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FITTED OPERATOR FINITE DIFFERENCE METHOD FOR
SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS WITH

INTEGRAL BOUNDARY CONDITION

HABTAMU GAROMA DEBELA1 AND GEMECHIS FILE DURESSA1

Abstract. This study presents a fitted operator numerical method for solving sin-
gularly perturbed boundary value problems with integral boundary condition. The
stability and parameter uniform convergence of the proposed method are proved. To
validate the applicability of the scheme, a model problem is considered for numerical
experimentation and solved for different values of the perturbation parameter, ε and
mesh size, h. The numerical results are tabulated in terms of maximum absolute
errors and rate of convergence and it is observed that the present method is more
accurate and ε-uniformly convergent for h ≥ ε where the classical numerical methods
fails to give good result and it also improves the results of the methods existing in
the literature.

1. Introduction

Boundary value problems with integral boundary conditions are an important class
of problems which arise in various fields of applications such as electro-chemistry,
thermo-elasticity, heat conduction, underground water flow and population dynamics,
see, for example [12, 17, 19]. In fact, boundary value problems involving integral
boundary conditions have received considerable attention in recent years [7, 9, 11]
and [13]. For a discussion of existence and uniqueness results and for applications
of problems with integral boundary conditions one can refer, [4–8], [10, 11] and the
references therein. In [1, 2, 9, 11, 13, 16] it has been considered some approximating
or numerical treatment aspects of this kind of problems. However, the methods
or algorithms developed so far mainly concerned with the regular cases (i.e., when
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the boundary layers are absent). Boundary value problems with integral boundary
conditions in which the leading derivative term is multiplied by a small parameter
ε are called singularly perturbed problems with integral boundary conditions. The
solutions of such types of problems manifest boundary layer phenomena where the
solution changed abruptly. As a result, numerical analysis of singular perturbation
cases has been far from trivial because of the boundary layer behavior of the solution.
The solutions of the problems with boundary layer undergo rapid changes within very
thin layers near the boundary or inside the problem domain [3], [13–15], [18] and
hence classical numerical methods for solving such problems are unstable and fail
to give good results when the perturbation parameter is small (i.e., for h ≥ ε) [18].
Therefore, it is important to develop a numerical method that gives good results for
small values of the perturbation parameter where others fails to give good result and
convergent independent of the values of the perturbation parameter and the mesh
sizes. Hence, this paper proposed a fitted operator numerical method that is simple,
stable and uniformly convergent.

2. Statement of the Problem

Consider the following singularly perturbed problem with integral boundary condi-
tion
(2.1) εy′′(x) + a(x)y′(x) = f(x), 0 < x < l,

with the given conditions

y′(0) =µ0

ε
,(2.2) ∫ l

0
b(x)y(x)dx =µ1,(2.3)

where 0 < ε ≪ 1 is a positive parameter, 0 < a ≤ a(x), f(x), b(x) are sufficiently
smooth functions in the [0, l] and µi (i = 0, 1) are given constants. The function y(x)
has in general a boundary layer of thickness O(ε) near x = 0.

In this paper, we analyze a fitted finite-difference scheme on uniform mesh for the
numerical solution of the problem (2.1)–(2.3). Uniform convergence is proved in the
discrete maximum norm. Finally, we formulate the algorithm for solving the discrete
problem and give the illustrative numerical results.

3. Properties of Continuous Solution

The differential operator for the problem under consideration is given by

Lε ≡ ε
d2

dx2 + d

dx
,

and it satisfies the following minimum principle for boundary value problems (BVPs).
The following lemmas [15] are necessary for the existence and uniqueness of the
solution and for the problem to be well-posed.
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Lemma 3.1 (Continuous minimum principle). Assume that v(x) is any sufficiently
smooth function satisfying v(0) ≥ 0 and v(l) ≥ 0. Then Lv(x) ≤ 0, for all x ∈ Ω =
(0, l) implies that v(x) > 0, for all x ∈ Ω = [0, l].

