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SOME INEQUALITIES FOR THE POLAR DERIVATIVE OF A
POLYNOMIAL

M. H. GULZAR!, B. A. ZARGAR!, AND RUBIA AKHTER!

ABSTRACT. Let P(z) be a polynomial of degree n which has no zeros in |z| < 1,
then it was proved by Liman, Mohapatra and Shah [11] that
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for any 8 with |8| <1 and |z| = 1. In this paper we generalize the above inequality
and our result also generalizes certain well known polynomial inequalities.
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1. INTRODUCTION

Let P,, denote the class of all complex polynomials of degree at most n. If P € P,
then according to Bernstein theorem [5], we have
(1.1) max |P/(2)] < nmax [ P(2)|.
Bernstein proved it in 1912. Later, in 1930 he [6] revisited his inequality and proved

the following result from which inequality (1.1) can be deduced for Q(z) = Mz",
where M = max/,j—1 |P(2)|.
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Theorem 1.1. Let P(z) and Q(z) be two polynomials with degree of P(z) not exceeding
that of Q(z). If P(z) has all its zeros in |z| < 1 and

1P(2)] <1Q(2)],  for|z| =1,
then

(1.2) [P'(2)| < |Q(2)], for|z[ =1
More generally, it was proved by Malik and Vong [12] that for any 8 with |5] < 1,
inequality (1.2) can be replaced by

nf

(1.3) 2P(2) + 5 Pl2)| < nb

Q)+

By restricting the zeros of a polynomial, the maximum value may be smaller. Indeed,
if P € P, has no zero inside the unit circle |z| < 1, then inequality (1.1) can be
replaced by

Q(z)|, for |z|=1.

(1.4 max | P'(2)] < 5 max |P()|.

Inequality (1.4) was conjectured by Erdés and later proved verified by Lax [10]. This
result was further improved by Aziz and Dawood [2] who, under the same hypothesis,
proved that

max |P'(2)| g’;{maxw( )| — min|P(z )|}.

|2|=1 |2=1 |2=1

Jain [8] generalized the inequality (1.4) and proved that if P € P, and P(z) # 0 in

|z| < 1, then for every real or complex number § with |G| <1, |z] =1,
(1.5) zP'(z) —l—an(z) < { ﬁ| ﬁ|}1|rna>1<\P 2)|.

As a refinement of (1.5), Deewan and Hans [7] proved the following.
Theorem 1.2. If P € P, and P(z) # 0 in |z| < 1, then for every real or complex

number 8 with | 8| < 1
e (R R P

2P'(2) + %P(z)
Let D,P(z) be an operator that carries n'® degree polynomial P(z) to the polyno-
mial

<
-2

2

D.P(z) =nP(z) + (o — 2)P'(2), «a€C,

of degree at most (n — 1). D,P(z) generalizes the ordinary derivative P’(z) in the
sense that
D.P
lim (2)

a—0o0 0%

= P'(2).
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Aziz was among the first to extend these results to polar derivatives. It is proved by
Aziz [1] that for P € P, having no zeros in |z| < 1 and |a| > 1,

‘DQP(Z)‘ < g(’aznfl‘ + 1)?1'%)1(|P(2)’, for ’Z‘ > 1.

As an extension of (1.1) for the polar derivative Aziz and Shah [4] proved the
following.

Theorem 1.3. If P(z) is a polynomial of degree n, then for every a € C with |a| > 1
P < nlax" | max [ P(:)], Jor el 2 1

Liman et al. [11] extended (1.3) to the polar derivative and proved the following
result.

Theorem 1.4. Let Q(z) be a polynomial of degree n having all its zeros |z| < 1 and
P(z) be a polynomial of degree at most n. If |P(2)| < |Q(z)| for |z| = 1, then for all
a,p e Cwith |of > 1, [B] <1,

o =1
<

2D, P(2) +np <2> P(2)| < lof = 1

2D, Q(z) +np <2> Q(z)

. for|z| > 1.

2. MAIN RESULT

In this paper, we first prove the following result which is generalization of Theorem
1.4 and also obtain some compact generalization for polar derivative.

