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INEQUALITIES AMONG TOPOLOGICAL DESCRIPTORS

ZEHUI SHAO1, HUIQIN JIANG2, AND ZAHID RAZA3

Abstract. A topological index is a type of molecular descriptor that is calculated
based on the molecular graph of a chemical compound. Topological indices are used
for example in the development of QSAR QSPR in which the biological activity or
other properties of molecules are correlated with their chemical structure. In this
paper, we establish several inequalities among the molecular descriptors such as the
generalized version of the Ąrst Zagreb index, the Randić index, the ABC index, AZI
index, and the redeĄned Ąrst, second and third Zagreb indices.

1. Introduction

Graph theory is an important tool to study properties of chemical molecules. In
chemical graph theory, the vertices of the graph correspond to the atoms of molecules
and the edges correspond to chemical bonds, and such a molecular graph is established
to define topological indices which are used to study, or predict its structural features
[13]. These topological indices are very important in the the quantitative structure
property relationship (QSPR) and quantitative structure activity relationship (QSAR)
studies [10]. They can reflect many phisico-chemical properties such as the stability
of linear and branched alkanes, strain energy of cycloalkanes [4], heat of formation
for heptanes and octanes [7], and the bioactivity of chemical compounds [11].

In this paper, we only consider undirected simple graphs. Let G be a graph, we
denote V (G) and E(G) the vertex set and edge set of G, respectively. The complete
graph, path, cycle and star on n vertices are denoted by Kn, Pn, Cn and Sn (or S1,n−1),
respectively. A graph is an (n, m)-graph if it has order n and size m. We denote

Key words and phrases. Topological index, ABC index, Randić index, sum-connectivity index,
AZI index, inequality.
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Table 1. The most common molecular descriptors defined in last two decays

Atomic Bond Connectivity Index ABC(G)
∑

uv∈E(G)

√

d(u)+d(v)−2
d(u)d(v)



Augmented Zagreb Index AZI(G)
∑

uv∈E(G)

(

d(u)d(v)
d(u)+d(v)−2

3

Randic Connectivity Index R(G)
∑

uv∈E(G)



1√
d(u)d(v)



Sum-Connectivity Index X(G)
∑

uv∈E(G)



1√
d(u)+d(v)



First Zagreb Index Zg1(G)
∑

uv∈E(G)
(d(u) + d(v))

Second Zagreb Index Zg2(G)
∑

uv∈E(G)
(d(u)d(v))

Generalized Zagreb Index Mα(G)
∑

uv∈E(G)
(d(u)α−1 + d(v)α−1)

Modified Zagreb Index M∗
2 (G)

∑

uv∈E(G)

(

1
d(u)d(v)



Redefined First Zagreb Index ReZg1(G)
∑

uv∈E(G)

(

d(u)+d(v)
d(u)d(v)



Redefined Second Zagreb Index ReZg2(G)
∑

uv∈E(G)

(

d(u)d(v)
d(u)+d(v)



Redefined Third Zagreb Index ReZg3(G)
∑

uv∈E(G)
(d(u) + d(v)) d(u)d(v)

Forgotten Index F (G)
∑

v∈V (G)
(d(v))3

Harmonic Index H(G)
∑

v∈V (G)

(

2
d(u)+d(v)



Geometric-Arithmetic Index GA(G)
∑

uv∈E(G)



2
√

d(u)d(v)

d(u)+d(v)



by d(v) the degree of a vertex v of a graph G. We denote by ∆(G) and δ(G) (or
simply ∆ and δ) the maximum and minimum degree of G, respectively. A graph is
regular if ∆ = δ. A bipartite graph is biregular if each vertex in the same part has
the same degree, e.g., K2,3 is a biregular graph. For positive integers s, t, we denote
by Es,t the set of edges with two end vertices with degree s and t, respectively. That
is Es,t = ¶uv : d(u) = s, d(v) = t♢. The most common molecular descriptors defined
in last two decays are defined in Table 1.

When a new topological index is proposed in chemical graph theory, one of the
important problems is to find lower and upper bounds for this index on a class of
graphs such as trees or general graphs or graph operations [3, 6]. Motivated with the
importance of bounds and inequalities, this paper continue to study the inequalities
among topological indices.
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2. Related Work on Inequalities Among Topological Indices

In recent years, there has been an increasing amount of literature on inequality of
topological indices [1, 19–22]. Various relations of different topological indices have
been extensively researched, and we summarize main known results as follows.

Theorem 2.1. Let G be a connected graph having n ≥ 3 vertices. Then



1536

343



X(G) ≤ AZI(G) ≤




√

(n − 1)13

√
32(n − 2)3



X(G),

with left equality if and only if G ∼= S1,8 and right equality if and only if G ∼= Kn.

Theorem 2.2 ([1]). Let G be a connected graph having n ≥ 3 vertices. Then

(

343
√

7

216

)

R(G) ≤AZI(G) ≤




√

(n − 1)7

8(n − 2)3



R(G),



375

64



H(G) ≤AZI(G) ≤




√

(n − 1)7

8(n − 2)3



H(G),



n − 1

n − 2


7
2

ABC(G) ≤AZI(G) ≤
(

(n − 1)2

2(n − 2)

)
7
2

ABC(G),

8GA(G) ≤AZI(G) ≤




√

(n − 1)6

8(n − 2)3



GA(G), δ ≥ 2,

4M∗
2 (G) ≤AZI(G) ≤





√

(n − 1)4

2(n − 2)



M∗
2 (G).

The left equality in the above inequalities holds if and only if G ∼= S1,7, G ∼= S1,5,

G ∼= S1,n−1, G ∼= Cn, G ∼= P3, respectively and right equality in all the aforementioned

inequalities holds if and only if G ∼= Kn.

Theorem 2.3 ([20]). Let G be a simple connected graph on n ≥ 3 vertices with

minimum degree δ ≥ s and maximum degree ∆ ≤ t, where 1 ≤ s ≤ t ≤ n − 1 and

t ≥ 2. Then

(i)
(√

2t−2
t



GA(G) ≤ ABC(G), with equality if and only if G is a t-regular graph;

(ii) ABC(G) ≤
(√

2s−2
s



GA(G), with equality if and only if G is a s-regular graph

and ABC(G) ≤
(

(s+t)
√

s+t−2
st



GA(G) if t ≥ 2s − 3 +
√

5s2 − 14s + 9, with equality if

and only if one vertex has degree s and the other vertex has degree t for every edge of

G.
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Theorem 2.4 ([1]). Let G be a connected graph having n ≥ 2 vertices. Then

M∗
2 (G) ≤R(G) ≤ (n − 1)M∗

2 (G),

M∗
2 (G)√

2
≤X(G) ≤





(n − 1)
3
2√

2



M∗
2 (G),

M∗
2 (G) ≤H(G) ≤ (n − 1)M∗

2 (G),

M∗
2 (G) ≤GA(G) ≤ (n − 1)2M∗

2 (G),
√

2M∗
2 (G) ≤ABC(G) ≤ (n − 1)

√

2(n − 2)M∗
2 (G).

The left equality in the first four inequalities and in the fifth inequality is attained if

and only if G ∼= P2 and G ∼= P3, respectively. The right equality in all inequalities is

attained if and only if G ∼= Kn.

Theorem 2.5 ([19]). Let G be a connected graph having n ≥ 3 vertices. Then

(i)
(√

3
2



X(G) ≤ ABC(G), with equality if and only if G ∼= P3;

(ii) ABC(G) ≤
√

2X(G), if n = 3, the equality holds if and only if G ∼= K3,

ABC(G) ≤
(√

8
3



X(G), if n = 4, the equality holds if and only if G ∼= K4 or G ∼= S4,

ABC(G) ≤


√

n(n−2)
n−1



X(G), if n ≥ 5, the equality holds if and only if G ∼= Sn.

Theorem 2.6 ([19]). Let G be a connected graph having n ≥ 3 vertices. Then

(i)
(

3
√

2
4



H(G) ≤ ABC(G), with equality if and only if G ∼= P3;

(ii) ABC(G) ≤
√

2n − 4H(G), if 3 ≤ n ≤ 6, with equality if and only if G ∼= Kn,

ABC(G) ≤
(

n
2

√

n−2
n−1



H(G), if n ≥ 7, with equality if and only if G ∼= Sn.

2.1. Other inequalities and some inequality chains.

Proposition 2.1 ([22]). Let G be a graph. Then X(G) ≥
(

1√
2



R(G) with equality if

and only if all non-isolated vertices have degree one. Moreover, if G has no components

on two vertices, then X(G) ≥
(√

2
3



R(G) with equality if and only if all non-trivial

components of G are paths on three vertices, and if no pendant vertices, then X(G) ≥
R(G) with equality if and only if all non-isolated vertices have degree two.

Proposition 2.2 ([22]). Let G be a graph with m edges. Then X(G) ≤
√

mR(G)
2

with

equality if and only if G is regular.

Theorem 2.7 ([19]). Let G be a graph with n vertices. Then
(

2
√

n−1
n



R(G) ≤ H(G) ≤
R(G). The lower bound is attained if and only if G ∼= Sn, and the upper bound is

attained if and only if all connected components of G are regular.

Theorem 2.8 ([20]). Let G be a connected graph with δ ≥ 2. Then

H(G) ≤ R(G) ≤ X(G) < ABC(G),

where the first inequality holds as equality if and only if G is a regular graph, and the

second inequality holds as equality if and only if G is a cycle.
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3. Results and Discussion

For a graph G, we say G has Property A if for each edge uv we have d(u)+d(v) = k

for some k, and G has Property B if for each edge uv we have d(u)d(v) = k for some

k, and G has Property C if for each edge uv we have d(u)d(v)
d(u)+d(v)

= k for some k.

Definition 3.1. We define the four classes of graphs as follows.

• Let G1 be the set of graphs without isolated vertices with property A.
• Let G2 be the set of graphs without isolated vertices with property B.
• Let G3 be the set of graphs without isolated vertices with properties A and B.
• Let G4 be the set of graphs without isolated vertices with property C.

Lemma 3.1. If G is a graph without isolated vertices we have d(u1)d(v1) = d(u2)d(v2)
and d(u1) + d(v1) = d(u2) + d(v2) for any pair of edges u1v1 and u2v2, then G has

properties A and B. Equivalently, G is either regular or a biregular.

Proof. Since d(u1)d(v1) = d(u2)d(v2) and d(u1) + d(v1) = d(u2) + d(v2) for any pair of
edges u1v1 and u2v2, we have d(u)d(v) = k1 and d(u) + d(v) = k2 for some k1 and k2.
Then we have uv ∈ Es,t where s and t are the roots of the equation x2 − k1x + k2 = 0.
If s = t, then we have G is regular. If s ̸= t, then the degree of each neighbor of each
vertex with degree s is t and thus G is biregular. □

The following lemma is the well known power mean inequality [2].

Lemma 3.2. Let x1, x2, . . . , xn > 0 and p > q > 0. Then

p

√

x
p
1 + x

p
2 + · · · + x

p
n

n
≥ q

√

x
q
1 + x

q
2 + · · · + x

q
n

n
,

with equality if and only if xi = xj for each i ̸= j.

The Cauchy-Schwarz inequality is arguably one of the most widely used inequalities
in mathematics (see [18]).

Lemma 3.3. Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two real sequences. Then


n
∑

i=1
a2

i



n
∑

i=1
b2

i



≥


n
∑

i=1
aibi

2

, with equality if and only if there exists a constant c

such that ai = cbi for all i = 1, 2, . . . , n.

The following is the well known Jensen’s inequality (see [14]).

Lemma 3.4. Let (x1, x2, . . . , xn) be a real sequence and f(x) be a continuous real

function.

i) If f ′′(x) > 0, then
n
∑

i=1
f(xi)

n
≥ f









n
∑

i=1
xi

n









,

with equality if and only if xi = xj for each i ̸= j.
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ii) If f ′′(x) < 0, then
n
∑

i=1
f(xi)

n
≤ f









n
∑

i=1
xi

n









,

with equality if and only if xi = xj for each i ̸= j.

By Lemma 3.2, the following result is immediate.

Theorem 3.1. Let G be an (n, m)-graph without isolated vertices, k = k1 + k2 with

k1 > 0 and k2 > 0. Then

Mk(G)

n
≥
(

Mk1(G)

n

)(

Mk2(G)

n

)

.

Proof. Let xi = d(vi) for i = 1, 2, . . . , n. Since G has no isolated vertex, so, we have
xi ≥ 1. Note that k > k1, by Lemma 3.2, we have

(

xk
1 + xk

2 + · · · + xk
n

n

)
1
k

≥
(

xk1
1 + xk1

2 + · · · + xk1
n

n

)

1
k1

.

That is

(3.1)

(

xk
1 + xk

2 + · · · + xk
n

n

)

k1
k

≥ xk1
1 + xk1

2 + · · · + xk1
n

n
.

Similarly, we have

(3.2)

(

xk
1 + xk

2 + · · · + xk
n

n

)

k2
k

≥ xk2
1 + xk2

2 + · · · + xk2
n

n
.

By (3.1) × (3.2), we get

xk
1 + xk

2 + · · · + xk
n

n
≥
(

xk1
1 + xk1

2 + · · · + xk1
n

n

)(

xk2
1 + xk2

2 + · · · + xk2
n

n

)

.

That is
Mk(G)

n
≥
(

Mk1(G)

n

)(

Mk2(G)

n

)

. □

Corollary 3.1. Let G be an (n, m)-graph without isolated vertices and k ≥ 2. Then

Mk(G) ≥ n

(

Mk−1(G)

n

)
k

k−1

.

Proof. By Theorem 3.1 with k1 = 1 and k2 = k − 1, the result holds. □

Remark 3.1. By Corollary 3.1, we have F (G) ≥ n
(

M1(G)
n


3
2 ≥ 8m3

n2 .
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Theorem 3.2 ([12]). Suppose ai and bi, 1 ≤ i ≤ n, are positive real numbers. Then
∣

∣

∣

∣

∣

n
n
∑

i=1

aibi −
n
∑

i=1

ai

n
∑

i=1

bi

∣

∣

∣

∣

∣

≤ α(n)(A − a)(B − b),

where a, b, A and B are real constants, that for each i, 1 ≤ i ≤ n, a ≤ ai ≤ A,

b ≤ bi ≤ B. Further, α(n) = n⌈n
2
⌉(1 − 1

n
⌈n

2
⌉).

By Theorem 3.2, we have the following.

Theorem 3.3. Let G be an (n, m)-graph without isolated vertices, k = k1 + k2 with

k1 > 0 and k2 > 0. Then

Mk(G) ≤
(

Mk1(G)Mk2(G) + α(n)(∆k1 − δk1)(∆k2 − δk2)

n

)

.

Proof. Let ai = d(vi)
k1 , bi = d(vi)

k2 , A = ∆k1 , B = ∆k2 , a = δk1 and b = δk2 , then by
Theorem 3.2, we have

(3.3) nMk(G) − Mk1(G)Mk2(G) ≤ α(n)(∆k1 − δk1)(∆k2 − δk2).

So, we have

Mk(G) ≤
(

Mk1(G)Mk2(G) + α(n)(∆k1 − δk1)(∆k2 − δk2)

n

)

. □

Theorem 3.4. Let G be an (n, m)-graph without isolated vertices. Then R(G)2Zg2(G) ≥
m3, with equality if and only if G ∈ G2.

Proof. Let f(x) = 1√
x
, then we have f ′′(x) = 3

4x
5
2

> 0 if x > 0. By Lemma 3.4, we

have
∑

uv∈E(G)

1√
d(u)d(v)

m
≥ 1
√

∑

uv∈E(G)

d(u)d(v)

m

.

That is
R(G)

m
≥ 1
√

Zg2(G)
m

.

Consequently, we have R(G)2Zg2(G) ≥ m3. The equality holds if and only if

1
√

d(u1)d(v1)
=

1
√

d(u2)d(v2)
,

for any two distinct edges u1v1, u2v2 ∈ E(G). Since

1
√

d(u1)d(v1)
=

1
√

d(u2)d(v2)
⇔ d(u1)d(v1) = d(u2)d(v2),

we have the equality holds if and only if G ∈ G2. □
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Theorem 3.5. Let G be an (n, m)-graph without isolated vertices. Then X(G)2Zg1(G) ≥
m3 with equality if and only if G ∈ G1.

Proof. Let f(x) = 1√
x
. Then f ′′(x) = 3

4x
5
2

> 0 for x > 0. By Lemma 3.4, we have

∑

uv∈E(G)

1√
d(u)+d(v)

m
≥ 1
√

∑

uv∈E(G)

(d(u)+d(v))

m

.

That is
X(G)

m
≥ 1
√

Zg1(G)
m

.

Consequently, we have X(G)2Zg1(G) ≥ m3. The equality holds if and only if

1
√

d(u1) + d(v1)
=

1
√

d(u2) + d(v2)
,

for any two distinct edges u1v1, u2v2 ∈ E(G). Since

1
√

d(u1) + d(v1)
=

1
√

d(u2) + d(v2)
⇔ d(u1) + d(v1) = d(u2) + d(v2),

we have the equality holds if and only if G ∈ G1. □

Theorem 3.6. Let G be an (n, m)-graph without isolated vertices. Then ABC(G)2 +
2R(G)2 ≤ mn with equality holds if and only if G is regular or biregular.

Proof. Let f(x) =
√

x, we have f ′′(x) < 0 if x > 0. By Lemma 3.4,

ABC(G)

m
=

∑

uv∈E(G)

√

d(u)+d(v)−2
d(u)d(v)

m

≤

√

√

√

√

√

∑

uv∈E(G)

d(u)+d(v)−2
d(u)d(v)

m

=

√

√

√

√

√

∑

uv∈E(G)
( 1

d(u)
+ 1

d(u)
) − 2

∑

uv∈E(G)

1
d(u)d(v)

m

=

√

√

√

√

√

n − 2
∑

uv∈E(G)

1
d(u)d(v)

m
.(3.4)

The equality holds if and only if

d(u1) + d(v1) − 2

d(u1)d(v1)
=

d(u2) + d(v2) − 2

d(u2)d(v2)
,

for any two distinct edges u1v1, u2v2 ∈ E(G).
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On the other hand, by Lemma 3.3 we have

(3.5) R(G)2 =





∑

uv∈E(G)

1
√

d(u)d(v)





2

≤ m





∑

uv∈E(G)

1

d(u)d(v)



 .

The equality holds if and only if

1
√

d(u1)d(v1)
=

1
√

d(u2)d(v2)
,

for any two distinct edges u1v1, u2v2 ∈ E(G).
From (3.4) and (3.5) above, we have

ABC(G)

m
≤

√

√

√

√

√

n − 2
∑

uv∈E(G)

1
d(u)d(v)

m
≤

√

√

√

√

n − 2R(G)2

m

m
.

Then, we get ABC(G)2 + 2R(G)2 ≤ mn. So, we have the equality holds if and only
if G ∈ G3. Then by Lemma 3.1, we have G is regular or biregular. □

Theorem 3.7. Let G be an (n, m)-graph without isolated vertices. Then

AZI(G)(mn − 2R(G)2)3 ≥ m7

and the equality holds if and only if G is regular or biregular.

Proof. Let f(x) = 1
x3 , we have f ′′(x) = 12x−5 > 0 if x > 0. By Lemma 3.4, we have

AZI(G)

m
=

(

∑

uv∈E(G)

d(u)d(v)
d(u)+d(v)−2

)3

m

≥ 1




∑

uv∈E

d(u)+d(v)−2
d(u)d(v)

m





3

=
1





∑

uv∈E(G)

( 1
d(u)

+ 1
d(u)

)−2
∑

uv∈E(G)

1
d(u)d(v)

m





3

=
1





n−2
∑

uv∈E(G)

1
d(u)d(v)

m





3 .(3.6)

The equality holds if and only if

d(u1) + d(v1) − 2

d(u1)d(v1)
=

d(u2) + d(v2) − 2

d(u2)d(v2)
,

for any two distinct edges u1v1, u2v2 ∈ E(G).
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On the other hand, by Lemma 3.3 we have

(3.7) R(G)2 =





∑

uv∈E(G)

1
√

d(u)d(v)





2

≤ m





∑

uv∈E(G)

1

d(u)d(v)



 .

The equality holds if and only if

1
√

d(u1)d(v1)
=

1
√

d(u2)d(v2)
,

for any two distinct edges u1v1, u2v2 ∈ E(G).
From (3.6) and (3.7) above, we have

AZI(G)

m
≥ 1




n−2
∑

uv∈E(G)

1
d(u)d(v)

m





3 ≥ 1




n−2
∑

uv∈E(G)

1
d(u)d(v)

m





3 .

Then we get AZI(G)(mn − 2R(G)2)3 ≥ m7. Thus, the equality holds if and only if
we have G ∈ G3. Then by Lemma 3.1, we have G is regular or biregular. □

Theorem 3.8. Let G be an (n, m)-graph without isolated vertices. Then

i) ReZg2(G) ≥ m2

n
and the equality holds if and only if G ∈ G4;

ii) ReZg2(G)ReZg3(G) ≥ Zg2(G)2 and the equality holds if and only if G ∈ G1;

iii) ReZg1(G)ReZg3(G) ≥ Zg1(G)2 and the equality holds if and only if G ∈ G2.

Proof. i) By Lemma 3.3, we have

ReZg1(G)ReZg2(G) =





∑

uv∈E(G)

d(u) + d(v)

d(u)d(v)









∑

uv∈E(G)

d(u)d(v)

d(u) + d(v)



 ≥ m2.

Since

ReZG1(G)ReZG2(G) =
∑

uv∈E(G)

d(u) + d(v)

d(u)d(v)
=

∑

uv∈E(G)

(
1

d(u)
+

1

d(u)
) = n,

we have ReZG2(G) ≥ m2

n
. By Lemma 3.3, we have the equality holds if and only if

G ∈ G4.
ii) By Lemma 3.3, we have

ReZg2(G)ReZg3(G) =





∑

uv∈E(G)

d(u)d(v)

d(u) + d(v)









∑

uv∈E(G)

d(u)d(v)(d(u) + d(v))





≥




∑

uv∈E(G)

d(u)d(v)





2

= Zg2(G)2.

By Lemma 3.3, we have the equality holds if and only if G ∈ G1.
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iii) By Lemma 3.3, we have

ReZg1(G)ReZg3(G) =





∑

uv∈E(G)

d(u) + d(v)

d(u)d(v)









∑

uv∈E(G)

d(u)d(v)(d(u) + d(v))





≥




∑

uv∈E(G)

(d(u) + d(v))





2

= Zg1(G)2.

By Lemma 3.3, we have the equality holds if and only if G ∈ G2. □
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A NEW APPROACH FOR SOLVING A NEW CLASS OF

NONLINEAR OPTIMAL CONTROL PROBLEMS GENERATED BY

ATANGANA-BALEANU-CAPUTO VARIABLE ORDER

FRACTIONAL DERIVATIVE AND FRACTIONAL

VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

F. GHOMANJANI1

Abstract. In the sequel, the numerical solution of a new class of nonlinear optimal
control problems (OCPs) generated by Atangana-Baleanu-Caputo (ABC) variable
order (V-O) fractional derivative (FD) and fractional Volterra-Fredholm integro-
differential equations (FVFIDEs) is found by Bezier curve method (BCM). The
main idea behind this work is the use of the BCM. In this technique, the solution
is found in the form of a rapid convergent series. Using this method, it is possible
to obtain BCM solution of the general form of multipoint boundary value problems.
To shown the efficiency of the developed method, numerical results are stated as
the main results in this study.

1. Introduction

OCPs is one of the main topics refered to the V-O fractional. These problems
are related to the V-O fractional operators in their cost functional and dynamical
system. Recently, many numerical methods have been stated such as in [1] and [2], the
Bernstein functions for nonlinear V-O fractional OCPs is stated. In [3], generalized
polynomials is studied for a kind of V-O fractional 2D OCPs. B-splines (where Bezier
form is a special case of B-splines), due to numerical stability and arbitrary order of
accuracy, have become popular tools for solving differential equations. The use of
Bezier curves for solving V-O fractional OCPs (2.1) and FVFIDEs is a novel idea.

Key words and phrases. variable order, Bezier curve, nonlinear optimal control problems (NOCPs),
Volterra-Fredholm integro-differential equations.
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Additionally some papers spent the Bezier curves. In [4] and [5], the authors utilized
the Bezier curves for solving delay differential equation (DDE) and optimal control of
switched systems numerically. In [6], the authors proposed the utilization of Bezier
curves on some linear optimal control systems with pantograph delays. Also, to
solve the quadratic Riccati differential equation and the Riccati differential-difference
equation, the Bezier control points strategy is utilized (see [7]). Some other uses of
the Bezier functions are found in (see [8]). The organization of this study is classified
as follows. Problem statement is introduced in Section 2. Also solving ABC V-O
FD based on the Bezier curves is stated in Section 3. Convergence analysis is stated
in Section 4. A numerical example is solved in Section 5, then a remark is stated
about FVFIDEs. Solving FVFIDEs based on Bezier curves is presented in Section
6. Section 7 will give a problem statement for FVFIDEs. Numerical applications for
FVFIDEs are presented in Section 8. Finally, Section 9 will give a conclusion briefly.

2. Problem Statement

In this paper, the following definition is considered.

Definition 2.1. Let α : [0, τmax] → (0, 1) be a continuous function and x ∈ C1[0, τmax].
The V-O FD of order α(τ) in the ABC sense of x(τ) is defined as follows (see [9]):

ABC
0 D

α(τ)
t x(τ) =

C(α(τ))

1 − α(τ)

∫ τ

0
x′(s)Eα(τ)



−α(τ)(τ − s)α(τ)

1 − α(τ)



ds,(2.1)

where

Eλ(τ) =
∞
∑

j=0

τ j

Γ(jλ + 1)
, λ ∈ R+, τ ∈ R,

C(α(τ)) =1 − α(τ) +
α(τ)

Γ(α(τ))
,

ABC
0 D

α(τ)
t c =0, for any constant c.

So, we focus on the following problem

min J =
∫ τmax

0
L(τ, x1(τ), x2(τ), . . . , xm(τ), u(τ))dτ,

such that

ABC
0 D

αi(τ)
t x(τ) = Gi(τ, x1(τ), x2(τ), . . . , xm(τ), u(τ)),

αi(τ) ∈ (0, 1), i = 1, 2, . . . , m, m ∈ N,

xi(0) = xi,0, i = 0, 1, . . . , m, τmax ∈ R,(2.2)

where L, Gi for i = 1, 2, . . . , m, are continuous operators, αi for i = 1, 2, . . . , m, is a
continuous function on [0, τmax] and xi,0 is a given real constant.
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3. Solving ABC V-O FD Based on the Bezeir Curves

Our aim is utilizing Bezier curves to approximate the solutions x(τ) and u(τ) where
x(τ) and u(τ) are given below. Define the Bezier polynomials of degree n over the
interval [τ0, τf ] as follows:

x(τ) =
n
∑

r=0

arBr,n



τ − τ0

h



, τf = 1, τ0 = 0, u(τ) =
n
∑

r=0

brBr,n



τ − τ0

h



,(3.1)

where h = τf − τ0 and

Br,n



τ − τ0

h



:=



n

r



1

hn
(τf − τ)n−r(τ − τ0)

r

is the Bernstein polynomial of degree n over the interval [τ0, τf ] and ar, br, r =
0, 1, . . . , n, and they are unknown control points. Also, we have

dBr,n(τ)

dτ
=n



Br−1,n−1(τ) − Br,n−1(τ)


,

dx(τ)

dτ
=

n−1
∑

r=0

narBr−1,n−1(τ) −
n−1
∑

r=0

narBr,n−1(τ)

=
n−1
∑

r=0

nar+1Br,n−1(τ) −
n−1
∑

r=0

narBr,n−1(t)

=
n−1
∑

r=0

Br,n−1(τ)n(ar+1 − ar),

then

ABC
0 D

α(τ)
t x(τ) =

C(α(τ))

1 − α(τ)

∫ τ

0



n
∑

r=0

arBr,n(τ)



′

Eα(τ)



−α(τ)(τ − s)α(τ)

1 − α(τ)



ds

=
C(α(τ))

1 − α(τ)

∫ τ

0

n−1
∑

i=0

Bi,n−1(τ)n (ai+1 − ai) Eα(τ)



−α(τ)(τ − s)α(τ)

1 − α(τ)



ds.(3.2)

By substituting x(τ) and u(τ) and (3.2) in (2.2), we obtain a simplified problem
then we can solve this problem by Maple 16. Our goal is to solve the following
optimization problem over the interval [τ0, τf ] to find the entries of the vectors ar, br,
for r = 0, 1, . . . , n.

4. Convergence Analysis

In this section, we can suppose the following problem

min J =
∫ τmax

0
xT (τ)P (τ)(τ) + uT (τ)Q(τ)u(τ) dτ,(4.1)
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such that

ABC
0 D

α(τ)
t x(τ) − A(τ)x(τ) − B(τ)u(τ) = F (τ),

αi(τ) ∈ (0, 1), i = 1, 2, . . . , m, m ∈ N,

x(0) = x0 = a, u(0) = u0 = b, a, b ∈ R, τmax = 1,

where P (τ) and Q(τ) are given non-negative functions for τ ∈ [0, 1].

Lemma 4.1. For a polynomial in Bezier form

x(τ) =
n2
∑

i=0

ai,n2
Bi,n2

(τ),

where ai,n2+m1
is the Bezier coefficient of x(τ) after being degree-elevated to degree

n2 + m1. Now, we have
∑n2

i=0 a2
i,n2

n2 + 1
≥
∑n2+1

i=0 a2
i,n2+1

n2 + 2
≥ · · · ≥

∑n2+m1

i=0 a2
i,n2+m1

n2 + m1 + 1
.

Proof. See [10]. □

Theorem 4.1. If the problem (4.1) has a unique C1 continuous solution x̄, C0 contin-
uous control solution ū, then the approximate solution obtained by the control-point-
based method converges to the exact solution (x̄, ū) as the degree of the approximate
solution tends to infinity.

Proof. Given an arbitrary small positive number ϵ > 0, by the Weierstrass Theorem,
one can find polynomials Q1,N1

(τ) and Q2,N2
(τ) of degree N1 and N2 such that (see

[11])

∥Q1,N1
(τ) − x̄(τ)∥∞ ≤ ϵ

16∥A(τ)∥∞

,

∥Q2,N2
(τ) − ū(τ)∥∞ ≤ ϵ

16∥B(τ)∥∞

,

∥ ABC
0 D

α(τ)
t Q1,N1

(τ) − ABC
0 D

α(τ)
t x̄(τ)∥∞ ≤ ϵ

16
,

where ∥ · ∥∞ stands for the L∞-norm over [0, 1]. Now, we have

∥a − Q1,N1
(0)∥∞ ≤ ϵ

16
,

∥b − Q2,N2
(0)∥∞ ≤ ϵ

16
.(4.2)

In general, Q1,N1
(τ) and Q2,N2

(τ) do not satisfy the boundary conditions. After
a small perturbation with linear and constant polynomials β and γ for Q1,N1

(τ),
Q2,N2

(τ) we can obtain polynomials P1,N1
(τ) = Q1,N1

(τ) + β, P2,N1
(τ) = Q2,N2

(τ) + γ

such that P1,N1
(τ) satisfy the boundary conditions P1,N1

(0) = a, P2,N2
(0) = b. Thus
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Q1,N1
(0) + β = a, Q2,N2

(0) + γ = b by utilizing (4.2), one have

∥a − Q1,N1
(0)∥∞ =∥β∥∞ ≤ ϵ

16
,

∥b − Q2,N2
(0)∥∞ =∥γ∥∞ ≤ ϵ

16
.

Now, we have

∥P1,N1
(τ) − x̄(τ)∥∞ =∥Q1,N1

(τ) + β − x̄(τ)∥∞

≤∥Q1,N1
(τ) − x̄(τ)∥∞ + ∥β∥∞ ≤ 2ϵ

16
,

∥ ABC
0 Dα

t P1,N1
(τ) − ABC

0 Dα
t x̄(τ) ∥∞ =∥ ABC

0 Dα
t Q1,N1

(τ) − ABC
0 Dα

t x̄(τ) ∥∞ <
ϵ

16
.

Now, let define

LPN(x) = L


P1,N1
(τ), P2,N2

(τ), ABC
0 Dα

t P1,N1
(τ)


= ABC
0 Dα

t P1,N1
(x)

− A(τ)x(τ) − B(τ)u(τ) = F (τ),

for every τ ∈ [0, 1]. Thus, for N ≥ N1, one may find an upper bound for the following
residual:

∥LPN(x) − F (τ)∥∞ =∥L


P1,N1
(τ), P2,N2

(τ), ABC
0 Dα

t P1,N1
(τ)


− F (τ)∥∞

≤∥ ABC
0 Dα

t P1,N1
(τ) − ABC

0 Dα
t x̄(τ)∥∞

+ ∥A(τ)∥∞∥P1,N1
(τ) − x̄(τ)∥∞ + ∥B(τ)∥∞∥P2,N2

(τ) − ū(τ)∥∞

≤ ϵ

16
+ ∥A(τ)∥∞

ϵ

16∥A(τ)∥∞

+ ∥B(τ)∥∞

ϵ

16∥B(τ)∥∞

≤ ϵ.

Since the residual R(PN) := LPN(x) − F (x) is a polynomial, we can represent it by a
Bezier form. Thus we have

R(PN) :=
m
∑

i=0

di,mBi,m(x).(4.3)

Then from Lemma 1 in [10], there exists an integer M , M ≥ N , such that when
m > M , we have

∣

∣

∣

∣

∣

1

m + 1

m
∑

i=0

d2
i,m −

∫ 1

0
(R(PN))2dx

∣

∣

∣

∣

∣

< ϵ,

which gives

1

m + 1

m
∑

i=0

d2
i,m < ϵ +

∫ 1

0
(R(PN))2 dt ≤ ϵ.(4.4)
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Suppose x(τ) and u(τ) are approximated solutions of (4.1) obtained by the control-
point-based method of degree k, k ≥ m ≥ M . Let

R(x(τ), u(τ), ABC
0 Dα

t x(τ)) =L(x(τ), u(τ), Dαx(τ)) − F (τ)

=
k
∑

i=0

ci,kBi,k(x), k ≥ m ≥ M, x ∈ [0, 1].

Define the following norm for difference approximated solution (x(τ), u(τ)) and exact
solution (x̄(τ), ū(τ)):

∥(x(τ), u(τ)) − (x̄(τ), ū(τ))∥ :=
∫ 1

0
♣ ABC

0 Dα
t x(τ) − ABC

0 Dα
t x̄(τ)♣dτ

+
∫ 1

0
♣x(τ) − x̄(τ)♣dτ +

∫ 1

0
♣u(0) − ū(0)♣dτ.(4.5)

It is easy to show that

∥(x(τ), u(τ)) − (x̄(τ), ū(τ))∥(4.6)

=C(♣R(x(τ), u(τ), ABC
0 Dα

t x(τ) − x̄(τ), ū(τ), ABC
0 Dα

t x̄(τ))♣
+ ♣x(0) − x̄(0)♣ + ♣u(0) − ū(0)♣)

=
∫ 1

0

k
∑

i=0

(ci,kBi,k(t))2dx ≤ C

k + 1

k
∑

i=0

c2
i,k.(4.7)

Last inequality in (4.6) is obtained from Lemma 1 in [10] which C is a constant
positive number. Now from Lemma 4.1 and (4.3), one can easily show that:

∥(x(τ), u(τ)) − (x̄(τ), ū(τ))∥ ≤ C

k + 1

k
∑

i=0

c2
i,k

≤ C

k + 1

k
∑

i=0

d2
i,k ≤ · · · ≤ C

m + 1

m
∑

i=0

d2
i,m

≤C(ϵ) = ϵ1, m ≥ M,(4.8)

where last inequality in (4.8) is coming from (4.4). This completes the proof. □

5. Numerical Application

Now, a numerical example of ABC V-O FD is stated to illustrate the BCM. All
results are obtained by utilizing Maple 16.

Example 5.1. The following ABC V-O FD is considered (see [9])

min J [u] =
1

2

∫ 1

0
x2(τ) + u2(τ)dτ,

ABC
0 D

α(τ)
t x(τ) = u(τ) − x(τ),

x(0) = 1,
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where the exact solution with α(τ) = 1 is followed as:

xexact(τ) = cosh(
√

2τ) + ν sinh(
√

2τ),

uexact(τ) =(1 +
√

2ν) cosh(
√

2τ) + (
√

2 + ν) sinh(
√

2τ),

ν = − cosh(
√

2) +
√

2 sinh(
√

2)√
2 cosh(

√
2) + sinh(

√
2)

= −0.98,

Jexact =0.192909.

By BCM with α = 0.95 + 0.04 sin(τ), we obtain the following solution:

xapprox(τ) = − 1.383424070τ + 0.9779939940τ 2 − 0.3971018840τ 3

+ 0.08450149506τ 4 + 0.9999999998,

uapprox(τ) = − 2.365740323 − 0.06762181093τ + 2.572114069τ 2 − 8.284294539τ 3

+ 3.832909652τ 4,

Japprox =0.1929636321.

The graphs of approximated and exact solution x and u are plotted in Figs. 1, 2
(with n = 4). Table 1 shows comparison of the values of x(τ) and u(τ) for proposed
method, Chebyshev cardinal function method [9], and exact solution (with α =
0.95 + 0.04 sin(τ)).

Figure 1. The graphs of approximated and exact solution x (n = 4)
for Example 5.1
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Table 1. Comparison of the value of x(τ) and u(τ) for proposed
method, Chebyshev cardinal function method, and exact solution for
Example 5.1

τ x(τ) in proposed method x(τ) in Chebyshev x(τ) in exact u(τ) in proposed method u(τ) in Chebyshev u(τ) in exact
0.2 0.7593933324 0.711981 0.759393 −0.2768738382 −0.305356 −0.276873
0.4 0.5798581284 0.549930 0.579944 −0.1854511779 −0.210872 −0.190227
0.6 0.4472007827 0.430800 0.447200 −0.1141705380 −0.129592 −0.118900
0.8 0.3504725480 0.343133 0.350472 −0.05714883910 −0.061000 −0.057148
1.0 0.2819695347 0.280370 0.281969 0.0 0.012271 0.0

Remark 5.1. In science, some problems such as earthquake engineering, biomedical
engineering, can be modeled by fractional integro-differential equations (FIDEs). For
analyzing these systems, it is required to obtain the solution of FIDEs. Finding the
solution of them is not easy. For solving FIDEs, various techniques are suggested such
as, Adomian decomposition method (ADM) [12,13], Laplace decomposition method
(LDM) [14], Taylor expansion method (TEM) [15], Spectral collocation method (SCM)
[16]. In this paper, the following FVFIDEs are considered:

µ2(x)y′′ + µ1(x)y′ + µα(x)Dα
x y + µ0(x)y =g(x) + λ1

∫ x

a
K1(x, t)y(t)dt

+ λ2

∫ b

a
K2(x, t)y(t)dt,

0 < α ≤ 1, λ1, λ2 ∈ R,(5.1)

where Dα
x is the Caputo sense fractional derivative. Here, the given functions g, µi,

for i = 1, 2, 3, µα, K1 and K2 are supposed to be sufficiently smooth. Such equations

Figure 2. The graphs of approximated and exact solution u (n = 4)
for Example 5.1
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arise in the mathematical modeling of various physical phenomena, such as heat
conduction in materials with memory (see [17]). In this work, one may utilize Bezier
curves technique for solving FVFIDEs.

