b) ∆(µ, V ) ≤ H(U, V ) for any µ ∈ U ;

(c) ∆(µ, U) ≤ [η(µ, ν) + ∆(ν, U)] for all µ, ν ∈ Λ.

Lemma 1.2 ([17]). Let U, V ∈ CB(Λ) and let ς ∈ U . Then for any p > 0 there exists

ξ ∈ V such that

η(ς, ξ) ≤ H(U, V ) + p.

However, there may not be a point ξ ∈ V such that

η(ς, ξ) ≤ H(U, V ).

If V is compact, then such a point ξ exists, i.e., η(ς, ξ) ≤ H(U, V ).

Lemma 1.3 ([17]). Let ¶Un♢ be a sequence in CB(Λ) and limn→∞ H(Un, U) = 0 for

some U ∈ CB(Λ). If υn ∈ Un and limn→∞ η(υn, υ) = 0 for some υ ∈ Λ, then υ ∈ U .

Lemma 1.4 ([16]). If ¶ςn♢ is a sequence in a MS (Λ, η) such that there exists a

constant λ ∈ [0, 1) satisfying

η(ςn+1, ςn) ≤ λη(ςn, ςn−1), for all n ≥ 1,

then the sequence ¶ςn♢ is Cauchy.

Caristi type conditions have been applied to multivalued mappings by Jachymski
[10], Feng and Liu [9], Latif and Kutbi [15] and many more. Also, generalized Caristi’s
fixed point theorems have been studied by Latif [14], Suzuki [19], and several others.

Recently, Khojateh et al. [13] gave some applications of Caristi’s theorem in MS,
whereas Karapinar et al. [11] extended the Banach and Caristi type theorems to
b-metric spaces. In the present paper, we introduce a new extension of Banach and
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Caristi type theorem to a complete MS for multivalued mappings. In Section 2, we
present the main result and in Section 3 we provide an application of our result to the
solution of a particular type of nonlinear functional equations. For some recent work on
the application of multivalued fixed point results to the solution of functional/integral
equations, we refer to [2, 6, 18].

2. Main Results

In this section, we present our main result which is a new extension of Banach-
Caristi theorem.

Theorem 2.1. Let (Λ, η) be a complete MS and ℑ : Λ → CB(Λ) be a multivalued

map such that ℑ(ς) is compact for each ς ∈ Λ. Suppose that the function ϕ : Λ → R

satisfies the following conditions:

(a) ϕ is bounded below (i.e., inf ϕ(ς) > −∞);
(b) ∆(ς, ℑ(ς)) > 0 implies H(ℑ(ς), ℑ(ξ)) ≤ (ϕ(ς) − ϕ(ξ))η(ς, ξ) for all ξ ∈ Λ.

Then ℑ has a fixed point.

Proof. Consider ς0 ∈ Λ and choose ς1 ∈ ℑ(ς0). Since ℑ(ς1) is compact, by Lemma 1.2,
we can select ς2 ∈ ℑ(ς1) satisfying η(ς1, ς2) ≤ H(ℑ(ς0), ℑ(ς1)). Similarly, we can choose
ς3 ∈ ℑ(ς2) satisfying η(ς2, ς3) ≤ H(ℑ(ς1), ℑ(ς2)) and so on.

Continuing in this way, we construct a sequence ¶ςn♢∞

n=0 satisfying

η(ςn, ςn+1) ≤ H(ℑ(ςn−1), ℑ(ςn)).

We assume that ςn /∈ ℑ(ςn) (i.e., ∆(ςn, ℑ(ςn)) > 0) for all n ≥ 0, since otherwise we
obtain a fixed point and the proof is completed.

Let αn = η(ςn−1, ςn). Using condition (b), we have

αn+1 = η(ςn, ςn+1) ≤ H(ℑ(ςn−1), ℑ(ςn))

≤ (ϕ(ςn−1) − ϕ(ςn))η(ςn−1, ςn)

= (ϕ(ςn−1) − ϕ(ςn))αn.(2.1)

So, 0 < αn+1

αn

≤ ϕ(ςn−1) − ϕ(ςn) for each n ∈ N.

Thus, the sequence ¶ϕ(ςn)♢ is positive and non-increasing (i.e., bounded and mono-
tone). Hence, it converges to some r ≥ 0.

Further, for each n ∈ N,
n

∑

k=1

αk+1

αk

≤
n

∑

k=1

(ϕ(ςk−1) − ϕ(ςk))

= (ϕ(ς0) − ϕ(ς1)) + (ϕ(ς1) − ϕ(ς2)) + · · · + (ϕ(ςn−1) − ϕ(ςn))

= (ϕ(ς0) − ϕ(ςn))

→ ϕ(ς0) − r as n → ∞.

Therefore,
∑

∞

n=1

αn+1

αn

< ∞, which implies that limn→∞

αn+1

αn

= 0. Thus, for λ ∈ (0, 1),

there exists n0 ∈ N such that αn+1

αn

≤ λ for all n ≥ n0. This implies that η(ςn+1, ςn) ≤
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λη(ςn, ςn−1) for all n ≥ n0. Using Lemma 1.4, we see that the sequence ¶ςn♢ is Cauchy
and since (Λ, η) is complete, ςn → ς as n → ∞ for some ς ∈ Λ.

We claim that ς is a fixed point of ℑ. We have

∆(ς, ℑ(ς)) ≤ [η(ς, ςn+1) + ∆(ςn+1, ℑ(ς))] (using (c) of Lemma 1.1)

≤ [η(ς, ςn+1) + H(ℑ(ςn), ℑ(ς))] (using (b) of Lemma 1.1)

≤ [η(ς, ςn+1) + (ϕ(ςn) − ϕ(ς))η(ςn, ς)] (using (b) of the hypothesis)

→ 0 as n → ∞.

Therefore, ∆(ς, ℑ(ς)) = 0, i.e., ς ∈ ℑ(ς). □

Remark 2.1. It should be noted that the right hand side of Caristi’s condition from
Theorem 1.1 does not depend on the distance function, whereas in our condition
from Theorem 2.1, the right hand side depends on the distance function. As such,
Theorem 2.1 should better be treated as a variant of a Caristi type result instead of
a generalization of the same. This is more so, because one can observe that when
ℑ is a single-valued mapping, our result does not reduce to original Caristi’s result.
For these reasons our result does not bear a direct connection with the multivalued
results studied in [9, 10,15].

Next, we provide an example to validate Theorem 2.1.

Example 2.1. Consider Λ = ¶0, 1, 2♢ and η : Λ × Λ → [0, ∞) be defined as η(0, 1) = 1,
η(0, 2) = 2, η(1, 2) = 1, η(ς, ς) = 0 and η(ς, ξ) = η(ξ, ς) for all ς, ξ ∈ Λ. Then (Λ, η) is
a complete MS. Define the multivalued map ℑ : Λ → CB(Λ) by

ℑ(ς) =

{

¶0♢, if ς ̸= 2,
¶0, 2♢, if ς = 2.

Also, define ϕ : Λ → R by ϕ(0) = 0, ϕ(1) = 5 and ϕ(2) = 3. Clearly, (Λ, η)
is a complete MS and ℑ(ς) is compact for each ς ∈ Λ. Further, we observe that
∆(ς, ℑ(ς)) > 0 for ς = 1. Indeed, we have

∆(0, ℑ0) =∆(0, ¶0♢) = 0,

∆(1, ℑ1) =∆(1, ¶0♢) = 1,

∆(2, ℑ2) =∆(2, ¶0, 2♢) = 0.

Now,

H(ℑ1, ℑ0) =H(¶0♢, ¶0♢) = 0,

H(ℑ1, ℑ1) =0,

H(ℑ1, ℑ2) =H(¶0♢, ¶0, 2♢) = 2.

Hence, it is easy to see that

H(ℑ1, ℑ0) ≤ (ϕ(1) − ϕ(0))η(1, 0),
H(ℑ1, ℑ1) ≤ (ϕ(1) − ϕ(0))η(1, 1),
H(ℑ1, ℑ2) ≤ (ϕ(1) − ϕ(0))η(1, 2).
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Therefore, all conditions of Theorem 2.1 are satisfied and we see that ℑ has a fixed
point. Here, Fix(ℑ) = ¶0, 2♢.

Remark 2.2. Note that H(ℑ1, ℑ2) = 2 > η(1, 2) = 1. Hence, Theorem 2.1 is not a
consequence of the multivalued version of the Banach contraction principle due to
Nadler [17].

3. Application to Functional Equations

Mathematical optimization problems often make use of dynamic programming to
obtain the optimal solution. In many such optimal problems, the corresponding
dynamical program gets boiled down to solve a functional equation of the form:

(3.1) u(t) = sup
s∈V

¶g(t, s) + G(t, s, u(h(t, s)))♢, t ∈ W,

where h : W × V → W , g : W × V → R and G : W × V × R → R. Let M and N be
Banach spaces. W ⊂ M is called a state space and V ⊂ N is called a decision space.
The process under study is a multistage process. We define the following:

•B(W ) := the collection of all bounded and closed real functions on W ;
•∥f∥ := supt∈V ♣f(t)♣, f ∈ B(W ).
The metric induced by ∥ · ∥ is given by

(3.2) η(f1, f2) = sup
t∈W

♣f1(t) − f2(t)♣, f1, f2 ∈ B(W ).

Then (B(W ), ∥·∥) is a Banach space. Further, define the operator ℑ : B(W ) → B(W )
by

(3.3) ℑ(f)(t) = sup
s∈V

g(t, s) + G(t, s, f(h(t, s))),

for all f ∈ B(W ) and t ∈ W . To prove an existence result, we need the following
theorem.

Theorem 3.1. Let ℑ : B(W ) → B(W ) be defined by (3.3). Let ℑ be upper semi-

continuous satisfying:

(a) g and G are bounded and continuous;

(b) for all f1, f2 ∈ B(W ) we have

0 <η(f1, f2) < 1 ⇒ ♣G(t, s, f1(t)) − G(t, s, f2(t))♣ ≤
1

2
η2(f1, f2),

η(f1, f2) ≥1 ⇒ ♣G(t, s, f1(t)) − G(t, s, f2(t))♣ ≤
2

3
η2(f1, f2),(3.4)

where t ∈ W and s ∈ V .

Then (3.1) has a bounded solution.

Proof. Let ϵ > 0 and t ∈ W . Since (B(W ), η) is complete for f1, f2 ∈ B(W ) and ϵ > 0
there exist s1, s2 ∈ V such that

(3.5) ℑ(f1)(t) ≥ g(t, s1) + G(t, s1, f1(h(t, s1))),
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but

(3.6) ℑ(f1)(t) < g(t, s1) + G(t, s1, f1(h(t, s1))) + ϵ

and

(3.7) ℑ(f2)(t) ≥ g(t, s2) + G(t, s2, f2(h(t, s2))).

But,

(3.8) ℑ(f2)(t) < g(t, s2) + G(t, s2, f2(h(t, s2))) + ϵ.

Consider the function δ : (0, ∞) → (0, ∞) defined by

δ(ς) =















ς2

2
, if 0 < ς < 1,

2

3
ς, if ς ≥ 1.

Then (3.4) reduces to

(3.9) ♣G(t, s, f1(t)) − G(t, s, f2(t))♣ ≤ δ(η(f1, f2)).

We observe that δ(ς) < ς for all ς ∈ (0, ∞). From (3.6), (3.7) and (3.8), we have that

ℑ(f1)(t) − ℑ(f2)(t) < ♣G(t, s1, f1(h(t, s1))) − G(t, s2, f2(h(t, s2)))♣ + ϵ

≤ δ(η(f1, f2)) + ϵ.(3.10)

Similarly, we have

ℑ(f2)(t) − ℑ(f1)(t) < δ(η(f1, f2)) + ϵ.(3.11)

From (3.10) and (3.11)

♣ℑ(f2)(t) − ℑ(f1)(t)♣ < δ(η(f1, f2)) + ϵ.(3.12)

Thus,

(3.13) η(ℑ(f1), ℑ(f2)) < δ(η(f1, f2)) + ϵ.

Since ϵ > 0 is arbitrary, we obtain

(3.14) η(ℑ(f1), ℑ(f2)) ≤ δ(η(f1, f2)) < η(f1, f2),

(since δ(ς) < ς, for each ς ∈ (0, ∞)). Now, define ϕ : B(W ) → R such that ϕ(f) =
[∥f∥]2, where f ∈ B(W ) and [·] denotes the greatest integer function. Now, all such
functions fi ∈ B(W ) which satisfy η(fi, (fj)) > 0, i ̸= j, we observe that

η(ℑ(f1), ℑ(f2)) ≤ δ(η(f1, f2)) < η(f1, f2) ≤ ♣ϕ(f1) − ϕ(f2)♣η(f1, f2),

(since in this case ♣ϕ(f1)−ϕ(f2)♣ ≥ 1). Thus, we observe that Theorem 2.1 is applicable
to the operator ℑ, so ℑ has a fixed point f ∗ ∈ B(W ), which in turn is a bounded
solution of the functional equation (3.1). □
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CHARACTERIZATION OF ORDERED SEMIHYPERGROUPS BY

COVERED HYPERIDEALS

MD FIROJ ALI1 AND NOOR MOHAMMAD KHAN2

Abstract. After introducing the notions of the Green’s relation J, hyper J-class
and covered hyperideal in an ordered semihypergroup, some important properties of
the hyper J-class and covered hyperideals are studied. Then maximal and minimal
hyperideals of an ordered semihypergroup are defined and some vital results have
been proved. We also define a hyperbase of an ordered semihypergroup and prove
the existence of a hyperbase under certain conditions in an ordered semihypergroup.
In an ordered semihypergroup, after defining the greatest covered hyperideal and
the greatest hyperideal, some results about these hyperideals are proved. Finally,
in a regular ordered semihypergroup, we show that, under some conditions, each
hyperideal is also a covered hyperideal.

1. Introduction and Prelinimaries

In 1934, Marty [16] introduced the concept of a hyperstructure, in particular, the
hypergroup theory in the 8th Congress of Scandinavian Mathematicians. The beauty
of hyperstructure is that in hyperstructures, composition of two elements is a set.
Thus the notion of algebraic hyperstructures is a generalization of classical notion
of algebraic structures. The concept of ordered semihypergroup is a generalization
of the concept of ordered semigroup and was introduced by Heidari and Davvaz
in [11]. Thereafter it was studied by several authors. Davvaz et al. [1, 2, 11, 17]
studied some properties of hyperideals, bi-hyperideals and quasi-hyperideals in ordered
semihypergroups. In [7, 9], Fabrici introduced the notion of a covered ideal and, in

Key words and phrases. Ordered semihypergroup, hyperideal, hyper J-class, covered hyperideal,
maximal hyperideal, minimal hyperideal, greatest covered hyperideal, greatest hyperideal and hyper-
base.
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[20], Xie generalized the notion of a covered ideal for ordered semigroups. Thereafter,
Thawhat Changphas and Pisan Summaprab [4] discussed the structure of an ordered
semigroup containing covered ideals. Later on Saber Omidi and Bijan Davvaz [18]
discussed the notion of a covered γ- hyperideal in an ordered γ-semihypergroup.

A hyperoperation on a set S (̸= ∅) is a map ◦ : S ×S → P⋆(S), where P⋆(S) denotes
the power set of S except ¶∅♢. Then (S, ◦) is a hypergroupoid. The image of the pair
(a, b) in S × S is denoted by a ◦ b.

A hypergroupoid (S, ◦) is called a semihypergroup if for all x1, x2, x3 ∈ S

(x1 ◦ x2) ◦ x3 = x1 ◦ (x2 ◦ x3).

It means that
⋃

t∈x1◦x2

t ◦ x3 =
⋃

r∈x2◦x3

x1 ◦ r.

For any T1, T2 ∈ P⋆(S), we denote

T1 ◦ T2 =
⋃

t∈T1,t′∈T2

t ◦ t′.

Instead of ¶x1♢ ◦ T1 and T2 ◦ ¶x1♢ we shall write, in whatever follows, x1 ◦ T1 and
T2 ◦ x1, respectively. We shall write An for A ◦ A ◦ A ◦ · · · ◦ A (n-copies of A) in the
sequel without further mention.

Definition 1.1. Let ≤ be an ordered relation on a set S (̸= ∅). The triplet (S, ◦, ≤)
is called an ordered semihypergroup if (S, ◦) is a semihypergroup and (S, ≤) is a
partially ordered set such that: for all t1, t2, t ∈ S, t1 ≤ t2 implies t1 ◦ t ≤ t2 ◦ t and
t ◦ t1 ≤ t ◦ t2. Here t1 ◦ t ≤ t2 ◦ t means that for any w ∈ t1 ◦ t there exists w′ ∈ t2 ◦ t
such that w ≤ w′.

A subset H (̸= ∅) of an ordered semihypergroup S is called a subsemihypergroup
of S if H ◦ H ⊆ H. We note that for every x, y, z, u, v, w ∈ S such that x ◦ y ≤ z ◦ w
and u ≤ v, we obtain x ◦ y ◦ u ≤ z ◦ w ◦ v.

For L ⊆ S, let (L] = ¶t ∈ S ♣ t ≤ h for some h ∈ L♢. Throughout this paper S
denotes an ordered semihypergroup until or unless it is mentioned.

Definition 1.2. A subset W (̸= ∅) of S is called a right (resp. left) hyperideal of S if

(a) W ◦ S ⊆ W (resp. S ◦ W ⊆ W );
(b) (W ] ⊆ W .

W becomes a hyperideal if it is both a right hyperideal and a left hyperideal of S.
The set of all hyperideals of S shall be denoted, in whatever follows, by I⋆.

Definition 1.3. A proper hyperideal W of S is called minimal if W does not contain
any hyperideal of S. Equivalently, if for any U ∈ I⋆ such that U ⊆ W , we have
U = W . The proper hyperideal W of S is called maximal if for any V ∈ I⋆ such
that W ⊂ V , we have V = S. Equivalently, if for any V ∈ I⋆ such that W ⊆ V , we
have V = W . Finally, S is called simple if S has no proper hyperideals. The ordered
semihypergroup S is called regular if for any a1 ∈ S there exists t ∈ S such that
a1 ∈ (a1 ◦ t ◦ a1]. Equivalently, W ⊆ (W ◦ S ◦ W ] for every W ⊆ S.
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For an ordered semihypergroup S, the hyperideal J(a) generated by the element a
of S is equal to (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S].

In Section 2 of the paper, after defining the notions of Green’s relation I and covered
hyperideal, some important properties of Green’s relation I and covered hyperideals of
an ordered semihypergroup are obtained as the main results while Section 3 deals with
the structural properties of ordered semihypergroups containing covered hyperideals.

2. Basic Properties of Covered Hyperideals

The Green’s relation I on S, an ordered semihypergroup, is defined by, for t, t′ ∈ S,

t I t′ if and only if J(t) = J(t′).

For any t ∈ S, Tt is I-hyperclass of t. Let D be the collection of all I-hyperclasses of
S. Define an order ‘≼’ on D by: for any t, t′ ∈ S,

Tt ≼ T ′

t if and only if J(t) ⊆ J(t′).

Then it is easy to verify that (D,≼) is a quasi-ordered set.
The following result easily follows.

Lemma 2.1. Let t be any element of S such that T (t) ⊈ K for any principal hyperideal

K of S. Then the I-hyperclass Tt is maximal.

Lemma 2.2. Let K be any subset of S. Then K is a maximal I-hyperclass of S if

and only if S \ K is a maximal hyperideal of S.

Proof. First we consider that K is a maximal I-hyperclass of S. Then K = Tt for
some t ∈ S. We now show that S \ Tt is a hyperideal of S. For this let h ∈ S and
t′ ∈ S \ Tt, then t′ /∈ Tt ⇒ J(t) ̸= J(t′). Let y ∈ h ◦ t′. Then either J(y) = J(t) or
J(y) ̸= J(t). If J(y) ̸= J(t) then the proof is obvious. If J(y) = J(t), then we have
y ∈ h ◦ t′ ⊆ S ◦ J(t′) ⊆ J(t′) and J(y) = J(t) ̸= J(t′). Since Tt′ and Tt are disjoint
I-hyperclasses of S, we have y /∈ Tt ⇒ y ∈ S \ Tt. Thus S ◦ S \ Tt ⊆ S \ Tt. Similarly,
we may show that (S \ Tt) ◦ S ⊆ S \ Tt. Let u ∈ S \ Tt and v ∈ S be such that v ≤ u.
So we have v ∈ (v] ⊆ (u] ⊆ J(u) and thus, J(v) ⊆ J(u) ⇒ Tv ≼ Tu. If v ∈ Tt, since
Tt is maximal, so Tv is also maximal I-hyperclass of S. Thus we have Tt = Tu. So
u ∈ Tt, a contradiction. Hence, v ∈ S \ Tt and S \ Tt is a hyperideal of S. Now it
remains to show the maximality of S \ Tt. For this take any hyperideal L of S such
that S \ Tx ⊂ L. Then there exists w ∈ L \ (S \ Tt). Thus w ∈ Tt. Now, for any
y ∈ Tt, we have

J(y) = J(x) = J(w) ⊆ L,

and, so, Tt ⊆ L. Hence, S = L. This shows that S \ Tt is a maximal hyperideal of S.
Conversely suppose that S \ K is a maximal hyperideal of S. Take z ∈ S \ (S \ K).

