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STRONG CONVERGENCE RESULTS FOR VARIATIONAL

INEQUALITY AND EQUILIBRIUM PROBLEM IN HADAMARD

SPACES

G. C. UGWUNNADI1,3, C. C. OKEKE1,3, A. R. KHAN2, AND L. O. JOLAOSO3

Abstract. The main purpose of this paper is to introduce and study a viscosity
type algorithm in a Hadamard space which comprises of a demimetric mapping, a
Ąnite family of inverse strongly monotone mappings and an equilibrium problem for
a bifunction. Strong convergence of the proposed algorithm to a common solution
of variational inequality problem, Ąxed point problem and equilibrium problem is
established in Hadamard spaces. Nontrivial Applications and numerical examples
were given. Our results compliment some results in the literature.

1. Introduction

Let X be a metric space and C be a nonempty closed and convex subset of X. A
point x ∈ C is called a fixed point of a nonlinear mapping T : C → C, if

Tx = x.(1.1)

The set of fixed points of T is denoted by F(T). With the recent rapid developments
in fixed point theory, there has been a renewed interest in iterative schemes. The
properties of iterations between the type of sequences and kind of operators have
not been completely studied and are now under discussion. The theory of operators
has occupied a central place in modern research using iterative schemes because of
its promise of enormous utility in fixed point theory and its applications. In many
situations of practical utility, the mapping under consideration may not have an exact
fixed point due to some tight restriction on the space or the map, or an approximate

Key words and phrases. Variational inequality problem, inverse strongly monotone operator,
viscosity iteration, equilibruim problem, demimetric mapping, Hadamard space.
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fixed point is more than enough, an approximate solution plays an important role in
such situations. The theory of fixed points and consequently of approximate fixed
points finds application in mathematical economics, noncooperative game theory,
dynamic programming, nonlinear analysis, variational calculus, theory of integro-
differential equations and several other areas of applicable analysis see for instance
[9, 17,23,25,26,31,33–35,40,45].

The mapping T : C → X is said to be:

(a) nonexpansive if

d(Tx, Ty) ≤ d(x, y), for all x, y ∈ C;

(b) quasi-nonexpansive if F (T ) ̸= ∅ and

d(Tx, q) ≤ d(x, q), for all x ∈ C and q ∈ F (T );

(c) firmly nonexpansive if

d2(Tx, Ty) ≤ ⟨−→xy,
−−−→
TxTy⟩, for all x, y ∈ C;

(d) α-inverse strongly monotone if there exists α > 0 such that

d2(x, y) − ⟨
−−−→
TxTy, −→xy⟩ ≥ αΨT (x, y), for all x, y ∈ C,(1.2)

where ΨT (x, y) = d2(x, y) + d2(Tx, Ty) − 2⟨
−−−→
TxTy, −→xy⟩. It was established in

[3] that the quantity ΨT (x, y) is nonnegative.

Given a nonempty set C and f : C × C → R a bifunction, the Equilibrium Problem
(EP) is defined as follows:

find x∗ ∈ C such that f(x∗, y) ≥ 0, for all y ∈ C.(1.3)

The point x∗ in (1.3) is called an equilibrium point of f. We shall denote the solution
set of problem (1.3) by EP(f, C). EPs have been widely studied in Hilbert, Banach
and topological vector spaces [6, 12, 24] and Hadamard manifolds [11, 41]. One of
the most popular and effective methods used for solving problem (1.3) and other
related optimization problems is the Proximal Point Algorithm (PPA) which was
introduced in a Hilbert space by Martinet [37] and was further studied by Rockafellar
[47] in 1976. The PPA and its generalizations have also been studied extensively
in Banach spaces and Hadamard manifolds (see [11, 36] and the references therein).
Recently, many convergence results by the PPA for solving optimization problems
were extended from the classical linear spaces to the setting of nonlinear space such
as Riemannain manifolds and Hadamard spaces (see [4, 5, 10, 19,46,54] and reference
therein). Numerous applications in computer vision, machine learning, electronic
structure computation, system balancing, and robot manipulation can be reduced
to find solution of optimization and equilibrium problems in nonlinear setting (see
[1, 2, 27,43,50,53]).

Very recently, Kumam and Chaipunya [36] studied EP (1.3) in Hadamard spaces.
They established the existence of an equilibrium point of a bifunction satisfying some
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convexity, continuity and coercivity assumptions ([36], Theorem 4.1). They also estab-
lished some fundamental properties of the resolvent of a bifunction. Furthermore, they
proved that the PPA ∆-converges to an equilibrium point of a monotone bifunction
in a Hadamard space. More precisely, they proved:

Theorem 1.1. ([36, Theorem 7.3]) Let C be a nonempty closed and convex subset of
a Hadamard space X and f : C × C → R be a monotone, ∆-upper semicontinuous in
the first variable such that D(Jf

r ) ⊃ C for all r > 0 where D stands for the domain.
Suppose that EP (f, C) ̸= ∅ and for an initial guess x0 ∈ C, the sequence ¶xn♢ ⊂ C is
generated by

xn := Jf
rn

(xn−1), n ∈ N,

where ¶rn♢ is a sequence of positive real numbers bounded away from 0. Then ¶xn♢
∆-converges to an element of EP (f, C).

The Variational Inequality Problem (VIP) was first introduced by Stampacchia
[49] for modeling problems arising in mechanics. To study the regularity problem for
partial differential equations, Stampacchia [49] studied a generalization of the Lax-
Milgram theorem and called all problems of this kind to be VIPs. The theory of VIP
has numerous applications in diverse fields such as physics, engineering, economics,
mathematical programming and others (see [8, 32, 39] and references therein). The
VIP in a real Hilbert space H is formulated as follows:

find x ∈ C such that ⟨Tx, y − x⟩ ≥ 0, for all y ∈ C,(1.4)

where C is a nonempty closed and convex subset of H and T is a nonlinear mapping
defined on C. This formulation is recently extended to the framework of CAT(0) space
X by Alizadeh-Dehghan-Moradlou [3] as follows:

find x ∈ C such that ⟨
−−→
Txx, −→xy⟩ ≥ 0, for all y ∈ C,(1.5)

where −→xy stands for a vector in X defined in (2.1).
They established the existence of VIP (1.5) when T is an inverse strongly monotone

mapping in a CAT(0) space. Furthermore, they introduced the following iterative
algorithm for solving VIP (1.5): For arbitrary x1 ∈ C, generate sequence ¶xn♢ as

(1.6)







yn = PC(βnxn ⊕ (1 − βn)Txn),

xn+1 = PC(αnxn ⊕ (1 − αn)Syn), n ≥ 1,

where ¶αn♢, ¶βn♢ are sequences in (0, 1), S and T are nonexpansive and inverse
strongly monotone mappings, respectively. They also obtained ∆-convergence of
Algorithm (1.6) to a solution of the VIP (1.5), which is also a fixed point of the
nonexpansive mapping S.

Remark 1.1. If X = H is a real Hilbert space, then ⟨
−→
ab,

−→
cd⟩ = ⟨b − a, d − c⟩ for all

a, b, c, d ∈ H. Thus, the VIP (1.6) reduces to the VIP (1.5) when X = H.
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Motivated by the work of Kumam and Chaipunya [36] and Alizadeh-Dehghan
-Moradlou [3], we introduce and study a viscosity type algorithm which comprises
of demimetric mapping, equilibrium problem for a monotone bifunction and a finite
family of inverse strongly monotone mappings. Strong convergence of the proposed
algorithm to common solution of a fixed point of a demimetric mapping, an equilib-
rium problem of a bifunction and variational inequality problem for a finite family of
certain monotone mappings is established in a Hadamard space X. Furthermore, we
applied our results to approximate solutions of minimization problems in X.

2. Preliminaries

We state some known and useful results which will be needed in the proof of our main
theorem. Throughout this paper, we shall denote the strong and ∆-convergence by
−→ and ⇀, respectively.

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y (or, a
geodesic from x to y) is a map γ : [a, b] ⊆ R → X such that γ(a) = x, γ(b) = y,
and d(γ(t), γ(t′)) = ♣t − t′♣ for all t, t′ ∈ [a, b]. In particular, γ is an isometry and
d(x, y) = b − a. We say that a metric space X is uniquely geodesic if every two
points of X are joined by only one geodesic segment (i.e., CAT(0) space). Examples of
CAT(0) spaces are Euclidean spaces R

n and Hilbert spaces. For more details, please
see [12,20,21,28,48]. Complete CAT(0) spaces are often called Hadamard spaces.

Let (1−t)x⊕ty denote the unique point z in the geodesic segment joining x to y for
each x, y in a CAT(0) space such that d(z, x) = td(x, y) and d(z, y) = (1 − t)d(x, y),
where t ∈ [0, 1]. Let [x; y] := ¶(1 − t)x ⊕ ty : t ∈ [0, 1]♢, then a subset C of X is
convex if [x, y] ⊆ C for all x, y ∈ C.

In 2008, Breg and Nikolaev [6] introduced the concept of quailinearization mapping

in CAT(0) spaces. They denoted a pair (a, b) ∈ X × X by
−→
ab which they called a

vector and defined a mapping ⟨·, ·⟩ : (X × X) × (X × X) → R by

⟨
−→
ab,

−→
cd⟩ =

1

2



d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)


, a, b, c, d ∈ X,(2.1)

called the quasilinearization mapping. It is easy to verify that ⟨
−→
ab,

−→
ab⟩ = d2(a, b),

⟨
−→
ba,

−→
cd⟩ = −⟨

−→
ab,

−→
cd⟩, ⟨

−→
ab,

−→
cd⟩ = ⟨−→ae,

−→
cd⟩ + ⟨

−→
eb,

−→
cd⟩ and ⟨

−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩ for all

a, b, c, d, e ∈ X. It has been established that a geodesically connected metric space
is a CAT(0) space if and only if it satisfies the Cauchy-Schwartz inequality (see
[6]). Recall that the space X is said to satisfy the Cauchy-Swartz inequality if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d) for all a, b, c, d ∈ X.

Let ¶xn♢ be a bounded sequence in CAT(0) space X. For x ∈ X, we set

r(x, ¶xn♢) = lim sup
n→∞

d(x, xn).

The asymptotic radius r(¶xn♢) of ¶xn♢ is given by

r(¶xn♢) = inf¶r(x, ¶xn♢)♢,



VARIATIONAL INEQUALITY AND EQUILIBRIUM PROBLEM 829

and the asymptotic center A(¶xn♢) of ¶xn♢ is the set

A(¶xn♢) = ¶x ∈ X : r(x, ¶xn♢) = r(¶xn♢)♢.

It is known (see [16, Proposition 7]) that in a CAT(0) space, A(¶xn♢) consists of exactly
one point. A sequence ¶xn♢ ⊂ X is said to ∆-converge to x ∈ X if A(¶xnk

♢) = ¶x♢
for every subsequence ¶xnk

♢ of ¶xn♢.

Definition 2.1 ([4]). Let X be a CAT(0) space and C be a nonempty closed and
convex subset of X. A mapping T : C → X is said to be k-demimetric if F (T ) ̸= ∅
and there exists k ∈ (−∞, 1), such that

⟨−→xy,
−−→
xTx⟩ ≥

1 − k

2
d2(x, Tx), for all x ∈ X and y ∈ F (T ).(2.2)

Definition 2.2. Let C be a nonempty closed and convex subset of a Hadamard space
X. The metric projection PC : X → C assigns to each x ∈ X, the unique point PCx
in C such that

d(x, PCx) = inf¶d(x, y) : y ∈ C♢.

The map PC is nonexpansive [13].

Definition 2.3. Let C be a nonempty closed and convex subset of a Hadamard space
X. A mapping T : C → C is said to be ∆-demiclosed, if for any bounded sequence
¶xn♢ in X such that ∆ − lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0, then x = Tx.

Lemma 2.1 ([4]). Let X be a CAT(0) space and S : X → X be a k-demimetric
mapping with k ∈ (−∞, λ] with F (S) ̸= ∅ and λ ∈ (0, 1). Suppose that Sλ = λx ⊕
(1 − λ)Sx. Then Sλ is quasi-nonexpansive and F (Sλ) = F (S).

In [36], the authors introduce resolvent of a bifunction f associated with the EP (1.3).
They defined a perturbation bifunction f̄x : C × C → R of f by

f̄x(x, y) := f(x, y) − ⟨−→xx, −→xy⟩, for all x, y ∈ C.(2.3)

The perturbed bifunction f̄ has a unique equilibrium point called resolvent operator
Jf : X → 2C of the bifunction f (see [36]) and is defined by

Jf (x) := EP (C, f̄x) = ¶z ∈ C : f(z, y) − ⟨−→zx, −→zy⟩ ≥ 0, y ∈ C♢

=


z ∈ C : f(z, y) +
1

2
(d2(x, y) − d2(x, z) − d2(y, z)) ≥ 0 for all y ∈ C

}

,(2.4)

x ∈ X. It was established in [36] that Jf is well-defined.

Lemma 2.2 ([36]). Suppose that f is monotone and D(Jf ) ̸= ∅. Then, the following
properties hold.

(i) Jf is singled-valued.
(ii) If D(Jf ) ⊃ C, then Jf is nonexpansive restricted to C.
(iii) If D(Jf ) ⊃ C, F (Jf ) = EP (C, f).

Lemma 2.3 ([36]). Suppose that f has the following properties:
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(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous;
(A4) for each x ∈ C, f(x, y) ≥ lim supt↓0 f((1 − t)x ⊕ tz, y) for all x, z ∈ C.

Then D(Jf ) = X and Jf is single-valued.

Remark 2.1 ([23]). It follows from (2.4) that the resolvent Jf
r of the bifunction f

(r > 0) is given by

Jf
r (x) := EP (C, f̄x) =



z ∈ C : f(z, y) +
1

r
⟨−→xz, −→zy⟩ ≥ 0, y ∈ C

}

, x ∈ X,(2.5)

where f̄ in this case is defined as

f̄x(x, y) := f(x, y) +
1

r
⟨
−→
x̄x, −→xy⟩, for all x, y ∈ C, x̄ ∈ X.(2.6)

Lemma 2.4 ([23]). Let C be a nonempty closed and convex subset of a Hadamard
space X and f : C ×C → R be a monotone bifunction such that C ⊂ D(Jf

r ) for r > 0.
Then, Jf

r is firmly nonexpansive restricted to C. That is

d2(Jf
r x, Jf

r y) ≤ ⟨−→xy,
−−−−−→
Jf

r xJf
r y⟩.(2.7)

Lemma 2.5 ([15]). Every bounded sequence in a Hadamard space always has a ∆-
convergent subsequence.

Lemma 2.6 ([29]). Let X be a Hadamard space and ¶xn♢ be a sequence in X. Then
¶xn♢ ∆− converges to x if and only if lim sup

n→∞
⟨−−→xnx, −→xy⟩ ≤ 0 for all y ∈ X.

Lemma 2.7 ([56]). Let ¶an♢ be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,

where
(i) ¶αn♢ ⊂ [0, 1],

∑

αn = ∞;
(ii) lim sup σn ≤ 0;
(iii) γn ≥ 0, n ≥ 0,

∑

γn < ∞.
Then an → 0 as n → ∞.

Lemma 2.8 ([3]). Let C be a nonempty closed and convex subset of Hadamard space
X and T : C → X be an α-inverse strongly monotone mapping. Assume µ ∈ [0, 1] and
define Tµ : C → X by Tµx = (1 − µ)x ⊕ µTx. If 0 < µ < 2α, then Tµ is nonexpansive
mapping and F (Tµ) = F (T ).

Lemma 2.9 ([3]). Let C be a nonempty bounded closed and convex subset of a
Hadamard space X and T : C → X be an α-inverse strongly monotone. Then
V I(C, T ) is nonempty, closed and convex.
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Lemma 2.10. ([7, Lemma 3]) Let X be a uniformly convex hyperbolic space with
modulus of uniform convexity η. For any c > 0, ϵ ∈ (0, 2], λ ∈ [0, 1] and v, x, y ∈ X,
d(x, v) ≤ c, d(y, v) ≤ c and d(x, y) ≥ ϵc implies that

d((1 − λ)x ⊕ λy, v) ≤ (1 − 2λ(1 − λ)η(c, ϵ))c.

If X is a CAT(0) space, then X is uniformly convex hyperbolic space ([30]).

Lemma 2.11 ([3]). Let C be a nonempty convex subset of a Hadamard space X and
T : C → X be a mapping. Then,

V I(C, T ) = V I(C, Tµ),

where µ ∈ (0, 1] and Tµ : C → X is a mapping defined by Tµx = (1 − µ)x ⊕ µTx for
all x ∈ C.

Remark 2.2 ([42]). It follows from Lemma 2.11 that

F (PCT ) = V I(C, T ) = V I(C, Tµ) = F (PCTµ).

Lemma 2.12. Let X be a CAT(0) space, x, y, z ∈ X and t ∈ [0, 1]. Then

(i) d(tx ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z) (see [15]);
(ii) d2(tx ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x, y) (see [15]);
(iii) d2(tx ⊕ (1 − t)y, z) ≤ t2d2(x, z) + (1 − t)2d2(y, z) + 2t(1 − t)⟨−→xz, −→yz⟩ (see [13]).

Lemma 2.13 ([51]). Let X be a CAT(0) space, ¶xi : i = 1, 2, . . . , N♢ ⊂ X and
αi ∈ [0, 1] for each i = 1, 2, . . . , N , be such that

∑N
i=1 αi = 1. Then

d



N
⊕

i=1

αixi, z



≤
N
∑

i=1

αid(xi, z), for all x ∈ X.

Lemma 2.14 ([14]). Let X be a CAT(0) space, ¶xi : i = 1, 2, . . . , N♢ ⊂ X, ¶yi : i =
1, 2, . . . , N♢ ⊂ X and αi ∈ [0, 1] for each i = 1, 2, . . . , N , be such that

∑N
i=1 αi = 1.

Then

d



N
⊕

i=1

αixi,
N
⊕

i=1

αiyi



≤
N
∑

i=1

αid(xi, yi).(2.8)

Lemma 2.15 ([17]). Let X be a Hadamard space and S : X → X be a nonexpansive
mapping. Then the conditions ¶xn♢ ∆-converges to x and d(xn, Sxn) → 0, imply
x = Sx.

Lemma 2.16 ([38]). Let ¶an♢ be a sequence of real numbers such that there exists
a subsequence ¶ni♢ of ¶n♢ such that ani

< ani+1 for all i ∈ N. Then there exists a
subsequence ¶mk♢ ⊂ N such that mk → ∞. and the following properties are satisfied
by all (sufficiently large) numbers k ∈ N

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max¶j ≤ k : aj < aj+1♢.
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3. Main Results

We begin with a technical results which will be used to prove our main results.

Lemma 3.1 ([42]). Let C be a nonempty closed and convex subset of a CAT(0) space
X, Ti : C → X, i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone
mappings and Ψµ : C → C be defined by Ψµx :=

⊕N
i=1 βiPCTµi

x for all x ∈ C
and βi ∈ (0, 1), where Tµi

x := (1 − µi)x ⊕ µiTix, 0 < µi < 2αi with µi ∈ [0, 1]. If
∑N

i=1 βi = 1, then the mapping Ψµ is nonexpansive. If in addition, ∩N
i=1F (PCTµi

) ̸= ∅,
then F (Ψµ) =

⋂N
i=1 F (PCTµi

).

Proposition 3.1 ([23]). Let X be a Hadamard space and f : C × C → R be a
monotone bifunction operator. Then

d2(u, Jf
r x) + d2(Jf

r x, x) ≤ d2(u, x), for all u ∈ F (Jf
r ), x ∈ X and r > 0.

Theorem 3.1. Let C be a nonempty closed and convex subset of a Hadamard space
X, f : C × C → R be a monotone and upper semicontinuous bifunction such that
conditions (A1)-(A4) of Lemma 2.3 are satisfied, C ⊂ D(Jf

r ) for r > 0 and Ti :
C → X, i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone mappings.
Let h be a contraction of C into itself with coefficient θ ∈ (0, 1) and S : C → C
be a k-demimetric mapping with k ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that Υ :=

F (S) ∩ EP (f, C) ∩


⋂N
i=1 V I(C, Ti)



is nonempty and ¶xn♢ is a sequence generated

by an arbitrary x1 ∈ X as follows:

(3.1)















un = Jf
rn

xn,

yn = Ψµun :=
⊕N

i=1 βiPCTµi
un,

xn+1 = αnh(xn) ⊕ (1 − αn)[βnyn ⊕ (1 − βn)Sλyn], n ≥ 1,

where Sλx = λx ⊕ (1 − λ)Sx is ∆-demiclosed and Tµi
x = (1 − µi)x ⊕ µiTix, 0 <

µi < 2βi, for each i = 1, 2, . . . , N. Suppose that ¶αn♢ and ¶βn♢ are sequences in (0, 1),
¶βi♢ ⊂ (0, 1) and rn ∈ (0, ∞) satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞;

(ii)
∑N

i=1 βi = 1.

Then ¶xn♢ converges strongly to p ∈ Υ, where p = PΥh(p).

Proof. Let p ∈ F (S) ∩ EP (f, C) ∩


⋂N
i=1 V I(C, Ti)



. By Lemma 3.1, we have that

Ψµ is nonexpansive, that is,

d(yn, p) = d(Ψµun, p) ≤ d(un, p).(3.2)

Since Jf
rn

is firmly nonexpansive, we have

d(un, p) = d(Jf
rn

(xn), p) ≤ d(xn, p).(3.3)

Let vn = βnyn ⊕ (1 − βn)Sλyn, then we obtain

d(vn, p) = d(βnyn ⊕ (1 − βn)Sλyn, p)
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≤ βnd(yn, p) + (1 − βn)d(Sλyn, p)

≤ βnd(yn, p) + (1 − βn)d(yn, p)

= d(yn, p).(3.4)

It follows from (3.1), (3.3) and Lemma 2.12 (i) that

d(xn+1, p) = d(αnh(xn) ⊕ (1 − αn))vn, p)

≤ αnd(h(xn), p) + (1 − αn)d(vn, p)

≤ αnd(h(xn), p) + (1 − αn)d(yn, p)

≤ αnd(h(xn), h(p)) + αnd(h(p), p) + (1 − αn)d(xn, p)

≤ αnθd(xn, p) + αnd(h(p), p) + (1 − αn)d(xn, p)

= [1 − αn(1 − θ)]d(xn, p) + αn(1 − θ)
d(h(p), p)

1 − θ

≤ max

{

d(xn, p),
d(h(p), p)

1 − θ

}

.

Hence, ¶xn♢ is bounded. Consequently, ¶yn♢, ¶un♢, ¶Jf
rn

xn♢ and ¶Sλyn♢ are all
bounded.

We now divide the rest of the proof into two cases.
Case 1. Suppose that ¶d(xn, p)♢ is monotonically non-increasing. Then there

exists lim
n→∞

¶d(xn, p)♢. This shows that

lim
n→∞

[d(xn+1, p) − d(xn, p)] = 0.(3.5)

Hence, we obtain from (3.1), Lemma 2.12 (ii), (3.2) and Proposition 3.1 that

d2(xn+1, p) ≤ αnd2(h(xn), p) + (1 − αn)d2(vn, p) − αn(1 − αn)d2(h(xn), vn)

≤ αnd2(h(xn), p) + (1 − αn)d2(yn, p)

≤ αnd2(h(xn), p) + (1 − αn)d2(un, p)

≤ αnd2(h(xn), p) + (1 − αn)
[

d2(yn, p) − d2(un, yn)
]

= αnd2(h(xn), p) + (1 − αn)d2(xn, p) − (1 − αn)d2(un, yn).(3.6)

From (3.6), we get

(1 − αn)d2(yn, un) ≤ αnd2(h(xn), p) + d2(xn, p) − d2(xn+1, p).

Hence, we obtain from (3.5) and condition (i) that

lim
n→∞

d(yn, un) = 0 = lim
n→∞

d(Ψµun, un).(3.7)

Also, from (3.1), Lemma 2.12 (ii) and Proposition 3.1 we get

d2(xn+1, p) ≤ αnd2(h(xn), p) + (1 − αn)d2(vn, p) − αn(1 − αn)d2(h(xn), vn)

≤ αnd2(h(xn), p) + (1 − αn)d2(yn, p)

≤ αnd2(h(xn), p) + (1 − αn)d2(un, p)
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≤ αnd2(h(xn), p) + (1 − αn)
[

d2(xn, p) − d2(un, xn)
]

= αnd2(h(xn), p) + (1 − αn)d2(xn, p) − (1 − αn)d2(un, xn).(3.8)

Thus,

(1 − αn)d2(un, xn) ≤ αnd2(h(xn), p) + d2(xn, p) − d2(xn+1, p).

Hence, from condition (i) and (3.5), we have

lim
n→∞

d(un, xn) = lim
n→∞

d(Jf
rn

xn, xn) = 0.(3.9)

By (3.1) and Lemma 2.12 (ii), we get

d2(xn+1, p) ≤αnd2(h(xn), p) + (1 − αn)d2(vn, p) − αn(1 − αn)d2(h(xn), vn)

≤αnd2(h(xn), p) + (1 − αn)[βnd2(yn, p) + (1 − βn)d2(Sλyn, p)

− βn(1 − βn)d2(yn, Sλyn)]

≤αnd2(h(xn), p) + (1 − αn)d2(xn, p) − (1 − αn)βn(1 − βn)d2(yn, Sλyn).

Hence,

(1 − αn)βn(1 − βn)d2(Sλyn, yn) ≤ αn[d2(h(xn), p) − d2(xn, p)] + d2(xn, p) − d2(xn+1, p).

By condition (i) and (3.5), we obtain

lim
n→∞

d(Sλyn, yn) = 0.(3.10)

Also, by (3.1), (3.7) and (3.9)

d(yn, xn) ≤ d(Ψµun, un) + d(un, xn) → 0, n → ∞.(3.11)

We also obtain from (3.1) and condition (i) that

d(xn+1, vn) = d(αnh(xn) ⊕ (1 − αn)vn, vn) ≤ αnd(h(xn), vn) → 0 as n → ∞.
(3.12)

Also, from the definition of vn and (3.10), we obtain

d(vn, yn) ≤ βnd(yn, yn) + (1 − βn)d(Sλyn, yn) → 0 as n → ∞.(3.13)

Thus, from (3.11), (3.12) and (3.13), we get

d(xn+1, xn) ≤ d(xn+1, vn) + d(vn, yn) + d(yn, xn) → 0.(3.14)

Next we show that

lim sup⟨
−−−→
h(z)z, −→xnz⟩ ≤ 0.

As ¶un♢ is bounded, so by Lemma 2.5, there exists a subsequence ¶unk
♢ of ¶un♢ such

that ∆- lim
k→∞

unk
= z. Also since Ψµ is nonexpansive, we obtain from (3.7), Lemma 2.15,

Lemma 3.1 and Remark 2.2 that z ∈ F (Ψµ) = ∩N
i=1F (PCTµi

) = ∩N
i=1V I(C, Tµi

). Let
us show that z ∈ EP (f, C). Since ¶Jf

rn
(xn)♢ is bounded, there exists a subsequence

¶wk♢ of ¶Jf
rn

(xn)♢ such that

lim
k→∞

d(wk, p) = lim inf
n→∞

d(Jf
rn

xn, p)
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and that ¶wk♢ ∆-converges to some z ∈ X, where wk = Jf
rnk

xnk
for all k ∈ N. By the

definition of the resolvent Jf
rn

, we have

rnk
f(wk, y) +

1

2
(d2(xnk

, y) − d2(xnk
, wk) − d2(y, wk)) ≥ 0,

for all y ∈ C. In particular, letting y = Jfz, we have

d2(xnk
, Jfz) − d2(xnk

, wk) − d2(Jfz, wk) ≥ −2rnk
f(wk, Jfz).

Similarly, by the definition of Jf , we have

d2(wk, z) − d2(Jfz, z) − d2(Jfz, wk) ≥ −2f(wk, Jfz).

Since f is monotone, we have

d2(Jfz, xnk
) − d2(wk, xnk

) − d2(wk, Jfz) − rnk
d2(wk, z) − rnk

d2(Jfz, z)

− rnk
d2(Jfz, wk) ≥ 0,

and hence

(1 + rnk
)d2(Jfz, wk) ≤ d2(Jfz, xnk

) − d2(wk, xnk
) + rnk

d2(wk, z) − rnk
d2(Jfz, z)

≤ d2(Jfz, xnk
) + d2(wk, z).

It follows that

d2(Jfz, wk) ≤
1

rnk

(d2(Jfz, xnk
) − d2(Jfz, wk) + d2(z, wk))

≤
1

rnk

d(wk, xnk
)(d(Jfz, xnk

) − d(Jfz, wk)) + d2(z, wk),

for all k ∈ N and consequently, we obtain

lim sup
k→∞

d2(Jfz, wk) ≤ lim sup
k→∞

d2(z, wk).

Since the asymptotic center of ¶wk♢ is unique point z, we have z = Jfz, that is,
z ∈ EP (C, f).

Furthermore, since ¶xn♢ is bounded, there exists a subsequence ¶xnk
♢ of ¶xn♢

such that ∆ − lim
k→∞

xnk
= z. It follows from (3.11) that there exists a subsequence

¶ynk
♢ of ¶yn♢ such that ∆ − lim

k→∞
ynk

= z. Since Sλ is ∆-demiclosed, it follows from

(3.10) and Lemma 2.1 that z ∈ F (Sλ) = F (S). Hence, z ∈ Υ := F (S) ∩ EP (f, C) ∩
⋂N

i=1 V I(C, Tµi
).

Observe that

lim sup
n→∞

⟨
−−−→
h(z)z, −→xnz⟩ ≤ lim sup

k→∞

⟨
−−−→
h(z)z, −−→xnk

z⟩.(3.15)

Since ¶xnk
♢ ∆-converges to z, therefore by Lemma 2.6, we have

lim sup
k→∞

⟨
−−−→
h(z)z, −→xnz⟩ ≤ 0.
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This together with (3.15) gives

lim sup
n→∞

⟨
−−−→
h(z)z, −→xnz⟩ ≤ 0.(3.16)

Also, we have

⟨
−−−→
h(z)z, −−−→zxn+1⟩ = ⟨

−−−→
h(z)z, −→zxn⟩ + ⟨

−−−→
h(z)z, −−−−→xnxn+1⟩

= ⟨
−−−→
h(z)z, −→zxn⟩ + d(z, h(z))d(xn, xn+1).(3.17)

Hence from (3.14), (3.16) and (3.17) we have that

lim sup
n→∞

⟨
−−−→
h(z)z, −−−→zxn+1⟩ ≤ 0.(3.18)

Finally, we prove that xn → z as n → ∞. For any n ∈ N, we set ϑn = αnz⊕(1−αn)vn,

d2(xn+1, z) =d2(αnh(xn) ⊕ (1 − αn)vn, z)

≤d2(ϑn, z) + 2⟨
−−−−→
xn+1ϑn, −−−→xn+1z⟩

≤ [αnd(z, z) + (1 − αn)d(vn, z)]2

+ 2


αn⟨
−−−−−→
h(xn)ϑn, −−−→xn+1z⟩ + (1 − αn)⟨

−−→
vnϑn, −−−→xn+1z⟩



≤(1 − αn)2d2(vn, z) + 2


α2
n⟨

−−−−→
h(xn)z, −−−→xn+1z⟩ + αn(1 − αn)⟨

−−−−−→
h(xn)vn, −−−→xn+1z⟩

+ αn(1 − αn)⟨−→vnz, −−−→xn+1z⟩ + (1 − αn)2⟨−−→vnvn, −−−→xn+1z⟩


≤(1 − αn)2d2(yn, z) + 2


αn⟨
−−−−→
h(xn)z, −−−→xn+1z⟩ + αn(1 − αn)⟨

−−−−−→
h(xn)vn, −−−→xn+1z⟩

+ αn(1 − αn)⟨−→vnz, −−−→xn+1z⟩ + (1 − αn)2d(vn, vn)d(xn+1, z)


≤(1 − αn)2d2(xn, z) + 2


αn⟨
−−−−→
h(xn)z, −−−→xn+1z⟩ + αn(1 − αn)⟨

−−−−−→
h(xn)vn, −−−→xn+1z⟩

+ αn(1 − αn)⟨−→vnz, −−−→xn+1z⟩


≤(1 − αn)2d2(xn, z) + 2αn⟨
−−−−→
h(xn)z, −−−→xn+1z⟩

≤(1 − αn)2d2(xn, z) + 2αn⟨
−−−−−−→
h(xn)h(z), −−−→xn+1z⟩ + 2αn⟨

−−−→
h(z)z, −−−→xn+1z⟩

≤(1 − αn)2d2(xn, z) + 2αnθd(xn, z)d(xn+1, z) + 2αn⟨
−−−→
h(z)z, −−−→xn+1z⟩

≤(1 − αn)2d2(xn, z) + 2αnθ


d2(xn, z) + d2(xn+1, z)


+ 2αn⟨
−−−→
h(z)z, −−−→xn+1z⟩.

As ¶αn♢ and ¶xn♢ are bounded so there is M > 0 such that 1
1−θαn

d2(xn, z) ≤ M. It
now follows that

d2(xn+1, z) ≤
(1 − αn)2 + θαn

1 − θαn

d2(xn, z) +
2αn

1 − θαn

⟨
−−−→
h(z)z, −−−→xn+1z⟩
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≤
(1 − αn)2 + θαn

1 − θαn

d2(xn, z) +
2αn

1 − θαn

⟨
−−−→
h(z)z, −−−→xn+1z⟩ + α2

nM

≤



1 −
1 − 2θαn − (1 − 2αn)

1 − θαn

]

d2(xn, z) +
2αn

1 − θαn

⟨
−−−→
h(z)z, −−−→xn+1z⟩ + α2

nM

≤



1 −
1 − 2θαn − (1 − 2αn)

1 − θαn

]

d2(xn, z)

+ αn



2

1 − θαn

⟨
−−−→
h(z)z, −−−→xn+1z⟩ + αnM



.(3.19)

Set γn = 1−2θαn−(1−2αn)
1−θαn

, δn = αn



2
1−θαn

⟨
−−−→
h(z)z, −−−→xn+1z⟩ + αnM



. Now it follows from

(3.18), (3.19) and Lemma 2.7 that ¶xn♢ converges strongly to z.
Case 2. Suppose that ¶d(xn, p)♢ is monotonically non-decreasing. There exists

a subsequence ¶nj♢ of ¶n♢ such that d(xnj
, z) < d(xnj+1, z) for all j ∈ N. Then by

Lemma 2.16, there exists a nondecreasing sequence ¶mk♢ ⊂ N such that mk → ∞.

d2(xmk
, z) ≤ d2(xmk+1, z) and d2(xk, z) ≤ d2(xmk+1, z),(3.20)

for all k ∈ N. Therefore,

0 ≤ lim inf
k→∞

[d(xmk+1, z) − d(xmk,z)]

≤ lim sup
k→∞

[d(xmk+1, z) − d(xmk
, z)]

≤ lim sup
k→∞

[αmk
d(h(xmk

), z) + (1 − αmk
)d(vmk

, z) − d(xmk
, z)]

≤ lim sup
k→∞

[αmk
d(h(xmk

), z) + (1 − αmk
)d(xmk

, z) − d(xmk
, z)]

= lim sup
k→∞

[αmk
(d(h(xmk

), z) − d(xmk
, z))] = 0.

This implies that

lim
k→∞

[d(xmk+1, z) − d(xmk
, z)] = 0.(3.21)

By an argument as in Case 1, we get

lim sup
k→∞

⟨
−−−→
h(z)z, −−−−→xmk+1z⟩ ≤ 0(3.22)

and

d2(xmk+1, z) ≤ (1 − γmk
)d2(xmk

, z) + γmk
δmk

.

Since d2(xmk
, z) ≤ d2(xmk+1, z) we get

γmk
d2(xmk

, z) ≤ d2(xmk
, z) − d2(xmk+1, z) + γmk

δmk
≤ γmk

δmk
.(3.23)

Thus, from (3.20), we get

lim
k→∞

d2(xmk
, z) = 0.(3.24)
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It follows from (3.20), (3.22) and (3.24) the lim
k→∞

d2(xk, z) = 0. Therefore, we con-

clude from Case 1 and Case 2 that ¶xn♢ converges strongly to z ∈ Υ. □

Lemma 3.2. Let C be a nonempty closed and convex subset of a Hadamard space
X and fj : C × C → R, j = 1, 2, . . . , m, be a finite family of monotone bifunctions

such that (A1)-(A4) are satisfied. Then for r > 0, we have F


⋂m
j=1 Jfm

r



= ∩m
i=1(Jfm

r ),

where
m
⋂

j=1

Jfj
r = Jfm

r ◦ Jfm−1

r ◦ · · · ◦ Jf2

r ◦ Jf1

r .

The proof of Lemma 3.2, follows immediately from the proof of Theorem 3.1 in
[55].

Theorem 3.2. Let C be a nonempty closed and convex subset of a Hadamard space X,
fj : C × C → R, j = 1, 2, . . . , m, be monotone and upper semicontinuous bifunctions
such that conditions (A1)-(A4) are satisfied, C ⊂ D(Jf

r ) for r > 0 and Ti : C → X,
i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone mappings. Let
h be a contraction of C into itself with coefficient θ ∈ (0, 1) and S : C → C be a
k-demimetric mapping with k ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that Γ := F (S) ∩
EP (fj, C) ∩ ∩N

i=1V I(C, Ti) is nonempty and ¶xn♢ is the sequence generated by an
arbitrary x1 ∈ X as:

(3.25)















un = Πm
j=1J

fj
rnxn,

yn = Ψµun :=
⊕N

i=1 βiPCTµi
un,

xn+1 = αnh(xn) ⊕ (1 − αn)[βnyn ⊕ (1 − βn)Sλyn], n ≥ 1,

where Sλx = λx ⊕ (1 − λ)Sx is ∆-demiclosed, Tµi
x = (1 − µi)x ⊕ µiTix, 0 < µi < 2αi,

for each i = 1, 2, . . . , N, and
⋂m

j=1 J
fj
r = Jfm

r ◦Jfm−1

r ◦ · · ·◦Jf2

r ◦Jf1

r . Suppose that ¶αn♢
and ¶βn♢ are sequences in (0, 1), ¶βi♢ ⊂ (0, 1) and rn ∈ (0, ∞) satisfy the following
conditions:

(i) lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞;

(ii)
∑N

i=1 βi = 1.

Then ¶xn♢ converges strongly to p ∈ Γ, where p = PΓh(p).

Proof. Follows immediately from Theorem 3.1 and Lemma 3.2. □

4. Application to Minimization Problems

In this section, we give an application of our results to solve Minimization Problems.
Let X be a Hadamard space and f : X → (−∞, ∞] be a proper and convex function.
The problems in optimization require to find x ∈ X such that

f(x) = arg min
y∈X

g(y).

So arg miny∈X g(y) denotes the set of minimizers of g.
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Let v : X → R be a proper convex and lower semicontinuous function. Consider
the bifunction fv : C × C → R defined by

fv(x, y) = v(y) − v(x), for all x, y ∈ C.

Then, fv is monotone and upper semi continuous (see [3]). Moreover, EP (fv, C) =
arg minC v, Jfv = proxv and D(proxv) = X (see [3]), where proxv : X → X is given
by

proxv(x) := arg min
x∈X



v(y) +
1

2
d2(y, x)



, for all x ∈ X.

Now we consider the following minimization and fixed point problems:

find x ∈ F (S) ∩ F (Ψµ) such that v(x) ≤ v(y), for all y ∈ C, i = 1, 2, . . . , m,
(4.1)

where S is a demimetric mapping and Ψµ is as defined in Lemma 3.1.
Let us denote the solution set of problem (4.1) by Ω.

Theorem 4.1. Let C be a nonempty closed and convex subset of a Hadamard space
X, vj : X → R, j = 1, 2, . . . , m, be proper convex lower semicontinuous functions
and Ti : C → X, i = 1, 2, . . . , N , be a finite family of αi-inverse strongly monotone
mappings. Let h be a contraction of C into itself with coefficient θ ∈ (0, 1) and
S : C → C be a k-demimetric mapping with k ∈ (−∞, λ] and λ ∈ (0, 1). Suppose that
Ω is nonempty and ¶xn♢ is the sequence generated by an arbitrary x1 ∈ X as

(4.2)















un = Πm
j=1proxvi

rn
xn,

yn = Ψµun :=
⊕N

i=1 βiPCTµi
un,

xn+1 = αnh(xn) ⊕ (1 − αn)[βnyn ⊕ (1 − βn)Sλyn], n ≥ 1,

where Sλx = λx ⊕ (1 − λ)Sx is ∆-demiclosed and Tµi
x = (1 − µi)x ⊕ µiTix, 0 <

µi < 2αi, for each i = 1, 2, . . . , N. Suppose that ¶αn♢ and ¶βn♢ are sequences in (0, 1),
¶βi♢ ⊂ (0, 1) and rn ∈ (0, ∞) satisfy the following conditions:

(i) lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞;

(ii)
∑N

i=1 βi = 1.

Then ¶xn♢ converges strongly to p ∈ Ω, where p = PΩh(p).

Proof. Set Jfi
rn

= proxvi
rn

in Algorithm 3.25 and apply Theorem 3.2 to approximate
solutions of problem (4.1). □

Remark 4.1. (i) If we replace h(xn) by ”u“ (for arbitrary u) in our Algorithm 3.1 and
Algorithm 3.25 (which are viscosity type), then we get the Halpern-type algorithm and
the conclusion of our theorems still hold. However, we use a viscosity-type algorithm
instead of Halpern-type algorithm due to the fact that viscosity-type algorithms have
higher rate of convergence than Halpern-type.