6. Solving FVFIDEs Based on Bezier Curves

Several definitions of a fractional derivative of order α > 0 existed.

Definition 6.1. The Caputo’s fractional derivative of order α is stated in [18]

(Dαy)(x) =
1

Γ(n1 − α)

∫ x

0
(x − s)−α−1+n1y(n1)(s)ds, n1 − 1 ≤ α ≤ n1, n1 ∈ N,

where α > 0 and n1 is the smallest integer greater than α.

Definition 6.2. The Riemann-Liouville fractional integer operator of order α is
presented in [18]

Iαy(x) =







1
Γ(α)

∫ x
0 (x − s)α−1y(s)ds, α > 0,

y(x), α = 0.

6.1. Function approximation. Utilizing Bezier curves, this technique is to approxi-
mate the solutions y(x) where y(x) is given in (6.2). We define the Bezier polynomials
of degree n that approximate over the interval x ∈ [x0, xf ] as follows:

y ≈ P ny =
n
∑

i=0

ciBi,n



x − x0

h



= CT B(x),

where h = xf − x0,

CT =[c0, c1, . . . , cn]T ,

BT (x) =[B0,n(x), B1,n(x), . . . , Bn,n(x)]T ,

Bi,n



x − x0

h



=



n

i



1

hn
(xf − x)n−i(x − x0)

i,(6.1)

is the Bernstein polynomial with degree n for x ∈ [x0, xf ], and cr is the control point
[6]. Our technique is utilizing Bezier curves to approximate the solution y(x) in Eq.
(5.1). Define the Bezier polynomials of degree n over the interval [x0, xf ] = [0, 1] as
follows:

yn(x) ≃
n
∑

i=0

ciBi,n(x), 0 ≤ x ≤ 1,(6.2)

where

Bi,n(x) =



n

i



(1 − x)n−ixi, i = 0, 1, . . . , n.



682 F. GHOMANJANI

7. Problem Statement for FVFIDEs

From (5.1), one may have

µα(x)Dα
x y =g(x) + λ1

∫ x

a
K1(x, t)y(t)dt

+ λ2

∫ b

a
K2(x, t)y(t)dt − (µ2(x)y′′ + µ1(x)y′ + µ0(x)y) , 0 < α ≤ 1.

By utilizing Bezier curve method, one may have

yn(x) ≃
n
∑

i=0

ciBi,n(x), 0 ≤ x ≤ 1.

Therefore,


n
∑

i=0

ciBi,n(x)



′

=n
n−1
∑

i=0

(x)(ci+1 − ci),



n
∑

i=0

ciBi,n(x)



′′

=n(n − 1)
n−2
∑

i=0

Bi,n−2(x)(ci+2 − 2ci+1 + ci),

∂

∂ci



n
∑

i=0

ciBi,n(x)



′′

=
∂

∂ci



n
∑

i=2

Bi+2,n(x)(n + 2)(n + 1)ci

−2
n−1
∑

i=1

Bi+1,n−1(x)n(n + 1)ci +
n−2
∑

i=0

Bi,n−2(x)n(n + 1)ci



=



n
∑

i=2

Bi+2,n(x)(n + 2)(n + 1) − 2
n−1
∑

i=1

Bi+1,n−1(x)n(n + 1)

+
n−2
∑

i=0

Bi,n−2(x)n(n + 1)



.

Now

Dα



n
∑

i=0

ciBi,n(x)



=g(x) + λ1

∫ x

a
K1(x, t)



n
∑

i=0

ciBi,n(t)



dt

+ λ2

∫ b

a
K2(x, t)



n
∑

i=0

ciBi,n(t)



dt

−


µ2(x)y′′ + µ1(x)y′ + µ0(x)



n
∑

i=0

ciBi,n(x)



.

One may define

R(x, c0, c1, . . . , n) =
n
∑

i=0

ciD
αBi,n(x) −



g(x) + λ1

∫ x

a
K1(x, t)y(t)dt

+λ2

∫ b

a
K2(x, t)y(t)dt − (µ2(x)y′′ + µ1(x)y′ + µ0(x)y)



.



A NEW APPROACH FOR SOLVING A NEW CLASS OF NONLINEAR OPTIMAL... 683

Also define the following equation

S(x, c0, c1, . . . , cn) =
∫ 1

0
R(x, c0, c1, . . . , n)2w1(x)dx, w1(x) = 1,

now, we have

S(x, c0, c1, . . . , cn) =
∫ 1

0



n
∑

i=0

ciD
αBi,n(x) −



g(x) + λ1

∫ x

a
K1(x, t)y(t)dt

+ λ2

∫ b

a
K2(x, t)y(t)dt − (µ2(x)y′′ + µ1(x)y′ + µ0(x)y)

2

dx.(7.1)

Then

∂S

∂ci

= 0, 0 ≤ i ≤ n.(7.2)

Using (7.1) and (7.2), we have

∫ 1

0



n
∑

i=0

ciD
αBi,n(x) −



g(x) + λ1

∫ x

a
K1(x, t)y(t)dt

+ λ2

∫ b

a
K2(x, t)y(t)dt − (µ2(x)y′′ + µ1(x)y′ + µ0(x)y)

2

dx × (DαBi,n(x)

−λ1

∫ x

a
K1(x, t)Bi,n(t)dt − λ2

∫ b

a
K2(x, t)Bi,n(t)dt − µ2(x) (Bi,n(x))′′



= 0.(7.3)

By (7.3), one can obtain a system of n + 1 linear equations with n + 1 unknown
coefficients ci. Also by utilizing many subroutine algorithm for solving this linear
equations, one can find the unknown coefficients ci, i = 0, 1, . . . , n.

8. Numerical Applications for FVFIDEs

In this section, we present some numerical examples to illustrate the proposed
method.

Example 8.1. Consider the following problem (see [19])

y′′(x) + Dα
x y(x) − g(x) + 2

∫ x

0
K1(x, t)y(t)dt −

∫ 1

0
K2(x, t)y(t)dt = 0,

y(0) = 0, y(1) = 0,

g(x) = − 1

30
− 6x +

181x2

20
+ 4x3 − x5

10
+

x6

15
,

K1(x, t) = x − t, K2(x, t) = x2 − t,

yexact(x) = x3(x − 1),
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using the described technique, one may have

yapprox(x) = − 5.551115125 × 10−15x(1 − x)4 − 1.110223025 × 10−14x2(1 − x)3

− 1.000000000x3(1 − x)2 − 1.000000000x4(1 − x),

where the absolute error of the proposed method is zero (see Table 2). One may note
that Alkan and Hatipoglu [19] obtained the absolute error around 10−3, with N = 32.
The graphs of approximated solution and exact solution y(x) are plotted in Figure 3.

Figure 3. The graphs of approximated and exact solution y(x) for
Example 8.1

Table 2. Exact, estimated values and absolute error of y(x) for Ex-
ample 8.1

x Exact y(x) Present y(x) Absolute error
0.1 0.0009000000000 0.0009000000000 0.0
0.2 0.006400000000 0.006400000000 0.0
0.3 0.01890000000 0.01890000000 0.0
0.4 0.03840000000 0.03840000000 0.0
0.5 0.06250000000 0.06250000000 0.0
0.6 0.08640000000 0.08640000000 0.0
0.7 0.1029000000 0.1029000000 0.0
0.8 0.1024000000 0.1024000000 0.0
0.9 0.07290000000 0.07290000000 0.0
1.0 0.000000000000 0.000000000000 0.0
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Example 8.2. Consider the following LFIDE (see [19])

y′′(x) +
1

x
D0.5

x y(x) +
1

x2
− g(x) −

∫ x

0
K1(x, t)y(t)dt −

∫ 1

0
K2(x, t)y(t)dt = 0,

y(0) = 0, y(1) = 0,

g(x) = 5 + 1.50451x0.5− 13x − 1.80541x1.5 − x2 + x3−2.0674 cos(x) + 5.95385 sin(x),

K1(x, t) = sin(x − t), K2(x, t) = cos(x − t),

yexact(x) = x2(1 − x),

using the described technique, one may have

yapprox(x) = x2(1 − x)3 + 2x3(1 − x)2 + x4(1 − x),

where the absolute error is zero (see Table 3). One may note that Alkan and Hati-
poglu [19] obtained the absolute error around 10−7, with N = 64. The graphs of
approximated and exact solution y(x) are plotted in Fig. 4.

Figure 4. The graphs of approximated and exact solution y(x) for
Example 8.2

Example 8.3. Consider the following fractional integro-differential equation (see [17])

Dαy(x) − x(1 + ex) − 3ex − y(x) +
∫ x

0
y(t)dt = 0, α = 4,

y(0) = 1, y′′(0) = 2, y(1) = 1 + e, y′′(1) = 3e,

yexact(x) = 1 + xex,
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using the described technique, one may have

yapprox(x) = − (1 − x)5 + 5.999923400x(1 − x)4 + 14.99969361x2(1 − x)3

+ 19.50425782x3(1 − x)2 + 13.15738369x4(1 − x) + x5(1 + e),

where the absolute error is less 10−5 (see Table 4). The graphs of approximated and
exact solution y(x) are plotted in Figure 5.

Figure 5. The graphs of approximated and exact solution y(x) for
Example 8.3

Table 3. Exact, estimated values and absolute error of y(x) for Ex-
ample 8.2

x Exact y(x) Present y(x) Absolute error
0.1 0.0009000000000 0.0009000000000 0.0
0.2 0.03200000000 0.03200000000 0.0
0.3 0.06300000000 0.06300000000 0.0
0.4 0.09600000000 0.09600000000 0.0
0.5 0.1250000000 0.1250000000 0.0
0.6 0.1440000000 0.1440000000 0.0
0.7 0.1470000000 0.1470000000 0.0
0.8 0.1280000000 0.1280000000 0.0
0.9 0.08100000000 0.08100000000 0.0
1.0 0.000000000000 0.000000000000 0.0
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Table 4. Exact, estimated values and absolute error of y(x) for Ex-
ample 8.3

x Exact y(x) Present y(x) Absolute error
0.1 1.110517092 1.110512538 0.4554981720×10−5

0.2 1.244280552 1.244280551 3.150000000×10−10

0.3 1.404957642 1.404964146 0.6503142000 ×10−5

0.4 1.596729879 1.596736160 0.6280720000 ×10−5

0.5 1.824360636 1.824360635 3.200000000×10−10

0.6 2.093271280 2.093271279 1.000000000×10−10

0.7 2.409626895 2.409649925 0.2303010000×10−4

0.8 2.780432742 2.780504994 0.7225290000×10−4

0.9 3.213642800 3.213749965 0.1071650000×10−3

1.0 3.718281828 3.718281828 0.0

Example 8.4. We consider the following fourth-order, nonlinear fractional integro-
differential equation

Dαy(x) = 1 +
∫ x

0
e−ty2(t)dt, 0 < x < 1, 3 < α ≤ 4,

y(0) = 1, y(1) = e, y′′(0) = 1, y′′(1) = e,

yexact(x) = ex,

using this method with n = 6, we have

yapprox(x) =1 + 0.002209653x6 + 0.00723447x5 + 0.50002963x2 + 0.1664541100x3

+ 0.04235543000x4 + 0.9999985750x.

From Table 5, we see that, the results obtained with the present method are in good
agreement with the results of Momani and Noor [17] and Legendre method [17].

Table 5. Comparison of the value of y(x) for Momani and Noor [17],
Legendre method [17], stated method, exact value and absolute error
of our method for Example 8.4 with α = 4

x Momani and Noor Legendre stated method exact value our absolute error
0.1 1.10516012 1.10517092 1.105170918 1.105170918 2.818280000 × 10−10

0.2 1.22138187 1.22140276 1.221402758 1.221402758 3.700000000 × 10−11

0.3 1.34982923 1.34985881 1.349858768 1.349858808 3.954700000 × 10−8

0.4 1.49178854 1.49182470 1.491824662 1.491824698 3.563000000 × 10−8

0.5 1.64868133 1.64872127 1.648721271 1.648721271 4.400000000 × 10−10

0.6 1.82207855 1.82211880 1.822118800 1.822118800 0.0
0.7 2.01371621 2.01375271 2.013752666 2.013752707 4.120000000 × 10−8

0.8 2.22551265 2.22554093 2.225540928 2.225540928 5.000000000 × 10−10

0.9 2.45958740 2.45960311 2.459603313 2.459603111 2.020000000 × 10−7

1.0 2.71828183 2.71828183 2.718281828 2.718281828 0.0

9. Conclusions

This paper deals with the approximate solution of ABC V-O fractional derivative
and FVFIDEs via BCM. The solution obtained using the suggested method is in very
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good agreement with the already existing ones and state that this approach can solve
the problem effectively. The stated technique reduces the CPU time and the computer
memory comparing with existing methods (see some examples). Although the stated
technique is very easy to utilize and the obtained results are satisfactory.

Acknowledgements. The authors would like to thank the anonymous reviewer of
this paper for his (her) careful reading, constructive comments and nice suggestions
which have improved the paper very much.
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APPROXIMATION BY AN EXPONENTIAL-TYPE COMPLEX

OPERATORS

SORIN G. GAL1,2 AND VIJAY GUPTA3

Abstract. In the present paper, we discuss the approximation properties of a
complex exponential kind operator. Upper estimate, Voronovskaya-type formula
and exact estimate are obtained.

1. Introduction

In the year 1978, Ismail [10] and Ismail and May [11] introduced and studied some
exponential type operators. A type of the operators constructed in [11, (3.11)] is the
following sequence

(1.1) Qn(f, x) =
∫ ∞

0
W (n, x, t)f(t)dt, x ∈ (0, ∞), n ∈ N,

where the kernel is given by

W (n, x, t) =
(

n

2π

)1/2

exp (n/x) t−3/2 exp
(

−
nt

2x2
−

n

2t

)

.

The kernel of these operators satisfies the partial differential equation

(1.2)
∂

∂x
W (n, x, t) =

n(t − x)

x3
W (n, x, t).

Due to its complicated behavior in integration, these operators were not previously
much studied by researchers. Recently in case of real variables these operators were
studied by Gupta [8], who established some direct results. The asymptotic formula
for certain exponential type operators are discussed in [1].

Key words and phrases. Complex exponential kind operator, approximation properties, upper
estimate, Voronovskaya-type formula, exact estimate.
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Also, in the recent years, the study of approximation by complex operators on
compact disks is an active area of research, see for instance [2–4,6, 7, 9] and [12] etc.

In this paper, we study the approximation properties of the complex variant in (1.1),
obtained by replacing x with z in the formula (1.1). Section 2 contains some auxiliary
results used in the next sections. Section 3 deals with upper estimate, while in Section
4, we study a Voronovskaya-type result and the exact estimate in approximation.

2. Auxiliary Results

The proofs of our main results require three additional lemmas, as follows.

Lemma 2.1. If we denote Tn,m(x) = Qn(em, x), em(t) = tm, then using Mapple, we

find that Tn,0(x) = 1 and there holds the following recurrence relation:

nTn,m+1(x) = x3[Tn,m(x)]′ + nxTn,m(x), n, m ∈ N.

In particular

Tn,0(x) =1,

Tn,1(x) =x,

Tn,2(x) =x2 +
x3

n
,

Tn,3(x) =x3 +
3x4

n
+

3x5

n2
,

Tn,4(x) =x4 +
6x5

n
+

15x6

n2
,

Tn,5(x) =x5 +
10x6

n
+

45x7

n2
+

105x8

n3
+

105x9

n4
,

Tn,6(x) =x6 +
15x7

n
+

105x8

n2
+

420x9

n3
+

945x10

n4
+

945x11

n5
.

Proof. By definition

Tn,m(x) =
(

n

2π

)1/2

exp(n/x)
∫ ∞

0
t−3/2 exp

(

−
nt

2x2
−

n

2t

)

tmdt.

Thus, differentiating w.r.t x both the sides and using (1.2), we have

x3[Tn,m(x)]′ =
∫ ∞

0
x3[W (n, x, t)]′tmdt

=
∫ ∞

0
n(t − x)W (n, x, t)tmdt

=nTn,m+1(x) − nxTn,m(x).

This completes the proof of lemma, other consequences follow from the recurrence
relation. □
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Lemma 2.2. Suppose that f : C → C, f(z) =
∑∞

k=0 ckzk, is an entire function

satisfying the condition ♣ck♣ ≤ M Ak

k!
, k = 0, 1, . . . , with M > 0 and A ∈ (0, 1/2)

(which implies that f is of exponential growth since ♣f(z)♣ ≤ M exp(A♣z♣) for all

z ∈ C). Then Qn(f, z) is well defined for any n ∈ N and any z ∈ C satisfying

(2.1) Re (z2) > 0 and
♣z♣2

Re (z2)
<

1

2A
.

Proof. Since ♣ exp(z)♣ = exp(Re (z)), Re (1/z) = Re (z)/♣z♣ and Re (1/z2) =
Re (z2)/♣z♣2, we get

♣Qn(f, z)♣

≤M
(

n

2π

)1/2

♣e(n/z)♣
∫ ∞

0
t−3/2 exp(−n/(2t) + At)♣ exp(−nt/(2z2))♣dt

=M exp(nRe (z)/♣z♣)
∫ ∞

0
t−3/2 exp(−n/(2t)) exp(−t[nRe (z2)/(2♣z♣2) − A])dt.

By the hypothesis on z, we easily seen that nRe (z2)/(2♣z♣2) − A > 0 for all n ≥ 1.
Therefore, for fixed z as in the hypothesis and denoting nRe (z2)/(2♣z♣2) − A with
C > 0, we have to deal with the existence of the integral

I :=
∫ ∞

0
t−3/2 exp(−n/(2t)) exp(−Ct)dt.

Changing the variable t = 1
v
, we easily obtain

I =
∫ ∞

0
v−1/2 exp(−nv/2) exp(−C/v)dv < ∞.

Indeed, for K > 0 an arbitrary fixed constant, we have

I =
∫ K

0
v−1/2 exp(−nv/2) exp(−C/v)dv +

∫ ∞

K
v−1/2 exp(−nv/2) exp(−C/v)dv

:=I1 + I2,

where

I1 ≤
∫ K

0
exp(−nv/2)v−1/2 v

C
dv ≤

1

C

∫ K

0
v1/2 exp(−nv/2)dv < ∞

and I2 ≤ 1√
K

∫∞
K e(−nv/2)dv < ∞. □

Lemma 2.3. Suppose that f is an entire function, i.e., f(z) =
∑∞

k=0 ckzk for all

z ∈ C such that there exist M > 0 and A ∈ (0, 1), with the property ♣ck♣ ≤ M Ak

k!
for

all k = 0, 1, . . . (which implies ♣f(z)♣ ≤ M exp(A♣z♣) for all z ∈ C).
Then for all n ∈ N and z satisfying (2.1), we have

Qn(f, z) =
∞
∑

k=0

ckQn(ek, z).
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Proof. Since we can write

Qn(f ; z) =
(

n

2π

)1/2

exp(n/z)
∫ ∞

0
t−3/2 exp

(

−
nt

2z2
−

n

2t

)

 ∞
∑

k=0

cktk



dt,

if above the integral would commute with the infinite sum, then we would obtain

Qn(f, z) =
∞
∑

k=0

ck

(

n

2π

)1/2

exp(n/z)
∫ ∞

0
t−3/2 exp

(

−
nt

2z2
−

n

2t

)

tkdt

=
∞
∑

k=0

ckQn(ek, z).

It is well-known by the Fubini type result that a sufficient condition for the commu-
tativity is that

∫ ∞

0
t−3/2

∣

∣

∣

∣

exp
(

−
nt

2z2
−

n

2t

)∣

∣

∣

∣

 ∞
∑

k=0

♣ck♣tk



dt < ∞.

Applied to our case, for n ∈ N and z satisfying (2.1), we get

∫ ∞

0
t−3/2

∣

∣

∣

∣

exp
(

−
nt

2z2
−

n

2t

)∣

∣

∣

∣

 ∞
∑

k=0

♣ck♣tk



dt

≤M
∫ ∞

0
t−3/2 exp

(

−
n

2t

)

exp


−ntRe (z2)/(2♣z♣2)
)

 ∞
∑

k=0

Aktk

k!



dt

=M
∫ ∞

0
t−3/2 exp

(

−
n

2t

)

exp


−ntRe (z2)/(2♣z♣2)
)

eAtdt

=M
∫ ∞

0
t−3/2 exp

(

−
n

2t

)

exp


−ntRe (z2)/(2♣z♣2) + At
)

dt < ∞,

by the proof of Lemma 2.2. □

Remark 2.1. It is easy to see that from geometric point of view, the conditions on z in
(2.1) means that z belongs to two symmetric cones with respect to origin (but without
containing the origin) containing the x axis, which are included in the two symmetric
cones with respect to origin between the first and second bisectrix, containing the x
axis. Indeed, since ♣z♣2 = x2 + y2 and Re (z2) = x2 − y2, simple calculations show that
the condition (2.1) satisfied by z = x + iy can easily be written under the form

√

(

1 +
1

2A

)

♣y♣ <

√

(

1

2A
− 1

)

♣x♣,

that is

♣y♣

♣x♣
<

√

1/(2A) − 1
√

1/(2A) + 1
< 1.
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3. Upper Estimate

The first main result concerns an upper estimate in approximation by Qn(f, z).

Theorem 3.1. Suppose that f is an entire function, i.e., f(z) =
∑∞

k=0 ckzk for all

z ∈ C such that there exist M > 0 and A ∈ (0, 1/2), with the property ♣ck♣ ≤ M Ak

k!
, for

all k = 0, 1, . . . (which implies ♣f(z)♣ ≤ MeA♣z♣ for all z ∈ C). Consider 1 ≤ r < 1
A

.

Then for all n ≥ r2, ♣z♣ ≤ r and z satisfying (2.1), the following estimate hold:

♣Qn(f, z) − f(z)♣ ≤
Cr,M,A

n
,

where Cr,M,A = Mr
∑∞

k=2(k + 1)(Ar)k < ∞.

Proof. By Lemma 2.1 written with x replaced by z, we easily obtain

n[Tn,m+1(z) − zm+1] = z3[Tn,m(z) − zm]′ + nz[Tm,n(z) − zm] + mzm+2.

Applying the Bernstein’s inequality on ♣z♣ ≤ r to the polynomial of degree m, Tn,m(z)−
zm, we get ∥[Tn,m(z)−zm]′∥r ≤ m

r
∥Tn,m(z)−zm∥r, where ∥P∥r = sup♣z♣≤r ♣P (z)♣. Then,

denoting em = zm, from the above recurrence we immediately obtain

∥Tn,m+1 − em+1∥r ≤



r +
mr2

n



∥Tm,n − em∥r +
mrm+2

n
.

In what follows we prove by mathematical induction with respect to m that for
n ≥ r2, this recurrence implies

♣♣Tn,m − em♣♣r ≤
(m + 1)!

n
rm+1, for all m ≥ 0.

Indeed for m = 0 and m = 1 it is trivial, as the left-hand side is zero. Suppose that
it is valid for m, the above recurrence relation implies that

♣♣Tn,m+1 − em+1♣♣r ≤



r +
r2m

n



(m + 1)!

n
rm+1 +

m

n
rm+2.

It remains to prove that


r +
r2m

n



(m + 1)!

n
rm+1 +

m

n
rm+2 ≤

(m + 2)!

n
rm+2,

or after simplifications, equivalently to


r +
r2m

n



(m + 1)! + rm ≤ (m + 2)!r,

for all m ∈ N and r ≥ 1.
Since n ≥ r2, we get



r +
r2m

n



(m + 1)! + rm ≤ (r + m) (m + 1)! + rm,
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it is good enough if we prove that

(r + m) (m + 1)! + rm ≤ (m + 2)!r.

But this last inequality is obviously equivalent with

m(m + 1)! + rm ≤ rm(m + 1)! + r(m + 1)!,

which is clearly valid for all m ≥ 1 (and fixed r ≥ 1).
Finally, taking into account Lemma 2.3, for all n ≥ r2, we obtain

♣Qn(f, z) − f(z)♣ ≤
∞
∑

k=0

♣ck♣ · ♣Qn(ek, z) − ek(z)♣

≤
M

n
·

∞
∑

k=2

Ak

k!
· (k + 1)!rk+1 =

Cr,M,A

n
,

where Cr,M,A = Mr
∑∞

k=2(k + 1)(Ar)k < ∞. □

Remark 3.1. The smaller A is, the larger is the portion of the symmetrical cones where
the estimation in Theorem 3.1 takes place. This happens because of the intersection
between the symmetrical cones and the disk ¶♣z♣ ≤ r♢ with 1 ≤ r < 1

A
, where if

A ↘ 0 then r ↗ ∞.

4. Voronovskaya Type Formula and Exact Estimate

The following estimate is a Voronovskaja-kind quantitative result.

Theorem 4.1. Suppose that f is an entire function, i.e., f(z) =
∑∞

k=0 ckzk for all

z ∈ C such that there exist M > 0 and A ∈ (0, 1/2), with the property ♣ck♣ ≤ M Ak

k!
,

for all k = 0, 1, . . . (which implies ♣f(z)♣ ≤ M exp(A♣z♣) for all z ∈ C). Consider

1 ≤ r < 1
A

.

Then for all n ≥ r2, ♣z♣ ≤ r and z satisfying (2.1), the following estimate holds:
∣

∣

∣

∣

∣

Qn(f, z) − f(z) −
z3f ′′(z)

2n

∣

∣

∣

∣

∣

≤
Er,M,A(f)

n2
,

where

Er,M,A(f) = 3Mr2
∞
∑

k=2

(k + 1)2(Ar)k < ∞.

Proof. Everywhere in the proof consider z and n as in hypothesis.
By the proof of Lemma 2.3, we can write Qn(f, z) =

∑∞
k=0 ck Qn(ek, z). Also, since

z3f ′′(z)

2n
=

z3

2n

∞
∑

k=2

ckk(k − 1)zk−2 =
1

2n

∞
∑

k=2

ck k(k − 1) zk+1,

we get
∣

∣

∣

∣

∣

Qn(f, z) − f(z) −
z3 f ′′(z)

2n

∣

∣

∣

∣

∣

≤
∞
∑

k=2

♣ck♣

∣

∣

∣

∣

∣

Tn,k(z) − ek(z) −
k(k − 1)zk+1

2n

∣

∣

∣

∣

∣

.
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By Lemma 2.1, we have

Tn,k(z) =
z3

n
T ′

n,k−1(z) + z Tn,k−1(z).

If we denote

Jn,k(z) = Tn,k(z) − ek(z) −
k(k − 1)zk+1

2n
,

then it is obvious that Jn,k(z) is a polynomial of degree less than or equal to k + 2
and by simple computation and the use of above recurrence relation, we are led to

Jn,k(z) =
z3

n
J ′

n,k−1(z) + zJn,k−1(z) + Xn,k(z),

where after simple computation, we have

Xn,k(z) =
k(k − 1)(k − 2)zk+2

2n2
.

Using the estimate in the proof of Theorem 3.1, we have

♣Tn,k(z) − ek(z)♣ ≤
(k + 1)!

n
· rk+1.

It follows

♣Jn,k(z)♣ ≤
r3

n
♣J ′

n,k−1(z)♣ + r ♣Jn,k−1(z)♣ + ♣Xn,k(z)♣,

where

♣Xn,k(z)♣ ≤
k(k − 1)(k − 2)rk+2

2n2
.

Now we shall find the estimation of ♣J ′
n,k−1(z)♣. Taking into account the fact that

Jn,k−1(z) is a polynomial of degree ≤ k + 1, we have

♣J ′
n,k−1(z)♣ ≤

k

r
♣♣Jn,k−1(z)♣♣r

≤
k

r



♣♣Tn,k−1(z) − ek−1(z)♣♣r +
(k − 1)(k − 2)rk

2n

]

≤
(k + 1)!

n
· rk−1 +

k(k − 1)(k − 2)rk−1

2n
.

Thus,

r3

n
♣J ′

n,k−1(z)♣ ≤
1

n



(k + 1)!

n
rk+2 +

k(k − 1)(k − 2)rk+2

2n

]

and

♣Jn,k(z)♣ ≤r♣Jn,k−1(z)♣ +
1

n



(k + 1)!

n
rk+2 +

k(k − 1)(k − 2)rk+2

2n

]

+
k(k − 1)(k − 2)rk+2

2n2
.
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This immediately implies

♣Jn,k(z)♣ ≤ r♣Jn,k−1(z)♣ +
3

n2
(k + 1)!rk+2.

By writing this inequality for k = 1, 2, 3, . . . , we easily obtain step by step the following

♣Jn,k(z)♣ ≤
3

n2
rk+2





k+1
∑

j=1

j!



 ≤
3

n2
rk+2(k + 1)!(k + 1).

In conclusion,
∣

∣

∣

∣

∣

Qn(f, z) − f(z) −
z3 f ′′(z)

2n

∣

∣

∣

∣

∣

≤
3

n2
·

∞
∑

k=2

♣ck♣rk+2 · (k + 1)!(k + 1)

≤
3Mr2

n2
·

∞
∑

k=2

(k + 1)2(Ar)k.

This completes the proof of theorem. □

Using the above Voronovskaja’s theorem, we obtain the following lower order in
approximation.

Theorem 4.2. Under the hypothesis in Theorem 4.1, if f is not a polynomial of

degree ≤ 1, then for all n ≥ r2 we have

♣♣Qn(f, ·) − f ♣♣∗r ≥
Kr,M,A(f)

n
,

where ∥F∥∗
r = sup¶♣F (z)♣ : ♣z♣ ≤ r and z satisfies (2.1)♢ and Kr,M,A(f) is a constant

which depends only on f, M, A and r.

Proof. For all n ≥ r2, ♣z♣ ≤ r and z satisfying (2.1), we have

Qn(f, z) − f(z) =
1

n



0.5 z3 f ′′(z) +
1

n

{

n2



Qn(f, z) − f(z) −
z3 f ′′(z)

2n

}]

.

Also, we have

♣♣F + G♣♣∗r ≥ ♣♣♣F ♣♣∗r − ♣♣G♣♣∗r♣ ≥ ♣♣F ♣♣∗r − ♣♣G♣♣∗r.

It follows

♣♣Qn(f, ·) − f ♣♣∗r ≥
1

n



♣♣ 0.5 e3 f ′′ ♣♣∗r −
1

n

{

n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Qn(f, ·) − f −
e3 f ′′

2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

r

}]

.

Taking into account that by hypothesis, f is not a polynomial of degree ≤ 1, we get
♣♣0.5 e3 f ′′♣♣∗r > 0. Indeed, supposing the contrary it follows that z3 f ′′(z) = 0, which
by the fact that f is entire function, clearly implies f ′′(z) = 0, i.e., f is a polynomial
of degree ≤ 1, a contradiction with the hypothesis.

Now by Theorem 4.1, we have

n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Qn(f, z) − f(z) −
z3 f ′′(z)

2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

r

≤ Er,M,A(f).
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Therefore, there exists an index n0 depending only on f and r, such that for all n ≥ n0,
we have

♣♣ 0.5 e3 f ′′ ♣♣∗r −
1

n

{

n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Qn(f, z) − f(z) −
0.5 z3 f ′′(z)

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

r

}

≥
1

2
♣♣ 0.5e3 f ′′ ♣♣∗r ,

which immediately implies

♣♣Qn(f, ·) − f ♣♣∗r ≥
1

2n
♣♣ 0.5 e3 f ′′ ♣♣∗r, for all n ≥ n0.

For n ∈ ¶1, 2, . . . , n0 − 1♢ we obviously have

♣♣Qn(f, ·) − f ♣♣∗r ≥
Mr,n(f)

n
,

with Mr,n(f) = n♣♣Qn(f, ·) − f ♣♣∗r > 0. Indeed, if we would have ♣♣Qn(f, ·) − f ♣♣∗r = 0,
then would follow Qn(f, z) = f(z) for all ♣z♣ ≤ r, z satisfying (2.1), which is valid
only for f a polynomial of degree ≤ 1, contradicting the hypothesis on f . Hence, we

obtain ♣♣Qn(f, ·) − f ♣♣∗r ≥
Kr,M,A(f)

n
for all n, where

Kr,M,A(f) = min


Mr,1(f), Mr,2(f), . . . , Mr,n0−1(f),
1

2
♣♣ 0.5 e3 f ′′ ♣♣∗r



,

which completes the proof. □

Combining Theorem 3.1 with Theorem 4.2, we immediately get the following exact
estimate.

Corollary 4.1. Under the hypothesis in Theorem 4.1, if f is not a polynomial of

degree ≤ 1, then we have

♣♣Qn(f, ·) − f ♣♣∗r ∼
1

n
, n ∈ N,

where the symbol ∼ represents the well-known equivalence between the orders of ap-

proximation.

Remark 4.1. Particular cases of the exponential-type operators studied in the real
case in [11], are the Bernstein polynomials, the operators of Szász, of Post-Widder, of
Gauss-Weierstrass, of Baskakov, to mention only a few. In the complex variable case,
only the approximation properties of the operators of Bernstein, Szász, Baskakov and
Post-Widder were already studied, see, e.g., [5, 7, 9]. It remains as open question to
use the method in this paper for other complex exponential-type operators, too.

Acknowledgements. The authors are thankful to the reviewers for helpful remarks
and suggestions which lead to essential improvement of the whole manuscript.
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ON THE GENERALIZATION OF FRACTIONAL KINETIC

EQUATION COMPRISING INCOMPLETE H-FUNCTION

KAMLESH JANGID1, S. D. PUROHIT1, RITU AGARWAL2∗, AND RAVI P. AGARWAL3

Abstract. In the present work, a novel and even more generalized fractional ki-
netic equation has been formulated in terms of polynomial weighted incomplete
H-function, incomplete Fox-Wright function and incomplete generalized hyperge-
ometric function, considering the importance of the fractional kinetic equations
arising in the various science and engineering problems. All the derived findings are
of natural type and can produce a variety of fractional kinetic equations and their
solutions.

1. Introduction and Mathematical Preliminaries

In order to explain the memory effects of complicated systems, the fact that frac-
tional derivatives add a convolution integral with a power-law memory kernel or
exponential-law memory kernel strengthens the value of fractional differential equa-
tions. It can also be shown that in the last few decades, very fascinating and revolu-
tionary applications of fractional calculus operators have been developed in physics,
chemistry, biology, engineering, finance and other fields of research. Some of the
applications include: diffusion processes, mechanics of materials, combinatorics, in-
equalities, signal processing, image processing, advection and dispersion of solutes in
porous or fractured media, modeling of viscoelastic materials under external forces,
bioengineering, relaxation and reaction kinetics of polymers, random walks, mathe-
matical finance, modeling of combustion, control theory, heat propagation, modeling

Key words and phrases. Fractional kinetic equation, fractional calculus, incomplete H-functions,
incomplete Fox-Wright functions, incomplete generalized hypergeometric functions.
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of viscoelastic materials, in biological systems and many more. The recent work [1–4],
and references therein, can be referred to for further information.

Because of the importance in astrophysics, control systems, and mathematical
physics, the research on the fractional kinetic equations and their solution has at-
tracted interest from many researchers [5–12]. The fractional kinetic equation has
indeed been commonly used to test various physical phenomena regulating the dif-
fusion in porous media, reactions and relaxation mechanisms in complex structures.
As a consequence, a significant number of research papers (see [13–20]) focused on
the solution of these equations including generalized Mittag-Leffler function, Bessel’s
function, Struve function, G-function, H-function, and Aleph-function have recently
been written. In this new fractional generalization of the kinetic equation, use of
the incomplete special functions gives a different dimension to this study. The equa-
tion involves a family of polynomials, incomplete H-function, incomplete Fox-Wright
function and incomplete generalized hypergeometric function. For these fractional
kinetic equations, the Laplace transformation technique is used to derive the solution.
Special cases are also illustrated in brief.

Haubold and Mathai [16] set the fractional differential equation within the rate of
change of reaction, N = N(t), the rate of destruction, δ(Nt), and the rate of growth,
p(Nt), as follows:

(1.1)
dN

dt
= −δ(Nt) + p(Nt),

where Nt is given by Nt(t
∗) = N(t − t

∗), t∗ > 0.
In addition, Haubold and Mathai [16] gave the limiting case of (1.1) when N(t) in

the quantity of spatial fluctuations or homogeneities is ignored and given as

(1.2)
dNj

dt
= −cj Nj(t),

where Nj(t = 0) = N0 is the amount of density of species j at time t = 0, cj > 0. If
the index j is dropped and the typical kinetic equation (1.2) is integrated, we receive

(1.3) N(t) − N0 = −c 0D
−1
t
N(t),

where 0D
−1
t is the specialized case of the Riemann-Liouville fractional integral operator

0D
−ν
t lay it out as

(1.4) 0D
−ν
t

f(t) =
1

Γ(ν)

∫

t

0
(t − u)ν−1f(u)du, t > 0, Re (ν) > 0.

Haubold and Mathai [16] gave the fractional thought to the classical kinetic equation
by considering fractional derivative rather than the total derivative in (1.2)

(1.5) N(t) − N0 = −cν
0D

−ν
t

N(t).

Then the solution for N(t) is a Mittag-Leffler function Eν(·)

(1.6) N(t) = N0

∞
∑

r=0

(−1)r(c t)νr

Γ(νr + 1)
= N0 Eν(−cν

t
ν).
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In addition, Saxena and Kalla [17] thought about the subsequent fractional kinetic
equation

(1.7) N(t) − N0f(t) = −cν
0D

−ν
t

N(t),

where f(t) ∈ L(0, ∞).
The Laplace transformation of the Riemann-Liouville fractional integration of f(t)

given in the equation (1.4) is specified as

(1.8) L
[

0D
−ν
t

f(t); ω
]

= ω−ν F (ω), t > 0, Re (ν) > 0, Re (ω) > 0,

where F (ω) is the Laplace transform of the function f(t) and given by

(1.9) F (ω) = L[f(t); ω] =
∫ ∞

0
e−ωtf(t) dt, t > 0, Re (ω) > 0.

On the other hand, the familiar lower and upper incomplete gamma functions γ(s, x)
and Γ(s, x), respectively are defined as (see [21]):

(1.10) γ(ξ, x) =
∫ x

0
uξ−1 e−u du, Re (ξ) > 0, x ≥ 0,

and

(1.11) Γ(ξ, x) =
∫ ∞

x
uξ−1 e−u du, x ≥ 0, Re (ξ) > 0 if x = 0.

These functions fulfill the following relation:

(1.12) γ(ξ, x) + Γ(ξ, x) = Γ(ξ), Re (ξ) > 0.