Proof. Let x∗ be such that v(x∗) = minx∈[0,l] v(x) and assume that v(x∗) < 0. Clearly
x∗ /∈ {0, l}. Therefore, v′(x∗) = 0 and v′′(x∗) ≥ 0. Moreover, Lv(x∗) = εv′′(x∗) +
a(x∗)v′(x∗) ≥ 0, which is a contradiction. It follows that v(x∗) > 0 and thus v(x) ≥ 0,
for all x ∈ [0, l]. □

The uniqueness of the solution is implied by this minimum principle. Its existence
follows trivially (as for linear problems, the uniqueness of the solution implies its
existence). This principle is now applied to prove that the solution of (2.1)–(2.3) is
bounded.

Lemma 3.2. If y is the solution of the boundary value problem (2.1)–(2.3) and
y ∈ C2(Ω) then

∥y(x)∥ ≤ ∥f∥ + max{|y0|, |yl|},
where k = 0, 1, 2, 3 and x ∈ [0, l].

Proof. We handle first the case when k = 0. Consider the barrier functions defined by
ψ±(x) = [(l − x)∥f∥ + max{|y0|, |yl|}] ± y(x),

when x = 0, we have
ψ±(0) =∥f∥l + max{|y0|, |yl|} ± y(0) ≥ 0, since max{|y0|, |yl|}] ≥ y(0).

When x = l, we have
ψ±(l) =(l − l)∥f∥ + max{|y0|, |yl|} ± y(l) ≥ 0, since max{|y0|, |yl|}] ≥ y(l).

Now,
Lεψ

±(x) =ε(ψ±(x))′′ + (ψ±(x))′ = ∥f∥ + max{|y0|, |yl|} ± Ly(x) ≤ 0.
Applying the minimum principle, we conclude that ψ±(x) ≥ 0, and therefore

∥y(x)∥ ≤ ∥f∥ + max{|y0|, |yl|}. □

The following lemma shows the bound for the derivatives of the solution.

Lemma 3.3. Let yε be the solution of the continuous problem (Pε). Then, for k =
0, 1, 2, 3,

|y(k)
ε (x)| ≤ C

(
1 + ε−k exp

(−a
ε
x
))

, for all x ∈ [0, l].

Proof. The homogeneous differential equation of (2.1) is
(3.1) εy′′(x) + a(x)y′(x) = 0.
The characteristic equation of (3.1) becomes

εm2 + am = 0 ⇒ m = 0 or m = −a
ε
.
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The asymptotic solution of (3.1) is given by

u(x) = A+B exp
(−a
ε
x
)
,

where A and B are arbitrary constants.
To get the kth derivative of the asymptotic solution of the homogeneous part of

(3.1)

u′(x) =Cε−1 exp
(−a
ε
x
)
,

u′′(x) =Cε−2 exp
(−a
ε
x
)
,

u′′′(x) =Cε−3 exp
(−a
ε
x
)
.

In general, for k = 1, 2, 3

u(k)(x) = Cε−k exp
(−a
ε
x
)
.

The reduced problem obtained from (2.1) takes the a(x)v′
0(x) = f(x), where v0(0) = y0

and has the solution

v0(x) =y0 +
∫ x

0

f(t)
a(t)dt ≤ |y0| +

∫ x

0

∣∣∣∣∣f(t)
a(t)

∣∣∣∣∣dt
≤C +

∣∣∣∣∣f(ζ)
a(ζ)

∣∣∣∣∣
∫ x

0
dt ≤ C +

∣∣∣∣∣f(ζ)
a(ζ)

∣∣∣∣∣x, x ∈ (0, l),

≤C,
from the assumptions on a and f , it is clear that for k = 0, 1, 2, 3

|v(k)
0 (x)| ≤ C, for all x ∈ [0, l].

So, from the relation yε = v0 + u we have y(k)
ε = v

(k)
0 + u(k) and from the relation of

triangular inequality

|y(k)
ε | ≤|v(k)

0 | + |u(k)| ≤ C + Cε−k exp
(−a
ε
x
)

≤ C
(

1 + ε−k exp
(−a
ε
x
))

.

Therefore, it is well accepted that the solution of (2.1) has a boundary layer near
x = 0 and its derivatives satisfy

|y(k)
ε (x)| ≤ C

(
1 + ε−k exp

(−a
ε
x
))

, for all x ∈ [0, l]. □

4. Formulation of the Method

Consider the homogeneous differential equation with constant coefficient εy′′(x) +
ay′(x) = 0 whose solution is given by

(4.1) y(x) = A+B exp
(−a
ε
x
)
,
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where A and B are constants which will be determined depending on the given
conditions. Now, dividing the interval [0, l] into N equal parts with constant mesh
length h = l

N
, we obtain xi = x0 + ih, for i = 1, 2, . . . , N , where x0 = 0, xN = l.