(ii) A characterization of metric projection goes as follows:

p = PΓh(p) ⇔ ⟨
−−−→
ph(p), −→yp⟩ ≥ 0, for all y ∈ C.(4.3)
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Therefore, one advantage of adopting Algorithm 3.1 for our convergence analysis, is
that it also converges to the variational inequality (4.3) (see for example [22]).

(iii) In Theorem 1.1, ∆-convergence to an element of EP (f, C) was obtained while
we obtained strong convergence result which is also a solution of some variational
inequality problems. Hence, Theorem (3.1) provides genuine extension of Theorem
1.1.

(iv) Theorem 4.1 generalizes Theorem 10 of [52] and Theorem 3.1 of [44] from
Hilbert space to CAT(0) spaces.

5. Numerical Example

Example 5.1. We give numerical in (R2, ∥ · ∥2) (where R
2 is the Euclidean plane) to

support our main result.
Let ρ : R2 × R

2 → [0, +∞) defined by

ρ(x, y) =
√

(x1 − y1)2 + (x2
1 − x2 − y2

1 + y2)2, x, y ∈ R
2.

Then (R2, ρ) is an Hadamard space (see, for instance, [18, Example 5.2]) with geodesic
joining x to y given by

(1 − t)x ⊕ ty = ((1 − t)x1 + ty1, ((1 − t)x1 + ty1)
2 − (1 − t)(x2

1 − x2) − t(y2
1 − y2).

(5.1)

Now, define Φ : R2 → R by

Φ(x1, x2) = (100(x2 − 2) − (x1 − 2)2)2 + (x1 − 3)2.

Then, it follows from [18, Example 5.2] that Φ is a proper convex and lower semicon-
tinuous function in (R2, ρ) but not convex in the classical sense.

Let S : R
2 → R be defined by Sx̄ = S(x1, x2) = (−2x1, 3x2

1 + x2). Then S is
3-generalized demimetric mapping in the sense ρ with F (S) = (0, 0), λ = 1

4
.

Let X = R
2 and be an R-tree with radical metric dr, where dr(x, y) = d(x, y)

if x and y are situated on a Euclidean straight line passing through the origin and
dr(x, y) = d(x, 0)+d(y, 0), otherwise. We put p = (0, 1), q = (1, 0) and C = A∪B∪D,
where A = ¶(0, t) : t ∈ [2/3, 1]♢, B = ¶(t, 0) : t ∈ [2/3, 1]♢, D = ¶(t, s) : t + s = 1, t ∈
(0, 1)♢ and defined T : C → C by

(5.2) Tx :=















q, if x ∈ A,

p, if x ∈ B,

x, if x ∈ D.

Then, T is 1
4
− inverse strongly monotone in (X, dr) but not inverse strongly monotone

in the classical sense.
In what follows, we choose rn = 1

5
, βi = 1

N
, µi = 0.035, αn = 1

n+1
, βn = 3n

5n+2
for

n ∈ N and i = 1, 2, . . . , N. We study the behaviour of the sequence generated by
Algorithm 3.1 for following initial values with N = 10.

Case I: x0 = (−2, −7)′,
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Figure 1. Example 5.1: Case I – Case II.

Case II: x0 = (5, −1)′,
Case III: x0 = (3, 6)′,
Case IV: x0 = (−4, 1)′.
We also used ∥xn+1 −xn∥2 < 10−4 as stopping criterion and plot the graphs of error

♣♣xn+1 − xn♣♣2 against number of iteration in each case. The computation results are
shown in Figure 1–2. The numerical results show that the change in the initial values
does not have significant effects on the number of iteration and CPU time taken for
computation by Algorithm 3.1.

6. Conclusion

In this paper, we investigate a priori on the resolvent operator for a given bifunc-
tion, demimetric mapping and a finite family of inverse strongly monotone mappings.
Main results here are that the resolvent operator here is single-valued and firmly
nonexpansive. We then define proximal viscosity algorithm by iterating the resolvent
of different bifurcating parameters. Strong convergence of the proposed algorithm to
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Figure 2. Example 5.1: Case III – Case IV

a common solution of variational inequality problem, fixed point problem and equilib-
rium problem is established in Hadamard spaces. Some applications and numerical
example were also given.
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ON A DETERMINANTAL FORMULA FOR DERANGEMENT

NUMBERS

MILICA ANÐELIĆ1 AND CARLOS M. DA FONSECA2,3

Abstract. The aim of this note is to provide succinct proofs for a recent formula
of the derangement numbers in terms of the determinant of a tridiagonal matrix.

1. Preliminaries

The nth derangement number !n, also known as subfactorial of n, is the number
of permutations on n elements, such that no element appears in its original position,
i.e., is a permutation that has no Ąxed points.

Derangement numbers were Ąrst combinatorially studied by the French mathemati-
cian and Fellow of the Royal Society, Pierre Rémond de Montmort in his celebrated
book Essay d’analyse sur les jeux de hazard published in 1708.

The two well-known recurrence relations

(1.1) !n = (n− 1)(!(n− 1)+!(n− 2)) , for n ⩾ 2,

and

(1.2) !n = n (!(n− 1)) + (−1)n , for n ⩾ 1,

with !0 = 1 and !1 = 0, were established and proved by Euler. They can be written
in the explicit forms

!n = n!
n
∑

i=0

(−1)i

i!
=

n
∑

i=0

(−1)n−i



n

i



i!,

Key words and phrases. Derangement numbers, tridiagonal matrices, determinant.
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which coincide with the permanent of the all ones matrix minus the identity matrix,
all of order n [4].

The arithmetic properties of the sequence of derangements are very interesting,
as we can Ąnd in [5]. There, they are studied in terms of the periodicity modulo a
positive integer, p-adic valuations, and prime divisors. We can also Ąnd attractive
relations to other number sequences. For example, in [11], for any prime number p

co-prime with a positive integer m, we have

∑

0<k<p

Bk

(−m)k
≡ (−1)m−1 !(m− 1) (mod p),

where Bk denotes the kth Bell number.
Among the most relevant generalizations we have the so-called r-derangement

numbers [12], when some of the elements are restricted to be in distinct cycles in
the cycle decomposition. For more details on this matter, recent formulas, and
interpretations, the reader is referred to [1, 6, 10].

The Ąrst terms of this sequence are

1 , 0 , 1 , 2 , 9 , 44 , 265 , 1854 , 14833 , 133496 , 1334961 , 14684570

and it was coined by The On-Line Encyclopedia of Integer Sequences [9] as the
sequence A000166.

Another interesting representation of the derangement numbers is in terms of the
determinant of a certain family tridiagonal matrices. Kittappa [3] and Janjić [2]
showed independently two similar formulas:

(1.3) !(n + 1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 −1
3 3 −1

4
. . . . . .
. . . . . . −1

n n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

for n ⩾ 2, and

(1.4) !(n + 1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1
1 1 −1

3 3 −1

4
. . . . . .
. . . . . . −1

n n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

for any positive integer n, respectively. Subtracting to the second row the Ąrst one,
in (1.4), it is a straightforward exercise to check that both representations are exactly
the same. Moreover they trivially satisfy (1.1)Ű(1.2).

In two recent replicated papers [7, 8], Qi, Wang, and Guo claim the discovery of
a new representation for the derangement numbers in terms of the determinant of a
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new tridiagonal matrix. The aim of this short note is to show that this can be proven
using elementary matrix theory and the above well-known representations.

2. Derangement Numbers and Tridiagonal Matrices

In [7, 8] it is simultaneously claimed the discovery of a new representation for !n in
terms of the determinant of the tridiagonal matrix of order n + 1, namely,

(2.1) !n = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 −1
0 0 −1

1 1 −1
2 2 −1

3
. . . . . .
. . . . . . −1

n− 1 n− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

for any nonnegative integer. The proof is intricate and based on the higher derivatives
of the generating function of !n.

However, using the elementary operations on rows Ri and columns Ci

R1 ← −R1 , C2 ← C2 − C1 , R4 ← R4 + 2R2 , C4 ← C4 + C2 ,

it follows that (2.1) equals
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
0 −1
1 1

2 −1

3
. . . . . .
. . . . . . −1

n− 1 n− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and this determinant is exactly (1.3).
Yet, there is also another way to check (2.1). For, expanding of the determinant

along last row (or column) we immediately get (1.3). The conclusion now follows
from the fact that for n = 0 and n = 1 the determinant (2.1) is, respectively, 1 and 0.
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STABILITY OF AN l-VARIABLE CUBIC FUNCTIONAL

EQUATION

VEDIYAPPAN GOVINDAN1, SANDRA PINELAS2, JUNG RYE LEE3,
AND CHOONKIL PARK4

Abstract. Using the direct and Ąxed point methods, we obtain the solution and
prove the Hyers-Ulam stability of the l-variable cubic functional equation

f

(
l∑

i=1

xi

)

+

l∑

j=1

f



−lxj +

l∑

i=1,i ̸=j

xi





= − 2(l + 1)
l∑

i=1,i ̸=j ̸=k

f(xi + xj + xk) + (3l2 − 2l − 5)
l∑

i=1,i ̸=j

f(xi + xj)

− 3(l3 − l2 − l + 1)

l∑

i=1

f(xi),

l ∈ N, l ≥ 3, in random normed spaces.

1. Introduction

The theory of random normed space (briefly, RN-space) is important as a gener-
alization of deterministic result of normed spaces and also in the study of random
operator equations. It is a practical tool for handling situations where classical theo-
ries fail to explain. Random theory has much application in several fields, for example,
population dynamics, computer programming, nonlinear dynamical system, nonlinear
operators, statistical convergence and so forth. The Cauchy additive equation

f(x + y) = f(x) + f(y)

Key words and phrases. Cubic functional equation, Ąxed point, Hyers-Ulam stability, random
normed space.
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has been studied by many authors [7, 9, 13, 15,19]. The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping (see [5, 8, 11,12,20]). A Hyers-
Ulam stability problem for the quadratic functional equation was proved by Skof [23]
for mappings f : X → Y , where X is a normed space and Y is a Banach space.
Cholewa [4] noticed that the theorem of Skof [23] is still true if the relevant domain
X is replaced by an Abelian group. Jun and Kim [14] introduced the following cubic
functional equation

(1.1) f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x),

and they established the solution and the Hyers-Ulam stability for the functional
equation. The function f(x) = x3 satisfies the functional equation (1.1), which is
called a cubic functional equation (see [3, 6, 10, 16, 21, 22]). Czerwik [5] proved the
Hyers-Ulam stability of the additive, quadratic and cubic functional equation.

Using the direct and fixed point methods, we obtain the solution and prove the
Hyers-Ulam stability of the l-variable cubic functional equation

f

(
l∑

i=1

xi

)

+
l∑

j=1

f



−lxj +
l∑

i=1,i≠j

xi



(1.2)

= − 2(l + 1)
l∑

i=1,i̸=j ̸=k

f(xi + xj + xk) + (3l2 − 2l − 5)
l∑

i=1,i≠j

f(xi + xj)

− 3(l3 − l2 − l + 1)
l∑

i=1

f(xi),

l ∈ N, l ≥ 3, in random normed spaces.

2. Preliminaries

In this section, we present some notations and basic definitions used in this article.

Definition 2.1. A mapping T : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular
norm if T satisfies the following condition:

a) T is commutative and associative;
b) T is continuous;
c) T (a, 1) = a for all a ∈ [0, 1];
d) T (a, b) ≤ T (c, d) when a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are Tp(a, b) = ab, Tm(a, b) = min¶a, b♢ and
TL(a, b) = max¶a+b−1, 0♢ (The Lukasiewicz t-norm). Recall [7] that if T is a t-norm
and ¶xn♢ is a given sequence of numbers in [0, 1], then T n

i=1xn+i is defined recurrently



AN n-VARIABLE CUBIC FUNCTIONAL EQUATION 853

by T 1
i=1xi = xi and T n

i=1xi = T
(

T n−1
i=1 xi, xn



for n ≥ 2, T ∞
i=1xi is defined as T ∞

i=1xn+i.

It is known that, for the Lukasiewicz t-norm, the following holds:

lim
n→∞

(TL)∞
i=1xn+i = 1 ⇔

∞∑

n=1

(1 − xn) < ∞.

Definition 2.2. A random normed space (briefly, RN-space) is a triple, where X is a
vector space. T is a continuous t-norm and µ is a mapping from X into D+ satisfying
the following conditions:

(RN1) µx(t) = ϵ0(t) for all t > 0 if and only if x = 0;

(RN2) µax(t) = µx

(
t

♣α♣



for all x ∈ X and α ∈ R with α ̸= 0;

(RN3) µx+y(t + s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 2.3. Let (X, µ, T ) be an RN-space.

1) A sequence ¶xn♢ in X is said to be convergent to a point x ∈ X if, for any
ϵ > 0 and λ > 0, there exists a positive integer N such that µxn−x(ϵ) > 1 − λ
for all n > N .

2) A sequence ¶xn♢ in X is called a Cauchy sequence if, for any ϵ > 0 and λ > 0,
there exists a positive integer N such that µxn−xm

(ϵ) > 1−λ for all n ≥ m ≥ N .
3) The RN-space (X, µ, T ) is said to be complete if every Cauchy sequence in X is

convergent to a point in X. For more details we can go through [1, 2, 4, 13, 18].

Throughout this paper, assume that X is a vector space and (Y, µ, T ) is a complete
random normed space. All over this paper we use the following notation for a given
mapping f : X → Y

Df(x1, . . . , xl) =f

(
l∑

i=1

xi

)

+
l∑

j=1

f



−lxj +
l∑

i=1,i̸=j

xi





+ 2(l + 1)
l∑

i=1,i̸=j ̸=k

f(xi + xj + xk) − (3l2 − 2l − 5)
l∑

i=1,i̸=j

f(xi + xj)

+ 3(l3 − l2 − l + 1)
l∑

i=1

f(xi),

for all x1, x2, x3, . . . , xl ∈ X.

3. Solution of the l-Variable Cubic Functional Equation in (1.2)

In this section, we investigate the solution of the l-variable cubic functional equation
(1.2).

Lemma 3.1. If a mapping f : X → Y satisfies (1.2), then the mapping f : X → Y
is cubic.
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Proof. Letting x1 = x2 = · · · = xl = 0 in (1.2), we get

2f(0) = −2(l + 1)

(

1 + 3(l − 3) +
3(l − 3)(l − 4)

2
+

(l − 3)(l − 4)(l − 5)

6

)

f(0)

+ (3l2 − 2l − 5)

(

3 + 3(l − 3) +
(l − 3)(l − 4)

2

)

f(0)

− 3l(l3 − l2 − l + 2)f(0).(3.1)

It follows from (3.1) that f(0) = 0. Setting x1 = x3 = · · · = xl = 0 and x2 = x in
(1.2), we have

lf(x) + f(−lx) = −2(l + 1)

(

1 + 2(l − 3) +
(l − 3)(l − 4)

2

)

f(x)

+ (3l2 − 2l − 5)

(

1 + 2(l − 3) +
(l − 3)(l − 4)

2

)

f(x)

− 3(l − 1)(l3 − l2 − l + 1)f(x),(3.2)

for all x ∈ X. It follows from (3.2) that

(3.3) f(−x) = −f(x),

for all x ∈ X. Letting x2 = x3 = · · · = xl = 0 and x1 = x in (1.2), we get

lf(x) + f(−lx) =(3l2 − 2l − 5)

(

1 + 2(l − 3) +
l2 − 7l + 12

2

)

f(x)

− 3(l − 1)(l3 − l2 − l + 1)f(x)

− 2(l + 1)

(

1 + 2(l − 3) +
l2 − 7l + 12

2

)

f(x),(3.4)

for all x ∈ X. It follows from (3.4) and the oddness of f that

(3.5) f(lx) = l3f(x),

for all x ∈ X. Letting x1 = x2 = x and x3 = x4 = · · · = xl = 0, we get

(l − 1)f(x) + 2f((−l + 1)x)

= − 2(l + 1)(l − 2)f(2x) − 2(l + 1)

(

2(n − 3) +
2(l − 3)(l − 4)

2

)

f(x)

+ (3l2 − 2l − 5)f(2x) + 2(3l2 − 2l − 5)(n − 2)f(x) − 6(l3 − l2 − l + 1)f(x),(3.6)

for all x ∈ X. It follows from (3.6), (3.5) and the oddness of f that

(3.7) f(2x) = 8f(x),
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for all x ∈ X. Setting x1 = x2 = x3 = x and x4 = x5 = · · · = xl = 0 in (1.2), we have

(l − 2)f(3x) + 3f((−l + 2)x)

= − 2(l + 1)f(3x) − 6(l + 1)f(2x) − 3(l + 1)(l − 3)(l − 4)f(x)

+ 3(3l2 − 2l − 5)f(2x) + 3(3l2 − 2l − 5)(n − 3)f(x) − 9(l3 − l2 − l + 1)f(x),(3.8)

for all x ∈ X. It follows from (3.8) that

(3.9) f(3x) = 27f(x),

for all x, y ∈ X. Setting x1 = x3 = x4 = x and x2 = x5 = · · · = xl = 0 in (1.2), we get

(l − 2)f(2x + y) + 2f(−2x + y) + f(2x − 3y)

= − 2(l + 1)
(

f(2x + y) + (l − 3)f(2x) + 2(l − 3)f(x + y)


− 2(l + 1)
(

(l − 3)(l − 4)


f(x) + (l − 3)(l − 4)f(y)

+ (3l2 − 2l − 5)
(

f(2x) + 2(l − 3)f(x) + (n − 3)f(y) + 2f(x + y)


(3.10)

− 3(l3 − l2 − l + 1)(2f(x) + f(y)),

for all x, y ∈ X. It follows from (3.10) and the oddness of f that

f(2x + y) − 2f(2x − y) + f(2x − 3y)

= − 8f(2x + y) + 128f(x) + 32f(x + y) − 96f(x) − 48f(y),(3.11)

for all x, y ∈ X. Replacing y by −y in (3.11), we get

f(2x − y) − 2f(2x + y) + f(2x + 3y)

= − 8f(2x − y) + 128f(x) + 32f(x − y) − 96f(x) + 48f(y),(3.12)

for all x, y ∈ X. Adding (3.11) and (3.12), we have

f(2x + 3y) + f(2x + 3y) − f(2x − y) − f(2x + y)

= − 8f(2x + y) − 8f(2x + y) + 32f(x + y) + 32f(x − y) + 64f(x),(3.13)

for all x, y ∈ X. It follows from (3.13) and (1.1) that

(3.14) 7f(2x + y) + 7f(2x − y) = 14(f(x + y) + f(x − y)) + 84f(x),

for all x, y ∈ X. It follows from (3.14) that

f(2x + y) + f(2x − y) = 2(f(x + y) + f(x − y)) + 12f(x),

for all x, y ∈ X. Therefore, the mapping f : X → Y is cubic. □
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4. Hyers-Ulam Stability of the l-Variablel Cubic Functional
Equation (1.2): Direct Approach

In this setion, we prove the Hyers-Ulam stability of the l-variablel cubic functional
equation (1.2) in RN-spaces by using the direct method.

Theorem 4.1. Let j = ±1 and f : X → Y be a mapping for which there exists a

function η : X l → D+ with the condition

lim
k→∞

T ∞
i=0

(

ηl(k+i)x1,l(k+i)x2,l(k+i)x3,...,l(k+i)xl

(

l(k+i+1)jt


(4.1)

= lim
k→∞

ηl(kj)x1,l(kj)x2,l(kj)x3,...,l(kj)xl

(

lkjt


= 1,

such that f(0) = 0 and

(4.2) µDf(x1,x2,...,xl)(t) ≥ η(x1,x2,...,xl)(t),

for all x1, x2, x3, . . . , xn ∈ X and all t > 0. Then there exists a unique cubic mapping

C : X → Y satisfying the functional equation (1.2) and

(4.3) µC(x)−f(x)(t) ≥ T ∞
i=0







ηm(i+1)jx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

l(i+1)jt








,

for all x ∈ X and all t > 0. The mapping C(x) is defined by

(4.4) µC(x)(t) = lim
k→∞

µ f(lkj x)

l3kj

(t),

for all x ∈ X and all t > 0.

Proof. Assume j = 1. Setting (x1, x2, . . . , xn) = (x, 0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

) in (4.3), we have

(4.5) µf(lx)−l3f(x)(t) ≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(t),

for all x ∈ X and all t > 0. It follows from (4.4) and (RN2) that

µ f(lx)

l3
−f(x)

(t) ≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

l3t


,

for all x ∈ X and all t > 0. Replacing x by lkx in (4.5), we catch

µ f(lk+1x)

l3(k+1)
−

f(lkx)

l3k

(t) ≥ ηlkx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

l3kl3t


≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

l3kl

αk
t

)

,(4.6)

for all x ∈ X and all t > 0. It follows from

f (lnx)

l3n
− f(x) =

n−1∑

k=0

f
(

lk+1x


l3(k+1)
−

f
(

lkx


l3k
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and (4.6) that

µ f(lnx)

l3n −f(x)

(

t
n−1∑

k=0

αk

l3kl3

)

≥ T n−1
k=0







ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(t)







= ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(t),

µ f(lnx)

l3n −f(x)
(t) ≥ ηx,0, . . . , 0

︸ ︷︷ ︸

(l−1)−times




t

∑n−1
k=0

αk

l3kl3



 ,(4.7)

for all x ∈ X and all t > 0. Replacing x by lmx in (4.7), we get

(4.8) µ f(ln+mx)

ln+m −
f(lmx)

l3m

(t) ≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times




t

∑n+m
k=m

αk

l3kl3



 .

Since ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

t
∑n+m

k=m
αk

l3kl3

)

→ 1 as m, n → ∞,
{

f(lnx)
l3n

}

is a Cauchy sequence in

(Y, µ, T ). Since (Y, µ, T ) is complete, this sequence converges to some point C(x) ∈ Y .
Fix x ∈ X and put m = 0 in (4.8). Then we have

µ f(lnx)

l3n −f(x)
(t) ≥ ηx,0, . . . , 0

︸ ︷︷ ︸

(l−1)−times




t

∑n−1
k=0

αk

l3kl3





and so, for every δ > 0, we have

µC(x)−f(x)(t + δ) ≥ T


µ
C(x)−

f(lnx)

l3n

(δ), µ f(lnx)

l3n −f(x)
(t)


≥ T







µ
C(x)−

f(lnx)

l3n

(δ), ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times




t

∑n−1
k=0

αk

l3kl3











.(4.9)

Taking limit as n → ∞ and using (4.9), we have

(4.10) µC(x)−f(x)(t + δ) ≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

(l3 − α)t


.

Since δ is arbitrary, by taking δ → 0 in (4.10), we have

(4.11) µC(x)−f(x)(t) ≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

(l3 − α)t


.

Replacing (x1, x2, . . . , xl) by (2nx1, 2nx2, . . . , 2nxl) in (4.2), we have

µDf(lnx1,lnx2,...,lnxl)(t) ≥ ηlnx1,lnx2,...,lnxl

(

l3nt


,

for all x1, x2, . . . , xl ∈ X and all t > 0. Since

lim
k→∞

T ∞
i=0

(

ηl(k+i)x1,l(k+i)x2,...,l(k+i)xl

(

l3(k+i+1)jt


= 1,



858 V. GOVINDAN, S. PINELAS, J. R. LEE, AND C. PARK

we conclude that C fulfills (1.2).
To prove the uniqueness of the cubic mapping C, assume that there exists another

cubic mapping D from X to Y , which satisfies (4.11). Fix x ∈ X. Clearly, C(lnx) =
l3nC(x) and D(lnx) = l3nD(x) for all x ∈ X. It follows from (4.11) that

µC(x)−D(x)(t) = lim
n→∞

µC(lnx)

l3n −
D(lnx)

l3n

(t),

µC(x)−D(x)(t) ≥ min


µC(lnx)

l3n −
f(lnx)

l3n


t

2



, µD(lnx)

l3n −
f(lnx)

l3n


t

2

}

≥ ηlnx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

l3n
(

l3 − α


t


≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

l3n (l3 − α) t

αn

)

.

Since limn→∞

(
l3n(l3−α)t

αn



= ∞, we get

lim
n→∞

ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

((

l3n(l3 − α)t

αn

))

= 1.

Therefore, it follows that µC(x)−D(x)(t) = 1 for all t > 0 and so C(x) = D(x).
For j = −1, we can prove the theorem by a similar way. This completes the

proof. □

The following corollary is an immediate consequence of Theorem 4.1, concerning
the stability of (1.2).

Corollary 4.1. Let ξ and ρ be nonnegative real numbers. Let f : X → Y be a

mapping satisfying the inequality

µDf(x1,x2,...,xl)(t) ≥







ηξ(t),
ηξ
∑n

i=1
∥xi∥ρ(t), s ̸= 3,

η
ξ(
∏n

i=1
∥xi∥ρ+

∑n

i=1
∥xi∥nρ)(t), p ̸= 3

n
,

for all x1, x2, . . . , xn ∈ X and all t > 0. Then there exists a unique cubic mapping

C : X → Y such that

µf(x)−C(x)(t) ≥







η ξ

♣l3−1♣

(t),

η ξ∥x∥ρ

♣l3−1ρ♣

(t),

η ξ∥x∥nρ

♣l3−1nρ♣

(t),

for all x ∈ X and all t > 0.
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5. Hyers-Ulam Stability of the l-Variablel Cubic Functional
Equation (1.2): Fixed Point Approach

In this section, we prove the Hyers-Ulam stability of the functional equation (1.2)
in random normed spaces by using the fixed point approach.

Theorem 5.1. Let f : X → Y be a mapping for which there exists a function

η : X l → D+ with the condition

lim
k→∞

ηδk
i

x1,δk
i

x2,...,δk
i

xl
(δk

i t) = 1,

for all x1, x2, . . . , xl ∈ X, t > 0 and δi =







l, i = 0,
1
l
, i = 1,

satisfying the functional

inequality

µDf(x1,x2,...,xl)(t) ≥ ηx1,x2,...,xl
(t),

for all x1, x2, . . . , xl ∈ X and t > 0. If there exists L = L(i) such that the function

x 7→ β(x, t) = ηx
l

,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(t)

has the property that

(5.1) β(x, t) ≤ L
1

δ3
i

β(δix, t),

for all x ∈ X and t > 0. Then there exists a unique cubic mapping C : X → Y
satisfying the functional equation (1.2) and

µC(x)−f(x)

(

L1−i

1 − L
t

)

≥ β(x, t),

for all x ∈ X and t > 0.

Proof. Let Ω := ¶f : X → Y : f is a function♢ and d be a generalized metric on Ω
such that

d(g, h) = inf
{

k ∈ (0, ∞)/µ(g(x)−h(x))(kt) ≥ β(x, t) : x ∈ X, t > 0
}

.

It is easy to see that (Ω, d) is complete (see [17]). Define T : Ω → Ω by Tg(x) =
1
δ3

i

g(δix) for all x ∈ X. Now, for g, h ∈ Ω we have d(g, h) ≤ K, which implies

µ(g(x)−h(x))(Kt) ≥β(x, t),

µ(T g(x)−T h(x))


Kt

δi



≥β(x, t),

d(Tg(x), Th(x)) ≤KL,

d(Tg, Th) ≤Ld(g, h),
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for all g, h ∈ Ω. Therefore, T is a strictly contractive mapping on Ω with Lipschitz
constant L. It follows from (4.5) that

µf(lx)−l3f(x)(t) ≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(t),

for all x ∈ X. It follows from (4.5) that

µ f(lx)

l3
−f(x)

(t) ≥ ηx,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(l3t),

for all x ∈ X. Using (5.1) for the case i = 0, we get

µ f(lx)

l3
−f(x)

(t) ≥ Lβ(x, t),

for all x ∈ X. Hence, we obtain

(5.2) d(µT f,f ) ≤ L = L1−i < ∞,

for all x ∈ X. Replacing x by x
l

in (4), we get

µ f(x)
l

−f(x
l )

(t) ≥ ηx
l

,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(

l3t


,

for all x ∈ X. By using (5.1) for the case i = 1, it reduce to

µ
l3f(x

l )−f(x)(t) ≥ β(x, t) ⇒ µT f(x)−f(x)(t) ≥ β(x, t),

for all x ∈ X. Hence, we get

(5.3) d (µT f,f ) ≤ L = L1−i < ∞,

for all x ∈ X. From (5.2) and (5.3), we can conclude

d (µT f,f ) ≤ L = L1−i < ∞,

for all x ∈ X.
The remaining proof is similar to the proof of Theorem 4.1. Since C is a unique

fixed point of T in the set ∆ = ¶f ∈ Ω ♣ d(f, C) < ∞♢, C is a unique mapping such
that

µf(x)−C(x)

(

L1−i

1 − L
t

)

≥ β(x, t),

for all x ∈ X and t > 0. This completes the proof. □

From Theorem 5.1, we obtain the following corollary concerning the stability for
the functional equation (1.2).

Corollary 5.1. Suppose that a mapping f : X → Y satisfies the inequality

µDf(x1,x2,...,xl)(t) ≥







ηξ(t),
ηξ
∑n

i=1
∥xi∥ρ(t), ρ ̸= 3,

η
ξ(
∏n

i=1
∥xi∥ρ+

∑n

i=1
∥xi∥nρ)(t), p ̸= 3

n
,
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for all x1, x2, . . . , xn ∈ X and t > 0, where ρ, ξ are constants with ξ > 0. Then there

exists a unique cubic mapping C : X → Y such that

µf(x)−C(x)(t) ≥







η ξ

♣l3−1♣

(t),

η ξ∥x∥ρ

♣l3−1ρ♣

(t),

η ξ∥x∥nρ

♣l3−1nρ♣

(t),

for all x ∈ X and t > 0.

Proof. Set

µDf(x1,x2,...,xl)(t) ≥







ηξ(t),
ηξ
∑n

i=1
∥xi∥ρ(t),

η
ξ(
∏n

i=1
∥xi∥ρ+

∑n

i=1
∥xi∥nρ)(t),

for all x1, x2, . . . , xn ∈ X and t > 0. Then

η(δk
i

x1,δk
i

x2,...,δk
i

xl)
(δk

i t) =







ηξδ
3k
i (t)

η
ξ
∑n

i=1
∥xi∥ρδ

(3−ρ)k

i

(t)

η
ξ

(
∏n

i=1
∥xi∥ρδ

(3−ρ)k

i
+
∑n

i=1
∥xi∥nρδ

(3−nρ)k

i

(t)

→







1 as k → ∞,
1 as k → ∞,
1 as k → ∞.

But we have that β(x, t) = ηx
l

,0, . . . , 0
︸ ︷︷ ︸

(l−1)−times

(t) has the property L 1
δ3

i

β(δix, t) for all x ∈ X

and t > 0.
Now,

β(x, t) =







ηξ(t),
η ξ∥x∥ρ

l3s

(t),

η ξ∥x∥nρ

l3ns

(t),

L
1

δ3
i

β(δix, t) =







ηδ−3
i

β(x)(t),

ηδ
ρ−3
i

β(x)(t),

ηδ
nρ−3
i

β(x)(t).

Using Theorem 4.1, we prove the following six cases.
L = l−3 if i = 0; L = l if i = 1; L = lρ−3 for ρ < 1 if i = 0; L = l3−ρ for s > 1 if

i = 1; L = lnρ−3 for ρ < 1
n

if i = 0; L = l3−nρ for ρ > 1
n

if i = 1.
Case 1. L = l−3 if i = 0

µf(x)−C(x)(t) ≥ L
1

δ3
i

β(δix, t)(t) ≥ η(
ξ

l3−l

(t).
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Case 2. L = l3 if i = 1

µf(x)−C(x)(t) ≥ L
1

δ3
i

β(δix, t)(t) ≥ η(
ξ

1−l3

(t).

Case 3. L = lρ−3 for ρ < 1 if i = 0

µf(x)−C(x)(t) ≥ L
1

δ3
i

β(δix, t)(t) ≥ η(
ξ∥x∥ρ

(l3−l3ρ)

(t).

Case 4. L = l3−ρ for ρ > 1 if i = 1

µf(x)−C(x)(t) ≥ L
1

δ3
i

β(δix, t)(t) ≥ η(
ξ∥x∥ρ

(l3ρ−l3)

(t).

Case 5. L = lnρ−3 for ρ < 1
n

if i = 0

µf(x)−C(x)(t) ≥ L
1

δ3
i

β(δix, t)(t) ≥ η(
ξ∥x∥nρ

(l3−l3nρ)

(t).

Case 6. L = l3−nρ for ρ > 1
n

if i = 1

µf(x)−C(x)(t) ≥ L
1

δ3
i

β(δix, t)(t) ≥ η(
ξ∥x∥nρ

(l3nρ−l3)

(t).

Hence, the proof is complete. □
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INEQUALITIES FOR MAXIMUM MODULUS OF RATIONAL

FUNCTIONS WITH PRESCRIBED POLES

S. L. WALI1

Abstract. In this paper we prove some results concerning the rational functions
with prescribed poles and restricted zeros. These results in fact generalize or
strengthen some known inequalities for rational functions with prescribed poles
and in turn produce new results besides the refinements of some known polynomial
inequalities. Our method of proof may be useful for proving other inequalities for
polynomials and rational functions.

1. Introduction

Let Pn denote the class of all complex polynomials P (z) :=
∑n

j=0 cjz
j of degree at

most n and P ′(z) be the derivative of P (z). Let D−

k := ¶z : ♣z♣ < k♢, D+
k := ¶z :

♣z♣ > k♢ and Tk := ¶z : ♣z♣ = k♢. For a function f defined on the circle T1 in the
complex plane C, we write

∥f∥ := sup
z∈T1

♣f(z)♣, w(z) :=
n
∏

j=1

(z − aj)

and

Rn = Rn(a1, a2, . . . , an) :=

{

p(z)

w(z)
: p ∈ Pn

}

,

where aj ∈ D+
1 , j = 1, 2, . . . n.

Key words and phrases. Rational functions, polynomials, Schwarz lemma, inequalities, polar
derivative.
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Thus, Rn is the set of all rational functions with poles a1, a2, . . . , an at most and
with finite limit at ∞. We observe that the Blashke product B(z) ∈ Rn, where

B(z) :=
n
∏

j=1



1 − ajz

z − aj



.

For every P ∈ Pn, the following inequality is due to Bernstein [5]:

∥P ′∥ ≤ n∥P∥,

where as by an application of maximum modulus principle

∥P (R, ·)∥ ≤ Rn∥P∥,

where ∥P (R, ·)∥ = supz∈TR
♣P (z)♣. Both these inequalities are sharp and equality

holds for polynomials having all zeros at the origin. In case P (z) ̸= 0 for z ∈ D−

1 ,

then we have for z ∈ T1

(1.1) ∥P ′∥ ≤
n

2
∥P∥

and

(1.2) ∥P (R, ·)∥ ≤
Rn + 1

2
∥P∥,

whereas if P (z) ̸= 0 for z ∈ D+
1 , then

(1.3) ∥P ′∥ ≥
n

2
∥P∥.

Inequality (1.1) was conjectured by Erdös and proved by Lax [9], whereas inequality
(1.2) is due to Ankeny and Rivilin [1]. Inequality (1.3) is due to Turán [14]. In all the
inequalities (1.1), (1.2), and (1.3) equality holds for polynomials having all zeros on
the unit disk.

Li, Mohapatra and Rodriguez [10] extended inequalities (1.1) and (1.3) to rational
functions r ∈ Rn and proved the following results.

Theorem 1.1. Suppose r ∈ Rn and all the zeroes of r lie in T1 ∪D+
1 . Then for z ∈ T1

♣r′(z)♣ ≤
1

2
♣B′(z)♣∥r∥.

Theorem 1.2. Suppose r ∈ Rn, where r has exactly n poles at a1, a2, . . . , an and all

the zeros of r lie in T1 ∪ D−

1 , then for z ∈ T1

♣r′(z)♣ ≥
1

2
¶♣B′(z)♣ − (n − m)♢♣r(z)♣,

where m is the number of zeros of r.

The inequality (1.2) was extended to rational functions by Govil and Mohapatra
[7] (see also Aziz and Rather [3]) to read as follows.

Theorem 1.3. Suppose r ∈ Rn and all the zeroes of r lie in T1 ∪D+
1 . Then for z ∈ T1

♣r′(z)♣ ≤
♣B(Rz)♣ + 1

2
♣r(z)♣.
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2. Main Results

Theorem 2.1. Suppose r ∈ Rn, where r has n poles at a1, a2, . . . , an and all the zeros

of r lie in T1 ∪ D−

1 with a zero of multiplicity s at origin, then the following inequality

holds for each point z ∈ T1, such that r(z) ̸= 0

(2.1) Re



zr′(z)

r(z)



≥
1

2

{

♣B′(z)♣ + (s + m − n) +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣

}

,

where m is the number of zeros of r. Inequality (2.1) is sharp and equality holds for

r(z) =
zs(zm−s − 1)

(z − a)n
and B(z) =



1 − az

z − a

n

, z ∈ T1, a ≥ 1.

Since
∣

∣

∣

zr′(z)
r(z)

∣

∣

∣ ≥ Re
{

zr′(z)
r(z)

}

, from Theorem 2.1, we immediately have the following.

Corollary 2.1. Suppose r ∈ Rn, where r has n poles at a1, a2, . . . , an and all its zeros

lie in T1 ∪ D−

1 , with s-fold zeros at origin, then for z ∈ T1

(2.2) ♣r′(z)♣ ≥
1

2

{

♣B′(z)♣ + (s + m − n) +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣

}

♣r(z)♣,

where m is the number of zeros of r. The result is sharp and equality holds for

r(z) =
zs(zm−s − 1)

(z − a)n
and B(z) =



1 − az

z − a

n

,

at z = 1 and a ≥ 1.

Note. Inequality (2.2) is trivally true in case r(z) = 0 for z ∈ T1.

If we take s = 0 in Corollary 2.1, we get the following result, which is an improvement
of Theorem 1.2, earlier proved by Li, Mohapatra and Rodriguez [10, Theorem 4].

Corollary 2.2. Suppose r ∈ Rn, where r has n poles and all the zeros of r lie in

T1 ∪ D−

1 . Then for z ∈ T1

♣r′(z)♣ ≥
1

2

{

♣B′(z)♣ − (n − m) +
♣cm♣ − ♣c0♣

♣cm♣ + ♣c0♣

}

♣r(z)♣,

where m is the number of zeros of r. The result is sharp and equality holds for

r(z) =
(z + 1)m

(z − a)n
and B(z) =



1 − az

z − a

n

at z = 1 and a ≥ 1.

Since ♣cm♣ ≥ ♣c0♣, therefore as mentioned above, Corollary 2.2 is an improvement of
Theorem 1.2. In case number of poles of r is same as its zeros, that is, when m = n

then Corollary 2.2 gives an improvement of [4, inequality (12)].
Taking ai = α, i = 1, 2, . . . , n, in Corollary 1, we have the following.
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Corollary 2.3. If P (z) is a polynomial of degree m having all zeros in T1 ∪ D−

1 with

s-fold zero at origin, then

(2.3) ♣DαP (z)♣ ≥
♣α♣ − 1

2

{

m + s +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣

}

♣P (z)♣,

where DαP (z) := nP (z) + (α − z)P ′(z) is called the polar derivative of the polynomial

P (z) with respect to the point α and it generalizes the ordinary derivative of P (z) of

degree n in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

By taking s = 0 in Corollary 2.3, we get the following sharp result which is also an
extension of a result of Dubinin [6] to the polar derivative of P (z).

Corollary 2.4. If P (z) :=
∑n

j=0 cjz
j is a polynomial of degree n having all zeros in

T1 ∪ D−

1 , then

(2.4) ♣DαP (z)♣ ≥
♣α♣ − 1

2

{

n +
♣cn♣ − ♣c0♣

♣cn♣ + ♣c0♣

}

♣P (z)♣.

Equality in (2.4) holds for a polynomial P (z) = (z−1)n with α > 1. Since ♣cn♣ ≥ ♣c0♣,
it follows that Corollary 2.4 is a refinement of a result of Shah [13].

Dividing both sides of (2.3) by ♣α♣ and letting ♣α♣ → ∞, we get the following result.

Corollary 2.5. If P ∈ Pn is such that P (z) has all its zeros in T1 ∪ D−

1 with s-fold

zero at origin, then

(2.5) ♣P ′(z)♣ ≥
1

2



n + s +
♣cn♣ − ♣c0♣

♣cn♣ + ♣c0♣



♣P (z)♣.

For s = 0 (2.5) reduces to the result of Dubinin [6] and is an improvement of a
classical result of Turán [14].

Next we prove the following refinement of a result of Aziz and Shah [4, Theorem 1].

Theorem 2.2. Suppose r ∈ Rn, where r has exactly n poles a1, a2, . . . , an and all the

zeros of r lie in Tk ∪ D−

k , k ≤ 1, with a zero of order s at origin. Then for z ∈ T1

(2.6) ♣r′(z)♣ ≥
1

2

{

♣B′(z)♣ − n +
2(m + sk)

1 + k

}

♣r(z)♣,

where m is the number of zeros of r. The result is sharp and equality holds for

r(z) =
zs(z + k)m−s

(z − a)n
and B(z) =



1 − az

z − a

n

at z = 1 and a ≥ 1.

The result of Aziz and Shah [4, Theorem 1] is a special case of Theorem 2.2, if we
take s = 0.

As in previous case, if we take ai = α, i = 1, 2, . . . , n, in Theorem 2.2, we get the
following result on the polar derivatives of a polynomial.
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Corollary 2.6. If P ∈ Pn is such that P (z) ̸= 0 in D+
k , k ≤ 1 with s-fold zero at

origin, then for every α with ♣α♣ ≥ 1

(2.7) ♣DαP (z)♣ ≥
n(♣α♣ − 1)(1 + ks)

1 + k
♣P (z)♣.