So z ∈ K. If t ∈ Tz, then J(t) = J(z) ⊆ K. Thus t ∈ K. Hence, Tz ⊆ K.
Since S \ K ⊂ (S \ K) ∪ J(z) and S \ K is a maximal hyperideal of S, we have
(S \ K) ∪ J(z) = S. It now follows that for any t′ ∈ K, J(t′) = J(z). Thus, for
t′ ∈ K, t′ ∈ Tz ⇒ K ⊆ Tz. Hence, K = Tz. If Tz is not maximal I-hyperclass of S,
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then there exists e ∈ S such that Tz ⪵ Te. This implies that J(z) ⊂ J(e) and, so, by
hypothesis, J(e) ⊆ S \ K. As e /∈ Tz = K ⇒ e ∈ S \ K. Thus, z ∈ S \ K. This is a
contradiction as z ∈ Tz. Hence, Tz is a maximal I-hyperclass of S. □

Definition 2.1. Any proper hyperideal K of an ordered semihypergroup S is called
a covered hyperideal of S if K ⊆ (S ◦ (S \ K) ◦ S]. The set of all covered hyperideals
of S shall be denoted, in whatever follows, by CH.

Example 2.1. Let S = ¶u, v, w, x♢. Define the hyper operation (◦) on S by the
following table:

◦ u v w x
u ¶u♢ ¶u, v♢ ¶u, w♢ ¶u♢
v ¶u♢ ¶u, v♢ ¶u, w♢ ¶u♢
w ¶u♢ ¶u, v♢ ¶u, w♢ ¶u♢
x ¶u♢ ¶u, v♢ ¶u, w♢ ¶u♢

.

Define order on S as ≤= ¶(u, u), (v, v), (w, w), (x, x), (v, u), (w, u)♢. Then (S, ◦, ≤) is
an ordered semihypergroup. Now, it may easily be verified that B = ¶u, v, w♢ is a
covered hyperideal of S.

Example 2.2. Let S = ¶u, v, w, x, y♢. Define the hyper operation (◦) on S by the
following table:

◦ u v w x y
u ¶u, v♢ ¶u, v♢ ¶u, v♢ ¶u, v♢ ¶u, v♢
v ¶u, v♢ ¶u, v♢ ¶u, v♢ ¶u, v♢ ¶u, v♢
w ¶u, v♢ ¶u, v♢ ¶w♢ ¶w♢ ¶y♢
x ¶u, v♢ ¶u, v♢ ¶w♢ ¶x♢ ¶y♢
y ¶u, v♢ ¶u, v♢ ¶w♢ ¶w♢ ¶y♢

.

Define order on S as ≤= ¶(u, u), (v, v), (w, w), (x, x), (y, y), (u, w), (u, x), (u, y), (v, w),
(v, x), (v, y), (w, x), (w, y)♢. Then (S, ◦, ≤) becomes an ordered semihypergroup. One
may easily verify that the sets A1 = ¶u, v♢ and A2 = ¶u, v, w, y♢ are covered hyper-
ideals of S.

Proposition 2.1. Let A1, A2 be different proper hyperideals of S such that A1∪A2 = S.

Then none of them is covered hyperideal of S.

Proof. On contrary, assume that A1 is a covered hyperideal of S. Since A1 ∪ A2 = S,
we have S \ A1 ⊆ A2 and S \ A2 ⊆ A1. Thus we have

A1 ⊆ (S ◦ (S \ A1) ◦ S] ⊆ (S ◦ A2 ◦ S] ⊆ A2.

Therefore, S = A2. This is a contradiction. By the similar argument, we may show
that if A2 is a covered hyperideal of S, then S = A1. This is again a contradiction.
Hence, the result hold. □

The following corollary follows easily from Proposition 2.1.
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Corollary 2.1. If an ordered semihypergroup S contains two or more maximal hy-

perideal, then none of them is a covered hyperideal of S.

Proposition 2.2. Let A1, A2 be covered hyperideals of S. Then A1 ∪ A2 ∈ CH.

Proof. Let A1 and A2 ∈ CH. Then A1 ⊆ (S ◦ (S \ A1) ◦ S] and A2 ⊆ (S ◦ (S \ A2) ◦ S].
Clearly A1∪A2 is a hyperideal of S. To show that A1∪A2 ∈ CH, take any z ∈ (A1∪A2).
If z ∈ A1, then z ∈ (s1◦t◦s2] for some s1, s2 ∈ S and t ∈ S\A1. In case t ∈ S\(A1∪A2),
then z ∈ (S ◦ (S \ (A1 ∪ A2)) ◦ S]. Again, if t ∈ (A1 ∪ A2), then t ∈ A2 ⊆ (s′

1
◦ t′ ◦ s′

2
]

for s′

1
, s′

2
∈ S and t′ ∈ S \ A2. Now z ∈ (s1 ◦ t ◦ s2] ⊆ (s1 ◦ (s′

1
◦ t′ ◦ s′

2
] ◦ s2] ⊆

(S ◦ S ◦ t′ ◦ S ◦ S] ⊆ (S ◦ t′ ◦ S]. If t′ ∈ A1, then t ∈ (s′

1
◦ t′ ◦ s′

2
] ⊆ (S ◦ A1 ◦ S] ⊆ A1.

This is a contradiction. Hence, t′ ∈ S \ (A1 ∪ A2) and, so, z ∈ (S ◦ (S \ (A1 ∪ A2)) ◦ S].
In a similar way we may show that if z ∈ A2, then z ∈ (S ◦ (S \ (A1 ∪ A2)) ◦ S]. Hence,
the result follows. □

Proposition 2.3. Let A1 be any hyperideal of S and A2 ∈ CH. Then A1 ∩ A2 ∈ CH.

Proof. First we prove that A1 ∩A2 is a non-empty hyperideal of S. For this, let t ∈ A1

and t′ ∈ A2, then we have t ◦ t′ ⊆ A1 ◦ A2 ⊆ A1 ◦ S ⊆ A1. Also, t ◦ t′ ⊆ A1 ◦ A2 ⊆
S ◦ A2 ⊆ A2. Thus, t ◦ t′ ⊆ A1 ∩ A2 ⊆ S. Clearly, (A1 ∩ A2) ◦ S ⊆ A1 ◦ S ⊆ A1

and (A1 ∩ A2) ◦ S ⊆ A2 ◦ S ⊆ A2. Thus (A1 ∩ A2) ◦ S ⊆ A1 ∩ A2. In a similar way
we may show that S ◦ (A1 ∩ A2) ⊆ A1 ∩ A2. Also, as (A1 ∩ A2] ⊆ (A1] = A1 and
(A1 ∩ A2] ⊆ (A2] = A2, we have (A1 ∩ A2] ⊆ A1 ∩ A2. Now, as A1 ∩ A2 ⊆ A2 ⊆
(S ◦ (S \ A2) ◦ S] ⊆ (S ◦ (S \ (A1 ∩ A2)) ◦ S], A1 ∩ A2 is a covered hyperideal of S. □

Corollary 2.2. If A1 and A2 ∈ CH, then A1 ∩ A2 ∈ CH.

Combining Proposition 2.2 and Corollary 2.2, we have the following.

Theorem 2.1. For an ordered semihypergroup S, CH is a sublattice of the lattice of

all hyperideals of S.

3. Covered Hyperideals in Ordered Semihypergroups

Theorem 3.1. An ordered semihypergroup S contains a covered hyperideal if it is not

simple.

Proof. Proof of this theorem is similar to the proof of Theorem 3.10 of [18]. □

Theorem 3.2. If an ordered semihypergroup S contains covered hyperideals, then

every covered hyperideal of S is minimal if and only if any two distinct covered

hyperideals of S are disjoint.

Proof. Proof of this theorem is similar to the proof of Theorem 3.9 of [18]. □

Corollary 3.1. Let (S, ◦, ≤) be an ordered semihypergroup. If S is not simple, then

each covered hyperideal of S is minimal if and only if any two distinct covered hyper-

ideals of S are disjoint.
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Theorem 3.3. Let K be any proper hyperideal of a regular ordered semihypergroup

S. If for every J(t) ⊆ K, there exists t′ ∈ S \ K such that J(t) ⊆ J(t′), then every

proper hyperideal of S is a covered hyperideal of S.

Proof. Clearly (S◦S] ⊆ S. As S is regular, S ⊆ (S◦S◦S] ⊆ (S◦S] ⊆ S ⇒ S = (S◦S].
Now suppose that for any hyperideal K of S and t ∈ K such that J(t) ⊆ K, there
exists t′ ∈ S \ K such that J(t) ⊆ J(t′). As S = (S ◦ S], we get S = (S ◦ S ◦ S]. Then
t′ ≤ s1 ◦ s2 ◦ s3 for some s1, s2, s3 ∈ S. If s2 ∈ K, then t′ ∈ (S ◦ K ◦ S] ⊆ (K] = K.
This is a contradiction. Therefore, t′ ∈ S \ K. Also, t′ ∈ (S ◦ (S \ K) ◦ S] ⇒ J(t′) ⊆
(S ◦ (S \ K) ◦ S]. Now t ∈ J(t) ⊆ J(t′) ⊆ (S ◦ (S \ K) ◦ S]. Hence, K ∈ CH. □

The following example illustrates Theorem 3.3.

Example 3.1. In Example 2.2, one may easily check that (S, ◦, ≤) is a regular ordered
semihypergroup. Consider the subset K = ¶u, v, w, y♢ of S. Then K is a hyperideal
of S such that J(u) ⊆ K. For x ∈ S \ K, J(t) ⊆ J(x) for all t ∈ S. Then, by the
hypothesis of the Theorem 3.3, K becomes covered hyperideal of S.

Proposition 3.1. Let K be any hyperideal of a regular order semihypergroup S. Then

any covered hyperideal L of K is also a covered hyperideal of S.

Proof. As being a hyperideal of S, K is also a subsemihypergroup of S. Let h ∈ K ⊆ S.
Since S is regular, there exists t′ ∈ S such that h ≤ h ◦ t′ ◦ h ≤ h ◦ t′ ◦ (h ◦ t′ ◦ h) =
h ◦ (t′ ◦ h ◦ t′) ◦ h. As K is a hyperideal of S, we have t′ ◦ h ◦ t′ ⊆ S ◦ K ◦ S ⊆ K.
Therefore, h ∈ (h ◦ K ◦ h]. Hence, K is a regular subsemihypergroup of S.

Now we show that L is a hyperideal of S. For this, take any u ∈ L ⊆ K and s ∈ S.
Then u ◦ s ⊆ K. For any v ∈ u ◦ s ⊆ K, there exists h ∈ K such that

v ≤ v ◦ h ◦ v ⊆ (u ◦ s) ◦ h ◦ (u ◦ s)

⊆ L ◦ (S ◦ K ◦ S) ◦ S

⊆ L ◦ K ◦ S

⊆ L ◦ K ⊆ L ( as L is a hyperideal of K).

Therefore, u ◦ s ⊆ L. By the similar argument we may show that s ◦ u ⊆ L. Also,
if l ∈ L ⊆ K and t ∈ S such that t ≤ l ⇒ t ∈ K. As L is a hyperideal of K, it
follows that t ∈ L. Hence L is a hyperideal of S. Again, by hypothesis, we have
L ⊆ (K ◦ (K \ L) ◦ K] ⊆ (S ◦ (K \ L) ◦ S] ⊆ (S ◦ (S \ L) ◦ S] (since ϕ ̸= K \ L ⊆ S \ L).
Hence, K ∈ CH. □

The following example shows that the condition of the Proposition 3.1 on S to be
regular ordered semihypergroup is a sufficient condition.

Example 3.2. Let S = ¶v, w, x, t♢. Define a hyper operation (◦) on S by the following
table:
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◦ v w x t
v ¶v♢ ¶v, w♢ ¶v, x♢ ¶v♢
w ¶v♢ ¶v, w♢ ¶v, x♢ ¶v♢
x ¶v♢ ¶v, w♢ ¶v, x♢ ¶v♢
t ¶v♢ ¶v, w♢ ¶v, x♢ ¶v♢

.

Define an order on S as ≤= ¶(v, v), (w, w), (x, x), (t, t), (w, v), (x, v)♢. Then (S, ◦, ≤)
is an ordered semihypergroup but not a regular ordered semihypergroup. For the
subsets K = ¶v, w, x♢, L1 = ¶w♢ and L2 = ¶x♢ of S, one may easily verify that K is
a hyperideal of S and each Li (i = 1, 2) is a covered hyperideal of both K and S.

Definition 3.1. A non-empty subset HB of S is called a two-sided hyperbase of S if

(a) S = (HB ∪ HB ◦ S ∪ S ◦ HB ∪ S ◦ HB ◦ S];
(b) If D ⊆ HB such that S = (D ∪ D ◦ S ∪ S ◦ D ∪ S ◦ D ◦ S], then D = HB.

Maximal I-hyperclasses of S may be realized as the compliments of maximal hy-
perideals of S. The complement of a maximal hyperideal Ht of S, in the sequel, will
be denoted by H t.

In the followings, to provide examles of hyperbases of ordered semihypergroups,
examples of ordered semihypergroups are taken from [19] and [2], respectively.

Example 3.3. Let S = ¶u, v, w, x, y, z♢. Define a hyper operation (◦) on S by the
following table:

◦ u v w x y z
u ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢
v ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢
w ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢
x ¶x, y♢ ¶y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢
y ¶x, y♢ ¶y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢ ¶x, y♢
z ¶u♢ ¶v♢ ¶w♢ ¶x♢ ¶y♢ ¶z♢

.

Define an order on S as ≤= ¶(u, u), (v, v), (w, w), (x, x), (x, u), (x, w), (x, z), (y, y),
(y, u), (y, v), (y, w), (y, x), (y, z), (z, z)♢. Then (S, ◦, ≤) is an ordered semihyper-
group. Consider the subset HB = ¶z♢ of S. Then, clearly, S ◦ HB = S and, hence,
S = (HB ∪ HB ◦ S ∪ S ◦ HB ∪ S ◦ HB ◦ S]. So HB is a hyperbase of S.

Example 3.4. Let S = ¶u, v, w, x, t♢. Define a hyper operation (◦) on S by the
following table:

◦ u v w x t
u ¶u♢ ¶u♢ ¶u♢ ¶u♢ ¶u♢
v ¶u♢ ¶u, v♢ ¶u♢ ¶u, x♢ ¶u♢
w ¶u♢ ¶u, t♢ ¶u, w♢ ¶u, w♢ ¶u, t♢
x ¶u♢ ¶u, v♢ ¶u, x♢ ¶u, x♢ ¶u, v♢
t ¶u♢ ¶u, t♢ ¶u♢ ¶u, w♢ ¶u♢

.

Define an order on S as ≤= ¶(u, u), (v, v), (w, w), (x, x), (t, t), (u, v), (u, w), (u, x),
(u, t)♢. (S, ◦, ≤) is an ordered semihypergroup may easily be checked. Consider the
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subsets HB = ¶v♢ and H ′

B = ¶x♢ of S. It is easy to verify that both HB and H ′

B are
hyperbases of S.

A covered hyperideal A of an ordered semihypergroup S is called the greatest
covered hyperideal of S if it contains every covered hyperideal of S. The greatest
covered hyperideal A of S will be denoted by Ag in the sequel.

Theorem 3.4. If S is not hypersimple and contains a two-sided hyperbase HB of

S, then S has the greatest covered hyperideal Ag. Moreover, Ag = (S3] ∩ Ĥ, where

Ĥ =
⋂

t∈α
Ht, where ¶Ht♢t∈α is the family of all maximal hyperideals of S.

Proof. Containment of hyperbase HB implies the existence of maximal hyperideals in
S and Ht = S \ H t, where H t is a maximal I-hyperclass. Since ϕ ≠ Ĥ =

⋂
t∈α

Ht =
⋂

t∈α
S \ H t = S \

⋃
t∈α

H t. It is easy to verify that Ĥ and (S3] are hyperideals of S. Let

K = (S3] ∩ Ĥ. We show that K ∈ CH. For this, let h ∈ K be any element. Then
h ∈ (S3] ⇒ h ∈ (S ◦ t′ ◦ S] for some t′ ∈ S. If t′ ∈ HB, then ∃ c ∈ HB such that
t′ ∈ J(c) and, hence, t′ ∈ (S ◦ c∪ c◦S ∪S ◦ c◦S] i.e. t′ is at least in one of the subsets:
(S ◦ c], (c ◦ S], (S ◦ c ◦ S]. Then, for all these subsets, we have (S ◦ t′ ◦ S] ⊆ (S ◦ c ◦ S]
and, hence, h ∈ (S ◦ c ◦ S] for c ∈ HB. Thus, for any h ∈ K, ∃ c ∈ HB such

that h ∈ (S ◦ c ◦ S] ⊆ (S ◦ HB ◦ S] ⊆ (S ◦ (S \ Ĥ) ◦ S] ⊆ (S ◦ (S \ K) ◦ S].
Therefore K ⊆ (S ◦ (S \ K) ◦ S]. It now remains to show that K is the greatest
covered hyperideal of S. To show this, let L be any covered hyperideal of S. Then
L ⊆ (S ◦ (S \ L) ◦ S] ⊆ (S3]. Since L ∈ CH, L can not contain any maximal I-

hyperclass. So L ⊆ S \ H t for every t ∈ α. Therefore, L ⊆
⋂

t∈α
S \ H t =

⋂
t∈α

Ht = Ĥ.

Hence, L ⊆ (S3] ∩ Ĥ = K. Therefore, any covered hyperideal is contained in K, i.e.,
K = Ag. □

Lemma 3.1. Let S be any ordered semihypergroup having the greatest covered hyper-

ideal Ag. If Ag ⊆ (S ◦ S ◦ S], then

(a) every I-hyperclass in (S3] \ Ag is maximal;

(b) J(t) = (S ◦ t ◦ S] for all t ∈ (S3] \ Ag.

Proof. First we assume that Ag ⊂ (S3]. Then, we have (S3] \ Ag ̸= ϕ. To show
the second part let t ∈ (S3] \ Ag. Since Ag is a hyperideal of S, the I-hyperclass
Tt ⊆ (S3] \ Ag. Thus t ∈ (S ◦ t′ ◦ S] for some t′ ∈ S and (S ◦ t ◦ S] ⊆ (S ◦ t′ ◦ S]. Since
(S ◦ t′ ◦ S] ⊆ J(t′), we have J(t) ⊆ J(t′). Now suppose to the contrary that t′ /∈ Tt. So
Tt ̸= T ′

t . We claim that t′ ∈ S \ J(t). For this, if t′ ∈ J(t), then J(t) = J(t′) ⇒ Tt =
T ′

t , which is impossible. Thus we have J(t) ⊆ (S ◦ (S \ J(t)) ◦ S] and, so, J(t) ∈ CH.
By Proposition 2.2, Ag ∪ J(t) ∈ CH. As t /∈ Ag, we, thus, have Ag ⊂ Ag ∪ J(t). This
is a contradiction. Hence, t′ ∈ Tt and J(t) ⊆ (S ◦ t′ ◦ S] ⊆ J(t′) = J(t).

Thus, J(t) = (S ◦ t′ ◦ S] = J(t′). So, obviously (S ◦ t ◦ S] ⊆ J(t). Now there are two
possibilities: if t′ ≤ t, then J(t) = (S ◦ t′ ◦ S] ⊆ (S ◦ t ◦ S] ⇒ J(t) ⊆ (S ◦ t ◦ S]. If
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t′ ≤ t is not true, then t′ ∈ (S ◦ t ∪ t ◦ S ∪ S ◦ t ◦ S]. Now, if t′ ∈ (S ◦ t], then we have

S ◦ t′ ◦ S ⊆ S ◦ (S ◦ t] ◦ S ⊆ (S ◦ (S ◦ t] ◦ S] ⊆ (S ◦ S ◦ t ◦ S] ⊆ (S ◦ t ◦ S].

Similarly, for t′ ∈ (t ◦ S] ∪ (S ◦ t ◦ S], we may show that (S ◦ t′ ◦ S] ⊆ (S ◦ t ◦ S].
Therefore, J(t) = J(t′) = (S ◦ t′ ◦ S] ⊆ (S ◦ t ◦ S].

To prove the reverse part, let Tt be a I-hyperclass in (S3] \ Ag. On contrary assume
that Tt is not maximal. Then, by Lemma 2.1, J(t) ⊂ J(t′) for some t′ ∈ S. So
t ∈ J(t′). This implies that t ∈ (t′] ∪ (S ◦ t′] ∪ (t′ ◦ S] ∪ (S ◦ t′ ◦ S]. For such t, we
may easily prove that (S ◦ t ◦ S] ⊆ (S ◦ t′ ◦ S] ⇒ J(t) ⊆ (S ◦ t′ ◦ S]. Now, as
t′ ∈ S \ J(t), J(t) is a covered hyperideal of S. Hence Ag ⊂ Ag ∪ J(t), a contradiction.
Therefore, every I-hyperclass in (S3] \ Ag is maximal. □

Theorem 3.5. Let S be any ordered semihypergroup having the greatest covered

hyperideal Ag. If

(a) Ag ⊂ (S ◦ S ◦ S];
(b) neither Tt ≼ Tt′ nor Tt′ ≼ Tt for any t, t′ ∈ S \ (S2],

then S contains a hyperbase.

Proof. Suppose that Ag ⊂ (S3] and t, t′ ∈ S \ (S2] such that they are incomparable.
Since Ag is a covered hyperideal of S, we have

Ag ⊆ (S ◦ (S \ Ag) ◦ S] ⊆ (S3] ⊆ (S2] ⊆ S.