To demonstrate the procedure, we consider (2.1), at discrete nodes xi

(4.2) εy′′
i (x) + ai(x)y′

i(x) = fi.

Approximating (4.2) by central difference approximations, we obtain:

(4.3) ε
yi−1 − 2yi + yi+1

h2 + ai
yi+1 − yi−1

2h = fi.

Under the assumption that fi is bounded, introducing the fitting parameter σ onto the
higher order difference approximation of (4.3), multiply both sides by h and evaluating
its limit gives

(4.4) σ = −
ρa lim

h−→0
(yi+1 − yi−1)

2 lim
h−→0

(yi+1 − 2yi + yi−1)
,

where ρ = h
ε
.

Evaluating (4.1) at each nodal point xi, we obtain

(4.5)


lim
h→0

yi = A+B exp(−aiρ),
lim
h→0

yi+1 = A+B exp(−aiρ) exp(−aρ),
lim
h→0

yi−1 = A+B exp(−aiρ) exp(aρ),

(4.6) σ = −
ρa lim

h→0
(yi+1 − yi−1)

2 lim
h→0

(yi+1 − 2yi + yi−1)
= aρ

2 coth
(
aρ

2

)
.

Hence, from (4.3) and (4.6), we get
εσ

h2 (yi−1 − 2yi + yi+1) + ai

2h(yi+1 − yi−1) = fi.

This can be rewritten as three term recurrence relation
(4.7) Eiyi−1 + Fiyi +Giyi+1 = Hi, i = 1, 2, . . . , N − 1,
where 

Ei = εσ

h2 − ai

2h,

Fi = −2εσ
h2 ,

Gi = εσ

h2 + ai

2h,
Hi = fi.

Since the problem has no Dirichlet boundary conditions, we apply the following two
cases, to obtain two equations at each end point.

For i = 0, (4.7) becomes
(4.8) E0y−1 + F0y0 +G0y1 = H0.
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Here, in (4.8) the term is out of the domain, so that using (2.2) we have

(4.9) y′(0) = y1 − y−1

2h ⇒ y−1 = y1 − 2hy′(0).

Substituting (4.9) into (4.8) gives

(4.10) F0y0 + (E0 +G0)y1 = H0 + 2hE0y
′(0).

For i = N (Simpson’s rule) suppose b(x)y(x) is a function defined on the interval [0, l]
and let xi be a uniform partition of with step length h. The composite Simpson’s rule
approximates the integral of b(x)y(x) by
(4.11)∫ l

0
b(x)y(x)dx = h

3

[
b(0)y(0) + b(l)y(l) + 2

N−1∑
i=1

b(x2i)y(x2i) + 4
N∑

i=1
b(x2i−1)y(x2i−1)

]
.

Using the integral boundary condition given in condition in (2.3), (4.11) can be written
as

(4.12) h

3

[
b(0)y(0) + b(l)y(l) + 2

N−1∑
i=1

b(x2i)y(x2i) + 4
N∑

i=1
b(x2i−1)y(x2i−1)

]
= µ1.

Therefore, the problem in (2.1) with the given boundary conditions (2.2) and (2.3),
can be solved using the schemes in (4.7), (4.10) and (4.12) which gives N ×N system
of algebraic equations.

5. Uniform Convergence Analysis

In this section, we need to show the discrete scheme in (4.7), (4.10) and (4.12) satisfy
the discrete minimum principle, uniform stability estimates, and uniform convergence.

Lemma 5.1 (Discrete Minimum Principle). Let vi be any mesh function that satisfies
v0 ≥ 0, vN ≥ 0 and Lεvi ≤ 0, i = 1, 2, 3, . . . , N − 1, then vi ≥ 0 for i = 0, 1, 2, . . . , N .

Proof. The proof is by contradiction. Let j be such that vj = mini vi and suppose
that vj ≤ 0. Clearly, j /∈ {0, N}, vj+1 − vj ≥ 0 and vj − vj−1 ≤ 0.