By the use of above defined incomplete gamma functions, Srivastava et al. [21]
defined the incomplete generalized hypergeometric functions pγq and pΓq given as

pγq







(a1, x), a2, ..., ap;
z

b1, ..., bq;





 =

∏q
j=1 Γ(bj)

∏p
j=1 Γ(aj)

∞
∑

ℓ=0

γ(a1 + ℓ, x)
∏p

j=2 Γ(aj + ℓ)
∏q

j=1 Γ(bj + ℓ)
· zℓ

ℓ!

=
∞
∑

ℓ=0

(a1, x)ℓ (a2)ℓ · · · (ap)ℓ

(b1)ℓ · · · (bq)ℓ

· zℓ

ℓ!
(1.13)

and

pΓq







(a1, x), a2, ..., ap;
z

b1, ..., bq;






=

∏q
j=1 Γ(bj)

∏p
j=1 Γ(aj)

∞
∑

ℓ=0

Γ(a1 + ℓ, x)
∏p

j=2 Γ(aj + ℓ)
∏q

j=1 Γ(bj + ℓ)
· zℓ

ℓ!

=
∞
∑

ℓ=0

[a1, x]ℓ (a2)ℓ · · · (ap)ℓ

(b1)ℓ · · · (bq)ℓ

· zℓ

ℓ!
,(1.14)

where (a, x)ℓ and [a, x]ℓ are incomplete Pochhammer symbols defined below and (a)ℓ

is Pochhammer symbol

(a, x)ℓ =
γ(a + ℓ, x)

Γ(a)
, a, ℓ ∈ C, x ≥ 0,(1.15)
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and

[a, x]ℓ =
Γ(a + ℓ, x)

Γ(a)
, a, ℓ ∈ C, x ≥ 0.(1.16)

The existence and convergence conditions of the incomplete generalized hypergeomet-
ric functions pγq and pΓq are set out in [21].

The incomplete Fox-Wright functions, pΨ
(γ)
q and pΨ

(Γ)
q , are the generalization of

incomplete hypergeometric functions pγq and pΓq, and defined as follows (see [22]):

pΨ(γ)
q



(a1, A1, x), (aj, Aj)2, p ;
z

(bj, Bj)1, q ;

]

=
∞
∑

ℓ=0

γ(a1 + A1ℓ, x)
∏p

j=2 Γ(aj + Ajℓ)
∏q

j=1 Γ(bj + Bjℓ)
· zℓ

ℓ!

(1.17)

and

pΨ(Γ)
q



(a1, A1, x), (aj, Aj)2, p ;
z

(bj, Bj)1, q ;

]

=
∞
∑

ℓ=0

Γ(a1 + A1ℓ, x)
∏p

j=2 Γ(aj + Ajℓ)
∏q

j=1 Γ(bj + Bjℓ)
· zℓ

ℓ!
,

(1.18)

where Aj, Bj ∈ R
+, aj, bj ∈ C and series converges absolutely for all z ∈ C when

∆ = 1 +
∑q

j=1 Bj −∑p
j=1 Aj > 0.

The incomplete Fox-Wright functions, pΨ(γ)
q and pΨ(Γ)

q satisfy the following decom-
position formula

(1.19) pΨ(γ)
q (z) + pΨ(Γ)

q (z) = pΨq(z),

where pΨq(z) is Fox-Wright function.
Inspired by the applications of pγq and pΓq functions (defined above) and their

representation as Mellin-Barnes contour integrals, Srivastava et al. [22] presented and
researched the incomplete H-functions as follows:

γr, s
u, v(z) = γr, s

u, v



z

∣

∣

∣

∣

∣

∣

(a1, A1, x), (aj, Aj)2,u

(bj, Bj)1,v



 =
1

2πi

∫

L

g(ξ, x) z−ξ dξ(1.20)

and

Γr, s
u, v(z) = Γr, s

u, v



z

∣

∣

∣

∣

∣

∣

(a1, A1, x), (aj, Aj)2,u

(bj, Bj)1,v



 =
1

2πi

∫

L

G(ξ, x) z−ξ dξ,(1.21)

where

(1.22) g(ξ, x) =

γ(1 − a1 − A1ξ, x)
r
∏

j=1
Γ(bj + Bjξ)

s
∏

j=2
Γ(1 − aj − Ajξ)

v
∏

j=r+1
Γ(1 − bj − Bjξ)

u
∏

j=s+1
Γ(aj + Ajξ)
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and

(1.23) G(ξ, x) =

Γ(1 − a1 − A1ξ, x)
r
∏

j=1
Γ(bj + Bjξ)

s
∏

j=2
Γ(1 − aj − Ajξ)

v
∏

j=r+1
Γ(1 − bj − Bjξ)

u
∏

j=s+1
Γ(aj + Ajξ)

,

with the set of conditions setout in [22].
These incomplete H-functions fulfill the following relation (known as decomposition

formula):

γm,n
p,q (z) + Γm,n

p,q (z) = Hm,n
p,q (z).(1.24)

The general class of polynomials of index n, n = 0, 1, 2, . . . , was defined by Srivas-
tava [23] as:

(1.25) Sm
n [x] =

[n/m]
∑

s=0

(−n)m s

s!
An, s xs,

where m is positive integer and An, s ∈ R (or C) are arbitrary positive constants.
The notations (−n)m and [ · ], respectively represent the Pochhammer symbol and
the greatest integer function. Srivastava’s polynomials give a number of known
polynomials as its special cases on suitably specializing the coefficients An, s.

Throughout this paper we assume that the incomplete H-functions, incomplete
Fox-Wright functions and incomplete expanded hypergeometric functions exist under
the same sets of conditions setout in [21,22].

2. Solution of Generalized Fractional Kinetic Equations

Theorem 2.1. Assume that ζ, η, a, b > 0 and µ > 0, then the solution of

N(t) − N0 t
µ−1 Sm

n [a tζ ] Γr, s
u, v[b tη] = −cν

0D
−ν
t

N(t),(2.1)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/m]
∑

k=0

(−n)mkAn, k

k!
(a tζ)k

× Γr, s+1
u+1, v+1



b t
η

∣

∣

∣

∣

∣

∣

(a1, A1, x), (1 − µ − ζk, η), (aj, Aj)2,u

(bj, Bj)1,v , (1 − µ − ζk − νi, η)



 .(2.2)

Proof. To prove the result, Laplace transform method has been used. Taking the
Laplace transform of (2.1) and using (1.21), (1.25) and (1.8), after little simplification,
we obtain

[1 + cνω−ν ]N(ω) = N0

[n/m]
∑

k=0

(−n)m k An, k a
k

k!
· 1

2πi

∫

L

G(ξ, x) bξ Γ(µ + ζk − ηξ)

ωµ+ζk−ηξ
dξ,

(2.3)
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where N(ω) = L¶N(t); ω♢ and G(ξ, x) is defined in (1.23). Since (1 + x)−1 =
∑∞

r=0(−1)rxr, therefore (2.3) implies that

N(ω) =N0

[n/m]
∑

k=0

(−n)mk An, k a
k

k!
· 1

2πi

∫

L

G(ξ, x) bξ Γ(µ + ζk − ηξ) dξ

×
∞
∑

i=0

(−cν)i ω−(µ+ζk−ηξ+νi).(2.4)

Now, take the inverse Laplace transform of (2.4), we obtain

N(t) =N0

[n/m]
∑

k=0

(−n)mk An, k a
k

k!
· 1

2πi

∫

L

G(ξ, x) bξ Γ(µ + ζk − ηξ) dξ

×
∞
∑

i=0

(−cν)i t
(µ+ζk−ηξ+νi−1)

Γ(µ + ζk − ηξ + νi)
.(2.5)

Finally, using (1.21) therein, we get the required result (2.2). □

Theorem 2.2. Assume that ζ, η, a, b > 0 and µ > 0, then the solution of

N(t) − N0 t
µ−1 Sm

n [a tζ ] γr, s
u, v[b tη] = −cν

0D
−ν
t N(t),(2.6)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/m]
∑

k=0

(−n)mkAn, k

k!
(a tζ)k

× γ
r, s+1
u+1, v+1



b t
η

∣

∣

∣

∣

∣

∣

(a1, A1, x), (1 − µ − ζk, η), (aj, Aj)2,u

(bj, Bj)1,v , (1 − µ − ζk − νi, η)



 .(2.7)

Proof. The proof is the immediate consequence of the definitions (1.20), (1.25) and
parallel to the Theorem 2.1. Hence, we skip the proof. □

The incomplete H-functions and the incomplete Fox-Wright functions are connected
with the following relations (see, [22, (6.3) and (6.4)]):

Γ1, p
p, q+1



−z

∣

∣

∣

∣

∣

∣

(1 − a1, A1, x), (1 − aj, Aj)2, p

(0, 1), (1 − bj, Bj)1, q



 = pΨ(Γ)
q



(a1, A1, x), (aj, Aj)2, p ;
z

(bj, Bj)1, q ;

]

(2.8)

and

γ
1, p
p, q+1



−z

∣

∣

∣

∣

∣

∣

(1 − a1, A1, x), (1 − aj, Aj)2, p

(0, 1), (1 − bj, Bj)1, q



 = pΨ(γ)
q



(a1, A1, x), (aj, Aj)2, p ;
z

(bj, Bj)1, q ;

]

.

(2.9)

If we make the substitution b = −b, r = 1, s = p, v = q + 1, aj 7→ (1 − aj), j =
1, . . . , p, bj 7→ (1 − bj) j = 1, . . . , q, and multiply by Γ(ξ) (i.e., put b = 0 and B = 1)
in (2.1), (2.2), (2.6) and (2.7), use of the equations (2.8) and (2.9) respectively leads
to the following corollaries.
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Corollary 2.1. Assume that ζ, η, a, b > 0 and µ > 0, then the solution of

N(t) − N0 t
µ−1 Sm

n [a tζ ] pΨ(Γ)
q [b tη] = −cν

0D
−ν
t

N(t),(2.10)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/m]
∑

k=0

(−n)mkAn, k

k!
(a tζ)k

× p+1Ψ
(Γ)
q+1



(a1, A1, x), (µ + ζk, η), (aj, Aj)2, p ;
b t

η

(bj, Bj)1, q, (µ + ζk + νi, η) ;

]

.(2.11)

Corollary 2.2. Assume that ζ, η, a, b > 0 and µ > 0, then the solution of

N(t) − N0 t
µ−1 Sm

n [a tζ ] pΨ(γ)
q [b tη] = −cν

0D
−ν
t

N(t),(2.12)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/m]
∑

k=0

(−n)mkAn, k

k!
(a tζ)k

× p+1Ψ
(γ)
q+1



(a1, A1, x), (µ + ζk, η), (aj, Aj)2, p ;
b t

η

(bj, Bj)1, q, (µ + ζk + νi, η) ;

]

.(2.13)

Remark 2.1. If we set x = 0, p = 1, q = 2, a1 = 1, A1 = 1, b1 = l + 1 + b
2
, b2 = 3

2
,

B1 = B2 = 1, η = 2, b = − c
4
, µ = l + 2, cν = dν and Sm

n [a tζ ] = 1
2l+1 (i.e., m = 1,

ζ = 0, a = 1
2
, An,k = k!

(−n)k

for k = l + 1 and An,k = 0, otherwise) into (2.10) and

(2.11), then the resulting equations would correspond to the kinetic equation and its
solution involving generalized Struve function given by Nisar et al. [24, page 168, (14)
and (15)].

The incomplete Fox-Wright functions are related to the incomplete generalized
hypergeometric functions, pΓq and pγq (see [21]). In consequence of (2.8) and (2.9),
the incomplete H-functions are related to the incomplete generalized hypergeometric
functions as below:

pΨ(Γ)
q



(a1, 1, x), (aj, 1)2, p ;
z

(bj, 1)1, q ;

]

= C
p
q pΓq



(a1, x), (aj)2, p ;
z

(bj)1, q ;

]

(2.14)

and

pΨ(γ)
q



(a1, 1, x), (aj, 1)2, p ;
z

(bj, 1)1, q ;

]

= C
p
q pγq



(a1, x), (aj)2, p ;
z

(bj)1, q ;

]

,(2.15)

where C
p
q is defined by

(2.16) C
p
q =

∏p
j=1 Γ(aj)

∏q
j=1 Γ(bj)

.

Thus,

Γ1, p
p, q+1



−z

∣

∣

∣

∣

∣

∣

(1 − a1, 1, x), (1 − aj, 1)2, p

(0, 1), (1 − bj, 1)1, q



 = C
p
q pΓq



(a1, x), (aj)2, p ;
z

(bj)1, q ;

]

(2.17)
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and

γ
1, p
p, q+1



−z

∣

∣

∣

∣

∣

∣

(1 − a1, 1, x), (1 − aj, 1)2, p

(0, 1), (1 − bj, 1)1, q



 = C
p
q pγq



(a1, x), (aj)2, p ;
z

(bj)1, q ;

]

.(2.18)

If we substitute b = −b, r = 1, s = p, v = q + 1, aj 7→ (1 − aj), j = 1, . . . , p,
bj 7→ (1 − bj), j = 1, . . . , q, Aj = 1, j = 1, . . . , p, Bj = 1, j = 2, . . . , q, and multiply
by Γ(ξ) (i.e., put b = 0 and B = 1) in (2.1), (2.2), (2.6) and (2.7). Then the use of
(2.17) and (2.18), respectively, leads to the following corollaries.

Corollary 2.3. Assume that ζ, η, a, b > 0 and µ > 0, then the solution of

N(t) − N0 C
p
q t

µ−1 Sm
n [a tζ ] pΓq[b t

η] = −cν
0D

−ν
t

N(t),(2.19)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/m]
∑

k=0

(−n)mkAn, k

k!
(a tζ)k

× C
p+1
q+1 p+1Γq+1



(a1, x), µ + ζk, a2, a3, ..., ap ;
b t

η

µ + ζk + νi, b1, b2, ..., bq ;

]

,(2.20)

where C
p
q is defined in (2.16) and C

p+1
q+1 = C

p
q

Γ(µ+ζk)
Γ(µ+ζk+νi)

.

Corollary 2.4. Assume that ζ, η, a, b > 0 and µ > 0, then the solution of

N(t) − N0 C
p
q t

µ−1 Sm
n [a tζ ] pγq[b t

η] = −cν
0D

−ν
t

N(t),(2.21)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/m]
∑

k=0

(−n)mkAn, k

k!
(a tζ)k

× C
p+1
q+1 p+1γq+1



(a1, x), µ + ζk, a2, a3, . . . , ap ;
b t

η

µ + ζk + νi, b1, b2, . . . , bq ;

]

,(2.22)

where C
p
q is defined in (2.16) and C

p+1
q+1 = C

p
q

Γ(µ+ζk)
Γ(µ+ζk+νi)

.

3. Applications

In this section, some consequences and applications of the above results are con-
sidered. Specific special cases of the derived findings can be developed by suitably
specializing the coefficient An,s to obtain a large number of spectrum of the known
polynomials. To illustrate that we consider the following examples.

Example 3.1. Show that the solution of

N(t) − N0 t
µ−1 Γr, s

u, v[b tη] = −cν
0D

−ν
t

N(t),(3.1)

is provided as

N(t) = N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i Γr, s+1

u+1, v+1



b t
η

∣

∣

∣

∣

∣

∣

(a1, A1, x), (1 − µ, η), (aj, Aj)2,u

(bj, Bj)1,v , (1 − µ − νi, η)



 ,(3.2)
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N(t) − N0 t
µ−1

pΨ(Γ)
q [b tη] = −cν

0D
−ν
t

N(t),(3.3)

is provided as

N(t) = N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

p+1Ψ
(Γ)
q+1



(a1, A1, x), (µ, η), (aj, Aj)2, p ;
b t

η

(bj, Bj)1, q, (µ + νi, η) ;

]

,(3.4)

N(t) − N0 C
p
q t

µ−1
pΓq[b t

η] = −cν
0D

−ν
t

N(t),(3.5)

is provided as

N(t) = N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

C
′p+1
q+1 p+1Γq+1



(a1, x), µ, a2, a3, . . . , ap ;
b t

η

µ + νi, b1, b2, . . . , bq ;

]

,(3.6)

with C
′p+1
q+1 = C

p
q

Γ(µ)
Γ(µ+νi)

.

Solution. Here, setting m = 1, a = 1, ζ = 0 and An, s = s!
(−n)ms

for s = 0 and An, s = 0

for s ̸= 0 (i.e., Sm
n [a tζ ] = 1) in (2.1), (2.10) and (2.19). The assertions (3.1), (3.3)

and (3.5) of the example follow from the Theorem 2.1, Corollary 2.1 and Corollary
2.3, respectively.

Remark 3.1. It is important to note that for x = 0, the kinetic equation and its
solution given by (3.1) and (3.2) respectively, would give the corresponding results
given earlier by Choi and Kumar [13].

Example 3.2. Show that the solution of

N(t) − N0 t
µ+ n

2
−1 Hn



1

2
√
t



Γr, s
u, v[b tη] = −cν

0D
−ν
t

N(t),(3.7)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/2]
∑

k=0

(−1)k
t
k

k! (n − 2k)!

× Γr, s+1
u+1, v+1



b t
η

∣

∣

∣

∣

∣

∣

(a1, A1, x), (1 − µ − k, η), (aj, Aj)2,u

(bj, Bj)1,v , (1 − µ − k − νi, η)



 ,(3.8)

N(t) − N0 t
µ+ n

2
−1 Hn



1

2
√
t



pΨ(Γ)
q [b tη] = −cν

0D
−ν
t

N(t),(3.9)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/2]
∑

k=0

(−1)k
t
k

k! (n − 2k)!

× p+1Ψ
(Γ)
q+1



(a1, A1, x), (µ + k, η), (aj, Aj)2, p ;
b t

η

(bj, Bj)1, q, (µ + k + νi, η) ;

]

,(3.10)
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N(t) − N0 C
p
q t

µ+ n

2
−1 Hn



1

2
√

t



pΓq[b t
η] = −cν

0D
−ν
t

N(t),(3.11)

is provided as

N(t) =N0 t
µ−1

∞
∑

i=0

(−cν
t
ν)i

[n/2]
∑

k=0

(−1)k
t
k

k! (n − 2k)!

× C
′p+1
q+1 p+1Γq+1



(a1, x), µ + k, a2, a3, ..., ap ;
b t

η

µ + k + νi, b1, b2, ..., bq ;

]

,(3.12)

with C
′p+1
q+1 = C

p
q

Γ(µ+k)
Γ(µ+k+νi)

.

Solution. Set m = 2, a = 1, ζ = 1 and An, s = (−1)s (i.e., S2
n[t] = t

n/2Hn



1
2
√
t

)

, where

Hn(t) is Hermite polynomial) in (2.1), (2.10) and (2.19). Thus, assertions (3.7), (3.9)
and (3.11) of the example follow from the Theorem 2.1, Corollary 2.1 and Corollary
2.3, respectively.

Remark 3.2. As an application of the results (2.6), (2.12) and (2.21), a number of
consequent results can be derived.

4. Concluding remarks

Our attempt in this paper is to propose a new fractional generalization of the
standard kinetic equation and to use the integral transformation approach to analyze
its solution. A study of several interesting fractional kinetic equations and their
solutions has been made, which include a family of polynomials and the incomplete H-
function, incomplete Fox-Wright function and incomplete generalized hypergeometric
function. The main results contained in the Theorem 2.1, Theorem 2.2 and their
corollaries are of general nature. Analogously, various fractional kinetic equations
and their solutions available in literature (see, [15–20]) can be obtained as special
cases of the main results. Through addition, a number of recognized polynomials are
produced by the polynomials family as their specific cases on a properly specialized
connected sequence An,s. As a consequence, by providing appropriate basic values to
the arbitrary sequences and the constraints, the main results can be used to generate
a set of kinetic equations and their potential solutions. We intend to continue this
study of the more generalized kinetic equations and their proposed solutions in the
future work.

Acknowledgements. The authors are thankful to the referees for their valuable
suggestions that helped in the considerable improvement in the quality of the paper.
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SYMMETRIES, NOETHER’S THEOREM, CONSERVATION LAWS

AND NUMERICAL SIMULATION FOR

SPACE-SPACE-FRACTIONAL GENERALIZED POISSON

EQUATION

S. REZA HEJAZI1, AZADEH NADERIFARD1, SOLEIMAN HOSSEINPOUR1,
AND ELHAM DASTRANJ1

Abstract. In the present paper Lie theory of differential equations is expanded
for Ąnding symmetry geometric vector Ąelds of Poisson equation. Similarity vari-
ables extracted from symmetries are applied in order to Ąnd reduced forms of the
considered equation by using Erdélyi-Kober operator. Conservation laws of the
space-space-fractional generalized Poisson equation with the Riemann-Liouville de-
rivative are investigated via NoetherŠs method. By means of the concept of non-linear
self-adjointness, NoetherŠs operators, formal Lagrangians and conserved vectors are
computed. A collocation technique is also applied to give a numerical simulation of
the problem.

1. Introduction

Theory of fractional order differential equations (FDEs) due to the non-local prop-
erty of fractional derivatives are used to describe many phenomena and various fields
of physics and other sciences for example fluid mechanics, physics, chemistry, biology,
engineering, control, signal and image processing, dynamic systems, biology, environ-
mental science, materials, economic, etc. Also the use of fractional differentiation for
the mathematical modeling of real world has been widespread at the recent years.
Sun et al. are given a comprehensive package for the tangible examples of fractional
calculus in the nature [24].

Key words and phrases. Riemann-Liouville derivative, Lie point symmetry, Erdelyi-Kober operator,
conservation laws, Jacobi polynomial.
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Notwithstanding several definitions for fractional calculus, such as Sonin–Letnikov
derivative, Liouville derivative, Caputo derivative, Hadamard derivative, Riesz–Miller
derivative, Che–Machado derivative, Caputo–Katugampola derivative, Hilfer–Katu-
gampola derivative, Pichaghchi derivative, etc., have been presented by different
researchers [5,15,19,25]. Also Lin et al. established another important integral identity
for once differentiable function involving Riemann–Liouville fractional integrals which
will be used to derive some new Riemann–Liouville fractional Hermite–Hadamard
inequalities via r-convex function and geometric-arithmetically s-convex function
respectively [13].

The concept of symmetry of FDEs is similar to symmetry of PDEs. Symmetries of
a fractional equation are transformations that map any solution to another solution of
the equation but unlike PDEs that are considered in many references, symmetries of
time-fractional differential equations (TFDEs) have been investigated somewhat and
symmetries of space-time-fractional differential equations (STFDE) and space-space-
fractional differential equations (SSFDE) have been attended seldom [8–10,17,23].

One of the applications of symmetries is to calculate conservations laws of a given
system [12,20]. Conservation laws are fundamental laws of science especially physics
that keep a certain quantity that are not variable in time during of processes and
they can be used to reduce dimension of equations. To calculate conservation laws by
symmetries we should utilize Noether’s theorem, Euler-Lagrange operator and formal
Lagrangian [1, 7, 11,14,16].

In mathematics, Poisson’s equation is a PDE of elliptic type with broad utility in
mechanical engineering and theoretical physics. It arises, for instance, to describe
the potential field caused by a given charge or mass density distribution; with the
potential field known, one can then calculate gravitational or electrostatic field. It is
a generalization of Laplace’s equation, which is also frequently seen in physics. The
equation is named after the French mathematician, geometer, and physicist Simeon
Denis Poisson.

In this paper the generalized fractional order of the Poisson equation, the space-
space-fractional equation of the form,

D
β
x(u) + D

α
y (u) = F (u)(1.1)

is considered where 1 < α, β < 1 [22].
If α = β = 2, (1.1) becomes to the second order elliptic PDE uxx+uyy = F (u) which

is named Poisson equation. The generalized form of (1.1) by considering 1 < α, β < 2
can be written as

D
β
x(u) + D

α
y (u) = F (u, ux).(1.2)

(1.2) has some special cases. For example if y replace by t and uxx replaces by −uxx

it converts to Klein-Gordon equation. Also, if we replace F (u) by sin u the equation
reduces to sine-Gordon equation [22].
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The rest of the paper is organized as follow. In Section 2, the method of finding
symmetry operators is introduced and this section is concluded by reduction of the
equation via the similarity variables obtaining from symmetries. Section 3 establishes
the Noether’s operators and the associated conservation laws for the fractional Poisson
equation. Finally, in section 4 a collocation method based on Jacobi polynomials is
suggested to obtain the numerical solution of the problem. It in noteworthy that
Pintarelli et al. give a useful method for finding the numerical solutions of the both
linear and non-linear Poisson equation [18].

2. Symmetry Analysis of Space-Time-Fractional Poisson Equation

This section is devoted to Lie group analysis of the (1.2).

2.1. Lie symmetry method for (1.2). Consider an SSFDE of the form

M =
{

∂α
y u + ∂β

x u − F (x, y, u, ux, uxx, . . . ) = 0
}

,(2.1)

for an arbitrary function F (x, y, u, ux, uxx, . . . ). To obtain symmetries of (2.1) two
different cases are considered.

Case 1. Let us substitute F (x, y, u, ux, uxx, . . . ) = −uux into (1.2). Then (2.2) is
obtained:

∆ := D
α
y (u) + D

β
x(u) + uux = 0.(2.2)

First, we should investigate one-parameter Lie group of infinitesimal transformation
with a small group parameter ε ≪ 1 such as:

x 7→ x + εξ(x, y, u), y 7→ y + ερ(x, y, u), u 7→ u + εη(x, y, u).(2.3)

The transformation (2.3) takes

X = ξ
∂

∂x
+ ρ

∂

∂y
+ η

∂

∂u
(2.4)

as an associated infinitesimal generator. If ∆ admitted X as a symmetry, the invari-
ance condition implies that

Pr(α,β,1)X(∆)♣∆=0 = 0,(2.5)

where Pr(α,β,1)X denotes the prolongation of (2.4). The extended form of Eq. (2.5)
yields the following appearance:

Pr(α,β,1)X = ξ
∂

∂x
+ ρ

∂

∂y
+ η

∂

∂u
+ ηα

y

∂

∂uα
y

+ ηβ
x

∂

∂u
β
x

+ ηx ∂

∂ux

,

which determines the point symmetries of (2.2). Expanding the invariance condition
(2.5) yields:

Pr(α,β,1)X(F )♣(F =0) = η(α,y) + η(β,x) + ηxu + ηux = 0,(2.6)
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where

η(β,x) =D
β
x(η) + ρDβ

x(uy) − D
β
x(ρuy) + D

β
x(uDx(ξ)) − D

β+1
x (ξu) + ξDβ+1

x (u),(2.7)

η(α,y) =D
α
y (η) + ξDα

y (ux) − D
α
y (ξux) + D

α
y (uDy(ρ)) − D

α+1
y (ρu) + ρDα+1

y (u),

ηx =Dx(η) − uyDx(ρ) − uxDx(ξ),

are the prolongation’s coefficients.
The operators Dy and Dx mention the total derivatives dependent to y and x,

respectively. Also operator D
β
x,Dα

y are the total space fractional derivative with
respect to x, y. These operators are not similar to ordinary operators. Because there
are differents between PDEs and FDEs for using Leibniz rule, non-commutation and
Laplace transform, see [21] for more details. By inserting (2.7) to (2.6), the following
solution is obtained:

ξ = −C2αx + C1, ρ = −C2βy + C3, η = C2βαu − C2αu,

where Ci (i = 1, 2, 3) are arbitrary constants.
Because of the maintaining the structure of SSFDE in the lower limit of the integral

in Riemann-Liouville derivative respect to x or y, we should work under the assumption

that ρ(x, y, u)
∣

∣

∣

y=0
= 0 and ξ(x, y, u)

∣

∣

∣

x=0
= 0. According to Lie symmetry theory we

have the following Lie algebra for (2.2), with arbitrary α, β ∈ (1, 2),

X1 = −αx
∂

∂x
− βy

∂

∂y
+ (uβα − uα)

∂

∂u
.(2.8)

The condition ρ(x, y, u)
∣

∣

∣

y=0
= ξ(x, y, u)

∣

∣

∣

x=0
= 0 does not involve any assumption

about PDEs then X2 = ∂
∂x

and X3 = ∂
∂y

are more symmetries for (2.2) by α = β = 2.

Case 2. Similarly if F (x, y, u, ux, uxx, . . . ) = u, with α, β ∈ (1, 2), the equation

F = D
α
y (u) + D

β
x(u) − u = 0,

has the following symmetries:

X1 = 2αx
∂

∂x
+ 2βy

∂

∂y
+ α(β − 1)u

∂

∂u
, X2 = u

∂

∂u
.

2.2. Reductions. In this section we will acquire reduction of (2.2) by the obtained
symmetries of section 2 and then we will obtain a space-fractional order differential
equation (SFODE). For Case 1, pursuant to the infinitesimals (2.8), we can write
the similarity variables those are found by solving the corresponding characteristic
equations in the form

dy

−βy
=

du

α(β − 1)u
=

dx

−αx
.

Solving the above differential equation, one can get the similarity variables xy
−

α
β and

uy
α(β−1)

β . As regards we arrive an answer that has the form u(x, y) = y
−

α(β−1)
β H(z)
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where the function z is given by xy
−

α
β . Then we can write left-hand-sided of the

Riemann-Liouville fractional derivative D
α
y (u) in the form

D
α
y u(x, y) =

1

Γ(n − α)

∂n

∂yn

∫ y

0

H


xs
−

α
β



s
−

α(β−1)
β ds

(y − s)α−n+1
, n − 1 < α < n, n = 2, 3, . . .

(2.9)

The assumptions ω = y
s

(s = y
ω

and ds = −y
ω2 dω) is considered in the sequel. Then

(2.9) can be written as:

D
α
y u(y, x) =

1

Γ(n − α)

∂n

∂yn

∫

∞

1

y
n−α−

α(β−1)
β

ω
n−α−

α(β−1)
β

+1
(ω − 1)n−α−1H(zω

α
β )dω.

Thus, we obtain

D
α
y u(y, x) =

∂n

∂yn



y
n−α−

α(β−1)
β



K
1−

α(β−1)
β

,n−α

β

α

H



(z)

]

,(2.10)

where



K
ζ,α
δ g



(z) =











1

Γ(α)

∫

∞

1
(u − 1)α−1u−(ζ+α)g(zu

1
δ )du, α > 0,

g(z), α = 0,

n =







[n] + 1, α ̸∈ N,

α, α ∈ N.

By inserting z = xy
−

α
β into (2.10) and by considerinmg y d

dy
Ψ(z) = −α

β
z d

dz
Ψ(z), it

concludes that

D
α
y u(y, x) = y

−α−
α(β−1)

β



P
1−α−

α(β−1)
β

,α

β

α

H



(z),

where P
ζ,α
β is the left-hand-sided of Erdélyi-Kober fractional differential operator [5].

The left-hand-side of the Riemann-Liouville fractional derivative D
β
x(u) can be

written the same as the D
α
y (u), but with a few differences. First of all, we will need

the assumptions ω = x
s
,x = ωs and ds = −x

ω2 dω. So we get

D
β
xu(x, y) = y

−
α(β−1)

β x−β



P
1−β,β
−1 H



(z).

Thus, (2.2) can be reduced to the following FPDE where it is written in terms of
Erdelyi-Kober fractional differential operator,



P
1−α−

α(β−1)
β

,α

β

α

H



(z) + z−β



P
1−β,β
−1 H



(z) = −H(z)H ′(z)y
α(β−1)

β .

3. Conservation Laws

In this section conservation laws are computed via the modified version of Noether’s
theorem based on non-linear self-adjointness concept [9].
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3.1. Non-linear self-adjointness of the fractional Poisson equation. There are
two methods during the conservation laws calculations, first method is stablished by
a usual Lagrangian and the second method is constructed by a formal Lagrangian.

The formal Lagrangian for the (1.2) can be written as follows:

L = vF (x, y, u,Dα
y u,Dβ

xu, ux) = vDα
y (u) + vDβ

x(u) + vuux, v = v(x, y),

where v is new dependent variable. Indeed, by multiplying a new dependent variable
in the equation that is equaled to zero we can find the formal Lagrangian equation.

The Euler-Lagrange operator with respect to u for a finite space interval x ∈ [x, 0]
and y ∈ [0, y] is defined by:

δ

δu
=

∂

∂u
+ (Dα

y )∗
∂

∂Dα
y u

+ (Dβ
x)∗

∂

∂Dα
xu

+
∞
∑

m=1

(−1)mDi1 · · · Dim

∂

∂ui1,...,im

,

where (Dµ
j )∗ is adjoint operator for Riemman-Liouville derivative (Dµ

j ) such that
j = x, y and µ = α, β, that is defined by (see [14]):

(0D
β
x)∗ = (−1)n

xJ
n−β
X (Dn

x) ≡ C
x D

β
X ,(3.1)

where xJ
n−β
X is the right-sided fractional integral in Riemann-Liouville derivative, and

xD
β
X and C

x D
β
X are the right-sided Riemann-Liouville and Caputo fractional derivative

of order β. By applying operator δ
δu

and formal Lagrangian we obtain the adjoint
equation for (2.2) as

F ∗ =
δL

δu
= (Dα

y )∗v + (Dβ
x)∗v − vxu.(3.2)

The (2.2) is non-linearly self-adjoint if the adjoint (3.2) holds for all solution u of the
initial (2.2) upon the substitution v = Φ(x, y, u), where v = Φ(x, y, u) satisfies the
condition Φ(x, y, u) ̸= 0. It means that the following equation holds:

F ∗

∣

∣

∣

v=Φ(x,y,u)
= λF,(3.3)

where the coefficients λ is indefinite function, which is obtained during calculations.
For the first position we consider v in general term v = Φ(x, y, u) and its necessary

derivative is vx = Φx + Φuux. By inserting elements v and vx, we shall write the
expression (3.3) as

−Φxu − Φuuxu + (Dα
y )∗v + (Dβ

x)∗v = λ((Dα
y u) + (Dβ

xu) + uxu).(3.4)

Then expansion of (3.4) and comparing of the coefficients for 1, ux one can verify that
λ = Φu and Φx = 0. Hence, (2.2) is non-linearly self-adjoint by considering v = a1,
where a1 is a constant.

For the second position, without loss of generality we can certainly assume v =
φ(y)χ(x) then vx = φ(y)χ′(x). Inserting v and vx into (3.3) the (2.4) yields

−φχ′ + (Dα
y )∗φχ + (Dβ

x)∗φχ = λ((Dα
y u) + (Dβ

xu) + uxu)
∣

∣

∣

(2.2))
= 0.
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According to (3.1), the above expression is written as:

−φχ′ + χ(x)c
yD

α
Y (X)



φ(y)


+ φ(y)c
xD

β
X



χ(x)


= 0.(3.5)

The expanded form of (3.5) concludes that χ(x) = a2 and φ(y) = y.

3.2. Basic definitions for constructing conservation laws. The main difficulty
in carrying out conservation laws is that we can’t define usual Lagrangian for many
equations. The generalized Poisson (2.2) hasn’t got the usual Lagrangian. Accordingly
under the above results, Noether’s operators for the Riemann-Liouville based on the
formal Lagrangian are given by

Cy =N
y =

n−1
∑

k=0

(−1)k
D

α−1−k
y (W )Dk

y



∂L

∂(Dα
y u)



× (−1)nJ



W,Dn
y



∂L

∂(Dα
y u)



,

(3.6)

Cx =N
x =

m−1
∑

k=0

(−1)k
D

β−1−k
x (W )Dk

x



∂L

∂(Dβ
xu)



× (−1)mJ1



W,Dm
x



∂L

∂(Dβ
xu)



,

(3.7)

where J and J1 are defined as:

J(f, g) =

∫ y

0

∫ Y

y

f(τ, x)g(µ, x)

(µ − τ)α+1−n
dµdτ

Γ(n − α)
,

J1(f, g) =

∫ x

0

∫ X

x

f(τ, y)g(µ, y)

(µ − τ)β+1−m
dµdτ

Γ(m − β)
,

and W is the characteristic of Lie’s symmetry generator defined by [4, 16]:

W = η − ξux − ρuy.

The formal Lagrangian for (2.2) after substitution acceptable v = a1 is defined as

L = a1



D
α
y (u) + D

β
x(u) + uux



. In this case, using (3.6), (3.7) and considering

W = α(β − 1)u + αxux + βyuy, one can get components of conserved vectors:

Cy = a1α(β − 1)Dα−1
y (u) + a1αxDα−1

y (ux) + a1βD
α−1
y (yuy),

Cx = a1α(β − 1)Dβ−1
x (u) + a1αD

β−1
x (xux) + a1βyDβ−1

x (uy).

The formal Lagrangian for (2.2) after replacement v = a2y is given by L = a2y


D
α
y (u)+

D
β
x(u) + uux



and then we can formulate main results as following:

Cy =a2α(β − 1)yDα−1
y (u) + a2αyxDα−1

y (ux) + a2βyDα−1
y (yuy)

− a2α(β − 1)Dα−2
y (u) − a2αxDα−2

y (ux) − a2βD
α−2
y (yuy),

Cx =a2α(β − 1)Dβ−1
x (u) + a2αyDβ−1

x (xux) + a2βy2
D

β−1
x (uy).
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4. A Numerical Simulation

In this section, we will propose a numerical solution for the equation

Dβ
x(u) + Dα

y (u) = f(u, ux).(4.1)

To do this, we consider a specific example with f(u, ux) = u(x, y) and the boundary
conditions as follows

u(x, 0) =
sin x

100
, x ∈ [0, 1],(4.2)

u(0, y) =
sin y

100
, y ∈ [0, 1].(4.3)

Since that is not the focus of this work, we briefly describe an efficient numerical
method to perform it here. It should be noted that in some research works [2, 3,
6], the authors used an operational matrix of fractional differentiation to solve the
problems of this type. However, in this part, we use a collocation method based on
Jacobi polynomials and compute them and their fractional derivative by some suitable
commands in MAPLE software. The well-known Jacobi polynomials are defined on the
interval [−1, 1] and can be generated with the aid of the following recurrence formula
[2]

J
(a,b)
i (t) =

(a + b + 2i − 1)¶a2 − b2 + t(a + b + 2i)(a + b + 2i − 2)♢

2i(a + b + i)(a + b + 2i − 2)
J

(a,b)
i−1

−
(a + i − 1)(b + i − 1)(a + b + 2i)

i(a + b + i)(a + b + 2i − 2)
J

(a,b)
i−2 , i = 2, 3, . . . ,

where

J
(a,b)
0 (t) = 1 and J

(a,b)
1 (t) =

a + b + 2

2
t +

a − b

2
.

In order to use these polynomials on the interval [0, 1] we defined the so-called shifted
Jacobi polynomials by introducing the change of variable t = 2x−1. Let the shifted Ja-

cobi polynomials J
(a,b)
1,i (2x−1) be denoted by J

(a,b)
1,i (x). Then J

(a,b)
1,i (x) can be generated

from

J
(a,b)
1,i (x) =

(a + b + 2i − 1)¶a2 − b2 + (2x − 1)(a + b + 2i)(a + b + 2i − 2)♢

2i(a + b + i)(a + b + 2i − 2)
J

(a,b)
1,i−1

−
(a + i − 1)(b + i − 1)(a + b + 2i)

i(a + b + i)(a + b + 2i − 2)
J

(a,b)
1,i−2, i = 2, 3, . . . ,

where

J
(a,b)
1,0 (x) = 1 and J

(a,b)
1,1 (x) =

a + b + 2

2
(2x − 1) +

a − b

2
.