Let C1 = ¶Tt ♣ t ∈ S \(S2]♢, C2 = ¶Tt ♣ t ∈ (S2]\(S3]♢and C3 = ¶Tt ♣ t ∈ (S3]\Ag♢.
Let K be the set containing all the elements from the members of C1 and C3. Then, it
is easy to verify that K is a hyperbase of S. To show that S = J(K) = (K ∪ S ◦ K ∪
K ◦ S ∪ S ◦ K ◦ S], we only need to show that Ag, (S3] \ Ag, (S2] \ (S3], and S \ (S2]
are subsets of J(K).

(i) Let z ∈ Ag. Then z ∈ (S ◦ (S \ Ag) ◦ S] ⇒ z ∈ (S ◦ y ◦ S] for some y ∈ S \ Ag.
Clearly y ∈ Tt for some t ∈ (S \ (S2]) ∪ ((S2] \ (S3]) ∪ ((S3] \ Ag). Now, by the
construction of K, if t ∈ (S \ (S2]) ∪ ((S3] \ Ag), then we have y ∈ J(K). Hence
z ∈ J(K). If t ∈ (S2] \ (S3], then t ≤ u1 ◦ u2 for some u1, u2 ∈ S Since t /∈ (S3], we
have u1, u2 ∈ S \ (S2]. It implies that t ∈ J(K) and, so, y ∈ J(K). Thus, we have
z ∈ J(K).

(ii) If z ∈ (S3] \ Ag. Then there exists x1 ∈ K such that z ∈ J(x1). Therefore
z ∈ J(K).

(iii) If z ∈ (S2] \ (S3], then one may prove in a similar way as in the Case (i).
(iv) If z ∈ S \ (S2], then there exists x2 ∈ K such that z ∈ J(x2) ⊆ J(K).
Now, we show the minimality of K satisfying S = J(K). By Lemma 3.1, every

Tt ∈ C3 is maximal. Also every Tt ∈ C1 is maximal since for any elements t, t′ ∈ S\(S2],
neither Tt ≼ Tt′ nor Tt′ ≼ Tt. Let L ⊂ K such that S = (L ∪ S ◦ L ∪ L ◦ S ∪ S ◦ L ◦ S]
and let z ∈ K \L. Then z ≤ z′ for some z′ ∈ (L∪S ◦L∪L◦S ∪S ◦L◦S] ⇒ z′ ∈ J(l)
for some l ∈ L. Thus, J(z) ⊂ J(l), a contradiction to the construction of K. Hence,
the proof is completed. □
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A hyperideal A of S is called the greatest hyperideal of S if every proper hyperideal
of S is contained in A. The greatest hyperideal A, if exists, will be denoted by A⋆ in
the sequel.

Theorem 3.6. The greatest hyperideal A⋆ of S is a covered hyperideal of S if and

only if (S2] = (S3].

Proof. First we assume that A⋆ ∈ CH. So A⋆ ⊆ (S◦(S\A⋆)◦S]. Since A⋆ is a maximal
hyperideal of S, it follows that S \ A⋆ = Ta is the unique maximal I-hyperclass of S.
Then either (S2] ⊂ S or (S2] = S. If (S2] = S, then the proof is obvious. If (S2] ⊂ S,
then either (S3] = (S2] or (S3] ⊂ (S2].

If (S3] ⊂ (S2], then A⋆ ⊆ (S ◦ (S \ A⋆) ◦ S] ⊆ (S3] ⊂ (S2]. Hence S \ A⋆ would
contain at least two different I-hyperclasses, each from (S2] \ (S3] and S \ (S2]. This
is a contradiction to the fact that S \ A⋆ contains only one maximal J-class. Thus
(S2] = (S3].

Conversely, suppose that S contains A⋆ and (S2] = (S3]. Then show that A⋆

is a covered hyperideal of S. For this, take any z ∈ A⋆. Then, for any element
c ∈ Ta = S \ A⋆, we have J(c) = S. Thus z ∈ J(c). However, z ∈ A⋆ and
c ∈ Ta = S \ A⋆, hence z ≠ c. Therefore, z ∈ (c ◦ S ∪ S ◦ c ∪ S ◦ c ◦ S]. If z ∈ (c ◦ S] or
z ∈ (S ◦ c], then, clearly z ∈ (S2]. If z ∈ (S ◦ c ◦ S], then z ∈ (S3]. But, by hypothesis,
(S2] = (S3]. Therefore, z ∈ (S3], i.e., z ∈ (S ◦ d ◦ S] for some d ∈ S = J(c). If d = c,
then, clearly d ∈ (S ◦ c ◦ S]. If d ≠ c, then d ∈ (c ◦ S ∪ S ◦ c ∪ S ◦ c ◦ S]. Again, if
d ∈ (c ◦ S], then, clearly (S ◦ d ◦ S] ⊆ (S ◦ c ◦ S ◦ S] ⊆ (S ◦ c ◦ S]. The same relation
may be shown if d ∈ ((S ◦ c]) ∪ ((S ◦ c ◦ S]). Thus, z ∈ (S ◦ d ◦ S] ⊆ (S ◦ c ◦ S]
and c ∈ Ta = S \ A⋆. This shows that, for any z ∈ A⋆, we have z ∈ (S ◦ c ◦ S] and
c ∈ Ta = S \ A⋆. Hence, A⋆ ⊆ (S ◦ (S \ A⋆) ◦ S] i.e. A⋆ ∈ CH. □

Theorem 3.7. Suppose S has only one maximal hyperideal K. If K ∈ CH, then

K = A⋆.

Proof. Let L be any proper hyperideal of S. Then it is easy to verify that L ⊆ K,
otherwise we shall get a contradiction to the Proposition 2.1. Hence, K = A⋆. □

The following example illustrates that the converse of the Theorem 3.7 is not be
true in general.

Example 3.5. Let S = ¶u, v, w, x♢. Define a hyper operation (◦) on S by the following
table:

◦ u v w x
u ¶u♢ ¶v♢ ¶u♢ ¶v♢
v ¶v♢ ¶u♢ ¶v♢ ¶u♢
w ¶u♢ ¶v♢ ¶u♢ ¶v♢
x ¶v♢ ¶u♢ ¶v♢ ¶u♢

.

Define an order on S as ≤= ¶(u, u), (v, v), (w, w), (x, x), (u, w)♢. The proof that
(S, ◦, ≤) is an ordered semihypergroup is an easy exercise. Consider the subset K =
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¶u, v, w♢ of S. Then it is easy to verify that K is the only maximal hyperideal of S.
As any proper hyperideal of S is contained in K, Thus, K = A⋆. Now S \ A⋆ = ¶x♢,
S ◦ x ◦ S = ¶u, v♢. So, A⋆ ⊈ (S ◦ (S \ A⋆) ◦ S]. Hence, A⋆ is not a covered hyperideal
of S.

Theorem 3.8. If every proper hyperideal of S is a covered hyperideal of S, then either

of the followings is true:

(1) S contains A⋆;

(2) S = (S ◦ S] and for any proper hyperideal K and for every hyperideal J(t) of

S such that J(t) ⊆ K, there exists y ∈ S \ K such that J(t) ⊂ J(y) ⊂ S.

Proof. Take any a, b ∈ S. If Ta and Tb are maximal I-hyperclasses of S such that
Ta ≠ Tb, then, by Lemma 2.2, Aa = S \ Ta and Ab = S \ Tb are maximal proper
hyperideals of S. So, by Corollary 2.1, none of them is a covered hyperideal of S.
This is a contradiction. Thus S has no different maximal I-hyperclasses. Hence either
S contains one maximal I-hyperclass or S does not contain any maximal I-hyperclass.
Let the only maximal I-hyperclass Ta be contained in S. Then Aa = S \ Ta is a
maximal hyperideal of S. By hypothesis, Aa ∈ CH. Thus, by Theorem 3.7, Aa = A⋆.

For the second possibility, suppose that S does not contain any maximal I-hyperclass.
We need to show that S = (S ◦ S]. For this, suppose that (S ◦ S] ⊂ S. Then ∃
c ∈ S \ (S ◦ S]. We claim that the principal hyperideal J(c) ⊊ S. If J(c) = S, then
S has a maximal I-hyperclass which is impossible. Hence J(c) ⊂ S. By hypothesis,
J(c) ∈ CH, i.e., J(c) ⊆ (S ◦ (S \ J(c)) ◦ S]. Then c ∈ (S ◦ S ◦ S] ⊆ (S ◦ S]. This is a
contradiction.

Now let K be any proper hyperideal of S and let the principal hyperideal J(t) ⊆ K.
By hypothesis, K ⊆ (S◦(S\K)◦S]. So ∃ y ∈ S\K such that t ∈ (S◦y◦S] ⇒ J(t) ⊆
J(y) ⊆ S. As y ∈ S \ K, J(t) ⊂ J(y). Since S contains no maximal I-hyperclass, we
have J(y) ⊂ S, as required. □

Theorem 3.9. Let (S, ◦, ≤) be an ordered semihypergroup. If

(1) S contains the greatest hyperideal A⋆ such that A⋆ ∈ CH or

(2) S = (S2] and for any proper hyperideal K and for every hyperideal J(t) of S
such that J(t) ⊆ K, there exists y ∈ S \ K such that J(t) ⊆ J(y),

then every proper hyperideal of S is a covered hyperideal of S.

Proof. Let K be any proper hyperideal of S. First, suppose that the condition (1)
holds. Then K ⊆ A⋆ and S \ A⋆ ⊆ S \ K. Since A⋆ ∈ CH, we have

K ⊆ A⋆ ⊆ (S ◦ (S \ A⋆) ◦ S] ⊆ (S ◦ (S \ K) ◦ S].

Therefore, K ∈ CH.
Secondly we assume that S satisfies the condition (2). Let h ∈ K ⇒ J(h) ⊆ K. By

the condition (2), we have J(h) ⊂ J(y) for some y ∈ S \ K. Since S = (S2] ⇒ S =
(S3]. Thus, y ∈ (S ◦ b ◦ S] for some b ∈ S. As y ∈ S \ K, we thus have b ∈ S \ K.
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Therefore, h ∈ (S ◦ b ◦ S] ⊆ (S ◦ (S \ K) ◦ S] and, so, K ⊆ (S ◦ (S \ K) ◦ S]. Hence,
K ∈ CH. □
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4. Open Problems

(1) Is it true that the greatest hyperideal A∗ of an ordered semihypergroup S is a
covered hyperideal of S if and only if S = (S ◦ S]?

(2) Suppose an ordered semihypergroup (S, ◦, ≤) contains only one maximal hy-
perideal K. Does K ∈ CH if K = A∗, the greatest hyperideal of S?

5. Conclusion

In ordered semigroups and ordered semihypergroups, ideals and hyperideals, play
an important role to discuss the nature of the structure of ordered semigroups and
ordered semihypergroups. Nowadays the hyperideal theory has been extensively
studied by several authors. In ordered semihypergroups different types of hyperideals
such as bi-hyperideals, quasi-hyperideals have been studied. These notions had been
widely studied by several authors in different algebraic structures (see [1, 2, 12, 19]).
In this paper, we have enhanced the understanding of ordered semihypergroups by
introducing the concept of a covered hyperideal in an ordered semihypergroup. We
have also introduced the notion of a hyperbase in an ordered semihypergroup and
proved some vital results.
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THE FAMILY OF SZÁSZ-DURRMEYER TYPE OPERATORS
INVOLVING CHARLIER POLYNOMIALS

NAOKANT DEO1 AND RAM PRATAP1

Abstract. In this paper, we consider Szász-Durrmeyer type operators based on
Charlier polynomials associated with Srivastava-Gupta operators [17]. For the
considered operators, we discuss error of estimation by using first and second order
modulus of continuity, Lipchtiz-type space, Ditzian-Totik modulus of smoothness,
Voronovskaya type asymptotic formula and weighted modulus of continuity.

1. Introduction

For the Charlier polynomials [8], the generating functions are as follows:

(1.1) eu

(

1 − u

a

)t

=
∞
∑

j=0

C
[a]
j (t)

uj

j!
,

where C
[a]
j (t) =

j
∑

r=0

(

j

r

)

(−t)r
1
ar and (j)0 = 1, (j)i = j(j + 1)(j + 2) · · · (j + i − 1) for

i ≥ 1.
Suppose γ > 0, the space Cγ[0, ∞) := ¶g ∈ C[0, ∞) : ♣g(t)♣ ≤ Meγt♢ for some

M > 0.

In view of Charlier polynomials, Varma and Tasdelen [19] proposed a sequence of
linear positive operators for g ∈ Cγ[0, ∞) as follows:

(1.2) Ln(g; x, a) = e−1
(

1 − 1

a

)(a−1)nx ∞
∑

j=0

C
[a]
j (−(a − 1)nx)

j!
g

(

j

n

)

,
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Ditzian-Totik modulus of smoothness, weighted modulus of continuity.
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where a > 1 and x ∈ [0, ∞). For sufficiently large a, if we replace x by x − 1
n

the
above operators reduce to well-known Szász-Mirakyan operators [18].

In [17], Srivastava and Gupta introduced a new family of linear positive operators
as follows:

(1.3) Gc
n(g; x) = (n − c)

∞
∑

j=0

pn,j(x; c)

∞
∫

0

pn+c,j−1(u; c)du + pn,0(x; c)g(0),

where pn,j(x; c) = (−x)j

j!
ϕ(j)

n,c(x) and

ϕn,c(x) =

{

e−nx, c = 0,

(1 + cx)
−n

c , c = 1, 2, 3, . . .

For the operators (1.3), they also studied the rate of convergence for the functions of
bounded variation. Ispir and Yüksel [10] defined the Bézier varient of the Srivastava-
Gupta operators and discussed rate of convergence for the functions of bounded
variation. Srivastava-Gupta [17] contains several well-known operators for different
values of c. Many authors have proposed various forms and modifications of the above
operators and studied several local and global approximation results. For more (see
[1, 3, 7, 12,14,16,20,21]).

Motivated from the above stated work, we define a linear positive operators for
g ∈ CB[0, ∞) as follows:

G[a]
n,c(g; x) =(n − c)e−1

(

1 − 1

a

)(a−1)nx




∞
∑

j=1

C
[a]
j (−(a − 1)nx)

j!

∞
∫

0

pn+c,j−1(u; c)g(u)du

+C
[a]
0 g(0)



.(1.4)

In above operators, it can easily be seen that if we take c = 1, we obtain Szász-
Durrmeyer type operators involving Charlier Polynomials which were proposed by
Kajla and Agrawal [11] and studied several approximation results like Vorovskaya
type asymptotic theorem, local approximation, statistical rate of convergence and
functions of bounded variation. For more articles based on Charlier polynomials (see
[2, 4]).

The main purpose of this article is to define the operators (1.4) and discuss the
approximation results using the first and second order modulus of continuity, Lipschitz-
type space, Ditzian-Totik modulus of smoothness, Voronovskaya-type formula and
weighted approximation.

2. Auxiliary Results

Lemma 2.1 ([19]). For the operators Ln(·; x, a), we have

(i) Ln(1; x, a) = 1;

(ii) Ln(u; x, a) = x + 1
n
;
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(iii) Ln(u2; x, a) = x2 + x
n

(

3 + 1
a−1

)

+ 2
n2 ;

(iv) Ln(u3; x, a) = x3 + x2

n

(

6 + 3
a−1

)

+ x
n2

(

5 + 3
a−1

+ 1
(a−1)2

)

+ 5
n3 ;

(v)

Ln(u4; x, a) =x4 +
x3

n

(

10 +
6

a − 1

)

+
x2

n2

(

31 +
30

a − 1
+

11

(a − 1)2



+
x

n3

(

37 +
31

a − 1
+

20

(a − 1)2 +
6

(a − 1)3



+
15

n4
.

Lemma 2.2. The moments of the operators G[a]
n,c(u

i; x), i = 0, 1, 2, 3, 4, are as follows:

(i) G[a]
n,c(1; x) = 1;

(ii) G[a]
n,c(u; x) = 1

(n−2c)
(nx + 2);

(iii) G[a]
n,c(u

2; x) = 1
(n−2c)(n−3c)

(

n2x2 + n
(

6 + 1
a−1

)

x + 7
)

;

(iv)

G[a]
n,c(u

3; x) =
1

(n − 2c)(n − 3c)(n − 4c)

(

n3 x3 + 3n2
(

4 +
1

a − 1

)

x2

+n

(

28 +
12

a − 1
+

2

(a − 1)2



x + 34



;

(v)

G[a]
n,c(u

4; x) =
1

(n − 2c)(n − 3c)(n − 4c)(n − 5c)

(

n4x4 + 2n3
(

10 +
3

a − 1

)

x3

+ n2

(

126 +
60

a − 1
+

11

(a − 1)2



x2

+ n

(

292 +
126

a − 1
+

40

(a − 1)2 +
6

(a − 1)3



x + 209
)

.

Lemma 2.3. The central moments for the defined operators:

(i) G[a]
n,c(u − x; x) = 2

(n−2c)
(1 + cx);

(ii) G[a]
n,c((u − x)2; x) = 1

(n−2c)(n−3c)

(

c(n + 6c)x2 +
(

n
(

2 + 1
a−1

)

+ 12c
)

x + 7
)

;

(iii)

G[a]
n,c((u − x)4; x) =

1

(n − 2c)(n − 3c)(n − 4c)(n − 5c)

(

(3n2 + 86cn + 126c2)c2x4

+
2c(3(2a − 1)n2 + 4c(43a − 28)n + 240(a − 1)c2)

(a − 1)
x3

+
(56a2 − 100a + 47)n2 + 2c(91a2 − 62a − 9)n + 840(a − 1)2

c2

(a − 1)2 x2

+
2(78a3 − 171a2 + 128a − 32)n + 680c(a − 1)3

(a − 1)3 x + 209
)

.
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Lemma 2.4. For sufficiently large n, we have

(i) lim
n→∞

nG[a]
n,c((u − x); x) = 2(1 + cx);

(ii) lim
n→∞

nG[a]
n,c((u − x)2; x) = x

(

cx + 1
a−1

+ 2
)

;

(iii) lim
n→∞

n2G[a]
n,c((u − x)4; x) = x2

(

3c2x2 + 3(2a−1)
(a−1)

x + 56a2−100a+47
(a−1)2

)

.

3. Main Result

Theorem 3.1. Let g ∈ Cγ [0, ∞) and for sufficiently large n the operators G[a]
n,c(g(u); x)

converges to g(x) uniformly in each compact subset of [0, ∞).

Proof. From Lemma 2.2, limn→∞ G[a]
n,c(1; x) = 1, limn→∞ G[a]

n,c(u; x) = x and

limn→∞ G[a]
n,c(u

2; x) = x2. Then by Bohman-Korovokin theorem, G[a]
n,c(g(u); x) con-

verges to g(x) uniformly in each compact subset of [0, ∞). □

Theorem 3.2. For g ∈ Cγ[0, ∞) and g′(x), g′′(x) exist in [0, ∞), we have

[

G[a]
n,c(g(u); x) − g(x)

]

= 2(1 + cx)g′(x) +
x

2!

(

cx +
1

a − 1
+ 2

)

g′′(x).

Proof. From Taylor’s expansion, we have

g(u) = g(x) + (u − x)g′(x) +
(u − x)2

g′′(x)

2!
+ r(u, x)(u − x)2,

where r(u, x) converges to 0 when u → x.
Applying G[a]

n,c(·; x) in above expression, we have

n
[

G[a]
n,c(g(u); x) − g(x)

]

=nG[a]
n,c((u − x); x)g′(x) +

nG[a]
n,c((u − x)2; x)g′′(x)

2!

+ nG[a]
n,c(r(u, x)(u − x)2; x).(3.1)

Using Cauchy-Schwarz inequality and Lemma 2.4 in last term of above equality, we
obtain

(3.2) lim
n→∞

nG[a]
n,c(r(u, x)(u − x)2; x) = 0.

From (3.1), using (3.2) and Lemma 2.4, we get the required result. □

Let CB[0, ∞) be the space of real valued continuous and bounded functions g on
[0, ∞), provided with norm

∥g∥ = sup
x∈[0,∞)

♣g(x)♣ ,

and Peetre’s K-functional for g ∈ CB[0, ∞) is given as:

K2(g; δ) = inf
x∈W 2

∞

¶∥g − h∥ + δ ∥h′′∥♢ , δ > 0,
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where W 2
∞[0, ∞) = ¶h ∈ CB[0, ∞) : h′, h′′ ∈ CB[0, ∞)♢. Devore and Lorentz [5, Theo-

rem 2.4, page 177], provided relation between Peetre’s K functional and second order
modulus of continuity as follows:

(3.3) K2(g; δ) ≤ Cω2(g;
√

δ),

and the second order modulus of continuity ω2(g;
√

δ) is given as

ω2(g;
√

δ) = sup
0<i≤δ

sup
x∈[0,∞)

♣g(x + 2i) − 2g(x + i) + g(x)♣ .

The usual modulus of continuity ω(g; δ) for g ∈ CB[0, ∞)

ω(g; δ) = sup
0<i≤δ

sup
x∈[0,∞)

♣g(x + i) − g(x)♣ .

Theorem 3.3. For g ∈ CB[0, ∞) and a > 1, we have

∣

∣

∣G[a]
n,c(g(u); x) − g(x)

∣

∣

∣ ≤ Cω2

(

g
√

δa
n,c(x)

)

+ ω

(

g;

∣

∣

∣

∣

∣

2(1 + cx)

(n − 2c)

∣

∣

∣

∣

∣



,

where C is positive constant and δa
n,c(x) =

[

G[a]
n,c((u − x)2; x) + 2(1+cx)2

(n−2c)2

]

.

Proof. We consider an auxiliary operators:

G̃[a]
n,c(g(u); x) = G[a]

n,c(g(u); x) − g

(

x +
2(1 + cx)

n − 2c



+ g(x).