Therefore,

Lεvj =ε
[
vj+1 − 2vj + vj−1

h2

]
+ aj

[
vj+1 − vj−1

2h

]
= ε

h2 [vj+1 − 2vj + vj−1] + aj

2h [vj+1 − vj−1]

= ε

h2 [(vj+1 − vj) − (vj − vj−1)] + aj

2h [(vj+1 − vj) + (vj − vj−1)]

≥0,

where the strict inequality holds if vj+1 −vj > 0. This is a contradiction and therefore
vj ≥ 0. Since j is arbitrary, we have vi ≥ 0, i = 0, 1, 2, . . . , N . From the discrete
minimum principle we obtain an ε-uniform stability property for the operator LN

ε . □
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Lemma 5.2 (Uniform stability estimate). If ϕj is any mesh function such that
ϕ0 = ϕN = 0,

then
|ϕj| ≤ 1

a
max

1≤i≤N−1
|LN

ε ϕi|, j = 0, 1, 2, . . . , N.

Proof. As in [21], we introduce two mesh functions ψ+
j , ψ−

j defined by

ψ±
j =

(1
a

max
1≤i≤N−1

|LN
ε ϕi|

)
± ϕj.

It follows that

ψ±(0) =
(1
a

max
1≤i≤N−1

|LN
ε ϕi|

)
± ϕ0

=1
a

max
1≤i≤N−1

|εδ2ϕi + aiD
+ϕi| ± ϕ0

=1
a

max
1≤i≤N−1

|εδ2ϕi + aiD
+ϕi|

≥0
and

ψ±(N) =
(1
a

max
1≤i≤N−1

|LN
ε ϕi|

)
± ϕN

=1
a

max
1≤i≤N−1

|εδ2ϕi + aiD
+ϕi| ± ϕN

=1
a

max
1≤i≤N−1

|εδ2ϕi + aiD
+ϕi|

≥0,
and for all j = 1, 2, . . . , N − 1,

LN
ε ψ

±
j =

(1
a

max
1≤i≤N−1

|LN
ε ϕi|

)
± LN

ε ϕj ≤ 0.

From discrete minimum principle, if ψ0 ≥ 0, ψN ≥ 0 and LN
ε ψj ≤ 0, for all 0 < j < N ,

then ψ±
j ≥ 0, 0 ≤ j ≤ N . □

We provide above the discrete operator LN
ε satisfy the minimum principle. Next

we analyze the uniform convergence analysis.

Theorem 5.1 (Uniform Convergence). The numerical solution yh of (P h
ε ) and the

exact solution y of (Pε) satisfying ε-uniform error estimates, if there exist a positive
integer N0 and positive numbers C and P , all independent of N and ε, such that for
all N ≥ N0, |yh − y|hΩ ≤ Ch2.

Proof. Consider the convection-diffusion problem of a linear singularly perturbed
two-point boundary value problem of the form
(5.1) εy′′(x) + a(x)y′(x) = f(x), x ∈ Ω = (0, l).
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Now, introducing a variable fitting factor (4.6), σi = aiρi

2 coth(aiρi

2 ), in our scheme, we
obtain

(5.2) σi

ρi

(yi+1 − 2yi + yi−1) +
(
yi+1 − yi−1

2

)
= hfi, ρi = h

ε
.

Multiply both sides of (5.2) by 2ρi and rearranging, we get

(5.3) − Eiyi−1 + Fiyi −Giyi+1 = Hi,

where 
Ei = 2σi − ρi,
Fi = 4σi,
Gi = 2σi + ρi,
Hi = −2ρihfi.

Consider the given problem on two distinct meshes with step sizes h and k = h
2

which implies the following relations. For the mesh size h

ρ1 = h

ε
, E1 = 2σ1 − ρ1, F1 = 4σ1, G1 = 2σ1 + ρ1, σ1 = ρ1

2 coth
(
ρ1

2

)
.

For the mesh size k,

ρ2 = k

ε
= ρ1

2 , E2 = 2σ2 − ρ2, F2 = 4σ2, G2 = 2σ2 + ρ2, σ2 = ρ1

4 coth
(
ρ1

4

)
.