The analytic form of the shifted Jacobi polynomials J
(a,b)
1,i (x) of degree i is given by

J
(a,b)
1,i (x) =

i
∑

k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)

Γ(k + b + 1 + 1)Γ(i + a + b + 1)(i − k)!k!
xk,
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where

J
(a,b)
1,i (0) = (−1)i Γ(i + b + 1)

Γ(b + 1)i!
and J

(a,b)
1,i (1) =

Γ(i + a + 1)

Γ(a + 1)i!
.

The choice a = b = 0 yields the Legendre polynomials, while choosing a = b = −1
2

gives Chebyshev polynomials. We now assume that, the solutions of (4.1)–(4.3) can
be approximated by the shifted Jacobi polynomials as follows

u(x, y) ≃ uN(x, y) =
N
∑

m=0

N
∑

n=0

umnJ
(a,b)
1,m (x)J

(a,b)
1,n (y),

where umn, m = 0, 1, . . . , N , and n = 0, 1, . . . , N , are unknown coefficients to be

determined and J
(a,b)
1,m (x) and J

(a,b)
1,n (y) are the shifted Jacobi polynomials. In our

numerical simulation we consider a = b = 0.

The shifted Jacobi polynomials J
(a,b)
1,i (x) can be written in the MAPLE software in

the form
J

(a,b)
1,i (x) = JacobiP (i, a, b, 2x − 1).

The fractional integral of order α > 0 of function f can also be determined using the
following command

0I
α
x f(x) = fracdiff(f(x), x, −α).

Then the Rieman–Liouville fractional derivative of order 1 ≤ α ≤ 2 of function f is
normally written as

Dα
x f(x) =



d

dx

2

I2−α
x f(x) = diff(fracdiff(f(x), x, α − 2), x, x).

Since there exist (N + 1)2 unknown coefficients umn, m = 0, 1, . . . , N , and n =
0, 1, . . . , N, we should construct system of (N + 1)2 algebraic equations. For this
reason, we define the well-known Chebyshev Gauss Lobatto (CGL) collocation points
as

ηi =
1

2



1 − cos



(i − 1)π

N



, 1 ≤ i ≤ N + 1,

τj =
1

2



1 − cos



(j − 1)π

N



, 1 ≤ j ≤ N + 1.

We discretize now equation (4.1) using the CGL points as

Dβ
xuN(ηi, τj) + Dα

y uN(ηi, τj) = uN(ηi, τj), 2 ≤ i ≤ N + 1, 2 ≤ j ≤ N + 1,

and the boundary conditions (4.2)–(4.3) as follows

uN(ηi, 0) =
sin ηi

100
, 1 ≤ i ≤ N + 1,

uN(0, τj) =
sin τj

100
, 2 ≤ j ≤ N + 1.

In this case, the considered equations are collocated and then transformed into the
associated systems of (N + 1)2 algebraic equations and (N + 1)2 unknowns which can
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be solved through an iterative method in Maple software by fsolve command. We can
also check the accuracy of our proposed numerical approach. To do this, we replace
the uN(x, y), Dβ

xuN(x, y) and Dα
y uN(x, y) in equations (4.1)–(4.3). Then (4.1)–(4.3)

can be satisfied approximately. In other words we define the absolute error as

E =
∣

∣

∣

∣

Dβ
xuN(x, y) + Dα

y uN(x, y) − uN(x, y)
∣

∣

∣

∣

≃ 0.

Diagrams of the solutions of the system (4.1)–(4.3) using the suggested numerical
method are shown in Figure 1. Figure 2, gives some numerical results obtained by
this method for u(x, y). The absolute error E is also depicted in Figure 3.

Figure 1. Numerical solution uN(x, y) for β = 1.9 and α = 2 with N = 5.



SYMMETRIES AND NUMERICAL SIMULATION FOR SS-FRACTIONAL POISSON EQ. 723

Figure 2. Numerical solutions of the uN(x, y) for β = 1.9, 1.8, 1.7 and
α = 2 with x = 1 and N = 5.

Figure 3. Absolute error E of the presented method for N = 5.
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Table 1. Some numerical results of uN(x, y) with N = 5 and different
values of α and β.

(x, y) α = 2, β = 1.9 α = 2, β = 1.8 α = 2, β = 1.7
(1, 0.1) 0.04400193 0.03886688 0.03410741
(1, 0.2) 0.07856733 0.06686172 0.05642837
(1, 0.3) 0.11351537 0.09422739 0.07751767
(1, 0.4) 0.15008387 0.12244699 0.09901679
(1, 0.5) 0.18939548 0.15273855 0.12217625
(1, 0.6) 0.23250915 0.18613527 0.14796318
(1, 0.7) 0.28047157 0.22356557 0.17716893
(1, 0.8) 0.33436854 0.26593330 0.21051668
(1, 0.9) 0.39537657 0.31419779 0.24876897
(1, 1) 0.46481412 0.36945403 0.29283537
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A PRODUCT FORMULA AND CERTAIN q-LAPLACE TYPE

TRANSFORMS FOR THE q-HUMBERT FUNCTIONS

TABINDA NAHID1 AND SHAHID AHMAD WANI2

Abstract. The present work deals with the mathematical investigation of the prod-
uct formulas and several q-Laplace type integral transforms of certain q-Humbert
functions. In our investigation, the qL2-transform and qL2-transform of certain q2-
Humbert functions are considered. Several useful special cases have been deduced
as applications of main results.

1. Introduction and preliminaries

Integral transforms have been widely used in many areas of science and engineering
and therefore so much work has been done on the theory and applications of integral
transforms. The integral transform method is a persuasive way to solve numerous
differential equations. Thus, in the literature there are lots of works on several integral
transforms such as Laplace, Fourier, Mellin, Hankel. Two of the most frequently used
formulas in the area of integral transforms are the classical Laplace and Sumudu
transform and their corresponding q-analogues, see for example [1–6, 20, 21]. The
Laplace transform is the most popular and extensively used in applied mathematics.
Yürekli and Sadek [24] introduced a new type of Laplace transform, known as the
L2-transform. These transforms were studied in more details by Yürekli [22,23]. After
that Uçar and Albayrak [19] have investigated the q-analogue of this L2-transforms,
which are called the qL2-transform and qL2-transform and are defined as follows [19]:

(1.1) qL2¶f(t); s♢ =
1

[2]q
·

(q2; q2)∞

s2

∞
∑

n=0

q2n

(q2; q2)n

f
(

qns−1
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and

(1.2) qL2¶f(t); s♢ =
1

[2]q
·

1

(−s2; q2)∞

∑

n∈Z

q2n
(

−s2; q2


n
f(qn),

respectively.
In order to better understand the work, some notations and preliminaries of the

quantum theory are recollected. For any real number b, the q-analogues of the shifted
factorial (b)s is given by [8,16]:

(1.3) (b; q)0 = 1, (b; q)s =
s−1
∏

i=0

(1 − qib), (b; q)∞ =
∞
∏

i=0

(1 − qib), b, q ∈ R, n ∈ N,

and satisfy the following relations [7]:

(q; q)s+l =(q; q)s (qs+1; q)l,(1.4)

(qs+1; q)∞ =(ql+s+1; q)∞ (qs+1; q)l.(1.5)

The q-analogues of a complex number b is given by [8]:

(1.6) [b]q =
1 − qb

1 − q
, q ∈ C\¶1♢, b ∈ C.

The q-exponential functions are defined as [8]:

(1.7) eq(u) =
∞
∑

n=0

un

[n]q!
, Eq(u) =

∞
∑

n=0

q(n
2) un

[n]q!
.

These q-exponential functions are related as [8]:

(1.8) eq(u)Eq(−u) = 1 and eq(−u)Eq(u) = 1.

The q-gamma functions Γq(α) and qΓ(α) have the following series representations
[16]:

Γq(α) =
(q; q)∞

(1 − q)α−1

∞
∑

k=0

qkα

(q; q)k

=
(q; q)∞

(qα; q)∞

(1 − q)1−α,(1.9)

qΓ(α) =
K(A; α)

(1 − q)α−1(−(1/A); q)∞

∑

k∈Z

(

qk

A

)α 

−
1

A
; q


k

,(1.10)

where K(A; α) is the following remarkable function [16]:

(1.11) K(A; α) = Aα−1 (−q/α; q)∞

(−qt/α; q)∞

·
(−α; q)∞

(−αq1−t; q)∞

, α ∈ R.

Investigating the q-analogues of the special functions and exploring their proper-
ties is a prevailing topic for mathematicians and physicists. It is familiar that the
parameter q symbolize for “quantum”, which is extensively used in quantum calculus
(or q-calculus). For more details of quantum calculus, one can see the book of Kac
and Cheung [8]. The theory of q-special functions play an indispensable role in the
formalism of mathematical physics. The development in q-calculus has also led to
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the extension of several remarkable functions to their q-analogues, see for example
[9–12,17]. Recently, the q-analogues of the Humbert functions are introduced by Sri-
vastava and Shehata [17] by means of the generating functions and series definitions.

The q-Humbert functions of the first kind J(1)
m,n(x♣q) are specified by means the

following generating equation [17]:

(1.12) eq



xu

3



eq



xt

3



eq



−
x

3ut



=
∞
∑

m,n=0

J(1)
m,n(x♣q)umtn

and have the following series representation [17]:

(1.13) J(1)
m,n(x♣q) =

∞
∑

k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

(

(1 − q)x

3

)m+n+3k

.

The q-Humbert functions of the second kind J(2)
m,n(x♣q) are defined by the following

series expansion [17]:
(1.14)

J(2)
m,n(x♣q) =

∞
∑

k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

q
k
2

(3k+2(m+n)−1)

(

(1 − q)x

3

)m+n+3k

.

The q-Humbert functions of the first kind J(1)
m,n(x♣q) and second kind J(2)

m,n(x♣q) are
related as [17]:

(1.15) J(1)
m,n



q
1
3 x

∣

∣

∣

∣

1

q



= q
1
3

(m+n)+(m
2 )+(n

2)J(2)
m,n(x♣q).

The series form of the q-Humbert functions of the third kind J(3)
m,n(x♣q) is given as

[17]:

(1.16) J(3)
m,n(x♣q) =

∞
∑

k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

q(k+1
k )
(

(1 − q)x

3

)m+n+3k

.

Inspired by the works on the q-special functions in diverse fields, in this article,
the product formulas for the q-Humbert functions of first, second and third kind
are obtained. Certain q-Laplace type integral transforms are investigated for the
q2-Humbert functions of first, second and third kind. Some examples are considered
in order to show effectiveness of the proposed results by taking some special cases.

2. Product Formula

The Product formulas for q-Bessel functions are investigated by Rahman [13], which
are proved to be very useful in many branches of mathematics. After that, Swarttouw
[18] derived the product formulas for the Hahn-Exton q-Bessel function, which opened
the way to a rich harmonic analysis. Motivated by these works, the product formula
for the generalized q-Bessel functions are also established in [14]. We follow the same
technique of calculation developed by Swarttouw to derive a product formula for
q-Humbert functions of the first kind J(1)

m,n(x♣q).
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Theorem 2.1. Let x > 0, γ, δ > 0 and m, n, p, r ∈ N, then the following product

formula for the q-Humbert functions of the first kind J(1)
m,n(x♣q) holds true:

J(1)
m,n(γx♣q) × J(1)

p,r(δx♣q) =Bm,n,p,r(x♣q)
∞
∑

i=0

Mi(q)

(

−
δx

3

)3i

(2.1)

× 3φ2







q−p−i, q−r−i, q−i;

q; −γ3

δ3 q
1
2

(2(3i+p+r)+3(1−k))

qn+1, qm+1;





 ,

where lφs is the basic hypergeometric function defined by [15]:

(2.2) lφs







a1, a2, . . . , al;
q; z

b1, b2, . . . , bs;





 =
∞
∑

k=0

(a1, a2, . . . , al; q)kzk

(q, b1, b2, . . . , bs; q)k

and Bm,n,p,r(x♣q) = (1−q)m+n+p+rγm+nδp+r

(q;q)m(q;q)n(q;q)p(q;q)r

(

x
3

m+n+p+r
, Mi(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
.

Proof. In view of series (1.13), we can write

J(1)
m,n(γx♣q) × J(1)

p,r(δx♣q)(2.3)

=
∞
∑

k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

×

(

(1 − q)γx

3

)m+n+3k ∞
∑

l=0

(−1)l

(q; q)l (q; q)p+l (q; q)r+l

(

(1 − q)δx

3

)p+r+3l

,

which on using identity (1.4) becomes

J(1)
m,n(γx♣q) × J(1)

p,r(δx♣q)(2.4)

=Bm,n,p,r(x♣q)
∞
∑

k,l=0

(−1)k+l(1 − q)3k+3lγ3kδ3l
(

x3

27

k+l

(q; q)k (qm+1; q)k (qn+1; q)k(q; q)l (qp+1; q)l (qr+1; q)l

,

where Bm,n,p,r(x♣q) = (1−q)m+n+p+rγm+nδp+r

(q;q)m(q;q)n(q;q)p(q;q)r

(

x
3

m+n+p+r
.

Replacing l by i − k in equation (2.4), we get

J(1)
m,n(γx♣q) × J(1)

p,r(δx♣q) =Bm,n,p,r(x♣q)
∞
∑

k=0

∞
∑

i=k

(−1)i(1 − q)3iγ3kδ3(i−k)

(q; q)k (qm+1; q)k (qn+1; q)k

(2.5)

×
1

(q; q)i−k (qp+1; q)i−k (qr+1; q)i−k

(

x3

27

)i

,

which on using the following identity

(a; q)n−k =
(a; q)n

(a−1q1−n; q)k



−
q

a

k

q(k
2)−nk
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gives

J(1)
m,n(γx♣q) × J(1)

p,r(δx♣q)(2.6)

=Bm,n,p,r(x♣q)
∞
∑

i=0

(−1)i
(

(1−q)δx

3

3i

(q; q)i (qp+1; q)i (qr+1; q)i

×
i
∑

k=0



−
γ

δ

3k (q−p−i; q)k (q−r−i; q)k (q−i; q)k

(q; q)k (qm+1; q)k (qn+1; q)k

q
k
2

(6i+2p+2r+3−3k).

Letting Mi(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
and using equation (2.2) in equation (2.6), asser-

tion (2.1) is proved. □

Similarly, we get the following product formulas for the q-Humbert functions of the
second and third kind J(2)

m,n(x♣q) and J(3)
m,n(x♣q), respectively.

Remark 2.1. Let x > 0, γ, δ > 0 and m, n, p, r ∈ N, then the following product formula
for the q-Humbert functions of the second kind J(2)

m,n(x♣q) holds true:

J(2)
m,n(γx♣q) × J(2)

p,r(δx♣q) =Bm,n,p,r(x♣q)
∞
∑

i=0

Ni(q)

(

−
δx

3

)3i

(2.7)

× 3φ2







q−p−i, q−r−i, q−i;

q; −γ3

δ3 q
1
2

(2(3i+p+r)+3(1−k))

qn+1, qm+1;





 ,

where Ni(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
q

i
2

(3i+2p+2r−1) and Bm,n,p,r(x♣q) is same as earlier.

Remark 2.2. Let x > 0, γ, δ > 0 and m, n, p, r ∈ N, then the following product formula
for the q-Humbert functions of the third kind J(3)

m,n(x♣q) holds true:

J(3)
m,n(γx♣q) × J(3)

p,r(δx♣q) =Bm,n,p,r(x♣q)
∞
∑

i=0

Li(q)

(

−
δx

3

)3i

(2.8)

× 3φ2







q−p−i, q−r−i, q−i;

q; −γ3

δ3 q
1
2

(2(3i+p+r)+3(1−k))

qn+1, qm+1;





 ,

where Li(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
qi+2 and Bm,n,p,r(x♣q) is same as earlier.

In the following section, the qL2-transform and qL2-transform for the q2-Humbert
functions are investigated.
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3. qL2-Transform and qL2-Transform

In this section, we evaluate qL2-transform and qL2-transform of t2w−2 weighted
product of m different q2-Humbert functions. The q2-Humbert functions are more
relevant than the original q-Humbert functions because of the mathematical nature
of qL2-transform and qL2-transform which contain q2-shift factorials.

Theorem 3.1. Let J
(1)
3µj ,3νj

(3(ajt
2)

1
3 ♣ q2) j = 1, 2, . . . , m, be a set of q2-Humbert

functions of first kind and f(t) = t2w−2
m
∏

j=1
J

(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is,

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



(3.1)

=
m
∏

j=1

Bj(s)
∞
∑

kj=0



−aj

3s2

kj

Hkj
(q2)Γq2(w + µj + νj + kj),

where Re(s) > 0, Re(w) > 0 and

(3.2) Bj(s) =
(aj)

µj+νj

[2]q 3µj+νj s2(w+µj+νj)
, Hkj

(q) =
(1 − q)w+2(µj+νj+kj)−1

(q; q)kj
(q; q)3µj+kj

(q; q)3νj+kj

.

Proof. In order to prove the theorem, let f(t) = t2w−2
m
∏

j=1
J

(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2) in

equation (1.1), we get

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



(3.3)

=
1

[2]q
·

(q2; q2)∞

s2

m
∏

j=1

∞
∑

n=0

q2n

(q2; q2)n

(

qns−1
2w−2

J
(1)
3µj ,3νk

((ajq
2ns−2)

1
3 ♣ q2),

which in view of series expansion (1.13) becomes

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



=
1

[2]q
·

(q2; q2)∞

s2w

×
m
∏

j=1

∞
∑

kj=0

(−1)kj

(q2; q2)3µj+kj
(q2; q2)3νj+kj

∞
∑

n=0

q2nw

(q2; q2)kj
(q2; q2)n



(1 − q2)ajq
2ns−2

3

µj+νj+kj

=
m
∏

j=1

(q2; q2)∞

(

(1 − q2)aj/3
µj+νj

[2]q s2(w+µj+νj)

∞
∑

n=0

q2n(w+µj+νj)

(q2; q2)n

×
∞
∑

kj=0

(

−aj(1−q2)(qns−1)2

3

kj

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

.
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Letting Bj(s) = (aj)µj +νj

[2]q 3µj +νj s
2(w+µj +νj ) in the above equation, it follows that

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



=
m
∏

j=1

Bj(s)
∞
∑

kj=0

(

−aj

3s2

kj

(1 − q2)µj+νj+kj

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

∞
∑

n=0

(q2; q2)∞(q2)n(w+µj+νj+kj)

(q2; q2)n

,

which on using relation (1.9) and setting Hkj
(q) = (1−q)w+2(µj +νj +kj )−1

(q;q)kj
(q;q)3µj +kj

(q;q)3νj +kj

gives

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



=
m
∏

j=1

Bj(s)
∞
∑

kj=0



−aj

3s2

kj

Hkj
(q2) Γq2(w + µj + νj + kj).

This completes the proof of Theorem 3.1. □

The following corollaries are an immediate consequence of Theorem 3.1.

Corollary 3.1. Let J
(2)
3µj ,3νj

(3(ajt
2)

1
3 ♣ q2), j = 1, 2, . . . , m, be a set of q2-Humbert

functions of second kind and f(t) = t2w−2
m
∏

j=1
J

(2)
3µj ,3νk

(3(ajt)
1
3 ♣ q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2¶f(t); s♢

=
m
∏

j=1

Bj(s)
∞
∑

kj=0



−aj

3s2

kj

(q2)
kj

2
(3kj+6(µj+νj)−1)Hkj

(q2) Γq2(w + µj + νj + kj),

where Re(s) > 0, Re(w) > 0 and Bj(s), Hkj
(q) are same as in equation (3.2).

Corollary 3.2. Let J
(3)
3µj ,3νj

(3(ajt
2)

1
3 ♣ q2), j = 1, 2, . . . , m, be a set of q2-Humbert

functions of third kind and f(t) = t2w−2
m
∏

j=1
J

(3)
3µj ,3νk

(3(ajt)
1
3 ♣ q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2¶f(t); s♢ =
m
∏

j=1

Bj(s)
∞
∑

kj=0



−aj

3s2

kj

(q2)kj+1 Hkj
(q2) Γq2(w + µj + νj + kj),

where Re(s) > 0, Re(w) > 0 and Bj(s), Hkj
(q) are same as in equation (3.2).

Next, the qL2-transform for the q2-Humbert functions are investigated.

Theorem 3.2. Let J
(1)
3µj ,3νj

(3(ajt
2)

1
3 ♣ q2), j = 1, 2, . . . , m, be a set of q2-Humbert

functions of first kind and f(t) = t2w−2
m
∏

j=1
J

(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2), where w, aj, µj, νj
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and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



(3.4)

=Aq2(s)
Γq2(w + µj + νj + kj)

K(1/s2, w + µj + νj + kj)

×

(

aj

3s2(1 − q2)

)µj+νj+kj m
∏

j=1

∞
∑

kj=0

(−1)kj

Γq2(kj + 1)Γq2(3µj + kj + 1)Γq2(3νj + kj + 1)
,

where Aq2(s) = (1−q2)w−1

[2]q s2w and Re(s) > 0, Re(w) > 0.

Proof. Using f(t) = t2w−2
m
∏

j=1
J

(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2) in equation (1.2), it follows that

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



(3.5)

=
1

[2]q (−s2; q2)∞

∑

n∈Z

q2n(−s2; q2)n ×
m
∏

j=1

(qn)2w−2
J

(1)
3µj ,3νj

((ajq
2n)

1
3 ♣ q2),

which in view of series expansion (1.13) becomes

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



=
1

[2]q (−s2; q2)∞

m
∏

j=1

∑

n∈Z

q2nw(−s2; q2)n

×
∞
∑

kj=0

(−1)kj

(q2; q2)kj

1

(q2; q2)3µj+kj
(q2; q2)3νj+kj



(1 − q2)ajq
2n

3

µj+νj+kj

=
m
∏

j=1

(

aj

3

µj+νj

[2]q (−s2; q2)∞

∑

n∈Z

q2n(w+µj+νj)
∞
∑

kj=0

(−s2; q2)n

(

ajq2n

3

kj

(1 − q2)µj+νj+kj

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

=
m
∏

j=1

(

aj

3

µj+νj

[2]q (−s2; q2)∞

∞
∑

kj=0

(

aj

3

kj

(q2; q2)3µj+kj
(q2; q2)3νj+kj

∑

n∈Z

(−s2; q2)n q2n(w+µj+νj+kj)

(q2; q2)kj
(−s2; q2)∞

.

Using relations (1.9) and (1.10) in the above equation, it follows that

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



=
m
∏

j=1

(

aj

3

µj+νj

[2]q (s2(w+µj+νj))

∞
∑

kj=0

Γq2(w + µj + νj + kj)

K(1/s2, w + µj + νj + kj)
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×

(

−aj

3s2

kj

(1 − q2)w+2(µj+νj+kj)−1

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

,

which in view of identity (1.5) gives

qL2



t2w−2
m
∏

j=1

J
(1)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2); s



=
(1 − q2)w−1

[2]q s2w

m
∏

j=1

∞
∑

kj=0

(−1)kj

(

aj

3s2

µj+νj+kj



(q2;q2)∞

(q2(3µj +kj +1);q2)∞



×
(1 − q2)2(µj+νj+kj)



(q2;q2)∞

(q2(3νj +kj +1);q2)∞



(q2;q2)∞

(q2(kj +1);q2)∞

 ·
Γq2(w + µj + νj + kj)

K(1/s2, w + µj + νj + kj)
.

Letting Aq2(s) = (1−q2)w−1

[2]q s2w in the above equation and in view of expression (1.9),

assertion (3.4) follows. □

The following corollaries are an immediate consequence of Theorem 3.2.

Corollary 3.3. Let J
(2)
3µj ,3νj

(3(ajt
2)

1
3 ♣ q2), j = 1, 2, . . . , m, be a set of q2-Humbert

functions of second kind and f(t) = t2w−2
m
∏

j=1
J

(2)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2¶f(t); s♢ =Aq2(s)
m
∏

j=1

∞
∑

kj=0

(−1)kj (q2)
kj

2
(3kj+6(µj+νj)−1)

Γq2(kj + 1)Γq2(3µj + kj + 1)Γq2(3νj + kj + 1)

×
Γq2(w + µj + νj + kj)

K(1/s2, w + µj + νj + kj)

(

aj

3s2(1 − q2)

)µj+νj+kj

,

where Re(s) > 0, Re(w) > 0 and Aq2(s) is same as in Theorem 3.2.

Corollary 3.4. Let J
(3)
3µj ,3νj

(3(ajt
2)

1
3 ♣ q2), j = 1, 2, . . . , m, be a set of q2-Humbert

functions of third kind and f(t) = t2w−2
m
∏

j=1
J

(3)
3µj ,3νk

(3(ajt
2)

1
3 ♣ q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is,

qL2¶f(t); s♢ =Aq2(s)
m
∏

j=1

∞
∑

kj=0

(−1)kj (q2)kj+1

Γq2(kj + 1)Γq2(3µj + kj + 1)Γq2(3νj + kj + 1)

×
Γq2(w + µj + νj + kj)

K(1/s2, w + µj + νj + kj)

(

aj

3s2(1 − q2)

)µj+νj+kj

,

where Re(s) > 0, Re(w) > 0 and Aq2(s) is same as in Theorem 3.2.

In the next section, we give certain examples to show the applications of the results
established in previous sections.
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4. Special Cases

In consideration of m = 1, a1 = a, k1 = k, µ1 = µ and ν1 = ν in Theorem 3.1,
Corollary 3.1 and Corollary 3.2, respectively, the qL2-transforms for the q-Humbert
functions of the first, second and third kind are obtained:

qL2¶t2w−2J
(1)
3µ,3ν(3(at2)

1
3 ♣ q2); s♢ = C(s)

∞
∑

k=0



−a

3s2

k

Hk(q2) Γq2(w + µ + ν + k),

qL2¶t2w−2J
(2)
3µ,3ν(3(at2)

1
3 ♣ q2); s♢

=C(s)
∞
∑

k=0



−a

3s2

k

(q2)
k
2

(3k+6(µ+ν)−1)Hk(q2) Γq2(w + µ + ν + k)

and

qL2¶t2w−2J
(3)
3µ,3ν(3(at2)

1
3 ♣ q2); s♢ = C(s)

∞
∑

k=0



−a

3s2

k

(q2)k+1 Hk(q2) Γq2(w + µ + ν + k),

respectively, where Re(s) > 0, Re(w) > 0 and

C(s) =
(a)µ+ν

[2]q 3µ+ν s2(w+µ+ν)
, Hk(q) =

(1 − q)w+2(µ+ν+k)−1

(q; q)k (q; q)3µ+k (q; q)3ν+k

.

Taking m = 1, a1 = a, k1 = k, µ1 = µ and ν1 = ν in Theorem 3.2, Corollary 3.3
and Corollary 3.4, respectively, the qL2-transforms for the q-Humbert functions of the
first, second and third kind are obtained:

qL2¶t2w−2J
(1)
3µ,3ν(3(at2)

1
3 ♣ q2); s♢

=Aq2(s)
∞
∑

k=0

(−1)k

Γq2(k + 1)Γq2(3µ + k + 1)

×
Γq2(w + µ + ν + k)

Γq2(3ν + k + 1)K(1/s2, w + µ + ν + k)

(

a

3s2(1 − q2)

)µ+ν+k

,

qL2¶t2w−2J
(2)
3µ,3ν(3(at2)

1
3 ♣ q2); s♢

=Aq2(s)
∞
∑

k=0

(−1)k(q2)
k
2

(3k+6(µ+ν)−1)

Γq2(k + 1)Γq2(3µ + k + 1)

×
Γq2(w + µ + ν + k)

Γq2(3ν + k + 1)K(1/s2, w + µ + ν + k)

(

a

3s2(1 − q2)

)µ+ν+k

and

qL2¶t2w−2J
(3)
3µ,3ν(3(at2)

1
3 ♣ q2); s♢

=Aq2(s)
∞
∑

k=0

(−1)k(q2)k+1

Γq2(k + 1)Γq2(3µ + k + 1)

×
Γq2(w + µ + ν + k)

Γq2(3ν + k + 1)K(1/s2, w + µ + ν + k)

(

a

3s2(1 − q2)

)µ+ν+k

,
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respectively, where Re(s) > 0, Re(w) > 0 and Aq2(s) is same as in Theorem 3.2.
In the present investigation, we have constructed the product formulas and certain q-

Laplace type integral transforms for the q-Humbert functions of first, second and third
kind. The results established in this article might be useful for solving q2-difference
equations by means of the qL2-transforms and qL2-transforms. In the forthcoming
paper, we plan to deal with constructing q2-difference equations to use the results
obtained here.
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EXISTENCE AND STABILITY OF SOLUTIONS FOR NABLA

FRACTIONAL DIFFERENCE SYSTEMS WITH ANTI-PERIODIC

BOUNDARY CONDITIONS

JAGAN MOHAN JONNALAGADDA1

Abstract. In this paper, we propose sufficient conditions on existence, unique-
ness and Ulam-Hyers stability of solutions for coupled systems of fractional nabla
difference equations with anti-periodic boundary conditions, by using fixed point
theorems. We also support these results through a couple of examples.

1. Introduction

The study of anti-periodic boundary value problems garnered significant interest
due to their occurrence in the mathematical modelling of a variety of real-world
problems in engineering and science. For example, we refer [19, 31, 32, 40] and the
references therein.

The boundary value problems (BVPs) connected with nabla fractional difference
equations can be tackled with almost similar methods as their continuous counterparts.
Peterson et al. [15, 24] have initiated the study of BVPs for linear and nonlinear
nabla fractional difference equations with conjugate boundary conditions. Gholami
et al. [20] studied the existence of solutions for a coupled system of two-point nabla
fractional difference BVPs. Recently, the author [26,27] obtained sufficient conditions
on existence and uniqueness of solutions for nonlinear nabla fractional difference
equations associated with different classes of boundary conditions. In spite of the

Key words and phrases. Nabla fractional difference equation, anti-periodic boundary conditions,
fixed point, existence, uniqueness, Ulam-Hyers stability.
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existence of a substantial mathematical theory of the continuous fractional anti-
periodic BVPs [5–7,13,16,36,42], there has been no progress in developing the theory
of discrete fractional anti-periodic BVPs in nabla perspective.

On the other hand, Hyers responses to Ulam’s questions have initiated the study
of stability of functional equations [23,38]. Rassias [35] generalized the Hyers result
for linear mappings. Later, several mathematicians have extended Ulam’s problem
in different directions [28]. There were significant contributions towards the study of
Ulam-Hyers stability of ordinary as well as fractional differential equations [33,41]. The
study of Ulam-Hyers stability enriched the qualitative theory of fractional difference
equations [17,18,25].

Motivated by these facts, in this article, we consider the following coupled system
of nabla fractional difference equations with anti-periodic boundary conditions:

(1.1)







































(

∇α1−1
0



∇u1

)

)

(t) + f1(t, u1(t), u2(t)) = 0, t ∈ N
T
2 ,

(

∇α2−1
0



∇u2

)

)

(t) + f2(t, u1(t), u2(t)) = 0, t ∈ N
T
2 ,

u1(0) + u1(T ) = 0,


∇u1

)

(1) +


∇u1

)

(T ) = 0,

u2(0) + u2(T ) = 0,


∇u2

)

(1) +


∇u2

)

(T ) = 0.

Here T ∈ N2, 1 < α1, α2 < 2, f1, f2 : N
T
0 × R

2 → R are continuous, ∇ν
0 denotes

the νth-th order Riemann-Liouville type backward (nabla) difference operator where
ν ∈ ¶α1 − 1, α2 − 1♢ and ∇ denotes the first order nabla difference operator.

The present paper is organized as follows. Section 2 contains preliminaries. In
Section 3, we establish sufficient conditions on existence, uniqueness and Ulam-Hyers
stability of solutions of the BVP (1.1). We present a few examples in Section 4.

2. Preliminaries

For our convenience, in this section, we present a few useful definitions and funda-
mental facts of nabla fractional calculus, which can be found in [21].

Denote by Na = ¶a, a + 1, a + 2, . . .♢ and N
b
a = ¶a, a + 1, a + 2, . . . , b♢ for any a,

b ∈ R such that b − a ∈ N1. The backward jump operator ρ : Na → Na is defined by
ρ(t) = max¶a, t − 1♢ for all t ∈ Na.

Definition 2.1 ([21]). Define the µth-order nabla fractional Taylor monomial by

Hµ(t, a) =
(t − a)µ

Γ(µ + 1)
=

Γ(t − a + µ)

Γ(t − a)Γ(µ + 1)
, µ ∈ R \ ¶. . . , −2, −1♢.

Here Γ(·) denotes the Euler gamma function. Observe that

Hµ(a, a) = 0

and

Hµ(t, a) = 0, for all µ ∈ ¶. . . , −2, −1♢ and t ∈ Na.
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The first order backward (nabla) difference of u : Na → R is defined by


∇u
)

(t) =

u(t) − u(t − 1) for t ∈ Na+1.

Definition 2.2 ([21]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum of u

based at a is given by



∇−ν
a u

)

(t) =
t
∑

s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where by convention


∇−ν
a u

)

(a) = 0.

Definition 2.3 ([21]). Let u : Na+1 → R and 0 < ν ≤ 1. The νth-order nabla
difference of u is given by



∇ν
au
)

(t) =
(

∇


∇−(1−ν)
a u

)

)

(t), t ∈ Na+1.

Lemma 2.1 ([21]). We observe the following properties of nabla fractional Taylor

monomials:

(a) ∇Hµ(t, a) = Hµ−1(t, a), t ∈ Na;

(b)
∑t

s=a+1 Hµ(s, a) = Hµ+1(t, a), t ∈ Na;

(c)
∑t

s=a+1 Hµ(t, ρ(s)) = Hµ+1(t, a), t ∈ Na.

Proposition 2.1 ([24]). Let s ∈ Na and −1 < µ. The following properties hold.

(a) Hµ(t, ρ(s)) ≥ 0 for t ∈ Nρ(s) and Hµ(t, ρ(s)) > 0 for t ∈ Ns.

(b) Hµ(t, ρ(s)) is a decreasing function with respect to s for t ∈ Nρ(s) and µ ∈
(0, ∞).

(c) If t ∈ Ns and µ ∈ (−1, 0), then Hµ(t, ρ(s)) is an increasing function of s.

(d) Hµ(t, ρ(s)) is a non-decreasing function with respect to t for t ∈ Nρ(s) and

µ ∈ [0, ∞).
(e) If t ∈ Ns and µ ∈ (0, ∞), then Hµ(t, ρ(s)) is an increasing function of t.

(f) Hµ(t, ρ(s)) is a decreasing function with respect to t for t ∈ Ns+1 and µ ∈
(−1, 0).

Proposition 2.2 ( [24]). Let u and v be two nonnegative real-valued functions defined

on a set S. Further, assume u and v achieve their maximum values in S. Then,

♣u(t) − v(t)♣ ≤ max¶u(t), v(t)♢ ≤ max
{

max
t∈S

u(t), max
t∈S

v(t)
}

,

for every fixed t in S.

3. Green’s Function and Its Property

Assume T ∈ N2, 1 < α < 2 and h : NT
2 → R. Consider the boundary value problem

(3.1)











(

∇α−1
0



∇u
)

)

(t) + h(t) = 0, t ∈ N
T
2 ,

u(0) + u(T ) = 0,


∇u
)

(1) +


∇u
)

(T ) = 0.
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First, we construct the Green’s function, G(t, s) corresponding to (3.1), and obtain
an expression for its unique solution. Denote by

D1 = ¶(t, s) ∈ N
T
0 × N

T
2 : t ≥ s♢, D2 = ¶(t, s) ∈ N

T
0 × N

T
2 : t ≤ ρ(s)♢

and

(3.2) ξα = 2 [1 + Hα−2(T, 0)] .

Theorem 3.1. The unique solution of the nabla fractional boundary value problem

(3.1) is given by

(3.3) u(t) =
T
∑

s=2

Gα(t, s)h(s), t ∈ N
T
0 ,

where

(3.4) Gα(t, s) =







Kα(t, s) − Hα−1(t, ρ(s)), (t, s) ∈ D1,

Kα(t, s), (t, s) ∈ D2.

Here

Kα(t, s) =
1

ξα

[

Hα−1(T, ρ(s)) + 2Hα−1(t, 0)Hα−2(T, ρ(s))

+ Hα−1(T, ρ(s))Hα−2(T, 0) − Hα−1(T, 0)Hα−2(T, ρ(s))


.

Proof. Denote by


∇u
)

(t) = v(t), t ∈ N
T
1 .

Subsequently, the difference equation in (3.1) takes the form

(3.5)


∇α−1
0 v

)

(t) + h(t) = 0, t ∈ N
T
2 .

Let v(1) = c2. Then, by Lemma 5.1 of [4], the unique solution of (3.5) is given by

v(t) = Hα−2(t, 0)c2 −


∇−(α−1)
1 h

)

(t), t ∈ N
T
1 .

That is,

(3.6)


∇u
)

(t) = Hα−2(t, 0)c2 −


∇−(α−1)
1 h

)

(t), t ∈ N
T
1 .

Applying the first order nabla sum operator, ∇−1
0 on both sides of (3.6), we obtain

(3.7) u(t) = c1 + Hα−1(t, 0)c2 −


∇−α
1 h

)

(t), t ∈ N
T
0 ,

where c1 = u(0). We use the pair of anti-periodic boundary conditions considered in
(3.1) to eliminate the constants c1 and c2 in (3.7). It follows from the first boundary
condition u(0) + u(T ) = 0 that

(3.8) 2c1 + Hα−1(T, 0)c2 =


∇−α
1 h

)

(T ).

The second boundary condition


∇u
)

(1) +


∇u
)

(T ) = 0 yields

(3.9) [1 + Hα−2(T, 0)] c2 =


∇−(α−1)
1 h

)

(T ).
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Solving (3.8) and (3.9) for c1 and c2, we obtain

c1 =
1

2



T
∑

s=2

Hα−1(T, ρ(s))h(s) − 2Hα−1(T, 0)

ξα

T
∑

s=2

Hα−2(T, ρ(s))h(s)

]

,(3.10)

c2 =
2

ξα

T
∑

s=2

Hα−2(T, ρ(s))h(s).(3.11)

Substituting these expressions in (3.7), we achieve (3.4). □

Lemma 3.1. Observe that

(3.12) ♣Kα(t, s)♣ ≤ 1

ξα

[

Hα−1(T, 1) + 2Hα−1(T, 0) + Hα−2(T, 0)Hα−1(T, 1)


,

for all (t, s) ∈ N
T
0 × N

T
2 .

Proof. Denote by

K ′

α(t, s) =
1

ξα

[

Hα−1(T, ρ(s)) + 2Hα−1(t, 0)Hα−2(T, ρ(s))(3.13)

+ Hα−1(T, ρ(s))Hα−2(T, 0)


and

(3.14) K ′′

α(t, s) =
1

ξα

[

Hα−1(T, 0)Hα−2(T, ρ(s))


,

so that

Kα(t, s) = K ′

α(t, s) − K ′′

α(t, s), (t, s) ∈ N
T
0 × N

T
2 .