The Taylor’s expansion for the function h ∈ W 2
∞[0, ∞) is given as

h(u) = h(x) + (u − x)h′(x) +

u
∫

x

(u − x)h′′(u)du.

Applying G̃[a]
n,c(·; x) in above expression

G̃[a]
n,c(h(u); x) − h(x) = G̃[a]

n,c((u − x); x)h′(x) + G̃[a]
n,c





u
∫

x

(u − x)h′′(u)du; x



 .

Since G̃[a]
n,c(1; x) = 1, G̃[a]

n,c(u; x) = x and G̃[a]
n,c(u − x; x) = 0, we get

∣

∣

∣G̃[a]
n,c(h(u); x) − h(x)

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

G̃[a]
n,c





u
∫

x

(u − x)h′′(u)du; x





∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

G[a]
n,c





u
∫

x

(u − x)h′′(u)du; x





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

x+
2(1+cx)

n−2c
∫

x

(

x +
2(1 + cx)

n − 2c
− u



h′′du

∣

∣

∣

∣

∣

∣

∣

∣
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≤


G[a]
n,c((u − x)2; x) +

2(1 + cx)2

(n − 2c)2

]

∥h′′∥

≤δa
n,c(x) ∥h′′∥ .(3.4)

Using auxiliary operators we can write
∣

∣

∣G[a]
n,c(g(u); x) − g(x)

∣

∣

∣ ≤
∣

∣

∣G̃[a]
n,c(g − h; x) − (g − h)(x)

∣

∣

∣+
∣

∣

∣G̃[a]
n,c(h(u); x) − h(x)

∣

∣

∣

+

∣

∣

∣

∣

∣

g

(

x +
2(1 + cx)

n − 2c



− g(x)

∣

∣

∣

∣

∣

≤2 ♣g − h♣ + δa
n,c(x) ∥h′′∥ + ω

(

g;
2(1 + cx)

n − 2c



.

Taking infimum on the right hand side of the above inequality for g ∈ W 2
∞[0, ∞), we

have
∣

∣

∣G[a]
n,c(g(u); x) − g(x)

∣

∣

∣ = 2K2

(

g; δa
n,c(x)

)

+ ω

(

g,

∣

∣

∣

∣

∣

2(1 + cx)

n − 2c

∣

∣

∣

∣

∣



.

From (3.3), we obtain

∣

∣

∣G[a]
n,c(g(u); x) − g(x)

∣

∣

∣ = Cω2

(

g;
√

δa
n,c(x)

)

+ ω

(

g,

∣

∣

∣

∣

∣

2(1 + cx)

n − 2c

∣

∣

∣

∣

∣



.

Hence, the proof. □

In the next theorem, we estimate global rate of convergence by using Ditzian-Totik

modulus of smoothness ωφα(g; δ) for g ∈ CB[0, ∞), 0 < α ≤ 1 and ϕ(x) =
√

x(1 + cx)
which is defined as:

ωφα(g; δ) = sup
0≤s≤δ

sup
x± sφα(x)

2
∈[0,∞)

∣

∣

∣

∣

∣

g

(

x +
sϕα(x)

2



− g

(

x − sϕα(x)

2

∣

∣

∣

∣

∣

,

and the Peetre K-functional is defined as:

Kφα(g; δ) = inf
g∈Wα

¶∥g − h∥ − δ ∥ϕαg′∥♢ ,

where Wα is subspaces of those functions which are locally absolutely continuous on
g ∈ [0, ∞) with the normed ∥ϕαg′∥ ≤ ∞. In [6], there exists a constant C > 0 such
that

C−1ωφα(g; δ) ≤ Kφα(g; δ) ≤ Cωφα(g; δ).

Theorem 3.4. Suppose g ∈ CB[0, ∞) and for sufficiently large n, we have

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ Cωφα

(

g;
ϕ1−α(x)√

n



.

Proof. For h ∈ Wα, we have

h(u) = h(x) +

u
∫

x

h′(t)dt.
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Applying G[a]
n,c(·; x) in the above equality and using Hölder’s inequality, we obtain

∣

∣

∣G[a]
n,c(h; x) − h(x)

∣

∣

∣ ≤G[a]
n,c





u
∫

x

h′(t)dt; x





≤ ∥ϕαh′∥ G[a]
n,c





u
∫

x

dt

ϕα(t)
; x





≤ ∥ϕαh′∥ G[a]
n,c



♣u − x♣1−α

∣

∣

∣

∣

∣

∣

u
∫

x

dt

ϕ(t)

∣

∣

∣

∣

∣

∣

α

; x



 .(3.5)

Let p(u, x) =
∣

∣

∣

∣

u
∫

x

dt
φ(t)

∣

∣

∣

∣

, we have

p(u, x) ≤
∣

∣

∣

∣

∣

∣

u
∫

x

dt

ϕ(t)

∣

∣

∣

∣

∣

∣

(

1√
1 + cx

+
1√

1 + cu



≤ 2 ♣u − x♣√
x +

√
u

(

1√
1 + cx

+
1√

1 + cu



≤2 ♣u − x♣√
x

(

1√
1 + cx

+
1√

1 + cu



.

Since ♣a + b♣α ≤ ♣a♣α + ♣b♣α, 0 ≤ α ≤ 1, and from the above inequality, we obtain

(3.6)

∣

∣

∣

∣

∣

∣

u
∫

x

dt

ϕ(t)

∣

∣

∣

∣

∣

∣

α

≤ 2α♣u − x♣α

x
α
2

(

1

(1 + cx)
α
2

+
1

(1 + cu)
α
2



.

From (3.5), (3.6) and using Cauchy-Schwarz inequality, we get

∣

∣

∣G[a]
n,c(h; x) − h(x)

∣

∣

∣ ≤2α ∥ϕαh′∥
x

α
2

G[a]
n,c

(

♣u − x♣
(

1

(1 + cx)
α
2

+
1

(1 + cu)
α
2



; x



≤2α ∥ϕαh′∥
x

α
2

(

1

(1 + cx)
α
2

(

G[a]
n,c((u − x)2; x)

)
1
2

+
(

G[a]
n,c((u − x)2; x)

)
1
2 ×

(

G[a]
n,c((1 + cu)−α; x)

)
1
2

)

.(3.7)

From Theorem 3.1, G[a]
n,c((1 + cu)−α converges to (1 + cx)−α for sufficiently large n.

Thus, for ϵ > 0, there exist n0 ∈ N such that G[a]
n,c((1 + cu)−α; x) ≤ (1 + cx)−α + ϵ for

all n ≥ n0.
Choosing ε = (1 + cx)−α, we get

(3.8) G[a]
n,c((1 + cu)−α; x) ≤ 2(1 + cx)−α, for all n ≥ n0.

For sufficiently large n there exists a constant C > 0, such that

(3.9) G[a]
n,c((u − x)2; x) ≤ C

ϕ2(x)

n
.
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From (3.7) to (3.9), we obtain

(3.10)
∣

∣

∣G[a]
n,c(h; x) − h(x)

∣

∣

∣ ≤ 2α+1C ∥ϕαh′∥ ϕ1−α(x)√
n

.

We can write
∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤
∣

∣

∣G[a]
n,c(g − h; x)

∣

∣

∣+
∣

∣

∣G[a]
n,c(h; x) − h(x)

∣

∣

∣+ ♣h(x) − g(x)♣

≤2 ∥g − h∥ +
∣

∣

∣G[a]
n,c(h; x) − h(x)

∣

∣

∣ .

From (3.10), we get

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤2 ∥g − h∥ + 2α+1C ∥ϕαh′∥ ϕ1−α(x)√
n

≤C

{

∥g − h∥ +
ϕ1−α(x)√

n
∥ϕαh′∥

}

≤CKα
φ

(

g;
ϕ1−α(x)√

n



≤Cωφ
α

(

g;
ϕ1−α(x)√

n



.

Hence, the proof. □

In [15], the Lipschitz-type space for positive real numbers β1, β2 is defined as:

Lip
β1,β2

M (λ) =







g ∈ CB[0, ∞) : ♣g(u) − g(x)♣ ≤ Mg

♣u − x♣λ

(u + β1x2 + β2x)
λ
2

; x, u ∈ [0, ∞)







,

where Mg > 0 and 0 < λ ≤ 1.

Theorem 3.5. Let g ∈ Lip
β1,β2

M (λ) and 0 < λ ≤ 1, then for x ≥ 0 we have

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ Mg

(

µ
a,c
n,2(x)

(β1x2 + β2x)


λ
2

,

where µ
a,c
n,2(x) = G[a]

n,c((u − x)2; x).

Proof. First, we discuss the result for λ = 1. For g ∈ Lip
β1,β2

M (λ), we have

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤(n − c)e−1
(

1 − 1

a

)(a−1)nx ∞
∑

j=0

C
[a]
j (−(a − 1)nx)

j!

×
∞
∫

0

pn,j(u; c) ♣g(u) − g(x)♣ du

≤(n − c)e−1
(

1 − 1

a

)(a−1)nx ∞
∑

j=0

C
[a]
j (−(a − 1)nx)

j!
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×
∞
∫

0

pn,j(u; c)Mg

♣u − x♣
(u + β1x2 + β2x)

1
2

du.

Since 1√
u+β1x2+β2x

< 1√
β1x2+β2x

, applying Cauchy-Schwarz inequality, we obtain

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ Mg√
β1x2 + β2x

(n − c)e−1
(

1 − 1

a

)(a−1)nx ∞
∑

j=0

C
[a]
j (−(a − 1)nx)

j!

×
∞
∫

0

pn,j(x; c) ♣u − x♣ du

≤ Mg√
β1x2 + β2x

√

G
[a]
n,c((u − x)2; x)

≤Mg

√

√

√

√

µ
a,c
n,2(x)

β1x2 + β2x
.

The result is true for λ = 1. Now we prove for 0 < λ < 1. Using Hölder’s inequality
with p = 2

λ
and q = 2

2−λ
, we have

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣

≤






n − c)e−1
(

1 − 1

a

)(a−1)nx ∞
∑

j=0

C
[a]
j (−(a − 1)nx)

j!

≤Mg







(n − c)e−1
(

1 − 1

a

)(a−1)nx ∞
∑

j=0

C
[a]
j (−(a − 1)nx)

j!

×
∞
∫

0

pn,j(x; c)
(u − x)2

(u + β1x2 + β2x)
du







λ
2

≤ Mg

(β1x2 + β2x)λ
2







(n − c)e−1
(

1 − 1

a

)(a−1)nx ∞
∑

j=0

C
[a]
j (−(a − 1)nx)

j!

×
∞
∫

0

pn,j(x; c)(u − x)2
du







λ
2

≤Mg

(

µ
a,c
n,2(x)

(β1x2 + β2x)


λ
2

.

Hence, the proof. □
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Theorem 3.6. If g(x) is continuously differentiable function on [0, ∞) and ♣g′(x)♣ ≤ D

for some D > 0, then we have

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ D

∣

∣

∣

∣

∣

2(1 + cx)

n − 2c

∣

∣

∣

∣

∣

+ 2
√

µ
a,c
n,2(x)ωb

(

g′;
√

µ
a,c
n,2(x)

)

,

where ωb(g; δ), δ > 0, is usual modulus of continuity on [0, b] and

µ
a,c
n,2(x) = G[a]

n,c((u − x)2; x).

Proof. From Lagrange’s mean value theorem, we get

g(u) − g(x) = (u − x)g′(η) = (u − x)g′(x) + (u − x)(g′(η) − g′(x)),

where η lies between x and u.
now, we apply G[a]

n,c(·; x) on both side of the above equation. Since x < η < u we
have ♣η − x♣ < ♣u − x♣ and

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ ♣g′(x)♣
∣

∣

∣G[a]
n,c((u − x); x)

∣

∣

∣+ ωb(g
′; δ)

(

♣u − x♣ +
(u − x)2

δ



.

Applying Cauchy-Schwarz inequality, we obtain

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ D

∣

∣

∣

∣

∣

2(1 + cx)

n − 2c

∣

∣

∣

∣

∣

+
√

µ
a,c
n,2(x)ωb (g′; δ)



1 +

√

µ
a,c
n,2(x)

δ



 .

Taking δ =
√

µ
a,c
n,2(x), we get required result. □

In our next theorem, we study the rate of convergence for the operators (1.4) based
on Lipscitz maximal function of order r given by Lenze [13] as

(3.11) ϖr(g; x) = sup
u ̸=x, x,u∈[0,∞)

♣g(u) − g(x)♣
♣u − x♣r ,

where 0 < r ≤ 1.

Theorem 3.7. For g ∈ CB[0, ∞), we have
∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ ϖr(g; x)
(

µ
a,c
n,2(x)

)r
.

Proof. From (3.11), we obtain
∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ ϖr(g; x)G[a]
n,c (♣u − x♣r; x) .

Using Hölder’s inequality with p = 2
r

and q = 2
2−r

, we obtain
∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤ ϖr(g; x)
(

G[a]
n,c

(

(u − x)2; x
))r ≤ ϖr(g; x)

(

µ
a,c
n,2(x)

)r
.

Hence, the proof. □
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Let C2[0, ∞) be the space of all continuous functions on [0, ∞) and defined as:

C2[0, ∞) :=
{

g : ♣g♣ ≤ Mg(1 + x2)
}

,

where Mg is positive constant which may depends on g with the norm

∥g∥2 = sup
x>0

♣g(x)♣
1 + x2

.

Let C∗
2 [0, ∞) :=

{

g ∈ C2[0, ∞) : limx→∞
g(x)
1+x2 exists and finite

}

. The weighted modu-

lus of continuity [9] Ω(g; δ) is given as

Ω(g; δ) = sup
0≤β<δ

♣g(x + β) − g(x)♣
(1 + β2)(1 + x2)

.

Lemma 3.1. For every g ∈ C∗
2 [0, ∞), Ω(g; δ) has the properties:

(i) Ω(g; δ) is a monotonically increasing function of δ;

(ii) limδ→0+ Ω(g; δ) = 0;

(iii) Ω(g; kδ) ≤ 2(1 + k)(1 + δ2)Ω(g; δ), k > 0 and δ > 0.

Theorem 3.8. For g ∈ C∗
2 [0, ∞), we have

sup
x∈[0,∞)

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣

(1 + x2)
5
2

≤ CΩ

(

g;
1√
n



,

where C is positive constant depends on a and c.

Proof. For x, u ∈ [0, ∞) and from (3.11), we can write

♣g(u) − g(x)♣ ≤(1 + (u − x)2)(1 + x2)Ω

(

g;
♣u − x♣ δ

δ



≤2(1 + δ2)(1 + x2)

(

1 +
♣u − x♣

δ



(1 + (u − x)2)Ω(g; δ).

Applying G[a]
n,c(·; x) in the above inequality, we have

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤2(1 + δ2)(1 + x2)Ω(g; δ)G[a]
n,c

((

1 +
♣u − x♣

δ



(1 + (u − x)2); x



≤2(1 + δ2)(1 + x2)Ω(g; δ)
{

G[a]
n,c(1; x) + G[a]

n,c((u − x)2; x)

+
1

δ
G[a]

n,c (♣u − x♣ ; x) +
1

δ
G[a]

n,c

(

♣u − x♣ (u − x)2; x
)

}

≤2(1 + δ2)(1 + x2)Ω(g; δ)
{

1 + G[a]
n,c((u − x)2; x)

+
1

δ

(

G[a]
n,c

(

(u − x)2; x
))

1
2

+
1

δ

(

G[a]
n,c

(

(u − x)2; x
))

1
2
(

G[a]
n,c

(

(u − x)4; x
))

1
2

}

.(3.12)
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From Lemma 2.3, we have

G[a]
n,c((u − x)2; x) ≤ C1(1 + x2)

n

and

G[a]
n,c((u − x)4; x) ≤ C2(1 + x2)

2

n2
,

where C1 and C2 are positive constants depend on a and c.
Using the above inequality in (3.12) and taking δ = 1√

n
, we get

∣

∣

∣G[a]
n,c(g; x) − g(x)

∣

∣

∣ ≤2
(

1 +
1

n

)

Ω

(

g;
1√
n



(1 + x2) ¶1 + C1 (1 + x2)

+
√

C1(1 + x2) +
√

C1C2(1 + x2)
3
2

}

.

Taking C = 4
(

1 + C1 +
√

C1 +
√

C1C2

)

, we obtain the result. □
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A PARAMETER-BASED OSTROWSKI TYPE INEQUALITY FOR

FUNCTIONS WHOSE DERIVATIVES BELONGS TO Lp([a, b])
INVOLVING MULTIPLE POINTS

SETH KERMAUSUOR1

Abstract. A new generalization of Ostrowski’s inequality for functions whose
derivatives belong to Lp([a, b]) (1 ≤ p < ∞) for k points via a parameter is pro-
vided. Some particular integral inequalities are derived as by products. Our results
generalize some results in the literature.

1. Introduction

In 1938, Ostrowski [17] obtained the following inequality which is known in the
literature as Ostrowski’s inequality.

Theorem 1.1. Let f : [a, b] → R be continuous on [a, b] and differentiable in (a, b)
and its derivative f ′ : (a, b) → R is bounded in (a, b). If M := supt∈(a,b) ♣f ′(t)♣ < ∞,

then we have

∣

∣

∣

∣

∣

f(x) −
1

b − a

∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤







1

4
+

(

x − a+b
2

)2

(b − a)2





 (b − a)M,

for all x ∈ [a, b]. The inequality is sharp in the sense that the constant 1
4

cannot be

replaced by a smaller one.

Due to the numerous applications of the Ostrowski’s inequality, many authors have
studied and generalized the inequality in several different ways. For more information

Key words and phrases. Ostrowski’s inequality, midpoint inequality, Simpson’s inequality, Mont-
gomery identity, Hölder’s inequality, parameter.
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about the Ostrowski’s inequality and its associates, we refer the interested reader to
the papers [1–16,18].

In [5], Dragomir and Wang provided the following extension of Theorem 1.1 for
functions whose derivatives belong to L1 as follows.

Theorem 1.2. Let f : [a, b] → R be an absolutely continuous function on [a, b]. Then

the inequality

∣

∣

∣

∣

∣

f(x) −
1

b − a

∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤





1

2
+

∣

∣

∣x − a+b
2

∣

∣

∣

b − a



 ∥f ′∥1

holds for all x ∈ [a, b]. The constant 1
2

is the best possible.

The same authors in [7], obtained an Ostrowski type inequality for differentiable
mappings whose derivatives belong to Lp-spaces as follows.

Theorem 1.3. Let f : I ⊆ R → R be a differentiable mapping on I◦ and a, b ∈ I◦

with a < b. If f ′ ∈ Lp(a, b) (p > 1, 1
p

+ 1
q

= 1), then we have the inequality
∣

∣

∣

∣

∣

f(x) −
1

b − a

∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤
1

b − a

[

(x − a)q+1 + (b − x)q+1

q + 1

]

∥f ′∥p,

for all x ∈ [a, b], where ∥ · ∥p is the Lp([a, b])-norm.

In [2], Dragomir obtained the following generalization of Theorem 1.2 as follows.

Theorem 1.4. Let Ik : a = x0 < x1 < · · · < xk−1 < xk = b be a division of the

interval [a, b] and αi (i = 0, 1, . . . , k + 1) be k + 2 points so that α0 = a, αi ∈ [xi−1, xi]
(i = 1, · · · , k) and αk+1 = b. If f : [a, b] → R is absolutely continuous on [a, b], then

we have the inequality
∣

∣

∣

∣

∣

k
∑

i=0

(αi+1 − αi)f(xi) −
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤
[

1

2
ν(h) + max

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

: i = 0, . . . , k − 1
}

∥f ′∥1

≤ν(h)∥f ′∥1,

where ν(h) := max¶hi♣i = 0, 1, . . . , k − 1♢, hi = xi+1 − xi (i = 0, . . . , k − 1).

In [3], Dragomir obtained the following generalization of Theorem 1.3 as follows.

Theorem 1.5. Let Ik : a = x0 < x1 < · · · < xk−1 < xk = b be a division of the

interval [a, b] and αi (i = 0, 1, . . . , k + 1) be k + 2 points so that α0 = a, αi ∈ [xi−1, xi]
(i = 1, · · · , k) and αk+1 = b. If f : [a, b] → R is absolutely continuous on [a, b], then

we have the inequality
∣

∣

∣

∣

∣

k
∑

i=0

(αi+1 − αi)f(xi) −
∫ b

a
f(t)dt

∣

∣

∣

∣

∣
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≤
1

(q + 1)1/q
∥f ′∥p

{

k−1
∑

i=0

[

(αi+1 − xi)
q+1 + (xi+1 − αi+1)

q+1
]

}1/q

≤
1

(q + 1)1/q
∥f ′∥p

{

k−1
∑

i=0

h
q+1
i

}1/q

≤
ν(h)(b − a)1/q

(q + 1)1/q
∥f ′∥p,

where ν(h) := max¶hi♣i = 0, 1, . . . , k − 1♢, hi = xi+1 − xi (i = 0, . . . , k − 1), p > 1,
1
p

+ 1
q

= 1 and ∥ · ∥p is the ususal Lp([a, b])-norm.

Motivated by the numerous research on the Ostrowski’s inequality in the past years,
our main goal in this paper is to provide a generalization of Theorem 1.1 involving
multiple points by introducing a parameter λ ∈ [0, 1] for functions whose derivative
belongs to Lp for 1 ≤ p < ∞ such that when λ = 0, we recapture Theorem 1.4 and
Theorem 1.5.

2. Main Results

To prove our main results, we need the following lemma which is the case when the
time scale T = R in [18, Lemma 1] but the proof is provided here for completion.