For the operator we have

(5.4) Lh
εy

h
ih = −Eyi−1 + Fyi −Gyi+1 = Hi.

Now, consider the given problem on two mesh sizes h and k of (5.4) as

Lh
εy

h
ih = − E1yi−1 + F1yi −G1yi+1 = Hih,(5.5)

Lh
εy

h
2
2ih = − E2y2i−2 + F2y2i −G2y2i+2 = H2ih,(5.6)

where

E1 =2σ1 − ρ1, F1 = 4σ1, G1 = 2σ1 + ρ1,

E2 =2σ2 − ρ2, F2 = 4σ2, G2 = 2σ2 + ρ2.

Similarly, using the second mesh size k, we have

L
h
2
ε y

h
2
2i h

2
= − E2y2i−1 + F2y2i −G2y2i+1 = H2i h

2
,(5.7)

L
h
2
ε y

h
2
(2i+1) h

2
= − E2y2i + F2y2i+1 −G2y2i+2 = H(2i+1) h

2
,(5.8)

L
h
2
ε y

h
2
(2i−1) h

2
= − E2y2i−2 + F2y2i−1 −G2y2i = H(2i−1) h

2
.(5.9)

To eliminate y2i+1 using (5.7) and (5.8), we have

−G2
2y2i+2 − F2E2y2i−1 + (F 2

2 −G2E2)y2i = F2H2ik +G2H(2i+1)k.
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Thus, we have the values of y2i+2 as

(5.10) y2i+2 = −F2E2

G2
2

y2i−1 + (F 2
2 −G2E2)
G2

2
y2i − F2

G2
2
H2ik − 1

G2
H(2i+1)k.

Also,to eliminate y2i−1 using (5.7) and (5.9),we have

−E2
2y2i−2 + (F 2

2 − E2G2)y2i − F2G2y2i+1 = F2H2ik + E2H(2i−1)K .

Thus, we have the value of y2i−2 as

(5.11) y2i−2 = (F 2
2 − E2G2)
E2

2
y2i − −F2G2

E2
2

y2i+1 − F2

E2
2
H2ik − 1

E2
H(2i−1)k.

Substituting both values of y2i+2 and y2i−2 from (5.10) and (5.11) into (5.6)

Lh
εy

h
2
2ih = − E2y2i−2 + F2y2i −G2y2i+2

= − E2
{

(F 2
2 − E2G2)
E2

2
y2i − F2G2

E2
2
y2i+1 − F2

E2
2
H2ik − 1

E2
H(2i−1)k

}

+ F2y2i −G2

{
−F2E2

G2
2

y2i−1 + (F 2
2 −G2E2)
G2

2
y2i − F2

G2
2
H2i − 1

G2
H(2i+1)

}
,

Lh
εy

h
2
2ih =

{
F2 − F 2

2 − E2G2

E2
− F2 − E2G2

G2

}
y2i + F2E2

G2
y2i−1

(5.12)

+ F2G2

E2
y2i+1 +

{
F2

E2
+ F2

G2

}
H2i +H2i−1 +H2i+1.

Using (5.5) and (5.12)∣∣∣∣∣Lh
εy

h
i − Lh

εy
h
2
2ih

∣∣∣∣∣
=
∣∣∣∣∣Lh

ε (yh
i − y

h
2
2i)(ih)

∣∣∣∣∣(5.13)

=
∣∣∣∣∣− E1yi−1 + F1y1 −G1yi+1 −

{
F2 − F 2

2 − E2G2

E2
− F2 − E2G2

G2

}
y2i

− F2E2

G2
y2i−1 − F2G2

E2
y2i+1 +

{
F2

E2
+ F2

G2

}
H2i − (H2i−1 +H2i+1)

∣∣∣∣∣,
∣∣∣∣∣Lh

εy
h
i − Lh

εy
h
2
2ih

∣∣∣∣∣ =
∣∣∣∣∣−

{
F2 − F 2

2 − E2G2

E2
− F2 − E2G2

G2

}
y2i − F2E2

G2
y2i−1

(5.14)

− F2G2

E2
y2i+1 −

{
− 1 + F2

E2
+ F2

G2

}
Hi −

(
Hi− h

2
+Hi+ h

2

)∣∣∣∣∣.
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Using Taylor series expansion up to third term, we have the following

(5.15)



y2i+h = yi+ h
2

= yi + h

2y
′
i + h2

8 y
′′
i + h3

48y
′′′
i +O(h4),

Hi+ h
2

= Hi + h

2H
′
i + h2

8 H
′′
i + h3

48H
′′′
i +O(h4),

y2i−h = yi− h
2

= yi − h

2y
′
i + h2

8 y
′′
i − h3

48y
′′′
i +O(h4),

Hi− h
2

= Hi − h

2H
′
i + h2

8 H
′′
i − h3

48H
′′′
i +O(h4).