Clearly, from Proposition 2.1,

K ′

α(t, s) ≥ 0, K ′′

α(t, s) > 0, for all (t, s) ∈ N
T
0 × N

T
2 .

From Proposition 2.2, it is obvious that

(3.15) ♣Kα(t, s)♣ ≤
{

max
(t,s)∈NT

0
×NT

2

K ′

α(t, s), max
(t,s)∈NT

0
×NT

2

K ′′

α(t, s)

}

.

First, we evaluate the first backward difference of K ′

α(t, s) with respect to t for a fixed
s. Consider

∇K ′

α(t, s) =
1

ξα

[

2Hα−2(t, 0)Hα−2(T, ρ(s))


> 0,

for all (t, s) ∈ N
T
0 × N

T
2 , implying that K ′

α(t, s) is an increasing function of t for a
fixed s. Thus, we have

(3.16) K ′

α(t, s) ≤ K ′

α(T, s), (t, s) ∈ N
T
0 × N

T
2 .
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It follows from (3.13)–(3.16) that

♣Kα(t, s)♣

≤
{

max
(t,s)∈NT

0
×NT

2

K ′

α(t, s), max
(t,s)∈NT

0
×NT

2

K ′′

α(t, s)

}

≤
{

max
s∈NT

2

K ′

α(T, s), max
s∈NT

2

K ′′

α(t, s)

}

= max
s∈NT

2

K ′

α(T, s)

=
1

ξα

max
s∈NT

2

[

Hα−1(T, ρ(s)) + 2Hα−1(T, 0)Hα−2(T, ρ(s))

+ Hα−1(T, ρ(s))Hα−2(T, 0)


≤ 1

ξα

[

max
s∈NT

2

Hα−1(T, ρ(s)) + 2Hα−1(T, 0) max
s∈NT

2

Hα−2(T, ρ(s))

+ Hα−2(T, 0) max
s∈NT

2

Hα−1(T, ρ(s))


=
1

ξα

[

Hα−1(T, ρ(2)) + 2Hα−1(T, 0)Hα−2(T, ρ(T )) + Hα−2(T, 0)Hα−1(T, ρ(2))


=
1

ξα

[

Hα−1(T, 1) + 2Hα−1(T, 0) + Hα−2(T, 0)Hα−1(T, 1)


.

The proof is complete. □

4. Existence and Uniqueness of Solutions of (1.1)

Let X = R
T +1 be the Banach space of all real (T + 1)-tuples equipped with the

maximum norm

∥u∥X = max
t∈NT

0

♣u(t)♣.

Obviously, the product space


X × X, ∥ · ∥X×X

)

is also a Banach space with the norm

∥(u1, u2)∥X×X = ∥u1∥X + ∥u2∥X .

A closed ball with radius R centred on the zero function in X × X is defined by

BR = ¶(u1, u2) ∈ X × X : ∥(u1, u2)∥X×X ≤ R♢.

Define the operator T : X × X → X × X by

(4.1) T (u1, u2)(t) =



T1(u1, u2)(t)
T2(u1, u2)(t)



, t ∈ N
T
0 ,
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where

T1(u1, u2)(t) =
T
∑

s=2

Gα1
(t, s)f1(s, u1(s), u2(s))

=
T
∑

s=2

Kα1
(t, s)f1(s, u1(s), u2(s)) −

t
∑

s=2

Hα1−1(t, s)f1(s, u1(s), u2(s))(4.2)

and

T2(u1, u2)(t) =
T
∑

s=2

Gα2
(t, s)f2(s, u1(s), u2(s))

=
T
∑

s=2

Kα2
(t, s)f2(s, u1(s), u2(s)) −

t
∑

s=2

Hα2−1(t, s)f2(s, u1(s), u2(s)).(4.3)

Clearly, (u1, u2) is a fixed point of T if and only if (u1, u2) is a solution of (1.1). For
our convenience, denote by

Λi =
1

ξαi

[

Hαi−1(T, 1) + 2Hαi−1(T, 0) + Hαi−2(T, 0)Hαi−1(T, 1)


,(4.4)

ai =li [Λi(T − 1) + Hαi
(T, 1)] ,(4.5)

bi =mi [Λi(T − 1) + Hαi
(T, 1)] ,(4.6)

ci =ni [Λi(T − 1) + Hαi
(T, 1)] ,(4.7)

di =Mi [Λi(T − 1) + Hαi
(T, 1)] ,(4.8)

for i = 1, 2. Assume

(H1)’ for each i ∈ ¶1, 2♢, there exist nonnegative numbers li and mi such that

♣fi(t, u1, u2) − fi(t, v1, v2)♣ ≤ li∥u1 − v1∥X + mi∥u2 − v2∥X ,

for all (t, u1, u2), (t, v1, v2) ∈ N
T
0 × X × X;

(H1) for each i ∈ ¶1, 2♢, there exist nonnegative numbers li and mi such that

♣fi(t, u1, u2) − fi(t, v1, v2)♣ ≤ li∥u1 − v1∥X + mi∥u2 − v2∥X ,

for all (t, u1, u2), (t, v1, v2) ∈ N
T
0 × BR;

(H2)’ for each i ∈ ¶1, 2♢, there exist nonnegative numbers Li such that

♣fi(t, u1, u2)♣ ≤ Li,

for all (t, u1, u2) ∈ N
T
0 × X × X;

(H2) for each i ∈ ¶1, 2♢, there exist nonnegative numbers li, mi, and ni such that

♣fi(t, u1, u2)♣ ≤ li∥u1∥X + mi∥u2∥X + ni,

for all (t, u1, u2) ∈ N
T
0 × BR;

(H3) for each i ∈ ¶1, 2♢,

max
t∈NT

0

♣fi(t, 0, 0)♣ = Mi;

(H4) λ = (a1 + a2) + (b1 + b2) ∈ (0, 1).
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We apply Banach’s fixed point theorem to establish existence and uniqueness of
solutions of (1.1).

Theorem 4.1 ([37]). Let S be a closed subset of a Banach space X. Then, any

contraction mapping T of X into itself has a unique fixed point.

Theorem 4.2. Assume (H1), (H3) and (H4) hold. If we choose

R ≥ (d1 + d2)

1 − [(a1 + a2) + (b1 + b2)]
,

then the system (1.1) has a unique solution (u1, u2) ∈ BR.

Proof. Clearly, T : BR → X × X. First, we show that T is a contraction mapping.
To see this, let (u1, u2), (v1, v2) ∈ BR, and t ∈ N

T
0 . For each i ∈ ¶1, 2♢, consider

♣Ti(u1, u2)(t) − Ti(v1, v2)(t)♣

≤
T
∑

s=2

♣Kαi
(t, s)♣ ♣fi(s, u1(s), u2(s)) − fi(s, v1(s), v2(s))♣

+
t
∑

s=2

Hαi−1(t, s) ♣fi(s, u1(s), u2(s)) − fi(s, v1(s), v2(s))♣

≤ [li∥u1 − v1∥X + mi∥u2 − v2∥X ]



T
∑

s=2

♣Kαi
(t, s)♣ +

t
∑

s=2

Hαi−1(t, s)

]

≤ [li∥u1 − v1∥X + mi∥u2 − v2∥X ] [Λi(T − 1) + Hαi
(t, 1)]

≤ [li∥u1 − v1∥X + mi∥u2 − v2∥X ] [Λi(T − 1) + Hαi
(T, 1)]

≤ai∥u1 − v1∥X + bi∥u2 − v2∥X ,

implying that, for each i ∈ ¶1, 2♢,

(4.9)
∥

∥

∥Ti(u1, u2) − Ti(v1, v2)
∥

∥

∥

X
≤
[

ai∥u1 − v1∥X + bi∥u2 − v2∥X

]

.

Thus, we have

∥T (u1, u2) − T (v1, v2)∥X×X

=
∥

∥

∥T1(u1, u2) − T1(v1, v2)
∥

∥

∥

X
+
∥

∥

∥T2(u1, u2) − T2(v1, v2)
∥

∥

∥

X

≤
[

(a1 + a2)∥u1 − v1∥X + (b1 + b2)∥u2 − v2∥X

]

≤λ
[

(∥u1 − v1∥X + ∥u2 − v2∥X

]

=λ∥(u1, u2) − (v1, v2)∥X×X .

Since λ < 1, T is a contraction mapping with contraction constant λ. Next, we show
that

(4.10) T : BR → BR.
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To see this, let (u1, u2) ∈ BR, and t ∈ N
T
0 . For each i ∈ ¶1, 2♢, consider

∣

∣

∣Ti(u1, u2)(t)
∣

∣

∣

≤
T
∑

s=2

♣Kαi
(t, s)♣ ♣fi(s, u1(s), u2(s))♣ +

t
∑

s=2

Hαi−1(t, s) ♣fi(s, u1(s), u2(s))♣

≤
T
∑

s=2

♣Kαi
(t, s)♣ ♣fi(s, u1(s), u2(s)) − fi(s, 0, 0)♣ +

T
∑

s=2

♣Kαi
(t, s)♣ ♣fi(s, 0, 0)♣

+
t
∑

s=2

Hαi−1(t, s) ♣fi(s, u1(s), u2(s)) − fi(s, 0, 0)♣ +
t
∑

s=2

Hαi−1(t, s) ♣fi(s, 0, 0)♣

≤
[

li∥u1∥X + mi∥u2∥X

 T
∑

s=2

♣Kαi
(t, s)♣ + Mi

T
∑

s=2

♣Kαi
(t, s)♣

+
[

li∥u1∥X + mi∥u2∥X

 t
∑

s=2

Hαi−1(t, s) + Mi

t
∑

s=2

Hαi−1(t, s)

≤
[

li∥u1∥X + mi∥u2∥X + Mi



[Λi(T − 1) + Hαi
(t, 1)]

≤
[

li∥u1∥X + mi∥u2∥X + Mi



[Λi(T − 1) + Hαi
(T, 1)]

≤ai∥u1∥X + bi∥u2∥X + di,

implying that, for each i ∈ ¶1, 2♢,

(4.11)
∥

∥

∥Ti(u1, u2)
∥

∥

∥

X
≤ ai∥u1∥X + bi∥u2∥X + di.

Thus, we have

∥T (u1, u2)∥X×X =
∥

∥

∥T1(u1, u2)
∥

∥

∥

X
+
∥

∥

∥T2(u1, u2)
∥

∥

∥

X

≤ (a1 + a2)R + (b1 + b2)R + (d1 + d2) ≤ R,

implying that (4.10) holds. Therefore, by Theorem 4.1, T has a unique fixed point
(u1, u2) ∈ BR. The proof is complete. □

Corollary 4.1. Assume (H1)’ and (H4) hold. Then, the system (1.1) has a unique

solution (u1, u2) ∈ X × X.

We apply Brouwer’s fixed point theorem to establish existence of solutions of (1.1).

Theorem 4.3 ([37]). Let C be a non-empty bounded closed convex subset of Rn and

T : C → C be a continuous mapping. Then, T has a fixed point in C.

Theorem 4.4. Assume (H2) and (H4) hold. If we choose

R ≥ (c1 + c2)

1 − [(a1 + a2) + (b1 + b2)]
,

then the system (1.1) has at least one solution (u1, u2) ∈ BR.
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Proof. We claim that T : BR → BR. To see this, let (u1, u2) ∈ BR and t ∈ N
T
0 . For

each i ∈ ¶1, 2♢, consider
∣

∣

∣Ti(u1, u2)(t)
∣

∣

∣

≤
T
∑

s=2

♣Kαi
(t, s)♣ ♣fi(s, u1(s), u2(s))♣ +

t
∑

s=2

Hαi−1(t, s) ♣fi(s, u1(s), u2(s))♣

≤
[

li∥u1∥X + mi∥u2∥X + ni

 T
∑

s=2

♣Kαi
(t, s)♣

+
[

li∥u1∥X + mi∥u2∥X + ni

 t
∑

s=2

Hαi−1(t, s)

≤
[

li∥u1∥X + mi∥u2∥X + ni



[Λi(T − 1) + Hαi
(t, 1)]

≤
[

li∥u1∥X + mi∥u2∥X + ni



[Λi(T − 1) + Hαi
(T, 1)]

≤ai∥u1∥X + bi∥u2∥X + ci,

implying that, for each i ∈ ¶1, 2♢,

(4.12)
∥

∥

∥Ti(u1, u2)
∥

∥

∥

X
≤ ai∥u1∥X + bi∥u2∥X + ci.

Thus, we have

∥T (u1, u2)∥X×X =
∥

∥

∥T1(u1, u2)
∥

∥

∥

X
+
∥

∥

∥T2(u1, u2)
∥

∥

∥

X

≤ (a1 + a2)R + (b1 + b2)R + (c1 + c2) ≤ R,

implying that T : BR → BR. Therefore, by Brouwer’s fixed point theorem, T has a
fixed point (u1, u2) ∈ BR. The proof is complete. □

Corollary 4.2. Assume (H2)’ hold. Then, the system (1.1) has at least one solution

(u1, u2) ∈ X × X.

Urs [39] presented some Ulam-Hyers stability results for the coupled fixed point
of a pair of contractive type operators on complete metric spaces. We use Urs’s [39]
approach to establish Ulam-Hyers stability of solutions of (1.1).

Definition 4.1 ([39]). Let X be a Banach space and T1, T2 : X × X → X be two
operators. Then, the operational equations system

(4.13)







u1 = T1(u1, u2),

u2 = T2(u1, u2),

is said to be Ulam-Hyers stable if there exist C1, C2, C3, C4 > 0 such that for each
ε1, ε2 > 0 and each solution-pair (u∗

1, u∗

2) ∈ X × X of the in-equations:

(4.14)







∥u1 − T1(u1, u2)∥X ≤ ε1,

∥u2 − T2(u1, u2)∥X ≤ ε2,
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there exists a solution (v∗

1, v∗

2) ∈ X × X of (4.13) such that

(4.15)







∥u∗

1 − v∗

1∥X ≤ C1ε1 + C2ε2,

∥u∗

2 − v∗

2∥X ≤ C3ε1 + C4ε2.

Theorem 4.5 ([39]). Let X be a Banach space, T1, T2 : X ×X → X be two operators

such that

(4.16)







∥T1(u1, u2) − T1(v1, v2)∥X ≤ k1∥u1 − v1∥X + k2∥u2 − v2∥X ,

∥T2(u1, u2) − T2(v1, v2)∥X ≤ k3∥u1 − v1∥X + k4∥u2 − v2∥X ,

for all (u1, u2), (v1, v2) ∈ X × X. Suppose

H =



k1 k2

k3 k4



converges to zero. Then, the operational equations system (4.13) is Ulam-Hyers stable.

Set

(4.17) H =



a1 b1

a2 b2



.

Theorem 4.6. Assume the hypothesis of Theorem 4.2 holds. Further, assume the

spectral radius of H is less than one. Then, the unique solution of the system (1.1) is

Ulam-Hyers stable.

Proof. In view of Theorem 4.2, we have

(4.18)







∥

∥

∥T1(u1, u2) − T1(v1, v2)
∥

∥

∥

X
≤ a1∥u1 − v1∥X + b1∥u2 − v2∥X ,

∥

∥

∥T2(u1, u2) − T2(v1, v2)
∥

∥

∥

X
≤ a2∥u1 − v1∥X + b2∥u2 − v2∥X ,

which implies that

(4.19) ∥T (u1, u2) − T (v1, v2)∥X×X ≤ H



∥u1 − v1∥X

∥u2 − v2∥X



.

Since the spectral radius of H is less than one, the unique solution of (1.1) is Ulam-
Hyers stable. The proof is complete. □

5. Examples

In this section, we provide two examples to illustrate the applicability of Theorem
4.2, Theorem 4.4 and Theorem 4.6.
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Example 5.1. Consider the following coupled system of two-point nabla fractional
difference boundary value problems
(5.1)







































(

∇0.5
0



∇u1

)

)

(t) + (0.001)e−t [1 + tan−1 u1(t) + tan−1 u2(t)] = 0, t ∈ N
9
2,

(

∇0.5
0



∇u2

)

)

(t) + (0.002) [e−t + sin u1(t) + sin u2(t)] = 0, t ∈ N
9
2,

u1(0) + u1(9) = 0,


∇u1

)

(1) +


∇u1

)

(9) = 0,

u2(0) + u2(9) = 0,


∇u2

)

(1) +


∇u2

)

(9) = 0.

Comparing (1.1) and (5.1), we have T = 9, α1 = α2 = 1.5,

f1(t, u1, u2) = (0.001)e−t
[

1 + tan−1 u1 + tan−1 u2

]

and

f2(t, u1, u2) = (0.002)
[

e−t + sin u1 + sin u2

]

,

for all (t, u1, u2) ∈ N
9
0 ×R

2. Clearly, f1 and f2 are continuous on N
9
0 ×R

2. Next, f1 and
f2 satisfy assumption (H1) with l1 = 0.001, m1 = 0.001, l2 = 0.002 and m2 = 0.002.
We have

M1 = max
t∈N9

0

♣f1(t, 0, 0)♣ = 0.001,

M2 = max
t∈N9

0

♣f2(t, 0, 0)♣ = 0.002,

a1 = l1 [Λ1(T − 1) + Hα1
(T, 1)] = 0.0527,

a2 = l2 [Λ2(T − 1) + Hα2
(T, 1)] = 0.1053,

b1 = m1 [Λ1(T − 1) + Hα1
(T, 1)] = 0.0527,

b2 = m2 [Λ2(T − 1) + Hα2
(T, 1)] = 0.1053,

d1 = M1 [Λ1(T − 1) + Hα1
(T, 1)] = 0.0527,

d2 = M2 [Λ1(T − 1) + Hα1
(T, 1)] = 0.1053.

Also, λ = (a1 + a2) + (b1 + b2) = 0.316 ∈ (0, 1), implying that assumptions (H3) and
(H4) hold. Choose

R ≥ (d1 + d2)

1 − [(a1 + a2) + (b1 + b2)]
= 0.231.

Hence, by Theorem 4.2, the system (5.1) has a unique solution (u1, u2) ∈ BR. Further,

M =



a1 b1

a2 b2



=



0.0527 0.0527
0.1053 0.1053



.

The spectral radius of M is 0.158, which is less than one, implying that M converges
to zero. Thus, by Theorem 4.6, the unique solution of (5.1) is Ulam-Hyers stable.
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Example 5.2. Consider the following coupled system of two-point nabla fractional
difference boundary value problems

(5.2)







































(

∇0.5
0



∇u1

)

)

(t) + (0.01)
[

e−t + 1√
1+u2

1
(t)

+ u2(t)


= 0, t ∈ N
4
2,

(

∇0.5
0



∇u2

)

)

(t) + (0.02)
[

e−t + u1(t) + 1√
1+u2

2
(t)



= 0, t ∈ N
4
2,

u1(0) + u1(4) = 0,


∇u1

)

(1) +


∇u1

)

(4) = 0,

u2(0) + u2(4) = 0,


∇u2

)

(1) +


∇u2

)

(4) = 0.

Comparing (1.1) and (5.2), we have T = 4, α1 = α2 = 1.5,

f1(t, u1, u2) = (0.01)



e−t +
1

√

1 + u2
1

+ u2





and

f2(t, u1, u2) = (0.02)



e−t + u1 +
1

√

1 + u2
2



 ,

for all (t, u1, u2) ∈ N
4
0 × R

2. Clearly, f1 and f2 are continuous on N
4
0 × R

2. Next,
f1 and f2 satisfy assumption (H2) with l1 = 0.01, m1 = 0.01, l2 = 0.02, m2 = 0.02,
n1 = 0.01 and n2 = 0.02. We have

a1 = l1 [Λ1(T − 1) + Hα1
(T, 1)] = 0.1219,

a2 = l2 [Λ2(T − 1) + Hα2
(T, 1)] = 0.2438,

b1 = m1 [Λ1(T − 1) + Hα1
(T, 1)] = 0.1219,

b2 = m2 [Λ2(T − 1) + Hα2
(T, 1)] = 0.2438,

c1 = n1 [Λ1(T − 1) + Hα1
(T, 1)] = 0.1219,

c2 = n2 [Λ2(T − 1) + Hα2
(T, 1)] = 0.2438.

Also, λ = (a1 + a2) + (b1 + b2) = 0.7314 ∈ (0, 1), implying that assumption (H4) hold.
Choose

R ≥ (c1 + c2)

1 − [(a1 + a2) + (b1 + b2)]
= 1.3615.

Hence, by Theorem 4.2, the system (5.1) has at least one solution (u1, u2) ∈ BR.
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DIFFERENCE ANALOGUES OF SECOND MAIN THEOREM AND

PICARD TYPE THEOREM FOR SLOWLY MOVING PERIODIC

TARGETS

DUC THOAN PHAM 1, DANG TUYEN NGUYEN1, AND THI TUYET LUONG1

Abstract. In this paper, we show some Second main theorems for linearly non-
degenerate meromorphic mappings over the field P1

c
of c-periodic meromorphic

functions having their hyper-orders strictly less than one in C
m intersecting slowly

moving targets in P
n(C). As an application, we give some Picard type theorems for

meromorphic mappings of Cm into P
n(C) under the growth condition hyper-order

less than one.

1. Introduction

In 2006, R. Halburd and R. Korhonen [5] considered the Second main theorem
for complex difference operator with finite order in complex plane. Later, difference
analogues of the Second main theorem for holomorphic curves or for meromorphic
mappings into P

n(C) were obtained independently by the authors such as P. M.
Wong, H. F. Law, P. P. W. Wong, R. Halburd, R. Korhonen, K. Tohge, T. B. Cao (see
[2, 6–8]). Recently, T. B. Cao and R. Korhonen [3] obtained a new natural difference
analogue of the Cartan’s theorem [1], in which the counting function N(r, ν0

W (f))

of Wronskian determinant of f is replaced by the counting function N(r, ν0
C(f)) of

Casorati determinant of f (it was called the finite difference Wronskian determinant
in [6]).

Key words and phrases. Second main theorem, meromorphic mappings, Nevanlinna theory, Caso-
rati determinant, moving targets.
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In particular, under the growth condition hyper-order < 1, R. Korhonen, N. Li-K.
Tohge [9] obtained the Second main theorem of holomorphic curves of C into P

n(C)
for slowly moving periodic targets which is similar to the Cartan’s theorem.

To state some results in this direction, we recall some notations in [3, 9].
Let c ∈ C

m, we denote by Mm the set of all meromorphic functions on C
m, by

Pc the set of all meromorphic functions of Mm periodic with period c, and by Pλ
c

the set of all meromorphic functions of Mm periodic with period c and having their
hyper-orders strictly less than λ. Obviously, Pλ

c ⊂ Pc ⊂ Mm.

Definition 1.1. Let f be a meromorphic mapping from C
m into P

n(C) with a reduced
representation f = (f0 : · · · : fn). Then the map f is said to be linearly nondegenerate
over a field K if the entire functions f0, . . . , fn are linearly independent over the field
K.

For c = (c1, . . . , cm) and z = (z1, . . . , zm), we write c + z = (c1 + z1, . . . , cm + zm).
Let f be a meromorphic mapping of Cm into P

n(C) with a reduced representation
f = (f0 : · · · : fn). Denote

f(z) ≡ f := f̄ [0], f(z + c) ≡ f̄ := f̄ [1], f(z + 2c) ≡ ¯̄f := f̄ [2], . . . , f(z + kc) ≡ f̄ [k].

Let

D(j) =

(

∂

∂z1

)α1(j)

· · ·

(

∂

∂zm

)αm(j)

be a partial differentiation operator of order at most j =
∑m

k=1 αk(j). Similarly as the
Wronskian determinant

W (f) = W (f0, . . . , fn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f0 f1 · · · fn

D(1)f0 D(1)f1 · · · D(1)fn
...

...
. . .

...
D(n)f0 D(n)f1 · · · D(n)fn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

the Casorati determinant is defined by

C(f) = C(f0, . . . , fn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f0 f1 · · · fn

f̄0 f̄1 · · · f̄n
...

...
. . .

...

f̄
[n]
0 f̄

[n]
1 · · · f̄ [n]

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let H1, H2, . . . , Hq be (fixed) hyperplanes in P
n(C) given by

Hj = ¶[ω0 : · · · : ωn] ∈ P
n(C) : aj0ω0 + · · · + ajnωn = 0♢ (1 ≤ j ≤ q),

where the constants aj0, . . . , ajn ∈ C are not simultaneously zero.

Definition 1.2. Let N ⩾ n and q ⩾ N + 1. The family ¶Hj♢
q
j=1 is said to be in

N -subgeneral position in P
n(C) if any N + 1 of the vectors (aj0, . . . , ajn) (1 ≤ j ≤ q)

are linearly independent over C.

If they are in n-subgeneral position, we simply say that they are in general position.
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Let a1, . . . , aq (q ≥ n + 1) be q meromorphic mappings of C
m into P

n(C) with
reduced representations aj = (aj0 : · · · : ajn) (1 ≤ j ≤ q). The moving hyperplane Hj

associated with aj is defined by

Hj(z) = ¶[ω0 : · · · : ωn] ∈ P
n(C) : LHj

(z, aj(z)) := aj0(z)ω0 + · · · + ajn(z)ωn = 0♢,

with z ∈ C
m \ I(aj), where I(aj) is the locus of indeterminacy of aj.

Similarly to the above definition, we have the following.

Definition 1.3. Let k ≥ n and q ≥ k + 1 and let K be a field such that C ⊂
K. We say that the moving targets a1, . . . , aq (also say that the moving hyper-
planes H1(z), . . . , Hq(z)) are in k-subgeneral position over K if any k + 1 of vectors
(aj0(z), . . . , ajn(z)) (1 ≤ j ≤ q) are linearly independent over K.

If they are in n-subgeneral position over K, we also simply say that they are in
general position over K.

Let f, a be two meromorphic mappings of Cm into P
n(C) with reduced representa-

tions f = (f0, . . . , fn), a = (a0, . . . , an), respectively. We define (f, a) :=
∑n

i=0 aifi.

Definition 1.4. We say that a is a small moving target or a slowly moving target
with respect to f if T (r, a) = o(T (r, f)) as r → ∞, where the notations T (r, a) and
T (r, f) are characteristic functions of a and f , respectively.

When the entire functions aj (0 ≤ j ≤ n) are periodic with period c then we say
that aj are moving periodic targets with period c.

Definition 1.5. Let n ∈ N, c ∈ C
m \ ¶0♢ and a ∈ C. An a-point z0 of a meromorphic

function f(z) is said to be n-successive with separation c, if the n mappings f(z + kc)
(k = 1, . . . , n) take the value a at z = z0 with multiplicity not less than that of f(z)
there. All the other a-points of f(z) are called n-aperiodic of pace c.

By Ñ [n,c](r, (f, a)), we denote the counting function of all n-aperiodic zeros of the
function (f, a) of pace c.

Note that Ñ[n,c](r, (f, a)) ≡ 0 when all zeros of (f, a) with taking their multiplicities
into account are located periodically with period c. This is also the case when the
moving target a is forward invariant by f with respect to the translation τc = z + c,
i.e., τc(f

−1(a)) ⊂ f−1(a) and f−1(a) are considered to be multi-sets in which each
point is repeated according to its multiplicity. In fact, it follows by the definition that
any zero with a forward invariant preimage of the function (f, a) must be n-successive
with separation c, since

f−1(a) ⊂ τ−c(f
−1(a)) ⊂ · · · ⊂ τ−(n−1)c(f

−1(a)).

With these definitions, the Second main theorem of holomorphic curves for slowly
moving periodic hyperplanes is stated as follows.
Theorem A. ([9]) (Difference analogue of the Cartan’s Second main theorem) Let
n ≥ 1 and let g = (g0 : · · · : gn) be a holomorphic curve of C into P

n(C) with
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hyper-order ζ = ζ2(g) < 1, where g0, . . . , gn are linearly independent over P1
c. Let

aj(z) = (aj0 : · · · : ajn) (j ∈ ¶0, . . . , q♢),

where ajk(z) are c-periodic entire functions satisfying T (r, ajk) = o(Tg(r)) for all
j, k ∈ ¶0, . . . , q♢. If the moving hyperplanes

Hj(z) = ¶(ω0, . . . , ωn) : LHj
(z, aj(z)) = 0♢ (j ∈ ¶0, . . . , q♢)

are located in general position over P1
c, then

∣

∣

∣

∣

∣

∣ (q − n)Tg(r) ≤
q
∑

j=0

Ñ [n,c]
g (r, LHj

) + o (Tg(r)) .

Here, by the notation ”♣♣ P“ we mean the assertion P holds for all r ∈ [0, ∞) outside
of an exceptional set with finite logarithmic measure.

Firstly, by using the idea proposed by D. D. Thai, S. D. Quang [11], we will
extend Theorem A to meromorphic mappings of Cm into P

n(C). Namely, we have the
following.

Theorem 1.1. Let c ∈ C
m and f : Cm → P

n(C) be a linearly nondegenerate mero-
morphic mapping over P1

c with hyper-order ζ2(f) < 1. Let aj (1 ≤ j ≤ q) be q slowly
moving periodic targets with respect to f with period c, located in general position over
P1

c. Then we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q

n + 2
T (r, f) ≤

q
∑

j=1

Ñ
[n,c]
(f,aj)(r) + o (T (r, f)) ,

where Ñ
[n,c]
(f,aj)(r) is the counting function of all n-aperiodic zeros of the function (f, aj).

We now consider A = ¶a1, . . . , aq♢ be the set of meromorphic mappings of Cm into
P

n(C).

Definition 1.6. We say that A is nondegenerate over a field K if dim(A)K = n + 1
and for each nonempty proper subset A1 of A

(A1)K ∩ (A \ A1)K ∩ A ̸= ∅,

where (A)K is the linear span of A over the field K.

With the above definitions, we have the following theorem.

Theorem 1.2. Let c ∈ C
m and let f : C

m → P
n(C) be a linearly nondegenerate

meromorphic mapping over P1
c with hyper-order ζ2(f) < 1. Let aj (1 ≤ j ≤ q) be

q slowly moving periodic targets with respect to f with period c such that (f, aj) ̸≡
0 (1 ≤ j ≤ q). Assume that A = ¶a1, . . . , aq♢ is nondegenerate over Mm. Then we
have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T (r, f) ≤
q
∑

j=1

Ñ
[n,c]
(f,aj)(r) + o (T (r, f)) ,

where Ñ
[n,c]
(f,aj)(r) is the counting function of all n-aperiodic zeros of the function (f, aj).
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We would like note that if the mapping f is forward invariant over aj for all
j ∈ ¶1, . . . , q♢ with respect to the translation τc(z) = z+c , i.e., τ((f, aj)

−1) ⊂ (f, aj)
−1

(counting multiplicity) holds for all j, then Ñ
[n,c]
(f,aj)(r) = 0 for all j. It follows from

Theorem 1.2 that there exists no linearly nondegenerate meromorphic mapping over
Pc which is periodic with period c.

By considering the uniqueness problem for f(z) and f(z+c) intersecting hyperplanes,
the authors of [3,7] obtained an unicity theorem for linearly degenerate meromorphic
mappings over Pc. That result is an extension of Picard’s theorem under the growth
condition hyper-order less than 1.

Theorem B ([3]). Let f be a meromorphic mapping of Cm into P
n(C) with hyper-

order ζ2(f) < 1, and let τ(z) = z + c, where c ∈ C
m. Assume that τ((f, Hj)

−1) ⊂
(f, Hj)

−1 (counting multiplicity) holds for q distinct hyperplanes ¶Hj♢
q
j=1 in N -subge-

neral position in P
n(C). If q > 2N , then f(z) = f(z + c).

Finally, we would like to extend the above result to the case of slowly moving
periodic targets.

Theorem 1.3. Let f be a meromorphic mapping of Cm into P
n(C) with hyper-order

ζ2(f) < 1. Let A = ¶a1, . . . , aq♢ be the set of slowly moving periodic targets with
respect to f with period c which is nondegenerate over Mm and satisfying (f, aj) ̸≡
0 (1 ≤ j ≤ q). Assume that f is forward invariant over aj for all j ∈ ¶1, . . . , q♢
with respect to the translation τc(z) = z + c. Then the image of f is contained in a

projective linear subspace over P1
c of dimension ≤

[

n
q−n

]

. Particularly, if q > 2n, then

f is periodic with period c, i.e., f(z) = f(z + c).

Theorem 1.4. Let f be a meromorphic mapping of Cm into P
n(C) with hyper-order

ζ2(f) < 1. Let c ∈ C
m and k ∈ N, k ≥ n. Let A = ¶a1, . . . , aq♢ be the set of slowly

moving periodic targets with respect to f with period c such that (f, aj) ̸≡ 0 (1 ≤ j ≤ q)
and satisfies condition: dim(A)Mm

= n + 1 and for each a proper subset A1 of A with
♣A1♣ ≥ k + 1 then (A1)Mm

∩ (A \A1) ̸= ∅. Assume that f is forward invariant over aj

for all j ∈ ¶1, . . . , q♢ with respect to the translation τc(z) = z +c. Then the image of f

is contained in a projective linear subspace over P1
c of dimension ≤

[

k
q−k

]

. Particularly,

if q > 2k then f is periodic with period c, i.e., f(z) = f(z + c).

Denote by R = R(¶ai♢
q
i=1) ⊂ Mm the smallest subfield which contains C and all

aik

ail
with ail ̸≡ 0. Obviously, R ⊂ P1

c ⊂ Mm. Since the proof of Theorem 1.4, we can
see that this theorem also holds when the field Mm is replaced by the field R or the
field P1

c . Therefore, when the moving targets are in k-subgeneral position over P1
c , it

is easy to see that they satisfy the hypothesis of Theorem 1.4. Immediately, we have
the following corollary which is an extension of Theorem B.

Corollary 1.1. Let c ∈ C
m and f : Cm → P

n(C) be a meromorphic mapping with
hyper-order ζ2(f) < 1. Let aj (1 ≤ j ≤ q) be q slowly moving periodic targets with
period c, located in k-subgeneral position over P1

c such that (f, aj) ̸≡ 0 (1 ≤ j ≤ q).
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Assume that f is forward invariant over aj for all j ∈ ¶1, . . . , q♢ with respect to the
translation τc(z) = z + c. Then the image of f is contained in a projective linear

subspace over P1
c of dimension ≤

[

n
q−k

]

. Particularly, if q ≥ 2k + 1, then f is periodic

with period c, i.e., f(z) = f(z + c).

2. Preliminaries

2.1. Divisor. We set ♣♣z♣♣ =
(

♣z1♣
2 + · · · + ♣zn♣2

1/2
for z = (z1, . . . , zn) ∈ C

n and

define

Bm(r) := ¶z ∈ C
m : ♣♣z♣♣ < r♢, Sm(r) := ¶z ∈ C

m : ♣♣z♣♣ = r♢ (0 < r < ∞).

Define

σm(z) :=
(

ddc♣♣z♣♣2
m−1

and

ηm(z) := dclog♣♣z♣♣2 ∧
(

ddclog♣♣z♣♣2
m−1

on C
m \ ¶0♢.

Let F be a nonzero holomorphic function on a domain Ω in C
m. For a set

α = (α1, . . . , αm) of nonnegative integers, we set ♣α♣ = α1 + · · · + αm and DαF =
∂♣α♣F

∂α1 z1···∂αm zm
. We define the map νF : Ω → Z by

νF (z) := max ¶n : DαF (z) = 0 for all α with ♣α♣ < n♢ (z ∈ Ω).

We mean by a divisor on a domain Ω in C
m a map ν : Ω → Z such that for

each a ∈ Ω, there are nonzero holomorphic functions F and G on a connected
neighbourhood U ⊂ Ω of a such that ν(z) = νF (z) − νG(z) for each z ∈ U outside an
analytic set of dimension ≤ m − 2. Two divisors are regarded as the same if they are
identical outside an analytic set of dimension ≤ m − 2. For a divisor ν on Ω, we set
♣ν♣ := ¶z : ν(z) ̸= 0♢, which is a purely (m − 1)-dimensional analytic subset of Ω or
empty.

Take a nonzero meromorphic function φ on a domain Ω in C
n. For each a ∈ Ω, we

choose nonzero holomorphic functions F and G on a neighbourhood U ⊂ Ω such that
φ = F

G
on U and dim(F −1(0) ∩ G−1(0)) ≤ m − 2, and we define the divisors ν0

φ, ν∞
φ

by ν0
φ := νF , ν∞

φ := νG, which are independent of choices of F and G and so globally
well-defined on Ω.

2.2. Counting function. For a divisor ν on C
m, we define the counting function of

ν by

n(t) =















∫

♣ν♣ ∩B(t)

ν(z)σm−1, if m ≥ 2,

∑

♣z♣≤t
ν(z), if m = 1.

Define

N(r, ν) =

r
∫

1

n(t)

t2m−1
dt (1 < r < ∞).
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Let φ : Cm → C be a meromorphic function. Define

Nφ(r) = N(r, νφ), N (M)
φ (r) = N (M)(r, νφ).

2.3. Characteristic function. Let f : Cm → P
n(C) be a meromorphic mapping. For

arbitrarily fixed homogeneous coordinates (w0 : · · · : wn) on P
n(C), we take a reduced

representation f = (f0 : · · · : fn), which means that each fi is a holomorphic function

on C
m and f(z) =

(

f0(z) : · · · : fn(z)


outside the analytic set ¶f0 = · · · = fn = 0♢

of codimension greater or equal to 2. Set ∥f∥ =
(

♣f0♣
2 + · · · + ♣fn♣2

1/2
.

The characteristic function of f is defined by

T (r, f) =
∫

Sm(r)

log∥f∥ηm −
∫

Sm(1)

log∥f∥ηm.

Note that T (r, f) is independent of the choice of the representation of f . The order
and hyper-order of f are respectively defined by

ζ(f) := lim sup
r→∞

log+ T (r, f)

log r
and ζ2(f) := lim sup

r→∞

log+ log+ T (r, f)

log r
,

where log+ x := max¶log x, 0♢ for any x > 0.

2.4. Some lemmas. It is known that the holomorphic functions f0, . . . , fn on C
m are

linearly dependent over C if and only if their Wronskian determinant W (f0, . . . , fn)
vanishes identically [10]. The similar result was proved by T. B. Cao, R. Korhonen
[3] as follows.

Lemma 2.1 ([3]). (i) Let c ∈ C
m. A meromorphic mapping f : Cm → P

n(C) with a
reduced representation f = (f0 : · · · : fn) satisfies C(f) ̸≡ 0 if and only if f is linearly
nondegenerate over the field Pc.

(ii) Let c ∈ C
m. If a meromorphic mapping f : C

m → P
n(C) with a reduced

representation f = (f0 : · · · : fn) satisfies ζ2(f) < λ < +∞, then C(f) ̸≡ 0 if and only
if f is linearly nondegenerate over the field Pλ

c ⊂ Pc.

The lemma on the Logarithmic derivative [1, 4] plays an important role in the
Nevanlinna theory. Here, it is replaced by the following lemma due to T. B. Cao, R.
Korhonen [3].