Remark 2.1. In Corollary 2.6 if we take s = 0, we have the following generalization of
a result of Shah [13].

Corollary 2.7. If P ∈ Pn is such that P (z) has all zeros in Tk ∪ D−

k , then for ♣α♣ ≥ 1
and z ∈ T1

♣DαP (z)♣ ≥
n(♣α♣ − 1)

1 + k
♣P (z)♣.

Remark 2.2. Dividing both sides of (2.7) by ♣α♣ and letting ♣α♣ → ∞, we have the
following sharp result.

Corollary 2.8. If P ∈ Pn is such that P (z) ̸= 0 for z ∈ D+
k with s-fold zero at origin,

then for z ∈ T1

♣P ′(z)♣ ≥
n + ks

1 + k
♣P (z)♣.

Equality holds for P (z) = zs(z − k)n−s.

For s = 0, this gives result of Malik [11], whereas for k = 1, s = 0, it reduces to the
classical theorem of Turán [14].

Theorem 2.3. Suppose r ∈ Rn and all the zeros of r lie in Tk ∪D+
k . Then for z ∈ T1

(2.8) ♣r(Rz)♣ ≤
(R + k)n

(R + k)n + (1 + Rk)n

{

♣B(Rz)♣ + 1

}

∥r∥.

Remark 2.3. Theorem 1.3 is a special case of Theorem 2.3, when k = 1.

Remark 2.4. Let w(z) = (z − α)n
, ♣α♣ > 1, so that

r(z) =
P (z)

(z − α)n
and B(z) =

n
∏

1

1 − αz

z − α
=


1 − αz

z − α

n

.

Using this in Theorem 2.3, it can be easily verified that for ♣α♣ ≥ R > 1 and z ∈ T1

♣P (Rz)♣ ≤
(R + k)n

(R + k)n + (1 + Rk)n

{

∣

∣

∣

∣

1 − αRz

Rz − α

∣

∣

∣

∣

n

+ 1

}

∥P∥.

Letting ♣α♣ → ∞, we get the following result.

If P (z) is a polynomial of degree n, which does not vanish in ♣z♣ < k, k ≥ 1, then
for R > 1 and z ∈ T1

∥P (R, ·)∥ ≤
(R + k)n(Rn + 1)

(R + k)n + (1 + Rk)n
∥P∥.

This result was earlier proved by Aziz and Mohammad [2].
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3. Lemmas and Proofs

For the proofs of these theorems we need the following lemmas.

Lemma 3.1 ([8]). Let f : D → D be holomorphic. Assume that f(0) = 0. Further

assume that there is a b ∈ ∂D, the boundary of D, so that f extends continuously to

b, ♣f(b)♣ = 1 and f ′(b) exists. Then

♣f ′(b)♣ ≥
2

1 + ♣f ′(0)♣
.

The next lemma is due to Aziz and Rather.

Lemma 3.2 ([3]). If r ∈ Rn and z ∈ T1, then for every R ≥ 0,

♣r(Rz)♣ + ♣r∗(Rz)♣ ≤ ¶♣B(Rz)♣ + 1♢∥r∥,

where r∗(z) = B(z)r(1
z
).

Proof of Theorem 2.1. Suppose that r(z) ̸= 0 for z ∈ T1 and all the poles of r(z) lie
in D+

1 . Since r(z) has a zero at origin of multiplicity s. Therefore,

r(z) =
P (z)

w(z)
=

zsh(z)

w(z)
,

where

h(z) :=
m−s
∑

j=0

cs+jz
j = cm

m−s
∏

j=1

(z − zj), zj ∈ D−

1 , j = 1, 2, . . . , m − s,

and

w(z) =
n
∏

j=1

(z − aj).

This gives
r′(z)

r(z)
=

s

z
+

h′(z)

h(z)
−

w′(z)

w(z)
.

Equivalently,

(3.1) Re



zr′(z)

r(z)



= s + Re



zh′(z)

h(z)



− Re



zw′(z)

w(z)



.

Since h(z) has all zeros in D−

1 , therefore

h∗(z) = zm−sh



1

z



has all zeros in D+
1 , and hence

(3.2) G(z) =
zh(z)

h∗(z)
= z

cm

cm

m−s
∏

j=1



z − zj

1 − zzj



is analytic in T1 ∪ D−

1 , with G(0) = 0 and ♣G(z)♣ = 1 for z ∈ T1.
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Applying Lemma 3.1 to G(z), we get for z ∈ T1

(3.3) ♣G′(z)♣ ≥
2

1 + ♣G′(0)♣
.

Since

♣G′(0)♣ =

∣

∣

∣

∣

∣

∣

m−s
∏

j=1

zj

∣

∣

∣

∣

∣

∣

=
♣cs♣

♣cm♣
,

it can be easily verified (see [15, proof of Lemma 1]) that for every z ∈ T1

(3.4) Re

{

zh′(z)

h(z)

}

≥
m − s − 1

2
+

♣cm♣

♣cm♣ + ♣cs♣
.

Again we have

B(z) =
w∗(z)

w(z)
,

where

w∗(z) = znw



1

z



.

This gives (see [15, Lemma 1])

(3.5) Re

{

zw′(z)

w(z)

}

=
n − ♣B′(z)♣

2
.

Now using (3.4) and (3.5) in (3.1), we conclude that

Re

{

zr′(z)

r(z)

}

≥
1

2

{

s + ♣B′(z)♣ − (n − m) +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣

}

.

The proof of Theorem 2.1 is completed. □

Proof of Theorem 2.2. Suppose that for each point z ∈ T1, r(z) ̸= 0 and all the poles
of r(z) lie in D+

1 . Since r(z) has a zero of order s at origin, therefore

r(z) =
P (z)

w(z)
=

zsQ(z)

w(z)
,

where

Q(z) =
m−s
∑

j=0

cs+jz
j

is a polynomial of degree m − s having all zeros in ♣z♣ ≤ k. This gives

(3.6) Re
zr′(z)

r(z)
= s + Re

zQ′(z)

Q(z)
− Re

zw′(z)

w(z)
.

We write Q(z) = cm

m−s
∏

j=1
(z − zj), ♣zj♣ ≤ k ≤ 1, and it can be easily verified that

Re
zQ′(z)

Q(z)
≥

m − s

1 + k
.
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Also, as in (3.5)

Re

{

zw′(z)

w(z)

}

=
n − ♣B′(z)♣

2
.

Using this in (3.6), we get

Re
zr′(z)

r(z)
≥ s +

m − s

1 + k
−

n − ♣B′(z)♣

2
.

Now for z ∈ T1 such that r(z) ̸= 0, we have
∣

∣

∣

∣

∣

zr′(z)

r(z)

∣

∣

∣

∣

∣

≥ Re
zr′(z)

r(z)
≥

1

2

{

♣B′(z)♣ +
2(m + sk) − n(1 + k)

1 + k

}

.

This gives for z ∈ T1 such that r(z) ̸= 0,

♣r′(z)♣ ≥
1

2

{

♣B′(z)♣ − n +
2(m + sk)

1 + k

}

♣r(z)♣.

Since the result is trivially true if r(z) = 0 for z ∈ T1, it follows that

♣r′(z)♣ ≥
1

2

{

♣B′(z)♣ − n +
2(m + sk)

(1 + k)

}

♣r(z)♣,

for all z ∈ T1. The proof of Theorem 2.2 is completed. □

Proof of Theorem 2.3. Since zeros of r(z) lie in Tk ∪ D+
k , therefore all zeros of P (z)

lie in Tk ∪ D+
k , k ≥ 1 and w(z) =

∏n
j=1(z − αj), ♣αj♣ > 1 for all j = 1, 2, . . . , n.

Also

r∗(z) = B(z)r


1

z



=
n
∏

j=1



1 − αjz

z − αj



P (1
z
)

w(1
z
)



=
n
∏

j=1



1 − αjz

z − αj



znP (1
z
)

n
∏

j=1
(1 − αjz)

=
znP (1

z
)

n
∏

j=1
(z − αj)

=
P ∗(z)

w(z)
.

Therefore,

(3.7)
r(z)

r∗(z)
=

P (z)

P ∗(z)
.

We write

P (z) =
n
∏

j=1

(z − rje
iθj ), where rj ≥ k ≥ 1, j = 1, 2, . . . , n,

so that P ∗(z) = znP (1
z
) =

n
∏

j=1
(1 − zrje

iθj ).

For 0 ≤ θ < 2π and R > 1 we have

(3.8)

∣

∣

∣

∣

∣

P (Reiθ)

P ∗(Reiθ)

∣

∣

∣

∣

∣

=
n
∏

j=1

∣

∣

∣

∣

∣

Reiθ − rje
iθj

1 − rjRei(θ−θj)

∣

∣

∣

∣

∣

.
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Now

n
∏

j=1

∣

∣

∣

∣

∣

Reiθ − rje
iθj

1 − rjRei(θ−θj)

∣

∣

∣

∣

∣

2

=
n
∏

j=1

∣

∣

∣

∣

∣

Rei(θ−θj) − rj

1 − rjRei(θ−θj)

∣

∣

∣

∣

∣

2

=
n
∏

j=1



Rei(θ−θj) − rj

1 − rjRei(θ−θj)
·

Re−i(θ−θj) − rj

1 − rjRe−i(θ−θj)



=
n
∏

j=1

R2 − 2Rrj cos(θ − θj) + r2
j

1 − 2Rrj cos(θ − θj) + r2
j R2

≤
n
∏

j=1



R + rj

1 + Rrj

2

.

Therefore, from (3.8), we have

(3.9)

∣

∣

∣

∣

∣

P (Reiθ)

P ∗(Reiθ)

∣

∣

∣

∣

∣

2

≤
n
∏

j=1



R + rj

1 + Rrj

2

.

Since ♣rj♣ ≥ k, k ≥ 1, it can be easily verified that

R + rj

1 + Rrj

≤
R + k

1 + Rk
.

Using this in (3.9), we get

(3.10)

∣

∣

∣

∣

∣

P (Reiθ)

P ∗(Reiθ)

∣

∣

∣

∣

∣

≤
n
∏

j=1



R + k

1 + Rk



=



R + k

1 + Rk

n

.

Combining (3.7) and (3.10), we get
∣

∣

∣

∣

∣

r(Rz)

r∗(Rz)

∣

∣

∣

∣

∣

≤



R + k

1 + Rk

n

, for z ∈ T1, k ≥ 1, R > 1.

Equivalently,

(3.11)



R + k

1 + Rk



−n

♣r(Rz)♣ ≤ ♣r∗(Rz)♣.

Now using Lemma 3.2, we get from (3.11)
{

R + k

1 + Rk



−n

+ 1

}

♣r(Rz)♣ ≤ ♣r(Rz)♣ + ♣r∗(Rz)♣.

That is,

♣r(Rz)♣ ≤
(R + k)n

(R + k)n + (1 + Rk)n
¶♣B(Rz)♣ + 1♢♣r♣.

The proof of Theorem 2.3 is completed. □

Proof of Corollary 2.3. Since r(z) has a pole of order n at z = α, ♣α♣ > 1, we have

r(z) =
P (z)

(z − α)n
.
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Therefore,

r′(z) =
(z − α)nP ′(z) − n(z − α)n−1P (z)

(z − α)2n
=

−[nP (z) + (α − z)P ′(z)]

(z − α)n+1
=

−DαP (z)

(z − α)n+1
.

Also,

B(z) =



1 − αz

z − α

n

gives

B′(z) =
n(1 − αz)n−1(♣α♣2 − 1)

(z − α)n+1
.

Using these facts, we immediately get for z ∈ T1 from inequality (2.2)
∣

∣

∣

∣

∣

DαP (z)

(z − α)n+1

∣

∣

∣

∣

∣

≥
1

2

{

n♣z − α♣n−1(♣α♣2 − 1)

♣z − α♣n+1
+



s + m − n +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣

}

♣P (z)♣

♣z − α♣n
.

This gives

♣DαP (z)♣ ≥
1

2

{

n(♣α♣2 − 1)

♣z − α♣
+



s + m − n +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣



♣z − α♣

}

♣P (z)♣

≥
(♣α♣ − 1)

2

{

n +



s + m − n +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣

}

♣P (z)♣

=
(♣α♣ − 1)

2

{

s + m +
♣cm♣ − ♣cs♣

♣cm♣ + ♣cs♣

}

♣P (z)♣, z ∈ T1, ♣α♣ ≥ 1.

Using the argument of continuity in case of poles the proof of Corollary 2.3 completes.
□

Proof of Corollary 2.6. Since we have

r(z) =
P (z)

(z − α)n
and B(z) =



1 − αz

z − α

n

,

therefore

r′(z) =
−DαP (z)

(z − α)n+1

and

B′(z) =
n(1 − αz)n−1(♣α♣2 − 1)

(z − α)n+1
.

Using in inequality (2.6), with m = n, we get
∣

∣

∣

∣

∣

DαP (z)

(z − α)n+1

∣

∣

∣

∣

∣

≥
1

2

{

n♣z − α♣n−1(♣α♣2 − 1)

♣z − α♣n+1
+

n(1 − k) + 2ks

1 + k

}

♣P (z)♣

♣z − α♣n
.

This gives

♣DαP (z)♣ ≥
1

2

{

n(♣α♣2 − 1)

♣z − α♣
+

n(1 − k) + 2ks

1 + k
♣z − α♣

}

♣P (z)♣
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≥
1

2

{

n(♣α♣ − 1) +
n(1 − k) + 2ks

1 + k
(♣α♣ − 1)

}

♣P (z)♣

=
n(♣α♣ − 1)(1 + ks)

1 + k
♣P (z)♣, z ∈ T1, ♣α♣ ≥ 1.

Using the argument of continuity in case of poles the proof of Corollary 2.6 completes.
□
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CONTROLLED INTEGRAL FRAMES FOR HILBERT C∗-MODULES

HATIM LABRIGUI1 AND SAMIR KABBAJ1

Abstract. The notion of controlled frames for Hilbert spaces were introduced
by Balazs, Antoine and Grybos to improve the numerical efficiency of iterative
algorithms for inverting the frame operator. Controlled frame theory has a great
revolution in recent years. This theory have been extended from Hilbert spaces to
Hilbert C∗-modules. In this paper we introduce and study the extension of this
notion to integral frame for Hilbert C∗-modules. Also we give some characterizations
between integral frame in Hilbert C∗-modules.

1. Introduction and preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer
[9] in 1952 to study some deep problems in nonharmonic Fourier series. After the
fundamental paper [7] by Daubechies, Grossman and Meyer, frames theory began to
be widely used, particularly in the more specialized context of wavelet frames and
Gabor frames [12].

Hilbert C∗-module arose as generalization of the Hilbert space notion. The basic
idea was to consider modules over C∗-algebras instead of linear spaces and to allow
the inner product to take values in the C∗-algebras [17]. Continuous frames defined
by Ali, Antoine and Gazeau [1]. Gabardo and Han in [11] called these kinds frames
or frames associated with measurable spaces. For more details, the reader can refer
to [4, 13–16,20–32].

Key words and phrases. Integral frames, integral ∗-frame, controlled integral frames, controlled
integral ∗-frame, C∗-algebra, Hilbert A-modules.
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The goal of this article is the introduction and the study of the concept of controlled
integral frames for Hilbert C∗-modules. Also we give some characterizations between
integral frame in Hilbert C∗-modules.

In the following we briefly recall the definitions and basic properties of C∗-algebra
and Hilbert A-modules. Our references for C∗-algebras are [6,8]. For a C∗-algebra A,
if a ∈ A is positive we write a ≥ 0 and A

+ denotes the set of positive elements of A.

Definition 1.1 ([6]). Let A be a unital C∗-algebra and H be a left A-module, such
that the linear structures of A and H are compatible. H is a pre-Hilbert A-module
if H is equipped with an A-valued inner product ⟨·, ·⟩A : H × H → A, such that is
sesquilinear, positive definite and respects the module action. In the other words

(i) ⟨x, x⟩A ≥ 0 for all x ∈ H, and ⟨x, x⟩A = 0 if and only if x = 0;
(ii) ⟨ax + y, z⟩A = a⟨x, z⟩A + ⟨y, z⟩A for all a ∈ A and x, y, z ∈ H;
(iii) ⟨x, y⟩A = ⟨y, x⟩∗

A
for all x, y ∈ H.

For x ∈ H, we define ♣♣x♣♣ = ♣♣⟨x, x⟩A♣♣ 1

2 . If H is complete with ♣♣ · ♣♣, it is called a
Hilbert A-module or a Hilbert C∗-modules over A.

For every a in C∗-algebra A, we have ♣a♣ = (a∗a)
1

2 and the A-valued norm on H is

defined by ♣x♣ = ⟨x, x⟩
1

2

A
for all x ∈ H.

Let H and K be two Hilbert A-modules, a map T : H → K is said to be adjointable
if there exists a map T ∗ : K → H such that ⟨Tx, y⟩A = ⟨x, T ∗y⟩A for all x ∈ H and
y ∈ K.

We reserve the notation End∗
A
(H,K) for the set of all adjointable operators from

H to K and End∗
A
(H,H) is abbreviated to End∗

A
(H).

The following lemmas will be used to prove our mains results.

Lemma 1.1 ([19]). Let H be a Hilbert A-modules. If T ∈ End∗
A
(H), then

⟨Tx, Tx⟩A ≤ ∥T∥2⟨x, x⟩A, x ∈ H.

Lemma 1.2 ([3]). Let H and K be two Hilbert A-modules and T ∈ End∗
A
(H,K).

Then the following statements are equivalent:

(i) T is surjective;

(ii) T ∗ is bounded below associted to the norm, i.e., there is m > 0 such that

m∥x∥ ≤ ∥T ∗x∥ for all x ∈ K;

(iii) T ∗ is bounded below associted to the inner product, i.e., there is m′ > 0 such

that m′⟨x, x⟩A ≤ ⟨T ∗x, T ∗x⟩A for all x ∈ K.

Lemma 1.3 ([2]). Let H and K be two Hilbert A-modules and T ∈ End∗
A
(H,K).

(i) If T is injective and T has closed range, then the adjointable map T ∗T is

invertible and

∥(T ∗T )−1∥−1IH ≤ T ∗T ≤ ∥T∥2IH.

(ii) If T is surjective, then the adjointable map TT ∗ is invertible and

∥(TT ∗)−1∥−1IK ≤ TT ∗ ≤ ∥T∥2IK.
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Lemma 1.4 ([33]). Let (Ω, µ) be a measure spaces, X and Y are two Banach spaces,

λ : X → Y be a bounded linear operator and f : Ω → X is a measurable function,

then

λ


∫

Ω
fdµ



=
∫

Ω
(λf)dµ.

Theorem 1.1 ([5]). Let X be a Banach spaces, U : X → X a bounded operator and

∥I − U∥ < 1. Then U is invertible.

2. Controlled Integral Frames for Hilbert C∗-Modules

Let X be a Banach spaces, (Ω, µ) a measure space, and f : Ω → X be a measurable
function. Integral of Banach-valued function f has been defined by Bochner and
others. Most properties of this integral are similar to those of the integral of real-
valued functions (see [10, 33]). Since every C∗-algebra and Hilbert C∗-module are
Banach spaces, we can use this integral and its properties.

Let (Ω, µ) be a measure space, H and K be two Hilbert C∗-modules over a unital C∗-
algebra and ¶Hw♢w∈Ω is a family of submodules of H. End∗

A
(H,Hw) is the collection

of all adjointable A-linear maps from H into Hw.
We define the following:

l2(Ω, ¶Hw♢ω∈Ω) =


x = ¶xw♢w∈Ω : xw ∈ Hw,

∥

∥

∥

∥

∫

Ω
⟨xw, xw⟩Adµ(w)

∥

∥

∥

∥

< ∞


.

For any x = ¶xw♢w∈Ω and y = ¶yw♢w∈Ω, the A-valued inner product is defined by

⟨x, y⟩A =
∫

Ω⟨xw, yw⟩Adµ(w) and the norm is defined by ∥x∥ = ∥⟨x, x⟩A∥ 1

2 .
In this case, the l2(Ω, ¶Hw♢ω∈Ω) is a Hilbert C∗-modules (see [17]).
In what follows, let GL+(H) be the set of all positive bounded linear invertible

operators on H with bounded inverse and let F be a function from Ω to H.
The following definitions was introduced by Mohamed Rossafi, Frej Chouchene and

Samir Kabbaj in the paper entitled Integral frame in Hilbert C∗-module (see arXiv
preprint- arXiv:2005.09995v2 [math.FA] 30 Nov 2020).

Definition 2.1. Let H be a Hilbert A-modules and (Ω, µ) be a measure space. A
mapping F : Ω → H is called an integral frame associted to (Ω, µ) if

� for all x ∈ H, w → ⟨x, Fω⟩A is a measurable function on Ω;
� there exists a pair of constants 0 < A, B such that

A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

Definition 2.2. Let H be a Hilbert A-module and (Ω, µ) be a measure space. A
mapping F : Ω → H is called a ∗-integral frame associted to (Ω, µ) if

� for all x ∈ H, w → ⟨x, Fω⟩A is a measurable function on Ω;
� there exist two non-zero elements A, B in A such that

A⟨x, x⟩AA∗ ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ B⟨x, x⟩AB∗, x ∈ H.
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3. Main Results

Definition 3.1. Let H be a Hilbert A-modules and (Ω, µ) be a measure space. A
C-controlled integral frame in C∗-module H is a map F : Ω → H such that there
exist 0 < A ≤ B < ∞ such that

(3.1) A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

The elements A and B are called the C-controlled integral frame bounds. If A = B, we
call this a C-controlled integral tight frame. If A = B = 1, it’s called a C-controlled
integral parseval frame. If only the right hand inequality of (3.1) is satisfied, we call
F a C-controlled integral Bessel mapping with bound B.

Example 3.1. Let H =

{

X =



a 0 0
0 0 b



♣ a, b ∈ C

}

and A =

{

x 0
0 y



♣ x, y ∈ C

}

which is a C∗-algebra. We define the inner product:

H × H → A,

(A, B) 7→ A(B)t.

This inner product makes H a C∗-module over A. Let C be an operator defined by

C : H → H,

X → αX,

where α is a reel number strictly greater than zero. It’s clair that C ∈ Gl+(H). Let
Ω = [0, 1] endowed with the Lebesgue’s measure. It’s clear that it is a measure space.

We consider

F : [0, 1] → H,

w → Fw =



w 0 0
0 0 w

2



.

In addition, for X ∈ H, we have

∫

Ω
⟨X, Fw⟩A⟨CFw, X⟩Adµ(ω) =

∫

Ω
αw2



♣a♣2 0

0 ♣b♣2

4



dµ(ω) =
α

3



♣a♣2 0

0 ♣b♣2

4



.

It’s clear that

1

4
∥X∥2

A
≤


♣a♣2 0

0 ♣b♣2

4



≤


♣a♣2 0
0 ♣b♣2



= ∥X∥2
A
.

Then we have

α

12
∥X∥2

A
≤
∫

Ω
⟨X, Fw⟩A⟨CFw, X⟩Adµ(ω) ≤ α

3
∥X∥2

A
,

which show that F is a C-controlled integral frame for the C∗-module H.
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Definition 3.2. Let F be a C-controlled integral frame for H associted to (Ω, µ).
We define the frame operator SC : H → H for F by

SCx =
∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x ∈ H.

Proposition 3.1. The frame operator SC is positive, selfadjoint, bounded and invert-

ible.

Proof. For all x ∈ H, by Lemma 1.4, we have

⟨SCx, x⟩A =

∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x



A

=
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω).

By left hand of inequality (3.1), we have

0 ≤ A⟨x, x⟩A ≤ ⟨SCx, x⟩A.

Then SC is a positive operator, also, it’s sefladjoint. From (3.1), we have

A⟨x, x⟩A ≤ ⟨SCx, x⟩A ≤ B⟨x, x⟩A, x ∈ H.

So,

A.I ≤ SC ≤ B.I

Then SC is a bounded operator. Moreover,

0 ≤ I − B−1SC ≤ B − A

B
.I,

Consequently,

∥I − B−1SC∥ = sup
x∈H,∥x∥=1

∥⟨(I − B−1SC)x, x⟩A∥ ≤ B − A

B
< 1.

The Theorem 1.1 shows that SC is invertible. □

Corollary 3.1. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let

F : Ω → H be a mapping. Assume that S is the frame operator for F . Then the

following statements are equivalent:

(1) F is an integral frame associted to (Ω, µ) with integral frame bounds A and B;

(2) we have A.I ≤ S ≤ B.I

Proof. (1) ⇒ (2) Let F be an integral frame associted to (Ω, µ) with integral frames
bounds A and B, then

A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

Since

Sx =
∫

Ω
⟨x, Fω⟩AFωdµ(ω),

we have

⟨Sx, x⟩A =

∫

Ω
⟨x, Fω⟩AFωdµ(ω), x



A

=
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(ω),
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then

⟨Ax, x⟩A ≤ ⟨Sx, x⟩A ≤ ⟨Bx, x⟩
A

, x ∈ H.

So,

A.I ≤ S ≤ B.I.

(2) ⇒ (1) Let x ∈ H, then

(3.2)
∥

∥

∥

∥

∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w)

∥

∥

∥

∥

= ∥⟨Sx, x⟩A∥ ≤ ∥Sx∥∥x∥ ≤ B∥x∥2.

Also,

(3.3) ∥⟨Sx, x⟩A∥ ≥ ∥⟨Ax, x⟩A∥ = A∥x∥2.

By (3.2) and (3.3) we obtain

A∥x∥2 ≤
∥

∥

∥

∥

∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w)

∥

∥

∥

∥

≤ B∥x∥2,

which ends the proof. □

Theorem 3.1. Let H be a Hilbert A-module, C ∈ GL+(H) and (Ω, µ) be a measure

space and F be a mapping for Ω to H. Then F is a C-controlled integral frame for

H associted to (Ω, µ) if and only if there exist 0 < A ≤ B < ∞ such that

A∥x∥2 ≤
∥

∥

∥

∥

∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥

∥

∥

∥

≤ B∥x∥2 x ∈ H.

Proof. (⇒) obvious.
(⇐) Supposes there exists 0 < A ≤ B < ∞, such that (3.1) holds. On one hand,

for all x ∈ H we have

A∥x∥2 ≤
∥

∥

∥

∥

∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω)

∥

∥

∥

∥

= ∥⟨SCx, x⟩A∥ = ∥⟨S
1

2

Cx, S
1

2

Cx⟩A∥ = ∥S
1

2

Cx∥2.

By Lemma 1.2, there exists 0 < m such that

(3.4) m⟨x, x⟩A ≤ ⟨S
1

2

Cx, S
1

2

Cx⟩A = ⟨SCx, x⟩A.

On other hand, for all x ∈ H we have

B∥x∥2 ≥
∥

∥

∥

∥

∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥

∥

∥

∥

2

= ∥⟨SCx, x⟩A∥ = ∥⟨S
1

2

Cx, S
1

2

Cx⟩A∥ = ∥S
1

2

Cx∥2.

By Lemma 1.2, there exist 0 < m′ such that

(3.5) ⟨S
1

2

Cx, S
1

2

Cx⟩A = ⟨SCx, x⟩A ≤ m′⟨x, x⟩A.

From (3.4) and (3.5), we conclude that F is a C-controlled integral frame. □

Remark 3.1. If F is a mapping from Ω to H, then F is an integral frame associted to
(Ω, µ) if and only if there exist 0 < A ≤ B < ∞ such that

A∥x∥2 ≤ ∥
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w)∥ ≤ B∥x∥2, x ∈ H.
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Corollary 3.2. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let

F : Ω → H be a mapping and C ∈ GL+(H). Then the following statements are

equivalent.

(1) F is a C-controlled integral frame associted to (Ω, µ).
(2) We have A.I ≤ SC ≤ B.I, where SC is the frame operator for F , for A and B

given.

Proof. (1) ⇒ (2) Let F be a C-controlled integral frame associted to (Ω, µ) with
C-controlled integral frames bounds A and B, then

A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

Since,

SCx =
∫

Ω
⟨x, Fω⟩ACFωdµ(ω).

We have

⟨SCx, x⟩A =

∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x



A

=
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω),

then

⟨Ax, x⟩A ≤ ⟨Sx, x⟩A ≤ ⟨Bx, x⟩A, x ∈ H.

So,

A.I ≤ S ≤ B.I.

(2) ⇒ (1) Let x ∈ H, then

(3.6)
∥

∥

∥

∥

∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥

∥

∥

∥

= ∥⟨SCx, x⟩A∥ ≤ ∥SCx∥∥x∥ ≤ B∥x∥2.

Also,

(3.7) ∥⟨SCx, x⟩A∥ ≥ ∥⟨Ax, x⟩A∥ = A∥x∥2.

By (3.6) and (3.7) we obtain

A∥x∥2 ≤
∥

∥

∥

∥

∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥

∥

∥

∥

≤ B∥x∥2,

which ends the proof. □

Proposition 3.2. Let C ∈ GL+(H) and F be a C-controlled integral frame for H

associted to (Ω, µ) with bounds A and B. Then F is an integral frame for H associted

to (Ω, µ) with bounds A∥C
1

2 ∥−2 and B∥C
−1

2 ∥2.

Proof. Let F be a C-controlled integral frame for H associted to (Ω, µ) with bounds
A and B.

On one hand we have

A⟨x, x⟩A ≤ ⟨SCx, x⟩A = ⟨CSx, x⟩A = ⟨C 1

2 Sx, C
1

2 x⟩A ≤ ∥C
1

2 ∥2⟨Sx, x⟩A.
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So,

(3.8) A∥C
1

2 ∥−2⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w).

On other hand, for all x ∈ H, we have
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) = ⟨Sx, x⟩A

= ⟨C−1CSx, x⟩A
= ⟨(C−1CS)

1

2 x, (C−1CS)
1

2 x⟩A
≤ ∥C

−1

2 ∥2⟨(CS)
1

2 x, (CS)
1

2 x⟩A
= ∥C

−1

2 ∥2⟨(SC)
1

2 x, (SC)
1

2 x⟩A
= ∥C

−1

2 ∥2⟨SCx, x⟩A
≤ ∥C

−1

2 ∥2B⟨x, x⟩A.

Then

(3.9)
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ ∥C

−1

2 ∥2B⟨x, x⟩A.

From (3.8) and (3.9) we conclude that F is an integral frame H associted to (Ω, µ)

with bounds A∥C
1

2 ∥−2 and B∥C
−1

2 ∥2. □

Proposition 3.3. Let C ∈ GL+(H) and F be an integral frame for H associted to

(Ω, µ) with bounds A and B. Then F is a C-controlled integral frame for H associted

to (Ω, µ) with bounds A∥C
−1

2 ∥2 and B∥C
1

2 ∥2.

Proof. Let F be an integral frame for H associted to (Ω, µ) with bounds A and B.
Then for all x ∈ H, we have

A⟨x, x⟩A ≤ ⟨Sx, x⟩A
= ⟨C−1CSx, x⟩A
= ⟨(C−1CS)

1

2 x, (C−1CS)
1

2 x⟩A
≤ ∥C

−1

2 ∥2⟨(CS)
1

2 x, (CS)
1

2 x⟩A
= ∥C

−1

2 ∥2⟨(SC)
1

2 x, (SC)
1

2 x⟩A
= ∥C

−1

2 ∥2⟨SCx, x⟩A.

So,

A∥C
−1

2 ∥−2⟨x, x⟩A ≤ ⟨SCx, x⟩A.

Hence, for all x ∈ H, we have

⟨SCx, x⟩A = ⟨CSx, x⟩A = ⟨C 1

2 Sx, C
1

2 x⟩A ≤ ∥C
1

2 ∥2⟨Sx, x⟩A ≤ ∥C
1

2 ∥2B⟨x, x⟩A.

Therefore we conclude that F is a C-controlled integral frame for H associted to (Ω, µ)

with bounds A∥C
−1

2 ∥−2 and B∥C
1

2 ∥2. □
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Theorem 3.2. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let F be

a C-controlled integral frame for H associted to (Ω, µ) with the frame operator SC and

bounds A and B. Let K ∈ End∗
A
(H) be a surjective operator such that KC = CK.

Then KF is a C-controlled integral frame for H with the operator frame KSCK∗.

Proof. Let F be a C-controlled integral frame for H associted to (Ω, µ), then

A⟨K∗x, K∗x⟩A ≤
∫

Ω
⟨K∗x, Fω⟩A⟨CFω, K∗x⟩Adµ(w) ≤ B⟨K∗x, K∗x⟩A, x ∈ H.

By Lemma 1.1 and Lemma 1.3, we obtain

A∥(KK∗)−1∥−1⟨x, x⟩A ≤
∫

Ω
⟨x, KFω⟩A⟨CKFω, x⟩Adµ(w) ≤ B∥K∗∥2⟨x, x⟩A, x ∈ H,

which shows that KF is a C-controlled integral frame.
Moreover, by Lemma 1.4, we have

KSCK∗x = K

∫

Ω
⟨K∗x, Fω⟩ACFωdµ(ω) =

∫

Ω
⟨x, KFω⟩ACKFωdµ(ω),

which ends the proof. □

4. Controlled ∗-Integral Frames

Definition 4.1. Let H be a Hilbert A-module and (Ω, µ) be a measure space. A
C-controlled ∗-integral frame in A-module H is a map F : Ω → H such that there
exist two strictly nonzero elements A,B in A such that

(4.1) A⟨x, x⟩AA∗ ≤
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w) ≤ B⟨x, x⟩AB∗, x ∈ H.

The elements A and B are called the C-controlled ∗-integral frame bounds. If A = B,
we call this a C-controlled ∗-integral tight frame. If A = B = 1, it’s called a C-
controlled ∗-integral parseval frame. If only the right hand inequality of (4.1) is
satisfied, we call F a C-controlled ∗-integral Bessel mapping with bound B.

Example 4.1. Let H = A = ¶(an)n∈N ⊂ C ♣ ∑n≥0 ♣an♣ < ∞♢. Endowed with the
product and the inner product defined as follow.

A × A → A,

((an)n∈N, (bn)n∈N) 7→ (an)n∈N.(bn)n∈N = (anbn)n∈N,

and
H × H → A,

((an)n∈N, (bn)n∈N) 7→ ⟨(an)n∈N, (bn)n∈N⟩A = (anbn)n∈N.

Let Ω = [0, +∞[ endowed with the Lebesgue’s measure which is a measure space

F : [0, +∞[ → H,

w 7→ Fw = (F w
n )n∈N,

where

F w
n =

1

n + 1
, if n = [w], and F w

n = 0, elsewhere,



886 H. LABRIGUI AND S. KABBAJ

where [w] is the whole part of w.
On the other hand, we consider the measure space (Ω, µ), where µ is the Lebesgue

measure restricted to [0, +∞[, and the operator

C : H → H,

(an)n∈N → (αan)n∈N,

where α is a strictly positive real number.
It’s clear that C is an invertible and both operators and C and C−1 are bounded.

So,
∫

Ω
⟨(an)n∈N, Fw⟩A⟨CFw, (an)n∈N⟩Adµ(w)

=
∫ +∞

0



0, 0, . . . ,
a[w]

[w] + 1
, 0, . . .



α



0, 0, . . . ,
a[w]

[w] + 1
, 0, . . .



dµ(w)

=α
+∞
∑

p=0

∫ p+1

p



0, 0, . . . ,
♣a[w]♣2

([w] + 1)2
, 0, . . .



dµ(w)

=α
+∞
∑

p=0



0, 0, . . . ,
♣a[p]♣2

(p + 1)2
, 0, . . .



=α



♣an♣2
(n + 1)2



n∈N

=
√

α



1,
1

2
,
1

3
, . . . ,

1

n
, . . .



⟨(an)n∈N, (an)n∈N⟩A
√

α



1,
1

2
,
1

3
, . . . ,

1

n
, . . .



,

which shows that F is a C-controlled ∗-integral tight frame for H with bound A =√
α


1, 1
2
, 1

3
, . . . , 1

n
, . . .



∈ A.

Definition 4.2. Let F be a C-controlled ∗-integral frame for H associted to (Ω, µ).
We define the frame operator SC : H → H for F by

SCx =
∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x ∈ H.

Proposition 4.1. The frame operator SC is positive, selfadjoint, bounded and invert-

ible.

Proof. For all x ∈ H, by Lemma 1.4, we have

⟨SCx, x⟩A =

∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x



A

=
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω).

By left hand of inequality (4.1), we deduce that SC is a positive operator, also, it’s
sefladjoint. From (4.1), we have

A⟨x, x⟩AA∗ ≤ ⟨SCx, x⟩A ≤ B⟨x, x⟩AB∗, x ∈ H.

The Theorem 2.5 in [18] shows that SC is invertible. □
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Proposition 4.2. Let C ∈ GL+(H) and F be a C-controlled ∗-integral frame for H

associted to (Ω, µ) with bounds A and B. Then F is a ∗-integral frame H associted

to (Ω, µ) with bounds ∥C
1

2 ∥−1A and ∥C
−1

2 ∥B.

Proof. Let F be a C-controlled ∗-integral frame for H associted to (Ω, µ), with bounds
A and B.

On one hand we have

A⟨x, x⟩AA∗ ≤ ⟨SCx, x⟩A = ⟨CSx, x⟩A = ⟨C 1

2 Sx, C
1

2 x⟩A ≤ ∥C
1

2 ∥2⟨Sx, x⟩A.

So,

(4.2) (∥C
1

2 ∥−1A)⟨x, x⟩A(∥C
1

2 ∥−1A)∗ ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w).

On other hand, for all x ∈ H, we have
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) = ⟨Sx, x⟩A

= ⟨C−1CSx, x⟩A
= ⟨(C−1CS)

1

2 x, (C−1CS)
1

2 x⟩A
≤ ∥C

−1

2 ∥2⟨(CS)
1

2 x, (CS)
1

2 x⟩A
= ∥C

−1

2 ∥2⟨(SC)
1

2 x, (SC)
1

2 x⟩A
= ∥C

−1

2 ∥2⟨SCx, x⟩A
≤ ∥C

−1

2 ∥2B⟨x, x⟩AB∗.

Then

(4.3)
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ (∥C

−1

2 ∥B)⟨x, x⟩A(∥C
−1

2 ∥B)∗.

From (4.2) and (4.3) we conclude that F is a ∗-integral frame H associted to (Ω, µ)

with bounds A∥C
1

2 ∥−2 and B∥C
−1

2 ∥2. □

Proposition 4.3. Let C ∈ GL+(H) and F be an ∗-integral frame for H associted

to (Ω, µ) with bounds A and B. Then F is a C-controlled ∗-integral frame for H

associted to (Ω, µ) with bounds ∥C
−1

2 ∥−1A and ∥C
1

2 ∥B.

Proof. Let F be an integral frame for H associted to (Ω, µ) with bounds A and B.
Then for all x ∈ H, we have

A⟨x, x⟩AA∗ ≤ ⟨Sx, x⟩A
= ⟨C−1CSx, x⟩A
= ⟨(C−1CS)

1

2 x, (C−1CS)
1

2 x⟩A
≤ ∥C

−1

2 ∥2⟨(CS)
1

2 x, (CS)
1

2 x⟩A
= ∥C

−1

2 ∥2⟨(SC)
1

2 x, (SC)
1

2 x⟩A
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= ∥C
−1

2 ∥2⟨SCx, x⟩A.

So,

(∥C
−1

2 ∥−1A)⟨x, x⟩A(∥C
−1

2 ∥−1A)∗ ≤ ⟨SCx, x⟩A.

Hence, for all x ∈ H,

⟨SCx, x⟩A = ⟨CSx, x⟩A
= ⟨C 1

2 Sx, C
1

2 x⟩A
≤ ∥C

1

2 ∥2⟨Sx, x⟩A
≤ ∥C

1

2 ∥2B⟨x, x⟩AB∗

= (∥C
1

2 ∥B)⟨x, x⟩A(∥C
1

2 ∥B)∗.

Therefore, we conclude that F is a C-controlled ∗-integral frame H associted to (Ω, µ)

with bounds ∥C
−1

2 ∥−1A and ∥C
1

2 ∥B. □

Theorem 4.1. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let F

a C-controlled ∗-integral frame for H associted to (Ω, µ) with the frame operator SC

and bounds A and B. Let K ∈ End∗
A
(H) a surjective operator such that KC = CK.

Then KF is a C-controlled ∗-integral frame for H with the operator frame KSCK∗.

Proof. By (4.1), we have

A⟨K∗x, K∗x⟩AA∗ ≤
∫

Ω
⟨K∗x, Fω⟩A⟨CFω, K∗x⟩Adµ(w) ≤ B⟨K∗x, K∗x⟩AB∗, x ∈ H.

By Lemma 1.1 and Lemma 1.3, we obtain

A∥(KK∗)−1∥−1⟨x, x⟩AA∗ ≤
∫

Ω
⟨x, KFω⟩A⟨CKFω, x⟩Adµ(w) ≤ B∥K∗∥2⟨x, x⟩AB∗,

which shows that KF is a C-controlled ∗-integral operator. Moreover, by Lemma 1.4,
we have

KSCK∗x = K

∫

Ω
⟨K∗x, Fω⟩ACFωdµ(ω) =

∫

Ω
⟨x, KFω⟩ACKFωdµ(ω),

which ends the proof. □
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STRUCTURE OF 3-PRIME NEAR RINGS WITH GENERALIZED

(σ, τ)-n-DERIVATIONS

ASMA ALI1, ABDELKARIM BOUA2, AND INZAMAM UL HUQUE3

Abstract. In this paper, we define generalized (σ, τ)-n-derivation for any mappings
σ and τ of a near ring N and also investigate the structure of a 3-prime near
ring satisfying certain identities with generalized (σ, τ)-n-derivation. Moreover, we
characterize the aforementioned mappings.