Theorem 2.1. Let Q(z) be a polynomial of degree n having all its zeros |z| < k, k > 1
and P(z) be a polynomial of degree at most n. If |P(2)| < |Q(2)| for |z| = k, then for
all a, p € C with || > k, |B| <1,

(2.1)

la| —k
1+ kn

2D, P(z) + nf (’f‘:@f) P(z)| <

. for|z| > k.

zDJX@+nﬁ< )Q@)

Remark 2.1. For k =1, Theorem 2.1 reduces to the Theorem 1.4.

Dividing both sides of (2.1) by |a| and letting |a| — oo we get following general-
ization of (1.3).

Corollary 2.1. Let Q(z) be a polynomial of degree n having all its zeros |z| < k,
k > 1 and P(z) be a polynomial of degree at most n. If |P(z)| < |Q(z)] for |z| =k,
then € C with |5] <1

nf
14 kn

nf
14 kn

zP'(z) + P(z)

g%@@%% Q). Jorlel > k.

By applying Theorem 2.1 to the polynomials P(z) and Q(z) = MZ—:, where M =
maxi.|— | P(z)|, we get the following result.
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Corollary 2.2. If P(z) is a polynomial of degree n, then for any «, B, with |a| > k,

1Bl <1 and |z| > k
ol =k
M
a+6<1+k‘”

By applying Theorem 2.1 to the polynomials P(z) and Q(z) = mZ—Z, where m =
miny.— | P(2)|, we get the following result.

1+ kn k

2D, P(2) + np (\a! — k) P(z)‘ < n@

Corollary 2.3. If P(z) is a polynomial of degree n having all its zeros in |z| < k,
k> 1, then for any «, § with || >k, |5 <1 and |z| > k

—k
2n—| oz—l—ﬂ(tﬂ_kn)‘m
Theorem 2.2. Let Q(z) be a polynomial of degree n having all its zeros |z| < k, k > 1

2"

kn
and P(z) be a polynomial of degree at most n. If |P(2)| < |Q(2)| for |z| = k, then for
all « € C with |a| > k

2DoP(2) +nf <|1a L_kf ) P(2)

o] — K
1+ kn

(22)  |2DuP(2)] +n ( ) 0()] < 12DaQ(2)] +n ("“‘ - k) (=)

1+ Ekn
Dividing both sides of (2.2) by a and letting |a| — oo, we get the following result.

Corollary 2.4. Let Q(z) be a polynomial of degree n having all its zeros |z| < k,
k> 1 and P(z) be a polynomial of degree at most n. If |P(z)| < |Q(z)] for |z| =k,
then for |z| =1

(2)

14 kn

+

14+ kn|”

‘P’(z)

<[2e),

| P(2)

Theorem 2.3. If P(z) is a polynomial of degree n which does not vanish in |z| < k,
k > 1 then for all o, B € C with |a| > k, |5| <1 and for |z| > k

2DoP(z) +nf ('ﬂ;ff) P(z)‘

nfim ol =k n ol =k
(2.3) §2{|z| a+ﬂ<1+kn>’+k Z+5<1—|—k">‘}r?|i}1<|P(z>|
n [ |z|™ la| — k la] — k
Sl (| (5

where m = min =, | P(2)|.

Dividing both sides of (2.3) by |a| and letting |a| — oo, we get the following
generalization of a result due to Dewan and Hans [7].
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Corollary 2.5. If P(z) is a polynomial of degree n which does not vanish in |z| < k,
k > 1, then for all 5 € C with || <1 and for |z| > k

np n B B

P P <— "1 k" | ———— P
P+ el —2{’Z| AR R }ﬁla}f‘ )l

n [ l2]" p B

_ = 1 —
2{/<;n e ‘1+kn}m’
where m = min, =, | P(2)|.
3. LEMMA

For the proofs of these theorems we need the following lemmas. The first lemma
which we need is due to Laguerre (see [9, page 38]).

Lemma 3.1. If all the zeros of an n'™ degree polynomial P(z) lie in a circular region
C and w is any zero of DoP(z), then at most one of the points w and o may lie
outside C.

Lemma 3.2. Let A and B be any two complex numbers, then the following holds.

(i) If |A| > |B| and B # 0, then A # vB for all complex numbers v with |v| < 1.
(ii) Conversely, if A # vB for all complex number v with |v| < 1, then |A| > |B].