Lemma 2.1 (Montgomery Identity). Let

(a) a, b ∈ R, λ ∈ [0, 1], Ik : a = x0 < x1 < · · · < xk−1 < xk = b is a partition of

the interval [a, b];
(b) αi ∈ R (i = 0, 1, . . . , k + 1) is k + 2 points so that α0 = a, αi ∈ [xi−1, xi]

(i = 1, . . . , k) and αk+1 = b;
(c) f : [a, b] → R is a differentiable function;

(d) define the kernel function K(·, Ik) : [a, b] → R as follows

K(t, Ik) =



































































t −
(

α1 − λα1−a
2

)

, t ∈ [a, α1),

t −
(

α1 + λα2−α1

2

)

, t ∈ [α1, x1),

t −
(

α2 − λα2−α1

2

)

, t ∈ [x1, α2),
...

t −
(

αk−1 + λ
αk−αk−1

2

)

, t ∈ [αk−1, xk−1),

t −
(

αk − λ
αk−αk−1

2

)

, t ∈ [xk−1, αk),

t −
(

αk + λ
αk+1−αk

2

)

, t ∈ [αk, b],

for all t ∈ [a, b].
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Then we have the identity

∫ b

a
K(t, Ik)f ′(t)dt =(1 − λ)

k
∑

i=0

(αi+1 − αi)f(xi)

+
λ

2

k
∑

i=0

(αi+1 − αi) (f(αi) + f(αi+1)) −
∫ b

a
f(t)dt.

(2.1)

Proof. We observe that

∫ b

a
K(t, Ik)f ′(t)dt =

k−1
∑

i=0

[

∫ αi+1

xi

[

t −
(

αi+1 − λ
αi+1 − αi

2

)

f ′(t)dt

+
∫ xi+1

αi+1

[

t −
(

αi+1 + λ
αi+2 − αi+1

2

)

f ′(t)dt

]

.

By integrating by parts, we have

∫ b

a
K(t, Ik)f ′(t)dt =

k−1
∑

i=0

[

[

αi+1 −
(

αi+1 − λ
αi+1 − αi

2

)

f(αi+1)

−
[

xi −
(

αi+1 − λ
αi+1 − αi

2

)

f(xi) −
∫ αi+1

xi

f(t)dt

+
[

xi+1 −
(

αi+1 + λ
αi+2 − αi+1

2

)

f(xi+1)

−
[

αi+1 −
(

αi+1 + λ
αi+2 − αi+1

2

)

f(αi+1) −
∫ xi+1

αi+1

f(t)dt

]

=
k−1
∑

i=0

[

λ
αi+1 − αi

2
f(αi+1) − (xi − αi+1)f(xi) − λ

αi+1 − αi

2
f(xi)

+ (xi+1 − αi+1)f(xi+1) − λ
αi+2 − αi+1

2
f(xi+1)

+ λ
αi+2 − αi+1

2
f(αi+1) −

∫ xi+1

xi

f(t)dt

]

.

It follows that,

∫ b

a
K(t, Ik)f ′(t)dt =

k−1
∑

i=0

[

λ
αi+2 − αi

2
f(αi+1) −

∫ xi+1

xi

f(t)dt



+
k−1
∑

i=0

[−(xi − αi+1)f(xi) + (xi+1 − αi+1)f(xi+1)]

+
k−1
∑

i=0

[

−λ
αi+1 − αi

2
f(xi) − λ

αi+2 − αi+1

2
f(xi+1)



=
k−1
∑

i=0

λ
αi+2 − αi

2
f(αi+1) −

∫ b

a
f(t)dt
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− x0f(x0) + xkf(xk) +
k−1
∑

i=0

αi+1(f(xi) − f(xi+1))

+
k−1
∑

i=0

−
λ

2
[(αi+1 − αi)f(xi) + (αi+2 − αi+1)f(xi+1)] .

That is,

∫ b

a
K(t, Ik)f ′(t)dt =

k−1
∑

i=0

λ
αi+2 − αi

2
f(αi+1) −

∫ b

a
f(t)dt

+ (α1 − a)f(a) + (b − αk)f(b) +
k−1
∑

i=1

(αi+1 − αi)f(xi)

−
λ

2

[

(α1 − a)f(a) + (b − αk)f(b) + 2
k−1
∑

i=1

(αi+1 − αi)f(xi)

]

=
k−1
∑

i=0

λ
αi+2 − αi

2
f(αi+1) −

∫ b

a
f(t)dt + (1 − λ)

k−1
∑

i=1

(αi+1 − αi)f(xi)

+

(

1 −
λ

2

)

[(α1 − a)f(a) + (b − αk)f(b)] .(2.2)

Now, consider the following

k−1
∑

i=0

(αi+2 − αi)f(αi+1)

=
k−1
∑

i=0

(αi+2 − αi+1)f(αi+1) +
k−1
∑

i=0

(αi+1 − αi)f(αi+1)(2.3)

=
k
∑

i=1

(αi+1 − αi)f(αi) +
k−1
∑

i=0

(αi+1 − αi)f(αi+1)

=
k
∑

i=0

(αi+1 − αi)f(αi) − (α1 − α0)f(α0)

+
k
∑

i=0

(αi+1 − αi)f(αi+1) − (αk+1 − αk)f(αk+1)

=
k
∑

i=0

(αi+1 − αi)(f(αi) + f(αi+1)) − [(α1 − α0)f(α0) + (αk+1 − αk)f(αk+1)] .

So,

k−1
∑

i=0

λ

2
(αi+2 − αi)f(αi+1) =

λ

2

k
∑

i=0

(αi+1 − αi) (f(αi) + f(αi+1))

−
λ

2
[(α1 − a)f(a) + (b − αk)f(b)] .(2.4)
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Substituting (2.4) in (2.2) gives the identity

∫ b

a
K(t, Ik)f ′(t)dt =(1 − λ)

k
∑

i=0

(αi+1 − αi)f(xi)

+
λ

2

k
∑

i=0

(αi+1 − αi) (f(αi) + f(αi+1)) −
∫ b

a
f(t)dt. □

Lemma 2.2. Under the conditions of Lemma 2.1, we have the following inequality:
∣

∣

∣

∣

∣

∫ b

a
K(t, Ik)f ′(t)dt

∣

∣

∣

∣

∣

≤
k−1
∑

i=0

[∫ xi+1

xi

♣t − αi+1♣ ♣f ′(t)♣ dt



+
λ

2

(

1

2
ν(τ) + max

i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

}) ∫ b

a
♣f ′(t)♣dt.(2.5)

Proof. First, we observe that for any real numbers δ and γ, the following holds:

max¶γ, δ♢ =
γ + δ

2
+

♣γ − δ♣

2
.(2.6)

Now, by using the property of the absolute value and the definition of K(·, Ik), we
have that
∣

∣

∣

∣

∣

∫ b

a
K(t, Ik)f ′(t)dt

∣

∣

∣

∣

∣

≤
k−1
∑

i=0

[

∫ αi+1

xi

♣K(t, Ik)♣ ♣f ′(t)♣ dt +
∫ xi+1

αi+1

♣K(t, Ik)♣ ♣f ′(t)♣ dt

]

≤
k−1
∑

i=0

[

∫ αi+1

xi

∣

∣

∣

∣

t −
(

αi+1 − λ
αi+1 − αi

2

)∣

∣

∣

∣

♣f ′(t)♣ dt

+
∫ xi+1

αi+1

∣

∣

∣

∣

t −
(

αi+1 + λ
αi+2 − αi+1

2

)∣

∣

∣

∣

♣f ′(t)♣ dt

]

≤
k−1
∑

i=0

[

∫ αi+1

xi

♣t − αi+1♣ ♣f ′(t)♣ dt +
λ

2
(αi+1 − αi)

∫ αi+1

xi

♣f ′(t)♣ dt

+
∫ xi+1

αi+1

♣t − αi+1♣ ♣f ′(t)♣ dt +
λ

2
(αi+2 − αi+1)

∫ xi+1

αi+1

♣f ′(t)♣ dt

]

≤
k−1
∑

i=0

[

∫ xi+1

xi

♣t − αi+1♣♣f
′(t)♣dt

+
λ

2
max ¶αi+1 − αi, αi+2 − αi+1♢

∫ xi+1

xi

♣f ′(t)♣dt

]

.

Thus,
∣

∣

∣

∣

∣

∫ b

a
K(t, Ik)f ′(t)dt

∣

∣

∣

∣

∣

≤
k−1
∑

i=0

[∫ xi+1

xi

♣t − αi+1♣♣f
′(t)♣dt



(2.7)

+
λ

2

k−1
∑

i=0

[

max ¶αi+1 − αi, αi+2 − αi+1♢
∫ xi+1

xi

♣f ′(t)♣dt



.
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By using (2.10), we deduce that

k−1
∑

i=0

max ¶αi+1 − αi, αi+2 − αi+1♢
∫ xi+1

xi

♣f ′(t)♣dt

=
k−1
∑

i=0

(

1

2
(αi+2 − αi) +

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

) ∫ xi+1

xi

♣f ′(t)♣dt

≤ max
i=0,1,...,k−1



1

2
τi +

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

} k−1
∑

i=0

∫ xi+1

xi

♣f ′(t)♣dt

≤
(

1

2
ν(τ) + max

i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

}) ∫ b

a
♣f ′(t)♣dt.(2.8)

Using (2.7) and (2.8) yields the desired result. Hence, the proof is complete. □

We now state and prove our first theorem which is for the case p = 1.

Theorem 2.1. Under the conditions of Lemma 2.1, suppose that f ′ ∈ L1[a, b], then

the following inequalities hold:
∣

∣

∣

∣

∣

(1 − λ)
k
∑

i=0

(αi+1 − αi)f(xi) +
λ

2

k
∑

i=0

(αi+1 − αi) (f(αi) + f(αi+1)) −
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤
[

1

2
ν(h) + max

i=0,1,··· ,k−1

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

}

∥f ′∥1

+

[

λ

2

(

1

2
ν(τ) + max

i=0,1,··· ,k−1

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

})

]

∥f ′∥1

≤

(

ν(h) +
λ

2
ν(τ)

)

∥f ′∥1,

(2.9)

where hi = xi+1 − xi, τi = αi+2 − αi (i = 0, 1, . . . , k − 1), ν(h) = max¶hi : i = 0, 1, . . . ,

k − 1♢ and ν(τ) = max ¶τi : i = 0, 1, . . . , k − 1♢ .

Proof. First, we observe that for any real numbers β, δ and γ, the following holds:

sup
t∈[γ,δ]

♣t − β♣ = max¶♣γ − β♣, ♣δ − β♣♢.(2.10)

By using (2.10), we have

k−1
∑

i=0

[∫ xi+1

xi

♣t − αi+1♣♣f
′(t)♣dt



≤
k−1
∑

i=0

[

sup
t∈[xi,xi+1]

♣t − αi+1♣
∫ xi+1

xi

♣f ′(t)♣dt

]

=
k−1
∑

i=0

[

max ¶♣xi − αi+1♣ , ♣xi+1 − αi+1♣♢
∫ xi+1

xi

♣f ′(t)♣dt
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=
k−1
∑

i=0

[

max ¶αi+1 − xi, xi+1 − αi+1♢
∫ xi+1

xi

♣f ′(t)♣dt



.

That is,

k−1
∑

i=0

[∫ xi+1

xi

♣t − αi+1♣♣f
′(t)♣dt



≤
k−1
∑

i=0

[

max¶αi+1 − xi, xi+1 − αi+1♢
∫ xi+1

xi

♣f ′(t)♣dt



.(2.11)

Now, by using (2.6) in (2.11), we have that

k−1
∑

i=0

[∫ xi+1

xi

♣t − αi+1♣♣f
′(t)♣dt



≤
k−1
∑

i=0

[(

1

2
(xi+1 − xi) +

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

) ∫ xi+1

xi

♣f ′(t)♣dt



=
k−1
∑

i=0

[(

1

2
hi +

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

) ∫ xi+1

xi

♣f ′(t)♣dt



≤ max
i=0,1,...,k−1



1

2
hi +

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

} k−1
∑

i=0

∫ xi+1

xi

♣f ′(t)♣dt

≤
[

1

2
ν(h) + max

i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

}

∥f ′∥1.(2.12)

Using (2.5) and (2.12), we have
∣

∣

∣

∣

∣

∫ b

a
K(t, Ik)f ′(t)dt

∣

∣

∣

∣

∣

≤
[

1

2
ν(h) + max

i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

}

(2.13)

+
λ

2

(

1

2
ν(τ) + max

i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

})

]

∥f ′∥1.

By using (2.1) and (2.13), we obtained the first inequality in (2.9). To obtain the
second inequality, we observe that

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

≤
1

2
(xi+1 − xi) =

1

2
hi

and
∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

≤
1

2
(αi+2 − αi) =

1

2
τi.

So, it follows that

max
i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
xi + xi+1

2

∣

∣

∣

∣

}

≤
1

2
ν(h)
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and

max
i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

}

≤
1

2
ν(τ).

This completes the proof of the theorem. □

Remark 2.1. If we take λ = 0 in Theorem 2.1, then we recover Theorem 1.4.

Lemma 2.3. Under the conditions of Lemma 2.1 with f ′ ∈ Lp([a, b]), we have the

following inequalities

k−1
∑

i=0

∫ xi+1

xi

♣t − αi+1♣♣f
′(t)♣dt ≤

∥f ′∥p

(q + 1)
1

q

[

k−1
∑

i=0

[

(αi+1 − xi)
q+1 + (xi+1 − αi+1)

q+1
]

]

1

q

≤
∥f ′∥p

(q + 1)
1

q

[

k−1
∑

i=0

h
q+1
i

]

1

q

(2.14)

≤
ν(h)(b − a)

1

q

(q + 1)
1

q

∥f ′∥p,

where 1
p

+ 1
q

= 1.

Remark 2.2. The inequalities in Lemma 2.3 were established in the proof of [3, Theo-
rem 3], and hence the proof is omited.

Theorem 2.2. Under the conditions of Lemma 2.1, suppose that f ′ ∈ Lp([a, b]), for

1 < p < ∞, then the following inequalities hold:
∣

∣

∣

∣

∣

(1 − λ)
k
∑

i=0

(αi+1 − αi)f(xi) +
λ

2

k
∑

i=0

(αi+1 − αi) (f(αi) + f(αi+1)) −
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤
∥f ′∥p

(q + 1)
1

q

[

k−1
∑

i=0

[

(αi+1 − xi)
q+1 + (xi+1 − αi+1)

q+1
]

]

1

q

+
λ

2
ν(τ)(b − a)

1

q ∥f ′∥p

≤
∥f ′∥p

(q + 1)
1

q

[

k−1
∑

i=0

h
q+1
i

]

1

q

+
λ

2
ν(τ)(b − a)

1

q ∥f ′∥p

≤
ν(h)(b − a)

1

q

(q + 1)
1

q

∥f ′∥p +
λ

2
ν(τ)(b − a)

1

q ∥f ′∥p,

where hi = xi+1 − xi, τi = αi+2 − αi (i = 0, 1, . . . , k − 1), ν(h) = maxi=0,1,...,k−1 hi,

ν(τ) = maxi=0,1,...,k−1 τi, and 1
p

+ 1
q

= 1.

Proof. By using Lemma 2.2 and the fact that

max
i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

}

≤
1

2
ν(τ),
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we deduce that
∣

∣

∣

∣

∣

∫ b

a
K(t, Ik)f ′(t)dt

∣

∣

∣

∣

∣

≤
k−1
∑

i=0

∫ xi+1

xi

♣t − αi+1♣ ♣f ′(t)♣ dt +
λ

2
ν(τ)

∫ b

a
♣f ′(t)♣dt.(2.15)

Using the Hölder’s inequality, we obtain
∫ b

a
♣f ′(t)♣dt ≤ (b − a)

1

q ∥f ′∥p.(2.16)

We obtain the desired results by using (2.1), (2.14), (2.15) and (2.16). □

Remark 2.3. If we choose λ = 0 in Theorem 2.2, then we recover Theorem 1.5.

3. Some Particular Cases

In this section, we consider some particular cases of our main results.

Corollary 3.1. Under the conditions of Theorem 2.1, if we choose α0 = a, αi+1 =
xi+xi+1

2
(i = 0, . . . , k − 1) and αk+1 = b, then we have the inequalities
∣

∣

∣

∣

∣

1 − λ

2

[

(x1 − a)f(a) +
k−1
∑

i=1

(xi+1 − xi−1)f(xi) + (b − xk−1)f(b)

]

+
λ

4

[

(x1 − a)
(

f(a) + f

(

x1 + a

2

))

+
k−1
∑

i=1

(xi+1 − xi−1)

(

f

(

xi + xi−1

2

)

+ f

(

xi+1 + xi

2

)

)

+ (b − xk−1)

(

f(b) + f

(

b + xk−1

2

))]

−
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤

[

1

2
ν(h) +

λ

2

(

1

2
ν(τ) + max

i=0,1,...,k−1

∣

∣

∣

∣

αi+1 −
αi + αi+2

2

∣

∣

∣

∣

})

]

∥f ′∥1

≤
ν(h) + λν(τ)

2
∥f ′∥1,

where hi = xi+1 − xi, τi = αi+2 − αi (i = 0, 1, . . . , k − 1), ν(h) = max¶hi : i = 0, 1, . . . ,

k − 1♢ and ν(τ) = max ¶τi : i = 0, 1, . . . , k − 1♢ .

Proof. In this case, we have α1 − α0 = x1−a
2

, αi+1 − αi = xi+1−xi−1

2
(i = 1, . . . , k − 1),

αk+1 − αk = b−xk−1

2
and αi+1 − xi+xi+1

2
= 0 (i = 0, . . . , k − 1). □

Now, if we choose Ik to be the equidistant partition of [a, b], then we have the
following corollary.

Corollary 3.2. Let Ik : xi = a+(b−a) i
k

(i = 0, 1, . . . , k) be the equidistant partitioning

of [a, b] and the α′

is be as in Corollary 3.1. Then the following inequality holds
∣

∣

∣

∣

∣

1 − λ

2

[

b − a

k
(f(a) + f(b)) +

2(b − a)

k

k−1
∑

i=1

f

(

(k − i)a + bi

k

)]

+
λ

4

[

b − a

k

(

f(a) + f(b) + f

(

(2k − 1)a + b

2k

)

+ f

(

a + (2k − 1)b

2k

))
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+
2(b − a)

k

k−1
∑

i=1

(

f

(

(2k − 2i + 1)a + (2i − 1)b

2k

)

+ f

(

(2k − 2i − 1)a + (2i + 1)b

2k

))]

−
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤
b − a

2k
(1 + 2λ) ∥f ′∥1.

Proof. This follows from the second inequality in Corollary 3.1 and the following
computations:

x1 − a =
b − a

k
, x1 + a =

(2k − 1)a + b

k
,

xi+1 − xi−1 =
2(b − a)

k
(i = 1, . . . , k − 1),

xi + xi−1

2
=

(2k − 2i + 1)a + (2i − 1)b

k
,

xi + xi+1

2
=

(2k − 2i − 1)a + (2i + 1)b

k
(i = 1, . . . , k − 1),

b − xk−1 =
b − a

k
, b + xk−1 =

a + (2k − 1)b

k
, hi =

b − a

k
,

(i = 0, · · · , k − 1), τ0 =
3(b − a)

2k
, τi =

2(b − a)

k
(i = 1, . . . , k − 2)

and τk−1 =
3(b − a)

2k
.

Thus, we deduce that ν(h) = b−a
k

and ν(τ) =
2(b − a)

k
. □

Corollary 3.3. Under the conditions of Theorem 2.2, if we choose Ik to be the

equidistant partitioning of [a, b] and the α′

is be as in Corollary 3.1, then the following

inequality holds;
∣

∣

∣

∣

∣

1 − λ

2

[

b − a

k
(f(a) + f(b)) +

2(b − a)

k

k−1
∑

i=1

f

(

(k − i)a + bi

k

)]

+
λ

4

[

b − a

k

(

f(a) + f(b) + f

(

(2k − 1)a + b

2k

)

+ f

(

a + (2k − 1)b

2k

))

+
2(b − a)

k

k−1
∑

i=1

(

f

(

(2k − 2i + 1)a + (2i − 1)b

2k

)

+ f

(

(2k − 2i − 1)a + (2i + 1)b

2k

))]

−
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤





1

(q + 1)
1

q

+ λ





(b − a)
1

q
+1

k
∥f ′∥p.

Proof. The result follows from Theorem 2.2 and using the computations in the proves
of Corollaries 3.1 and 3.2. □
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In what follows, we consider some special cases of Theorem 2.1. Similar results
could also be derived from Theorem 2.2 as well.

Corollary 3.4. Let a, b ∈ R, a < b, λ ∈ [0, 1], a ≤ α1 ≤ x ≤ α2 ≤ b and f : [a, b] → R

be a differentiable function on (a, b) such that f ′ ∈ L1 ([a, b]). Then the following

inequalities hold
∣

∣

∣

∣

∣

(1 − λ) [(α1 − a)f(a) + (α2 − α1)f(x) + (b − α2)f(b)]

+
λ

2
[(α1 − a)(f(a) + f(α1)) + (α2 − α1)(f(α1) + f(α2))

+ (b − α2)(f(α2) + f(b))] −
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤

[

1

2
max ¶x − a, b − x♢ + max

{

∣

∣

∣

∣

α1 −
a + x

2

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

α2 −
x + b

2

∣

∣

∣

∣

∣

}

+
λ

2

(

1

2
max ¶α2 − a, b − α1♢ + max

{

∣

∣

∣

∣

α1 −
a + α2

2

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

α2 −
α1 + b

2

∣

∣

∣

∣

∣

}) ]

∥f ′∥1

≤

(

max ¶x − a, b − x♢ +
λ

2
max ¶α2 − a, b − α1♢

)

∥f ′∥1.