1. Introduction

A left near ring N is a triplet (N, +, .), where + and . are two binary operations
such that (i) (N, +) is a group (not necessarily abelian); (ii) (N, .) is a semigroup,
and (iii) x.(y + z) = x.y + x.z for all x, y, z ∈ N . Analogously, if N satisfies the
right distributive law, i.e., (x + y).z = x.z + y.z for all x, y ∈ N , then N is said
to be a right near ring. The most natural example of a left near ring is the set
of all identity preserving mappings acting from right of an additive group G (not
necessarily abelian) into itself with pointwise addition and composition of mappings
as multiplication. If these mappings act from left on G, then we get a right near
ring (Pilz [10, Example 1.4]). Throughout the paper, N denotes a zero-symmetric
left near ring with multiplicative centre Z and for any pair of elements x, y ∈ N ,
[x, y] = xy − yx, x ◦ y = xy + yx and (x, y) = x + y − x − y stand for the Lie product,
Jordan Product and additive commutator respectively. Let σ and τ be mappings on
N . For any x, y ∈ N , set the symbol [x, y]σ,τ will denote xσ(y) − τ(y)x, while the
symbol (x ◦ y)σ,τ will denote xσ(y) + τ(y)x. The terminology multiplicative mappings
on a near ring N is used for the mappings σ, τ : N → N satisfying σ(xy) = σ(x)σ(y)

Key words and phrases. 3-prime near ring, semigroup ideal, (σ, τ)-n-derivations, generalized (σ, τ)-
n-derivations.
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and τ(xy) = τ(x)τ(y) for all x, y ∈ N . A near ring N is called zero-symmetric if
0x = 0, for all x ∈ N (recall that left distributivity yields that x0 = 0). A near ring
N is said to be 3-prime if xNy = ¶0♢ for x, y ∈ N implies that x = 0 or y = 0. A
near ring N is called 2-torsion free if (N, +) has no element of order 2. A nonempty
subset U of N is called a semigroup right (resp. semigroup left) ideal if UN ⊆ U (resp.
NU ⊆ U) and if U is both a semigroup right ideal and a semigroup left ideal, it is
called a semigroup ideal.

Let n ≥ 2 be a fixed positive integer and Nn = N × N × · · · × N
︸ ︷︷ ︸

n−times

. A map ∆ :

Nn → N is said to be permuting (symmetric) on a near ring N if the relation
∆(x1, x2, . . . , xn) = ∆(xπ(1), xπ(2), . . . , xπ(n)) holds for all xi ∈ N , i = 1, 2, . . . , n, and
for every permutation π ∈ Sn, where Sn is the permutation group on ¶1, 2, . . . , n♢. An
additive mapping F : N → N is said to be a right (resp. left) generalized derivation
with associated derivation d if F (xy) = F (x)y +xd(y) (resp. F (xy) = d(x)y +xF (y)),
for all x, y ∈ N and F is said to be a generalized derivation with associated derivation
d on N if it is both a right generalized derivation and a left generalized derivation on
N with associated derivation d.

Ozturk et al. [9] and Park et al. [6] studied bi-derivations and tri-derivations in near
rings. Further, Ceven et al. [4] and Ozturk et al. [8] defined (σ, τ) bi-derivations and
(σ, τ) tri-derivations in near rings. Let σ, τ be automorphisms on a near ring N . A
symmetric bi-additive (additive in both arguments) mapping d : N ×N → N is said to
be a (σ, τ) bi-derivation if d(xx′, y) = d(x, y)σ(x′) + τ(x)d(x′, y) holds for all x, x′, y ∈
N . A symmetric tri-additive (additive in each argument) mapping d : N ×N ×N → N

is said to be a (σ, τ) tri-derivation if d(xx′, y, z) = d(x, y, z)σ(x′)+τ(x)d(x′, y, z) holds
for all x, x′, y, z ∈ N .

Motivated by these concepts, we define (σ, τ)-n-derivation and generalized (σ, τ)-n-
derivation for any arbitrary mappings σ and τ of a near ring N in place of automor-
phisms.

Definition 1.1 ((σ, τ)-n-derivation). Let σ, τ : N → N be mappings on N . An
n-additive (additive in each argument) mapping d : N × N × · · · × N

︸ ︷︷ ︸

n−times

→ N is called

a (σ, τ)-n-derivation of N if the following equations

d(x1x
′

1, x2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)d(x′

1, x2, . . . , xn),

d(x1, x2x
′

2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

2) + τ(x2)d(x1, x′

2, . . . , xn),

...

d(x1, x2, . . . , xnx′

n) =d(x1, x2, . . . , xn)σ(x′

n) + τ(xn)d(x1, x2, . . . , x′

n)

hold for all x1, x′

1, x2, x′

2, . . . , xn, x′

n ∈ N .

Definition 1.2 (Right generalized (σ, τ)-n-derivation). An n-additive (additive in
each argument) mapping F : N × N × · · · × N

︸ ︷︷ ︸

n−times

→ N is called a right generalized
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(σ, τ)-n-derivation associated with (σ, τ)-n-derivation d on N if the relations

F (x1x
′

1, x2, . . . , xn) =F (x1, x2, ..., xn)σ(x′

1) + τ(x1)d(x′

1, x2, . . . , xn),

F (x1, x2x
′

2, . . . , xn) =F (x1, x2, . . . , xn)σ(x′

2) + τ(x2)d(x1, x′

2, . . . , xn),

...

F (x1, x2, . . . , xnx′

n) =F (x1, x2, . . . , xn)σ(x′

n) + τ(xn)d(x1, x2, . . . , x′

n)

hold for all x1, x′

1, x2, x′

2, . . . , xn, x′

n ∈ N .

Definition 1.3 (Left generalized (σ, τ)-n-derivation). An n-additive (additive in each
argument) mapping F : N × N × · · · × N

︸ ︷︷ ︸

n−times

→ N is called a left generalized (σ, τ)-n-

derivation associated with (σ, τ)-n-derivation d on N if the relations

F (x1x
′

1, x2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′

1, x2, . . . , xn),

F (x1, x2x
′

2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

2) + τ(x2)F (x1, x′

2, . . . , xn),

...

F (x1, x2, . . . , xnx′

n) =d(x1, x2, . . . , xn)σ(x′

n) + τ(xn)F (x1, x2, . . . , x′

n)

hold for all x1, x′

1, x2, x′

2, . . . , xn, x′

n ∈ N .

A mapping F : N × N × · · · × N
︸ ︷︷ ︸

n−times

→ N is called a generalized (σ, τ)-n-derivation

associated with (σ, τ)-n-derivation d on N if F is both a right generalized (σ, τ)-n-
derivation and a left generalized (σ, τ)-n-derivation associated with (σ, τ)-n-derivation
d on N .

Example 1.1. Let S be a zero-symmetric left near ring and

N =












0 x y

0 0 z

0 0 0




 ♣ x, y, z, 0 ∈ S






.

Then N is a zero-symmetric left near ring with respect to matrix addition and matrix

multiplication. Define mappings F, d : N × N × · · · × N
︸ ︷︷ ︸

n−times

→ N by

F










0 x1 y1

0 0 z1

0 0 0




 ,






0 x2 y2

0 0 z2

0 0 0




 , . . . ,






0 xn yn

0 0 zn

0 0 0








 =






0 0 0
0 0 z1z2 . . . zn

0 0 0




 ,

d










0 x1 y1

0 0 z1

0 0 0




 ,






0 x2 y2

0 0 z2

0 0 0




 , . . . ,






0 xn yn

0 0 zn

0 0 0








 =






0 x1x2 . . . xn 0
0 0 0
0 0 0




 .
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Define σ, τ : N → N by

σ






0 x y

0 0 z

0 0 0




 =






0 0 y2

0 0 0
0 0 0




 and τ






0 x y

0 0 z

0 0 0




 =






0 xy 0
0 0 z

0 0 0




 .

It is easy to check that F is a nonzero right (but not left) generalized (σ, τ)-n-derivation

associated with a nonzero (σ, τ)-n-derivation d of N , where σ and τ are any arbitrary

mappings on N .

Example 1.2. Let N be a zero-symmetric left near ring as in Example 1.1. Define

mappings F, d : N × N × · · · × N
︸ ︷︷ ︸

n−times

→ N by

F










0 x1 y1

0 0 z1

0 0 0




 ,






0 x2 y2

0 0 z2

0 0 0




 , . . . ,






0 xn yn

0 0 zn

0 0 0








 =






0 x1x2 . . . xn 0
0 0 0
0 0 0




 ,

d










0 x1 y1

0 0 z1

0 0 0




 ,






0 x2 y2

0 0 z2

0 0 0




 , . . . ,






0 xn yn

0 0 zn

0 0 0








 =






0 0 0
0 0 z1z2 . . . zn

0 0 0




 .

Define σ, τ : N → N by

σ






0 x y

0 0 z

0 0 0




 =






0 x2 0
0 0 z

0 0 0




 and τ






0 x y

0 0 z

0 0 0




 =






0 0 y

0 0 z2

0 0 0




 .

It can be easily seen that F is a nonzero left (but not right) generalized (σ, τ)-n-

derivation associated with a nonzero (σ, τ)-n-derivation d of N for any arbitrary

mappings σ and τ on N .

Example 1.3. Let S be a zero-symmetric left near ring and

N =












0 x y

0 0 0
0 z 0




 ♣ x, y, z, 0 ∈ S






.

It is easy to see that N is a zero-symmetric left near ring with respect to matrix

addition and matrix multiplication. Define mappings F, d : N × N × · · · × N
︸ ︷︷ ︸

n−times

→ N by

F










0 x1 y1

0 0 0
0 z1 0




 ,






0 x2 y2

0 0 0
0 z2 0




 , . . . ,






0 xn yn

0 0 0
0 zn 0








 =






0 0 y1y2 . . . yn

0 0 0
0 0 0




 ,

d










0 x1 y1

0 0 0
0 z1 0




 ,






0 x2 y2

0 0 0
0 z2 0




 , . . . ,






0 xn yn

0 0 0
0 zn 0








 =






0 0 0
0 0 0
0 z1z2 . . . zn 0




 .
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Define σ, τ : N → N by

σ






0 x y

0 0 0
0 z 0




 =






0 x2 y

0 0 0
0 0 0




 and τ






0 x y

0 0 0
0 z 0




 =






0 x 0
0 0 0
0 yz 0




 .

It can be easily verified that F is a nonzero right as well as left generalized (σ, τ)-n-

derivation associated with a nonzero (σ, τ)-n-derivation d of N , where σ and τ are

any arbitrary mappings on N .

Obviously this notion covers the notion of a generalized n-derivation (in case σ =
τ = I), notion of an n-derivation (in case F = d, σ = τ = I), notion of a left
n-centralizer (in case d = 0, σ = I), notion of a (σ, τ)-n-derivation (in case F = d)
and the notion of a left σ-n-multiplier (in case d = 0). Thus, it is interesting to
investigate the properties of this general notion. In [7], Bresar has proved that if R

is a 2-torsion free semiprime ring and F : R → R is an additive map on R such that
F (x)x + xF (x) = 0 for all x ∈ R, then F = 0. Further, Vukman [5] proved that if
there exist a derivation d : R → R and an automorphism α : R → R, where R is
2-torsion free semiprime ring such that [d(x)x + xd(x), x] = 0 for all x ∈ R, then d

and α − I, I denotes the identity mapping on R, map R into its centre. Motivated
by the mentioned results we prove that if a 3-prime near ring N with a generalized
(σ, τ)-n-derivation F satisfies certain identity, then N is a commutative ring and F is
a left σ-n-multiplier on N .

2. Some Preliminaries

Lemma 2.1. ([1, Lemmas 1.2]). Let N be 3-prime near ring.

(i) If z ∈ Z \ ¶0♢, then z is not a zero divisor.

(ii) If Z \ ¶0♢ and x is an element of N for which xz ∈ Z, then x ∈ Z.

Lemma 2.2. ([1, Lemmas 1.3 and Lemma 1.4]). Let N be 3-prime near ring and U

be a nonzero semigroup ideal of N .

(i) If x, y ∈ N and xUy = ¶0♢, then x = 0 or y = 0.

(ii) If x ∈ N and xU = ¶0♢ or Ux = ¶0♢, then x = 0.

Lemma 2.3. ([1, Lemma 1.5]). If N is a 3-prime near ring and Z contains a nonzero

semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative ring.

Lemma 2.4. If N is a 3-prime near ring admitting a generalized (σ, τ)-n-derivation
F associated with a (σ, τ)-n-derivation d of N such that σ and τ are multiplicative
mappings on N , then

¶d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)♢σ(z1)

=d(x1, x2, . . . , xn)σ(y1)σ(z1) + τ(x1)F (y1, x2, . . . , xn)σ(z1),

¶d(x1, x2, . . . , xn)σ(y2) + τ(x2)F (x1, y2, . . . , xn)♢σ(z2)

=d(x1, x2, . . . , xn)σ(y2)σ(z2) + τ(x2)F (x1, y2, . . . , xn)σ(z2),
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...

¶d(x1, x2, . . . , xn)σ(yn) + τ(xn)F (x1, x2, . . . , yn)♢σ(zn)

=d(x1, x2, . . . , xn)σ(yn)σ(zn) + τ(xn)F (x1, x2, . . . , yn)σ(zn),

for all x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn ∈ N .

Proof. For all x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn ∈ N

F (x1y1z1, x2, . . . , xn) =F (x1y1, x2, . . . , xn)σ(z1) + τ(x1y1)d(z1, x2, . . . , xn)

=¶d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)♢σ(z1)

+ τ(x1)τ(y1)d(z, u2, . . . , un)(2.1)

and

F (x1y1z1, x2, . . . , xn) =d(x1, x2, . . . , xn)σ(y1z1) + τ(x1)F (y1z1, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(y1)σ(z1) + τ(x1)F (y1, x2, . . . , xn)σ(z1)

+ τ(x1)τ(y1)d(z1, x2, . . . , xn).(2.2)

Combining (2.1) and (2.2), we get

¶d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)♢σ(z1)

=d(x1, x2, . . . , xn)σ(y1)σ(z1) + τ(x1)F (y1, x2, . . . , xn)σ(z1).

Similarly, we can prove other relations for i = 2, 3, . . . , n. □

Remark 2.1. If σ is an onto map on N , then Lemma 2.4 becomes

¶d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)♢a

=d(x1, x2, . . . , xn)σ(y1)a + τ(x1)F (y1, x2, . . . , xn)a,

¶d(x1, x2, . . . , xn)σ(y2) + τ(x2)F (x1, y2, . . . , xn)♢a

=d(x1, x2, . . . , xn)σ(y2)a + τ(x2)F (x1, y2, . . . , xn)a,

...

¶d(x1, x2, . . . , xn)σ(yn) + τ(xn)F (x1, x2, . . . , yn)♢a

=d(x1, x2, . . . , xn)σ(yn)a + τ(xn)F (x1, x2, . . . , yn)a,

for all x1, y1, x2, y2, . . . , xn, yn, a ∈ N .

Lemma 2.5. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ and τ be mappings on N such that Ui ⊆ τ(Ui) for i = 1, 2, . . . , n.
If d is a nonzero (σ, τ)-n-derivation on N , then d(U1, U2, . . . , Un) ̸= ¶0♢.

Proof. Assume that

(2.3) d(u1, u2, . . . , un) = 0, for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing u1 by u1r1, where r1 ∈ N in (2.3) and using (2.3), we get

τ(u1)d(r1, u2, . . . , un) = 0.
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Since Ui ⊆ τ(Ui) for i = 1, 2, . . . , n, we have U1d(r1, u2, . . . , un) = ¶0♢. Applying
Lemma 2.2 (ii), we obtain d(r1, u2, . . . , un) = 0 for all u2 ∈ U2, . . . , un ∈ Un and
r1 ∈ N . Replacing u2 by u2r2, where r2 ∈ N in the last expression and another
application of Lemma 2.2(ii) yields that d(r1, r2, . . . , un) = 0. Proceeding inductively,
we conclude that d(r1, r2, . . . , rn) = 0 for all r1, r2, . . . , rn ∈ N, a contradiction which
completes the proof. □

Lemma 2.6. Let N be a 3-prime near-ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ, τ be multiplicative mappings on Ui such that U1 ⊆ σ(U1). If
d is a nonzero (σ, τ)-n-derivation on N such that d(U1, U2, . . . Un)σ(a) = ¶0♢ or
σ(a)d(U1, U2, . . . Un) = ¶0♢ for all a ∈ N , then σ(a) = 0.

Proof. Suppose that d(U1, U2, . . . , Un)σ(a) = ¶0♢. Then

(2.4) d(u1, u2, . . . , un)σ(a) = 0, for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing u1 by u1u
′

1 in (2.4) and using it again yields that

d(u1, u2, . . . , un)σ(u′

1)σ(a) = 0, for all u1, u′

1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Equivalently,

d(u1, u2, . . . , un)σ(U1)σ(a) = ¶0♢, for all u1, ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Since U1 ⊆ σ(U1), we obtain

d(u1, u2, . . . , un)U1σ(a) = ¶0♢, for all u1, ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Applying Lemma 2.2 (i) and Lemma 2.5, we obtain σ(a) = 0. Similarly, we can prove
the result for later case. □

Lemma 2.7. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ be a onto map on N such that U1 ⊆ σ(U1) and U1 ∩ Z ≠ ∅. If d is
a (σ, σ)-n-derivation on N , then d(Z, U2, U3, . . . , Un) ⊆ Z.

Proof. Suppose that z ∈ U1 ∩ Z. Then

d(zx1, x2, . . . , xn) = d(x1z, x2, . . . , xn), for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un,

and

d(z, x2, . . . , xn)σ(x1) + σ(z)d(x1, x2, . . . , xn)

=σ(x1)d(z, x2, . . . , xn) + d(x1, x2, . . . , xn)σ(z).

Substituting x′

1 ∈ U1 and z′ ∈ U1 ∩ Z for σ(x1) and σ(z) respectively, we get

d(z, x2, . . . , xn)x′

1 = x′

1d(z, x2, . . . , xn), for all x′

1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Replacing x′

1 by x′

1r for r ∈ N in above expression and using it again, we find that
x′

1[d(z, x2, . . . , xn), r] = 0. Hence, d(Z, U2, U3, . . . , Un) ⊆ Z by Lemma 2.2 (ii). □
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Lemma 2.8. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ, τ be mappings on N such that Ui ⊆ σ(Ui) and Ui ⊆ τ(Ui) for
i = 1, 2, . . . , n. If F is a nonzero right generalized (σ, τ)-n-derivation associated with
a (σ, τ)-n-derivation d on N , then F (U1, U2, . . . , Un) ̸= ¶0♢.

Proof. Let

(2.5) F (u1, u2, . . . , un) = 0, for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing u1 by u1r1, where r1 ∈ N in (2.5) and using (2.5), we get

τ(u1)d(r1, u2, . . . , un) = ¶0♢.

Since U1 ⊆ τ(U1), we have

U1d(r1, u2, . . . , un) = ¶0♢, for all u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N.

Applying Lemma 2.2(ii), we find

(2.6) d(r1, u2, . . . , un) = 0, for all u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N.

Now replacing u2 by u2r2 in (2.6) for r2 ∈ N and another application of Lemma 2.2
(ii) yields that d(r1, r2, u3, . . . , un) = 0 for all u3 ∈ U3, . . . , un ∈ Un and r1, r2 ∈ N.

Proceeding inductively, we get d(r1, r2, . . . , rn) = 0 for all r1, r2, . . . , rn ∈ N , i.e., d = 0.
Therefore, our hypothesis reduces to

F (r1u1, u2, . . . , un) = F (r1, u2, . . . , un)σ(u1) = 0,

for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N which implies that

(2.7) F (r1, u2, . . . , un) = 0, for all u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N.

Replacing u2 by r2u2 in (2.7), we get F (r1, r2, . . . , un)U2 = ¶0♢ and Lemma 2.2 (ii)
gives F (r1, r2, u3, . . . , un) = 0 for all u3 ∈ U3, . . . , un ∈ Un and r1, r2 ∈ N. Proceeding
inductively, we obtain F = 0 on N , a contradiction. □

3. Main Results

Theorem 3.1. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero semigroup

ideals of N . Suppose that σ, τ are multiplicative mappings on Ui for i = 1, 2, . . . , n,

such that Ui ⊆ τ(Ui) for i = 1, 2, . . . , n, and σ is onto on N . If N admits a

generalized (σ, τ)-n-derivation F associated with a (σ, τ)-n-derivation d such that

F (x1x
′

1, x2, . . . , xn) = F (x1, x2, . . . , xn)F (x′

1, x2, . . . , xn) for all x1, x′

1 ∈ U1, x2 ∈
U2, . . . , xn ∈ Un, then F is a left σ-n-multiplier on N .

Proof. By hypothesis

F (x1x
′

1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′

1, x2, . . . , xn)

= F (x1, x2, . . . , xn)F (x′

1, x2, . . . , xn),



STRUCTURE OF 3-PRIME NEAR RINGS WITH GENERALIZED. . . 899

for all x1, x′

1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Replacing x′

1 by x′

1z for z ∈ U1 in the above
relation, we get

¶d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′

1, x2, . . . , xn)♢F (z, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x′

1z) + τ(x1)¶d(x′

1, x2, . . . , xn)σ(z) + τ(x′

1)F (z, x2, . . . , xn)♢.

Applying Lemma 2.4 and using the hypothesis, we obtain

d(x1, x2, . . . , xn)σ(x′

1)F (z, x2, . . . , xn) + τ(x1)d(x′

1, x2, . . . , xn)σ(z)

+ τ(x1)τ(x′

1)F (z, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x′

1z) + τ(x1)d(x′

1, x2, . . . , xn)σ(z) + τ(x1)τ(x′

1)F (z, x2, . . . , xn),

which reduces to

d(x1, x2, . . . , xn)σ(x′

1)(F (z, x2, . . . , xn) − σ(z)) = 0,

for all x1, x′

1, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. This implies that

d(x1, x2, . . . , xn)U1(F (z, x2, . . . , xn) − σ(z)) = ¶0♢.

By Lemma 2.2 (i), we obtain d(x1, x2, . . . , xn) = 0 or F (z, x2, . . . , xn) = σ(z) for all
z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

If F (z, x2, . . . , xn) = σ(z) for all z ∈ U1, replacing z by zt, we get

τ(z)d(t, x2, . . . , xn) = 0.

Putting u ∈ U1 in place of τ(z) and using Lemma 2.2 (ii), we obtain d(t, x2, . . . , xn) = 0
for all t ∈ U1. Therefore, in both cases we arrive at d(U1, U2, . . . , Un) = ¶0♢. Now
arguing in the similar manner as we have done in Lemma 2.5, we can get d = 0 on N ,
which completes the proof. □

Theorem 3.2. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup

ideals of N . Suppose that σ is a multiplicative mapping on Ui for i = 1, 2, . . . , n, such

that Ui ⊆ σ(Ui) for i = 1, 2, . . . , n. If N admits a nonzero generalized (σ, σ)-n-

derivation F associated with a (σ, σ)-n-derivation d such that F (U1, U2, . . . , Un) ⊆
Z(N), then N is a commutative ring.

Proof. If d ̸= 0, then for all u1, u′

1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.1) F (u1u
′

1, u2, . . . , un) = d(u1, u2, . . . , un)σ(u′

1) + σ(u1)F (u′

1, u2, . . . , un) ∈ Z(N).

Now commuting (3.1) with the element σ(u1) and using Lemma 2.4, we get

d(u1, u2, . . . , un)σ(u′

1)σ(u1) = σ(u1)d(u1, u2, . . . , un)σ(u′

1).

Since σ is an onto map on N , replacing σ(u′

1) by r1 ∈ N in above expression, we find
that

(3.2) d(u1, u2, . . . , un)r1σ(u1) = σ(u1)d(u1, u2, . . . , un)r1.

Substituting r1r2 where r2 ∈ N in place of r1 in (3.2) and using it again, we obtain

d(u1, u2, . . . , un)N [σ(u1), r2] = ¶0♢.
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By 3-primeness of N , we get d(u1, u2, . . . , un) = 0 or [σ(u1), r] = 0 for all u1 ∈ U1, u2 ∈
U2, . . . , un ∈ Un and r ∈ N .

Case 1. Suppose there exists x0 ∈ U1 such that d(x0, u2, . . . , un) = 0 for all
u2 ∈ U2, . . . , un ∈ Un. Then

F (u1x0, u2, . . . , un) = F (u1, u2, . . . , un)σ(x0) ∈ Z(N),

for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Since F (u1, u2, . . . , un) ̸= 0, then σ(x0) ∈ Z(N)
by Lemma 2.1 (ii).

Case 2. Suppose there exists x0 ∈ U1 such that [σ(x0), r] = 0 for all r ∈ N , then
σ(x0) ∈ Z(N).

In both cases, we obtain σ(U1) ⊆ Z(N) which implies that U1 ⊆ Z(N). Hence, by
Lemma 2.3, we conclude that N is a commutative ring.

Assume that d = 0, then another application of Lemma 2.1 (ii) and Lemma 2.8,
our hypothesis gives U1 ⊆ Z(N) and N is a commutative ring by Lemma 2.3. □

The following example shows that the 3-primeness hypothesis in Theorem 3.2 can
not be omitted.

Example 3.1. Let us consider Example 1.3. Consider

U =












0 x 0
0 0 0
0 z 0




 ♣ x, y, z, 0 ∈ S






.

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left

near ring N . If we choose U1 = U2 = · · · = Un = U , then F (U1, U2, . . . , Un) ⊆ Z(N).
However, N is not commutative.

Theorem 3.3. Let N be a 3-prime near-ring and U1, U2, . . . , Un are nonzero semigroup
ideals of N . Suppose that σ, τ are multiplicative mappings on Ui for i = 1, 2, . . . , n,
such that Ui ⊆ σ(Ui), Ui ⊆ τ(Ui) for i = 1, 2, . . . , n, and σ is onto on N . If N

admits a generalized (σ, τ)-n-derivation F associated with a (σ, τ)-n-derivation d such
that F (x1x

′

1, x2, . . . , xn) = F (x′

1, x2, . . . , xn)F (x1, x2, . . . , xn) for all x1, x′

1 ∈ U1, x2 ∈
U2, . . . , xn ∈ Un, then N is commutative ring.

Proof. By hypothesis,

F (x1x
′

1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′

1, x2, . . . , xn)

= F (x′

1, x2, . . . , xn)F (x1, x2, . . . , xn),(3.3)

for all x1, x′

1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Substituting x1x
′

1 for x′

1 in (3.3) and using
Remark 2.1, we obtain

F (x1(x1x
′

1), x2, . . . , xn) =F (x1x
′

1, x2, . . . , xn)F (x1, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x′

1)F (x1, x2, . . . , xn)

+ τ(x1)F (x′

1, x2, . . . , xn)F (x1, x2, . . . , xn).
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Also, using the definition of F , we get

F (x1(x1x
′

1), x2, . . . , xn) =d(x1, x2, . . . , xn)σ(x1x
′

1) + τ(x1)F (x1x
′

1, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x1)σ(x′

1)

+ τ(x1)F (x′

1, x2, . . . , xn)F (x1, x2, . . . , xn).

By comparing the last two equations, we can easily arrive at

(3.4) d(x1, x2, . . . , xn)σ(x′

1)F (x1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x1)σ(x′

1).

Since σ is onto on N , we get

d(x1, x2, . . . , xn)r1F (x1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x1)r1.

Now substituting r1r2 for r1 in above expression and using it again, we find that

d(x1, x2, . . . , xn)N [F (x1, x2, . . . , xn), r2] = ¶0♢,

for all x1, ∈ U1, x2 ∈ U2, . . . , xn ∈ Un and r2 ∈ N . Since N is 3-prime, we have
d(x1, x2, . . . , xn) = 0 or F (x1, x2, . . . , xn) ∈ Z(N) for all x1, ∈ U1, x2 ∈ U2, . . . , xn ∈
Un. Using the same argument as used in the proof of the Lemma 2.5 and Theorem
3.2, we conclude that N is a commutative ring. □

Theorem 3.4. Let N be a 3-prime near-ring and U1, U2, . . . , Un are nonzero semigroup

ideals of N . Let σ be an automorphism and τ be a homomorphism on N such that

U1 ⊆ σ(U1) and Ui ⊆ τ(Ui) for i = 1, 2, . . . , n. If N admits a left generalized (σ, τ)-n-

derivation F associated with a (σ, τ)-n-derivation d such that F ([x, y], u2, . . . , un) =
±τ([x, y]) for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un, then N is a commutative ring.

Proof. By hypothesis

(3.5) F ([x, y], u2, . . . , un) = ±τ([x, y]), for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.5) and using [x, xy] = x[x, y], we get

d(x, u2, . . . , un)σ([x, y]) + τ(x)F ([x, y], u2, . . . , un) = ±(τ(x)τ(xy) − τ(x)τ(yx)),

which reduces to

(3.6) d(x, u2, . . . , un)σ([x, y]) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

This implies that

d(x, u2, . . . , un)σ(x)σ(y) = d(x, u2, . . . , un)σ(y)σ(x).

Substituting yz in place of y, where z ∈ N in the last expression and using it again,
we find that

d(x, u2, . . . , un)σ(y)[σ(x), σ(z)] = 0.

Since U1 ⊆ σ(U1), then Lemma 2.2 (i) yields that d(x, u2, . . . , un) = 0 or σ(x) ∈ Z(N)
for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Since σ is an automorphism on N , then
d(x, u2, . . . , un) = 0 or x ∈ Z(N) for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Using Lemma
2.7, we get d(U1, U2, . . . , Un) ∈ Z(N) which forces that N is a commutative ring by
Theorem 3.2 which completes the proof. □
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Theorem 3.5. Let N be a 2-torsion free 3-prime near-ring and U1, U2, . . . , Un are

nonzero semigroup ideals of N . Let σ be an automorphism on N and τ be a homomor-

phism on N such that U1 ⊆ σ(U1) and Ui ⊆ τ(Ui) for i = 1, 2, . . . , n. Then N admits

no left generalized (σ, τ)-n-derivation F associated with a nonzero (σ, τ)-n-derivation

d satisfying one of the following conditions:

(i) F (x ◦ y, u2, . . . , un) = ±τ([x, y]) for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un;

(ii) F (x ◦ y, u2, . . . , un) = ±τ(x ◦ y) for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un;

(iii) F (x ◦ y, u2, . . . , un) = 0 for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Proof. (i) Assume that

(3.7) F (x ◦ y, u2, . . . , un) = ±τ([x, y]), for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.7), we get

d(x, u2, . . . , un)σ(x ◦ y) + τ(x)F (x ◦ y, u2, . . . , un) = ±(τ(x)τ(xy) − τ(x)τ(yx)),

which implies that

d(x, u2, . . . , un)σ(x ◦ y) + τ(x)F (x ◦ y, u2, . . . , un) = ±τ(x)τ([x, y]).

Using the hypothesis, we find that

d(x, u2, . . . , un)σ(x ◦ y) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un,

which implies that

(3.8) d(x, u2, . . . , un)σ(y)σ(x) = −d(x, u2, . . . , un)σ(x)σ(y).

Substituting yz for y in (3.8) where z ∈ N , we have

d(x, u2, . . . , un)σ(y)σ(z)σ(x) = −d(x, u2, . . . , un)σ(x)σ(y)σ(z)

= d(x, u2, . . . , un)σ(x)σ(y)(−σ(z))

= (−d(x, u2, . . . , un)σ(y)σ(x))(−σ(z))

= d(x, u2, . . . , un)σ(y)(−σ(x))(−σ(z))

= d(x, u2, . . . , un)σ(y)σ(−x)σ(−z),

which implies that

0 = d(x, u2, . . . , un)σ(y)(σ(z)σ(x) − σ(−x)σ(−z))

= d(x, u2, . . . , un)σ(y)(−σ(z)σ(−x) + σ(−x)σ(z)).

Since U1 ⊆ σ(U1), Lemma 2.2 (i) yields that

(3.9) d(x, u2, . . . , un) = 0 or σ(−x) ∈ Z(N), for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Suppose there exists x0 ∈ U1 such that σ(−x0) ∈ Z(N). Since −U1 is a nonzero
semigroup left ideal of N , replacing x and y by −x0 in (3.8), we get

2d(−x0, u2, . . . , un)σ(−x0)σ(−x0) = 0,
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for all u2 ∈ U2, . . . , un ∈ Un. Using 2-torsion freeness of N , we conclude that
d(−x0, u2, . . . , un)Nσ(−x0)Nσ(−x0) = ¶0♢ for all u2 ∈ U2, . . . , un ∈ Un. By 3-
primeness of N , we arrive at d(−x0, u2, . . . , un) = 0 or σ(−x0) = 0 for all u2 ∈
U2, . . . , un ∈ Un. Since σ is an automorphism of N , by (3.9) we get d(x, u2, . . . , un) = 0
for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un, so d(U1, U2, . . . , Un) = ¶0♢, which contradicts
Lemma 2.5.

(ii) Suppose that

(3.10) F (x ◦ y, u2, . . . , un) = ±τ(x ◦ y), for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.10), we get

d(x, u2, . . . , un)σ(x ◦ y) + τ(x)F (x ◦ y, u2, . . . , un) = ±τ(x)τ(x ◦ y),

which reduces to

(3.11) d(x, u2, . . . , un)σ(y)σ(x) = −d(x, u2, . . . , un)σ(x)σ(y).

Since (3.11) is same as (3.8), arguing in the similar manner as in (i), we find a
contradiction with our hypothesis.

Using the same techniques, we can prove the result for (iii). □

Theorem 3.6. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero semi-
group ideals of N . Let σ be an homomorphism on N such that Ui ⊆ σ(Ui) for
i = 1, 2, . . . , n. If N admits a left generalized (σ, σ)-n-derivation F associated with a
(σ, σ)-n-derivation d such that F ([x, y], u2, . . . , un) = [σ(x), y]σ,σ for all x, y ∈ U1, u2 ∈
U2, . . . , un ∈ Un, then F is a right σ-n-multiplier on N or N is commutative.

Proof. By hypothesis

(3.12) F ([x, y], u2, . . . , un) = [σ(x), y]σ,σ, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.12), we get

d(x, u2, . . . , un)σ([x, y]) + σ(x)F ([x, y], u2, . . . , un) = σ(x)[σ(x), y]σ,σ,

which reduces to

(3.13) d(x, u2, . . . , un)σ([x, y]) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

As (3.13) is same as (3.6), arguing in the similar manner as in Theorem 3.4, we obtain
the result. □

Theorem 3.7. Let N be a 2-torsion free 3-prime near-ring and U1, U2, . . . , Un are

nonzero semigroup ideals of N . Let σ be a homomorphism on N such that Ui ⊆ σ(Ui)
for i = 1, 2, . . . , n. Then N admits no left generalized (σ, σ)-n-derivation F associated

with a nonzero (σ, σ)-n-derivation d satisfying one of the following conditions:

(i) F (x ◦ y, u2, . . . , un) = [σ(x), y]σ,σ for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un;

(ii) F (x ◦ y, u2, . . . , un) = (σ(x) ◦ y)σ,σ for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.
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Proof. (i) Suppose that

(3.14) F (x ◦ y, u2, . . . , un) = [σ(x), y]σ,σ, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.14), we get

d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) = σ(x)[σ(x), y]σ,σ,

which reduces to

(3.15) d(x, u2, . . . , un)σ(x ◦ y) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Since (3.15) is same as (3.8), arguing as in the proof of Theorem 3.5, we find that
d(x, u2, . . . , un) = 0 for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un or N is a commutative ring.
If N is a commutative ring, then our hypothesis becomes

2F (xy, u2, . . . , un) = 0,

for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. By 2-torsion freeness of N , we have
F (xy, u2, . . . , un) = 0 for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. This implies that

d(x, u2, . . . , un)σ(y) + σ(x)F (y, u2, . . . , un) = 0.

Replacing y by yz in last expression, we obtain d(x, u2, . . . , un)σ(y)σ(z) = 0 for all
x, y, z ∈ U1, u2 ∈ U2, . . . , un ∈ Un which implies that d(x, u2, . . . , un)σ(U1)σ(z) = ¶0♢
for all x, z ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Since U1 ⊆ σ(U1), we get

d(x, u2, . . . , un)U1σ(z) = ¶0♢,

for all x, z ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Using Lemma 2.2 (i), we have d(x, u2, . . . , un) =
0 for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un or σ(U1) = U1 = ¶0♢. Since U1 ≠ ¶0♢, we
conclude that d(U1, U2, . . . , Un) = ¶0♢ which contradicts Lemma 2.5.

(ii) Assume that

(3.16) F (x ◦ y, u2, . . . , un) = (σ(x) ◦ y)σ,σ, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Substituting xy for y in (3.16), we have

F (x(x ◦ y), u2, . . . , un) =σ(x)σ(xy) + σ(xy)σ(x),

d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) =σ(x)(σ(x) ◦ y)σ,σ,

which implies that

d(x, u2, . . . , un)σ(x ◦ y) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Arguing in the similar manner as we have done above, we obtain d(x, u2, . . . , un) = 0
for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un, we again get a contradiction. □

Theorem 3.8. Let N be a 3-prime near-ring and U1, U2, . . . , Un are nonzero semigroup

ideals of N . Let σ be an homomorphism on N such that Ui ⊆ σ(Ui) for i = 1, 2, . . . , n.

If N admits a left generalized (σ, σ)-n-derivation F associated with a nonzero (σ, σ)-
n-derivation d such that F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(y)] for all x, y ∈
U1, u2 ∈ U2, . . . , un ∈ Un, then N is a commutative ring.
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Proof. Suppose that for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.17) F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(y)].

Replacing y by xy in (3.17), we get

d(x, u2, . . . , un)σ([x, y]) + σ(x)F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(xy)].

In view of our hypothesis, the above expression gives

d(x, u2, . . . , un)σ(xy) − d(x, u2, . . . , un)σ(yx) + σ(x)d(x, u2, . . . , un)σ(y)

− σ(x)σ(y)d(x, u2, . . . , un)

=d(x, u2, . . . , un)σ(xy) − σ(xy)d(x, u2, . . . , un),

which implies that

(3.18) d(x, u2, . . . , un)σ(y)σ(x) = σ(x)d(x, u2, . . . , un)σ(y).

Replacing y by yu in the last equation and using it, we can easily arrive at

d(x, u2, . . . , un)σ(y)[σ(x), σ(u)] = 0.

Since U1 ⊆ σ(U1), by Lemma 2.2 (i), we conclude that
(3.19)

d(x, u2, . . . , un) = 0 or σ(x) ∈ Z(U1), for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Suppose there exists x0 ∈ U such that σ(x0) ∈ Z(U1). Then σ(x0)v = vσ(x0) for
all v ∈ U1 and replacing v by vn, where n ∈ N and using it, we conclude that
U [σ(x0), n] = ¶0♢ for all n ∈ N by Lemma 2.2 (ii), we conclude that σ(x0) ∈ Z(N).
In this case, (3.19) becomes
(3.20)

d(x, u2, . . . , un) = 0 or σ(x) ∈ Z(N) for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

In all cases, the equation (3.17) becomes

(3.21) F ([x, y], u2, . . . , un) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

This equation is a special case of Theorem 3.4 with τ = 0, which is already treated
previously. □

Theorem 3.9. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un are

nonzero semigroup ideals of N . Let σ be an automorphism on N such that Ui ⊆ σ(Ui)
for i = 1, 2, . . . , n. Then N admits no left generalized (σ, σ)-n-derivation F associated

with a nonzero (σ, σ)-n-derivation d satisfying one of the following conditions:

(i) F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(y);
(ii) F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(y)],

for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.
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Proof. (i) By hypothesis, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.22) F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(y).

Substituting xy for y in (3.22) and using (x ◦ xy) = x(x ◦ y), we obtain

d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(xy).

Using the hypothesis, we find that

(3.23) d(x, u2, . . . , un)σ(y)σ(x) = −σ(x)d(x, u2, . . . , un)σ(y).

Replacing y by yz where z ∈ N in the last expression and using the same steps that we
introduced previously, we obtain d(x, u2, . . . , un)σ(y)(−σ(z)σ(−x) + σ(−x)σ(z)) = 0
for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un, z ∈ N. Since σ(U1) = U1 and invoking Lemma
2.2 (i) and Lemma 2.3, we conclude that d(x, u2, . . . , un) = 0 or σ(−x) ∈ Z(N).

Suppose there exists x0 ∈ U such that σ(−x0) ∈ Z(N). Since −U1 is a nonzero
semigroup left ideal of N , replacing x and y by −x0 in (3.23), we get

2d(−x0, u2, . . . , un)σ(−x0)σ(−x0) = 0, for all u2 ∈ U2, . . . , un ∈ Un.

Using 2-torsion freeness of N , we conclude that

d(−x0, u2, . . . , un)Nσ(−x0)Nσ(−x0) = ¶0♢,

for all u2 ∈ U2, . . . , un ∈ Un. By 3-primeness of N , we arrive at d(−x0, u2, . . . , un) = 0
or σ(−x0) = 0 for all u2 ∈ U2, . . . , un ∈ Un. Since σ is an automorphism of N , by (3.9)
we get d(x, u2, . . . , un) = 0 for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un, so d(U1, U2, . . . , Un) =
¶0♢, which contradicts Lemma 2.5.

(ii) By hypothesis, we have for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.24) F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(y)].

Substituting xy for y in (3.24) and using (x ◦ xy) = x(x ◦ y), we obtain

d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(xy)],

which reduces to

(3.25) d(x, u2, . . . , un)σ(y)σ(x) = −σ(x)d(x, u2, . . . , un)σ(y).