Lemma 3.2 is due to Xin Li [13].

Lemma 3.3. If P(z) is a polynomial of degree n, then for k > 1

max | P(2)| < K" max | P(:)].

|2l
Lemma 3.3 is simple consequence of maximum modulus theorem.

Lemma 3.4. If the polynomial P(z) has all its zeros in |z| < k, k > 1, then for every
a € C with |a| > k

n(laf = K)|P(z)] < (1 +k")[DaP(2)].
Lemma 3.4 is due to Aziz and Rather [3].

Lemma 3.5. If P(2) is a polynomial of degree n, then for any o with || > k, |5] < 1
and |z| =k

2D, P(2) +np (‘&‘ — k) P(z2)
Sn{\z|” a—+f (M_I{;)‘ + k"

where q(z) = (%)n P (%)

Dty + 05 (B8 ) o)

—k
z+f ('ﬂ kn>|}r|gg>1<\P(Z)|,
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Proof. Let M = max,,— |P(2)|. An application of Rouche’s Theorem shows that all
the zeros of the polynomial G(z) = k"P(z) + AMz" lie in |z| < k, k > 1 for every

Awith [A > 1 If H(z) = (£)" G (£) = k"Q(2) + AME", then |G(2)| = |H(2)| for

|z2| = k and hence for any v with |y| < 1 the polynomial vH(z) + G(z) has all its
zeros in |z| < k, k > 1. By applying Lemma 3.4, we have for any « with |a| > k

(1 4+ E")[2(yDatl () + DaG(2))| = n(la] — k)7 H(2) + G(2)].

Since YH(z) + G(z) # 0 for |z| > k, k > 1, so the right hand side is non zero. Thus,
by using (i) of Lemma 3.2 we have for all 3 satisfying || < 1 and for |z| > k

T(z) = pn(la] — k)vH(z) + G(2) + (1 + k") z(vDa H (2) + DaG(2)) # 0,
or, equivalently, for |z| > k
T(z) =v(1+k™)zDoH(z) + nf(|la| —k)H(z) + (1 + k™)2D,G(z) + np(|a| — k)G(2)
# 0.

Using (ii) of Lemma 3.2 we have for |y| < 1 and for |z| > k

(3.1)
[(L+£")z2DoH(z) + nf(la] — k)H(2)| < [(1+ k")2DoG(2) + nf(la] — k)G(2)].

Now by putting G(z) = k"P(z) + AMz" and H(z) = k"Q(z) + AME"™ in (3.1) we get
o =k o] — &
D M
z aQ(>+nﬁ<1+kn Q(> Z+ﬁ 1+kn
o " ol =k
< — P a— .
<|zD.P(z) + ﬁ(l—kk" P(z)+n)\kn a+ g T M
By Corollary 2.2, it is possible to choose the argument of A such that
ol =k L2 o =k
2DoP(2) +np ( T P(z)| = N ot B T M
Using (3.3) in (3.2) and letting |A\| — 1 we get for |a| > k and 5] < 1

D)+ 05 (B a0 < e (W10 ar
gn%am('a'_ )‘M ’DP()Jr 5('04 )P(z)i.

Al

(3.2)

(3.3)

—n

e

That is

+|zDaq< >+nﬁ<‘c“‘ "“>q<z>|

(34) o] — k o] — k o
o) [ ()
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Using Lemma 3.3 in (3.4) we get

2DoP(z) +nf <|O‘| - k) P(2)| + ‘zDaq(z) +np ('O‘| - k) q(z)‘

§n{|z|” a+p <|a| _k>‘ +E" |24 B <|1QL_];>’}1{£1€£1<|P(2')|

That proves Lemma 3.5 completely. 0

4. PROOF OF THEOREMS

Proof of Theorem 2.1. By Rouche’s Theorem, the polynomial AP(z) — Q(z) has all its
zeros in |z| < k, k > 1 for |A| < 1. Therefore, for r > 1, all the zeros of AP(rz) —Q(rz)
lie in |2| < % < k. By applying Lemma 3.4 to the polynomial AP(rz) — Q(rz), we
have for |z| =1

n(la] = k)[AP(rz) — Q(rz)| < (14+£")|z(ADaP(rz) — DaQ(rz))|.
As in the proof of Lemma 3.1, we have for |5| < 1 and for |z| > k
(1 4+ E")2{ADyP(rz) — DoQ(rz)} + np(|la| — k){\P(rz) — Q(rz)} # 0.
This implies for |2| > k

(4.1)
(1 + E™)zDo P(rz) + nB(|a| — k)P(rz)| < |(1+k")zD,Q(rz) + nf(|la| — k)Q(rz)|.