Lemma 2.2 ([3]). Let f be a nonconstant meromorphic function on C
m such that

f(0) ̸= 0, ∞, and let ϵ > 0. If ζ2(f) := ζ < 1, then

m

(

r,
f(z + c)

f(z)

)

=
∫

Sm(r)
log+

∣

∣

∣

∣

∣

f(z + c)

f(z)

∣

∣

∣

∣

∣

ηm(z) = o

(

T (r, f)

r1−ζ−ϵ

)

,

where ϵ is some positive constant.
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Lemma 2.3. ([7, Lemma 8.3]). Let T : [0; +∞) → [0; +∞) be a non-decreasing

continuous function and let s ∈ (0; +∞). If the hyper-order ζ = lim sup
r→∞

log log T (r)
log r

< 1

and δ ∈ (0; 1 − ζ), then

♣♣ T (r + s) = T (r) + o

(

T (r, f)

rδ

)

.

3. Proof of Theorem 1.1

We recall the Second main theorem of meromorphic mappings with hyper-order
ζ2(f) < 1 intersecting hyperplanes in N -subgeneral position in P

n(C).

Lemma 3.1 ([3]). Let c ∈ C
m and f : C

m → P
n(C) be a linearly nondegenerate

meromorphic mapping over Pc with hyper-order ζ = ζ2(f) < 1, and let Hj (1 ≤ j ≤ q)
be q (q > 2N − n + 1) hyperplanes in N-subgeneral position in P

n(C). Then we have

∣

∣

∣

∣

∣

∣(q − 2N + n − 1)T (r, f) ≤
q
∑

j=1

N(r, ν0
(f,Hj)) −

N

n
N(r, ν0

(C(f))) + o

(

T (r, f)

r1−ζ−ϵ

)

,

where ν0
(f,Hj) is the zero divisor of function Hj(f) and ϵ is some positive constant.

Proof of Theorem 1.1. Consider n + 2 meromorphic mappings aj0 , . . . , ajn+1 with re-
duced representations ajk

= (ajk0 : · · · : ajkn) (1 ≤ j0 < · · · < jn+1 ≤ q). We may
assume that ajk0 ≠ 0 for all 0 ≤ k ≤ n+1. We put ãjki =

ajki

ajk0
, ãjk = (ãjk0 : · · · : ãjkn).

Take a reduced representation f = (f0 : · · · : fn) of f and define (f, ãjk
) =

∑n
i=0 fiãjki.

Since ¶aj♢
q
j=1 is in general position over P1

c , we have ãn+1 =
∑n

k=0 ckãjk
, where

ck ∈ R(¶aj♢
q
j=1) \ ¶0♢ and T (r, ck) = O



max
1≤j≤q

T (r, aj)


= o(T (r, f)).

Moreover, we can see that ck ∈ P1
c for all 0 ≤ k ≤ n.

Define f̃ = (c0(f, ãj0) : · · · : cn(f, ãjn
)). Then f̃ is a linearly nondegenerate mero-

morphic mapping of Cm → P
n(C) over P1

c . Indeed, assume that
∑n

k=0 λkck(f, ãjk
) ≡ 0

with λk ∈ P1
c (0 ≤ k ≤ n). This implies that

(

n
∑

k=0

λkckãjk0

)

f0 + · · · +

(

n
∑

k=0

λkckãjkn

)

fn ≡ 0.

Since f is linearly nondegenerate over P1
c , we have

n
∑

k=0

λkckãjki = 0 (i = 0, . . . , n).

By det(ãjki)0≤k≤n,0≤i≤n ̸≡ 0, the above linearly equation system has solutions λkck ≡ 0

(0 ≤ k ≤ n). Hence, λk ≡ 0 (0 ≤ k ≤ n). This implies that f̃ is linearly nondegenerate
over P1

c .

Let z0 is a common zero of ck(f, ãjk
) (0 ≤ k ≤ n). There are two possibilities.

Case 1. If (f, ãjk
)(z0) = 0 for all 0 ≤ k ≤ n, then z0 is either in I(f) which is

an analytic subset of codim > 2 or z0 is a zero of det(ãjki)0≤k≤n,0≤i≤n, where I(f) is
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the locus of indeterminacy of f . Moreover, by the First main theorem and by the
assumption of the theorem, we get

Ndet(ãjki)0≤k≤n,0≤i≤n
(r) ≤ T (r, det(ãjki)0≤k≤n,0≤i≤n) + O(1)

= O



max
1≤j≤q

T (r, aj)


= o(T (r, f)).

Case 2. If there exists 0 ≤ k ≤ n such that ck(z0) = 0, we also have

Nck
(r) ≤ T (r, ck) = O



max
1≤j≤q

T (r, aj)


= o(T (r, f)).

We now take f̃ = (hc0(f, ãj0) : · · · : hcn(f, ãjn
)) as a reduced representation of f̃ ,

where h is a meromorphic function on C
m. It is easy to see that

Nh(r) ≤
n
∑

k=0

(

N1/ck
(r) + Najk0

(r)


= O



max
1≤j≤q

T (r, aj)


= o(T (r, f))

and

N1/h(r) ≤
n
∑

k=0

Nck
(r) + Ndet(ãjki)0≤k≤n,0≤i≤n

(r) = O



max
1≤j≤q

T (r, aj)


= o(T (r, f)).

Define Fk = (f, ãjk
) (0 ≤ k ≤ n). Then since the linearly equation system

n
∑

t=0

ãjktft = Fk (0 ≤ k ≤ n),

we can see that ft =
∑n

i=0 btiFi (0 ≤ t ≤ n), where bti ∈ R(¶aj♢
q
j=1) ∩ P1

c . Put

A =





∑

0≤k,t≤n

♣ãjkt♣
2





1/2

and B =





∑

0≤k,t≤n

♣bti♣
2





1/2

.

Then

♣♣f ♣♣ ≤ B

(

n
∑

t=0

♣Ft♣

)1/2

and

(

n
∑

t=0

♣Ft♣

)1/2

≤ A♣♣f ♣♣.

Therefore, we have

T (r, f) =
∫

S(r)
log

(

n
∑

t=0

♣Ft♣

)1/2

ηn + O



max
1≤j≤q

T (r, aj)


=
∫

S(r)
log

(

n
∑

t=0

♣Ft♣

)1/2

ηn + o(T (r, f)).

On the other hand, we have

n
∑

k=0

♣(f, ãjk
)♣2 ≤

(

n
∑

k=0

♣hck(f, ãjk
)♣2
)(

n
∑

k=0

∣

∣

∣

∣

1

ck

∣

∣

∣

∣

2
)

∣

∣

∣

∣

1

h

∣

∣

∣

∣

2
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and
n
∑

k=0

♣hck(f, ãjk
)♣2 ≤ ♣h♣2

(

n
∑

k=0

♣ck♣2
)(

n
∑

k=0

♣(f, ãjk
)♣2
)

.

Hence, we have

(3.1)
T (r, f) = T (r, f̃) + O



max
1≤j≤q

T (r, aj)


− Nh(r) + N1/h(r)

= T (r, f̃) + o(T (r, f)).

It follows that

ζ2(f̃) = lim sup
r→∞

log+ log+ T (r, f̃)

log r
= lim sup

r→∞

log+ log+(T (r, f) + o(T (r, f)))

log r

≤ lim sup
r→∞

log+ log+(2T (r, f))

log r
≤ lim sup

r→∞

log+(2 + log+(T (r, f)))

log r

≤ lim sup
r→∞

log+ 2 + log+ log+(T (r, f)))

log r
= ζ2(f) < 1.

By applying Lemma 3.1 to the hyperplanes

H0 = ¶ω0 = 0♢, . . . , Hn = ¶ωn = 0♢, Hn+1 = ¶ω0 + · · · + ωn = 0♢,

for f̃ , we have

T (r, f̃) ≤
n
∑

k=0

Nhck(f,ãjk
)(r) + Nh(f,ãjn+1

)(r) − N(r, ν0
(C(f))) + o

(

T (r, f̃)

r1−ζ−ϵ

)

.

This, by going through all points z0 ∈ C
m and by the definitions of Ñ [n,c](r, H(f)),

we obtain

(3.2)

T (r, f̃) ≤
n
∑

k=0

Ñ
[n,c]
hck(f,ãjk

)(r) + Ñ
[n,c]
h(f,ãjn+1

)(r) + o

(

T (r, f̃)

r1−ζ−ϵ

)

≤
n+1
∑

k=0

Ñ
[n,c]
(f,ajk

)(r) + O



max
1≤j≤q

T (r, aj)


+ o

(

T (r, f̃)

r1−ζ−ϵ

)

≤
n+1
∑

k=0

Ñ
[n,c]
(f,ajk

)(r) + o(T (r, f)).

Combining inequality (3.1) with inequality (3.2), we get

(3.3) T (r, f) ≤
n+1
∑

k=0

Ñ
[n,c]
(f,ajk

)(r) + o(T (r, f)).

We now take the sum of both of sides of (3.3) over all combinations (j0, . . . , jn+1)
with 1 ≤ j0 < · · · < jn+1 ≤ q, we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q

n + 2
T (r, f) ≤

q
∑

j=1

Ñ
[n,c]
(f,aj)(r) + o(T (r, f)).

The proof of Theorem 1.1 is completed. □
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4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we need the following.

Lemma 4.1 ([11]). Assume that A = ¶a1, . . . , aq♢ is nondegenerate over Mm. There
exist subsets I1, . . . , Ik of (f, ãj)

q
j=1 such that the following are satisfied:

(i) I1 is minimal over R, i.e., I1 is linearly dependent over R and each proper subset
of I1 is linearly independent over R;

(ii) Ii is linearly independent over R for all 2 ≤ i ≤ k;

(iii)
(

⋃k
j=1 Ij



R
= (¶(f, ãi)♢

q
i=1)R;

(iv) for each 2 ≤ i ≤ k, there exist meromorphic functions cα ∈ R \ ¶0♢ such that

∑

(f,ãα)∈Ii

cα(f, ãα) ∈





i−1
⋃

j=1

Ij





R

,

where R = R(¶aj♢
q
j=1).

Proof of Theorem 1.2. Take subsets I1 = ¶(f, ã1), (f, ã2), . . . , (f, ãt1)♢ and
Ii = ¶(f, ãti−1+1), . . . , (f, ãti

)♢ (2 ≤ i ≤ k) as in Lemma 4.1. Since I1 is minimal,
there exist c1j ∈ R \ ¶0♢ such that

t1
∑

j=1

c1j(f, ãj) = 0.

Put c1j = 0 for all j > t1. We have
∑tk

j=1 c1j(f, ãj) = 0. Lemma 4.1 yields that

¶c1j(f, ãj)♢
t1
j=2 is linearly independent over R. It is easy to see that ¶ãj♢

t1
j=2 is linearly

independent over C. Since the assumption that f is linearly nondegenerate over P1
c ,

and using the arguments as in Theorem 1.1, we can see that ¶c1j(f, ãj)♢
t1
j=2 are linearly

independent over P1
c . Therefore, by Lemma 2.1, the Casorati determinant

C1 = C(c12(f, ã1), . . . , c1t1(f, ãt1))

=
t1−2
∏

j=0

f̄
[j]
0 C

(

c12(f, ã2)

f0

, . . . ,
c1t1(f, ãt1)

f0

)

=
t1−t0−1
∏

j=0

f̄
[j]
0 C̃1 ̸≡ 0,

where t0 = 1.

We now consider i ≥ 2. By the property of subset Ii, there exist meromorphic

functions cij ̸≡ 0, ti−1 + 1 ≤ j ≤ ti in R such that
∑ti

j=ti−1+1 cij(f, ãj) ∈
(

⋃i−1
j=1 Ij



R
.

Therefore, there exist meromorphic functions cij ∈ R (1 ≤ j ≤ ti) such that cij ̸≡
0, ti−1 + 1 ≤ j ≤ ti and

∑ti

j=1 cij(f, ãj) = 0. Put cij = 0 for all j > ti, then
∑tk

j=1 cij(f, ãj) = 0. Since cij(f, ãj)
ti

j=ti−1+1 are linearly independent over R, they are
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linearly independent over P1
c , we have

Ci = C(citi−1+1(f, ãti−1+1), . . . , citi
(f, ãti

))

=
ti−ti−1−1
∏

j=0

f̄
[j]
0 C

(

citi−1+1(f, ãti−1+1)

f0

, . . . ,
citi

(f, ãti
)

f0

)

=
ti−ti−1−1
∏

j=0

f̄
[j]
0 C̃i ̸≡ 0.

Consider the tk × tk + 1 minor matrices T and T̃ given by

T =























































c11(f, ã1) · · · c1tk
(f, ãtk

)
c11(f̄ , ã1) · · · c1tk

(f̄ , ãtk
)

...
...

...
c11(f̄

[t1−t0−1], ã1) · · · c1tk
(f̄ [t1−t0−1], ãtk

)
c21(f, ã1) · · · c2tk

(f, ãtk
)

c21(f̄ , ã1) · · · c2tk
(f̄ , ãtk

)
...

...
...

c21(f̄
[t2−t1−1], ã1) · · · c1tk

(f̄ [t2−t1−1], ãtk
)

c31(f, ã1) · · · c3tk
(f, ãtk

)
c31(f̄ , ã1) · · · c3tk

(f̄ , ãtk
)

...
...

...
ck1(f̄

[tk−tk−1−1], ã1) · · · cktk
(f̄ [tk−tk−1−1], ãtk

)























































and

T̃ =











































































c11(f,ã1)
f0

· · ·
c1tk

(f,ãtk
)

f0

c11(f̄ ,ã1)

f̄0
· · ·

c1tk
(f̄ ,ãtk

)

f̄0

...
...

...
c11(f̄ [t1−t0−1],ã1)

f̄
[t1]
0

· · ·
c1tk

(f̄ [t1],ãtk
)

f̄
[t1−t0−1]
0

c21(f,ã1)
f0

· · ·
c2tk

(f,ãtk
)

f0

c21(f̄ ,ã1)

f̄0
· · ·

c2tk
(f̄ ,ãtk

)

f̄0

...
...

...
c21(f̄ [t2−t1−1],ã1)

f̄
[t2−t1−1]
0

· · ·
c1tk

(f̄ [t2−t1−1],ãtk
)

f̄
[t2−t1−1]
0

c31(f,ã1)
f0

· · ·
c3tk

(f,ãtk
)

f0

c31(f̄ ,ã1)

f̄0
· · ·

c3tk
(f̄ ,ãtk

)

f̄0

...
...

...
ck1(f̄ [tk−tk−1−1],ã1)

f̄
[tk−tk−1−1]

0

· · ·
cktk

(f̄ [tk−tk−1−1],ãtk
)

f̄
[tk−tk−1−1]

0











































































.
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Denote by Di (resp. D̃i) the determinant of the matrix obtained by deleting the
(i + 1)-th column of the minor matrix T (resp. T̃). Since the sum of each row of
T (resp. T̃) is zero, we get

Di = (−1)i
D0 = (−1)i

k
∏

v=1

Cv = (−1)i
k
∏

v=1

tv−tv−1−1
∏

l=0

f̄
[l]
0 C̃v = (−1)i

k
∏

v=1

tv−tv−1−1
∏

l=0

f̄
[l]
0 D̃0

=
k
∏

v=1

tv−tv−1−1
∏

l=0

f̄
[l]
0 D̃i.

Since dim(A)R = n + 1, we can assume that ãi1 , . . . , ãin+1 is a basis of (A) over R.
Then det(ãijs)1≤j≤n+1, 0≤s≤n ̸≡ 0. By solving the linearly equation system

(f, ãij
) = ãij0f0 + · · · + ãijnfn (1 ≤ j ≤ n + 1),

we get fv =
∑n+1

j=1 Avt(f, ãij
) (0 ≤ v ≤ n), with Avt ∈ R.

Take a basic ¶(f, ãj1)♢, . . . , (f, ãjd
)♢ of the space

(

⋃k
i=1 Ii



R
. By

((f, ãj1)♢, . . . , (f, ãjd
))R =

(

k
⋃

i=1

Ii

)

R

= (¶(f, ãj)♢
q
j=1)R,

we have fv =
∑d

t=1 Bvt(f, ãjt
) (0 ≤ v ≤ n), with Btv ∈ R. Hence,

♣fv(z)♣ ≤
d
∑

t=1

♣Bvt(z)♣ max
1≤i≤tk

¶♣(f, ãi)(z)♣♢ (z ∈ C
m).

Define A(z) =
∑d

t=1

∑n
v=0 ♣Bvt(z)♣, then we have

♣♣f(z)♣♣ ≤ A(z) max
1≤i≤tk

¶♣(f, ãi)(z)♣♢

and

(4.1)

∫

S(r)
log+ A(z)ηn ≤

d
∑

t=1

n
∑

v=0

log+ ♣Btv(z)♣ηn + O(1)

≤
d
∑

t=1

n
∑

v=0

T (r, Bvt) + O(1)

= O( max
1≤j≤q

T (r, aj)) + O(1)

= o(T (r, f)).

We now fix z0 ∈ C
m and take i (1 ≤ i ≤ tk) such that

♣(f, ãi)(z0)♣ = max
1≤i≤tk

¶♣(f, ãi)(z0)♣♢.



768 D. T. PHAM, D. T. NGUYEN, AND T. T. LUONG

Then

♣D0(z0)♣ · ♣♣f(z0)♣♣
∏tk

j=1 ♣(f, ãj)(z0)♣
=

♣Di(z0)♣
∏tk

j=1,j ̸=i ♣(f, ãj)(z0)♣
·

♣♣f(z0)♣♣

♣(f, ãi)(z0)♣

≤ A(z0)
♣Di(z0)♣

∏tk

j=1,j ̸=i ♣(f, ãj)(z0)♣
.

Therefore, we have

log
♣D0(z0)♣ · ♣♣f(z0)♣♣
∏tk

j=1 ♣(f, ãj)(z0)♣
≤ log+

(

A(z0)
♣Di(z0)♣

∏tk

j=1,j ̸=i ♣(f, ãj)(z0)♣

)

≤ log+

(

♣Di(z0)♣
∏tk

j=1,j ̸=i ♣(f, ãj)(z0)♣

)

+ log+ A(z0).

It implies that for each z ∈ C
m, we have

log
♣D0(z)♣ · ♣♣f(z)♣♣
∏tk

j=1 ♣(f, ãj)(z)♣
≤

tk
∑

i=1

log+

(

♣Di(z)♣
∏tk

j=1,j ̸=i ♣(f, ãj)(z)♣

)

+ log+ A(z)

=
tk
∑

i=1

log+











♣D̃i(z)♣
∏tk

j=1,j ̸=i
♣(f,ãj)(z)♣

∏k

v=1

∏tv−tv−1−1

l=0
♣f̄

[l]
0 ♣











+ log+ A(z).

Hence, we get
(4.2)

log ♣♣f(z)♣♣ ≤ log

∏tk

j=1 ♣(f, ãj)(z)♣

♣D0(z)♣
+

tk
∑

i=1

log+











♣D̃i(z)♣
∏tk

j=1,j ̸=i
♣(f,ãj)(z)♣

∏k

v=1

∏tv−tv−1−1

l=0
♣f̄

[l]
0 (z)♣











+ log+ A(z).

Note that each element of the matrix of the determinant

D̃i(z)
∏tk

j=1,j ̸=i
(f,ãj)(z)

∏k

v=1

∏tv−tv−1−1

l=0
f̄

[l]
0 (z)

has a form

cij

(f̄ [l],ãj)

f̄
[l]
0

(f,ãj)

f0

·
f̄

[l]
0

f0

(1 ≤ i ≤ k, 1 ≤ j ≤ tk).



DIFFERENCE ANALOGUES OF SECOND MAIN THEOREM AND PICARD TYPE THEOREM769

On the other hand, by the definition of the counting functions and the Jensen’s
formula, we have

T

(

r,
(f, ãj)

f0

)

=
∫

S(r)
log ♣1 +

n
∑

i=1

f̃iãji♣ηm + O(1)

≤
∫

S(r)
log((1 +

n
∑

i=1

♣f̃i♣)
1/2(1 +

n
∑

i=1

♣ãji♣)
1/2)ηm

+ Nf0(r) +
n
∑

i=1

Nai0
(r) + O(1)

=
∫

S(r)
log(1 +

n
∑

i=1

♣f̃i♣)
1/2ηm + Nf0(r) +

∫

S(r)
log(1 +

n
∑

i=1

♣ãji♣)
1/2ηm

+
n
∑

i=1

Nai0
(r) + O(1)

≤T (r, f) + T (r, aj) + O(1)

=T (r, f) + o(T (r, f)).

Therefore, the hyper-order ζ2

(

(f,ãj)

f0



< 1 (1 ≤ j ≤ q). By Lemma 2.2, we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m









r, cij

(f̄ [l],ãj)

f̄
[l]
0

(f,ãj)

f0

·
f̄

[l]
0

f0









≤ m (r, cij) + m









r,

(f̄ [l],ãj)

f̄
[l]
0

(f,ãj)

f0









+ m



r,
f̄

[l]
0

f0





≤ O( max
1≤j≤q

¶T (r, aj)♢) + o(T (r, f))

= o(T (r, f)).

Hence,

(4.3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m











r,
D̃i(z)

∏tk
j=1,j ̸=i

(f,ãj)(z)
∏k

v=1

∏tv−tv−1−1

l=0
f̄

[l]
0 (z)











≤ o(T (r, f)).

By taking integrating both sides of inequality (4.2) and together this with (4.1) and
(4.3), we get
(4.4)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T (r, f) ≤
∫

S(r)
log

∏tk

j=1 ♣(f, ãj)♣

♣D0♣
ηm + o(T (r, f)) ≤ N





r, ν0
∏tk

j=1
(f,ãj )

D0





+o(T (r, f)).

Take z0 as a zero of

∏tk
j=1

(f,ãj)

D0
. Then z0 is a zero or a pole of some (f, ãj) or a pole

of some csj.

Case 1. Assume that z0 is an n-successive with separation c of (f, ãj) with multi-
plicity vj > 0 for all j (1 ≤ j ≤ tk). Then ν0

(f̄ [v],ãj)
(z0) ≥ ν0

(f,ãj)(z0) for all 1 ≤ v ≤ n
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and 1 ≤ j ≤ tk. Without loss of generality, we may assume that v1 ≤ v2 ≤ · · · ≤ vk.

For each 1 ≤ j ≤ tk, we have

Ci = (f, ãti−1+1) · · · (f, ãti
)citi−1+1 · · · citi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
(f̄ ,ãti−1+1)

(f,ãti−1+1)
· · ·

(f̄ ,ãti
)

(f,ãti
)

...
. . .

...
(f̄ [ti−ti−1−1],ãti−1+1)

(f,ãti−1+1)
· · ·

(f̄ [ti−ti−1−1],ãti
)

(f,ãti
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=: (f, ãti−1+1) · · · (f, ãti
)citi−1+1 · · · citi

Ĉi.

Put J = ¶(i, j) : cij ̸≡ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ tk♢, then

D0 =
k
∏

i=1

Ci =
tk
∏

j=2

(f, ãj)
∏

(i,j)∈J

cij

k
∏

i=1

Ĉi.

Hence,

(4.5) νD0(z0) =
tk
∑

j=2

ν(f,ãj)(z0) +
∑

(i,j)∈J

νcij
(z0) +

k
∑

i=1

νĈi
(z0) ≥

tk
∑

j=2

vj +
∑

(i,j)∈J

νcij
(z0).

Take ¶ad0 , . . . , adn
♢ as a basis of (A)Mm

. Since (¶(f, ãi)♢
tk

i=1)R = (¶(f, ãi)♢a∈A)R,

(f, ãdj
) =

tk
∑

i=1

αij(f, ãij) (0 ≤ j ≤ n).

Note that αij ∈ R. Put I = ¶αij, 1 ≤ i ≤ tk, 0 ≤ j ≤ n such that αij ≠ 0♢ and
m = maxαij∈I ν∞

αij
(z0).

• If m ≥ v1, then v1 ≤
∑

αij∈I ν∞
αij

(z0).

• Otherwise, we have z0 is a zero of (f, ãdj
) with multiplicity at least v1 − m for

0 ≤ j ≤ n. Then z0 is a zero of (f, adj
) with multiplicity at least v1 − m for 0 ≤ j ≤ n.

If z0 ̸∈ I(f), then z0 is a zero of det(adjs) with multiplicity at least v1 − m. It implies
that v1 ≤

∑

αij∈I ν∞
αij

(z0) + ν0
det(adj s)(z0) if z0 ̸∈ I(f). Therefore, together these with

(4.5), we have

ν0
∏tk

j=1
(fãj )

D0

(z0) ≤
tk
∑

j=1

vj −





tk
∑

j=2

vj +
∑

(i,j)∈J

νcij
(z0)





≤
∑

αij∈I

ν∞
αij

(z0) + ν0
det(adj s)(z0) −

∑

(i,j)∈J

νcij
(z0).

Case 2. Assume that there exists an index j0 such that z0 is not an n-successive
with separation c of (f, ãj0). Without loss of generality, we may assume that j0 = 1.
We can assume that z0 is an n-successive with separation c of (f, ãj) with all 2 ≤ j ≤ l,

and z0 is an n-aperiodic with separation c of (f, ãj) with all l + 1 ≤ j ≤ tk0 , and z0 is
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a pole of (f, ãj) with all tk0 < j ≤ tk, where k0 ≤ k. Take i0 satisfying ti0−1 ≤ l < ti0 ,

we have

Ci = (f, ãti−1+1) · · · (f, ãti
)citi−1+1 · · · citi

Ĉi (1 ≤ i ≤ t0 − 1)

and

Ci0 =(f, ãti0−1+1) · · · (f, ãl)ci0ti0−1+1 · · · ci0ti0

×



















1 · · · 1 · · · (f, ãl+1) · · · (f, ãt0)
(f̄ ,ãti0−1+1)

(f,ãti0−1+1)
· · · (f̄ ,ãl)

(f,ãl)
· · · (f̄ , ãl+1) · · · (f̄ , ãt0)

...
. . .

...
. . .

...
. . .

...
(f̄ [v],ãti0−1+1)

(f,ãti0−1+1)
· · · (f̄ [v],ãl)

(f,ãl)
· · · (f̄ [v], ãl+1) · · · (f̄ [v], ãt0)



















=(f, ãti0−1+1) · · · (f, ãl)ci0ti0−1+1 · · · ci0ti0
Ĉi0 ,

where v = t0 − ti0−1 − 1 and

Ci = citi−1+1 · · · citi
C((f, ãti−1+1), . . . , (f, ãti

)) = citi−1+1 · · · citi
Ĉi,

for all i0 + 1 ≤ i ≤ k. Then we have
∏tk

j=1(f, ãj)

D0

=
(f, ã1)

∏tk

i=l+1(f, ãi)
∏

(i,j)∈J cij ·
∏k

i=1 Ĉi

and therefore

ν0
∏tk

j=1
(f,ãj )

D0

(z0) =ν0
(f,ã1)(z0) +

tk
∑

i=l+1

ν0
(f,ãi)

(z0) −
∑

(i,j)∈J

νcij
(z0) +

∑

i0+1≤i≤k,0≤j≤n

ν∞
atij

(z0)

−
k
∑

i=1

ν0
Ĉi

(z0)

≤ν0
(f,ã1)(z0) +

tk
∑

i=l+1

ν0
(f,ãi)

(z0) −
∑

(i,j)∈J

νcij
(z0) +

∑

i0+1≤i≤k,0≤j≤n

ν∞
atij

(z0).

By going through all points z0 ∈ C
m and by the definition of Ñ

[n,c]
(f,ãi)

(r), two cases
above imply that

N





r, ν0
∏tk

j=1
(f,ãj )

D0





 ≤
tk
∑

j=1

Ñ [n,c](r, ν0
(f,ãj)) −

∑

(i,j)∈J

N(r, νcij
) +

∑

1≤i≤tk,0≤j≤n

N(r, ν∞
aij

)

+
∑

αij∈I

N(r, ν∞
αij

) + N(r, ν0
det(adj s))

≤
q
∑

j=1

Ñ
[n,c]
(f,ãj)(r) + o(T (r, f)).
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Together this with (4.4), we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T (r, f) ≤
q
∑

j=1

Ñ
[n,c]
(f,ãj)(r) + o(T (r, f)) ≤

q
∑

j=1

Ñ
[n,c]
(f,aj)(r) + o(T (r, f)).

The proof of Theorem 1.2 is completed. □

5. Proof of Theorem 1.3

We recall the lemma due to T. B. Cao and R. Korhonen [3] as follows.

Lemma 5.1 ([3]). Let c ∈ C
m and f = (f0 : · · · : fn) be a meromorphic mapping

from C
m into P

n(C) such that hyper-order ζ2(f) < λ ≤ 1 and all zeros of f0, . . . , fn

forward invariant with respect to the translation τ(z) = z + c. Let S1 ∪ · · · ∪ Sl be the
partition of ¶0, 1, . . . , n♢ formed in such a way that i and j are in the same class Sk

if and only if fi

fj
∈ Pλ

c . If f0 + · · · + fn = 0, then
∑

j∈Sk

fj = 0,

for all k ∈ ¶1, . . . l♢.

Lemma 5.2. If A = ¶a1, . . . , aq♢ is linearly nondegenerate over Mm, then A is
linearly nondegenerate over R, i.e., dim(A)R = n + 1 and for each nonempty proper
subset A1 of A, we have

(A1)R ∩ (A \ A1)R ∩ A ̸= ∅.

Proof. By the assumption, dim(A)Mm
= n + 1, so dim(A)R = n + 1. Take any

nonempty proper subset A1 of A, we have

(A1)Mm
∩ (A \ A1)Mm

∩ A ̸= ∅.

We consider two possibilities.
Case 1. There exists at ∈ (A1)Mm

∩(A\A1). Then there exist b1, . . . , bk ∈ A1 which
are linearly independent over Mm and there exist c1, . . . , ck ∈ Mm \ ¶0♢ such that
at =

∑k
i=1 cibi. Take reduced representations at = (at0 : · · · : atn) and bi = (bi0 : · · · :

bin) (1 ≤ i ≤ k). We have a linear equation system
∑k

i=1 cibij = atj (0 ≤ j ≤ n). Since

¶b̃1, . . . , b̃k♢ is linearly independent over Mm, rank(bij)1≤i≤k,0≤j≤n = k. By solving the
above linear equation system, we have ci ∈ R (1 ≤ i ≤ k). It follows that at ∈ (A1)R
and hence at ∈ (A1)R ∩ (A \ A1), i.e.,

(A1)R ∩ (A \ A1)R ∩ A ̸= ∅.

Case 2. There exists at ∈ A1 ∩ (A \ A1)Mm
. By the same arguments as in Case 1,

we have at ∈ (A \ A1)R and therefore we also have

(A1)R ∩ (A \ A1)R ∩ A ̸= ∅.

Lemma 5.2 is proved. □
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Proof of Theorem 1.3. By the assumption of the theorem, the holomorphic functions
gj = (f, aj) =

∑n
i=0 fiai satisfy ¶τ(g−1

j (0))♢ ⊂ ¶g−1
j (0)♢, j ∈ ¶1, . . . , q♢, where ¶·♢

denotes a multiset with counting multiplicities of its elements. We say that i ∼ j if
gi = αgj for some α ∈ P1

c \ ¶0♢. Therefore, the set of indexes ¶1, . . . , q♢ may be split
into disjoint equivalent classes Sj, ¶1, . . . , q♢ = ∪l

j=1Sj for some 1 ≤ l ≤ q.

We assume that the complement of Sj has at least n + 1 elements for some j ∈
1, . . . , l. Let A1 = ¶1, . . . , q♢ \ Sj. Then A1 contains at least n + 1 elements. By
Lemma 5.2, there exist ¶s0♢ and ¶s1, . . . , su♢ belonging to disjoint equivalent classes
and α1, . . . , αu ∈ R \ ¶0♢ such that as0 +

∑u
j=1 αjasj

≡ 0. So, we have

(f, as0) +
u
∑

j=1

αj(f, asj
) = gs0 +

u
∑

j=1

αjgsj
≡ 0.

By the assumption of the theorem again, we can see that all zeros of αjgsj
are forward

invariant with respect to the translation τ(z) = z + c. This implies that

g := (gs0 : α1gs1 : · · · : αugsu
)

is a meromorphic mapping of Cm into P
u(C). We have

T (r, g) =
∫

Sm(r)
log ♣♣g♣♣ηm + O(1)

≤
∫

Sm(r)
log ♣♣f ♣♣ηm +

u
∑

j=0

∫

Sm(r)
log ♣♣asj

♣♣ηm +
u
∑

j=1

∫

Sm(r)
log ♣♣αsj

♣♣ηm + O(1)

= T (r, f) +
u
∑

j=0

T (r, asj
) +

u
∑

j=1

T (r, αsj
) + O(1)

= T (r, f) + o(T (r, f)).

Therefore, ζ2(g) ≤ ζ2(f) < 1. By Lemma 5.1, we get gs0 ≡ 0 and
∑u

j=1 αjgsj
≡ 0.

This is a contradiction. It implies that the complement of Sj has at most n elements
for all j ∈ 1, . . . , l, and hence Sj has at least q − n elements for all j ∈ 1, . . . , l. From
this, we have

l ≤
q

q − n
.

Since dim(A)Mm
= n + 1, we have dim(A)P1

c
= n + 1. Therefore, we can take a

subset V ⊂ ¶1, . . . , q♢ with ♣V ♣ = n + 1 such that ¶aj♢j∈V is linearly independent.
Put Vj = V ∩ Sj for each 1 ≤ j ≤ l. Then we have V = ∪l

j=1Vj. Since each Vj gives

raise to ♣Vj♣ − 1 equations over the field P1
c , it is easy to see that there are at least

l
∑

j=1

(♣Vj♣ − 1) = n + 1 − l ≥ n + 1 −
q

q − n
= n −

n

q − n

linear independent relations over the field P1
c . Hence, the image of f is contained

in a projective linear subspace over P1
c of dimension ≤

[

n
q−n

]

. If q > 2n, obviously
[

n
q−n

]

= 0. It follows that f(z) = f(z + c). Theorem 1.3 is proved. □
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6. Proof of Theorem 1.4

Repeat the arguments as in Theorem 1.3. Assume that the complement A1 =
¶1 . . . , q♢\Sj of Sj has at least k+1 elements for some j ∈ 1, . . . , l. By the assumption,
we have (A1)Mm

∩ (A \A1) ̸= ∅. From Case 1 in the proof of Lemma 5.2, it is easy to
see that (A1)R ∩ (A \A1) ̸= ∅. Therefore, there exist s0 ∈ Sj = A \A1, v1, . . . , vt ∈ A1

and β1, . . . , βt ∈ R \ ¶0♢ such that as0 +
∑t

j=1 βjavj
= 0. Similarly to the proof of

Theorem 1.3, we can deduce that (f, as0) ≡ 0. This is a contradiction. Therefore,
♣A1♣ ≤ k, so ♣Sj♣ ≥ q − k. Again using the discussion as in Theorem 1.3, we can show
that the image of f is contained in a projective linear subspace over P1

c of dimension

≤
[

k
q−k

]

and if q > 2k, then
[

k
q−k

]

= 0. Therefore, f(z) = f(z + c). Theorem 1.4 is

proved.
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APPROXIMATING SOLUTIONS OF MONOTONE VARIATIONAL
INCLUSION, EQUILIBRIUM AND FIXED POINT PROBLEMS OF

CERTAIN NONLINEAR MAPPINGS IN BANACH SPACES
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Abstract. In this paper, motivated by the works of Timnak et al. [Filomat 31(15)
(2017), 4673Ű4693], Ogbuisi and Izuchukwu [Numer. Funct. Anal. 40(13) (2019)]
and some other related results in literature, we introduce an iterative algorithm
and employ a Bregman distance approach for approximating a zero of the sum of
two monotone operators, which is also a common solution of equilibrium problem
involving pseudomonotone bifunction and a Ąxed point problem for an inĄnite family
of Bregman quasi-nonexpansive mappings in the framework of a reĆexive Banach
space. Using our iterative algorithm, we state and prove a strong convergence result
for approximating a common solution of the aforementioned problems. Furthermore,
we give some applications of the consequences of our main result to convex mini-
mization problem and variational inequality problem. Lastly, we display a numerical
example to show the applicability of our main result. The result presented in this
paper extends and complements many related results in the literature.

1. Introduction

Let E be a reflexive Banach space with E∗ its dual and Q be a nonempty closed and
convex subset of E. Let f : E → (−∞, +∞] be a proper, lower semicontinuous and
convex function, then the Fenchel conjugate of f denoted as f ∗ : E∗ → (−∞, +∞] is
defined as

f ∗(x∗) = sup¶⟨x∗, x⟩ − f(x) : x ∈ E♢, x∗ ∈ E∗.

Key words and phrases. Equilibrium problem, Bregman quasi-nonexpansive, monotone operators,
iterative scheme, Ąxed point problem.
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For more information on Legendre functions, see [37]. Let the domain of f be denoted
as dom f = ¶x ∈ E : f(x) < +∞♢, hence for any x ∈ int(dom f) and y ∈ E, we
define the right-hand derivative of f at x in the direction of y by

f 0(x, y) = lim
t→0+

f(x + ty)− f(x)

t
.

Let f : E → (−∞, +∞] be a function, then f is said to be:
(i) essentially smooth, if the subdifferential of f denoted as ∂f is both locally

bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f is

strictly convex on every convex subset of dom ∂f ;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex. See

[10,51] for more details on Legendre functions.
The function f is said to be:
(i) Gâteaux differentiable at x if limt→0+

f(x+ty)−f(x)
t

exists for any y. In this case,
f 0(x, y) coincides with ▽f(x) (the value of the gradient ▽f of f at x);

(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈ int(dom f);
(iii) Frechet differentiable at x, if its limit is attained uniformly in ♣♣y♣♣ = 1.
f is said to be uniformly Frechet differentiable on a subset Q of E, if the above

limit is attained uniformly for x ∈ Q and ♣♣y♣♣ = 1. The function f is said to be
Legendre if it satisfies the following conditions.

(i) The int(dom f) is nonempty, f is Gâteaux differentiable on int(dom f) and
dom▽f = int(dom f).

(ii) The int(dom f ∗) is nonempty, f ∗ is Gâteaux differentiable on int(dom f ∗) and
dom▽f ∗ = int(dom f).