(3.25) is same as (3.23), arguing in the similar manner as above, we conclude that
d(U1, U2, . . . , Un) = ¶0♢, which leads to a contradiction. □

Theorem 3.10. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero semi-

group ideals of N . Let σ be an homomorphism on N such that Ui ⊆ σ(Ui) for

i = 1, 2, . . . , n. If F is a left generalized (σ, σ)-n-derivation associated with a nonzero

(σ, σ)-n-derivation d on N such that d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(y)] for

all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un, then F is a right σ-n-multiplier on N or N is a

commutative ring.
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Proof. Assume that

(3.26) d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(y)],

for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Replacing y by xy in (3.26), we get

d(x[x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(xy)],

which implies that

d(x, u2, . . . , un)σ([x, y]) + σ(x)d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(x)σ(y)].

Using (3.26), the last equation becomes

d(x, u2, . . . , un)σ([x, y]) + σ(x)F (x, u2, . . . , un)σ(y) = F (x, u2, . . . , un)σ(x)σ(y).

For x = y, (3.26) gives F (x, u2, . . . , un)σ(x) = σ(x)F (x, u2, . . . , un) which implies that
d(x, u2, . . . , un)σ([x, y]) = 0. As this equation is same as (3.6), arguing in the similar
manner as in Theorem 3.4, we obtain the result. □

Theorem 3.11. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un are

nonzero semigroup ideals of N such that U1 is closed under addition. Let σ be a

onto homomorphism on N such that U1 ⊆ σ(U1). Then N admits no generalized

(σ, σ)-n-derivation F associated with a (σ, σ)-n-derivation d such that U1 ∩ Z ̸= ∅,

d(U1 ∩ Z, U2, U3, . . . , Un) ̸= ¶0♢ and d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(y) for

all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Proof. Suppose that

(3.27) d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(y),

for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Let z ∈ U1∩Z such that d(z, u2, u3, . . . , un) ̸= 0
and replacing y by zy in (3.27), we get

d(z, u2, . . . , un)σ(x ◦ y) + σ(z)d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(z)σ(y).

Substituting arbitrary element z′ ∈ U1∩Z for σ(z) in above expression and using (3.27),
we obtain d(z, u2, . . . , un)σ(x◦y) = 0. By Lemma 2.7, it is clear that d(z, u2, . . . , un) ∈
Z \ ¶0♢ which means that d(z, u2, . . . , un)Nσ(x ◦ y) = ¶0♢. By 3-primeness of N , we
conclude that σ(x ◦ y) = 0 for all x, y ∈ U1 which implies that σ(x) ◦ σ(y) = 0. Now
replacing σ(x) and σ(y) by x′ and y′ for all x′, y′ ∈ U1 respectively, we have x′ ◦ y′ = 0.
In particular x′2 = 0 for all x′ ∈ U1. Since U1 is closed under addition, we have
u(u + u′)2 = 0 for all u, u′ ∈ U1 this gives uu′u = 0 for all u, u′ ∈ U1, i.e., uU1u = ¶0♢.
Thus, U1 = ¶0♢, which contradicts our hypothesis. □

The following example shows that the 3-primeness hypothesis in Theorems 3.4 to
3.11 can not be omitted.

Example 3.2. Let S be a zero-symmetric left near-ring which is not abelian. Consider

N =












0 x y

0 0 0
0 0 0




 ♣ x, y, 0 ∈ S






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and

U =












0 x 0
0 0 0
0 0 0




 ♣ x, 0 ∈ S






.

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left near

ring N. Define mappings F, d : N × N × · · · × N
︸ ︷︷ ︸

n−times

→ N by

F










0 x1 y1

0 0 0
0 0 0




 ,






0 x2 y2

0 0 0
0 0 0




 , . . . ,






0 xn yn

0 0 0
0 0 0








 =






0 x1x2 . . . xn 0
0 0 0
0 0 0




 ,

d










0 x1 y1

0 0 0
0 0 0




 ,






0 x2 y2

0 0 0
0 0 0




 , . . . ,






0 xn yn

0 0 0
0 0 0








 =






0 0 y1y2 . . . yn

0 0 0
0 0 0




 .

Define σ, τ : N → N by

τ






0 x y

0 0 0
0 0 0




 =






0 x −y

0 0 0
0 0 0




 and σ = idN .

If we choose U1 = U2 = · · · = Un = U , then it is easy to see that F is a nonzero

generalized (σ, σ)-n-derivation associated with a nonzero (σ, σ)-n-derivation d and also

a nonzero generalized (σ, τ)-n-derivation associated with a nonzero (σ, τ)-n-derivation

d of N satisfying

(i) F (x ◦ y, u2, . . . , un) = 0;

(ii) F ([x, y], u2, . . . , un) = ±τ([x, y]);

(iii) F (x ◦ y, u2, . . . , un) = ±τ([x, y]);

(iv) F (x ◦ y, u2, . . . , un) = (σ(x) ◦ y)σ,σ;

(v) F ([x, y], u2, . . . , un) = [σ(x), y]σ,σ;

(vi) F (x ◦ y, u2, . . . , un) = [σ(x), y]σ,σ;

(vii) F (x ◦ y, u2, . . . , un) = ±τ(x ◦ y);

(viii) F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(y)];

(ix) d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(y)];

(x) F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(y)];

(xi) F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(y);

(xii) d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(y),

for all x, y, u2, . . . , un ∈ U . However, N is not a commutative ring.
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PICTURE FUZZY SUBGROUP

SHOVAN DOGRA1 AND MADHUMANGAL PAL2

Abstract. Picture fuzzy subgroup of a crisp group is established here and some
properties connected to it are investigated. Also, normalized restricted picture fuzzy
set, conjugate picture fuzzy subgroup, picture fuzzy coset, picture fuzzy normal
subgroup and the order of picture fuzzy subgroup are defined. The order of picture
fuzzy subgroup is defined using the cardinality of a special type of crisp subgroup.
Some corresponding properties are established in this regard.

Significant Statement. Subgroup is an important algebraic structure in the
field of Pure Mathematics. Study of different properties of subgroup in fuzzy sense
is an interesting fact to the readers because fuzzy sense is the extension of classical
sense. Readers can easily observe how the properties of subgroup hold in fuzzy
sense like classical sense. Picture fuzzy sense is the generalization of fuzzy sense. In
other words, picture fuzzy sense can be treated as advanced fuzzy sense. Readers
will be interested to study how the properties of subgroup hold when the number
of components increases in fuzzy environment. Our study is actually the study of
an important type of advanced fuzzy algebraic structure.

1. Introduction

Generalizing the concept of classical set theory, Zadeh [12] initiated fuzzy set theory
which leads a vital role for handling uncertainty in practical field. Considering the
limitation of fuzzy set and generalizing fuzzy set, Atanassov [1] introduced intuition-
istic fuzzy set. After the invention of fuzzy set, Rosenfeld [9] introduced fuzzy group.
Intuitionistic fuzzy subgroup came in the light of study by Zhan and Tan [13]. Sharma

Key words and phrases. Picture fuzzy subgroup, normalized restricted picture fuzzy set, conjugate
picture fuzzy subgroup, picture fuzzy coset, picture fuzzy normal subgroup, order of picture fuzzy
subgroup.
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[10] investigated t-intuitionistic fuzzy subgroup. As the time goes, different researchers
have done a lot of research works in the context of fuzzy set and intuitionistic fuzzy
set. Intuitionistic fuzzy set deals with the measure of membership and the measure of
non-membership such that their sum does not exceed unity. It was observed that the
measure of neutrality was not taken into account in intuitionistic fuzzy set. Cuong
and Kreinovich [4] initiated the notion of picture fuzzy set including the measure of
neutral membership with the intuitionistic fuzzy set. So, picture fuzzy set can be
treated as an immediate generalization of intuitionistic fuzzy set by togethering three
components namely positive, neutral and negative. With the advancement of time,
different kinds of research works under picture fuzzy environment were performed by
several researchers [2, 3, 5–8,11].

Here an attempt has been made to define picture fuzzy subgroup, normalized
restricted picture fuzzy set, conjugate picture fuzzy subgroup, picture fuzzy coset,
picture fuzzy normal subgroup and the order of picture fuzzy subgroup. Different
corresponding properties have also been studied.

2. Preliminaries

Here, some primary concepts of fuzzy set (FS), fuzzy subgroup (FSG), intuitionistic
fuzzy set (IFS), intuitionistic fuzzy subgroup (IFSG), picture fuzzy set (PFS) and
some basic operations on picture fuzzy sets (PFSs) are recapitulated.

Definition 2.1 ([12]). Let A be the set of universe. Then a FS P over A is defined
as P = ¶(a, µP (a)) : a ∈ A♢, where µP (a) ∈ [0, 1] is the measure of membership of a
in P .

Realizing the absence of non-membership, Atanassov [1] included it in IFS.

Definition 2.2 ([1]). Let A be the set of universe. An IFS P over A is defined by
P = ¶(a, µP (a), vP (a)) : a ∈ A♢, where µP (a) ∈ [0, 1] is the measure of membership
of a in P and vP (a) ∈ [0, 1] is the measure of non-membership of a in P with the
condition 0 ⩽ µP (a) + vP (a) ⩽ 1 for all a ∈ A.

Here, SP (a)= 1 − (µP (a) + vP (a)) is the measure of suspicion of a in P , which
excludes the measure of membership and non-membership.

Based on the notion of FS given by Zadeh, Rosenfeld [9] defined FSG.

Definition 2.3 ([9]). Let (G, ∗) be a group and P = ¶(a, µP (a)) : a ∈ G♢ be a FS in
G. Then P is said to be FSG of G if µP (a ∗ b) ⩾ µP (a) ∧ µP (b) and µP (a−1) ⩾ µP (a)
for all a, b ∈ G. Here a−1 is the inverse of a in G.

Definition 2.4 ([13]). Let (G, ∗) be a crisp group and P = ¶(a, µP (a), vP (a)) : a ∈ G♢
be an IFS in G. Then P is said to be IFSG of G if

(i) µP (a ∗ b) ⩾ µP (a) ∧ µP (b), vP (a ∗ b) ⩽ vP (a) ∨ vP (b);
(ii) µP (a−1) ⩾ µP (a), vP (a−1) ⩽ vP (a) for all a, b ∈ G. Here a−1 is the inverse of a

in G.
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Cuong and Kreinovich [4] included more possible types of uncertainty upon IFS
and initiated a new set namely PFS.

Definition 2.5 ([4]). Let A be the set of universe. Then a PFS P over the universe
A is defined as P = ¶(a, µP (a), ηP (a), vP (a)) : a ∈ A♢, where µP (a) ∈ [0, 1] is the
measure of positive membership of a in P , ηP (a) ∈ [0, 1] is the measure of neutral
membership of a in P and vP (a) ∈ [0, 1] is the measure of negative membership of a
in P with the condition 0 ⩽ µP (a) + ηP (a) + vP (a) ⩽ 1 for all a ∈ A. For all a ∈ A

1 − (µP (a) + ηP (a) + vP (a)) is the measure of denial membership a in P .

The basic operations on PFSs consisting equality, union and intersection are defined
below.

Definition 2.6 ([4]). Let P = ¶(a, µP (a), ηP (a), vP (a)) : a ∈ A♢ and Q = ¶(a, µQ(a),
ηQ(a), vQ(a)) : a ∈ A♢ be two PFSs over the universe A. Then

(i) P ⊆ Q if and only if µP (a) ⩽ µQ(a), ηP (a) ⩽ ηQ(a), vP (a) ⩾ vQ(a) for all a ∈ A;
(ii) P = Q if and only if µP (a) = µQ(a), ηP (a) = ηP (a), vP (a) = vQ(a) for all

a ∈ A;
(iii) P ∪ Q = ¶(a,max(µP (a), µQ(a)),min(ηP (a), ηQ(a)),min(vP (a), vQ(a))) :

a ∈ A♢;
(iv) P ∩ Q = ¶(a,min(µP (a), µQ(a)),min(ηP (a), ηQ(a)),max(vP (a), vQ(a))) :

a ∈ A♢.

Definition 2.7. Let P = ¶(a, µP , ηP , vP ) : a ∈ A♢ be a PFS over the universe A.
Then (θ, ϕ, ψ)-cut of P is the crisp set in A denoted by Cθ,φ,ψ(P ) and is defined by
Cθ,φ,ψ(P ) = ¶a ∈ A : µP (a) ⩾ θ, ηP (a) ⩾ ϕ, vP (a) ⩽ ψ♢, where θ, ϕ, ψ ∈ [0, 1] with
the condition 0 ⩽ θ + ϕ+ ψ ⩽ 1.

Throughout the paper, we write PFS P = ¶(a, µP (a), ηP (a), vP (a)) : a ∈ A♢ as
P = (µP , ηP , vP ).

3. Picture Fuzzy Subgroup

Now, we are going to define PFSG of a crisp group as the extension of FSG and
IFSG.

Definition 3.1. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFS in G.
Then P is said to be a PFSG of G if

(i) µP (a ∗ b) ⩾ µP (a) ∧ µP (b), ηP (a ∗ b) ⩾ ηP (a) ∧ ηP (b), vP (a ∗ b) ⩽ vP (a) ∨ vP (b)
for all a, b ∈ G;

(ii) µP (a−1) ⩾ µP (a), ηP (a−1) ⩾ ηP (a), vP (a−1) ⩽ vP (a) for all a ∈ G, where a−1

is the inverse of a in G.

Example 3.1. A PFS P = (µP , ηP , vP ) in a group G = (Z,+) is considered here in the
following way:

µP (a) =

{

0.35, when a ∈ 2Z,
0.2, when a ∈ 2Z + 1,
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ηP (a) =

{

0.45, when a ∈ 2Z,
0.2, when a ∈ 2Z + 1,

vP (a) =

{

0.2, when a ∈ 2Z,
0.4, when a ∈ 2Z + 1.

It is not very tough to show that P is a PFSG of G.

Now, we will develop a proposition in two parts. First part gives the relationship
between the identity element and any other element of the universal group in case of a
PFSG while the second part gives the relationship between the inverse of an element
and the element itself of the universal group in case of a PFSG.

Proposition 3.1. Let (G, ∗) be a group and P = (µP , ηP , vP ) be a PFSG of G. Then

(i) µP (e) ⩾ µP (a), ηP (e) ⩾ ηP (a), vP (e) ⩽ vP (a) for all a ∈ G, where e is the

identity in G;

(ii) µP (a−1) = µP (a), ηP (a−1) = ηP (a), vP (a−1) = vP (a) for all a ∈ G. Here, a−1

is the inverse of a in G.

Proof. (i) It is observed that

µP (e) = µP (a ∗ a−1)

⩾ µP (a) ∧ µP (a−1) [because P is a PFSG of G]

= µP (a) [because µP (a−1) ⩾ µP (a) as P is a PFSG of G],

ηP (e) = ηP (a ∗ a−1)

⩾ ηP (a) ∧ ηP (a−1) [because P is a PFSG of G]

= ηP (a) [because ηP (a−1) ⩾ ηP (a) as P is a PFSG of G],

and vP (e) = vP (a ∗ a−1)

⩽ vP (a) ∨ vP (a−1) [because P is a PFSG of G]

= vP (a) [because vP (a−1) ⩽ vP (a) as P is a PFSG of G],

for all a ∈ G.
(ii) Since P is a PFSG of G, therefore µP (a−1) ⩾ µP (a), ηP (a−1) ⩾ ηP (a) and

vP (a−1) ⩽ vP (a) for all a ∈ G. Replacing a by a−1, it is obtained that µP (a) ⩾

µP (a−1), ηP (a) ⩾ ηP (a−1) and vP (a) ⩽ vP (a−1) for all a ∈ G. Thus, µP (a−1) = µP (a),
ηP (a−1) = ηP (a) and vP (a−1) = vP (a) for all a ∈ G. □

The following proposition suggests the necessary and sufficient condition under
which a PFS will be a PFSG.

Proposition 3.2. Let (G, ∗) be a group and P = (µP , ηP , vP ) be a PFS in G. Then P

is a PFSG of G if and only if µP (a∗ b−1) ⩾ µP (a) ∧µP (b), ηP (a∗ b−1) ⩾ ηP (a) ∧ηP (b)
and vP (a ∗ b−1) ⩽ vP (a) ∨ vP (b) for all a, b ∈ G.



PICTURE FUZZY SUBGROUP 915

Proof. Since P is a PFSG of G, therefore µP (a∗b−1) ⩾ µP (a)∧µP (b−1) ⩾ µP (a)∧µP (b),
ηP (a ∗ b−1) ⩾ ηP (a) ∧ ηP (b−1) ⩾ ηP (a) ∧ ηP (b) and vP (a ∗ b−1) ⩽ vP (a) ∨ vP (b−1) ⩽

vP (a) ∨ vP (b) for all a, b ∈ G.
Conversely, let the condition be hold. Then

µP (e) = µP (a ∗ a−1) ⩾ µP (a) ∧ µP (a) = µP (a),

ηP (e) = ηP (a ∗ a−1) ⩾ ηP (a) ∧ ηP (a) = ηP (a),

vP (e) = vP (a ∗ a−1) ⩽ vP (a) ∨ vP (a) = vP (a),

for all a ∈ G, e is the identity in G. Thus, µP (e) ⩾ µP (a), ηP (e) ⩾ ηP (a) and vP (e) ⩽
vP (a) for all a ∈ G.

Now,

µP (b−1) = µP (e ∗ b−1) ⩾ µP (e) ∧ µP (b) = µP (b),

ηP (b−1) = ηP (e ∗ b−1) ⩾ ηP (e) ∧ ηP (b) = ηP (b),

vP (b−1) = vP (e ∗ b−1) ⩽ vP (e) ∨ vP (b) = vP (b), for all b ∈ G.

Thus, µP (b−1) ⩾ µP (b), ηP (b−1) ⩾ ηP (b), vP (b−1) ⩽ vP (b) for all b ∈ G.
It is observed that

µP (a ∗ b) = µP (a ∗ (b−1)−1) ⩾ µP (a) ∧ µP (b−1) ⩾ µP (a) ∧ µP (b),

ηP (a ∗ b) = ηP (a ∗ (b−1)−1) ⩾ ηP (a) ∧ ηP (b−1) ⩾ ηP (a) ∧ ηP (b),

vP (a ∗ b) = vP (a ∗ (b−1)−1) ⩽ vP (a) ∨ vP (b−1) ⩽ vP (a) ∨ vP (b), for all a, b ∈ G.

Consequently, P is a PFSG of G. □

Proposition 3.3. Let (G, ∗) be a group and P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) be

two PFSGs in G. Then P ∩Q is a PFSG of G.

Proof. Let P ∩ Q = R = (µR, ηR, vR). Then µR(a) = µP (a) ∧ µQ(a), µR(a) =
ηP (a) ∧ ηQ(a) and vR(a) = vP (a) ∨ vQ(a) for all a ∈ G. Since P,Q are PFSGs of G,
therefore

µR(a ∗ b−1) = µP (a ∗ b−1) ∧ µQ(a ∗ b−1)

⩾ (µP (a) ∧ µP (b)) ∧ (µQ(a) ∧ µQ(b))

= (µP (a) ∧ µQ(a)) ∧ (µP (b) ∧ µQ(b)) = µR(a) ∧ µR(b),

ηR(a ∗ b−1) = ηP (a ∗ b−1) ∧ ηQ(a ∗ b−1)

⩾ (ηP (a) ∧ ηP (b)) ∧ (ηQ(a) ∧ ηQ(b))

= (ηP (a) ∧ ηQ(a)) ∧ (ηP (b) ∧ ηQ(b)) = ηR(a) ∧ ηR(b),

vR(a ∗ b−1) = vP (a ∗ b−1) ∨ vQ(a ∗ b−1)

⩽ (vP (a) ∨ vP (b)) ∨ (vQ(a) ∨ vQ(b))

= (vP (a) ∨ vQ(a)) ∨ (vP (b) ∨ vQ(b)) = vR(a) ∨ vR(b) for all a, b ∈ G.

Consequently, R = P ∩Q is a PFSG of G. □



916 S. DOGRA AND M. PAL

We have proved that the intersection of two PFSGs is also a PFSG. But, this is
not true for union. If P and Q are two PFSGs then P ∪Q may or may not be PFSG.
This observation is proved by examples. Below we consider two examples. Example
3.2 shows that P ∪Q is not a PFSG and Example 3.3 shows that P ∪Q is a PFSG.

Example 3.2. Two PFSGs P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) in a group G = (Z,+)
considered here in the following way:

µP (a) =

{

0.25, when a ∈ 7Z,
0, otherwise,

ηP (a) =

{

0.35, when a ∈ 7Z,
0.2, otherwise,

vP (a) =

{

0, when a ∈ 7Z,
0.5, otherwise,

and

µQ(a) =

{

0.15, when a ∈ 5Z,
0, otherwise,

ηQ(a) =

{

0.25, when a ∈ 5Z,
0.15, otherwise,

vQ(a) =

{

0.2, when a ∈ 5Z,
0.3, otherwise.

Then

µP∪Q(a) =











0.25, when a ∈ 7Z,
0.15, when a ∈ 5Z,
0, otherwise,

ηP∪Q(a) =











0.15, when a ∈ 7Z,
0.2, when a ∈ 5Z,
0.15, otherwise,

vP∪Q(a) =











0, when a ∈ 7Z,
0.2, when a ∈ 5Z,
0.3, otherwise.

Here, µP∪Q(7 + (−5)) = µP∪Q(2) = 0 ≱ µP∪Q(7) ∧ µP∪Q(5) = 0.25 ∧ 0.15 = 0.15
and vP∪Q(7 + (−5)) = vP∪Q(2) = 0.3 ≰ vP∪Q(7) ∨ vP∪Q(5) = 0 ∨ 0.2 = 0.2. But,
ηP∪Q(7 + (−5)) = ηP∪Q(2) = 0.15 ≥ ηP∪Q(7) ∧ ηP∪Q(5) = 0.15 ∧ 0.2 = 0.15. Thus,
P ∪Q is not a PFSG.

Example 3.3. A PFS P=(µP , ηP , vP ) in a group G is considered in the following way:

µP (a) =

{

0.45, when a = 0,
0.3, when a ̸= 0,
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ηP (a) =

{

0.4, when a = 0,
0.2, when a ̸= 0,

vP (a) =

{

0.1, when a = 0,
0.15, when a ̸= 0,

and

µQ(a) =

{

0.35, when a = 0,
0.25, when a ̸= 0,

µQ(a) =

{

0.25, when a = 0,
0.2, when a ̸= 0,

vQ(a) =

{

0.15, when a = 0,
0.2, when a ̸= 0.

Therefore,

µP∪Q(a) =

{

0.45, when a = 0,
0.3, when a ̸= 0,

ηP∪Q(a) =

{

0.25, when a = 0,
0.2, when a ̸= 0,

ηP∪Q(a) =

{

0.1, when a = 0,
0.15, when a ̸= 0.

Clearly, P ∪Q is a PFSG of G.

Proposition 3.4. Let (G, ∗) be a group and P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) be

PFSGs in G. Then P ∪Q is a PFSG of G if P ⊆ Q or Q ⊆ P .

Proof. Let P ∪ Q = R = (µR, ηR, vR). Then µR(a) = µP (a) ∨ µQ(a), ηR(a) =
ηP (a) ∧ ηQ(a) and vR(a) = vP (a) ∧ vQ(a) for a ∈ G.

Case 1. Let P ⊆ Q. Then µP (a) ⩽ µQ(a), ηP (a) ⩽ ηQ(a) and vP (a) ⩾ vQ(a) for all
a ∈ G. Now,

µR(a ∗ b−1) = µP (a ∗ b−1) ∨ µQ(a ∗ b−1)

= µQ(a ∗ b−1)

⩾ µQ(a) ∧ µQ(b) [because Q is a PFSG of G]

= (µP (a) ∨ µQ(a)) ∧ (µP (b) ∨ µQ(b))

= µR(a) ∧ µR(b),

ηR(a ∗ b−1) = ηP (a ∗ b−1) ∧ ηQ(a ∗ b−1)

= ηP (a ∗ b−1)

⩾ ηP (a) ∧ ηP (b) [because Q is a PFSG of G]

= (ηP (a) ∧ ηQ(a)) ∧ (ηP (b) ∧ ηQ(b))

= ηR(a) ∧ ηR(b),
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vR(a ∗ b−1) = vP (a ∗ b−1) ∧ vQ(a ∗ b−1)

= vQ(a ∗ b−1)

⩽ vQ(a) ∨ vQ(b) [because Q is a PFSG of G]

= (vP (a) ∧ vQ(a)) ∨ (vP (b) ∧ vQ(b))

= vR(a) ∨ vR(b), for all a, b ∈ G.

Consequently, R is a PFSG of G.
Case 2. When Q ⊆ P then it can be proceeded in the similar way to get µR(a∗ b) ⩾

µR(a)∧µR(b), ηR(a∗b) ⩾ ηR(a)∧ηR(b) and vR(a∗b) ⩽ vR(a)∨vR(b) for all a, b ∈ G. □

Definition 3.2. Let P = (µP , ηP , vP ) and Q = (µQ, ηQ, vQ) be two PFSs over the uni-
verseA. Then the Cartesian product of P andQ is the PFS P×Q=(µP×Q, ηP×Q, vP×Q),
where µP×Q((a, b)) = µP (a) ∧ µQ(b), ηP×Q((a, b)) = ηP (a) ∧ ηQ(b) and vP×Q((a, b)) =
vP (a) ∨ vQ(b) for all (a, b) ∈ A× A.

Proposition 3.5. Let (G, ∗) be a group and P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) be

two PFSGs in G. Then P ×Q is a PFSG of G×G.

Proof. Let P ×Q = R = (µR, ηR, vR). Then µR((a, b)) = µP (a) ∧ µQ(b) , ηR((a, b)) =
ηP (a) ∧ ηQ(b) and vR((a, b)) = vP (a) ∨ vQ(b) for all (a, b) ∈ G×G.

Now,

µR((a, b) ∗ (c, d)−1) = µR((a, b) ∗ (c−1, d−1)) = µP (a ∗ c−1) ∧ µQ(b ∗ d−1)

⩾ (µP (a) ∧ µP (c)) ∧ (µQ(b) ∧ µQ(d)) [as P,Q are PFSGs of G]

= (µP (a) ∧ µQ(b)) ∧ (µP (c) ∧ µQ(d))

= µR((a, b)) ∧ µR((c, d)),

ηR((a, b) ∗ (c, d)−1) = ηR((a, b) ∗ (c−1, d−1)) = ηP (a ∗ c−1) ∧ ηQ(b ∗ d−1)

⩾ (ηP (a) ∧ ηP (c)) ∧ (ηQ(b) ∧ ηQ(d)) [as P,Q are PFSGs of G]

= (ηP (a) ∧ ηQ(b)) ∧ (ηP (c) ∧ ηQ(d))

= ηR((a, b)) ∧ ηR((c, d)),

vR((a, b) ∗ (c, d)−1) = vR((a, b) ∗ (c−1, d−1)) = vP (a ∗ c−1) ∨ vQ(b ∗ d−1)

⩽ (vP (a) ∨ vP (c)) ∨ (vQ(b) ∨ vQ(d)) [as P,Q are PFSGs of G]

= (vP (a) ∨ vQ(b)) ∨ (vP (c) ∨ vQ(d))

= vR((a, b)) ∨ vQ((c, d)), for all (a, b), (c, d) ∈ G×G.

Consequently, P ×Q is a PFSG of G×G. □

The following proposition gives the relationship between the identity element and
any other element in case of Cartesian product of two PFSGs.

Proposition 3.6. Let (G1, ∗) and (G2, ∗) be two crisp groups and P = (µP , ηP , vP ),
Q = (µQ, ηQ, vQ) be two PFSGs of G1 and G2, respectively. Then µP×Q((e1, e2)) ⩾
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µP×Q((a1, a2)), ηP×Q((e1, e2)) ⩾ ηP×Q((a1, a2)) and vP×Q((e1, e2)) ⩽ vP×Q((a1, a2))
for all (a1, a2) ∈ G1 ×G2, where (e1, e2) is the identity in G1 ×G2.

Proof. Here, we have

µP×Q((e1, e2)) =µP (e1) ∧ µQ(e2)

⩾ µP (a1) ∧ µQ(a2) [by Proposition 3.1]

= µP×Q((a1, a2)),

ηP×Q((e1, e2)) = ηP (e1) ∧ ηQ(e2)

⩾ ηP (a1) ∧ ηQ(a2) [by Proposition 3.1]

= ηP×Q((a1, a2)),

and vP×Q((e1, e2)) = vP (e1) ∨ vQ(e2)

⩽ vP (a1) ∨ vQ(a2) [by Proposition 3.1]

= vP×Q((a1, a2)),

for all a1 ∈ G1 and for all a2 ∈ G2. Thus, it is obtained that µP×Q((e1, e2)) ⩾

µP×Q((a1, a2)), ηP×Q((e1, e2)) ⩾ ηP×Q((a1, a2)) and vP×Q((e1, e2)) ⩽ vP×Q((a1, a2))
for all (a1, a2) ∈ G1 ×G2. □

Proposition 3.7. Let (G1, ∗) and (G2, ∗) be two crisp groups and P = (µP , ηP , vP ),
Q = (µQ, ηQ, vQ) be two PFSs of G1 and G2 respectively such that P ×Q is PFSG of

G1 ×G2. Then one of the following conditions must hold:

(i) µQ(e2) ⩾ µP (a), ηQ(e2) ⩾ ηP (a), vQ(e2) ⩽ vP (a) for all a ∈ G1, where e2 is the

identity in G2;

(ii) µP (e1) ⩾ µQ(b), ηP (e1) ⩾ ηQ(b), vP (e1) ⩽ vQ(b) for all b ∈ G2, where e1 is the

identity in G1.

Proof. Let none of the conditions be hold. Then there exists some a ∈ G1 and some
b ∈ G2 such that µQ(e2) < µP (a), µP (e1) < µQ(b), ηQ(e2) < ηP (a), ηP (e1) < ηQ(b),
vQ(e2) > vP (a), vP (e1) > vQ(b). Then we have

µP×Q((a, b)) = µP (a) ∧ µQ(b) > µQ(e2) ∧ µP (e1) = µP×Q((e1, e2)),

ηP×Q((a, b)) = ηP (a) ∧ ηQ(b) > ηQ(e2) ∧ ηP (e1) = ηP×Q(e1, e2),

vP×Q((a, b)) = vP (a) ∨ vQ(b) < vQ(e2) ∨ vP (e1) = vP×Q((e1, e2)).

Thus, it is obtained that µP×Q((a, b)) > µP×Q((e1, e2)), ηP×Q((a, b)) > ηP×Q((e1, e2))
and vP×Q((a, b)) < vP×Q((e1, e2)). This is a contradiction because (e1, e2) is the iden-
tity inG1×G2 and by Proposition 3.6, it is known that µP×Q((e1, e2)) ⩾ µP×Q((a1, a2)),
ηP×Q((e1, e2)) ⩾ ηP×Q((a1, a2)) and vP×Q((e1, e2)) ⩽ vP×Q((a1, a2)) for all (a1, a2) ∈
G1 ×G2. Hence, one of the conditions must hold.

The power of a PFS P can be defined by taking the power of measure of three
types of membership of each element. It is easy to verify that k-th power P k of P is
also a PFS. Now, it is the time to define power of a PFS below. □
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Definition 3.3. Let A be the set of universe and P = (µP , ηP , vP ) be a PFS in A.
Then for a positive integer k, k-th power of the PFS P is the PFS P k = (µkP , η

k
P , v

k
P ),

where µkP (a) = (µP (a))k, ηkP (a) = (ηP (a))k and vkP (a) = (vP (a))k for all a ∈ A.
Obviously, (µP (a))k ⩽ µP (a), (ηP (a))k ⩽ ηP (a) and (vP (a))k ⩽ vP (a) and 0 ⩽

µP (a) + ηP (a) + vP (a) ⩽ 1 for all a ∈ A. So, clearly, 0 ⩽ (µP (a))k + (ηP (a))k +
(vP (a))k ⩽ 1 for all a ∈ A.

Proposition 3.8. Let (G, ∗) be a group and P = (µP , ηP , vP ) be a PFSG of G. Then

P k = (µkP , η
k
P , v

k
P ) = ((µP (a))k, (ηP (a))k, (vP (a))k) is a PFSG of G for a positive

integer k.

Proof. Since P is a PFSG, therefore

µkP (a ∗ b−1) = (µP (a ∗ b−1))k

⩾ (µP (a) ∧ µP (b))k

= (µP (a))k ∧ (µP (b))k = µkP (a) ∧ µkP (b),

ηkP (a ∗ b−1) = (ηP (a ∗ b−1))k

⩾ (ηP (a) ∧ ηP (b))k

= (ηP (a))k ∧ (ηP (b))k = ηkP (a) ∧ ηkP (b),

vkP (a ∗ b−1) = (vP (a ∗ b−1))k

⩽ (vP (a) ∨ vP (b))k

= (vP (a))k ∨ (vP (b))k = vkP (a) ∨ vkP (b), for all a, b ∈ G.

Consequently, P k is a PFSG of G. □

Definition 3.4. For three chosen real numbers ε1 ∈ [0, 1], ε2 ∈ [0, 1] and ε3 ∈ [0, 1]
with ε1+ε2 = 1 and ε2+ε3 = 1, we define restricted PFS P over the set of universe A as
P = ¶(a, µP (a), ηP (a), vP (a)) : a ∈ A♢, where µP (a) ∈ [0, ε1], ηP (a) ∈ [0, ε2] and vP ∈
[0, ε3] such that 0 ⩽ µP (a) + ηP (a) + vP (a) ⩽ 1. For any a ∈ A, (µP (a), ηP (a), vP (a))
is called picture fuzzy value (PFV). In case of here defined restricted PFS, (ε1, ε2, 0)
is the largest PFV.

Now, let us define a new type of restricted PFS called normalized restricted PFS
as an extension of normalized IFS.

Definition 3.5. Let P = (µP , ηP , vP ) be a restricted PFS in A. Then P is said to be
normalized restricted PFS if there exists a ∈ A such that µP (a) = ε1, ηP (a) = ε2 and
vP (a) = 0.

Depending upon three real numbers ε1 ∈ [0, 1], ε2 ∈ [0, 1] and ε3 ∈ [0, 1] with the
proposed conditions ε1 + ε2 = 1 and ε2 + ε3 = 1, many restricted PFSs are obtained
and also many corresponding normalized restricted PFSs are obtained. Choose ε1 = 1,
ε2 = 0 and ε3 = 1. Then µP (a) ∈ [0, 1], ηP (a) = 0 and vP (a) ∈ [0, 1]. Thus, the
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neutral component is removed completely. So, restricted PFS reduces to IFS and it
becomes normalized when there exists a ∈ A such that µP (a) = ε1 = 1 and vP (a) = 0,
which is familiar to the concept of normalized IFS. So, normalized restricted PFS can
be treated as an extension of normalized IFS.

Proposition 3.9. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a normalized

restricted PFS which forms a PFSG of G. Then µP (e) = ε1, ηP (e) = ε2 and vP (e) = 0,

where e is the identity in G.

Proof. Since P is a normalized restricted PFS therefore there exists some a ∈ G such
that µP (a) = ε1, ηP (a) = ε2 and vP (a) = 0. Now, by Proposition 3.1, it is known
that µP (e) ⩾ µP (a) = ε1, ηP (e) ⩾ ηP (a) = ε2 and vP (e) ⩽ vP (a) = 0. It follows that
µP (e) = ε1, ηP (e) = ε2 and vP (e) = 0. □

A new kind of group relation called conjugate is defined below for PFSGs.

Definition 3.6. Let (G, ∗) be a crisp group of G and P = (µP , ηP , vP ), Q =
(µQ, ηQ, vQ) be two PFSGs G. Then P is conjugate to Q if there exists a ∈ G

such that µP (u) = µQ(a ∗ u ∗ a−1), ηP (u) = ηQ(a ∗ u ∗ a−1), vP (u) = vQ(a ∗ u ∗ a−1)
for all u ∈ G.

Proposition 3.10. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ),
R = (µR, ηR, vR), S = (µS, ηS, vS) be four PFSGs of G such that P is conjugate to R

and Q is conjugate to S. Then P ×Q is conjugate to R × S.

Proof. Since P is conjugate to R, therefore µP (u1) = µR(a ∗ u1 ∗ a−1), ηP (u1) =
ηR(a∗u1 ∗a−1) and vP (u1) = vR(a∗u1 ∗a−1) for some a ∈ G and for all u1 ∈ G. Since
Q is conjugate to S, therefore µQ(u2) = µS(b ∗ u2 ∗ b−1), ηQ(u2) = ηS(b ∗ u2 ∗ b−1) and
vQ(u2) = vS(b ∗ u2 ∗ b−1) for some b ∈ G and for all u2 ∈ G.

Now,

µP×Q((u1, u2)) = µP (u1) ∧ µQ(u2) = µR(a ∗ u1 ∗ a−1) ∧ µS(b ∗ u2 ∗ b−1)

= µR×S((a, b)(u1, u2)(a, b)
−1),

ηP×Q((u1, u2)) = ηP (u1) ∧ ηQ(u2) = ηR(a ∗ u1 ∗ a−1) ∧ ηS(b ∗ u2 ∗ b−1)

= ηR×S((a, b)(u1, u2)(a, b)
−1),

vP×Q((u1, u2)) = vP (u1) ∨ vQ(u2) = vR(a ∗ u1 ∗ a−1) ∨ vS(b ∗ u2 ∗ b−1)

= vR×S((a, b)(u1, u2)(a, b)
−1),

for some (a, b) ∈ G×G and for all (u1, u2) ∈ G×G. Therefore, P × Q is conjugate
to R × S. □

The following proposition reflects on (θ, ϕ, ψ)-cut of a PFS. It actually tells about
the condition imposed on (θ, ϕ, ψ)-cut of a PFS under which a PFS will be a PFSG.

Proposition 3.11. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFS in G.

Then P is a PFSG of G if all (θ, ϕ, ψ)-cuts of P are crisp subgroups of G.



922 S. DOGRA AND M. PAL

Proof. Let a, b ∈ G, with θ = µP (a) ∧µP (b), ϕ = ηP (a) ∧ ηP (b) and ψ = vP (a) ∨ vP (b).
Then θ ∈ [0, 1], ϕ ∈ [0, 1] and ψ ∈ [0, 1] such that θ + ϕ+ ψ ∈ [0, 1] is satisfied. It is
observed that

µP (a) ⩾ µP (a) ∧ µP (b) = θ,

ηP (a) ⩾ ηP (a) ∧ ηP (b) = ϕ,

vP (a) ⩽ vP (a) ∨ vP (b) = ψ.

Also,

µP (b) ⩾ µP (a) ∧ µP (b) = θ,

ηP (b) ⩾ ηP (a) ∧ ηP (b) = ϕ,

vP (b) ⩽ vP (a) ∨ vP (b) = ψ.

Thus,

µP (a) ⩾ θ, ηP (a) ⩾ ϕ, vP (a) ⩽ ψ,

µP (b) ⩾ θ, ηP (b) ⩾ ϕ, vP (b) ⩽ ψ.

It follows that a, b ∈ Cθ,φ,ψ(P ). Since Cθ,φ,ψ(P ) is a crisp subgroup of G, therefore
a ∗ b−1 ∈ Cθ,φ,ψ(P ). This yields

µP (a ∗ b−1) ⩾ θ = µP (a) ∧ µP (b),

ηP (a ∗ b−1) ⩾ ϕ = ηP (a) ∧ ηP (b),

vP (a ∗ b−1) ⩽ ψ = vP (a) ∨ vP (b).

Since a, b are arbitrary elements of G, therefore µP (a ∗ b−1) ⩾ µP (a) ∧ µP (b),
ηP (a ∗ b−1) ⩾ ηP (a) ∧ ηP (b) and vP (a ∗ b−1) ⩽ vP (a) ∨ vP (b) for all a, b ∈ G. Conse-
quently, P is a PFSG of G. □

Proposition 3.12. Let G be a group and P = (µP , ηP , vP ) be a PFSG of G. Then

the set S = ¶a ∈ G : µP (a) = µP (e), ηP (a) = ηP (e), vP (a) = vP (e)♢ forms a crisp

subgroup of G, where e plays the role of identity in the group G.

Proof. Let S is non-empty because e ∈ S, where e is the identity in G. Let a, b ∈ S.
Then µP (a) = µP (b) = µP (e), ηP (a) = ηP (b) = ηP (e) and vP (a) = vP (b) = vP (e).

Since P be a PFSG of G, therefore

µP (a ∗ b−1) ⩾ µP (a) ∧ µP (b) = µP (e) ∧ µP (e) = µP (e),

ηP (a ∗ b−1) ⩾ ηP (a) ∧ ηP (b) = ηP (e) ∧ ηP (e) = ηP (e),

vP (a ∗ b−1) ⩽ vP (a) ∨ vP (b) = vP (e) ∨ vP (e) = vP (e).

From Proposition 3.1, µP (e) ⩾ µP (a∗b−1), ηP (e) ⩾ ηP (a∗b−1) and vP (e) ⩽ vP (a∗b−1).
Consequently, µP (e) = µP (a∗ b−1), ηP (e) = ηP (a∗ b−1) and vP (e) = vP (a∗ b−1). Thus,

a, b ∈ S ⇒ a ∗ b−1 ∈ S.

Therefore, S is a crisp subgroup of G. □
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The following proposition reflects on (θ, ϕ, ψ)-cut of a PFSG. From the definition of
(θ, ϕ, ψ)-cut of a PFS, we have noticed that (θ, ϕ, ψ)-cut of a PFS is a crisp set. From
the following proposition, we will know (θ, ϕ, ψ)-cut of a PFSG is a crisp subgroup of
the universal group.