Now, substituting the expanded parts of (5.15) into (5.14), we get

∣∣∣∣∣Lh
εy

h
i − Lh

εy
h
2
2ih

∣∣∣∣∣ =
∣∣∣∣∣
{

− F2 + F 2
2 − E2G2

E2
+ F 2

2 − E2G2

E2
− F2E2

G2
− F2G2

E2

}
yi

+
{

1 − F2

E2
− F2

G2
− 2

}
Hi + h

2

{
F2E2

G2
− F2G2

E2

}
y′

i

+ h2

8

{
− F2E2

G2
− F2G2

E2

}
y′′

i

− h2

4 H
′
i + h3

48

{
− F2E2

G2
− F2G2

E2

}
y′′′

i

∣∣∣∣∣.
For simplicity, let re-write the above equation as

∣∣∣∣∣Lh
εy

h
i − Lh

εy
h
2
2ih

∣∣∣∣∣ ≤ |A|yi + |B|Hi + h

2 |D|y′
i + h2

8 |M |y′′
i +K + h3

48 |N |y′′′
i ,

where 

A = −F2 + F 2
2 − E2G2

E2
+ F 2

2 − E2G2

E2
− F2E2

G2
− F2G2

E2
,

B = −1 − F2

E2
− F2

G2
,

D = F2E2

G2
− F2G2

E2
,

M = −F2E2

G2
− F2G2

E2
,

K = −h2

4 H
′
i,

N = −F2E2

G2
− F2G2

E2
.
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Now, when we evaluate the limit of each variables separatly using L’Hospital’s rule

lim
ρ1→0

|A|= lim
ρ1→0

{
− F2 + F 2

2 − E2G2

E2
+ F 2

2 − E2G2

E2
− F2E2

G2
− F2G2

E2

}
= 0,

lim
ρ1→0

|B|Hi =
(

lim
ρ1→0

{
− 1 − F2

E2
− F2

G2

})(
lim

ρ1→0
−2ρ1hf

)
= 0,

lim
ρ1→0

|D|= lim
ρ1→0

{
F2E2

G2
− F2G2

E2

}
⇒ lim

ρ1→0

h

2 |D|= 0,

lim
ρ1→0

|K|=h
2

4 lim
ρ1→0

H ′ ≤ C1h
2,

lim
ρ1→0

|M |= lim
ρ1→0

{
− F2E2

G2
− F2G2

E2

}
= −8 ⇒ h2

8 |M |y′′
i ≤ C2h

2,

lim
ρ1→0

|N |= lim
ρ1→0

{
F2E2

G2
− F2G2

E2

}
= 0 ⇒ h3

48 |N |y′′′
i = 0.

Therefore,∣∣∣∣∣Lh
εy

h
i − Lh

εy
h
2
2ih

∣∣∣∣∣ ≤|A|yi + |B|Hi + h

2 |D|y′
i + h2

8 |M |y′′
i +K + h3

48 |N |y′′′
i

≤0 + 0 + 0 + C1h
2 + C2h

2 + 0
≤(C1 + C2)h2

≤Ch2. □

Lemma 5.3. For all 0 < h < h0 and for all ε > 0, assume that Lh is stable with
stability constant C and that

max
{
(
yh − y

h
2

)
(0)
,

(
yh − y

h
2

)
(l)

}

+ C

Lh

(
yh − y

h
2

) ≤ C2h
p,

then 
(
yh − y

h
2

)
(xi)

 ≤ C2h
p,

where C2 is independent of ε.

Since
∣∣∣∣∣Lh

εy
h
i − Lh

εy
h
2
2ih

∣∣∣∣∣ ≤ Ch2, we conclude that max1≤j≤N−1 |y(xj) − Y (xj)|≤ Ch2.