Now making  — 1 and using the continuity for |3| in (4.1), the theorem follows. [

Proof of Theorem 2.2. Since all the zeros of Q(z) lie in |z| < k, k > 1, we have for
every o € C with |a] > k

(14 £")|zDaQ(2)] = n(la] = F)|Q(2)].
This gives for every g with |5| <1

(1+ k")[2DaQ(2)] — nlBl(Jal - K)|Q(2)] = 0.

Therefore, it is possible to choose the argument of £ in the right hand side of Theorem
2.1 such that

(42) 10+ F)2D,Q() = nilal = HQ() = D) = nlal (FLH) 0o

Using (4.2) in Theorem 2.1 and letting |5] — 1, we get the desired result. O

Proof of Theorem 2.3. Let P(z) be a polynomial of degree n which does not vanish

in|z| <k k>1 Ifq(z) = (%)nP (%), then ¢(z) has all its zeros in |z| < k, k > 1
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and |P(z)| = |q(z)] for |z] = k. Hence, by Theorem 2.1, we have for all «, 5 satisfying
o] >k, Bl <1

(4.3)

2DoP(2) +np ('ffkf ) P(z)| <

T , for |z| > k.

e )+nﬁ<| "’“)q<z>

Let m = miny.— |P(2)|. If P(2) has a zero in |z| = k, then m = 0 and result follows
by combining Lemma 3.5 with (4.3). Therefore, we suppose that all the zeros of P(z)
lie in |z| > k and so m > 0. We have |ym| < |P(z)| on |z| = k for any ~ with |y| < 1.
By Rouche’s Theorem the polynomial F(z) = P(z) + ym has no zeros in |z| < k.

Therefore, the polynomial G(z) = (%)n F (%) = ¢(z) — ymZ: will have all its zeros
in |z| < k. Also |F(2)| = |G(2)| for |z| = k. On applying Theorem 2.1, we get for any
B, a with |B| <1, |a| > k

ol =k o =k
< > k.
2D F(2) + np ( T F(2)| < |zD,G(z) +np e G(z)|, for|z| >k
Equivalently,
2D P(2) 408 (=8 poy| a2+ g (1L =F
“ 1+ kn 1+ k»

(4.4)

< |2Dag(2) + 6<|1a|+kf> q(Z)—mZZ (f” <|1a|+_kf>>m‘

Since ¢(z) has all its zeros in |z|
therefore, by Corollary 2.3, we have

IN

k and minj,—g [p(2)| = min.—y [q(2)] = m,

af —
a+ <1+k” m

2Daa(2) + 6<| '_k)q@) >l

4.5
(45) 1+ k"

Therefore, we can write (4.4) in view of (4.5) as

o — K
14 kn

2D, P(2) +nf ( ) P(2)

(4.6)

<[eDuater + 03 (L8 gt -l

la| =k
a+6<1+kn m

gty 4 (150 0o

o) e () )

Letting |y| — 1, we get from inequality (4.6)

) e
(i

2D, P(z (

. {||"

(4.7)
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Now, by Lemma 3.5, we have
2D.P() +ng (1=K p(y
1+ k"
o =k
n k'n
{\z| a+ﬁ<1+kn +
Inequalities (4.7) and (4.8) together lead to

2DoP(2) + ﬁ@“ )P@ﬂ

1+ km
{V|a+ﬁ<1+ﬁl Tk

n [ 2" o] =k (laf = k)
_2{kna+ﬁ<1+kn>‘_‘z+ﬁ 1+ kn

That proves Theorem 2.3 completely. 0

+

:Daa(z) + 3 (11 “k)q<z>|

(4.8) Z+B<|{1L_k">‘}rln§}1dp(2)‘.
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