Proposition 3.13. Let (G, ∗) be a group and P = (µP , ηP , vP ) be a PFSG of G.

Then Cθ,φ,ψ(P ) is crisp subgroup of G.

Proof. Let a, b ∈ Cθ,φ,ψ(P ). Then µP (a) ⩾ θ, ηP (a) ⩾ ϕ, vP (a) ⩽ ψ and µP (b) ⩾ θ,
ηP (b) ⩾ ϕ, vP (b) ⩽ ψ. Since P is a PFSG, therefore

µP (a ∗ b−1) ⩾ µP (a) ∧ µP (b) ⩾ θ ∧ θ = θ,

ηP (a ∗ b−1) ⩾ ηP (a) ∧ ηP (b) ⩾ ϕ ∧ ϕ = ϕ,

vP (a ∗ b−1) ⩽ vP (a) ∨ vP (b) ⩽ ψ ∨ ψ = ψ.

Thus,

a, b ∈ Cθ,φ,ψ(P ) ⇒ a ∗ b−1 ∈ Cθ,φ,ψ(P ).

Consequently, Cθ,φ,ψ(P ) is a crisp subgroup of G. □

The following proposition gives the relationship between the r-th power of an ele-
ment and the element itself of the universal group in case of a PFSG. The relationship
is given in terms of picture fuzzy membership values.

Proposition 3.14. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of

G. Then µP (ar) ⩾ µP (a), ηP (ar) ⩾ ηP (a), vP (ar) ⩽ vP (a) for all a ∈ G and for all

integers r, where ar = a ∗ a ∗ · · · ∗ a (r times).

Proof. Case 1. Let r be a positive integer. Then r ⩾ 1. Let us suppose P (r):
µP (ar) ⩾ µP (a), ηP (ar) ⩾ ηP (a) and vP (ar) ⩽ vP (a) for all a ∈ G. Here, P (1) is
trivially true. Now, since P is a PFSG of G, therefore

µP (a2) = µP (a ∗ a) ⩾ µP (a) ∧ µP (a) = µP (a),

ηP (a2) = ηP (a ∗ a) ⩾ ηP (a) ∧ ηP (a) = ηP (a),

vP (a2) = vP (a ∗ a) ⩽ vP (a) ∨ vP (a) = vP (a), for all a ∈ G.

So, P (2) is true. Let us assume that P (r) is true for r = m, i.e., µP (am) ⩾ µP (a),
ηP (am) ⩾ ηP (a) and vP (am) ⩽ vP (a) for all a ∈ G.

Now,

µP (am+1) = µP (am ∗ a) ⩾ µP (am) ∧ µP (a) ⩾ µP (a) ∧ µP (a) = µP (a),

ηP (am+1) = ηP (am ∗ a) ⩾ ηP (am) ∧ ηP (a) ⩾ ηP (a) ∧ ηP (a) = ηP (a),

vP (am+1) = vP (am ∗ a) ⩽ vP (am) ∨ vP (a) ⩽ vP (a) ∨ vP (a) = vP (a), for all a ∈ G.

So, P (r) is true for r = m+ 1. Hence, P (r) is true for all positive integers r.
Case 2. Let r be a negative integer. Then r ⩽ −1. Say t= −r. Then t ⩾ 1.

Now, µP (ar) = µP (a−t) = µP (at), ηP (ar) = ηP (a−t) = ηP (at) and vP (ar) = vP (a−t) =
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vP (at) for all a ∈ G [by Proposition 3.1, because a−t is the inverse of at in G]. As t is
a positive integer therefore the case is similar as Case 1. Thus finally, µP (ar) ⩾ µP (a),
ηP (ar) ⩾ ηP (a) and vP (ar) ⩽ vP (a) for all a ∈ G.

Case 3. When r = 0, then it is trivially true as µP (e) ⩾ µP (a), ηP (e) ⩾ ηP (a) and
vP (e) ⩽ vP (a) for all a ∈ G, by Proposition 3.1. □

Proposition 3.15. Let (G, ∗) be a group and P = (µP , ηP , vP ) be a PFSG of G.

Then for a ∈ G µP (a ∗ b) = µP (b), ηP (a ∗ b) = ηP (b) and vP (a ∗ b) = vP (b) for all

b ∈ G if and only if µP (a) = µP (e), ηP (a) = ηP (e) and vP (a) = vP (e), where e plays

the role of identity in G.

Proof. Let for a ∈ G, µP (a ∗ b) = µP (b), ηP (a ∗ b) = ηP (b) and vP (a ∗ b) = vP (b) for
all b ∈ G. When b = e, then µP (a) = µP (e), ηP (a) = ηP (e) and vP (a) = vP (e).

Conversely, let µP (a) = µP (e), ηP (a) = ηP (e) and vP (a) = vP (e). It is observed
that

µP (a ∗ b) ⩾ µP (a) ∧ µP (b) [because P is a PFSG]

= µP (e) ∧ µP (b) = µP (b) [by Proposition 3.1],

ηP (a ∗ b) ⩾ ηP (a) ∧ ηP (b) [because P is a PFSG]

= ηP (e) ∧ ηP (b) = ηP (b) [by Proposition 3.1],

and vP (a ∗ b) ⩽ vP (a) ∨ vP (b) [because P is a PFSG]

= vP (e) ∨ vP (b) = vP (b), for all b ∈ G [by Proposition 3.1].

Also,

µP (b) = µP (a−1 ∗ a ∗ b) = µP (a−1 ∗ (a ∗ b))

⩾ µP (a−1) ∧ µP (a ∗ b) ⩾ µP (a) ∧ µP (a ∗ b)

= µP (e) ∧ µP (a ∗ b)

= µP (a ∗ b) [by Proposition 3.1],

ηP (b) = ηP (a−1 ∗ a ∗ b) = ηP (a−1 ∗ (a ∗ b))

⩾ ηP (a−1) ∧ ηP (a ∗ b) ⩾ ηP (a) ∧ ηP (a ∗ b)

= ηP (e) ∧ ηP (a ∗ b)

= ηP (a ∗ b) [by Proposition 3.1],

vP (b) = vP (a−1 ∗ a ∗ b) = vP (a−1 ∗ (a ∗ b))

⩽ vP (a−1) ∨ vP (a ∗ b) ⩽ vP (a) ∨ vP (a ∗ b)

= vP (e) ∨ vP (a ∗ b)

= vP (a ∗ b), for all b ∈ G [by Proposition 3.1].

Thus, µP (a ∗ b) = µP (b), ηP (a ∗ b) = ηP (b) and vP (a ∗ b) = vP (b) for all b ∈ G. □

Proposition 3.16. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a restricted

PFSG of G for three chosen non-negative real numbers ε1, ε2 and ε3. Let ¶ak♢
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be a sequence of elements in G such that lim
k→∞

µP (ak) = ε1, lim
k→∞

ηP (ak) = ε2 and

lim
k→∞

vP (ak) = 0. Then µP (e) = ε1, ηP (e) = ε2 and vP (e) = 0, where e is the identity

in G.

Proof. From Proposition 3.1, µP (e) ⩾ µP (ak), ηP (e) ⩾ ηP (ak) and vP (e) ⩽ vP (ak)
for all k ∈ N . Therefore, µP (e) ⩾ lim

k→∞

µP (ak) = ε1, ηP (e) ⩾ lim
k→∞

ηP (ak) = ε2 and

vP (e) ⩽ lim
k→∞

vP (ak) = 0. Thus, µP (e) ⩾ ε1, ηP (e) ⩾ ε2 and vP (e) ⩽ 0. Consequently,

µP (e) = ε1, ηP (e) = ε2 and vP (e) = 0. □

Proposition 3.17. Let (G, ∗) be a cyclic group and P = (µP , ηP , vP ) be a PFSG of

G. Let a be any element in G such that it generates the group G with a ∈ Cθ,φ,ψ(P ).
Then Cθ,φ,ψ(P ) = G.

Proof. Here G=⟨a⟩. Let a ∈ Cθ,φ,ψ(P ). Then µP (a) ⩾ θ, ηP (a) ⩾ ϕ and vP (a) ⩽ ψ.
Let t ∈ G. Then t = ak for some integer k. Now,

µP (t) = µP (ak)

⩾ µP (a) [by Proposition 3.14]

⩾ θ,

ηP (t) = ηP (ak)

⩾ ηP (a) [by Proposition 3.14]

⩾ ϕ,

vP (t) = vP (ak)

⩽ vP (a) [by Proposition 3.14]

⩽ ψ.

Thus, t ∈ G implies t ∈ Cθ,φ,ψ(P ). Therefore, G ⊆ Cθ,φ,ψ(P ). Already, it is known
that Cθ,φ,ψ(P ) ⊆ G. Consequently, G = Cθ,φ,ψ(P ). □

4. Homomorphism of Picture Fuzzy Subgroups

Here, we study some properties of PFSG under the classical group-homomorphism
and anti-group homomorphism.

Definition 4.1. Let (G1, ∗) and (G2, ◦) be two crisp groups. Then a mapping h :
G1 → G2 is said to be a group homomorphism if h(a∗ b) = h(a)◦h(b) for all a, b ∈ G1.

Definition 4.2. Let (G1, ∗) and (G2, ◦) be two crisp groups and h : G1 → G2 be a
surjective group-homomorphism. Then for a PFS P = (µP , ηP , vP ), the image of P is
the PFS h(P ) = (µh(P ), ηh(P ), vh(P )) defined by

µh(P )(b) = ∨
a∈h−1(b)

µP (a), ηh(P )(b) = ∧
a∈h−1(b)

ηP (a), vh(P )(b) = ∧
a∈h−1(b)

vP (a),

for all b ∈ G2.
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Proposition 4.1. (G1, ∗) and (G2, ◦) be two crisp groups and h : G1 → G2 be a

bijective group homomorphism. Then for a PFSG P in G1, h(P ) is a PFSG of G2.

Proof. It is observed that for b1 ∈ G2,

µh(P )(b1) = ∨
a1∈h−1(b1)

µP (a1), ηh(P )(b1) = ∧
a1∈h−1(b1)

ηP (a1), vh(P )(b1) = ∨
a1∈h−1(b1)

vP (a1).

Since h is bijective, therefore h−1(b1) is a singleton set. So, it can be written
as h−1(b1) = a1, i.e., h(a1) = b1 for unique a1 ∈ G1. Therefore, µh(P )(b1) =
µh(P )(h(a1)) = µP (a1), ηh(P )(b1) = µh(P )(h(a1)) = ηP (a1) and vh(P )(b1)
= vh(P )(h(a1)) = vP (a1) for unique a1 ∈ G1.

Now,

µh(P )(b1 ◦ b−1
2 ) = µh(P )(h(a1) ◦ (h(a2))

−1)

[because b1 = h(a1) and b2 = h(a2) for unique a1 and a2 ∈ G1]

= µh(P )(h(a1 ∗ a−1
2 )) [as h is group homomorphism]

= µP (a1 ∗ a−1
2 )

⩾ µP (a1) ∧ µP (a2) [as P is a PFSG]

= µh(P )(h(a1)) ∧ µh(P )(h(a2)) = µh(P )(b1) ∧ µh(P )(b2),

ηh(P )(b1 ◦ b−1
2 ) = ηh(P )(h(a1) ◦ (h(a2))

−1)

= ηh(P )(h(a1 ∗ a−1
2 )) [as h is group homomorphism]

= ηP (a1 ∗ a−1
2 )

⩾ ηP (a1) ∧ ηP (a2) [as P is a PFSG]

= ηh(P )(h(a1)) ∧ ηh(P )(h(a2)) = ηh(P )(b1) ∧ ηh(P )(b2),

vh(P )(b1 ◦ b−1
2 ) = vh(P )(h(a1) ◦ (h(a2))

−1)

= vh(P )(h(a1 ∗ a−1
2 )) [as h is group homomorphism]

= vP (a1 ∗ a−1
2 )

⩽ vP (a1) ∨ vP (a2) [as P is a PFSG]

= vh(P )(h(a1)) ∨ vh(P )(h(a2))

= vh(P )(b1) ∨ vh(P )(b2), for all b1, b2 ∈ G2.

Consequently, h(P ) is a PFSG of G2. □

Definition 4.3. Let (G1, ∗) and (G2, ◦) be two crisp groups. Then a mapping h :
G1 → G2 is said to be an anti group homomorphism if h(a ∗ b) = h(b) ◦ h(a) for all
a, b ∈ G1.

Definition 4.4. Let (G1, ∗) and (G2, ◦) be two crisp groups and Q = (µQ, ηQ, vQ)
be a PFSG of G2. Then for a mapping h : G1 → G2, h

−1(Q) is the PFS h−1(Q) =
(µh−1(Q), ηh−1(Q), vh−1(Q)) defined by µh−1(Q)(a) = µQ(h(a)), ηh−1(Q)(a) = ηQ(h(a)) and
vh−1(Q)(a) = vQ(h(a)) for all a ∈ G1.
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Proposition 4.2. Let (G1, ∗) and (G2, ◦) be two crisp groups and Q = (µQ, ηQ, vQ)
be a PFSG of G2. Then for an anti group-homomorphism h, h−1(Q) is a PFSG of

G1.

Proof. Let h−1(Q)=(µh−1(Q), ηh−1(Q), vh−1(Q)), where µh−1(Q)(a) = µQ(h(a)), ηh−1(Q)(a)
= ηQ(h(a)), vh−1(Q)(a) = vQ(h(a)) for all a ∈ G1. Now, we have

µh−1(Q)(a ∗ b−1) = µQ(h(a ∗ b−1))

= µQ(h(b−1) ◦ h(a)) [because h is an anti group-homomorphism]

= µQ((h(b))−1 ◦ h(a))

⩾ µQ((h(b))−1) ∧ µQ(h(a)) [because Q is a PFSG of G2]

⩾ µQ(h(b)) ∧ µQ(h(a)) [because Q is PFSG of G2]

= µQ(h(a)) ∧ µQ(h(b)) = µh−1(Q)(a) ∧ µh−1(Q)(b),

ηh−1(Q)(a ∗ b−1) = ηQ(h(a ∗ b−1))

= ηQ(h(b−1) ◦ h(a)) [because h is an anti group-homomorphism]

= ηQ((h(b))−1) ◦ h(a))

⩾ ηQ((h(b))−1) ∧ ηQ(h(a)) [because Q is a PFSG of G2]

⩾ ηQ(h(b)) ∧ ηQ(h(a)) [because Q is a PFSG of G2]

= ηQ(h(a)) ∧ ηQ(h(b)) = ηh−1(Q)(a) ∧ ηh−1(Q)(b),

vh−1(Q)(a ∗ b−1) = vQ(h(a ∗ b−1))

= vQ(h(b−1) ◦ h(a)) [because h is an anti group-homomorphism]

= vQ((h(b))−1 ◦ h(a))

⩽ vQ((h(b))−1) ∨ vQ(h(a)) [because Q is a PFSG of G2]

⩽ vQ(h(b)) ∨ vQ(h(a)) [because Q is a PFSG of G2]

= vQ(h(a)) ∨ vQ(h(b)) = vh−1(Q)(a) ∨ vh−1(Q)(b), for all a, b ∈ G1.

Consequently, h−1(Q) is a PFSG of G1. □

5. Picture Fuzzy Coset and Picture Fuzzy Normal Subgroup

Here, we define different kinds of picture fuzzy cosets (PFCSs) and picture fuzzy
normal subgroup (PFNSG). Also, we investigate some related properties.

Definition 5.1. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of
G. Then for any a ∈ G the picture fuzzy left coset of P in G is the PFS aP =
(µaP , ηaP , vaP ) defined by µaP (u) = µP (a−1 ∗ u), ηaP (u) = µP (a−1 ∗ u) and vaP (u) =
vP (a−1 ∗ u) for all u ∈ G.

Definition 5.2. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of
G. Then for any a ∈ G the picture fuzzy right coset of P in G is the PFS Pa =
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(µPa, ηPa, vPa) defined by µPa(u) = µP (u ∗ a−1), ηPa(u) = µP (u ∗ a−1) and vPa(u) =
vP (u ∗ a−1) for all u ∈ G.

Definition 5.3. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of
G. Then for any a ∈ G the picture fuzzy middle coset of P in G is the PFS
aPa−1 = (µaPa−1 , ηaPa−1 , vaPa−1) defined by µaPa−1(u) = µP (a−1 ∗ u ∗ a), ηaPa−1(u) =
ηP (a−1 ∗ u ∗ a) and vaPa−1(u) = vP (a−1 ∗ u ∗ a) for all u ∈ G.

In classical sense, any subgroup of a classical group is said to be normal if left coset
and right coset of the subgroup for any element of the classical group are equal. In
picture fuzzy sense, a PFSG is said to be PFNSG if picture fuzzy membership values
of left coset and right coset of PFSG for any element of the universal group are equal.

Definition 5.4. Let (g, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of G.
Then P is called a PFNSG of G if µPa(u) = µaP (u), ηPa(u) = ηaP (u), vPa(u) = vaP (u)
for all a, u ∈ G.

Proposition 5.1. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of G.

Then P is a PFNSG of G if and only if µP (a ∗ b) = µP (b ∗ a), ηP (a ∗ b) = ηP (b ∗ a)
and vP (a ∗ b) = vP (b ∗ a) for all a, b ∈ G.

Proof. Let P = (µP , ηP , vP ) be a PFNSG of G. Therefore, µPa(u) = µaP (u), ηPa(u) =
ηaP (u) and vPa(u) = vaP (u) for all a, u ∈ G, i.e., µP (u ∗ a−1) = µP (a−1 ∗ u), ηP (u ∗
a−1) = ηP (a−1 ∗ u) and vP (u ∗ a−1) = vP (a−1 ∗ u) for all a, u ∈ G.

Now, µP (a ∗ b) = µP (a ∗ (b−1)−1) = µP ((b−1)−1 ∗ a) = µP (b ∗ a), ηP (a ∗ b) =
ηP (a ∗ (b−1)−1) = ηP ((b−1)−1 ∗ a) = ηP (b ∗ a) and vP (a ∗ b) = vP (a ∗ (b−1)−1) =
vP ((b−1)−1 ∗ a) = vP (b ∗ a) for all a, b ∈ G.

Conversely, let µP (a∗b) = µP (b∗a), ηP (a∗b) = ηP (b∗a) and vP (a∗b) = vP (b∗a) for
all a, b ∈ G, i.e., µP (a ∗ (b−1)−1) = µP ((b−1)−1 ∗ a), ηP (a ∗ (b−1)−1) = ηP ((b−1)−1 ∗ a)
and vP (a ∗ (b−1)−1) = vP ((b−1)−1 ∗ a) for all a, b ∈ G. Letting z = b−1 we get
µP (a ∗ z−1) = µP (z−1 ∗ a), ηP (a ∗ z−1) = ηP (z−1 ∗ a) and vP (a ∗ z−1) = vP (z−1 ∗ a)
for all a, z ∈ G. It follows that µPz(a) = µzP (a), ηPz(a) = ηzP (a) and vPz(a) = vzP (a)
for all a, z ∈ G. Consequently, P is a PFNSG of G. □

Proposition 5.2. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of G.

Then P is a PFNSG of G if and only if µP (a∗u∗a−1) = µP (u), ηP (a∗u∗a−1) = ηP (u)
and vP (a ∗ u ∗ a−1) = vP (u) for all a, u ∈ G.

Proof. Let P be a PFNSG of G. Then

µP (a ∗ u ∗ a−1) = µP ((a ∗ u) ∗ a−1)

= µP (a−1 ∗ (a ∗ u)) [by Proposition 5.1, as P is a PFNSG of G]

= µP ((a−1 ∗ a) ∗ u) = µP (u),

ηP (a ∗ u ∗ a−1) = ηP ((a ∗ u) ∗ a−1)

= ηP (a−1 ∗ (a ∗ u)) [using Proposition 5.1, as P is a PFNSG of G]
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= ηP ((a−1 ∗ a) ∗ u) = ηP (u),

vP (a ∗ u ∗ a−1) = vP ((a ∗ u) ∗ a−1)

= vP (a−1 ∗ (a ∗ u)) [using Proposition 5.1, as P is a PFNSG of G]

= vP ((a−1 ∗ a) ∗ u) = vP (u), for all a, u ∈ G.

Conversely, let the conditions be hold. Then µP (a∗b) = µP (b−1∗(b∗a)∗b) = µP (b−1∗
(b∗a)∗(b−1)−1) = µP (b∗a), ηP (a∗b) = ηP (b−1 ∗(b∗a)∗b) = ηP (b−1 ∗(b∗a)∗(b−1)−1) =
ηP (b ∗ a) and vP (a ∗ b) = vP (b−1 ∗ (b ∗ a) ∗ b) = vP (b−1 ∗ (b ∗ a) ∗ (b−1)−1) = vP (b ∗ a)
for all a, b ∈ G. Therefore, by Proposition 5.1, P is a PFNSG of G. □

Proposition 5.3. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFNSG of G.

Then S = ¶u ∈ G : µP (u) = µP (e), ηP (u) = ηP (e), vP (u) = vP (e)♢ is a crisp normal

subgroup of G.

Proof. By Proposition 3.12, S is a crisp subgroup of G. Let a ∈ G and u ∈ S.
Then µP (u) = µP (e), ηP (u) = ηP (e), vP (u) = vP (e). Since P is a PFNSG of G,
therefore, by Proposition 5.2, µP (a ∗ u ∗ a−1) = µP (u), ηP (a ∗ u ∗ a−1) = ηP (u) and
vP (a∗u∗a−1) = vP (u). It follows that µP (a∗u∗a−1) = µP (e), ηP (a∗u∗a−1) = ηP (e)
and vP (a∗u∗a−1) = vP (e). Thus, a∗u∗a−1 ∈ S. Hence, S is a crisp normal subgroup
of G. □

Proposition 5.4. Let (G, ∗) and P = (µP , ηP , vP ) be a PFNSG of G. Then for any

a ∈ G, aPa−1 is a PFNSG of G.

Proof. Let aPa−1=(µaPa−1 , ηaPa−1 , vaPa−1), where µaPa−1(u) = µP (a−1∗u∗a), ηaPa−1(u)
= ηP (a−1 ∗ u ∗ a) and vaPa−1(u) = vP (a−1 ∗ u ∗ a) for all u ∈ G. Now,

µaPa−1(u1 ∗ u2) =µP (a−1 ∗ (u1 ∗ u2) ∗ a)

=µP (a−1 ∗ (u1 ∗ u2 ∗ a))

=µP ((u1 ∗ u2 ∗ a) ∗ a−1)

[by Proposition 5.1, as P is a PFNSG of G]

=µP ((u1 ∗ u2) ∗ (a ∗ a−1))

=µP (u1 ∗ u2) = µP (u2 ∗ u1)

[by Proposition 5.1, as P is a PFNSG of G],

ηaPa−1(u1 ∗ u2) =ηP (a−1 ∗ (u1 ∗ u2) ∗ a)

=ηP (a−1 ∗ (u1 ∗ u2 ∗ a))

=ηP ((u1 ∗ u2 ∗ a) ∗ a−1)

[by Proposition 5.1, as P is a PFNSG of G]

=ηP ((u1 ∗ u2) ∗ (a ∗ a−1))

=ηP (u1 ∗ u2) = ηP (u2 ∗ u1)

[by Proposition 5.1, as P is a PFNSG of G],
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vaPa−1(u1 ∗ u2) =vP (a−1 ∗ (u1 ∗ u2) ∗ a)

=vP (a−1 ∗ (u1 ∗ u2 ∗ a))

=vP ((u1 ∗ u2 ∗ a) ∗ a−1)

[by Proposition 5.1, as P is PFNSG of G]

=vP ((u1 ∗ u2) ∗ (a ∗ a−1))

=vP (u1 ∗ u2) = vP (u2 ∗ u1)

[by Proposition 5.1, as P is a PFNSG of G],

for all u1, u2 ∈ G. Also,

µaPa−1(u2 ∗ u1) =µP (a−1 ∗ (u2 ∗ u1) ∗ a)

=µP (a−1 ∗ (u2 ∗ u1 ∗ a))

=µP ((u2 ∗ u1 ∗ a) ∗ a−1)

[by Proposition 5.1, as P is a PFNSG of G]

=µP ((u2 ∗ u1) ∗ (a ∗ a−1)) = µP (u2 ∗ u1),

ηaPa−1(u2 ∗ u1) =ηP (a−1 ∗ (u2 ∗ u1) ∗ a)

=ηP (a−1 ∗ (u2 ∗ u1 ∗ a))

=ηP ((u2 ∗ u1 ∗ a) ∗ a−1)

[by Proposition 5.1, as P is a PFNSG of G]

=ηP ((u2 ∗ u1) ∗ (a ∗ a−1)) = ηP (u2 ∗ u1),

vaPa−1(u2 ∗ u1) =vP (a−1 ∗ (u2 ∗ u1) ∗ a)

=vP (a−1 ∗ (u2 ∗ u1 ∗ a))

=vP ((u2 ∗ u1 ∗ a) ∗ a−1)

[by Proposition 5.1, as P is PFNSG of G]

=vP ((u2 ∗ u1) ∗ (a ∗ a−1)) = vP (u2 ∗ u1), for all u1, u2 ∈ G.

Thus, it is obtained that µaPa−1(u1∗u2) = µaPa−1(u2∗u1), ηaPa−1(u1∗u2) = ηaPa−1(u2∗
u1) and vaPa−1(u1 ∗u2) = vaPa−1(u2 ∗u1) for all u1, u2 ∈ G. By Proposition 5.1, aPa−1

is a PFNSG of G. □

6. Order of Picture Fuzzy Subgroup

Here, we define the order of a PFSG with the help of the cardinality of a special
type of crisp subgroup. Also, we explore some results that correspond to the order of
PFSG.

Definition 6.1. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFSG of G.
Then the order of the PFSG P is denoted by O(P ) and is defined as the cardinality
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of the crisp set HP = ¶u ∈ G : µP (u) = µP (e), ηP (u) = ηP (e), vP (u) = vP (e)♢, where
e plays the role of identity in G.

Proposition 6.1. Let (G, ∗) be a crisp group and P = (µP , ηP , vP ) be a PFNSG of

G. Then O(P ) = O(aPa−1) for any a ∈ G.

Proof. From Definition 6.1, O(P ) = ♣HP ♣ and O(aPa−1) = ♣HaPa−1 ♣, where HP =
¶u ∈ G : µP (u) = µP (e), ηP (u) = ηP (e), vP (u) = vP (e)♢ and HaPa−1 = ¶u ∈ G :
µaPa−1(u) = µaPa−1(e), ηaPa−1(u) = ηaPa−1(e), vaPa−1(u) = vaPa−1(e)♢. Now,

µaPa−1(q) = µaPa−1(e) ⇔µP (a−1 ∗ q ∗ a) = µP (a−1 ∗ e ∗ a)

⇔µP ((a−1 ∗ q) ∗ a) = µP (e)

⇔µP (a ∗ (a−1 ∗ q)) = µP (e)

[by Proposition 5.1, because P is a PFNSG of G]

⇔µP ((a ∗ a−1) ∗ q) = µP (e)

⇔µP (q) = µP (e),

ηaPa−1(q) = ηaPa−1(e) ⇔ηP (a−1 ∗ q ∗ a) = ηP (a−1 ∗ e ∗ a)

⇔ηP ((a−1 ∗ q) ∗ a) = ηP (e)

⇔ηP (a ∗ (a−1 ∗ q)) = ηP (e)

[by Proposition 5.1, because P is a PFNSG of G]

⇔ηP ((a ∗ a−1) ∗ q) = ηP (e)

⇔ηP (q) = ηP (e),

vaPa−1(q) = vaPa−1(e) ⇔vP (a−1 ∗ q ∗ a) = vP (a−1 ∗ e ∗ a)

⇔vP ((a−1 ∗ q) ∗ a) = vP (e)

⇔vP (a ∗ (a−1 ∗ q)) = vP (e)

[by Proposition 5.1, because P is PFNSG of G]

⇔vP ((a ∗ a−1) ∗ q) = vP (e)

⇔vP (q) = vP (e), for all q ∈ G.

Thus, if r ∈ HaPa−1 then r ∈ HP and if s ∈ HP then s ∈ HaPa−1 . So, HaPa−1 ⊆ HP

and HP ⊆ HaPa−1 . Consequently, HP=HaPa−1 which indicates that HP and HaPa−1

have the same cardinality, i.e., O(P ) = O(aPa−1). □

Proposition 6.2. Let (G, ∗) be a crisp abelian group and P = (µP , ηP , vP ) be a PFSG

which is conjugate to Q = (µQ, ηQ, vQ). Then P and Q have the same order.

Proof. From Definition 6.1, it is known that O(P ) = ♣HP ♣ and O(Q) = ♣HQ♣, where
HP = ¶u ∈ G : µP (u) = µP (e), ηP (u) = ηP (e), vP (u) = vP (e)♢ and HQ = ¶u ∈ G :
µQ(u) = µQ(e), ηQ(u) = ηQ(e), vQ(u) = vQ(e)♢, where e is the identity in G. Since
P is conjugate to Q, therefore µP (u) = µQ(a ∗ u ∗ a−1), ηP (u) = ηQ(a ∗ u ∗ a−1),
vP (u) = vQ(a ∗ u ∗ a−1) for some a ∈ G and for all u ∈ G.
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Now, it is observed that

a ∗ u ∗ a−1 = (a ∗ u) ∗ a−1

= a−1 ∗ (a ∗ u) [because G is abelian]

= (a−1 ∗ a) ∗ u = u, for all a, u ∈ G.

It follows that

µP (u) = µQ(a ∗ u ∗ a−1) = µQ(u),

ηP (u) = ηQ(a ∗ u ∗ a−1) = ηQ(u),

vP (u) = vQ(a ∗ u ∗ a−1) = vQ(u), for all u ∈ G.

Thus, HP=¶u ∈ G : µP (u) = µP (e), ηP (u) = ηP (e), vP (u) = vP (e)♢=¶u ∈ G :
µQ(u) = µQ(e), ηQ(u) = ηQ(e), vQ(u) = vQ(e)♢=HQ. Therefore, HP and HQ have the
same cardinality. Hence, P and Q have the same order. □

Theorem 6.1 (Lagrange’s theorem on PFSG). Let (G, ∗) be a crisp group and P =
(µP , ηP , vP ) be a PFSG of G. Then O(P ) is a divisor of O(G).

Proof. From Definition 6.1, it is known that O(P ) = ♣HP ♣, where HP = ¶u ∈ G :
µP (u) = µP (e), ηP (a) = ηP (e), vP (a) = vP (e)♢, e plays the role of identity in G. Now,
by Proposition 3.12, it is known that HP is a crisp subgroup of G. By Lagrange’s
theorem on crisp group, ♣HP ♣ is a divisor of O(G), i.e., O(P ) is a divisor of O(G). □

7. Conclusion

Investigation of the structure of algebraic system leads a significant in the field of
Mathematics, Computer Science and other different areas. Here we have studied the
theory of subgroup in the context of picture fuzzy set. In this paper, notion of PFSG
has been established and different properties of PFSG have been investigated. Also,
different notions related to PFSG such as PFCS, PFNSG, the order of PFSG have
been brought into the light of our study. We expect that this paper will be fruitful to
the researchers for further study of the theory of subgroup under some other types of
set environment.
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EXISTENCE RESULTS FOR A FRACTIONAL DIFFERENTIAL

INCLUSION OF ARBITRARY ORDER WITH THREE-POINT

BOUNDARY CONDITIONS

SACHIN KUMAR VERMA1, RAMESH KUMAR VATS1, HEMANT KUMAR NASHINE2,3,
AND H. M. SRIVASTAVA4,5

Abstract. This paper studies existence of solutions for a new class of fractional
differential inclusions of arbitrary order with three-point fractional integral boundary
conditions. Our results are based on Bohnenblust-Karlin’s fixed point theorem.

1. Introduction

Fractional differential equations are being used in various fields of science and
engineering such as control system, electrochemistry, viscoelasticity, electromagnetics,
physics, biophysics, fitting of experimental data, blood flow phenomena, electrical
circuits, biology, porous media etc. [11, 12, 18]. Due to these features, models of
fractional order become more practical and realistic than the models of integer-order.

A generalization of differential inequalities and equations are known as differential
inclusions. Some recent development on fractional differential equations and inclusions
can be found in [2,4–6,8–10,14–17,20,22,23]. Interesting and important applications
of differential inclusions are in problems arising from stochastic processes, optimal
control theory, economics and so on. If the velocity of a dynamical system cannot be
uniquely determined by the state of the system, then such a system can be modeled
as a differential inclusion.
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In [14], Benchohra and Hamidi studied the boundary value problem for fractional
differential inclusions given by







cDαw(ξ) ∈ Z(ξ, w(ξ)),

w(0) = w0,

where cDα is the Caputo fractional derivative of order α ∈ (1, 2] and Z : [0,∞)×R →
P(R) is a multi-valued map with compact and convex values.

Ntouyas [20] investigated the existence of solutions for fractional order differential
inclusions of the form







cDqw(ξ) ∈ Z(ξ, w(ξ)), 0 < ξ < 1,

w(0) = 0, w(1) = αJpw(ν), 0 < ν < 1,

where cDq is the Caputo fractional derivative of order q ∈ (1, 2], Jp is the Riemann-
Liouville fractional integral of order p, Z : [0, 1) × R → P(R) is a multi-valued map.

In this paper, we consider the multi-valued version of [21]. We study existence
results for solutions of the following fractional differential inclusion

(1.1)







cDβ2w(ξ) ∈ Z(ξ, w(ξ)), ξ ∈ [0, 1],

w(ν) = w′(0) = w′′(0) = · · · = wn−2(0) = 0, Iβ1w(1) = 0,

where β1 > 0, n − 1 < β2 ≤ n, n ≥ 3, n ∈ N, and cDβ2 is the Caputo derivative
of fractional order β2, I

β1 is the Riemann-Liouville integral of fractional order β1,
Z : [0, 1] × R → P(R)\¶∅♢ and νn−1 ̸= Γ(n)

(β1+n−1)(β1+n−2)···(β1+1)
.

2. Preliminaries

Let us recall some notations, definitions and lemmas from multi-valued analysis
[13,19].

Let W = C([0, 1],R) denote the standard Banach space of all continuous functions
from [0, 1] into R with the norm

∥w∥ = max¶♣w(ξ)♣ : ξ ∈ [0, 1]♢.
A fixed point of a multi-valued map Z : W → P(W ) is w ∈ W such that w ∈ Z(w).
Z is bounded on bounded sets if for any bounded subset D of W , Z(D) =

⋃

w∈D Z(w)
is bounded in W . Z is said to be completely continuous if for every bounded subset D
of W , Z(D) is compact. Z is closed (convex) valued if Z(w) is closed (convex) for all
w ∈ W . Z is called u.s.c. (upper semi-continuous) on W if the set Z(w0) is a nonempty
closed subset of W for each w0 ∈ W and if there exists an open neighborhood E of w0

such that Z(E) ⊆ D for each open subset D of W containing Z(w0). Z has a closed
graph if

wn → w⋆, zn → z⋆, wn ∈ W, zn ∈ Z(wn) ⇒ z⋆ ∈ Z(w⋆).

If Z has nonempty compact values and is completely continuous, then Z has a closed
graph if and only if Z is u.s.c.
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Throughout this paper, BCC(W ) is the set of all nonempty, convex, closed and
bounded subsets of W . Let L1([0, 1],R) be the standard Banach space of Lebesgue
integrable functions from [0, 1] into R with the norm

∥z∥L1 =
∫ 1

0
♣z(ξ)♣ dξ.

The following definitions are well known [1,11,18].

Definition 2.1. The Caputo fractional derivative of order β for at least n-times
differentiable function w : [0,∞) → R is defined as

cDβw(ξ) =
1

Γ(n− β)

∫ ξ

0
(ξ − s)n−β−1w(n)(s) ds, n− 1 < β < n, n = ⌈β⌉,

where ⌈β⌉ denotes the least integer function of real number β.

Definition 2.2. The Riemann-Liouville integral of fractional order β is defined as

Iβw(ξ) =
1

Γ(β)

∫ ξ

0
(ξ − s)β−1w(s) ds, β > 0,

provided the integral exists.

Lemma 2.1 ([21]). Let νn−1 ≠ Γ(n)
(β1+n−1)(β1+n−2)···(β1+1)

, β1 > 0, n − 1 < β2 ≤ n,

0 < ν < 1. Then for z ∈ C([0, 1],R), the fractional differential system

(2.1)







cDβ2w(ξ) = z(ξ), ξ ∈ [0, 1],

w(ν) = w′(0) = w′′(0) = · · · = wn−2(0) = 0, Iβ1w(1) = 0,

is equivalent to the integral equation

w(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1z(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds(2.2)

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1z(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds,

where

(2.3) Q =
Γ(β1 + n)

Γ(n) − νn−1(β1 + n− 1)(β1 + n− 2) · · · (β1 + 1)
.

Lemma 2.2 ([20]). A function w ∈ ACn([0, 1],R) satisfying boundary conditions

w(ν) = w′(0) = w′′(0) = · · · = wn−2(0) = 0, Iβ1w(1) = 0,

is a solution of fractional differential inclusion (1.1) if z(ξ) ∈ Z(ξ, w(ξ)) on [0, 1] for

some function z ∈ L1([0, 1],R) and

w(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1z(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds
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+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1z(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds.

For the forthcoming analysis, we need the following assumptions.

(A) Z : [0, 1] × R → BCC(R) for each w ∈ R, (ξ, w) 7→ z(ξ, w) is u.s.c. with
respect to w for a.e. ξ ∈ [0, 1] and is measurable with respect to ξ and the set
SZ,w is non-empty for each fixed w ∈ R.

(B) There exists a function mϵ ∈ L1([0, 1],R+) for each ϵ > 0 such that

∥Z(ξ, w)∥ = sup¶♣v♣ : v(ξ) ∈ Z(ξ, w)♢ ≤ mϵ(ξ),

for each (ξ, w) ∈ [0, 1] × R with ♣w♣ ≤ ϵ and

lim inf
ϵ→+∞

∫ 1
0 mϵ(ξ) dξ

ϵ
= γ < ∞.

Lemma 2.3 ([3]). Let J be a compact real interval and Z be a multi-valued map

satisfying assumption (A) and let ζ be a continuous and linear function from L1(J,R)
into C(J). Then the operator

ζ ◦ SZ : C(J) → BCC(J), y 7→ (ζ ◦ SZ)(y) = ζ(SZ,y),

is a closed graph operator in C(J) × C(J).

Lemma 2.4 ([7]). Let W be a Banach space and D be a nonempty, convex, closed

and bounded subset of W . Let Z : D → P(W )\¶∅♢ has convex, closed values and is

u.s.c. with Z(D) ⊂ D and Z(D) is compact. Then Z has a fixed point.

Let us define a multi-valued map ψ : W → P(W ) as

ψ(w) =

{

y ∈ W : y(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1z(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1z(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds

}

,

for z ∈ SZ,w = ¶z(ξ) ∈ L1([0, 1],R) : z(ξ) ∈ Z(ξ, y) for a.e. ξ ∈ [0, 1]♢.
Observe that a fixed point of ψ is a solution of (1.1). For convenience, we put

Λ =
2

Γ(β2 + 1)
+

♣Q♣
Γ(β1 + 1)Γ(β2 + 1)

+
♣Q♣

Γ(β1 + β2 + 1)
.
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3. Main Results

Theorem 3.1. Assume that (A) and (B) hold with Λγ < 1. Then the fractional

differential inclusion (1.1) has at least one solution.

Proof. The proof is divided into four steps.
Step I. ψ(w) is convex for each w ∈ C[0, 1].
Let λ ∈ [0, 1] and y1, y2 ∈ ψ(w). Then there exist z1, z2 ∈ SZ,w such that for each

ξ ∈ [0, 1], we have

yi(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1zi(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1zi(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1zi(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1zi(s) ds.

Now,

(λy1 + (1 − λ)y2)(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1(λz1(s) + (1 − λ)z2(s)) ds

− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1(λz1(s) + (1 − λ)z2(s)) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1(λz1(s) + (1 − λ)z2(s)) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1(λz1(s) + (1 − λ)z2(s)) ds.

Since Z has convex values, SZ,w is also convex. Thus, for z1, z2 ∈ SZ,w and λ ∈ [0, 1],
we have λz1 + (1 − λ)z2 ∈ SZ,w. Hence, λy1 + (1 − λ)y2 ∈ ψ(w), i.e., ψ(w) is convex.

Step II. Let ϵ > 0 and Bϵ = ¶w ∈ C[0, 1] : ∥w∥ ≤ ϵ♢. Then Bϵ is a closed,
convex and bounded set in C[0, 1]. We shall prove that there exists ϵ > 0 such that
ψ(Bϵ) ⊆ Bϵ. Suppose it is not true. Then for each ϵ > 0, there exist wϵ ∈ Bϵ and
yϵ ∈ ψ(wϵ) with ∥ψ(wϵ)∥ > ϵ and

yϵ(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1zϵ(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1zϵ(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1zϵ(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1zϵ(s) ds,

for some zϵ ∈ SZ,wϵ
.

Now,

ϵ <∥ψ(wϵ)∥
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≤ 1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1♣zϵ(s)♣ ds+

1

Γ(β2)

∫ ν

0
(ν − s)β2−1♣zϵ(s)♣ ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1♣zϵ(s)♣ ds

+
Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1♣zϵ(s)♣ ds

≤ 1

Γ(β2)

∫ 1

0
mϵ(s) ds+

1

Γ(β2)

∫ 1

0
mϵ(s) ds

+
♣Q♣

Γ(β1 + β2)

∫ 1

0
mϵ(s) ds+

♣Q♣
Γ(β1 + 1)Γ(β2)

∫ 1

0
mϵ(s) ds.