Proof. The proof follows directly from Theorem 2.1 by choosing k = 2. □

Corollary 3.5. (a) If we choose α1 = a and α2 = b in Corollary 3.4, then we have

the inequality
∣

∣

∣

∣

∣

(b − a)

[

(1 − λ)f(x) +
λ

2
(f(a) + f(b))

]

−
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤

(

max ¶x − a, b − x♢ +
λ

2
(b − a)

)

∥f ′∥1

=

(

(1 + λ)(b − a)

2
+

∣

∣

∣

∣

∣

x −
a + b

2

∣

∣

∣

∣

∣

)

∥f ′∥1

for all x ∈ [a, b].
(b) If we choose x = a+b

2
in part (a), then we have the following perturbed “midpoint

inequality”:
∣

∣

∣

∣

∣

(b − a)

[

(1 − λ)f

(

a + b

2

)

+
λ

2
(f(a) + f(b))

]

−
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤
(1 + λ)(b − a)

2
∥f ′∥1.

(c) If we choose α1 = 5a+b
6

, α2 = a+5b
6

and x1 = x in Corollary 3.4, then we have
∣

∣

∣

∣

∣

(1 − λ)
b − a

3

[

f(a) + f(b)

2
+ 2f(x)

]
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+
λ(b − a)

3

[

f(a) + f(b)

2
+

5

2
f

(

5a + b

6

)

+
5

2
f

(

a + 5b

6

)]

−
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤

[

1

2
max ¶x − a, b − x♢ +

1

2
max

{∣

∣

∣

∣

∣

x −
2a + b

3

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

x −
a + 2b

3

∣

∣

∣

∣

∣

}

+
λ

3
(b − a)

]

∥f ′∥1

≤

(

max¶x − a, b − x♢ +
5λ(b − a)

12

)

∥f ′∥1

=

[

(b − a)(6 + 5λ)

12
+

∣

∣

∣

∣

∣

x −
a + b

2

∣

∣

∣

∣

∣

]

∥f ′∥1.

(d) In particular, if we choose x = a+b
2

in the first inequality in part (c), then we

have the following perturbed “Simpson’s inequality”:
∣

∣

∣

∣

∣

(1 − λ)
b − a

3

[

f(a) + f(b)

2
+ 2f

(

a + b

2

)]

+
λ(b − a)

3

[

f(a) + f(b)

2
+

5

2
f

(

5a + b

6

)

+
5

2
f

(

a + 5b

6

)]

−
∫ b

a
f(t)dt

∣

∣

∣

∣

∣

≤
(b − a)(1 + λ)

3
∥f ′∥1.

4. Conclusion

Some new integral inequalities of Ostrowski type involving a parameter λ ∈ [0, 1]
for functions whose derivatives belong to Lp involving multiple points have been
established. Some particular cases have be considered as examples. By considering
different partitions, different points and/or different values of the parameter we will
obtain several interesting inequalities. For λ = 0, our results reduces to some results
in the literature and for λ ∈ (0, 1], we obtain new results. It is worth noting that
the Ostrowski inequality plays a very important role in numerical integration such
as applications to the numerical quadrature rule. So, we believe that the inequalities
obtained in this paper could be applied in numerical integration and other areas of
Mathematical Analysis.

Acknowledgements. The author is very grateful to the anonymous referees for their
useful comments and suggestions on the manuscript which were incorporated in the
final version.
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ON MINIMAXITY AND LIMIT OF RISKS RATIO OF

JAMES-STEIN ESTIMATOR UNDER THE BALANCED LOSS

FUNCTION

ABDENOUR HAMDAOUI1, ABDELKADER BENKHALED2, AND MEKKI TERBECHE3

Abstract. The problem of estimating the mean of a multivariate normal distribu-
tion by different types of shrinkage estimators is investigated. Under the balanced
loss function, we establish the minimaxity of the James-Stein estimator. When the
dimension of the parameters space and the sample size tend to infinity, we study
the asymptotic behavior of risks ratio of James-Stein estimator to the maximum
likelihood estimator. The positive-part of James-Stein estimator is also treated.

1. Introduction

Stein [22] showed that the maximum likelihood estimator (MLE) of the mean
θ = (θ1, . . . , θp)

⊤ of a multivariate Gaussian distribution Np (θ, σ2Ip) is inadmissible in
mean squared sense when the dimension of the parameters space p ≥ 3. In particular,
he proved the existence of a class of estimators which achieve the smaller total mean
squared error regardless of the true θ. Perhaps the best known estimator of such kind is
James-Stein’s estimator introduced by James and Stein [16]. This one is a special case
of a larger class of estimators known as shrinkage estimators which is a combination of
a model with low bias and high variance, and a model with high bias but low variance.
Interestingly, the James-Stein estimator is itself inadmissible, and there exists a wide
class of estimators that outperform the MLE, see for example, Lindley [18], Baranchik
[1], Bhattacharya [7], Bock [8], Berger [5] and Berger and Wolpert [6]. Some of
them, found some particular minimax estimators. Selahattin et al. [19] provided

Key words and phrases. Balanced loss function, James-Stein estimator, minimaxity, multivariate
Gaussian random variable, non-central chi-square distribution, risk ratio, shrinkage estimator.
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several alternative methods for derivation of the restricted ridge regression estimator
(RRRE). Hansen [15] compared the mean-squared error of ordinary least squares
(OLS), James-Stein, and least absolute shrinkage and selection operator (LASSO)
shrinkage estimators and showed that neither James-Stein nor LASSO dominates
uniformly the other. Xie et al. [24] introduced a class of semi-parametric/parametric
shrinkage estimators and established their asymptotic optimality properties.

Casella and Hwang [9] have studied the estimation of the mean θ of the random
variable X ∼ Np (θ, Ip) when the dimension of parameters space p tends to infinity.

They showed that if the limit of the ratio ∥θ∥2 /p is a constant c > 0, then the risks ratio
of the James-Stein estimator δJS and the positive-part of the James-Stein estimator
δJS+, to the MLE, tends to a constant value c/(1 + c). Benmansour and Hamdaoui
[3] have taken the model X ∼ Np (θ, σ2Ip) where the parameter σ2 is unknown and
estimated by S2 (S2 ∼ σ2χ2

n). They established the same results given by Casella
and Hwang [9]. Hamdaoui and Benmansour [12] considered the same model given
by Benmansour and Hamdaoui [3], but this time, they studied the following class of
shrinkage estimators δφ = δJS + l(S2ϕ(S2, ∥X∥2)/ ∥X∥2)X with l is a real parameter.
The authors showed that, when the sample size n and the dimension of parameters
space p tend to infinity, the estimators δφ have a lower bound Bm = c/(1 + c) and
if the shrinkage function ϕ satisfies some conditions, the risks ratio R(δφ, θ)/R(X, θ)
attains this lower bound Bm, in particular the risks ratios R(δJS, θ)/R(X, θ) and
R(δJS+, θ)/R(X, θ). Hamdaoui et al. [14] studied the limit of risks ratio of two forms
of shrinkage estimators. The first one has been introduced by Benmansour and

Mourid [4], δψ = δJS + l


S2ψ


S2, ∥X∥2
)

/ ∥X∥2
)

X, where ψ (·, u) is a function with

support [0, b], b ∈ R+ and satisfies some different conditions from the one given by
Hamdaoui and Benmansour [12]. The second is the polynomial form of shrinkage
estimator introduced by Li and Kio [17]. Hamdaoui and Mezouar [13] have treated

the general class of shrinkage estimators δφ =


1 − S2ϕ


S2, ∥X∥2
)

/ ∥X∥2
)

X. They

showed the same results given by Hamdaoui and Benmansour [12], with different
conditions on the shrinkage function ϕ. Benkhaled and Hamdaoui [2] have considered
the model X ∼ Np (θ, σ2Ip) where σ2 is unknown. They studied two different forms of

shrinkage estimators of θ: estimators of the form δψ = (1 − ψ(S2, ∥X∥2)S2/ ∥X∥2)X,
and estimators of Lindley-Type given by δϕ = (1−φ(S2, T 2)S2/T 2)(X−X)+X with

X = (1/p)
∑p
i=1 Xi and T 2 =

∑p
i=1



Xi −X
)2

, that shrink the components of the

MLE X to the random variable X. The authors showed that if the shrinkage function
ψ (respectively φ) satisfies the new conditions different from the known results in the
literature, then the estimator δψ (respectively δϕ) is minimax. When the sample size
and the dimension of parameters space tend to infinity, they studied the behavior
of risks ratio of these estimators to the MLE. Hamdaoui et al. [11] have studied the
minimaxity and limits of risks ratios of shrinkage estimators of a multivariate normal
mean in the Bayesian case. The authors have considered the model X ∼ Np (θ, σ2Ip)
where σ2 is unknown and have taken the prior law θ ∼ Np (υ, τ 2Ip). They constructed
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a modified Bayes estimator δ∗
B and an empirical modified Bayes estimator δ∗

EB. When
n and p are finite, they showed that the estimators δ∗

B and δ∗
EB are minimax. The

authors have also interested in studying the limits of risks ratios of these estimators,
to the MLE X, when n and p tend to infinity. The majority of these works has been
considered under the quadratic loss function.

In the field of the estimation of a multivariate normal mean under the balanced
loss function we cite for example, Farsipour and Asgharzadeh [10] have considered
the model: X1, . . . , Xn to be a random sample from a Np (θ, σ2) with σ2 known
and the aim is to estimate the parameter θ. They studied the admissibility of the
estimator of the form aX + b under the balanced loss function. Selahattin and Issam
[20] introduced and derived the optimal extended balanced loss function (EBLF)
estimators and predictors and discussed their performances.

In this work, we deal with the model X ∼ Np (θ, σ2Ip), where the parameter σ2

is unknown and estimated by S2 (S2 ∼ σ2χ2
n). Our aim is to estimate the unknown

parameter θ by shrinkage estimators deduced by the MLE. The criterion adopted for
comparing two estimators is the risk associated to the balanced loss function. The
paper is organized as follows. In Section 2, we recall some preliminaries that are useful
for our main results. In the first part of the Section 3, we study the minimaxity of the
James-Stein estimator and the positive-part of James-Stein estimator. In the second
part of this Section, we show that the positive-part of James-Stein estimator is not
only minimax but also dominates the James-Stein estimator. In Section 4, we treat
the asymptotic behavior of risks ratios of James-Stein estimator and the positive-part
of the James-Stein estimator to the MLE, when the dimension p tends to infinity
and the sample size n is fixed on one hand, and on the other hand when p and n
tend simultaneously to infinity. We compute lower and upper bounds of each risks
ratio, that allow us to calculate the limit of risks ratio. In Section 5, we graphically
illustrate some obtained results. We end the manuscript by giving an Appendix which
contains technical lemmas that are used in the proofs of our main results.

2. Preliminaries

We recall that if X is a multivariate Gaussian random Np (θ, σ2Ip) in R
p, then

∥X∥2

σ2 ∼ χ2
p (λ) where χ2

p (λ) denotes the non-central chi-square distribution with p

degrees of freedom and non-centrality parameter λ = ∥θ∥2

2σ2 .
In the next we also recall the following results that are useful in our proofs.

Definition 2.1. Let U ∼ χ2
p (λ). For any measurable function f : R+ → R, χ2

p (λ)
integrable, we have

E [f(U)] = Eχ2
p(λ) [f(U)]

=
∫

R+

f(u)χ2
p (λ) du
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=
+∞
∑

k=0



∫

R+

f(u)χ2
p+2k (0) du

]

e
−
λ

2



λ
2

)k

k!

=
+∞
∑

k=0



∫

R+

f(u)χ2
p+2kdu

]

P



λ

2
; dk



,

where P


λ
2

)

is a Poisson random variable with parameter λ
2

and χ2
p+2k is the central

chi-square distribution with p+ 2k degrees of freedom.

From the Definition 2.1, we deduce that if X ∼ Np (θ, σ2Ip) , then for p ≥ 3 we have

(2.1) E



1

∥X∥2



=
1

σ2
E



1

p− 2 + 2K



,

where K ∼ P


∥θ∥2

2σ2

)

is a Poisson random variable with parameter ∥θ∥2

2σ2 .

Lemma 2.1 ([23]). Let X be a N (υ, σ2) real random variable and let f : R → R be

an indefinite integral of the Lebesgue measurable function, f ′ essentially the derivative

of f. Suppose also that E ♣f ′ (X)♣ < +∞. Then

E
[(

X − υ

σ

)

f (X)


= E (f ′ (X)) .

Now, let X ∼ Np (θ, σ2Ip) where σ2 is unknown and estimated by S2 (S2 ∼ σ2χ2
n).

And let the balanced loss function defined as: for any estimator δ of θ

(2.2) Lω(δ, θ) = ω∥δ − δ0∥
2 + (1 − ω)∥δ − θ∥2,

where 0 ≤ ω < 1 and δ0 is the MLE. We associate to this balanced loss function the
risk function defined by

(2.3) Rω(δ, θ) = E(Lω(δ, θ)).

In this model, it is clear that the MLE is δ0 = X, its risk function is (1 − ω)pσ2.
Indeed, Rω(X, θ) = ωE(∥X −X∥2) + (1 −ω)E(∥X − θ∥2), where X ∼ Np (θ, σ2Ip),

then X−θ
σ

∼ Np (0, Ip), thus ∥X−θ∥2

σ2 ∼ χ2
p. Hence, E(∥X − θ∥2) = E(σ2χ2

p) = σ2p.
It is well known that δ0 is minimax and inadmissible for p ≥ 3, thus any estimator

which dominates it is also minimax.

3. Minimaxity

3.1. James-Stein estimator. Consider the estimator

(3.1) δa =



1 − a
S2

∥X∥2



X = X − a
S2

∥X∥2
X,

where a is a real parameter.
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Proposition 3.1. Under the balanced loss function Lω, we have:

Rω(δa, θ) = (1 − ω)pσ2 + [a2σ2n(n+ 2) − 2a(1 − ω)σ2n(p− 2)]E



1

p− 2 + 2K



,

where K ∼ P


∥θ∥2

2σ2

)

is a Poisson random variable with parameter
∥θ∥2

2σ2 .

Proof.

Rω(δa, θ) = ωE(∥δa −X∥2) + (1 − ω)E(∥δa − θ∥2).

From the independence between two random variables S2 and ∥X∥2, we obtain

E(∥δa −X∥2) = E



∥ − a
S2

∥X∥2
X∥2



= a2E(S2)E



1

∥X∥2



= a2E((σ2χ2
n)2)E



1

∥X∥2



= a2σ2n(n+ 2)E



1

p− 2 + 2K



,

where K ∼ P


∥θ∥2

2σ2

)

is a Poisson random variable with parameter ∥θ∥2

2σ2 and the last

equality according to the formula (2.1) and the fact that E((χ2
n)2) = n(n+ 2). Now,

E(∥δa − θ∥2) =E



∥X − a
S2

∥X∥2
X − θ∥2



=E(∥X − θ∥2) + a2E(S2)2E



1

∥X∥2



− 2aE(S2)E

〈

X − θ,
1

∥X∥2
X

〉

.

As

E

〈

X − θ,
1

∥X∥2
X

〉

= E



p
∑

i=1



yi −
θi
σ



yi
∥y∥2

]

,

where for any i = 1, . . . , p, yi = xi

σ
∼ N



θi

σ
, 1
)

and by using Lemma 2.1, we get

E

〈

X − θ,
1

∥X∥2
X

〉]

=
p
∑

i=1

E



∂

∂yi

1
∑p
j=1 y

2
j

yi



=
p
∑

i=1

E



1

∥y∥2
−

2y2
i

∥y∥4

]

= (p− 2)E



1

∥y∥2
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= (p− 2)E



1

p− 2 + 2K



,

where K ∼ P


∥θ∥2

2σ2

)

is a Poisson random variable with parameter ∥θ∥2

2σ2 and the last

equality comes from formula (2.1). Thus,

Rω(δa, θ) =ωa2σ2n(n+ 2)E



1

p− 2 + 2K



+ (1 − ω)



pσ2 + a2σ2n(n+ 2)E



1

p− 2 + 2K

]

− 2a(1 − ω)σ2n(p− 2)E



1

p− 2 + 2K



= (1 − ω)pσ2 + [a2σ2n(n+ 2) − 2a(1 − ω)σ2n(p− 2)]E



1

p− 2 + 2K



.□

Using Proposition 3.1, we note that under the balanced loss function Lω, a sufficient
condition so that δa dominating the MLE X is

a ≥ 0 and a(n+ 2) − 2(1 − ω)(p− 2) ≤ 0,

which is equivalent to

(3.2) 0 ≤ a ≤
2(1 − ω)(p− 2)

n+ 2
.

From Proposition 3.1 and the convexity of risk function Rω(δa, θ) on a, one can
easily show that the optimal value of a that minimizes the risk function Rω(δa, θ) is

α =
(1 − ω)(p− 2)

n+ 2
.

For a = α, we obtain the James-Stein estimator

(3.3) δJS = δα =



1 − α
S2

∥X∥2



X =



1 −
(1 − ω)(p− 2)

n+ 2

S2

∥X∥2



X.

It follows from Proposition 3.1 that the risk function of δJS is given by

(3.4) Rω(δJS, θ) = (1 − ω)pσ2 − (1 − ω)2(p− 2)2 n

n+ 2
σ2E



1

p− 2 + 2K



,

where K ∼ P


∥θ∥2

2σ2

)

.

From the formula (3.4), it is easy to see that Rω(δJS, θ) ≤ Rω(X, θ), then the
James-Stein estimator δJS dominates the MLE X, and thus it is minimax.
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3.2. Positive-Part of James-Stein estimator. We consider the positive-part of
James-Stein estimator defined by

(3.5) δ+
JS =



1 − α
S2

∥X∥2

+

X =



1 − α
S2

∥X∥2



XI
α S2

∥X∥2 ≤1
,

where


1 − α S2

∥X∥2

)+
= max



0, 1 − α S2

∥X∥2

)

. We recall that

(3.6) δ−
JS =



1 − α
S2

∥X∥2

−

X =



α
S2

∥X∥2
− 1



XI
α S2

∥X∥2 ≥1
,

where I
α S2

∥X∥2 ≥1
is the indicating function of the set



α S2

∥X∥2 ≥ 1
)

.

We note that the positive-part of James-Stein estimator δ+
JS has the form (3.1),

corresponding to a+ = min
{

(1−ω)(p−2)
n+2

, S2

∥X∥2

}

. Since a+ satisfies the relation (3.2), δ+
JS

dominates the MLE X under the balanced loss function Lω, thus δ+
JS is minimax.

3.3. Dominating the positive-part of James-Stein estimator to James-Stein

estimator. It is well known that the positive-part of James-Stein estimator dominates
the James-Stein estimator for the standard case where ω = 0 (see Baranchick [1]). In
this part, we show that this property remains valid for any 0 < ω < 1.

Theorem 3.1. Under the balanced loss function Lω, the positive-part of James-Stein

estimator δ+
JS dominates the James-Stein estimator δJS.

Proof.

Rω(δ+
JS, θ) = ωE(∥δ+

JS −X∥2) + (1 − ω)E(∥δ+
JS − θ∥2)

and

Rω(δJS, θ) = ωE(∥δJS −X∥2) + (1 − ω)E(∥δJS − θ∥2).

Baranchick [1] has showed that E(∥δ+
JS − θ∥2) ≤ E(∥δJS − θ∥2) for p ≥ 3 and all

(θ, σ) ∈ (Rp × R
+). Then δ+

JS dominates δJS under the balanced loss function Lω, if
and only if E(∥δ+

JS −X∥2) − E(∥δJS −X∥2) ≤ 0. Now,

E(∥δ+
JS −X∥2) =E(∥δ+

JS − δJS + δJS −X∥2)

=E(∥δ+
JS − δJS∥2) + E(∥δJS −X∥2) + 2E[⟨δ+

JS − δJS, δJS −X⟩]

=E(∥δ−
JS∥2) + E(∥δJS −X∥2) + 2E[⟨δ−

JS, δJS −X⟩]

=E





∥

∥

∥

∥

∥



α
S2

∥X∥2
− 1



I
α S2

∥X∥2 ≥1
X

∥

∥

∥

∥

∥

2


+ E(∥δJS −X∥2)

+ 2E

〈

α
S2

∥X∥2
− 1



I
α S2

∥X∥2 ≥1
X,−α

S2

∥X∥2
X

〉]

=E



α2 S4

∥X∥2
+ ∥X∥2 − 2αS2



I
α S2

∥X∥2 ≥1

]

+ E(∥δJS −X∥2)
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− 2E



α2 S4

∥X∥2
− αS2



I
α S2

∥X∥2 ≥1

]

.

Then

E(∥δ+
JS −X∥2) − E(∥δJS −X∥2)

=E



α2 S4

∥X∥2
+ ∥X∥2 − 2αS2



I
α S2

∥X∥2 ≥1

]

− 2E



α2 S4

∥X∥2
− αS2



I
α S2

∥X∥2 ≥1

]

=E



∥X∥2 − α2 S4

∥X∥2



I
α S2

∥X∥2 ≥1

]

=E



1

∥X∥2
(∥X∥2 − αS2)(∥X∥2 + αS2)



I(∥X∥2−αS2)≤0

]

≤0. □

4. Limits of Risks Ratios

4.1. Bounds and limit of the risks ratio of James-Stein estimator. In this
part, we study the limit of risks ratio of the James-Stein estimator δJS to the MLE
X, when the dimension p tends to infinity and the sample size n is fixed on one hand,
and on the other hand when p and n tend simultaneously to infinity. The following
lemma gives a lower and an upper bounds of the ratio Rω(δJS, θ)/Rω(X, θ), which
helps us to calculate the limit of risks ratio.