6. Numerical Example and Results

To validate the established theoretical results, we perform numerical experiments
using the model problems of the form in (2.1)–(2.3).

Example 6.1. Consider the model singularly perturbed boundary value problem
εy′′(x) + y′(x) = 1, 0 < x < 1,
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subject to the boundary conditions

y′(0) = 1
ε

and
∫ 1

0
y(x)dx = 1

2 .

Having yj ≡ yh
j (the approximated solution obtained via fitted operator finite

difference method) for different values of h and ε, the maximum errors. Since the
exact solution is not available, the maximum errors (denoted by Eh

ε ) are evaluated
using the double mesh principle [15] for fitted operator finite difference methods using
formula

Eh
ε := max

0≤j≤n
|yh

j − y2h
2i |.

Further, we will tabulate the ε-uniform error

EN = max
0<ε≤1

Eh
ε .

The numerical rate of convergence are computed using the formula [15]

rh
ε := log(Eh

ε ) − log(E
h
2

ε )
log(2)

and the ε-uniform rate of convergence is computed using

RN = log(Eh) − log(E h
2 )

log(2) .
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Figure 1. ε-uniform convergence with fitted operator in Log-Log scale
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Table 1. Maximum absolute errors for different values of ε and
mesh size, h with fitted parameter (WFP) and without fitted parameter
(WOFP) for Example 6.1

ε 64 128 256 512 1024

WFP
10−4 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−8 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−12 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−16 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−20 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04

EN 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
WOFP
10−4 8.2229e+03 1.8281e+03 4.1007e+02 8.7013e+01 1.7867e+01
10−8 9.1177e+11 2.2841e+11 5.7162e+10 1.4297e+10 3.5745e+09
10−12 9.1178e+19 2.2842e+19 5.7162e+18 1.4298e+18 3.5754e+17
10−16 9.1083e+27 2.2845e+27 5.7140e+26 1.4301e+26 3.5756e+25
10−20 5.7341e+37 7.1295e+36 8.8165e+35 1.0782e+35 2.2303e+34

EN 5.7341e+37 7.1295e+36 8.8165e+35 1.0782e+35 2.2303e+34

Table 2. Maximum absolute errors and rate of convergence of Exam-
ple 6.1 for different ε and mesh size h

ε 64 128 256 512 1024
WFP
10−4 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−8 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−12 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−16 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
10−20 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04

EN 2.6454e-03 1.3123e-03 6.5359e-04 3.2616e-04 1.6292e-04
RN 1.7267 1.5726 1.4023 1.2526

7. Discussion and Conclusion

This study introduces fitted operator numerical method for solving singularly per-
turbed boundary value problems with integral boundary conditions. The behavior
of the continuous solution of the problem is studied and shown that it satisfies the
continuous stability estimate and the derivatives of the solution are also bounded. The
numerical scheme is developed on uniform mesh by introducing the fitting operator
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Table 3. ε-uniform Maximum absolute errors and ε-uniform rate of
convergence for Example 6.1

ε N=64 N=128 N=256 N=512
Present method

EN 0.0026454 0.0013159 0.00065359 0.00032616
RN 1.0074 1.0096 1.0028

Method in[20]
EN 0.0273271 0.0155869 0.00852830 0.00032616
RN 0.81 0.87 0.97

in to the higher order finite difference approximation used to replace the derivatives
in the given differential equation. The stability of the developed numerical method is
established and its uniform convergence is proved. To validate the applicability of the
method, a model problem/example is considered for numerical experimentation for
different values of the perturbation parameter and mesh points. The numerical results
are tabulated in terms of maximum absolute errors, numerical rate of convergence and
uniform errors (see tables 1-3) and compared with the results of the previously devel-
oped numerical methods existing in the literature (Table 3). Further, the ε-uniform
convergence of the method is shown by the log-log plot of the ε-uniform error (Figure
1). In a concise manner, the present method approximates the exact solution very
well for reasonable value of the mesh size, h ≥ ε, where existing classical numerical
methods fails to give good results. Moreover, the method is convergent independent
of the perturbation parameter ε and mesh size h and it improves the results of the
methods developed so far for solving the problem under consideration.
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