Dividing both sides by ϵ and letting ϵ → ∞, we get


2

Γ(β2)
+

♣Q♣
Γ(β1 + β2)

+
♣Q♣

Γ(β1 + 1)Γ(β2)

]

γ ≥ 1,

implying Λγ ≥ 1, which contradicts the given assumption. Therefore, there exists
ϵ > 0 such that ψ(Bϵ) ⊆ Bϵ.

Step III. ψ(Bϵ) is equicontinuous.
Let ξ1, ξ2 ∈ [0, 1] with ξ1 < ξ2 and w ∈ Bϵ, y ∈ ψ(w). Then there exists z ∈ SZ,w

such that for each ξ ∈ [0, 1], we have

y(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1z(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1z(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds.

Now,

♣y(ξ1) − y(ξ2)♣ ≤ 1

Γ(β2)

∫ ξ1

0
♣(ξ2 − s)β2−1 − (ξ1 − s)β2−1♣♣z(s)♣ ds

+
1

Γ(β2)

∫ ξ2

ξ1

♣ξ2 − s♣β2−1♣z(s)♣ ds

+
♣Q♣♣ξn−1

1 − ξn−1
2 ♣

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1♣z(s)♣ ds

+
♣Q♣♣ξn−1

1 − ξn−1
2 ♣

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1♣z(s)♣ ds

≤ 1

Γ(β2)

∫ ξ1

0
♣(ξ2 − s)β2−1 − (ξ1 − s)β2−1♣mϵ(s) ds

+
1

Γ(β2)

∫ ξ2

ξ1

♣ξ2 − s♣β2−1mϵ(s) ds
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+
♣Q♣♣ξn−1

1 − ξn−1
2 ♣

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1mϵ(s) ds

+
♣Q♣♣ξn−1

1 − ξn−1
2 ♣

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1mϵ(s) ds.

Now, the right-hand side approaches zero when ξ1 approaches ξ2, independently of
w ∈ Bϵ. Hence, ψ(Bϵ) is equicontinuous.

Combining Steps I to III and by a consequence of Arzelá-Ascoli theorem, we get
that ψ is a compact valued map.

Step IV. ψ has a closed graph.
Let wn → w∗, yn ∈ ψ(wn) and yn → y∗. We shall prove that y∗ ∈ ψ(w∗).
Now, yn ∈ ψ(wn) implies that there exists zn ∈ SZ,wn

such that for each ξ ∈ [0, 1],
we have

yn(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1zn(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1zn(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1zn(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1zn(s) ds.

We shall show that there exists z∗ ∈ SZ,w∗ such that for each ξ ∈ [0, 1], we have

y∗(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1z∗(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1z∗(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1z∗(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1z∗(s) ds.

Consider the continuous linear operator ζ : L1([0, 1],R) → C[0, 1] given by

ζ(z)(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1z(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1z(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1z(s) ds.

Now, it is clear that ∥yn(ξ) − y∗(ξ)∥ → 0 as n → ∞.
As a consequence of Lemma 2.3, we deduce that ζ ◦ SZ is a closed graph operator

with yn(ξ) ∈ ζ(SZ,wn
).
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Since wn → w∗, we have from Lemma 2.3

y∗(ξ) =
1

Γ(β2)

∫ ξ

0
(ξ − s)β2−1z∗(s) ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1z∗(s) ds

+
(νn−1 − ξn−1)Q

Γ(β1 + β2)

∫ 1

0
(1 − s)β1+β2−1z∗(s) ds

− Q(νn−1 − ξn−1)

Γ(β1 + 1)Γ(β2)

∫ ν

0
(ν − s)β2−1z∗(s) ds,

for some z∗ ∈ SZ,w∗ .
Thus, the compact operator ψ is u.s.c. with closed, convex values. From Lemma

2.4, we conclude that there exists a fixed point w of ψ, which is a solution of (1.1). □

Theorem 3.2. Assume that (A) and the following condition hold.

(C) There exist functions k1(ξ), k2(ξ) ∈ L1([0, 1],R+) such that

∥Z(ξ, w)∥ ≤ k1(ξ)♣w♣ + k2(ξ),

for each (ξ, w) ∈ [0, 1] × R, with Λ∥k1∥L1 < 1.

Then the BVP (1.1) has at least one solution on [0, 1].

Proof. The proof follows by taking k1(ξ)ϵ + k2(ξ) in place of mϵ(ξ) in the proof of
Theorem 3.1. □

Theorem 3.3. Assume that (A) and the following condition hold.

(D) There exist functions k1(ξ), k2(ξ) ∈ L1([0, 1],R+), σ ∈ [0, 1] such that

∥Z(ξ, w)∥ ≤ k1(ξ)♣w♣σ + k2(ξ),

for each (ξ, w) ∈ [0, 1] × R.

Then the BVP (1.1) has at least one solution on [0, 1].

Proof. The proof is obvious. Here we have k1(ξ)ϵ
σ + k2(ξ) in place of mϵ(ξ). □

4. Examples

In this section, we give some examples in order to illustrate our results.

Example 4.1. As the first example, let us consider the following fractional differential
inclusion







cD
9

2w(ξ) ∈ Z(ξ, w(ξ)), ξ ∈ [0, 1],

w( 1
10

) = 0, w′(0) = 0, I
7

2w(1) = 0,
(4.1)

where Z(ξ, w(ξ)) is such that ∥Z(ξ, w)∥ ≤ 1
8(ξ+1)

♣w♣ + e−ξ.

Here β2 = 9
2
, implying n = 5, ν = 1

10
, β1 = 7

2
,

νn−1 =ν4 =
1

10000
̸= Γ(n)

(β1 + n− 1)(β1 + n− 2) · · · (β1 + 1)
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=
4

(β1 + 1)(β1 + 2)(β1 + 3)(β1 + 4)
=

64

19305
= 0.003315.

As ∥Z(ξ, w)∥ ≤ 1
8(ξ+1)

♣w♣+e−ξ, therefore (C) is satisfied with ∥k1∥L1 = 1
8

ln 2. Further,

Λ∥k1∥L1

=∥k1∥L1



2

Γ(β2 + 1)
+

Γ(β1 + 5)

Γ(β1 + 1)Γ(β2 + 1)♣Γ(5) − ν4(β1 + 4)(β1 + 3)(β1 + 2)(β1 + 1)♣

+
Γ(β1 + 5)

Γ(β1 + β2 + 1)♣Γ(5) − ν4(β1 + 4)(β1 + 3)(β1 + 2)(β1 + 1)♣

]

≈1

8
ln 2



64

945
√
π

+
286

7
√
π × 3.879344

+
2027025

√
π

28 × 7! × 3.879344

]

≈1

8
ln 2[0.03821 + 5.942029 + 0.717803]

≈0.58034 < 1.

Thus, by Theorem 3.2, there exists at least one solution of the fractional differential
inclusion (4.1).

Example 4.2. Now, consider the following fractional inclusion






cD
5

2w(ξ) ∈ Z(ξ, w(ξ)), ξ ∈ [0, 1],

w(1
2
) = 0, w′(0) = 0, I

3

2w(1) = 0,
(4.2)

where Z(ξ, w(ξ)) is such that ∥Z(ξ, w)∥ ≤ 1
4(ξ+1)2 ♣w♣ 1

3 + e−ξ.

Here β2 = 5
2

implies n = 3, ν = 1
2
, β1 = 3

2
,

νn−1 = ν2 =
1

4
̸= Γ(n)

(β1 + n− 1)(β1 + n− 2) · · · (β1 + 1)
=

2

(β1 + 2)(β1 + 1)
=

8

35
.

Also, (D) is satisfied with k1(ξ) = 1
4(ξ+1)2 and k2(ξ) = e−ξ with σ = 1

3
. Therefore, it

follows from Theorem 3.3 that there exists at least one solution of (4.2).
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CONSTRUCTION OF SIMULTANEOUS COSPECTRAL GRAPHS

FOR ADJACENCY, LAPLACIAN AND NORMALIZED

LAPLACIAN MATRICES

ARPITA DAS1 AND PRATIMA PANIGRAHI1

Abstract. In this paper we construct several classes of non-regular graphs which
are co-spectral with respect to all the three matrices, namely, adjacency, Laplacian
and normalized Laplacian, and hence we answer a question asked by Butler [2].
We make these constructions starting with two pairs (G1, H1) and (G2, H2) of
A-cospectral regular graphs, then considering the subdivision graphs S(Gi) and
R-graphs R(Hi), i = 1, 2, and Ąnally making some kind of partial joins between
S(G1) and R(G2) and S(H1) and R(H2). Moreover, we determine the number of
spanning trees and the Kirchhoff index of the newly constructed graphs.

1. Introduction

Cospectral graphs are non-isomorphic graphs which share the same eigenvalues of
the same matrices associated with them. Several cospectral graphs are known for
adjacency, combinatorial Laplacian and normalized Laplacian matrices separately. In
2010, Butler [2] asked that “Is there an example of two non-regular graphs which
are cospectral with respect to the adjacency, combinatorial Laplacian and normalized
Laplacian at the same time?” Normally regular graphs are always cospectral for
all the matrices mentioned in the question. Here we construct some non-regular
cospectral graphs for all the three matrices and hence give an answer to the above
question of Butler. To present the results of the paper we need some definitions and
terminology as follow. All graphs considered in the paper are simple and undirected.
For any graph G, we take V (G) and E(G) as the vertex set and edge set of G

Key words and phrases. Adjacency matrix, Laplacian matrix, normalized Laplacian matrix, cospec-
tral graphs.
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respectively. The adjacency matrix of graph G, denoted by A(G), is a square matrix
whose rows and columns are indexed by vertices of graph G, and (u, v)th entry is
1 if and only if vertex u is adjacent to vertex v and 0 otherwise. If D(G) is the
diagonal matrix of vertex degrees in G, then the Laplacian matrix L(G) is defined
as L(G) = D(G) − A(G) and the normalized Laplacian matrix L(G) of G is defined
as L(G) = I − D(G)−1/2A(G)D(G)−1/2 with the convention that D(G)−1(u, u) = 0 if
degree of u is zero. For a given square matrix M of size n, we denote the characteristic
polynomial det(xIn − M) by fM(x). The eigenvalues of A(G), L(G) and L(G) are
denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), 0 = µ1(G) ≤ µ2(G) ≤ · · · ≤ µn(G), and
0 = δ1(G) ≤ δ2(G) ≤ · · · ≤ δn(G) ≤ 2 respectively, where n is the number of vertices
of G. The multiset of eigenvalues of A(G) (respectively L(G), L(G)) is called the
adjacency (respectively Laplacian, normalized Laplacian) spectrum of G, and denoted
by A-spectrum (respectively L-spectrum, L-spectrum). Two graphs are said to be A-
cospectral (respectively L-cospectral, L-cospectral) if they have the same A-spectrum
(respectively L-spectrum, L-spectrum).

The adjacency, Laplacian and normalized Laplacian spectra of different kinds of
graphs have been computed by several researchers [4, 7, 11,12]. The subdivision graph

S(G) [6] of a graph G is obtained by inserting a new vertex into every edge of G. The R-

graph R(G) [5] of a graph G is the graph obtained from G by introducing a new vertex
ue for each e ∈ E(G) and making ue adjacent to both the end vertices of e. The set of
such new vertices is denoted by I(G), i.e., I(G) = V (S(G))\V (G) = V (R(G))\V (G).
The partial joins of subdivision graph and R-graph which are considered in the paper
are given in the definition below.

Definition 1.1. Let G1 and G2 be two vertex-disjoint graphs with number of vertices
n1 and n2, and edges m1 and m2, respectively. Then the following hold.

(i) The subdivision-vertex-R-vertex join of G1 and G2, denoted by S(G1)∨̈R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of V (G1) with
every vertex of V (G2). The graph S(G1)∨̈R(G2) has n1 + n2 + m1 + m2 vertices
and 2m1 + n1n2 + 3m2 edges.

(ii) The subdivision-edge-R-edge join of G1 and G2, denoted by S(G1)∨R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of I(G1) with
every vertex of I(G2). The graph S(G1)∨R(G2) has n1 + n2 + m1 + m2 vertices
and m1(2 + m2) + 3m2 edges.

(iii) The subdivision-edge-R-vertex join of G1 and G2, denoted by S(G1)∨̇R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of I(G1) with

every vertex of V (G2). The graph S(G1)∨̇R(G2) has n1 + n2 + m1 + m2 vertices
and m1(2 + n2) + 3m2 edges.

(iv) The subdivision-vertex-R-edge join of G1 and G2, denoted by S(G1)∨̇R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of V (G1) with

every vertex of I(G2). The graph S(G1)∨̇R(G2) has n1 + n2 + m1 + m2 vertices
and 2m1 + m2(3 + n1) edges.
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Example 1.1. Let us consider two graphs G1 = P4 and G2 = P3. The set of dark
vertices of G1 and G2 are I(G1) and I(G2), respectively.

Figure 1. Subdivision-vertex-R-vertex join of P4 and P3

Figure 2. Subdivision-edge-R-edge join of P4 and P3

Figure 3. Subdivision-edge-R-vertex join of P4 and P3

Figure 4. Subdivision-vertex-R-edge join of P4 and P3

In the following lemma we find the degrees of vertices in the above constructed
graphs.
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Lemma 1.1. (i) The degree of any vertex v in S(G1)∨̈R(G2) is given by

dS(G1)∨̈R(G2)(v) =











n2 + dG1(v), if v ∈ V (G1),
2, if v ∈ I(G1)

⋃

I(G2),
n1 + 2dG2(v), if v ∈ V (G2).

(ii) The degree of any vertex v in S(G1)∨R(G2) is given by

d
S(G1)∨R(G2)

(v) =



















dG1(v), if v ∈ V (G1),
2 + m2, if v ∈ I(G1),
2dG2(v), if v ∈ V (G2),
2 + m1, if v ∈ I(G2).

(iii) The degree of any vertex v in S(G1)∨̇R(G2) is given by

d
S(G1)∨̇R(G2)

(v) =



















dG1(v), if v ∈ V (G1),
2 + n2, if v ∈ I(G1),
2dG2(v) + m1, if v ∈ V (G2),
2, if v ∈ I(G2).

(iv) The degree of any vertex v in S(G1)∨̇R(G2) is given by

d
S(G1)∨̇R(G2)

(v) =



















dG1(v) + m2, if v ∈ V (G1),
2, if v ∈ I(G1),
2dG2(v), if v ∈ V (G2),
2 + n1, if v ∈ I(G2).

For two matrices A and B, of same size m×n, the Hadamard product A•B of A and
B is a matrix of the same size m×n with entries given by (A•B)ij = (A)ij ·(B)ij (that
is entrywise multiplication). Hadamard product is commutative, that is A•B = B •A.

Notation. Throughout the paper, for any positive integers k, n1 and n2, Ik denotes
the identity matrix of size k, Jn1×n2 denotes n1 × n2 matrix whose all entries are 1,
1n stands for the column vector of size n with all entries equal to 1, Kn×n denotes an
n × n matrix whose all entries are the same. In other words, Kn×n = αJn×n, for a
real number α. For any positive integers s and t, Os×t denotes the zero matrix of size
s × t.

To prove our results we need some basics as given below.

Lemma 1.2 (Schur Complement [6]). Suppose that the order of all four matrices M ,

N , P and Q satisfy the rules of operations on matrices. Then we have
∣

∣

∣

∣

∣

M N

P Q

∣

∣

∣

∣

∣

=







♣Q♣♣M − NQ−1P ♣, if Q is a non-singular square matrix,

♣M ♣♣Q − PM−1N ♣, if M is a non-singular square matrix.

Lemma 1.3 ([6]). For a square matrix A of size n and a scalar α,

det(A + αJn×n) = det(A) + α1T
n adj(A)1n,

where adj(A) is the adjugate matrix of A.
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Lemma 1.4. For any real numbers c, d > 0, we have

(cIn − dJn×n)−1 =
1

c
In +

d

c(c − nd)
Jn×n.

Proof.

(cIn − dJn×n)−1 =
adj(cIn − dJn×n)

det(cIn − dJn×n)
=

cn−2(c − nd)In + cn−2dJn×n

cn−1(c − nd)

=
1

c
In +

d

c(c − nd)
Jn×n. □

For a graph G on n vertices and m edges, the vertex-edge incidence matrix [8] R(G)
of G is a matrix of size n × m, with entry rij = 1 if the ith vertex is incident to the
jth edge, and 0 otherwise. The line graph [8] of a graph G is the graph LG, whose
vertices are the edges of G and two of these are adjacent in LG if and only if they are
incident on a common vertex in G.

The following is an well known result, may be found in [6].

Lemma 1.5. Let G be an r-regular graph. Then

(i) R(G)T R(G) = A(LG) + 2Im and R(G)R(G)T = A(G) + rIn;

(ii) the eigenvalues of A(LG) are the eigenvalues of A(G)+(r−2)In and −2 repeated

m − n times.

Notation. The M -coronal of an n×n matrix M , denoted by ΓM(x), is defined [3,13]
as the sum of the entries of the matrix (xIn−M)−1, that is, ΓM(x) = 1T

n (xIn−M)−11n.

Lemma 1.6 ([3]). If M is an n × n matrix with each row sum equal to a constant t,

then ΓM(x) = n
x−t

.

Butler [2] constructed non-regular bipartite graphs which are cospectral with respect
to both the adjacency and normalized Laplacian matrices, and then asked for existence
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. In this paper we construct
several classes of such graphs taking help of the operations subdivision-vertex-R-vertex
join, subdivision-edge-R-edge join, subdivision-edge-R-vertex join and subdivision-
vertex-R-edge join. We also find the number of spanning trees and Kirchhoff index
for all the partial join of subdivision graph and R-graph constructed here.

2. Adjacency, Laplacian and Normalized Laplacian Spectra of the
Graphs

In this section we consider regular graphs Gi on ni vertices, mi edges, and with
degree of regularity ri, i = 1, 2. To obtain the required matrices we label the vertices
of the graphs in the following way. Let V (G1) = ¶v1, . . . , vn1♢, I(G1) = ¶e1, . . . , em1♢,
V (G2) = ¶u1, . . . , un2♢, I(G2) = ¶f1, . . . , fm2♢. Then V (G1) ∪ I(G1) ∪ V (G2) ∪
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I(G2) is a partition for all V (S(G1)∨̈R(G2)), V (S(G1)∨R(G2)), V (S(G1)∨̇R(G2))

and V (S(G1)∨̇R(G2)).

Lemma 2.1. For i = 1, 2, let Gi be a graph with ni vertices and mi edges. Then we

have the following:

(i) A(S(G1)∨̈R(G2)) =











On1 R(G1) Jn1×n2 On1×m2

R(G1)
T Om1 Om1×n2 Om1×m2

Jn2×n1 On2×m1 A(G2) R(G2)
Om2×n1 Om2×m1 R(G2)

T Om2











;

(ii) A(S(G1)∨R(G2)) =











On1 R(G1) On1×n2 On1×m2

R(G1)
T Om1 Om1×n2 Jm1×m2

On2×n1 On2×m1 A(G2) R(G2)
Om2×n1 Jm2×m1 R(G2)

T Om2











;

(iii) A(S(G1)∨̇R(G2)) =











On1 R(G1) On1×n2 On1×m2

R(G1)
T Om1 Jm1×n2 Om1×m2

On2×n1 Jn2×m1 A(G2) R(G2)
Om2×n1 Om2×m1 R(G2)

T Om2











;

(iv) A(S(G1)∨̇R(G2)) =











On1 R(G1) On1×n2 Jn1×m2

R(G1)
T Om1 Om1×n2 Om1×m2

On2×n1 On2×m1 A(G2) R(G2)
Jm2×n1 Om2×m1 R(G2)

T Om2











.

Theorem 2.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨̈R(G2) consists of:

(i) the eigenvalue ±
√

r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of

A(G1);
(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation x4 − r2x
3 − (2r1 + n1n2 + 2r2)x2 + 2r1r2x + 4r1r2 = 0.

Proof. The adjacency characteristic polynomial of S(G1)∨̈R(G2) is

fA(S(G1)∨̈R(G2))(x) = det









xIn1 −R(G1) −Jn1×n2 On1×m2

−R(G1)T xIm1 Om1×n2 Om1×m2

−Jn2×n1 On2×m1 xIn2 − A(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T xIm2









= xm2 det(S),

where

S =







xIn1 −R(G1) −Jn1×n2

−R(G1)
T xIm1 Om1×n2

−Jn2×n1 On2×m1 xIn2 − A(G2)






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−







On1×m2

Om1×m2

−R(G2)







1

x

(

Om2×n1 Om2×m1 −R(G2)
T
)

=







xIn1 −R(G1) −Jn1×n2

−R(G1)
T xIm1 Om1×n2

−Jn2×n1 On2×m1 xIn2 − A(G2) − 1
x
R(G2)R(G2)

T





 .

Hence,

det(S) = det
(

xIn2 − A(G2) − 1

x
R(G2)R(G2)

T
)

det(W )

=
n2
∏

j=1

(

x − λj(G2) − r2

x
− λj(G2)

x

)

det(W ),

where

W =

(

xIn1 −R(G1)
−R(G1)

T xIm1

)

−
(

−Jn1×n2

Om1×n2

)

(

xIn2 − A(G2) − 1

x
R(G2)R(G2)

T
)−1

(

−Jn2×n1 On2×m1

)

=

(

xIn1 − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)Jn1×n1 −R(G1)

−R(G1)
T xIm1

)

.

Then

det(W ) =xm1 det
(

xIn1 − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)Jn1×n1 − 1

x
R(G1)R(G1)

T
)

=xm1

[

det
(

xIn1 − 1

x
R(G1)R(G1)

T
)

− ΓA(G2)+ 1
x

R(G2)R(G2)T (x)1T
n1

adj
(

xIn1 − 1

x
R(G1)R(G1)

T
)

1n1

]

=xm1 det
(

xIn1 − 1

x
R(G1)R(G1)

T
)

×
[

1 − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)1T
n1

(

xIn1 − 1

x
R(G1)R(G1)

T
)

−1

1n1

]

=xm1

n1
∏

i=1

(

x − r1

x
− λi(G1)

x

)[

1 − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)Γ 1
x

R(G1)R(G1)T (x)
]

=xm1

n1
∏

i=1

(

x − r1

x
− λi(G1)

x

)

[

1 − n2

x − r2 − 2r2

x

n1

x − 2r1

x

]

.

Therefore,

fA(S(G1)∨̈R(G2))(x) =xm1xm2

n1
∏

i=1

(

x − r1

x
− λi(G1)

x

) n2
∏

j=1

(

x − λj(G2) − r2

x
− λj(G2)

x

)
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×
[

1 − n2

x − r2 − 2r2

x

n1

x − 2r1

x

]

=xm1−n1xm2−n2

n1
∏

i=2

¶x2 − r1 − λi(G1)♢

×
n2
∏

j=2

¶x2 − λj(G2)x − r2 − λj(G2)♢

× ¶x4 − r2x
3 − (2r1 + n1n2 + 2r2)x

2 + 2r1r2x + 4r1r2♢,

and the result follows immediately. □

Theorem 2.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨R(G2) consists of:

(i) the eigenvalue ±
√

r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of

A(G1);
(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation x4 −r2x
3 −(2r1 +m1m2 +2r2)x2 +(2r1r2 +m1m2r2)x+

4r1r2 = 0.

Proof. The adjacency characteristic polynomial of S(G1)∨R(G2) is

f
A(S(G1)∨R(G2))

(x)=det









xIn1 −R(G1) On1×n2 On1×m2

−R(G1)T xIm1 Om1×n2 −Jm1×m2

On2×n1 On2×m1 xIn2 − A(G2) −R(G2)
Om2×n1 −Jm2×m1 −R(G2)T xIm2









=xn1 det(S),

where

S =







xIm1 Om1×n2 −Jm1×m2

On2×m1 xIn2 − A(G2) −R(G2)
−Jm2×m1 −R(G2)

T xIm2







−







−R(G1)
T

On2×n1

Om2×n1







1

x

(

−R(G1) On1×n2 On1×m2

)

=







xIm1 − 1
x
R(G1)

T R(G1) Om1×n2 −Jm1×m2

On2×m1 xIn2 − A(G2) −R(G2)
−Jm2×m1 −R(G2)

T xIm2





 .

Hence,

det(S) = det
(

xIm1 − 1

x
R(G1)

T R(G1)
)

det(W )

= det
(

xIm1 − 1

x
(A(LG1) + 2Im1)

)

det(W )



CONSTRUCTION OF SIMULTANEOUS COSPECTRAL GRAPHS 955

= xm1−n1

n1
∏

i=1

(

x − r1

x
− λi(G1)

x

)

det(W ),

where

W =

(

xIn2 − A(G2) −R(G2)
−R(G2)

T xIm2

)

−
(

On2×m1

−Jm2×m1

)

(

xIm1 − 1

x
R(G1)

T R(G1)
)−1

(

Om1×n2 −Jm1×m2

)

=

(

xIn2 − A(G2) −R(G2)
−R(G2)

T xIm2 − Γ 1
x

R(G1)T R(G1)(x)Jm2×m2

)

.

Then

det(S) = det(xIm2 − Γ 1
x

R(G1)T R(G1)(x)Jm2×m2)

× det(xIn2 − A(G2) − R(G2)(xIm2 − Γ 1
x

R(G1)T R(G1)(x)Jm2×m2)−1R(G2)
T )

=xm2

(

1 − Γ 1
x

R(G1)T R(G1)(x)
m2

x

)

det
[

xIn2 − A(G2)

− R(G2)


1

x
Im2 +

Γ 1
x

R(G1)T R(G1)(x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))
Jm2×m2

}

R(G2)
T
]

=xm2

(

1 − Γ 1
x

R(G1)T R(G1)(x)
m2

x

)

det

(

xIn2 − A(G2)

− 1

x
R(G2)R(G2)

T −
Γ 1

x
R(G1)T R(G1)(x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))
R(G2)Jm2×m2R(G2)

T

)

=xm2

(

1 − Γ 1
x

R(G1)T R(G1)(x)
m2

x

)

det

(

xIn2 − A(G2)

− 1

x
R(G2)R(G2)

T − r2
2

Γ 1
x

R(G1)T R(G1)(x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))
Jn2×n2

)

=xm2

(

1 − Γ 1
x

R(G1)T R(G1)(x)
m2

x

)

[

det
(

xIn2 − A(G2) − 1

x
R(G2)R(G2)

T
)

×
r2

2Γ 1
x

R(G1)T R(G1)(x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))
1T

n2
adj

(

xIn2 − A(G2) − 1

x
R(G2)R(G2)

T
)

1n2

]

=xm2

(

1 − Γ 1
x

R(G1)T R(G1)(x)
m2

x

)

det
(

xIn2 − A(G2) − 1

x
R(G2)R(G2)

T
)

×
[

1 −
r2

2Γ 1
x

R(G1)T R(G1))(x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))
1T

n2

×
(

xIn2 − A(G2) − 1

x
R(G2)R(G2)

T
)

−1

1n2

]
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=xm2

(

1 − Γ 1
x

R(G1)T R(G1)(x)
m2

x

)

det
(

xIn2 − A(G2) − 1

x
(r2In2 + A(G2))

)

×
[

1 −
r2

2Γ 1
x

R(G1)T R(G1)(x)ΓA(G2)+ 1
x

R(G2)R(G2)T (x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))

]

=xm2

(

1 − m1m2

x(x − 2r1

x
)

) n2
∏

j=1



x − λj(G2) − 1

x
(r2 + λj(G2))

}

×
[

1 − r2
2m1n2

x(x − 2r1

x
)(x − m1m2

x−
2r1

x

)(x − r2 − 2r2

x
)

]

.

Therefore,

f
A(S(G1)∨R(G2))

(x) =xn1xm1−n1xm2

(

1 − m1m2

x(x − 2r1

x
)

)

n1
∏

i=1

(

x − r1

x
− λi(G1)

x

)

×
n2
∏

j=1



x − λj(G2) − 1

x
(r2 + λj(G2))

}

×





1 − r2
2m1n2

x(x − 2r1

x
)(x − m1m2

x−
2r1

x

)(x − r2 − 2r2

x
)







=xm1−n1xm2−n2

n1
∏

i=2

¶x2 − r1 − λi(G1)♢

×
n2
∏

j=2

¶x2 − λj(G2)x − r2 − λj(G2)♢

× ¶x4 − r2x
3 − (2r1 + m1m2 + 2r2)x

2

+ (2r1r2 + m1m2r2)x + 4r1r2♢,

and hence the result follows. □

Theorem 2.3. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨̇R(G2) consists of:

(i) the eigenvalue ±
√

r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of

A(G1);
(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation x4 − r2x
3 − (2r1 +m1n2 +2r2)x2 +2r1r2x+4r1r2 = 0.

Proof. The proof is similar to that of proof of Theorem 2.2. □

Theorem 2.4. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨̇R(G2) consists of:
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(i) the eigenvalue ±
√

r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of

A(G1);
(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation x4 −r2x
3 −(2r1 +m1n2 +2r2)x2 +(2r1r2 +r2n1m2)x+

4r1r2 = 0.

Proof. The proof is similar to that of proof of Theorem 2.1. □

In the similar way as above we obtain Laplacian and normalized Laplacian spectra
of the partial join graphs, which are given below.

Lemma 2.2. We have the following Laplacian matrices:

(i) L(S(G1)∨̈R(G2)) =











(r1 + n2)In1 −R(G1) −Jn1×n2 On1×m2

−R(G1)
T 2Im1 Om1×n2 Om1×m2

−Jn2×n1 On2×m1 (r2 + n1)In2 + L(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)

T 2Im2











;

(ii) L(S(G1)∨R(G2)) =











r1In1 −R(G1) On1×n2 On1×m2

−R(G1)
T (2 + m2)Im1 Om1×n2 −Jm1×m2

On2×n1 On2×m1 r2In2 + L(G2) −R(G2)
Om2×n1 −Jm2×m1 −R(G2)

T (2 + m1)Im2











;

(iii) L(S(G1)∨̇R(G2)) =









r1In1 −R(G1) On1×n2 On1×m2

−R(G1)T (2 + n2)Im1 −Jm1×n2 Om1×m2

On2×n1 −Jn2×m1 (r2 + m1)In2 + L(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T 2Im2









;

(iv) L(S(G1)∨̇R(G2)) =











(r1 + m2)In1 −R(G1) On1×n2 −Jn1×m2

−R(G1)
T 2Im1 Om1×n2 Om1×m2

On2×n1 On2×m1 r2In2 + L(G2) −R(G2)
−Jm2×n1 Om2×m1 −R(G2)

T (2 + n1)Im2











.

Theorem 2.5. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨̈R(G2) consists of:

(i) roots of the equation x2 − (2 + r1 + n2)x + 2n2 + µi(G1) = 0 for every eigenvalue

µi(G1) ,i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation x2 − (2 + r2 + n1 + µj(G2))x + 2n1 + 3µj(G2) = 0 for every

eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation x4 − (4 + r1 + r2 + n1 + n2)x3 + (4 + 4n1 + 4n2 + 2r1 +
2r2 + r1r2 + r1n1 + r2n2)x

2 − 2(2n1 + 2n2 + r1n1 + r2n2)x = 0.

Theorem 2.6. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨R(G2) consists of:
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(i) roots of the equation x2 −(2+r1 +m2)x+r1m2 +µi(G1) = 0 for every eigenvalue

µi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation x2−(2+r2+m1+µj(G2))x+r2m1+3µj(G2)+m1µj(G2) = 0

for every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 + m2 with multiplicity m1 − n1;

(iv) the eigenvalue 2 + m1 with multiplicity m2 − n2;

(v) four roots of the equation x4 − (4 + r1 + r2 + m1 + m2)x3 + (4 + 2r1 + 2r2 + r1r2 +
r1m1 +r2m2 +2m1 +2m2 +r1m2 +r2m1)x2 −(2r1m2 +2r2m1 +r1r2m1 +r1r2m2)x = 0.

Theorem 2.7. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨̇R(G2) consists of:

(i) roots of the equation x2 − (2 + r1 + n2)x + r1n2 + µi(G1) = 0 for every eigenvalue

µi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation x2 − (2 + r2 + m1 + µj(G2))x + 2m1 + 3µj(G2) = 0 for

every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 + n2 with multiplicity m1 − n1;

(iv) the eigenvalue 2 with multiplicity m2 − n2;

(v) four roots of the equation x4 − (4 + r1 + r2 + m1 + n2)x3 + (4 + 2r1 + 2r2 + 4m1 +
2n2 + r1r2 + r1m1 + r1n2 + r2n2)x

2 − (4m1 + 2r1m1 + 2r1n2 + r1r2n2)x = 0.

Theorem 2.8. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨̇R(G2) consists of:

(i) roots of the equation x2 − (2+r1 +m2)x+2m2 +µi(G1) = 0 for every eigenvalue

µi(G1), i = 2, 3, . . . , n1 of L(G1);
(ii) roots of the equation x2 −(2+r2 +n1 +µj(G2))x+r2n1 +3µj(G2)+n1µj(G2) = 0

for every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 with multiplicity m1 − n1;

(iv) the eigenvalue 2 + n1 with multiplicity m2 − n2;

(v) four roots of the equation x4 − (4 + r1 + r2 + m2 + n1)x3 + (4 + 2r1 + 2r2 + 4m2 +
2n1 + r1r2 + r2m2 + r1n1 + r2n1)x

2 − (4m2 + 2r2m2 + 2r2n1 + r1r2n1)x = 0.

Lemma 2.3. We have the following normalized Laplacian matrices:

(i)

L(S(G1)∨̈R(G2)) =











In1 −cR(G1) −Kn1×n2 On1×m2

−cR(G1)
T Im1 Om1×n2 Om1×m2

−Kn2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 Om2×m1 −dR(G2)

T Im2











,

where Kn1×n2 is the matrix of size n1 × n2 with all entries equal to 1√
(r1+n2)(2r2+n1)

,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries

are r2

2r2+n1
, c is the constant whose value is 1√

2(r1+n2)
, d is the constant whose value

is 1√
2(2r2+n1)

;
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(ii)

L(S(G1)∨R(G2)) =











In1 −cR(G1) On1×n2 On1×m2

−cR(G1)
T Im1 Om1×n2 −Km1×m2

On2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 −Km2×m1 −dR(G2)

T Im2











,

where Km1×m2 is the matrix of size m1 × m2 with all entries equal to 1√
(2+m2)(2+m1)

,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries

are r2

2r2
, c is the constant whose value is 1√

r1(2+m2)
, d is the constant whose value is

1√
2r2(2+m1)

;

(iii)

L(S(G1)∨̇R(G2)) =











In1 −cR(G1) On1×n2 On1×m2

−cR(G1)
T Im1 −Km1×n2 Om1×m2

On2×n1 −Kn2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 Om2×m1 −dR(G2)

T Im2











,

where Km1×n2 is the matrix of size m1 × n2 with all entries equal to 1√
(2+n2)(2r2+m1)

,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries

are r2

2r2+m1
, c is the constant whose value is 1√

r1(2+n2)
, d is the constant whose value

is 1√
2(2r2+m1)

;

(iv)

L(S(G1)∨̇R(G2)) =











In1 −cR(G1) On1×n2 −Kn1×m2

−cR(G1)
T Im1 Om1×n2 Om1×m2

On2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
−Km2×n1 Om2×m1 −dR(G2)

T Im2











,

where Km1×n2 is the matrix of size m1 × n2 with all entries equal to 1√
(2+n1)(r1+m2)

,

B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries

are r2

2r2
, c is the constant whose value is 1√

2(r1+m2)
, d is the constant whose value is

1√
2r2(2+n1)

.

Theorem 2.9. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨̈R(G2) consists of:

(i) roots of the equation 2(r1 + n2)x
2 − 4(r1 + n2)x + 2n2 + r1δi(G1) = 0 for every

eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2r2+n1)x2−2(3r2+2n1+r2δj(G2))x+2n1+3r2δj(G2) = 0

for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation (2r1r2 + r1n1 + 2r2n2 + n1n2)x
4 − (5r1r2 + 3r1n1 +

5r2n2 + 3n1n2)x
3 + (3r1r2 + 3r1n1 + 5r2n2 + 3n1n2)x

2 − (r1n1 + 3r2n2 + n1n2)x = 0.
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Theorem 2.10. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨R(G2) consists of:

(i) roots of the equation (2 + m2)x
2 − 2(2 + m2)x + m2 + δi(G1) = 0 for every

eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2 + m1)x

2 − (6 + 3m1 + 2δj(G2) + m1δj(G2))x + m1 +
3δj(G2) + m1δj(G2) = 0 for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);

(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation 2(4 + 2m1 + 2m2 + m1m2)x
4 − 7(4 + 2m1 + 2m2 +

m1m2)x
3 + (24 + 14m1 + 16m2 + 7m1m2)x

2 − 2(2m1 + 3m2 + m1m2)x = 0.

Theorem 2.11. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨̇R(G2) consists of:

(i) roots of the equation (2+n2)x2 −2(2+n2)x+n2 +δi(G1) = 0 for every eigenvalue

δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2r2+m1)x2−2(3r2+2m1+r2δj(G2))x+2m1+3r2δj(G2) =

0 for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation (4r2 +2r2n2 +2m1 +m1n2)x4 − (10r2 +5r2n2 +6m1 +
3m1n2)x

3 + (6r2 + 5r2n2 + 6m1 + 3m1n2)x
2 − (3r2n2 + 2m1 + m1n2)x = 0.

Theorem 2.12. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨̇R(G2) consists of:

(i) roots of the equation 2(r1 + m2)x2 − 4(r1 + m2)x + 2m2 + r2δi(G1) = 0 for every

eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2 + n1)x

2 − (6 + 3n2 + 2δj(G2) + n1δj(G2))x + n1 +
3δj(G2) + n1δj(G2) = 0 for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);

(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;

(iv) four roots of the equation 2(2r1 + r1n1 + 2m2 + m2n1)x4 − 7(2r1 + r1n1 + 2m2 +
m2n1)x

3 + (12r1 + 7r1n1 + 16m2 + 7m2n1)x
2 − 2(r1n1 + 3m2 + m2n1)x = 0.

3. Simultaneous Cospectral Graphs

In this section we present the main result of the paper. We construct several classes
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. For the construction of these
graphs we consider two pairs of A-cospectral regular graphs, which are readily available
in the literature, for example see [14]. Then we take partial join of subdivision graph
and R-graph belong to different pairs.

The following lemma is immediate from the definition of Laplacian and normalized
Laplacian matrices.

Lemma 3.1. (i) If G is an r-regular graph, then L(G) = rIn − A(G) and L(G) =
In − 1

r
A(G).

(ii) If G1 and G2 are A-cospectral regular graphs, then they are also cospectral with

respect to the Laplacian and normalized Laplacian matrices.
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Observation. From all the theorems given in the previous section we observe
that the adjacency, Laplacian and normalized Lpalacian spectra of all the partial
join graphs S(G1)∨̈R(G2), S(G1)∨R(G2), S(G1)∨̇R(G2), and S(G1)∨̇R(G2), depend
only on the number of vertices, number of edges, degree of regularities, and the
corresponding spectrum of G1 and G2. Furthermore, we note that, although G1 and
G2 are regular graphs, S(G1)∨̈R(G2), S(G1)∨R(G2), S(G1)∨̇R(G2) and S(G1)∨̇R(G2)
are non-regular graphs.

The following theorem is the main result of the paper.

Theorem 3.1. Let Gi, Hi, i = 1, 2 be regular graphs, where G1 need not be dif-

ferent from H1. If G1 and H1 are A-cospectral, and G2 and H2 are A-cospectral

then S(G1)∨̈R(G2) (respectively, S(G1)∨R(G2), S(G1)∨̇R(G2), S(G1)∨̇R(G2)) and

S(H1)∨̈R(H2) (respectively, S(H1)∨R(H2), S(H1)∨̇R(H2), S(H1)∨̇R(H2)) are simul-

taneously A-cospectral, L-cospectral and L-cospectral.

Proof. Follows from Lemma 3.1 and the above observation. □

4. Spanning Trees and Kirchhoff Indices

Applying the results on Laplacian and normalized Laplacian spectra given in Section
2, we find the number of spanning trees and Kirchhoff index of all the partial join
graphs constructed in the paper.

Let t(G) denote the number of spanning trees of G. It is well known [5] that if G

is a connected graph on n vertices with Laplacian spectrum 0 = µ1(G) ≤ µ2(G) ≤
· · · ≤ µn(G), then t(G) = µ2(G)···µn(G)

n
.

The Kirchhoff index of a graph G, denoted by Kf(G), is defined as the sum of
resistances between all pairs of vertices [1, 10] in G. For a connected graph G on n

vertices, the Kirchhoff index [9] can be expressed as Kf(G) = n
∑n

i=2
1

µi(G)
.

Theorem 4.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then

(i) t(S(G1)∨̈R(G2)) =
2m1+m2−n1−n2 ·2(2n1+2n2+r1n1+r2n2)·

n1
∏

i=2

(2n2+µi(G1))·
n2
∏

j=2

(2n1+3µj(G2))

n1+n2+m1+m2
;

(ii)

t(S(G1)∨R(G2)) =(2 + m2)
m1−n1 · (2 + m1)

m2−n2

×

(2r1m2+2r2m1+r1r2m1+r1r2m2)·

n1
∏

i=2

(r1m2+µi(G1))·

n2
∏

j=2

(r2m1+3µj (G2)+m1µj (G2))

n1+n2+m1+m2
;

(iii)

t(S(G1)∨̇R(G2)) =(2 + n2)
m1−n1 · 2m2−n2

×
(4m1+2r1m1+2r1n2+r1r2n2)·

n1
∏

i=2

(r1n2+µi(G1))·

n2
∏

j=2

(2m1+3µj (G2))

n1+n2+m1+m2
;
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(iv)

t(S(G1)∨̇R(G2)) =2m1−n1 · (2 + n1)
m2−n2

×
(4m2+2r2m2+2r2n1+r1r2n1)·

n1
∏

i=2

(2m2+µi(G1))·

n2
∏

j=2

(r2n1+3µj (G2)+n1µj (G2))

n1+n2+m1+m2
.