Lemma 4.1. Assume the estimator δJS given in (3.3). Under the balanced loss

function Lω, we have

1 −
n(1 − ω)(p− 2)

(n+ 2)(p+ ∥θ∥2

σ2 )
≤
Rω(δJS, θ)

Rω(X, θ)
≤ 1 −

n(1 − ω)(p− 2)2

(n+ 2)p(p− 2 + ∥θ∥2

σ2 )
.

Proof. From Lemma 2.1 of Hamdaoui and Benmansour [12], we have

1

p− 2 + ∥θ∥2

σ2

≤ E



1

p− 2 + 2K



≤
p

(p− 2)(p+ ∥θ∥2

σ2 )
.

Using the formula (3.4), we obtain the desired result. □

Theorem 4.1. Assume the estimator δJS given in (3.1), if limp→∞
∥θ∥2

pσ2 = c (c > 0),
then

i) limp→∞
Rω(δJS ,θ)
Rω(X,θ)

=
(1−(1−ω) n

n+2)+c

1+c
;

ii) lim
p→∞
n→∞

Rω(δJS ,θ)
Rω(X,θ)

= ω+c
1+c

.

Proof. i) Using Lemma 4.1 and under the condition lim
p→∞

∥θ∥2

pσ2 = c, we have

lim
p→∞

Rω(δJS, θ)

Rω(X, θ)
≤ 1 − (1 − ω)

n

n+ 2
lim
p→∞





(p− 2)2

p

1
p

p−2
p

+ ∥θ∥2

pσ2
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= 1 − (1 − ω)
n

n+ 2
lim
p→∞





(p− 2)2

p2

1
p−2
p

+ ∥θ∥2

pσ2





= 1 − (1 − ω)
n

n+ 2

1

1 + c

=



1 − (1 − ω) n
n+2

)

+ c

1 + c

and

lim
p→∞

Rω(δJS, θ)

Rω(X, θ)
≥ 1 − (1 − ω)

n

n+ 2
lim
p→∞





p−2
p

p
p

+ ∥θ∥2

pσ2





= 1 − (1 − ω)
n

n+ 2

1

1 + c

=



1 − (1 − ω) n
n+2

)

+ c

1 + c
.

ii) From Lemma 4.1 and under the condition limp→∞
∥θ∥2

pσ2 = c, we obtain

lim
p→∞
n→∞

Rω(δJS, θ)

Rω(X, θ)
≤ 1 − (1 − ω) lim

p→∞
n→∞





n

n+ 2

(p− 2)2

p

1
p

p−2
p

+ ∥θ∥2

pσ2





= 1 − (1 − ω)
1

1 + c
=
ω + c

1 + c

and

lim
p→∞
n→∞

Rω(δJS, θ)

Rω(X, θ)
≥ 1 − (1 − ω) lim

p→∞
n→∞





n

n+ 2

p−2
p

p
p

+ ∥θ∥2

pσ2





= 1 − (1 − ω)
1

1 + c
=
ω + c

1 + c
. □

Remark 4.1. As 0 ≤ ω < 1, then

1 − n
n+2

+ c

1 + c
≤ (1 − (1 − ω)

n
n+2

+ c

1 + c
< 1

and c/(1 + c) ≤ (ω + c)/(1 + c) < 1, thus for p tends to infinity and n is fixed, or
for p and n tend simultaneously to infinity, the limit of risks ratio of James-Stein
estimator δJS to the MLE X, is less than 1. Therefore, Theorem 4.1 show the stability
of minimaxity property of James-Stein estimator δJS for the large values of n and p.

4.2. Bounds and limit of the risks ratio of the positive-part of James-Stein

estimator. The results for the positive-part of James-Stein estimator δ+
JS are similar

to those for the ordinary James-Stein estimator δJS, although the calculations are a
bit more difficult. In the following proposition, we give the explicit formula of the risk
function of δ+

JS.
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Proposition 4.1. The risk function of the Positive-Part of James-Stein estimator

δ+
JS under the balanced loss function Lω, is

Rω(δ+
JS, θ) =Rω(δJS, θ)

+ E



∥X∥2 − α2 S4

∥X∥2
+ 2(1 − ω)σ2(p− 2)α

S2

∥X∥2
− pσ2



I
α S2

∥X∥2 ≥1

]

.

Proof.

Rω(δ+
JS, θ) =ωE(∥δ+

JS −X∥2) + (1 − ω)E(∥δ+
JS − θ∥2)

=ωE(∥δ+
JS − δJS + δJS −X∥2) + (1 − ω)E(∥δ+

JS − δJS + δJS − θ∥2)

=ωE[∥δ+
JS − δJS∥2 + ∥δJS −X∥2 + 2⟨δ+

JS − δJS, δJS −X⟩]

+ (1 − ω)E[∥δ+
JS − δJS∥2 + ∥δJS − θ∥2 + 2⟨δ+

JS − δJS, δJS −X +X − θ⟩]

=[ωE(∥δJS −X∥2) + (1 − ω)E(∥δJS − θ∥2)] + E[∥δ+
JS − δJS∥2]

+ 2E[⟨δ+
JS − δJS, δJS −X⟩ + 2(1 − ω)⟨δ+

JS − δJS, X − θ⟩]

=Rω(δJS, θ) + E[∥δ+
JS − δJS∥2] + 2E[⟨δ+

JS − δJS, δJS −X⟩]

+ 2(1 − ω)E[⟨δ+
JS − δJS, X − θ⟩].

Now, we compute the expectations in the right side hand of the last equality.

E[∥δ+
JS − δJS∥2] = E[∥δ−

JS∥2]

= E





∥

∥

∥

∥

∥



α
S2

∥X∥2
− 1



I
α S2

∥X∥2 ≥1
X

∥

∥

∥

∥

∥

2




= E



α2 S4

∥X∥4
+ 1 − 2α

S2

∥X∥2



I
α S2

∥X∥2 ≥1
∥X∥2

]

= E



α2 S4

∥X∥2
+ ∥X∥2 − 2αS2



I
α S2

∥X∥2 ≥1

]

,(4.1)

E[⟨δ+
JS − δJS, δJS −X⟩] = E[⟨δ−

JS, δJS −X⟩]

= E

〈

α
S2

∥X∥2
− 1



I
α S2

∥X∥2 ≥1
X,−α

S2

∥X∥2
X

〉]

= −E



α2 S4

∥X∥2
− αS2



I
α S2

∥X∥2 ≥1

]

,(4.2)

and by using Lemma 2.1 of Shao and Strawdermen [21], we have

E[⟨δ+
JS − δJS, X − θ⟩] = E

〈

α
S2

∥X∥2
− 1



I
α S2

∥X∥2 ≥1
X,X − θ

〉]

= σ2E



(p− 2)α
S2

∥X∥2
− p



I
α S2

∥X∥2 ≥1

]

.(4.3)

According to the formulas (4.1), (4.2) and (4.3) we get the desired result. □
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In the Theorem 3.1 we showed that Rω(δ+
JS, θ) ≤ Rω(δJS, θ)) for p ≥ 3 and all

(θ, σ) ∈ (Rp × R
+), then the upper bound given in Lemma 4.1 plays the role of

the upper bound of Rω(δ+
JS, θ)/Rω(X, θ). Thus for calculate the limit of risks ratio

Rω(δ+
JS, θ)/Rω(X, θ), it suffices to determine a lower bound. The following proposition

gives a lower bound of risks ratio Rω(δ+
JS, θ)/Rω(X, θ).

Proposition 4.2. For all p ≥ 3, we have the following lower bound of the risks ratio
Rω(δ+

JS
,θ)

Rω(X,θ)

Rω(δ+
JS, θ)

Rω(X, θ)
≥
Rω(δJS, θ)

(1 − ω)pσ2
+

p+ λ

(1 − ω)p

∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p+4(λ, du)

−
4

p

∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p−2(λ, du)

−
(p− 2)n

(1 − ω)p(n+ 2)

∫ +∞

0
P

(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du).(4.4)

Proof. As ∥X∥2

σ2 ∼ χ2
p(λ) and S2

σ2 ∼ χ2
n, where λ = ∥θ∥2

σ2 , we have

σ2E



∥X∥2
I αS2

∥X∥2 ≥1



=σ2E



χ2
p(λ)I

χ2
n≥

χ2
p(λ)

α



=σ2
∫ +∞

0



∫ +∞

u
α

χ2
n(0, dt)



uχ2
p(λ, du)

=σ2p
∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p+2(λ, du)

+ σ2λ
∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p+4(λ, du).

The last equality is obtained by using the formula (6.1) of Lemma 6.1 Appendix with

h(u) =
∫+∞

u
α

χ2
n(0, dt). As the function P



χ2
n ≥ u

α

)

is non increasing on u and using

the formula (6.2) of Lemma 6.2, we obtain

σ2E



∥X∥2
I αS2

∥X∥2 ≥1



≥qσ2(p+ λ)
∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p+4(λ, du),(4.5)

σ2E

{

2(p− 2)
αS2

∥X∥2
− 2p



I αS2

∥X∥2 ≥1

}

≥ − 4σ2E



I αS2

∥X∥2 ≥1



= − 4σ2
∫ +∞

0



∫ +∞

u
α

χ2
n(0, dt)



χ2
p(λ, du)

= − 4σ2
∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p(λ, du)

≥ − 4σ2
∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p−2(λ, du).(4.6)
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The last inequality comes from formula (6.1). Now,

E



−
α2S4

∥X∥2
I αS2

∥X∥2 ≥1



= −σ2α2
∫ +∞

0



∫ +∞

u
α

t2χ2
n(0, dt)



1

u
χ2
p(λ, du)

≥ −
σ2α

n+ 2

∫ +∞

0



∫ +∞

u
α

t2χ2
n(0, dt)



χ2
p−2(λ, du).

The last inequality comes from formula (6.1), taking h(u) = 1
u

∫+∞
u
α

t2χ2
n(0, dt). How-

ever, using formula (6.1) again, we get
∫ +∞

u
α

t2χ2
n(0, dt) = n

∫ +∞

u
α

tχ2
n+2(0, dt)

= n(n+ 2)
∫ +∞

u
α

χ2
n+4(0, dt)

= n(n+ 2)P
(

χ2
n+4 ≥

u

α

)

,

thus, we have

(4.7) E



−
α2S4

∥X∥2
I αS2

∥X∥2 ≥1



≥ −σ2αn
∫ +∞

0
P

(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du),

combining to the formulas (4.5), (4.6) and (4.7), we get the desired result. □

Theorem 4.2. Assume the estimator δ+
JS given in (3.5), if limp→∞

∥θ∥2

pσ2 = c (c > 0),
then

i) lim
p→∞

Rω(δ+
JS
,θ)

Rω(X,θ)
=

(1−(1−ω) n
n+2

)+c

1+c
;

ii) lim
p→∞
n→∞

Rω(δ+
JS
,θ)

Rω(X,θ)
= ω+c

1+c
.

Proof. In the one hand, from Theorem 3.1, we showed that Rω(δ+
JS, θ) ≤ Rω(δJS, θ)

for p ≥ 3 and all (θ, σ) ∈ (Rp × R
+) and using Theorem 4.1, we have

(4.8) lim
p→+∞

Rω(δ+
JS, θ)

Rω(X, θ)
≤

(1 − (1 − ω) n
n+2

) + c

1 + c

and

(4.9) lim
p→∞
n→∞

Rω(δ+
JS, θ)

Rω(X, θ)
≤
ω + c

1 + c
.

In the other hand, when p tends to infinity and n is fixed, we have α = (1−ω)(p−2)
n+2

tending to +∞. According to the Lebesque’s Theorem by taking for example, the

increasing sequel with p


fp(u) =
∫+∞

u
α

χ2
n(0, dt) = P



χ2
n ≥ u

α

))

and the fact that

lim
p→+∞

P

(

χ2
n ≥

u

α

)

= P



χ2
n ≥ 0

)

= 1, for all n ≥ 1,
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we obtain

(4.10) lim
p→+∞

∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p+4(λ, du) = 1.

In the case where p and n tend simultaneously to infinity, we have

P

(

χ2
n ≥

u

α

)

= P



n
∑

i=1

y2
i ≥

u(n+ 2)

p− 2



= P



1

n

n
∑

i=1

y2
i ≥

u

p− 2
+

2u

n(p− 2)



,

where y1, y2, . . . , yn are independent Gaussian random variables centered and reduced.
Then by the strong law of large numbers, we have

lim
p→∞
n→∞

P

(

χ2
n ≥

u

α

)

= lim
p→∞
n→∞

P



1

n

n
∑

i=1

y2
i ≥

u

p− 2
+

2u

n(p− 2)



= lim
p→∞
n→∞

P



1

n

n
∑

i=1

y2
i ≥ 0



= P(1 ≥ 0) = 1.

Thus,

(4.11) lim
p→∞
n→∞

∫ +∞

0
P

(

χ2
n ≥

u

α

)

χ2
p+4(λ, du) =

∫ +∞

0
χ2
p+4(λ, du) = 1.

Using Proposition 4.2, formulas (4.10) and (4.11) and the condition

lim
p→∞

∥θ∥2

pσ2
= lim

p→∞

λ

p
= c,

leads to

lim
p→+∞

Rω(δ+
JS, θ)

Rω(X, θ)
≥ lim

p→+∞

Rω(δJS, θ)

Rω(X, θ)
+ lim

p→+∞



p+ λ

(1 − ω)p
−

4

p
−

(p− 2)n

(1 − ω)p(n+ 2)

]

= lim
p→+∞

Rω(δJS, θ)

Rω(X, θ)
+

1 − n
n+2

1 − ω
+

c

1 − ω

≥ lim
p→+∞

Rω(δJS, θ)

Rω(X, θ)

and

lim
p→∞
n→∞

Rω(δ+
JS, θ)

Rω(X, θ)
≥ lim

p→∞
n→∞

Rω(δJS, θ)

Rω(X, θ)
+ lim

p→∞
n→∞



p+ λ

(1 − ω)p
−

4

p
−

(p− 2)n

(1 − ω)p(n+ 2)

]

= lim
p→∞
n→∞

Rω(δJS, θ)

Rω(X, θ)
+

c

1 − ω

≥ lim
p→∞
n→∞

Rω(δJS, θ)

Rω(X, θ)
.

It follows from Theorem 4.1 that

(4.12) lim
p→+∞

Rω(δ+
JS, θ)

Rω(X, θ)
≥

(1 − (1 − ω) n
n+2

) + c

1 + c
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and

(4.13) lim
p→∞
n→∞

Rω(δ+
JS, θ)

Rω(X, θ)
≥
ω + c

1 + c
.

Combining formulas (4.8), (4.9), (4.12) and (4.13) we get the desired result. □

5. Simulation Results

First, we illustrate graphically the risks ratios of the James-Stein estimator δJS
and the positive-part of James-Stein estimator δ+

JS to the MLE X as a function of
λ = ∥θ∥2/(2σ2) for various values of n, p and ω. Secondly, we give the tables that show
the values of risks ratios of the James-Stein estimator δJS and the positive-part of
James-Stein estimator δ+

JS to the MLE X according to divers values of λ = ∥θ∥2/(2σ2)
but this time we fix n and p and vary ω.

Figure 1. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 30, p = 8 and ω = 0.1

Figures 1–6 show that the risks ratios of the James-Stein estimator δJS and the
positive-part of James-Stein estimator δ+

JS to the MLE X are less than 1, thus the
estimators δJS and δ+

JS dominate the MLE X for large values of n and p. We also
observe that the gain increases if ω is near to 0 and decreases if ω is near to 1. Tables
1-6 illustrate this note.

In Table 1 and Table 2, we give the values of ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) for n = 50 and p = 10 and n = 100 and p = 10, respectively for
divers values of λ = (∥θ∥2)/(2σ2) and ω.
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Figure 2. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50, p = 8 and ω = 0.1

Figure 3. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50, p = 10 and ω = 0.4

From Tables 1–2, first, for any values of ω and λ = ∥θ∥2/(2σ2), the ratio
Rω(δ+

JS, θ)/Rω(X, θ) is less than the ratio Rω(δJS, θ)/Rω(X, θ), which shows that
the positive-part of James-Stein estimator δ+

JS dominates the James-Stein estimator
δJS. Secondly, on the one hand, if ω and λ = ∥θ∥2/(2σ2) are small, the ratios are close
to 0 than 1, and therefore the gain is very important. On the other hand, as much as
ω goes to 1, the gain will be small and the risks ratios are almost equal. In the case
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Figure 4. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50, p = 10 and ω = 0.6

Figure 5. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 100, p = 10 and ω = 0.4

ω is near to 1 and λ is large, the gain is almost equal to zero and the risks ratios are
the same.
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Figure 6. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 100, p = 10 and ω = 0.6

Conclusion

In this work, we established the minimaxity of the James-Stein estimator δJS and the
positive-part of James-Stein estimator δ+

JS of a multivariate normal mean distribution
X ∼ Np (θ, σ2Ip) under the balanced loss function. If the limit of the ratio ∥θ∥2 /p is
a constant c > 0, the risks ratios Rω(δJS, θ)/Rω(X, θ) and Rω(δ+

JS, θ)/Rω(X, θ) tend
to the values less than 1, thus we ensured the stability of the minimaxity property
of the James-Stein estimator δJS and the positive-part of James-Stein estimator δ+

JS

even if the dimension of the parameter spaces p and the sample size n tend to infinity.
An extension of this work is to obtain the similar results in the case where the model
has a symmetrical spherical distribution.

6. Appendix

Lemma 6.1 (Bock [8]). Let X ∼ Np (θ, Ip) where X = (X1, . . . , Xp)
⊤ and θ =

(θ1, . . . , θp)
⊤, then for any measurable function h : [0,+∞[ → R

E


h


∥X∥2
)

X2
i

)

= E
[

h


χ2
p+2



∥θ∥2
))]

+θ2
iE

[

h


χ2
p+4



∥θ∥2
))]

.

Moreover,

E


h


∥X∥2
)

∥X∥2
)

= E
[

χ2
p



∥θ∥2
)

h


χ2
p



∥θ∥2
))]

= pE
[

h


χ2
p+2



∥θ∥2
))]

+ ∥θ∥2
E
[

h


χ2
p+4



∥θ∥2
))]

.(6.1)

Lemma 6.2 ([3]). Let f is a real function. If for p ≥ 3, Eχ2
p(λ) [f(U)] exists, then
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Table 1. The values of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50 and p = 10

λ
risks
ratio ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.6 ω = 0.8 ω = 0.9

0.4
δJS
δ+
JS

0.3105
0.2416

0.3871
0.3671

0.4637
0.4261

0.5403
0.5015

0.6936
0.6854

0.8468
0.8462

0.9234
0.9223

1
δJS
δ+
JS

0.3715
0.3124

0.4414
0.3949

0.5112
0.4775

0.5810
0.5590

0.7207
0,7148

0.8603
0.8600

0.9302
0.9302

2
δJS
δ+
JS

0.4260
0.3766

0.4898
0.4522

0.5536
0.5272

0.6173
0.6007

0.7449
0.7408

0.8724
0.8722

0.9362
0.9362

3
δJS
δ+
JS

0,4728
0,4321

0,5314
0,5014

0,5900
0,5696

0,6485
0,6360

0,7657
0,7628

0,8828
0,8827

0,9414
0,9414

5
δJS
δ+
JS

0,5486
0,5220

0,5987
0,5802

0,6489
0,6370

0,6991
0,6922

0,7994
0,7980

0,8997
0,8996

0,9498
0,9498

10
δJS
δ+
JS

0,6719
0,6640

0,7084
0,7034

0,7448
0,7420

0,7813
0,7798

0,8542
0,8540

0,9271
0,9271

0,9635
0,9635

15
δJS
δ+
JS

0,7443
0,7422

0,7727
0,7715

0,8011
0,8005

0,8296
0,8293

0,8864
0,8863

0,9432
0,9432

0,9716
0,9716

20
δJS
δ+
JS

0,7912
0,7907

0,8144
0,8141

0,8376
0,8375

0,8608
0,8607

0,9072
0,9072

0,9536
0,9536

0,9768
0,9768

25
δJS
δ+
JS

0,8238
0,8237

0,8434
0,8433

0,8630
0,8629

0,8825
0,8825

0,9217
0,9217

0,9608
0,9608

0,9804
0,9804

30
δJS
δ+
JS

0,8477
0,8477

0,8646
0,8646

0,8816
0,8815

0,8985
0,8985

0,9323
0,9323

0,9662
0,9662

0,9831
0,9831

a) if f is monotone non-increasing we have

(6.2) Eχ2
p+2(λ) [f(U)] ≤ Eχ2

p(λ) [f(U)] ;

b) if f is monotone non-decreasing we have

(6.3) Eχ2
p+2(λ) [f(U)] ≥ Eχ2

p(λ) [f(U)] .
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Table 2. The values of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 100 and p = 10

λ
risks
ratio ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.6 ω = 0.8 ω = 0.9

0.4
δJS
δ+
JS

0.2970
0.2092

0.3751
0.3207

0.4532
0.4025

0.5313
0.5040

0.6876
0.6800

0.8438
0.8433

0.9219
0.9219

1
δJS
δ+
JS

0,3592
0,3020

0,4304
0,3857

0,5016
0,4694

0,5728
0,5519

0,7152
0,7098

0,8576
0,8573

0,9288
0,9288

2
δJS
δ+
JS

0,4147
0,3671

0,4798
0,4439

0,5448
0,5198

0,6098
0,5942

0,7399
0,7361

0,8699
0,8697

0,9350
0,9350

3
δJS
δ+
JS

0,4625
0,4235

0,5222
0,4937

0,5819
0,5627

0,6416
0,6300

0,7611
0,7585

0,8805
0,8804

0,9403
0,9403

5
δJS
δ+
JS

0,5397
0,5146

0,5909
0,5735

0,6420
0,6309

0,6932
0,6868

0,7954
0,7942

0,8977
0,8977

0,9489
0,9489

10
δJS
δ+
JS

0,6655
0,6582

0,7027
0,6982

0,7398
0,7373

0,7770
0,7757

0,8513
0,8511

0,9257
0,9257

0,9628
0,9628

15
δJS
δ+
JS

0,7393
0,7375

0,7683
0,7672

0,7972
0,7967

0,8262
0,8260

0,8841
0,8841

0,9421
0,9421

0,9710
0,9710

20
δJS
δ+
JS

0,7871
0,7867

0,8108
0,8105

0,8344
0,8343

0,8581
0,8580

0,9054
0,9054

0,9527
0,9527

0,9763
0,9763

25
δJS
δ+
JS

0,8203
0,8203

0,8403
0,8403

0,8603
0,8603

0,8802
0,8802

0,9202
0,9202

0,9601
0,9601

0,9800
0,9800

30
δJS
δ+
JS

0,8447
0,8447

0,8620
0,8620

0,8792
0,8792

0,8965
0,8965

0,9310
0,9310

0,9655
0,9655

0,9827
0,9827
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SOME RESULTS CONCERNED WITH HANKEL DETERMINANT

BÜLENT NAFI ÖRNEK1

Abstract. In this paper, we discuss different versions of the boundary Schwarz
lemma and Hankel determinant for K (α) class. Also, for the function f(z) =
z + c2z2 + c3z3 + · · · deĄned in the unit disc such that f ∈ K(α), we estimate a
modulus of the angular derivative of f(z) function at the boundary point z0 with
f(z0) = z0

1+α
and f ′(z0) = 1

1+α
. That is, we shall give an estimate below ♣f ′′(z0)♣

according to the Ąrst nonzero Taylor coefficient of about two zeros, namely z = 0
and z1 ̸= 0. The sharpness of this inequality is also proved.