Let E be a Banach space and Bs := ¶z ∈ E : ♣♣z♣♣ ≤ s♢ for s > 0. Then, a function
f : E → R is said to be uniformly convex on bounded subsets of E, [55, page 203 and
221] if ρs(t) > 0 for all s, t > 0, where ρs : [0, +∞)→ [0, +∞] is defined by

ρs(t) = inf
x,y∈Bs,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(α(x) + (1− α)y)

α(1− α)
,

for all t ≥ 0, where ρs denote the gauge of uniform convexity of f . The function f is
also said to be uniformly smooth on bounded subsets of E [55, page 221], if limt↓0

σs

t

for all s > 0, where σs : [0, +∞)→ [0, +∞] is defined by

σs(t) = sup
x∈B,y∈SE ,α∈(0,1)

αf(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
,

for all t ≥ 0. The function f is said to be uniformly convex if the function δf :
[0, +∞)→ [0, +∞) defined by

δf(t) := sup


1

2
f(x) +

1

2
f(y)− f



x + y

2



: ♣♣y − x♣♣ = t

}

,

satisfies limt↓0
δf(t)

t
= 0.
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Recall that the function f is said to be totally convex at a point x ∈ Domf , if the
function vf : int(dom f)× [0, +∞)→ [0, +∞) defined by

vf (x, t) := inf¶Df (y, x) : y ∈ int(dom f), ♣♣y − x♣♣ = t♢,

is positive whenever t > 0. For details on uniformly convex and totally convex
functions, see [12,15,18].

Definition 1.1 ([12]). Let f : E → (−∞, +∞] be a convex and Gâteaux differentiable
function. The function Df : E × E → [0, +∞) defined by

Df (x, y) := f(x)− f(y)− ⟨▽f(y), x− y⟩

is called the Bregman distance with respect of f .

It is well-known that Bregman distance Df does not satisfy the properties of a
metric because Df fail to satisfy the symmetric and triangular inequality property.
However, the Bregman distance satisfies the following so-called three point identity:
for any x ∈ dom f and y, z ∈ int(dom f)

Df (x, y) + Df (y, z)−Df (x, z) = ⟨▽f(z)−▽f(y), x− y⟩.(1.1)

For more information on Bregman functions and Bregman distances, see [38, 45]. Let
T : Q→ Q be a mapping, a point x ∈ Q is called a fixed point of T , if Tx = x. We
denote by F (T ) the set of all fixed points of T . Moreso, a point p ∈ Q is called an
asymptotic fixed point of T if Q contains a sequence ¶xn♢ which converges weakly
to p such that limn→+∞ ♣♣Txn − xn♣♣ = 0. The notion of asymptotic fixed point was

introduced by [40]. We denote by F̂ (T ) the set of asymptotic fixed points of T .
Let Q be a nonempty closed and convex subset of E. An operator T : Q → Q is

said to be:
(i) Bregman relatively nonexpansive, if F (T ) ̸= ∅ and

Df (p, Tx) ≤ Df (p, x), for all p ∈ F (T ), x ∈ Q and ˆF (T ) = F (T );

(ii) Bregman quasi-nonexpansive mapping if F (T ) ̸= ∅ and

Df (p, Tx) ≤ Df (p, x), for all x ∈ Q and p ∈ F (T );

(iii) Bregman Strongly Nonexpansive (BSNE) with F̂ (T ) ̸= ∅, if

Df (p, Tx) ≤ Df (p, x), for all x ∈ C, p ∈ ˆF (T )

and for any bounded sequence ¶xn♢n≥1 ⊂ Q,

lim
n→+∞

(Df (p, xn)−Df (p, Txn)) = 0

implies that limn→+∞ Df (Txn, xn) = 0. For more information on these classes of
mappings, see [29,30].

Let B : E → 2E∗

be a set-valued mapping, the domain and range of B are denoted
by dom B = ¶x ∈ E : Bx ̸= ∅♢ and ran B = ∪x∈BBx, respectively. The graph of
B is denoted as G(B) = ¶(x, x∗) ∈ E × E∗ : x∗ ∈ Bx♢. Recall that B is called a
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monotone mapping, if for any x, y ∈ dom B, we have ξ ∈ Bx and ζ ∈ By implies
⟨ξ−ζ, x−y⟩ ≥ 0. B is said to be maximal monotone if it is monotone and its graph is
not contained in the graph of any other monotone mapping. Let f : E → (−∞, +∞]
be a proper, lower semicontinuous and convex function and B be a maximal monotone
mapping from E to E∗. For any λ > 0, the mapping Res

f
λB : E → dom B defined by

Res
f
λB = (▽f + λB)−1 ◦ ▽f,

is called the f -resolvent of B. It is well known that B−1(0) = F (Res
f
λB) for each

λ > 0.
Let Q be a nonempty closed and convex subset of a reflexive Banach space E, the

mapping A : E → 2E∗

is called Bregman Inverse Strongly Monotone (BISM) on the
set Q if

Q ∩ (dom f) ∩ (int(dom f)) ̸= ∅,

and for any x, y ∈ Q ∩ (int(dom f)), ξ ∈ Ax and ζ ∈ Ay, we have that

⟨ξ − ζ,▽f ∗(▽f(x)− ξ)−▽f ∗(▽f(y)− ζ)⟩ ≥ 0.

Let A : E → E∗ be a single-valued monotone mapping and B : E → 2E∗

be a
multivalued monotone mapping. Then, the Monotone Variational Inclusion Problem
(MVIP) (also known as the problem of finding a zero of sum of two monotone mappings)
is to find x ∈ E such that

0∗ ∈ A(x) + B(x).(1.2)

We denote by Ω, the solution set of problem (1.2).
It is well known that many interesting problems arising from mechanics, economics,

applied sciences, optimization such as equilibrium and variational inequality problems
can be solved using MVIP.

Suppose A = 0 in (1.2), we obtain the following Monotone Inclusion Problem (MIP),
which is to find x ∈ E such that

0∗ ∈ B(x).(1.3)

Many algorithms have been introduced by several authors for solving the MVIP and
related optimization problems in Hilbert, Banach, Hadamard and p-uniformly convex
metric spaces, see [1,7–9,17,28,31,34,35,44,53]. For instance, Reich and Sabach [27,42]
introduced some iterative algorithms and proved two strong convergence results for
approximating a common solution of a finite family of MIP (1.3) in a reflexive Banach
space. Recently, Timnak et al. [51] introduced a new Halpern-type iterative scheme
for finding a common zero of finitely many maximal monotone mappings in a reflexive
Banach space and prove the following strong convergence theorem.

Theorem 1.1. Let E be a reflexive Banach space and f : E → R be a strongly

coercive Bregman function which is bounded on bounded subsets and uniformly convex

and uniformly smooth on bounded subset of E. Let Ai : E → 2E∗

, i = 1, 2, . . . , be
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N maximal monotone operators such that Z := ∩N
i=1A

−1
i (0∗) ̸= ∅. Let ¶αn♢n∈N and

¶βn♢n∈N be two sequences in (0, 1) satisfying the following control conditions:

(i) limn→+∞ αn = 0 and
∑+∞

n=1 αn =∞;

(ii) 0 < lim infn→+∞ βn ≤ lim supn→+∞ βn < 1.

Let ¶xn♢n∈N be a sequence generated by














u ∈ E, x1 ∈ E chosen arbitrarily,

yn = ▽f ∗[βn▽ f(xn) + (1− βn)▽ f(Res
f
rN AN

) · · · (Res
f
r1A1

(xn))],

xn+1 = ▽f ∗[αn▽ f(u) + (1− αn)▽ f(yn)],

(1.4)

for n ∈ N, where ▽f is the gradient of f . If ri > 0, for each i = 1, 2, . . . , N , then the

sequence ¶xn♢n∈N defined in (1.4) converges strongly to proj
f
Zu as n→ +∞.

Very recently, Ogbuisi and Izuchukwu [33] introduced the following iterative al-
gorithm to obtain a strong convergence result for approximating a zero of sum of
two maximal monotone operators which is also a fixed point of a Bregman strongly
nonexpansive mapping in the framework of a reflexive Banach space. Let u, x0 ∈ Q

be arbitrary and the sequence ¶xn♢ be generated by






































Q0 = Q,

yn = ▽f ∗(αn▽ f(u) + βn▽ f(xn) + γn▽ f(T (xn))),

un = (Res
f
λB ◦ A

f
λ)yn,

Qn+1 = ¶z ∈ Qn : Df (z, un) ≤ αnDf (z, u) + (1− αn)Df (z, xn)♢,

xn+1 = P
f
Qn+1

(x0), n ≥ 0,

(1.5)

with conditions limn→∞ αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1. Then,
¶xn♢ converges strongly to P

f
F (T )∩Γx0, where Γ := (A + B)−1(0).

Equilibrium Problem (EP) involving monotone bifunctions and related optimization
problems have been studied extensively by many authors, (see [2, 3, 11, 19, 22, 23, 36,
39, 46, 47, 49, 50] and other references contained in). Very recently, Eskandani et al.
[18] introduced an EP involving a pseudomonotone bifunction in the framework of a
reflexive Banach space.

Let C be a nonempty closed and convex subset of a reflexive Banach space E, the
EP for a bifunction g : C ×C → R satisfying condition g(x, x) = 0 for every x ∈ C is
defined as follows: find x∗ ∈ C such that

g(x∗, y) ≥ 0, for all y ∈ C.(1.6)

We denote by ∆, the set of solutions of (1.6).
Recall that a bifunction g is called monotone on C, if for all x, y ∈ C, g(x, y) +

g(y, x) ≤ 0 and the mapping A : C → E∗ is pseudomonotone if and only if the
bifunction g(x, y) = ⟨A(x), y− x⟩ is pseudomonotone on C (see [18]). To solve an EP
involving a pseudomonotone bifunction, we need the following assumptions:

L1. g is pseudomonotone, i.e., for all x, y ∈ C:

g(x, y) ≥ 0 implies g(y, x) ≤ 0;
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L2. g is Bregman-Lipschitz type continuous, i.e., there exist two positive constants
c1, c2 such that

g(x, y) + g(y, z) ≥ g(x, z)− c1Df (y, x)− c2Df (z, y), for all x, y, z ∈ C;

L3. g is weakly continuous on C × C, i.e., if x, y ∈ C and ¶xn♢ and ¶yn♢ are two
sequences in C converging weakly to x and y respectively, then g(xn, yn)→ g(x, y);

L4. g(x, ·) is convex, lower semicontinuous and subdifferential on C for every fixed
x ∈ C;

L5. for each x, y, z ∈ C, lim supt↓0 g(tx + (1− t)y, z) ≤ g(y, z).
Using assumptions L1-L5, Eskandani et al. [18] introduced an hybrid iterative

algorithm to approximate a common element of the set of solutions of finite family
of EPs involving pseudomonotone bifunctions and the set of common fixed points
for a finite family of Bregman relatively nonexpansive mappings in the framework of
reflexive Banach spaces. They proved the following strong convergence theorem.

Theorem 1.2. Let C be a nonempty closed convex subset of a reflexive Banach

space E and f : E → R be a super coercive Legendre function which is bounded,

uniformly Frechet differentiable and totally convex on bounded subset of E. Let for

i = 1, 2, . . . , N, gi : C × C → R be a bifunction satisfying L1-L5. Assume that for

each 1 ≤ r ≤M, Tr : C → CB(C) be a multivalued Bregman relatively nonexpansive

mapping, such that Γ = (∩M
r=1F (Tr)) ∩ (∩N

i=1EP (gi)) ̸= ∅. Suppose that ¶xn♢ is a

sequence generated by x1 ∈ C and






































wi
n = argmin¶λngi(xn, w) + Df (w, xn) : w ∈ C♢, i = 1, . . . , N,

zi
n = argmin¶λngi(w

i
n, z) + Df (z, xn) : z ∈ C♢, i = 1, . . . , N,

in ∈ Argmax¶Df (zi
n, xn), i = 1, 2, . . . , N♢, zn := zin

n ,

yn = ▽f ∗(βn,0▽ f(zn) +
∑M

r=1 βn,r ▽ f(zn,r)), zn,r ∈ Trzn,

xn+1 =
←−
P

f
C(▽f ∗(αn▽ f(un) + (1− αn)▽ f(zn,r)),

where CB(C) denotes the family of a nonempty, closed and convex subsets of C,

¶αn♢, ¶βn,r♢, ¶λn♢ and ¶un♢ satisfy the following conditions:

(i) ¶αn♢ ⊂ (0, 1), limn→+∞ αn = 0,
∑+∞

n=1 αn =∞;

(ii) ¶βn,r♢ ⊂ (0, 1),
∑M

r=0 βn,r = 1, lim infn→+∞ βn,0βn,r > 0 for all 1 ≤ r ≤M and

n ∈ N;

(iii) ¶λn♢ ⊂ [a, b] ⊂ (0, p), where p = min¶ 1
c1

, 1
c2
♢, c1 = max1≤i≤N ci,1;

c2 = max1≤i≤N ci,2 and ci,1, ci,2 are the Bregman-Lipschitz coefficients of gi for all

1 ≤ i ≤ N ;

(iv) ¶un♢ ⊂ E, limn→+∞ un = u for some u ∈ E.

Then, the sequence ¶xn♢ converges strongly to
←−
P

f
Γ u.

Remark 1.1. We will like to emphasize that approximating a common solution of MVIP
and EP have some possible applications to mathematical models whose constraints
can be expressed as MVIP and EP. In fact, this happens in practical problems like
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signal processing, network resource allocation, image recovery, to mention a few, (see
[20]).

Inspired by the works of Eskandani et al. [18], Timnak et al. [51], Ogbuisi and
Izuchukwu [33] and other related results in literature, we introduce a Halpern type
iteration process to approximate a zero of sum of two monotone operators, which is
also a common solution of equilibrium problem involving pseudomonotone bifunction
and fixed point problem for an infinite family of Bregman quasi-nonexpansive map-
pings in the framework of a reflexive Banach space. We state and prove a strong
convergence result for finding a common solution of the aforementioned problems
and give applications to the consequences of our main results. Finally, we display a
numerical example to show the applicability of our main result. The result presented
in this paper improve and generalize some known results in the literature.

2. Preliminaries

We give some known and useful results which will be needed in the proof of our
main theorem. In the sequel, we denote strong and weak convergence by → and ⇀,
respectively.

Definition 2.1. A function f : E → R is said to be super coercive if

lim
x→+∞

f(x)

♣♣x♣♣
= +∞

and strongly coercive if

lim
||xn||→+∞

f(xn)

♣♣xn♣♣
= +∞.

Definition 2.2. Let Q be a nonempty subset of a real Banach space E and ¶Tn♢
+∞
n=1

a sequence of mappings from Q into E such that ∩+∞
n=1F (Tn) ̸= ∅. Then ¶Tn♢

+∞
n=1 is

said to satisfy the AKTT-condition if for each bounded subset K of Q,
+∞
∑

n=1

sup¶♣♣Tn+1z − Tnz♣♣ : z ∈ K♢ < +∞.

Lemma 2.1 ([6]). Let C be a nonempty subset of a real Banach space E and ¶Tn♢
∞
n=1

be a sequence of mappings from C into E which satisfies the AKTT condition. Then,

for each x ∈ C, ¶Tnx♢+∞
n=1 is convergent. Furthermore, if we define a mapping T :

C → E by

Tx := lim inf
n→+∞

Tnx, for all x ∈ C,

then, for each bounded subset K of C,

lim sup
n→+∞

¶♣♣Tnz − Tz♣♣ : z ∈ K♢ = 0.

In this sequel, we write that (¶Tn♢
+∞
n=1, T ) satisfies the AKTT-condition if ¶Tn♢

+∞
n=1

satisfies the AKTT-condition and F (T ) = ∩+∞
n=1F (Tn).
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Lemma 2.2 ([51]). Let E be a Banach space, s > 0 a constant, ρs the gauge of

uniform convexity of g and g : E → R a convex function which is uniformly convex

on bounded subset of E. Then

(i) for any x, y ∈ Bs and α ∈ (0, 1), we have

g(αx + (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1− α)ρs(♣♣x− y♣♣),

(ii) for any x, y ∈ Bs

ρs(♣♣x− y♣♣) ≤ Dg(x, y).

Here, Bs := ¶z ∈ E : ♣♣z♣♣ ≤ s♢.

Lemma 2.3 ([14]). Let E be a reflexive Banach space, f : E → R a strongly coercive

Bregman function and V a function defined by

V (x, x∗) = f(x)− ⟨x, x∗⟩+ f ∗(x∗), x ∈ E, x∗ ∈ E∗.

The following assertions also hold:

Df (x,▽f ∗(x∗)) =V (x, x∗), for all x ∈ E and x∗ ∈ E∗,

V (x, x∗) + ⟨▽g∗(x∗)− x, y∗⟩ ≤V (x, x∗ + y∗), for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.4 ([14]). Let E be a Banach space and f : E → R a Gâteaux differentiable

function which is uniformly convex on bounded subsets of E. Let ¶xn♢n∈N and ¶yn♢n∈N

be bounded sequences in E. Then

lim
n→+∞

Df (yn, xn) = 0⇒ lim
n→+∞

♣♣yn − xn♣♣ = 0.

Lemma 2.5 ([18]). Let C be a nonempty closed convex subset of a reflexive Banach

space E and f : E → R a Legendre and super coercive function. Suppose that

g : C×C → R is a bifunction satisfying L1-L4. For arbitrary sequence ¶xn♢ ⊂ C and

¶λn♢ ⊂ (0, +∞), let ¶wn♢ and ¶zn♢ be sequences generated by






wn = argminy∈C¶λng(xn, y) + Df (y, xn)♢,

zn = argminy∈C¶λng(wn, y) + Df (y, xn)♢.

Then, for all x∗ ∈ ∆, we have that

Df (x∗, zn) ≤ Df (x∗, xn)− (1− λnc1)Df (wn, xn)− (1− λnc2)Df (zn, wn),

where c1 and c2 are the Bregman-Lipschitz coefficients of g.

Lemma 2.6 ([42]). Let f : E → R be a Gâteaux differentiable and totally convex

function. If x0 ∈ E and the sequence ¶Df (xn, x0)♢ is bounded, then the sequence ¶xn♢
is also bounded.

Lemma 2.7 ([55]). Let f : E → R be a continuous convex function which is bounded

on bounded subsets of E. Then, the following are equivalent:

(i) f is super coercive and uniformly convex on bounded subset of E;

(ii) dom f ∗ = E∗, f∗ is bounded and uniformly smooth on bounded subsets of E∗;
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(iii) dom f ∗ = E∗, f∗ is Fréchet differentiable and ▽f ∗ is uniformly norm-to-norm

continuous on bounded subset of E∗.

Lemma 2.8 ([55]). Let f : E → R be a continuous convex function which is super

coercive. Then, the following are equivalent:

(i) f is bounded and uniformly smooth on bounded subsets of E;

(ii) f is Fréchet differentiable and ▽f is uniformly norm-to-norm continuous on

bounded subset of E;

(iii) dom f ∗ = E∗, f ∗ is super coercive and uniformly convex on bounded subsets

of E∗.

Lemma 2.9 ([33]). Let B : E → 2E∗

be a maximal monotone operator and A : E →
E∗ be a BISM mapping such that (A + B)−1(0∗) ̸= ∅. Let f : E → R be a Legendre

function, which is uniformly Fréchet differentiable and bounded on bounded subset of

E. Then

Df (u, Res
f
λB ◦ Af (x)) + Df (Res

f
λB(x), x) ≤ Df (u, x),

for any u ∈ (A + B)−1(0∗), x ∈ E and λ > 0.

Lemma 2.10 ([33]). Let B : E → 2E∗

be a maximal monotone operator and A : E →
E∗ be a BISM mapping such that (A + B)−1(0∗) ̸= ∅. Let f : E → R be a Legendre

function, which is uniformly Fréchet differentiable and bounded on bounded subset of

E. Then

(i) (A + B)−1(0∗) = F (Res
f
λB ◦ A

f
λ);

(ii) Res
f
λB ◦ A

f
λ is a BSNE operator with F (Res

f
λB ◦ A

f
λ) = F̂ (Res

f
λB ◦ A

f
λ).

Definition 2.3. Let E be a reflexive Banach space and C a nonempty closed and
convex subset of E. A Bregman projection of x ∈ int(dom f) onto C ⊂ int(dom f) is

the unique vector P
f
C(x) ∈ C satisfying

Df (P f
C(x), x) = inf¶Df (y, x) : y ∈ C♢.

Lemma 2.11 ([41]). Let C be a nonempty closed and convex subset of a reflexive

Banach space E and x ∈ E. Let f : E → R be a Gâteaux differentiable and totally

convex function. Then

(i) z = P
f
C(x) if and only if ⟨▽f(x)−▽f(z), y − z⟩ ≤ 0 for all y ∈ C;

(ii) Df (y, P
f
C(x)) + Df (P f

C(x), x) ≤ Df (y, x) for all y ∈ C.

Lemma 2.12 ([52]). Let C be a nonempty convex subset of a reflexive Banach space

E and f : C → R be a convex and subdifferential function on C. Then f attains its

minimum at x ∈ C if and only if 0 ∈ ∂f(x) + NC(x), where NC(x) is the normal cone

of C at x, that is

NC(x) := ¶x∗ ∈ E∗ : ⟨x− z, x∗⟩ ≥ 0 for all z ∈ C♢.
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Lemma 2.13 ([16]). If f and g are two convex functions on E such that there is a

point x0 ∈ dom f ∩ dom g where f is continuous, then

∂(f + g)(x) = ∂f(x) + ∂g(x), for all x ∈ E.(2.1)

Lemma 2.14 ([48]). Assume ¶an♢ is a sequence of nonnegative real numbers such

that

an+1 ≤ (1− σn)an + σnδn, n > 0,

where ¶σn♢ is a sequence in (0, 1) and ¶δn♢ is a real sequence such that

(i)
∑+∞

n=1 σn = +∞;

(ii) lim supn→+∞ δn ≤ 0 or
∑+∞

n=1 ♣σnδn♣ < +∞.

Then limn→+∞ an = 0.

3. Main Results

In what follows, Ω and ∆ denote the solution set of MVIP (1.2) and EP (1.6) respec-
tively.

Algorithm 3.1. Choose u, x1 ∈ E. Assume that the control parameters ¶µn♢, ¶βn♢
and ¶αn♢ satisfy the following conditions:

(i) αn ∈ (0, 1), limn→+∞ αn = 0 and
∑+∞

n=1 αn = +∞;
(ii) βn ∈ (0, 1) and 0 < lim infn→+∞ βn ≤ lim supn→+∞ βn < 1;

(iii) 0 < µ ≤ µn ≤ µ < min
{

1
2c1

, 1
2c2

}

, where c1, c2 are positive constants.

Let ¶xn♢ be a sequence generated by






































un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)),

yn = (Res
f
λB ◦ A

f
λ)un,

zn = argmina∈Q¶µng(yn, a) + Df (a, yn)♢,

wn = argmina∈Q¶µng(zn, a) + Df (a, yn)♢,

xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)), n ≥ 1.

(3.1)

Theorem 3.2. Let E be a reflexive Banach space with E∗ its dual and Q ⊆ E

a nonempty closed convex set. For n ∈ N, let Tn : E → E be an infinite family

of Bregman quasi-nonexpansive mapping such that (¶Tn♢
+∞
n=1, T ) satisfy the AKTT-

condition and F (T ) = F̂ (T ). Let A : E → E∗ be a BISM mapping, B : E → 2E∗

a maximal monotone operator and g : Q × Q → R a bifunction satisfying L1-L5.

Assume that f : E → R is a strongly coercive Legendre function, which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of E such that

Q ⊂ int(dom f) with Γ := ∩+∞
n=1F (Tn)∩Ω∩∆ ̸= ∅. Then, the sequence ¶xn♢ generated

by Algorithm 3.1 converges strongly to v = P
f
Γ u, where P

f
Γ is the Bregman projection

from E to Γ.

Proof. Let p ∈ Γ, then we have from (3.1), Lemma 2.5 and Lemma 2.10 (ii) that

Df (p, wn) ≤Df (p, yn)− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)
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=Df (p, Res
f
λB ◦ A

f
λ(un))− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)

≤Df (p, un)− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)

=Df (p,▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)))

− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)

≤βnDf (p, xn) + (1− βn)Df (p, Tnxn)

− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)

≤βnDf (p, xn) + (1− βn)Df (p, xn)

− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)

≤Df (p, xn).(3.2)

Now, we conclude from (3.1) and (3.2) that

Df (p, xn+1) = Df (p,▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)))

≤ αnDf (p, u) + (1− αn)Df (p, wn)

≤ αnDf (p, u) + (1− αn)Df (p, un)

≤ αnDf (p, u) + (1− αn)Df (p, xn)

≤ max
{

Df (p, u), Df (p, xn)♢

...

≤ max
{

Df (p, u), Df (p, x1)♢.(3.3)

From Lemma 2.8, we have that f ∗ is bounded on bounded subset of E∗. Hence,
▽f ∗ is also bounded on bounded subset of E∗. From Lemma 2.6, the following
sequences ¶xn♢

+∞
n=1, ¶(Tnxn)♢+∞

n=1, ¶(▽f ∗un)♢+∞
n=1, ¶(▽f ∗wn)♢+∞

n=1, ¶(▽f ∗zn)♢+∞
n=1 and

¶(▽f ∗yn)♢+∞
n=1 are all bounded. In view of Lemma 2.7 and Lemma 2.8, dom f ∗ = E∗

and f ∗ is super coercive and uniformly convex on bounded subset of E∗. Let s ≥
sup¶♣♣xn♣♣, ♣♣ ▽ (Tnxn)♣♣ : n ∈ N♢ be large enough and let ρ∗

s : [0, +∞)→ [0, +∞) be
the gauge of uniform convexity of f ∗. Now, we have from Lemma 2.2 and (3.1) that

Df (p, un) =Df (p,▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)))

=f(p) + f(βn▽ f(xn) + (1− βn)▽ f(Tnxn))

− ⟨p, βn▽ f(xn) + (1− βn)▽ f(Tnxn)⟩

≤βnf(p) + (1− βn)f(p) + βnf ∗(▽f(xn)) + (1− βn)f ∗(▽f(Tnxn)

− βn(1− βn)ρ∗
s(♣♣ ▽ f(xn)−▽f(Tnxn)♣♣)

− ⟨p, βn▽ f(xn) + (1− βn)▽ f(Tnxn)⟩

≤βnDf (p, xn) + (1− βn)Df (p, Tnxn)

− βn(1− βn)ρ∗
s(♣♣ ▽ f(xn)−▽f(Tnxn)♣♣)

≤Df (p, xn)− βn(1− βn)ρ∗
s(♣♣ ▽ f(xn)−▽f(Tnxn)♣♣).(3.4)
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From (3.1), (3.2) and (3.4) and Lemma 2.3, we obtain that

Df (p, xn+1) =Df (p,▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)))

=Vp(p, αn▽ f(u) + (1− αn)▽ f(wn))

≤Vp(p, αn▽ f(u) + (1− αn)▽ f(wn))− αn(▽f(u)−▽f(p))

− ⟨▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn))− p,−αn(▽f(u)−▽f(p))⟩

=V (p, αn▽ f(u) + (1− αn)▽ f(wn)) + αn⟨xn+1 − p,▽f(u)−▽f(p)⟩

=Df (p,▽f ∗(αn▽ f(p) + (1− αn)▽ f(wn)))

+ αn⟨xn+1 − p,▽f(u)−▽f(p)⟩

≤αnDf (p, p) + (1− αn)Df (p, wn) + αn⟨xn+1 − p,▽f(u)−▽f(p)⟩

≤(1− αn)Df (p, xn)− (1− αn)(1− µnc1)Df (zn, yn)

− (1− αn)(1− µnc2)Df (wn, zn)

− βn(1− βn)ρ∗
s(♣♣ ▽ f(xn)−▽f(Tnxn))♣♣

+ αn⟨xn+1 − p,▽f(u)−▽f(p)⟩.(3.5)

We now consider two cases to prove a strong convergence result.
CASE 1. Assume that the sequence ¶Df (p, xn)♢ is a monotone decreasing sequence,

then ¶Df(p, xn)♢ is convergent. Clearly, we have that Df(p, xn) −Df(p, xn+1) → 0,
as n→ +∞.

Now, we have from (3.5), Lemma 2.4, conditions (i)-(iii) of (3.1) that

lim
n→+∞

♣♣zn − yn♣♣ = 0.(3.6)

Also,

lim
n→+∞

♣♣wn − zn♣♣ = 0(3.7)

and

lim
n→+∞

ρ∗
s(♣♣ ▽ f(xn)−▽f(Tnxn)♣♣) = 0.(3.8)

Applying the property of ρ∗
s on (3.8), we obtain that

lim
n→+∞

♣♣ ▽ f(xn)−▽f(Tnxn)♣♣ = 0.

Since ▽f ∗ is uniformly norm-to-norm continuous on bounded subset of E∗, we obtain
that

lim
n→+∞

♣♣xn − Tnxn♣♣ = 0.(3.9)

Since (¶Tn♢
+∞
n=1, T ) satisfies the AKTT condition, we then conclude that

♣♣xn − Txn♣♣ ≤ ♣♣xn − Tnxn♣♣+ ♣♣Tnxn − Txn♣♣

≤ ♣♣xn − Tnxn♣♣+ sup¶♣♣Tnx− Tx♣♣ : x ∈ K♢,(3.10)
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where K = rB = ¶x ∈ E : ♣♣x♣♣ ≤ r♢. By applying Lemma 2.1, (3.9) and (3.10), we
have that

lim
n→+∞

♣♣xn − Txn♣♣ = 0.(3.11)

From (3.9), the boundedness of ▽f and the uniform continuity of f on bounded
subsets of E, we have that

Df (Tnxn, xn) = f(Tnxn)− f(xn)− ⟨Tnxn − xn,▽fxn⟩ → 0, n→ +∞.(3.12)

From Lemma 2.9, (3.1), (3.2) and (3.3), we have that

Df (yn, un) ≤ Df (p, un)−Df (p, yn)

≤ βnDf (p, xn) + (1− βn)Df (p, Tnxn)−Df (p, un)

≤ βnDf (p, xn) + (1− βn)Df (p, xn)−Df (p, wn)

= Df (p, xn) + αnDf (p, u)−Df (p, xn+1).

Using condition (i) and Lemma 2.4, we have that

lim
n→+∞

♣♣yn − un♣♣ = 0.(3.13)

From (3.1) and (3.12), we have that

Df (xn, un) = Df (xn,▽f ∗(βnf(xn) + (1− βn)▽ f(Tnxn)))

≤ βnDf (xn, xn) + (1− βn)Df (xn, Tnxn)→ 0, n→ +∞.

Hence, we have from Lemma 2.4 that

lim
n→+∞

♣♣un − xn♣♣ = 0.(3.14)

From (3.13) and (3.14), we have that

lim
n→+∞

♣♣yn − xn♣♣ = 0.(3.15)

From (3.6) and (3.15), we obtain that

lim
n→+∞

♣♣zn − xn♣♣ = 0.(3.16)

From (3.7) and (3.16), we have that

lim
n→+∞

♣♣wn − xn♣♣ = 0.(3.17)

Using (3.1), we have that

Df (wn, xn+1) = Df (wn,▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)))

≤ αnDf (wn, u) + (1− αn)Df (wn, wn)→ 0, n→ +∞.

We have from Lemma 2.4 that

lim
n→+∞

♣♣xn+1 − wn♣♣ = 0.(3.18)
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We conclude from (3.17) and (3.18) that

lim
n→+∞

♣♣xn+1 − xn♣♣ = 0.(3.19)

Since ¶xn♢ is bounded in E, there exists a subsequence ¶xnk
♢ of ¶xn♢ such that

xnk
⇀ x∗. From (3.14), (3.15), (3.16) and (3.17), we have that ¶unk

♢, ¶znk
♢, ¶ynk

♢ and

¶wnk
♢ converges weakly to x∗. Also, from (3.11), we obtain that x∗ ∈ ˆF (T ) = F (T ).

Next, we show that x∗ ∈ Ω. Since

zn = argmina∈Q¶µng(yn, a) + Df (a, yn)♢,

then by Lemma 2.12 and 2.13 and condition L4, we obtain that

0 ∈ ∂µng(yn, zn) +▽Df (zn, yn) + NC(zn).

Therefore, there exist θ̄n ∈ ∂g(yn, zn) and θn ∈ NC(zn) such that

µnθ̄n +▽f(zn)−▽f(yn) + θn = 0.(3.20)

Observe that θn ∈ NC(zn) and ⟨q − zn, θn⟩ ≤ 0 for all q ∈ Q. Since θ̄n ∈ ∂g(yn, zn),
we have

g(yn, q)− g(yn, zn) ≥ ⟨q − zn, θn⟩,(3.21)

for all q ∈ Q. Using (3.20) and (3.21), we obtain that

µn[g(yn, q)− g(yn, zn)] ≥ ⟨zn − q,▽f(zn)−▽f(yn)⟩, for all q ∈ C,

this implies that

[g(yn, q)− g(yn, zn)] ≥
1

µn

⟨zn − q,▽f(zn)−▽f(yn)⟩, for all q ∈ C.(3.22)

Using (3.6), (3.15), (3.16), condition L3 and letting n→∞ in (3.22), we conclude that
g(x∗, q) ≥ 0, for all q ∈ Q. Hence x∗ ∈ ∆. We will also show that 0∗ ∈ A(x∗) + B(x∗).

From (3.13) and Lemma 2.10, we have that x∗ ∈ F̂ (Res
f
λB ◦ A

f
λ) = F (Res

f
λB ◦ A

f
λ) =

(A + B)−1(0∗). That is 0∗ ∈ A(x∗) + B(x∗). Hence, x∗ ∈ Ω. We conclude that x∗ ∈ Γ.

We prove that ¶xn♢ converges strongly to v = P
f
Γ u.

Since ¶xn♢ is bounded, there exists a subsequence ¶xnk
♢ of ¶xn♢ such that xnk

⇀ x∗

and

lim sup
n→+∞

⟨xn+1 − v,▽f(u)−▽f(v)⟩ = lim
k→∞
⟨xnk+1 − v,▽f(u)−▽f(v)⟩.(3.23)

Since x∗ ∈ Γ, we obtain from Lemma 2.11 and (3.23) that

lim sup
n→+∞

⟨xn+1 − v,▽f(u)−▽f(v)⟩ = ⟨x∗ − v,▽f(u)−▽f(v)⟩ ≤ 0.(3.24)

From (3.5), we have that

Df (v, xn+1) ≤ (1− αn)Df (v, xn) + αn⟨xn+1 − v,▽f(u)−▽f(v)⟩.(3.25)

On applying Lemma 2.14 in (3.25), we conclude that Df (xn, v)→ 0, n→∞. There-

fore, ¶xn♢ converges strongly to v = P
f
Γ u.
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CASE 2. Suppose that ¶Df (p, xn)♢ is not a monotone decreasing sequence. Let
τ : N→ N be a mapping defined for n ≥ n0 for some sufficiently large n0 by

τ(n) = max¶j ∈ N : j ≤ n, Df (p, xnk
) ≤ Df (p, xnj+1)♢.

Then τ is a non-decreasing sequence such that τ(n) → +∞ and Df(p, xτ(n)) ≤
Df (p, xτ(n)+1) for n ≥ n0.

We have from (3.5), conditions (i), (ii), (iii) that

lim
τ(n)→+∞

♣♣zτ(n) − yτ(n)♣♣ = 0 = lim
τ(n)→+∞

♣♣wτ(n) − zτ(n)♣♣(3.26)

and

lim
τ(n)→+∞

♣♣ ▽ f(xτ(n))−▽(Tτ(n)xτ(n))♣♣ = 0.(3.27)

Following the same argument as in CASE 1, we have

lim
τ(n)→+∞

♣♣uτ(n) − xτ(n)♣♣ = 0,

lim
τ(n)→+∞

♣♣yτ(n) − xτ(n)♣♣ = 0,

lim
τ(n)→+∞

♣♣xτ(n+1) − xτ(n)♣♣ = 0

and

lim sup
τ(n)→+∞

⟨xτ(n)+1 − v,▽f(u)−▽f(v)⟩ = ⟨x∗ − v,▽f(u)−▽f(v)⟩ ≤ 0.(3.28)

It follows from (3.5) that

Df (v, xτ(n)+1) ≤ (1− ατ(n))Df (v, xτ(n)) + ατ(n)⟨xτ(n)+1 − v,▽f(u)−▽f(v)⟩.
(3.29)

Since ατ(n) > 0, we obtain that

Df (v, xτ(n)) ≤ ⟨xτ(n)+1 − v,▽f(u)−▽f(v)⟩.

Hence, we deduce from (3.28) that Df (v, xτ(n)) = 0. This implies that ¶xτ(n)♢ converges
strongly to v. Thus, ¶xn♢ converges strongly to v ∈ Γ. □

We give the following consequences of our main result. In the next result, we
consider a fixed point problem of relatively nonexpansive mapping and an EP involving
a pseudomonotone bifunction.

Corollary 3.1. Let E be a reflexive Banach space with E∗ its dual and Q ⊆ E be

a nonempty closed convex set. Let T : E → E be a Bregman relatively nonexpansive

mapping with F (T ) = F̂ (T ) and g : Q × Q → R be a bifunction satisfying L1-L5.

Assume that f : E → R is a strongly coercive Legendre function, which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of E such that
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Q ⊂ int(dom f) with Γ := F (T )∩∆ ̸= ∅. Let the sequence ¶xn♢ be generated iteratively

by


























un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Txn)),

zn = argmina∈Q¶µng(un, a) + Df (a, un)♢,

wn = argmina∈Q¶µng(zn, a) + Df (a, un)♢,

xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)), n ≥ 1.

(3.30)

If conditions (i)-(iii) in (3.1) still hold, then the sequence ¶xn♢ converges strongly to

x∗ = P
f
Γ u.

Here, we consider a common solution of fixed point problem for an infinite family of
Bregman quasi-nonexpansive mappings which is a zero of sum of monotone operators.

Corollary 3.2. Let E be a reflexive Banach space and E∗ be its dual space. For n ∈ N,

let Tn : E → E be an infinite family of Bregman quasi-nonexpansive mapping such

that (¶Tn♢
+∞
n=1, T ) satisfy the AKTT-condition and F (T ) = F̂ (T ). Let A : E → E∗

be a BISM mapping and B : E → 2E∗

be a maximal monotone operator. Assume

that f : E → R is a strongly coercive Legendre function, which is bounded, uniformly

Fréchet differentiable and totally convex on bounded subsets of E such that Γ :=
∩+∞

n=1F (Tn) ∩ Ω ̸= ∅. Let the sequence ¶xn♢ be generated iteratively by














un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)),

yn = (Res
f
λB ◦ A

f
λ)un,

xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(yn)), n ≥ 1.

(3.31)

If conditions (i)-(ii) in (3.1) still hold, then the sequence ¶xn♢ converges strongly to

v = PΓu.

Remark 3.1. In our result, we employed a Halpern type iterative algorithm due to its
flexibility in defining the algorithm parameters, which is important from the numerical
implementation perspective. The iteration process employed in this result has an
advantage over the ones used in [18, 33] and some known results in the literature in
the sense that we do not use any projection of a point on the intersection of closed and
convex sets which creates some difficulties in practical computation of the iterative
sequence. In fact, the results presented in Corollary 3.1 and 3.2 coincide with the
results of [18] and [33], and in one way or the other extend their result based on their
choice of iterative algorithm.