1. Introduction

Let A denote the class of functions f(z) = z + c2z
2 + c3z

3 + · · · which are analytic
in E = ¶z : ♣z♣ < 1♢. Also, K (α) be the subclass of A consisting of all functions f

which satisfy

(1.1)

∣

∣

∣

∣

∣

∣



z

f(z)

2

f ′(z) − α

∣

∣

∣

∣

∣

∣

< 1,

where α ∈ C. There are a lot of interesting studies regarding inequality (1.1) [16,17,24].
The certain analytic functions which is in the class of K (α) on the unit disc E

are considered in this paper. The subject of the present paper is to discuss some
properties of the function f(z) which belongs to the class of K (α) by applying
Schwarz lemma. Schwarz lemma is a highly popular topic in electrical engineering.
As exemplary applications, the use of positive real functions and boundary analysis
of these functions for circuit synthesis can be given. Moreover, it is also possible to

Key words and phrases. Fekete-Szegö functional, Julia-Wolff lemma, Hankel determinant, analytic
function, Schwarz lemma. angular derivative.
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utilize Schwarz lemma for the analysis of transfer functions in control engineering and
to design multi-notch filter structures in signal processing [14,15].

Let f ∈ A. The qth Hankel determinant of f for n ≥ 0 and q ≥ 1 is stated by
Noonan and Thomas [23] as

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cn cn+1 ... cn+q−1

cn+1 cn+2 ... cn+q

...
...

...
...

cn+q−1 cn+q ... cn+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, c1 = 1.

From the Hankel determinant for n = 1 and q = 2, we have

H2(1) =

∣

∣

∣

∣

∣

c1 c2

c2 c3

∣

∣

∣

∣

∣

= c3 − c2
2.

Similarly, for u = z − z1 and f ∈ A, we have

Ds(m) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

am am+1 ... am+s−1

am+1 am+2 ... am+s

...
...

...
...

am+s−1 am+s ... am+2s−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, a1 = 1.

From the Hankel determinant for m = 1 and s = 2, we have

D2(1) =

∣

∣

∣

∣

∣

a1 a2

a2 a3

∣

∣

∣

∣

∣

= a3 − a2
2.

Here, the Hankel determinant H2(1) = c3 − c2
2 and D2(1) = a3 − a2

2 are well-known as
Fekete-Szegö functional [22]. In [23], authors have obtained the upper bounds of the
Hankel determinant ♣c2c4 − c2

3♣. Also, in [20], author have obtained the upper bounds
the Hankel determinant A(k)

n . Moreover, in [21], authors have given bounds for the
Second Hankel determinant for class Mα. In [1], Schwarz lemma at the boundary has
been examined for a class K of analytic functions, and the modulus of the second
derivative has been estimated from below in terms of Hankel determinants H2(1).

We will obtain consideration for f ′′(z) from below by using H2(1) and D2(1) deter-
minants. In this consideration, the coefficients in Taylor expansion of f(z) at z = 0
and z = z1 points are used. The functions we use for our main results are as follows.
The relationship between the Fekete-Szegö function, that is the Hankel determinant
H2(1), and the second derivative of the function will be considered. In this considera-
tion, the Taylor coefficients that form the analytic function f(z) and the coefficients
that form the Hankel determination will be correlated. In this correlation, Schwarz
lemma and its results will be used.

Let f ∈ K (α) and consider the following function

t (z) =



z

f(z)

2

f ′(z) − α = 1 − α +


c3 − c2
2

)

z2 +


2c4 − 4c2c3 + 2c3
2

)

z3 + · · · .
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It is an analytic function in E and t(0) = 1 − α. Consider the function

T (z) =
R(z)
z−z1

1−z1z

, R(z) =
t (z) − t(0)

1 − t(0)t(z)
.

Here, T (z) is an analytic function in E, T (0) = 0 and ♣T (z)♣ < 1 for z ∈ E.
Several studies on Schwarz lemma exist in literature as it has a wide applicability

area. Some examples are about being estimated from below the modulus of the
derivative of the function at some boundary point of the unit disc which is also called
as boundary version of Schwarz lemma. The classical Schwarz lemma implies the
inequality

(1.2) ♣f ′(z0)♣ ≥ 1

which is known as the Schwarz lemma on the boundary, and also as a part of the
Lindelöf principle. The inequality (1.2) and its generalizations have important aplica-
tions in geometric theory of functions [2–7,13–15,15,18]. Mercer [10] proves a version
of the Schwarz lemma where the images of two points are known. Also, he considers
some Schwarz and Carathéodory inequalities at the boundary, as consequences of a
lemma due to Rogosinski [11]. In addition, he obtains an new boundary Schwarz
lemma, for analytic functions mapping the unit disk to itself [12]. In [9], authors have
given simple proofs of various versions of the Schwarz lemma for real-valued harmonic
functions and for holomorphic (more generally harmonic quasiregular, shortly HQR)
mappings with the strip codomain. In [8], the authors have given different applications
of the Schwarz lemma and the Jack lemma.

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel (see
[19]). In addition, the second derivative of the function f(z) will be considered from
below. Therefore, here the existence of the second derivative gives the result of the
Julia-Wolff lemma.

Lemma 1.1 (Julia-Wolff lemma). Let f be an analytic function in E, f(0) = 0 and

f(E) ⊂ E. If, in addition, the function f has an angular limit f(z0) at z0 ∈ ∂E,

♣f(z0)♣ = 1, then the angular derivative f ′(z0) exists and 1 ≤ ♣f ′(z0)♣ ≤ ∞.

Corollary 1.1. The analytic function f has a finite angular derivative f ′(z0) if and

only if f ′ has the finite angular limit f ′(z0) at z0 ∈ ∂E.

2. Main Results

In this section, we discuss different versions of the boundary Schwarz lemma and
Hankel determinant for K (α) class. Also, for the function f(z) = z + c2z

2 + c3z
3 + · · ·

defined in the unit disc such that f ∈ K(α), we estimate a modulus of the angular
derivative of f(z) function at the boundary point z0 with f(z0) = z0

1+α
and f ′(z0) = 1

1+α
.

That is, we shall give an estimate below ♣f ′′(z0)♣ according to the first nonzero Taylor
coefficient of about two zeros, namely z = 0 and z1 ̸= 0. The sharpness of this
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inequality is also proved. Motivated by the results of the work presented in [2], the
following result has been obtained.

Theorem 2.1. Let f ∈ K (α) and


z1

f(z1)

)2
f ′(z1) = 1 for 0 < ♣z1♣ < 1. Suppose that,

for some z0 ∈ ∂E, f has an angular limit f(z0) at z0, f(z0) = z0

1+α
and f ′(z0) = 1

1+α
.

Then we have the inequality

♣f ′′(z0)♣ ≥
♣α♣2



1 − ♣1 − α♣2
)

♣1 + α♣2



2 + 2
1 − ♣z1♣

2

♣1 − z1♣
2 +



1 − ♣1 − α♣2
)

♣z1♣
2 − ♣H2(1)♣



1 − ♣1 − α♣2
)

♣z1♣
2 + ♣H2(1)♣

(2.1)

×



1 +
A

B
·

1 − ♣z1♣
2

♣1 − z1♣
2

]

,

where

A =


1 − ♣1 − α♣2
)2

♣z1♣
4 + ♣D2(1)♣



1 − ♣z1♣
2
)2

♣H2(1)♣ −


1 − ♣1 − α♣2
)2

♣D2(1)♣ ♣z1♣

−


1 − ♣1 − α♣2
)

♣H2(1)♣ ♣z1♣ ,

B =


1 − ♣1 − α♣2
)2

♣z1♣
4 + ♣D2(1)♣



1 − ♣z1♣
2
)2

♣H2(1)♣ +


1− ♣1 − α♣2
)

2 ♣D2(1)♣ ♣z1♣

+


1 − ♣1 − α♣2
)

♣H2(1)♣ ♣z1♣ .

This result is sharp for α ∈ R, with equality for each possible value of ♣H2(1)♣ and

♣D2(1)♣.

Proof. Let

q(z) =
z − z1

1 − z1z
.

In addition, let h : E → E be an analytic and a point z1 ∈ E in order to satisfy
∣

∣

∣

∣

∣

h(z) − h(z1)

1 − h(z1)h(z)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

z − z1

1 − z1z

∣

∣

∣

∣

= ♣q(z)♣

and

(2.2) ♣h(z)♣ ≤
♣h(z1)♣ + ♣q(z)♣

1 + ♣h(z1)♣ ♣q(z)♣
,

by Schwarz-pick lemma [6]. If p : E → E is analytic function and 0 < ♣z1♣ < 1, letting

h(z) =
p(z) − p(0)

z


1 − p(0)p(z)
)

in (2.2), we obtain

∣

∣

∣

∣

∣

∣

p(z) − p(0)

z


1 − p(0)p(z)
)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

p(z1)−p(0)

z1(1−p(0)p(z1))

∣

∣

∣

∣

+ ♣q(z)♣

1 +
∣

∣

∣

∣

p(z1)−p(0)

z1(1−p(0)p(z1))

∣

∣

∣

∣

♣q(z)♣
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and

(2.3) ♣p(z)♣ ≤
♣p(0)♣ + ♣z♣ ♣C♣+♣q(z)♣

1+♣C♣♣q(z)♣

1 + ♣p(0)♣ ♣z♣ ♣C♣+♣q(z)♣
1+♣C♣♣q(z)♣

,

where

C =
p(z1) − p(0)

z1



1 − p(0)p(z1)
) .

Without loss of generality, we will assume that z0 = 1. If we take

p(z) =
R(z)

z2


z−z1

1−z1z

)2 ,

then

p(0) =
H2(1)



1 − ♣1 − α♣2
)

z2
1

, p(z1) =
D2(1)



1 − ♣z1♣
2
)2



1 − ♣1 − α♣2
)

z2
1

and

C =

D2(1)(1−♣z1♣2)
2

(1−♣1−α♣2)z2
1

+ H2(1)

(1−♣1−α♣2)z2
1

z1



1 +
D2(1)(1−♣z1♣2)

2

(1−♣1−α♣2)z2
1

H2(1)

(1−♣1−α♣2)z2
1

 ,

where ♣C♣ ≤ 1. Let ♣p(0)♣ = β and

T =

∣

∣

∣

∣

∣

D2(1)(1−♣z1♣2)
2

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

H2(1)

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

♣z1♣



1 +

∣

∣

∣

∣

∣

D2(1)(1−♣z1♣2)
2

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

H2(1)

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

 .

From (2.3), we get

♣R(z)♣ ≤ ♣z♣2 ♣q(z)♣2
β + ♣z♣ T+♣q(z)♣

1+T♣q(z)♣

1 + β ♣z♣ T+♣q(z)♣
1+T♣q(z)♣

and

1 − ♣R(z)♣

1 − ♣z♣
≥

1 + β ♣z♣ T+♣q(z)♣
1+T♣q(z)♣

− β ♣z♣2 ♣q(z)♣2 − ♣q(z)♣2 ♣z♣3 T+♣q(z)♣
1+T♣q(z)♣

(1 − ♣z♣)


1 + β ♣z♣ T+♣q(z)♣
1+T♣q(z)♣

) .

Let κ(z) = 1 + β ♣z♣ T+♣q(z)♣
1+T♣q(z)♣

and τ(z) = 1 + T ♣q(z)♣. Therefore, we obtain

1 − ♣R(z)♣

1 − ♣z♣
≥

1

κ(z)τ(z)

{

1 − ♣z♣3 ♣q(z)♣3

1 − ♣z♣
+ T ♣q(z)♣

1 − ♣z♣3 ♣q(z)♣

1 − ♣z♣

+β ♣z♣ ♣q(z)♣
1 − ♣z♣ ♣q(z)♣

1 − ♣z♣
+ β ♣z♣ T

1 − ♣z♣ ♣q(z)♣

1 − ♣z♣

}

.(2.4)
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Since

lim
z→1

κ(z) = lim
z→1



1 + β ♣z♣
T+ ♣q(z)♣

1 + T ♣q(z)♣



= 1 + β,

lim
z→1

τ(z) = lim
z→1

(1 + T ♣q(z)♣) = 1 + T,

lim
z→1

1 − ♣z♣i
∣

∣

∣

z−z1

1−z1z

∣

∣

∣

j

1 − ♣z♣
= i + j

1 − ♣z1♣
2

♣1 − z1♣
2 ,

for nonnegative integers i and j and

1 − ♣q(z)♣2 = 1 −

∣

∣

∣

∣

z − z1

1 − z1z

∣

∣

∣

∣

2

=



1 − ♣z1♣
2
) 

1 − ♣z♣2
)

♣1 − z1z♣2
,

passing to the angular limit in (2.4) gives

♣R′(1)♣ ≥
2

(1 + β) (1 + T)



3 + 3
1 − ♣z1♣

2

♣1 − z1♣
2 + T



3 + 3
1 − ♣z1♣

2

♣1 − z1♣
2

]

+β



1 +
1 − ♣z1♣

2

♣1 − z1♣
2

]

+βT



1 + 3
1 − ♣z1♣

2

♣1 − z1♣
2

]

=2 + 2
1 − ♣z1♣

2

♣1 − z1♣
2 +

1 − β

1 + β



1 +
1 − T

1 + T

1 − ♣z1♣
2

♣1 − z1♣
2

]

.

Moreover, since

1 − β

1 + β
=

1 − ♣p(0)♣

1 + ♣p(0)♣
=

1 − ♣H2(1)♣

(1−♣1−α♣2)♣z1♣2

1 + ♣H2(1)♣

(1−♣1−α♣2)♣z1♣2

=



1 − ♣1 − α♣2
)

♣z1♣
2 − ♣H2(1)♣



1 − ♣1 − α♣2
)

♣z1♣
2 + ♣H2(1)♣

,

1 − T

1 + T
=

1 −

∣

∣

∣

∣

∣

D2(1)(1−|z1|2)
2

(1−|1−α|2)z2
1

∣

∣

∣

∣

∣

+

∣

∣

∣

H2(1)

(1−|1−α|2)z2
1

∣

∣

∣

♣z1♣

(

1+

∣

∣

∣

∣

D2(1)(1−|z1|2)2

(1−|1−α|2)z2
1

∣

∣

∣

∣

∣

∣

∣

H2(1)

(1−|1−α|2)z2
1

∣

∣

∣

)

1 +

∣

∣

∣

∣

D2(1)(1−|z1|2)2

(1−|1−α|2)z2
1

∣

∣

∣

∣

+

∣

∣

∣

H2(1)

(1−|1−α|2)z2
1

∣

∣

∣

♣z1♣

(

1+

∣

∣

∣

∣

D2(1)(1−|z1|2)2

(1−|1−α|2)z2
1

∣

∣

∣

∣

∣

∣

∣

H2(1)

(1−|1−α|2)z2
1

∣

∣

∣

)

and

1 − T

1 + T
=

♣z1♣



1 +

∣

∣

∣

∣

∣

D2(1)(1−♣z1♣2)
2

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

H2(1)

(1−♣1−α♣2)z2
1

∣

∣

∣

∣



−

∣

∣

∣

∣

∣

D2(1)(1−♣z1♣2)
2

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

H2(1)

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

♣z1♣



1 +

∣

∣

∣

∣

∣

D2(1)(1−♣z1♣2)
2

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

H2(1)

(1−♣1−α♣2)z2
1

∣

∣

∣

∣



+

∣

∣

∣

∣

∣

D2(1)(1−♣z1♣2)
2

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

H2(1)

(1−♣1−α♣2)z2
1

∣

∣

∣

∣

·
A1

B1

,

where

A1 =


1 − ♣1 − α♣2
)2

♣z1♣
4 + ♣D2(1)♣



1 − ♣z1♣
2
)2

♣H2(1)♣ −


1 − ♣1 − α♣2
)2

♣D2(1)♣ ♣z1♣
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−


1 − ♣1 − α♣2
)

♣H2(1)♣ ♣z1♣ ,

B1 =


1 − ♣1 − α♣2
)2

♣z1♣
4 + ♣D2(1)♣



1 − ♣z1♣
2
)2

♣H2(1)♣ +


1 − ♣1 − α♣2
)2

♣D2(1)♣ ♣z1♣

+


1 − ♣1 − α♣2
)

♣H2(1)♣ ♣z1♣ ,

we obtain

♣R′(1)♣ ≥2 + 2
1 − ♣z1♣

2

♣1 − z1♣
2 +



1 − ♣1 − α♣2
)

♣z1♣
2 − ♣H2(1)♣



1 − ♣1 − α♣2
)

♣z1♣
2 + ♣H2(1)♣



1 +
A2

B2

·
1 − ♣z1♣

2

♣1 − z1♣
2

]

,

where

A2 =


1 − ♣1 − α♣2
)2

♣z1♣
4 + ♣D2(1)♣



1 − ♣z1♣
2
)2

♣H2(1)♣ −


1 − ♣1 − α♣2
)2

♣D2(1)♣ ♣z1♣

−


1 − ♣1 − α♣2
)

♣H2(1)♣ ♣z1♣ ,

B2 =


1 − ♣1 − α♣2
)2

♣z1♣
4 + ♣D2(1)♣



1 − ♣z1♣
2
)2

♣H2(1)♣ +


1 − ♣1 − α♣2
)2

♣D2(1)♣ ♣z1♣

+


1 − ♣1 − α♣2
)

♣H2(1)♣ ♣z1♣ .

From definition of R(z), we have

R′(z) =
1 − ♣t(0)♣2



1 − t(0)t(z)
)2 t′(z)

and

♣R′(1)♣ =
1 − ♣1 − α♣2

♣α♣2
♣f ′′(1)♣ ♣1 + α♣2 .

Thus, we obtain the inequality (2.1).
In order to show that the inequality (2.1) is sharp, choose arbitrary real numbers

z1, x and y such that 0 < x <


1 − ♣1 − α♣2
)

♣z1♣
2, 0 < y <

(1−♣1−α♣2)♣z1♣2

(1−♣z1♣2)
2 .

Let

K =

y

z2
1



1 − ♣z1♣
2
)2

− x
z2

1

z1

(

1 −


1 − ♣z1♣
2
)2

y

z2
1

x
z2

1

) .

Let

(2.5) R(z) = z2
(

z − z1

1 − z1z

)2
x
z2

1
+ z

K+
z−z1

1−z1z

1+K
z−z1

1−z1z

1 + x
z2

1
z

K+
z−z1

1−z1z

1+K
z−z1

1−z1z

.

From (2.5), with the simple calculations, we obtain

R′′(0)

2!
= x,

R′′(z1)

2!
= y
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and

R′(1) = 2 + 2
1 − ♣z1♣

2

(1 − z1)
2 +

z2
1 − x

z2
1 + x





1 +
z4

1 − y


1 − ♣z1♣
2
)2

x − y


1 − ♣z1♣
2
)2

z1 + xz1

z4
1 − y



1 − ♣z1♣
2
)2

x + y


1 − ♣z1♣
2
)2

z1 − xz1





 .

Choosing suitable signs of the numbers z1, x and y, we conslude from the last
equality that the inequality (2.1) is sharp. □
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