4. Applications and Numerical Example

4.1. Convex Minimization Problem (CMP). Let Q be a nonempty closed and
convex subset of a reflexive Banach space E and g : E → (−∞, +∞] be a proper,
convex and lower semi-continuous function which attains its minimum over E. Let
Tn : Q→ E be an infinite family of Bregman quasi-nonexpansive mapping such that

(¶Tn♢
+∞
n=1, T ) satisfy the AKTT-condition with F (T ) = ˆF (T ) and f : E → R be a
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strongly coercive Legendre function, which is bounded, uniformly Frechet differentiable
and totally convex on bounded subsets of E. Then, the CMP is to find x ∈ F (T )
such that

g(x) = min
y∈E

g(y).(4.1)

It is generally known that (4.1) can be formulated as follows: find x ∈ F (T ) such that

0∗ ∈ ∂g(x),(4.2)

where ∂g = ¶ξ ∈ E∗ : ⟨ξ, y − x⟩ ≤ g(y) − g(x) for all x ∈ E♢. It is known that
∂g is a maximal monotone operator whenever g is a proper, convex and lower semi-
continuous function. Hence, by taking ∂g = B and A = 0 in Theorem 3.1, we obtain a
strong convergence result for approximation solutions of EP involving pseudomonotone
bifunction and CMP (4.1).

4.2. Variational Inequality Problem. Let C be a nonempty closed and convex
subset of a reflexive Banach space E with E∗ its dual. Let A : C → E∗ be a mapping
and the function g defined as g(x, y) = ⟨y − x, Ax⟩. Then, the classical Variational
Inequality Problem (VIP) is to find z ∈ C such that

⟨y − z, Az⟩ ≥ 0, for all y ∈ C.(4.3)

VIP is one of the most important problems in optimization as it is used in studying
differential equations, minimax problems, and has certain applications to mechanics
and economic theory, see [4,5,21,24,25]. We denote by V I(C, A), the set of solutions
of VIP (4.3).

Lemma 4.1 ([18]). Let C be a nonempty closed convex subset of a reflexive Banach

space E, A : C → E∗ be a mapping and f : E → R be a Legendre function. Then
←−
P

f
C(▽f ∗[▽f(x)− µA(y)]) = argminw∈C¶µ⟨w − y, A(y)⟩♢+ Df (w, x)♢,

for all x ∈ E, y ∈ C and µ ∈ (0, +∞).

Theorem 4.1. Let E be a reflexive Banach space with E∗ its dual and Q ⊆ E be a

nonempty closed convex set. Let T : E → E be a Bregman relatively nonexpansive

mapping with F (T ) = ˆF (T ). Let A is a pseudomonotone and L-Lipschitz continuous

mapping from Q to E∗. Assume that f : E → R is a strongly coercive Legendre

function, which is bounded, uniformly Fréchet differentiable and totally convex on

bounded subsets of E such that Q ⊂ int(dom f) with Γ := ¶F (T ) ∩ V I(Q, A)♢ ̸= ∅.
Let the sequence ¶xn♢ be generated iteratively by































un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Txn)),

zn =
←−
P

f
Q(▽f ∗(▽f(xn)− µnA(un))),

wn =
←−
P

f
Q(▽f ∗(▽f(xn)− µnA(zn))),

xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)), n ≥ 1.

(4.4)
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Suppose that conditions (i)-(ii) in (3.1) hold and ¶µn♢ ⊂ [a, b] ⊂ (0, p), where p =
min 2τ

L
and τ is given by (1.2) holds, then the sequence ¶xn♢ converges strongly to

v = P
f
Γ u.

4.3. Numerical Example. We now display a numerical example of our algorithm
to show its applicability.

Let X = R and C = [0, 1]. Now, define f : R→ R by f(x) = 2x4

27
, then▽f(x) = 8x3

27
.

Thus, by the definition of Fenchel conjugate of f , we obtain that f ∗(x∗) = 9
8
x∗ 4

3 and

▽f ∗(x∗) = 36
24

x∗ 1

3 . Note that f satisfies the assumptions in Theorem 3.1 (see [13]), and
that ▽f = (▽f ∗)−1. Let B : R → R be defined by B(x) = 7x − 2 and A : R → R

be defined byA(x) = 5x, then A and B are BISM and maximal monotone mappings
respectively. Therefore, we compute their resolvents as follows:

Res
f
λ(Af

λx) = (▽f + λB)−1▽ f(▽f ∗(▽f − λA)(x))

= (▽f + λB)−1((▽f − λA)(x))

= (▽f + λB)−1(x3 − 5λx).

Now, define g : C × C → R by g(x, y) = M(x)(y − x), where

M(x) =







0, 0 ≤ x ≤ 1
100

,

sin(x− 1
100

), 1
100
≤ x ≤ 1,

then g satisfies assumptions L1-L5 with c1 = 1 = c2 (see [18]). Also, define Tn : R→ R

by Tn = 1
n
x for all x ∈ R. Take αn = 1

100n+1
and βn = n+1

2n+7
. Then, all assumptions of

Theorem 3.1 are satisfied. Hence, Algorithm 3.1 becomes







































un = ▽f ∗(βnf(xn) + (1− βn)▽ f(xn

n
)),

yn = (▽f + λB)−1(u3
n − 5λun),

zn = yn − µnM(yn),

wn = yn − µnM(zn),

xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)).

Case 1: x1 = 2, u = 0.5, λ = 10 and n+1
4n+5

.

Case 2: x1 = 0.5, u = 2, λ = 0.1 and n+1
4n+5

.

Case 3: x1 = 0.5, u = 2, λ = 0.1 and 2n+1
6n+7

.

Case 4: x1 = 3, u = −7, λ = 2 and 2n+1
6n+7

.
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Figure 1. Errors vs Iteration numbers(n): Case 1 (top), Case 2 (mid-
dle left), Case 3 (middle right), Case 4 (bottom).
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ON A GENERALIZED DRYGAS FUNCTIONAL EQUATION AND

ITS APPROXIMATE SOLUTIONS IN 2-BANACH SPACES

MUSTAPHA ESSEGHYR HRYROU1 AND SAMIR KABBAJ1

Abstract. In this paper, we introduce and solve the following generalized Drygas
functional equation

f(x + ky) + f(x − ky) = 2f(x) + k2f(y) + k2f(−y),

where k ∈ N. Also, we discuss some stability and hyperstability results for the
considered equation in 2-Banach spaces by using the Ąxed point approach.

1. Introduction and preliminaries

We begin this paper by some notations and symbols. We will denote the set of
natural numbers by N, the set of real numbers by R, R+ = [0,∞) and the set of
all natural numbers greater than or equal to m will be denoted by Nm, m ∈ N. We
write BA to mean the family of all functions mapping from a nonempty set A into a
nonempty set B.

S. Gähler [23, 24] introduced the basic concept of linear 2-normed spaces. He gave
some important facts concerning 2-normed spaces and some preliminary results as
follows.

Definition 1.1. Let X be a real linear space with dimX > 1 and ∥·, ·∥ : X ×X →
[0,∞) be a function satisfying the following properties:

(a) ∥x, y∥ = 0 if and only if x and y are linearly dependent;
(b) ∥x, y∥ = ∥y, x∥;
(c) ∥λx, y∥ = ♣λ♣∥x, y∥;

Key words and phrases. Stability, hyperstability, Drygas functional equation, Ąxed point method,
2-Banach space.
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(d) ∥x, y + z∥ ≤ ∥x, y∥ + ∥x, z∥,

for all x, y, z ∈ X and λ ∈ R. Then the function ∥·, ·∥ is called the 2-norm on X and
the pair (X, ∥·, ·∥) is called the linear 2-normed space. Sometimes the condition (d) is
called the triangle inequality.

Example 1.1. For x = (x1, x2), y = (y1, y2) ∈ X = R
2, the Euclidean 2-norm ∥x, y∥R2

is deĄned by
∥x, y∥R2 = ♣x1y2 − x2y1♣ .

Lemma 1.1. Let (X, ∥·, ·∥) be a 2-normed space. If x ∈ X and ∥x, y∥ = 0 for all

y ∈ X, then x = 0.

Definition 1.2. A sequence ¶xk♢ in a 2-normed space X is called a convergent

sequence if there is an x ∈ X such that

lim
k→∞

∥xk − x, y∥ = 0,

for all y ∈ X. If ¶xk♢ converges to x, write xk → x with k → ∞ and call x the limit
of ¶xk♢. In this case, we also write limk→∞ xk = x.

Definition 1.3. A sequence ¶xk♢ in a 2-normed space X is said to be a Cauchy

sequence with respect to the 2-norm if

lim
k,l→∞

∥xk − xl, y∥ = 0,

for all y ∈ X. If every Cauchy sequence in X converges to some x ∈ X, then X is
said to be complete with respect to the 2-norm. Any complete 2-normed space is said
to be a 2-Banach space.

The following lemma is one of the tools whose we need in our main results.

Lemma 1.2 ([31]). Let X be a 2-normed space. Then

(a)
∣
∣
∣∥x, z∥ − ∥y, z∥

∣
∣
∣ ≤ ∥x− y, z∥ for all x, y, z ∈ X;

(b) if ∥x, z∥ = 0 for all z ∈ X, then x = 0;

(c) for a convergent sequence xn in X

lim
n−→∞

∥xn, z∥ =
∥
∥
∥
∥ lim

n−→∞

xn, z

∥
∥
∥
∥ ,

for all z ∈ X.

The problem of the stability of functional equations is caused by the question of
S. M. Ulam [38] about the stability in group homomorphisms. The Ąrst affirmative
partial answer to the UlamŠs problem for Banach spaces was provided by D. H. Hyers
[28]. The result of Hyers was generalizable. Namely, it was generalized by T. Aoki [3]
for additive mappings and by Th. M. Rassias [34] for linear mappings by considering an
unbounded Cauchy difference. In 1994, P. Găvruţa [25] introduced the generalization
of the Th. M. Rassias theorem was obtained by replacing the unbounded Cauchy
difference by a general control function in the spirit of Th. M. RassiasŠ approach.
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Within that, a special kind of stability was introduced. This kind is the hyperstability
which was given by the following deĄnition.

Definition 1.4 ([13]). Let S be a nonempty set, (Y, d) be a metric space, E ⊂ C ⊂ R
Sn

+

be nonempty, T be an operator mapping C into R
S
+ and F1,F2 be operators mapping

a nonempty set D ⊂ Y S into Y Sn

. We say that the operator equation

(1.1) F1φ(x1, . . . . , xn) = F2φ(x1, . . . , xn), x1, . . . , xn ∈ S,

is (E,T)-hyperstable provided for any ε ∈ E and φ0 ∈ D with

d


F1φ0(x1, . . . , xn),F2φ0(x1, . . . , xn)


≤ ε(x1, . . . , xn), x1, . . . , xn ∈ S,

there is a solution φ ∈ D of equation (1.1) such that

d


φ(x), φ0(x)


≤ Tε(x), x ∈ S.

In [5] the Ąrst result of hyperstability has been published, however, the term
hyperstability was Ąrst used in [30].

There are many papers concerning the hyperstability of functional equations, see
for example [4, 7Ű9, 13, 16Ű20, 26, 27, 30, 33]. In 2013, Brzdȩk [6] gave an important
result that will be a basic tool to study the stability and hyperstability of functional
equations.

Theorem 1.1 ([6]). Let X be a nonempty set, (Y, d) a complete metric space

f1, . . . , fs : X → X and L1, . . . , Ls : X → R+ be given mappings. Let Λ: RX
+ → R

X
+

be a linear operator defined by

Λδ(x) :=
s∑

i=1

Li(x)δ(fi(x)),

for δ ∈ R
X
+ and x ∈ X. If T : Y X → Y X is an operator satisfying the inequality

d


Tξ(x),Tµ(x)


≤
s∑

i=1

Li(x)d


ξ(fi(x)), µ(fi(x))


, ξ, µ ∈ Y X , x ∈ X,

and a function ε : X → R+ and a mapping φ : X → Y satisfies

d (Tφ(x), φ(x)) ≤ ε(x), x ∈ X,

ε∗(x) :=
∞∑

k=0

Λkε(x) < ∞, x ∈ X,

then for every x ∈ X the limit

ψ(x) := lim
n→∞

T
nφ(x)

exists and the function ψ ∈ Y X is a unique fixed point of T with

d (φ(x), ψ(x)) ≤ ε∗(x), x ∈ X.

In 2019, M. Almahalebi et al. [2] introduced and proved an analogue of Theorem
1.1 in 2-Banach spaces.
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Theorem 1.2 ([2]). Let X be a nonempty set,


Y, ∥·, ·∥


be a 2-Banach space, g :

X → Y be a surjective mapping and let f1, . . . , fr : X → X and L1, . . . , Lr : X → R+

be given mappings. Suppose that T : Y X → Y X and Λ : RX×X
+ → R

X×X
+ are two

operators satisfying the conditions

∥
∥
∥Tξ(x) − Tµ(x), g(z)

∥
∥
∥ ≤

r∑

i=1

Li(x)
∥
∥
∥
∥ξ



fi(x)


− µ


fi(x)


, g(z)
∥
∥
∥
∥,

for all ξ, µ ∈ Y X , x, z ∈ X and

(1.2) Λδ(x, z) :=
r∑

i=1

Li(x)δ


fi(x), z


, δ ∈ R
X×X
+ , x, z ∈ X.

If there exist functions ε : X ×X → R+ and φ : X → Y such that
∥
∥
∥
∥Tφ(x) − φ(x), g(z)

∥
∥
∥
∥ ≤ ε(x, z)

and

ε∗(x, z) :=
∞∑

n=0



Λnε


(x, z) < ∞,

for all x, z ∈ X, then the limit

lim
n→∞



(Tnφ)


(x)

exists for each x ∈ X. Moreover, the function ψ : X → Y defined by

ψ(x) := lim
n→∞



(Tnφ)


(x)

is a fixed point of T with
∥
∥
∥φ(x) − ψ(x), g(z)

∥
∥
∥ ≤ ε∗(x, z),

for all x, z ∈ X.

Another version of Theorem 1.2 in 2-Banach space can be found in [14]. Also, J.
Brzdȩk and K. Ciepliński extended their Ąxed point result to the n-normed spaces in
[15].

In this paper, we consider and solve the following equation

(1.3) f(x+ ky) + f(x− ky) = 2f(x) + k2f(y) + k2f(−y),

where k ∈ N. This equation can be reduced to the Drygas equation

(1.4) f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y).

In addition, we use Theorem 1.2 to investigate some stability and hyperstability results
of equation (1.3) in 2-Banach spaces.
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2. Solution of (1.3)

Throughout this section, X and Y will be real vector spaces. The functional
equation (1.3) is connected with the functional equation (1.4) as it is shown below.

Theorem 2.1. A function f : X → Y satisfies the functional equation (1.3) if and

only if f satisfies the Drygas functional equation (1.4) for all x, y ∈ X.

Proof. Suppose that f : X → Y satisĄes (1.3) for all x, y ∈ X. Letting x = y = 0 in
(1.3), we get f(0) = 0. Also, by setting x = 0 in (1.3), we obtain that

f(ky) + f(−ky) = k2f(y) + k2f(−y), y ∈ X.

To prove that f satisĄes the Drygas functional equation (1.4) for all x, y ∈ X, we
assume that x′ = x and y′ = ky be two elements in X. Then we get

f(x′ + y′) + f(x′ − y′) = f(x+ ky) + f(x− ky)

= 2f(x) + k2f(y) + k2f(−y)

= 2f(x) + f(ky) + f(−ky)

= 2f(x′) + f(y′) + f(−y′), x, y ∈ X,

which means that f satisĄes the Drygas functional equation (1.4) for all x, y ∈ X. On
the other hand, let f be a function satisfying the Drygas functional equation (1.4) for
all x, y ∈ X with f(0) = 0 and f(x) = B(x, x) + A(x). Then

f(x+ ky) + f(x− ky) = 2f(x) + f(ky) + f(−ky)

= 2f(x) +B(ky, ky) + A(ky) +B(−ky,−ky) + A(−ky)

= 2f(x) + k2B(y, y) + k2B(−y,−y) + A(ky) + A(−ky)
︸ ︷︷ ︸

=0

= 2f(x) + k2B(y, y) + k2B(−y,−y) + k2


A(y) + A(−y)


︸ ︷︷ ︸

=0

= 2f(x) + k2


B(y, y) + A(y)


+ +k2


B(−y,−y) + A(−y)


= 2f(x) + k2f(y) + k2f(−y), x, y ∈ X,

which means that f satisĄes (1.3) for all x, y ∈ X. □

3. Stability Results

In this section, we give some investigations on the stability and hyperstability results
of the equation (1.3) by using Theorem 1.2 in 2-Banach spaces.

Theorem 3.1. Let X be a normed space,


Y, ∥·, ·∥


be a 2-Banach space and h1, h2 :

X2
0 → R+ be two functions such that

U :=
{

n ∈ N : αn < 1
}

̸= ∅,
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where

αn =
1

2
λ1(1+kn)λ2(1+kn)+

1

2
λ1(1−kn)λ2(1−kn)+

k2

2
λ1(n)λ2(n)+

k2

2
λ1(−n)λ2(−n)

and

λi(n) := inf
{

t ∈ R+ : hi(nx, z) ≤ thi(x, z), x, z ∈ X0

}

,

for all n ∈ N with i ∈ ¶1, 2♢. Assume that f : X → Y satisfies the inequality

(3.1)
∥
∥
∥
∥f(x+ ky) + f(x− ky) − 2f(x) − k2f(y) − k2f(−y), g(z)

∥
∥
∥
∥ ≤ h1(x, z)h2(y, z),

for all x, y, z ∈ X0 such that x + ky ̸= 0 and x − ky ̸= 0, where g : X → Y is a

surjective mapping. Then there exists a unique function D : X → Y that satisfies the

equation (1.3) such that
∥
∥
∥f(x) −D(x), g(z)

∥
∥
∥ ≤ λ0h1(x, z)h2(x, z),

for all x, z ∈ X0, where

λ0 =
λ2(n)

2(1 − αm)
.

Proof. Let us Ąx m ∈ N. Replacing x by mx, where x ∈ X0, in the inequality (3.1),
we obtain

∥
∥
∥
∥
∥

1

2
f



(1 + km)x


+
1

2
f



(1 − km)x


−
k2

2
f(mx) −

k2

2
f(−mx) − f(x) , g(z)

∥
∥
∥
∥
∥

≤
1

2
h1(x, z)h2(mx, z),

(3.2)

for all x, z ∈ X0. DeĄne the operator Tm : Y X0 → Y X0 by

Tmξ(x) :=
1

2
ξ



(1 + km)x


+
1

2
ξ



(1 − km)x


−
k2

2
ξ(mx) −

k2

2
ξ(−mx),

for all x ∈ X0 and ξ ∈ Y X0 . Further put

(3.3) εm(x, z) :=
1

2
h1(x, z)h2(mx, z), x, z ∈ X0,

and observe that

(3.4) εm(x, z) =
1

2
h1(x, z)h2(mx, z) ≤

1

2
λ2(m)h1(x, z)h2(x, z), x, z ∈ X0, m ∈ N.

Thus, the inequality (3.2) becomes

∥Tmf(x) − f(x), g(z)∥ ≤ εm(x, z), x, z ∈ X0.

Furthermore, for every x, z ∈ X0 and ξ, µ ∈ Y X0 , we have
∥
∥
∥
∥Tmξ(x) − Tmµ(x), g(z)

∥
∥
∥
∥

=

∥
∥
∥
∥
∥

1

2
ξ



(1 + km)x


+
1

2
ξ



(1 − km)x


−
k2

2
ξ(mx)
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−
k2

2
ξ(−mx) −

1

2
µ



(1 + km)x


−
1

2
µ



(1 − km)x


+
k2

2
µ(mx) +

k2

2
µ(−mx), g(z)

∥
∥
∥
∥
∥

≤
1

2

∥
∥
∥(ξ − µ)



(1 + km)x


, g(z)
∥
∥
∥ +

1

2

∥
∥
∥(ξ − µ)



(1 − km)x


, g(z)
∥
∥
∥

+
k2

2
∥(ξ − µ)(mx) , g(z)∥ +

k2

2
∥(ξ − µ)(−mx), g(z)∥ ,

for all x, z ∈ X0 and ξ, µ ∈ Y X0 . It means that the condition (1.2) is satisĄed and
this brings us to deĄne the operator Λm : RX0×X0

+ → R
X0×X0

+ by

Λmδ(x, z) :=
1

2
δ



(1 + km)x, z


+
1

2
δ



(1 − km)x, z


+
k2

2
δ(mx, z) +

k2

2
δ(−mx, z),

for all x, z ∈ X0 and δ ∈ R
X0×X0

+ . This operator has the form given by (1.2) with
f1(x) = (1+km)x, f2(x) = (1−km)x, f3(x) = mx, f4(x) = −mx, L1(x) = L2(x) = 1

2

and L3(x) = L4(x) = k2

2
for all x ∈ X0.

By induction on n ∈ N, it is easy to show that

(3.5)


Λn
mεm



(x, z) ≤
1

2
λ2(m)αn

mh1(x, z)h2(x, z),

for all x, z ∈ X0 and all m ∈ U, where

αm =
1

2
λ1(1 + km)λ2(1 + km) +

1

2
λ1(1 − km)λ2(1 − km) +

k2

2
λ1(m)λ2(m)

+
k2

2
λ1(−m)λ2(−m).

Indeed, (3.3) and (3.4) imply that the inequality (3.5) holds for n = 0. Next, we
assume that (3.5) holds for n = r, where r ∈ N1. Then we obtain



Λr+1

m εm



(x, z) =Λm



Λr
mεm



(x, z)


=
1

2



Λr
mεm



(1 + km)x, z


+
1

2



Λr
mεm



(1 − km)x, z


+
k2

2



Λr
mεm



mx, z


+
k2

2



Λr
mεm



−mx, z


≤
1

4
λ2(m)αr

mh1



(1 + km)x, z


h2



(1 + km)x, z


+
1

4
λ2(m)αr

mh1



(1 − km)x, z


h2



(1 − km)x, z


+
k2

4
λ2(m)αr

mh1



mx, z


h2



mx, z


+
k2

4
λ2(m)αr

mh1



−mx, z


h2



−mx, z


≤
1

2
λ2(m)


1

2
λ1(1 + km)λ2(1 + km) +

1

2
λ1(1 − km)λ2(1 − km)
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+
k2

2
λ1(m)λ2(m) +

k2

2
λ1(−m)λ2(−m)



αr
mh1(x, z)h2(x, z)

=
1

2
λ2(m)αr+1

m h1(x, z)h2(x, z),

for all x, z ∈ X0 and all m ∈ U. It means that (3.5) holds for n = r+ 1 which implies
that (3.5) holds for all n ∈ N. Hence, in view of (3.5), we obtain

ε∗(x, z) :=
∞∑

n=0

Λn
mεm(x, z)

≤
∞∑

n=0

1

2
λ2(m)αn

mh1(x, z)h2(x, z)

=
λ2(m)h1(x, z)h2(x, z)

2(1 − αm)
< ∞,

for all x, z ∈ X0 and all m ∈ U. Therefore, according to Theorem 1.2, with φ = f

and using the surjectivity of g, we get that the limit

lim
n→∞



T
n
mf



(x)

exists and deĄned a function Dm : X → Y such that

(3.6)
∥
∥
∥f(x) −Dm(x), g(z)

∥
∥
∥ ≤

λ2(m)h1(x, z)h2(x, z)

2(1 − αm)
, x, z ∈ X0, m ∈ U.

To prove that Fm satisĄes the functional equation (1.3), just prove the following
inequality by the induction on n ∈ N0

∥
∥
∥
∥(Tn

mf)


x+ ky) + (Tn
mf)



x− ky


−2(Tn
mf)



x


− k2(Tn
mf)



y


− k2(Tn
mf)(−y), g(z)

∥
∥
∥
∥

(3.7)

≤αn
mh1(x, z)h2(y, z),

for every x, y, z ∈ X0 such that x+ ky ̸= 0, x− ky ̸= 0 and every m ∈ U.
First, for n = 0, we just Ąnd (3.1). Next, take r ∈ N and assume that (3.7) holds

for n = r and every x, y, z ∈ X0 such that x+ ky ̸= 0 and x− ky ≠ 0, m ∈ U. Then,
for each x, y, z ∈ X0 and m ∈ U, we have

∥
∥
∥
∥(Tr+1

m f)


x+ ky) + (Tr+1

m f)


x− ky


− 2(Tr+1

m f)


x


− k2(Tr+1

m f)


y


− k2(Tr+1

m f)(−y) , g(z)
∥
∥
∥
∥

=
∥
∥
∥
∥

1

2
(Tr

mf)


(1 + km)(x+ ky)


+
1

2
(Tr

mf)


(1 − km)(x+ ky)


−
k2

2
(Tr

mf)


m(x+ ky)


−
k2

2
(Tr

mf)


−m(x+ ky)


+
1

2
(Tr

mf)


(1 + km)(x− ky)


+
1

2
(Tr

mf)


(1 − km)(x− ky)
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−
k2

2
(Tr

mf)


m(x− ky)


−
k2

2
(Tr

mf)


−m(x− ky)


− (Tr
mf)



(1 + km)(x)


− (Tr
mf)



(1 − km)(x)


+ k2(Tr
mf)



mx


+ k2(Tr
mf)



−mx


−
k2

2
(Tr

mf)


(1 + km)(y)


−
k2

2
(Tr

mf)


(1 − km)(y)


+
k4

2
(Tr

mf)


my


+
k4

2
(Tr

mf)


−my


−
k2

2
(Tr

mf)


(1 + km)(−y)


−
k2

2
(Tr

mf)


(1 − km)(−y)


+
k4

2
(Tr

mf)


−my


+
k4

2
(Tr

mf)


my


, g(z)
∥
∥
∥
∥

≤
1

2

∥
∥
∥
∥(Tr

mf)


(1 + km)(x+ ky)


+ (Tr
mf)



(1 + km)(x− ky)


− 2(Tr
mf)



(1 + km)(x)


− k2(Tr
mf)



(1 + km)(y)


− k2(Tr
mf)



(1 + km)(−y)


, g(z)
∥
∥
∥
∥

+
1

2

∥
∥
∥
∥(Tr

mf)


(1 − km)(x+ ky)


+ (Tr
mf)



(1 − km)(x− ky)


− 2(Tr
mf)



(1 − km)(x)


− k2(Tr
mf)



(1 − km)(y)


− k2(Tr
mf)



(1 − km)(−y)


, g(z)
∥
∥
∥
∥

+
k2

2

∥
∥
∥
∥(Tr

mf)


m(x+ ky)


+ (Tr
mf)



m(x− ky)


− 2(Tr
mf)



mx


− k2(Tr
mf)



my


− k2(Tr
mf)



−my


, g(z)
∥
∥
∥
∥

+
k2

2

∥
∥
∥
∥(Tr

mf)


−m(x+ ky)


+ (Tr
mf)



−m(x− ky)


− 2(Tr
mf)



−mx


− k2(Tr
mf)



−my


− k2(Tr
mf)



my


, g(z)
∥
∥
∥
∥

≤
1

2
αr

mh1



(1 + km)x, z


h2



(1 + km)y, z


+
1

2
αr

mh1



(1 − km)x, z


h2



(1 − km)y, z


+
k2

2
αr

mh1



mx, z


h2



my, z


+
k2

2
αr

mh1



−mx, z


h2



−my, z


=αr+1

m h1(x, z)h2(y, z).

Thus, by induction, we have shown that (3.7) holds for every x, y, z ∈ X0, n ∈ N0,
and m ∈ U such that x+ ky ̸= 0 and x− ky ≠ 0. Letting n → ∞ in (3.7), we obtain
the equality

Dm(x+ ky) +Dm(x− ky) = 2Dm(x) + k2Dm(y) + k2Dm(−y),
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for all x, y ∈ X0 and m ∈ U such that x+ ky ̸= 0 and x− ky ̸= 0. This implies that
Dm : X → Y , deĄned in this way, is a solution of the equation

(3.8) D(x) =
1

2
D



(1 + km)x


+
1

2
D



(1 − km)x


−
k2

2
D(mx) −

k2

2
D



−mx


,

for all x ∈ X0 and all m ∈ U. Next, we will prove that each cubic functional equation
D : X → Y satisfying the inequality

(3.9)
∥
∥
∥f(x) −D(x), g(z)

∥
∥
∥ ≤ L h1(x, z)h2(x, z), x, z ∈ X0,

with some L > 0, is equal to Dm for each m ∈ U. To this end, we Ąx m0 ∈ U and
D : X → Y satisfying (3.9). From (3.6), for each x ∈ X0, we get

∥
∥
∥D(x) −Dm0

(x), g(z)
∥
∥
∥ ≤

∥
∥
∥D(x) − f(x), g(z)

∥
∥
∥ +

∥
∥
∥f(x) −Dm0

(x), g(z)
∥
∥
∥

≤L h1(x, z)h2(x, z) + ε∗

m0
(x, z)

≤L0 h1(x, z)h2(x, z)
∞∑

n=0

αn
m0
,(3.10)

where L0 := 2(1 − αm0
)L+ λ2(m0) > 0 and we exclude the case that h1(x, z) ≡ 0 or

h2(x, z) ≡ 0 which is trivial. Observe that D and Dm0
are solutions to equation (3.8)

for all m ∈ U. Next, we show that, for each j ∈ N0, we have

(3.11)
∥
∥
∥D(x) −Dm0

(x), g(z)
∥
∥
∥ ≤ L0 h1(x, z)h2(x, z)

∞∑

n=j

αn
m0
, x, z ∈ X0.

The case j = 0 is exactly (3.10). We Ąx r ∈ N and assume that (3.11) holds for j = r.
Then, in view of (3.10), for each x, z ∈ X0, we get

∥
∥
∥D(x) −Dm0

(x), g(z)
∥
∥
∥ =

∥
∥
∥
∥

1

2
D



(1 + km0)x


+
1

2
D



(1 − km0)x


−
k2

2
D(m0x)

−
k2

2
D



−m0x


−
1

2
Dm0



(1 + km0)x


−
1

2
Dm0



(1 − km0)x


+
k2

2
Dm0

(m0x)

+
k2

2
Dm0



−m0x


, g(z)
∥
∥
∥
∥

≤
1

2

∥
∥
∥
∥D



(1 + km0)x


−Dm0



(1 + km0)x


, g(z)
∥
∥
∥
∥

+
1

2

∥
∥
∥
∥D



(1 − km0)x


−Dm0



(1 − km0)x


, g(z)
∥
∥
∥
∥

+
k2

2

∥
∥
∥
∥D



m0x


−Dm0



m0x


, g(z)
∥
∥
∥
∥

+
k2

2

∥
∥
∥
∥D



−m0x


−Dm0



−m0x


, g(z)
∥
∥
∥
∥
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≤
1

2
L0 h1



(1 + km0)x, z


h2



(1 + km0)x, z
 ∞∑

n=r

αn
m0

+
1

2
L0 h1



(1 − km0)x, z


h2



(1 − km0)x, z
 ∞∑

n=r

αn
m0

+
k2

2
L0 h1



m0x, z


h2



m0x, z
 ∞∑

n=r

αn
m0

+
k2

2
L0 h1



−m0x, z


h2



−m0x, z
 ∞∑

n=r

αn
m0

≤ L0 αm0
h1(x, z)h2(x, z)

∞∑

n=r

αn
m0

= L0 h1(x, z)h2(x, z)
∞∑

n=r+1

αn
m0
.

This shows that (3.11) holds for j = k+1. Now we can conclude that the inequality
(3.11) holds for all j ∈ N0. Now, letting j → ∞ in (3.11), we get

(3.12) D = Dm0
.

Thus, we have also proved that Dm = Dm0
for each m ∈ U, which (in view of (3.6))

yields
∥
∥
∥f(x) −Dm0

(x), g(z)
∥
∥
∥ ≤

λ2(m)h1(x, z)h2(x, z)

2(1 − αm)
, x, z ∈ X0, m ∈ U.

This implies (1.3) with D = Dm0
and (3.12) conĄrms the uniqueness of D. □

4. Hyperstaility Results

The following theorems and corollaries concern the η-hyperstability of (1.3) in
2-Banach spaces. Namely, we consider functions f : X → Y fulĄlling (1.3) approxi-
mately, i.e., satisfying the inequality

(4.1)
∥
∥
∥f(x+ ky) + f(x− ky) − 2f(x) − k2f(y) − k2f(−y), g(z)

∥
∥
∥ ≤ η(x, y, z),

for all x, y, z ∈ X0 such that x+ ky ̸= 0 and x− ky ̸= 0 with η : X0 ×X0 ×X0 → R+

is a given mapping. Then we Ąnd a unique cubic function F : X → Y which is close
to f . Then, under some additional assumptions on η, we prove that the conditional
functional equation (1.3) is η-hyperstable in the class of functions f : X → Y , i.e.,
each f : X → Y satisfying inequality (4.1), with such η, must fulĄl equation (1.3).

Theorem 4.1. Let X be a normed space, (Y, ∥·, ·∥) be a real 2-Banach space, h1, h2

and U be as in Theorem 3.1. Assume that

(4.2)
{

limn→∞ λ2(n) = limn→∞ λ1(1 + kn)λ2(1 + kn) = limn→∞ λ1(−n)λ2(−n) = 0,
limn→∞ λ1(1 − kn)λ2(1 − kn) = limn→∞ λ1(n)λ2(n) = 0.

Then every f : X → Y satisfying (3.1) is a solution of (1.3) on X0.
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Proof. Suppose that f : X → Y satisĄes (3.1). Then, by Theorem 3.1, there exists a
mapping D : X → Y satisfying (1.3) and

∥f(x) −D(x), g(z)∥ ≤ λ0h1(x, z)h2(x, z),

for all x, z ∈ X0, where g : X → Y is a surjective mapping and

λ0 =
λ2(n)

2(1 − αm)
,

with

αn =
1

2
λ1(1+kn)λ2(1+kn)+

1

2
λ1(1−kn)λ2(1−kn)+

k2

2
λ1(n)λ2(n)+

k2

2
λ1(−n)λ2(−n).

Since, in view of (4.2), λ0 = 0, this means that f(x) = D(x) for all x ∈ X0, whence

f(x+ ky) + f(x− ky) = 2f(x) + k2f(y) + k2f(−y),

for all x, y ∈ X0 such that x+ ky ̸= 0 and x− ky ≠ 0, which implies that f satisĄes
the functional equation (1.3) on X0. □

Corollary 4.1. Let


X, ∥ · ∥


be a normed space,


Y, ∥·, ·∥


be a real 2-Banach space

and θ ≥ 0, s ≥ 0, p, q ∈ R such that p + q < 0. Suppose that f : X → Y such that

f(0) = 0 satisfies the inequality

(4.3)
∥
∥
∥f(x+ ky) + f(x− ky) − 2f(x) − k2f(y) − k2f(−y), g(z)

∥
∥
∥ ≤ θ∥x∥p ∥y∥q ∥z∥s,

for all x, y, z ∈ X0 such that x + ky ̸= 0 and x − ky ̸= 0, where g : X → Y is a

surjective mapping. Then f satisfies (1.3) on X0.

Proof. The proof follows from Theorem 3.1 by deĄning h1, h2 : X0 × Xo → R+ by
h1(x, z) = θ1∥x∥p∥z∥s1 , h2(y, z) = θ2∥y∥q∥z∥s2 and h1(0, z) = h2(0, z) = 0 with
θ1, θ2 ∈ R+, s1, s2 ∈ R+ and p, q ∈ R such that θ1θ2 = θ, s1 + s2 = s and p+ q < 0.
For each n ∈ N, we have

λ1(n) = inf ¶t ∈ R+ : h1(nx, z) ≤ t h1(x, z), x, z ∈ X0♢

= inf ¶t ∈ R+ : θ1∥nx∥p∥z∥s1 ≤ t θ1∥x∥p∥z∥s1 , x, z ∈ X0♢

= np.

Also, we have λ2(n) = nq for all n ∈ N. Clearly, we can Ąnd n0 ∈ N such that

1

2
λ1(1 + kn)λ2(1 + kn)+

1

2
λ1(1 − kn)λ2(1 − kn)+

k2

2
λ1(n)λ2(n) +

k2

2
λ1(−n)λ2(−n)

=
1

2
(1 + kn)p+q +

1

2
(1 − kn)p+q + k2np+q < 1,

for all n ≥ n0. According to Theorem 3.1, there exists a unique Drygas function
D : X → Y such that

∥
∥
∥f(x) −D(x), g(z)

∥
∥
∥ ≤ θλ0h1(x, z)h2(x, z),
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for all x, z ∈ X0, where

λ0 =
λ2(n)

2(1 − αm)
,

with

αn =
1

2
λ1(1+kn)λ2(1+kn)+

1

2
λ1(1−kn)λ2(1−kn)+

k2

2
λ1(n)λ2(n)+

k2

2
λ1(−n)λ2(−n).

Since p+ q < 0, one of p and q must be negative. Assume that q < 0. Then

lim
n→∞

λ2(n) = lim
n→∞

nq = 0,

lim
n→∞

λ1(1 + kn)λ2(1 + kn) = lim
n→∞

(1 + kn)p+q = 0,

lim
n→∞

λ1(1 − kn)λ2(1 − kn) = lim
n→∞

(1 + kn)p+q = 0,

lim
n→∞

λ1(n)λ2(n) = lim
n→∞

np+q = 0.

Thus by Theorem 4.1, we get the desired results. □

The next corollary prove the hyperstability results for the inhomogeneous Drygas
functional equation

f(x+ ky) + f(x− ky) = 2f(x) + k2f(y) + k2f(−y) +G(x, y).

Corollary 4.2. Let


X, ∥ · ∥


be a normed space,


Y, ∥·, ·∥


be a real 2-Banach space

and θ ≥ 0, s ≥ 0, p, q ∈ R such that p + q < 0. Assume that G : X2 → Y and

f : X → Y such that f(0) = 0 and satisfies the inequality

(4.4)
∥
∥
∥f(x+ky)+f(x−ky)−2f(x)−k2f(y)−k2f(−y)−G(x, y), g(z)

∥
∥
∥ ≤ θ∥x∥p ∥y∥q ∥z∥s,

for all x, y, z ∈ X0 such that x + ky ̸= 0 and x − ky ̸= 0, where g : X → Y is a

surjective mapping. If the functional equation

(4.5) f(x+ ky) + f(x− ky) = 2f(x) + k2f(y) + k2f(−y) +G(x, y),

for all x, y ∈ X0 such that x+ ky ̸= 0 and x− ky ≠ 0 has a solution f0 : X → Y on

X0, then f is a solution to (4.5) on X0.

Proof. From (4.4) we get that the function K : X → Y deĄned by K := f − f0

satisĄes (4.3). Consequently, Corollary 4.1 implies that K is a solution to Drygas
functional equation (1.3) on X0. Therefore,

f(x+ ky) + f(x− ky) − 2f(x) − k2f(y) − k2f(−y) −G(x, y)

=K(x+ ky) + f0(x+ ky) +K(x− ky) + f0(x− ky) − 2K(x) − 2f0(x)

− k2K(y) − k2f0(y) − k2K(−y) − k2f0(−y) −G(x, y)

=0,

for all x, y ∈ X0 such that x+ ky ̸= 0 and x− ky ̸= 0 which means f is a solution to
(4.5) on X0. □
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