Theorem 4.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then

(i)

Kf(S(G1)∨̈R(G2)) =(n1 + n2 + m1 + m2)





m1 + m2 − n1 − n2

2

+
4 + 4n1 + 4n2 + 2r1 + 2r2 + r1r2 + r1n1 + r2n2

2(2n1 + 2n2 + r1n1 + r2n2)

+
n1
∑

i=2

2 + r1 + n2

2n2 + µi(G1)
+

n2
∑

j=2

2 + r2 + n1 + µj(G2)

2n1 + 3µj(G2)



;

(ii)

Kf(S(G1)∨R(G2)) =(n1 + n2 + m1 + m2) ×




m1 − n1

2 + m2

+
m2 − n2

2 + m1

+
4 + 2r1 + 2r2 + r1r2 + r1m1 + r2m2+2m1 + 2m2 + r1m2 + r2m1

2r1m2 + 2r2m1 + r1r2m1 + r1r2m2

+
n1
∑

i=2

2 + r1 + m2

r1m2 + µi(G1)
+

n2
∑

j=2

2 + r2 + m1 + µj(G2)

r2m1 + 3µj(G2) + m1µj(G2)



;

(iii)

Kf(S(G1)∨̇R(G2)) =(n1 + n2 + m1 + m2)

×




m1 − n1

2 + n2

+
m2 − n2

2

+
4 + 2r1 + 2r2 + 4m1 + 2n2 + r1r2 + r1m1 + r1n2 + r2n2

4m1 + 2r1m1 + 2r1n2 + r1r2n2

+
n1
∑

i=2

2 + r1 + n2

r1n2 + µi(G1)
+

n2
∑

j=2

2 + r2 + m1 + µj(G2)

2m1 + 3µj(G2)



;

(iv)

Kf(S(G1)∨̇R(G2)) =(n1 + n2 + m1 + m2)

×
(

m1 − n1

2
+

m2 − n2

2 + n1
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+
4 + 2r1 + 2r2 + 4m2 + 2n1 + r1r2 + r2m2 + r1n1 + r2n1

4m2 + 2r2m2 + 2r2n1 + r1r2n1

+
n1
∑

i=2

2 + r1 + m2

2m2 + µi(G1)
+

n2
∑

j=2

2 + r2 + n1 + µj(G2)

r2n1 + 3µj(G2) + n1µj(G2)

)

.

5. Concluding remarks

The main result of the paper is based on regular A-cospectral graphs and certain
operations on a pair of these graphs so that the operated (or resultant) graphs are
non-regular and having adjacency, Laplacian and normalized Laplacian spectra which
depend on only the order, size, degree of regularity and spectrum of the original graphs.
Thus one may search for some other graph operations to construct simultaneous
cospectral graphs like in the paper.

References

[1] D. Bonchev, A. T. Balaban, X. Liu and D. J. Klein, Molecular cyclicity and centricity of

polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Interna-
tional Journal of Quantum Chemistry 50(1) (1994), 1Ű20. https://doi.org/10.1002/qua.

560500102

[2] S. Butler, A note about cospectral graphs for the adjacency and normalized Laplacian ma-

trices, Linear and Multilinear Algebra 58(3) (2010), 387Ű390. https://doi.org/10.1080/

03081080902722741

[3] S. Y. Cui and G. X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear
Algebra Appl. 437(7) (2012), 1692Ű1703. https://doi.org/10.1016/j.laa.2012.05.019

[4] F. R. K. Chung, Spectral Graph Theory, CBMS. Reg. Conf. Ser. Math. 92, AMS, Providence,
RI, 1997.

[5] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, Third
edition, Johann Ambrosius Barth, Heidelberg, 1995.

[6] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra,
Cambridge University Press, Cambridge, 2009.

[7] A. Das and P. Panigrahi. Normalized Laplacian spectrum of some subdivision-coronas of two

regular graphs, Linear and Multilinear Algebra 65(5) (2017), 962Ű972. https://doi.org/10.

1080/03081087.2016.1217976

[8] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[9] I. Gutman and B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, Journal of

Chemical Information and Computer Sciences 36(5) (1996), 982Ű985. https://doi.org/10.

1021/ci960007t

[10] D. J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993), 81Ű95.
[11] X. Liu and P. Lu, Spectra of the subdivision-vertex and subdivision-edge neighbourhood coronae,

Linear Algebra Appl. 438(8) (2013), 3547Ű3559. https://doi.org/10.1016/j.laa.2012.12.

033

[12] X. G. Liu and Z. H. Zhang, Spectra of subdivision-vertex and subdivision-edge joins

of graphs, Bull. Malays. Math. Sci. Soc. 42 (2019), 15Ű31. https://doi.org/10.1007/

s40840-017-0466-z

[13] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435(5) (2011),
998Ű1007. https://doi.org/10.1016/j.laa.2011.02.007

[14] E. R. van Dam and W. H. Haemers, Which graphs are determined by their spectrum?, Linear
Algebra Appl. 373(1) (2003), 241Ű272. https://doi.org/10.1016/S0024-3795(03)00483-X

https://doi.org/10.1002/qua.560500102
https://doi.org/10.1002/qua.560500102
https://doi.org/10.1080/03081080902722741
https://doi.org/10.1080/03081080902722741
https://doi.org/10.1016/j.laa.2012.05.019
https://doi.org/10.1080/03081087.2016.1217976
https://doi.org/10.1080/03081087.2016.1217976
https://doi.org/10.1021/ci960007t
https://doi.org/10.1021/ci960007t
https://doi.org/10.1016/j.laa.2012.12.033
https://doi.org/10.1016/j.laa.2012.12.033
https://doi.org/10.1007/s40840-017-0466-z
https://doi.org/10.1007/s40840-017-0466-z
https://doi.org/10.1016/j.laa.2011.02.007
https://doi.org/10.1016/S0024-3795(03)00483-X


964 A. DAS AND P. PANIGRAHI

1Department of Mathematics,
Indian Institute of Technology Kharagpur,
Kharagpur,India-721302
Email address: arpita.das1201@gmail.com

Email address: pratima@maths.iitkgp.ernet.in



Kragujevac Journal of Mathematics

Volume 47(6) (2023), Pages 965–986.

ON TWO DIFFERENT CLASSES OF WARPED PRODUCT

SUBMANIFOLDS OF KENMOTSU MANIFOLDS

SHYAMAL KUMAR HUI1, MD. HASAN SHAHID2, TANUMOY PAL3, AND JOYDEB ROY1

Abstract. Warped product skew CR-submanifold of the form M = M1 ×f M⊥

of a Kenmotsu manifold M̄ (throughout the paper), where M1 = MT × Mθ and
MT , M⊥, Mθ represents invariant, anti-invariant and proper slant submanifold
of M̄ , studied in [28] and another class of warped product skew CR-submanifold
of the form M = M2 ×f MT of M̄ , where M2 = M⊥ × Mθ is studied in [19].
Also the warped product submanifold of the form M = M3 ×f Mθ of M̄ , where
M3 = MT × M⊥ and MT , M⊥, Mθ represents invariant, anti-invariant and proper
point wise slant submanifold of M̄ , were studied in [18]. As a generalization of the
above mentioned three classes, we consider a class of warped product submanifold
of the form M = M4 ×f Mθ3

of M̄ , where M4 = Mθ1
× Mθ2

in which Mθ1
and Mθ2

are proper slant submanifolds of M̄ and Mθ3
represents a proper pointwise slant

submanifold of M̄ . A characterization is given on the existence of such warped
product submanifolds which generalizes the characterization of warped product
submanifolds of the form M = M1 ×f M⊥, studied in [28], the characterization
of warped product submanifolds of the form M = M2 ×f MT , studied in [19],
the characterization of warped product submanifolds of the form M = M3 ×f Mθ,
studied in [18] and also the characterization of warped product pointwise bi-slant
submanifolds of M̄ , studied in [17]. Since warped product bi-slant submanifolds of
M̄ does not exist (Theorem 4.2 of [17]), the Riemannian product M4 = Mθ1

× Mθ2

cannot be a warped product. So, for studying the bi-warped product submanifolds of
M̄ of the form Mθ1

×f1
Mθ2

×f2
Mθ3

, we have taken Mθ1
, Mθ2

, Mθ3
as pointwise slant

submanifolds of M̄ of distinct slant functions θ1, θ2, θ3 respectively. The existence
of such type of bi-warped product submanifolds of M̄ is ensured by an example.
Finally, a Chen-type inequality on the squared norm of the second fundamental form
of such bi-warped product submanifolds of M̄ is obtained which also generalizes the
inequalities obtained in [33], [18] and [17], respectively.

Key words and phrases. Kenmotsu manifold, pointwise slant submanifolds, warped product, sub-
manifolds, bi-warped product submanifolds.
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1. Introduction

The warped product [5] between two Riemannian manifolds (N1, g1) and (N2, g2)
is the Riemannian manifold N1 ×f N2 = (N1 × N2, g), where

g = π∗

1(g1) + (f ◦ π1)
2π∗

2(g2),

where π1 and π2 are canonical projections of M1 × M2 onto M1 and M2, respectively
and π∗

i (gi) is the pullback of gi via πi for i = 1, 2 and f : N1 → R
+ is a smooth

function.
A warped product manifold N1 ×f N2 is said to be trivial if f is constant. For

M = N1 ×f N2, we have [5]

∇UX = ∇XU = (X ln f)U,(1.1)

for any X ∈ Γ(TN1) and U ∈ Γ(TN2).
The study of warped product submanifold was initiated in [8–10]. Then many

authors have studied warped product submanifolds of different ambient manifolds,
see [15–17, 20]. In [31], Tanno classified almost contact metric manifolds in three
different classes among which the third class was picked up by Kenmotsu in 1972
and he studied its differential geometric properties [21]. This class later named
after him by Kenmotsu manifold which is very important class to study. Warped
product submanifolds of Kenmotsu manifolds are also studied in ([1–3], [22], [23],
[26], [27], [32]-[38]). Multiply warped products (see [11, 12,38]) are generalizations of
warped product and Riemannian product manifolds and bi-warped products are special
classes of multiply warped products. Bi-warped product submanifolds of different
ambient manifolds are studied in [33,35]. For the study of slant immersion and slant
submanifolds in contact metric manifolds we refer [6, 7, 24]. In [29] Park studied
pointwise slant and pointwise semi slant submanifolds of almost contact Riemannian
manifolds.

Recently, Roy et al. studied the characterization theorem on warped product sub-
manifold of Sasakian manifolds in [30]. Motivated by the above studies, in this present
paper we have studied warped product submanifolds of M̄ of the form M = M4 ×f Mθ3

of M̄ such that ξ ∈ Γ(TM4), where M4 = Mθ1
× Mθ2

, Mθ1
, Mθ2

are proper slant
submanifolds of M̄ and here Mθ3

represents a proper pointwise slant submanifold
of M̄ . Next we have studied bi-warped product submanifolds of M̄ of the form
Mθ1

×f1
Mθ2

×f2
Mθ3

, where Mθ1
, Mθ2

, Mθ3
are pointwise slant submanifolds of M̄ of

distinct slant functions θ1, θ2 and θ3, respectively.
The paper is organized as follows. Section 2 deals with some preliminary useful

results for construction of the paper, Section 3 is concerned with the study of a class
of submanifold M of M̄ such that TM = D

θ1 ⊕ D
θ2 ⊕ D

θ3 ⊕ ⟨ξ⟩, where D
θ1 ,Dθ2

are slant distributions and D
θ3 is pointwise slant distribution. In Section 4, we have

studied warped product submanifolds of the form M = M4 ×f Mθ3
of M̄ where

M4 = Mθ1
× Mθ2

such that ξ is orthogonal to Mθ3
with an supporting example.

In Section 5, a characterization theorem of the mentioned class has been obtained,
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Section 6 deals with bi-warped product submanifolds M = Mθ1
×f1

Mθ2
×f2

Mθ3
of

M̄ , where Mθ1
, , Mθ2

, Mθ3
are pointwise slant submanifolds of M̄ and constructed an

example. In Section 7, we have obtained a generalized inequality for such class of
bi-warped product submanifolds of M̄ . The last section is the conclusion part of the
paper where we have shown how the results of this paper generalizes several results
of different works.

2. Preliminaries

An odd dimensional smooth manifold M̄2m+1 is said to be an almost contact metric
manifold [4] if it admits a (1, 1) tensor field ϕ, a vector field ξ, an 1-form η and a
Riemannian metric g which satisfy

ϕξ =0, η(ϕX) = 0, ϕ2X = −X + η(X)ξ,(2.1)

g(ϕX, Y ) = − g(X, ϕY ), η(X) = g(X, ξ), η(ξ) = 1,(2.2)

g(ϕX, ϕY ) =g(X, Y ) − η(X)η(Y ),(2.3)

for all vector fields X, Y on M̄2m+1.
An almost contact metric manifold M̄2m+1(ϕ, ξ, η, g) is said to be Kenmotsu mani-

fold if the following conditions hold [21]:

∇̄Xξ =X − η(X)ξ,(2.4)

(∇̄Xϕ)(Y ) =g(ϕX, Y )ξ − η(Y )ϕX,(2.5)

where ∇̄ denotes the Riemannian connection of g.
Let M be an n-dimensional submanifold of a Kenmotsu manifold M̄ . Throughout

the paper we assume that the submanifold M of M̄ is tangent to the structure vector
field ξ.

Let ∇ and ∇⊥ be the induced connections on the tangent bundle TM and the
normal bundle T ⊥M of M respectively. Then the Gauss and Weingarten formulae
are given by

(2.6) ∇̄XY = ∇XY + h(X, Y )

and

(2.7) ∇̄XV = −AV X + ∇⊥

XV,

for all X, Y ∈ Γ(TM) and V ∈ Γ(T ⊥M), where h and AV are second fundamental
form and the shape operator (corresponding to the normal vector field V ) respectively
for the immersion of M into M̄ . The second fundamental form h and the shape
operator AV are related by g(h(X, Y ), V ) = g(AV X, Y ) for any X, Y ∈ Γ(TM) and
V ∈ Γ(T ⊥M), where g is the Riemannian metric on M̄ as well as on M .

The mean curvature H of M is given by H = 1

n
trace h. A submanifold of a

Kenmotsu manifold M̄ is said to be totally umbilical if h(X, Y ) = g(X, Y )H for any
X, Y ∈ Γ(TM). If h(X, Y ) = 0 for all X, Y ∈ Γ(TM), then M is totally geodesic and
if H = 0, then M is minimal in M̄ .
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Let ¶e1, . . . , en♢ be an orthonormal basis of the tangent bundle TM and ¶en+1, . . . ,

e2m+1♢ an orthonormal basis of the normal bundle T ⊥M . We put

hr
ij = g(h(ei, ej), er) and ∥h∥2 = g(h(ei, ej), h(ei, ej)),

for r ∈ ¶n + 1, . . . , 2m + 1♢, i, j = 1, 2, . . . , n.

For a differentiable function f on M , the gradient ∇f is defined by

g(∇f, X) = Xf,

for any X ∈ Γ(TM). As a consequence, we get

(2.8) ∥∇f∥2 =
n
∑

i=1

(ei(f))2.

For any X ∈ Γ(TM) and V ∈ Γ(T ⊥M), we can write
(a) ϕX = PX + QX;
(b) ϕV = bV + cV ,

where PX, bV are the tangential components and QX, cV are the normal components.
A submanifold M of an almost contact metric manifold M̄ is said to be slant if for

each non-zero vector X ∈ TpM , the angle θ between ϕX and TpM is constant, i.e., it
does not depend on the choice of p ∈ M .

A submanifold M of an almost contact metric manifold M̄ is said to be pointwise
slant [13] if for any non-zero vector X ∈ TpM at p ∈ M , such that X is not proportional
to ξp, the angle θ(X) between ϕX and T ∗

p M = TpM −¶0♢ is independent of the choice
of non-zero X ∈ T ∗

p M .
For pointwise slant submanifold, θ is a function on M , which is known as slant

function of M . Invariant and anti-invariant submanifolds are particular cases of
pointwise slant submanifolds with slant function θ = 0 and π

2
respectively. Also a

pointwise slant submanifold M will be slant if θ is constant on M . Thus a pointwise
slant submanifold is proper if neither θ = 0, π

2
nor constant. It may be noted that

[25] M is a pointwise slant submanifold of M̄ if and only if exists a constant λ ∈ [0, 1]
such that

(2.9) P 2 = λ(−I + η ⊗ ξ).

Furthermore, λ = cos2 θ for slant function θ. If M be a pointwise slant submanifold
of M̄ , then we have [34]:

(2.10) bQX = sin2 θ¶−X + η(X)ξ♢, cQX = −QPX.

Let M1, M2, M3 be Riemannian manifolds and let M = M1 ×f1
M2 ×f2

M3 be the
product manifold of M1, M2, M3 such that f1, f2 : M1 → R

+ are real valued smooth
functions. For each i, denote by πi : M → Mi the canonical projection of M onto Mi,
i = 1, 2, 3. Then the metric on M , called a bi-warped metric is given by

g(X, Y ) = g(π1∗
X, π2∗

Y ) + (f1 ◦ π1)
2g(π2∗

X, π2∗
Y ) + (f2 ◦ π1)

2g(π3∗
X, π3∗

Y ),
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for any X, Y ∈ Γ(TM) and ∗ denotes the symbol for tangent maps. The manifold M

endowed with this product metric is called a bi-warped product manifold. Here f1, f2

are non-constant functions, called warping functions on M . Clearly, if both f1, f2 are
constant on M , then M is simply a Riemannian product manifold and if anyone of
the functions is constant, then M is a single warped product manifold. If neither f1

nor f2 is constant, then M is a proper bi-warped product manifold.
Let M = M1 ×f1

M2 ×f2
M3 be a warped product submanifold of M̄ . Then we have

[35]

∇XZ =
2
∑

i=1

(X(ln fi))Z
i,

for any X ∈ D
1, the tangent space of M1 and Z ∈ Γ(TN), where N =f1

M2 ×f2
M3

and Zi is Mi components of Z for each i = 2, 3 and ∇ is the Levi-Civita connection
on M .

3. Submanifolds of M̄

In this section we consider submanifold M of M̄ such that

TM =D
θ1 ⊕ D

θ2 ⊕ D
θ3 ⊕ ⟨ξ⟩,

T ⊥M =QD
θ1 ⊕ QD

θ2 ⊕ QD
θ3 ⊕ ν,

where ν is a ϕ-invariant normal subbundle of T ⊥M .
If M is such submanifold of M̄ , then for any X ∈ Γ(TM) we have

(3.1) X = T1X + T2X + T3X,

where T1, T2 and T3 are the projections from TM onto D
θ1 , Dθ2 and D

θ3 , respectively.
If we put P1 = T1 ◦ P , P2 = T2 ◦ P and P3 = T3 ◦ P then from (3.1), we get

(3.2) ϕX = P1X + P2X + P3X + QX,

for X ∈ Γ(TM).
From (2.9) and (3.2), we get

(3.3) P 2

i = cos2 θi(−I + η ⊗ ξ), for i = 1, 2, 3.

Now for the sake of further study we obtain the following useful results.

Lemma 3.1. Let M be a submanifold of M̄ such that TM = D
θ1 ⊕ D

θ2 ⊕ D
θ3 and

ξ ∈ Γ(Dθ1 ⊕ D
θ2) then the following relations hold:

(sin2 θ1 − sin2 θ3)g(∇X1
Y1, X3) =g(AQP1Y1

X3 − AQY1
P3X3, X1)(3.4)

+ g(AQP3X3
Y1 − AQX3

P1Y1, X1),

(sin2 θ2 − sin2 θ3)g(∇X2
Y2, X3) =g(AQP2Y2

X3 − AQY2
P3X3, X2)(3.5)

+ g(AQP3X3
Y2 − AQX3

P2Y2, X2),

(sin2 θ2 − sin2 θ3)g(∇X1
X2, X3) =g(AQP2X2

X3 − AQX2
P3X3, X1)(3.6)

+ g(AQP3X3
X2 − AQX3

P2X2, X1),
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(sin2 θ1 − sin2 θ3)g(∇X2
X1, X3) =g(AQP1X1

X3 − AQX1
P3X3, X2)(3.7)

+ g(AQP3X3
X1 − AQX3

P1X1, X2),

for any X1, Y1 ∈ Γ(Dθ1 ⊕ ⟨ξ⟩), X2, Y2 ∈ Γ(Dθ2 ⊕ ⟨ξ⟩) and X3 ∈ Γ(Dθ3).

Proof. For any X1, Y1 ∈ Γ(Dθ1 ⊕ ⟨ξ⟩) and X3 ∈ Γ(Dθ3), we have from (2.3), (2.5) and
(3.2) that

g(∇X1
Y1, X3) =g(∇̄X1

P1Y1, ϕX3) + g(∇̄X1
QY1, ϕX3)

= − g(ϕ∇̄X1
P1Y1, X3) + g(∇̄X1

QY1, P3X3) + g(∇̄X1
QY1, QX3)

= − g(∇̄X1
P 2

1 Y1, X3) − g(∇̄X1
QP1Y1, X3) + g((∇̄X1

ϕ)P1Y1, X3)

+ g(∇̄X1
QY1, P3X3) − g(∇̄X1

QX3, ϕY1) + g(∇̄X1
QX3, P1Y1)

= − g(∇̄X1
P 2

1 Y1, X3) − g(∇̄X1
QP1Y1, X3) + g(∇̄X1

QY1, P3X3)

+ g(∇̄X1
bQX3, Y1) + g(∇̄X1

cQX3, Y1) + g(∇̄X1
QX3, P1Y1).

Using (2.7), (2.10) and (3.3), the above equation reduces to

g(∇X1
Y1, X3) = cos2 θ1g(∇̄X1

Y1, X3) + g(AQP1Y1
X3, X1) − g(AQY1

P3X3, X1)

+ sin2 θ3g(∇̄X1
Y1, X3) + g(AQP3X3

Y1, X1) − g(AQX3
P1Y1, X1),

from which the relation (3.4) follows.
The relations (3.5)–(3.7) follow similarly. □

Lemma 3.2. Let M be a submanifold of M̄ where TM = D
θ1 ⊕ D

θ2 ⊕ D
θ3 such that

ξ ∈ Γ(Dθ1 ⊕ D
θ2). Then the following relations hold:

(sin2 θ3 − sin2 θ1)g(∇X3
Y3, X1) =g(AQP3Y3

X1 − AQY3
P1X1, X3)(3.8)

+ g(AQP1X1
Y3 − AQX1

P3Y3, X3)

+ (cos2 θ3 − cos2 θ1)η(X1)g(X3, Y3),

(sin2 θ3 − sin2 θ2)g(∇X3
Y3, X2) =g(AQP3Y3

X2 − AQY3
P2X2, X3)(3.9)

+ g(AQP2X2
Y3 − AQX2

P3Y3, X3)

+ (cos2 θ3 − cos2 θ2)η(X2)g(X3, Y3),

for any X1 ∈ Γ(Dθ1 ⊕ ⟨ξ⟩), X2 ∈ Γ(Dθ2 ⊕ ⟨ξ⟩) and X3, Y3 ∈ Γ(Dθ3).

Proof. For any X1 ∈ Γ(Dθ1 ⊕ ⟨ξ⟩) and X3, Y3 ∈ Γ(Dθ3), we have from (2.3), (2.5) and
(3.2) that

g(∇X3
Y3, X1) =g(∇̄X3

P3Y3, ϕX1) + g(∇̄X3
QY3, ϕX1) − η(X1)g(X3, Y3)

= − g(ϕ∇̄X3
P3Y3, X1) + g(∇̄X3

QY3, P1X1)

+ g(∇̄X3
QY3, QX1) − η(X1)g(X3, Y3)

= − g(∇̄X3
P 2

3 Y3, X1) − g(∇̄X3
QP3Y3, X1) + g((∇̄X3

ϕ)P3Y3, X1)

+ g(∇̄X3
QY3, P1X1) − g(∇̄X3

QX1, ϕY3)
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+ g(∇̄X3
QX1, P3Y3) − η(X1)g(X3, Y3)

= cos2 θ3g(∇̄X3
Y3, X1) − sin 2θ3X3(θ3)g(Y3, X1)

+ cos2 θ3η(X1)g(X3, Y3) − g(∇̄X3
QP3Y3, X1)

+ g(∇̄X3
QY3, P1X1) + g(∇̄X3

bQX1, Y3) + g(∇̄X3
cQX1, Y3)

− g((∇̄X3
ϕ)QX1, Y3) + g(∇̄X3

QX1, P3Y3) − η(X1)g(X3, Y3).

Using (2.5), (2.7), (2.10), orthogonality of the distributions and symmetry of the
shape operator, the above equation reduces to

g(∇X3
Y3, X1) = cos2 θ3g(∇̄X3

Y3, X1) + cos2 θ3η(X1)g(X3, Y3)

+ g(AQP3Y3
X1, X3) − g(AQY3

P1X1, X3)

+ sin2 θ1g(∇̄X1
Y3, X1) + g(AQP1X1

Y3, X3)

− g(AQX1
P3Y3, X3) − cos2 θ1η(X1)g(X3, Y3).

Following the same computational procedure for any X2 ∈ Γ(Dθ2 ⊕ ⟨ξ⟩) and X3, Y3 ∈
Γ(Dθ3) we can establish the relation (3.9). And hence, the lemma is proved. □

4. Warped Product Submanifolds of Kenmotsu Manifolds

In this section we study warped product submanifolds of the form M = M4 ×f Mθ3

of M̄ where M4 = Mθ1
× Mθ2

such that ξ is orthogonal to Mθ3
. Here Mθ1

, Mθ2

represents proper slant submanifolds of M̄ with slant angles θ1, θ2, respectively and
Mθ3

represents pointwise-slant submanifolds of M̄ with slant function θ3.
Now we construct an example of a non-trivial warped product submanifold M of

M̄ of the form M4 ×f Mθ3
.

Example 4.1. Consider the Kenmotsu manifold M = R ×f C
7 with the structure

(ϕ, ξ, η, g) is given by

ϕ

(

7
∑

i=1

(Xi

∂

∂xi

+ Yi

∂

∂yi

) + Z
∂

∂t



=
7
∑

i=1

(

Xi

∂

∂yi

− Yi

∂

∂xi



,

ξ = ∂
∂t

, η = dt and g = η ⊗ η +
∑

7
i=1(dxi ⊗ dxi + dyi ⊗ dyi). Let M be a submanifold

of M̄ defined by the immersion χ as follows:

χ(u, v, θ, ϕ, r, s, t)

=(u cos θ, u sin θ, 2u + 3v, 3u + 2v, v cos ϕ, v sin ϕ, 3θ + 5ϕ, 5θ + 3ϕ, v cos θ, v sin θ,

u cos ϕ, u sin ϕ, 2r + 5s, 5r + 2s, t).

Then the local orthonormal frame of TM is spanned by the following:

Z1 = cos θ
∂

∂x1

+ sin θ
∂

∂y1

+ 2
∂

∂x2

+ 3
∂

∂y2

+ cos ϕ
∂

∂x6

+ sin ϕ
∂

∂y6

,

Z2 = 3
∂

∂x2

+ 2
∂

∂y2

+ cos ϕ
∂

∂x3

+ sin ϕ
∂

∂y3

+ cos θ
∂

∂x5

+ sin θ
∂

∂y5

,
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Z3 = −u sin θ
∂

∂x1

+ u cos θ
∂

∂y1

+ 3
∂

∂x4

+ 5
∂

∂y4

− v sin θ
∂

∂x5

+ v cos θ
∂

∂y5

,

Z4 = −v sin ϕ
∂

∂x3

+ v cos ϕ
∂

∂y3

+ 5
∂

∂x4

+ 3
∂

∂y4

− u sin ϕ
∂

∂x6

+ u cos ϕ
∂

∂y6

,

Z5 = 2
∂

∂x7

+ 5
∂

∂y7

, Z6 = 5
∂

∂x7

+ 2
∂

∂y7

and Z7 =
∂

∂t
.

Then

ϕZ1 = cos θ
∂

∂y1

− sin θ
∂

∂x1

+ 2
∂

∂y2

− 3
∂

∂x2

+ cos ϕ
∂

∂y6

− sin ϕ
∂

∂x6

,

ϕZ2 = 3
∂

∂y2

− 2
∂

∂x2

+ cos ϕ
∂

∂y3

− sin ϕ
∂

∂x3

+ cos θ
∂

∂y5

− sin θ
∂

∂x5

,

ϕZ3 = −u sin θ
∂

∂y1

− u cos θ
∂

∂x1

+ 3
∂

∂y4

− 5
∂

∂x4

− v sin θ
∂

∂y5

− v cos θ
∂

∂x5

,

ϕZ4 = −v sin ϕ
∂

∂y3

− v cos ϕ
∂

∂x3

+ 5
∂

∂y4

− 3
∂

∂x4

− u sin ϕ
∂

∂y6

− u cos ϕ
∂

∂x6

,

ϕZ5 = 2
∂

∂y7

− 5
∂

∂x7

and ϕZ6 = 5
∂

∂y7

− 2
∂

∂x7

.

We take, Dθ1 = Span¶Z1, Z2♢ , Dθ2 = Span¶Z5, Z6♢ and D
θ3 = Span¶Z3, Z4♢. Then

it is clear that D
θ1 and D

θ2 are proper slant distributions with slant angles cos−1 1

3

and cos−1 21

29
, respectively. Also, Dθ3 is a proper pointwise slant distribution with slant

function cos−1( 16

u2+v2+34
).

Clearly, Dθ1 , Dθ2 and D
θ3 are integrable distributions. Let us say that M4 and Mθ3

are integral submanifolds of Dθ1 ⊕ D
θ2 ⊕ ⟨ξ⟩ and D

θ3 , respectively. Then the metric
tensor gM of M is given by

gM = 15(du2 + dv2) + 29(dr2 + ds2) + (u2 + v2 + 34)(dθ2 + dϕ2)

= gM4
+ (u2 + v2 + 34)gMθ3

.

Thus M = M4 ×f Mθ3
is a warped product submanifold of M̄ with the warping

function f =
√

u2 + v2 + 34.

Next we obtain the following useful lemmas.

Lemma 4.1. Let M = M4 ×f Mθ3
be a warped product submanifold of M̄ such that

ξ ∈ M4, where M4 = Mθ1
× Mθ2

, Mθ1
, Mθ2

are proper slant submanifolds and Mθ3
is

a proper pointwise slant submanifold of M̄ , then

ξ ln f = 1,(4.1)

g(h(X1, Y1), QX3) = g(h(X1, X3), QY1),(4.2)

g(h(X2, Y2), QX3) = g(h(X2, X3), QY2),(4.3)

g(h(X1, X3), QX2) = g(h(X1, X2), QX3) = g(h(X2, X3), QX1),(4.4)

for X1, Y1 ∈ Mθ1
, X2, Y2 ∈ Mθ2

and X3, Y3 ∈ Mθ3
.
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Proof. The proof of (4.1) is similar as in [28].
Now, for X1, Y1 ∈ Mθ1

and X3 ∈ Mθ3
, we have from (2.5) and (3.3) that

g(h(X1, X3), QY1) = − g(∇̄X1P3X3, Y1) − g(∇̄X1QX3, Y1) − g(∇̄X1
X3, P1Y1).(4.5)

Then using (1.1) in (4.5), we get (4.2).
Proceeding the same, for any X2, Y2 ∈ Mθ2

and X3 ∈ Mθ3
, we get (4.2).

Again, for any X1 ∈ Mθ1
, X2 ∈ Mθ2

and X3 ∈ Mθ3
we have from (2.5) and (3.3)

that

g(h(X1, X3), QX2) = − g(∇̄X3
P1X1, X2) − g(∇̄X3

QX1, X2) − g(∇̄X3
X1, P2X2).

(4.6)

Using (1.1) in (4.6), we find

(4.7) g(h(X1, X3), QX2) = g(h(X2, X3), QX1).

Also,

g(h(X1, X2), QX3) = − g(∇̄X1
P2X2, X3) − g(∇̄X1

P2X2, X3) − g(∇̄X1
X2, P3X3).

(4.8)

Using (1.1) in (4.8), we get

(4.9) g(h(X1, X2), QX3) = g(h(X1, X3), QX2).

Combining (4.7) and (4.9), we obtain (4.4). This completes the proof. □

Lemma 4.2. Let M = M4 ×f Mθ3
be a warped product submanifold of M̄ such that

ξ ∈ M4, where M4 = Mθ1
× Mθ2

, Mθ1
, Mθ2

are proper slant submanifolds and Mθ3
is

a proper pointwise slant submanifold of M̄ , then

g(h(X3, X1), QY3) − g(h(X3, Y3), QX1)(4.10)

=¶(X1 ln f) − η(X1)♢g(P3X3, Y3) − (P1X1 ln f)g(X3, Y3),

g(h(X3, X2), QY3) − g(h(X3, Y3), QX2)(4.11)

=¶(X2 ln f) − η(X2)♢g(P3X3, Y3) − (P2X2 ln f)g(X3, Y3),

g(h(X3, Y3), QP1X1) − g(h(P3Y3, X3), QX1)(4.12)

+ g(h(X1, X3), QP3Y3) − g(h(P1X1, X3), QY3)

=(cos2 θ1 − cos2 θ3)[η(X1) − (X1 ln f)]g(X3, Y3),

g(h(X3, Y3), QP2X2) − g(h(P3Y3, X3), QX2)(4.13)

+ g(h(X2, X3), QP3Y3) − g(h(P2X2, X3), QY3)

=(cos2 θ2 − cos2 θ3)[η(X2) − (X2 ln f)]g(X3, Y3),

for X1 ∈ Mθ1
, X2 ∈ Mθ2

and X3, Y3 ∈ Mθ3
.

Proof. From (2.5) and (3.3), we have for X1 ∈ Mθ1
and X3, Y3 ∈ Mθ3

that

g(h(X3, Y3), QX1) = − g(∇̄X3
X1, P3Y3) − g(∇̄X3

QY3, X1)(4.14)

+ η(X1)g(ϕX3, Y3) + g(∇̄X3
P1X1, Y3).
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Using (2.7) and (1.1) in (4.14), we get (4.10). Following the same procedure, for any
X2 ∈ Mθ2

and X3, Y3 ∈ Mθ3
we easily obtain (4.11).

Next, replacing X1 by P1X1 and Y3 by P3Y3 in (4.10), respectively and then adding
the obtained equations, we get (4.12). Similarly, replacing X2 by P2X2 and Y3 by P3Y3

in (4.11), respectively and then adding the obtained equations, we get (4.13). □

5. Characterization

We prove the following theorem.

Theorem 5.1. Let M be a submanifold of M̄ such that TM = D
θ1 ⊕ D

θ2 ⊕ D
θ3

with ξ orthogonal to D
θ3, then M is locally a warped product submanifold of the form

M = M4 ×f Mθ3
where M4 = Mθ1

× Mθ2
if and only if

AQP1X1
Y3 − AQX1

P3Y3 + AQP3Y3
X1 − AQY3

P1X1(5.1)

=(cos2 θ3 − cos2 θ1)[X1µ − η(X1)]Y3,

AQP2X2
Y3 − AQX2

P3Y3 + AQP3Y3
X2 − AQY3

P2X2(5.2)

=(cos2 θ3 − cos2 θ2)[X2µ − η(X2)]Y3,

ξµ =1,(5.3)

for every X1 ∈ Γ(Dθ1), X2 ∈ Γ(Dθ2), X3 ∈ Γ(Dθ3) and for some smooth function µ

on M satisfying where (Y3µ) = 0 for any Y3 ∈ Γ(Dθ3).

Proof. Let M = M4 ×f Mθ3
be a proper warped product submanifold of M̄ such that

M4 = Mθ1
× Mθ2

. Denote the tangent space of Mθ1
, Mθ2

and Mθ3
by D

θ1 , Dθ2 and
D

θ3 respectively. Then from (4.2) we get

(5.4) g(AQP1X1
Y3 − AQX1

P3Y3 + AQP3Y3
X1 − AQY3

P1X1, X1) = 0.

Similarly, from (4.4) we get

(5.5) g(AQP1X1
Y3 − AQX1

P3Y3 + AQP3Y3
X1 − AQY3

P1X1, X2) = 0.

So, from (5.4) and (5.5) we conclude that

(5.6) AQP1X1
Y3 − AQX1

P3Y3 + AQP3Y3
X1 − AQY3

P1X1 ∈ D
θ3 .

Hence, from (4.12) and (5.6), relation (5.1) follows.
In similar way, in view of (4.3), (4.4) and (4.13) we get (5.2). The relation (5.3) is

directly obtained from (4.1).
Conversely, let M be a submanifold of M̄ such that TM = D

θ1 ⊕D
θ2 ⊕D

θ3 with ξ

orthogonal to D
θ3 and the conditions (5.1)–(5.3) satisfied. Then from (3.4) and (3.7),

in view of (5.1), respectively we get

(5.7) g(∇X1
Y1, X3) = 0 and g(∇X2

X1, X3) = 0,

and also from (3.5), (3.6) in view of (5.2), respectively we get

(5.8) g(∇X2
Y2, X3) = 0 and g(∇X1

X2, X3) = 0.
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Thus, from (5.7), (5.8) and the fact that ∇X3
ξ = 0 we conclude that g(∇EF, X3) = 0

for every E, F ∈ Γ(Dθ1 ⊕ D
θ2 ⊕ ⟨ξ⟩). Hence the leaves of Dθ1 ⊕ D

θ2 ⊕ ⟨ξ⟩ are totally
geodesic in M .

Now, by virtue of (3.8), (5.1) yields

(5.9) g([X3, Y3], X1) = 0,

and by virtue of (3.9), (5.2) yields

(5.10) g([X3, Y3], X2) = 0.

Hence, from (5.9), (5.10) and the fact that h(A, ξ) = 0, for all A ∈ TM , we conclude
that

g([X3, Y3], E) = 0, for all X3, Y3 ∈ Γ(Dθ3),

and E ∈ Γ(Dθ1 ⊕ D
θ2 ⊕ ⟨ξ⟩), consequently D

θ3 is integrable.
Let hθ3 be the second fundamental form of Mθ3

in M̄ . Then for any X3, Y3 ∈ Γ(Dθ3)
and X1 ∈ Γ(Dθ1), from (3.8), we find

(5.11) g(hθ3(X3, Y3), X1) = −(X1µ)g(X3, Y3).

Similarly, for X2 ∈ Γ(Dθ2), from (3.9) we get

(5.12) g(hθ3(X3, Y3), X2) = −(X2µ)g(X3, Y3).

Again, for any X3, Y3 ∈ Γ(Dθ3), in view of (5.3) we have

(5.13) g(hθ3(X3, Y3), ξ) = −(ξµ)g(X3, Y3).

Hence, from (5.11)–(5.13) we conclude that

g(hθ(X3, Y3), E) = −g(∇µ, E)g(X3, Y3),

for every X3, Y3 ∈ Γ(Dθ3) and E ∈ Γ(Dθ1 ⊕ D
θ2⊕, ⟨ξ⟩). Consequently, Mθ3

is totally
umbilical in M̄ with mean curvature vector Hθ3 = −∇µ.

Finally, we will show that Hθ3 is parallel with respect to the normal connection ∇⊥

of Mθ3
in M . We take E ∈ Γ(Dθ1 ⊕ D

θ3 ⊕ ⟨ξ⟩) and X3 ∈ Γ(Dθ3), then we have

g(∇⊥

X3
∇µ, E) = g(∇X3

∇
θ1µ, X1) + g(∇X3

∇
θ2µ, X2) + g(∇X3

∇
ξµ, ξ),

where ∇
θ1 , ∇

θ2 and ∇
ξ are the gradient components of µ on M along D

θ1 ,Dθ2 and
⟨ξ⟩ respectively. Then by the property of Riemannian metric, the above equation
reduces to

g(∇⊥

U∇µ, E) =X3g(∇θ1µ, X1) − g(∇θ1µ, ∇X3
X1) + X3g(∇θ2µ, X2)

− g(∇θ2µ, ∇X3
X2) + X3g(∇ξµ, ξ) − g(∇ξµ, ∇X3

ξ)

=X3(X1µ) − g(∇θ1µ, [X3, X1]) − g(∇θ1µ, ∇X1
X3)

+ X3(X2µ) − g(∇θ2µ, [X3, X2]) − g(∇θ2µ, ∇X2
X3)

+ X3(ξµ) − g(∇ξµ, [X3, ξ]) − g(∇ξµ, ∇ξX3)

=X1(X3µ) + g(∇X1
∇

θ1µ, X3) + X2(X3µ)
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+ g(∇X2
∇

θ2µ, X3) + ξ(X3µ) − g(∇ξ∇
ξµ, X3)

=0,

since (X3µ) = 0 for every X3 ∈ Γ(Dθ3) and ∇X1
∇

θ1µ + ∇X2
∇

θ2µ + ∇ξ∇
ξµ = ∇E∇µ

is orthogonal to D
θ3 for any E ∈ Γ(Dθ1 ⊕ D

θ2 ⊕ ⟨ξ⟩) and ∇µ is the gradient along
M4 and M4 is totally geodesic in M̄ . Hence, the mean curvature vector Hθ3 of Mθ3

is parallel. Thus, Mθ3
is an extrinsic sphere in M . Hence, by Hiepko’s Theorem (see

[14]), M is locally a warped product submanifold. Thus, the proof is complete. □

6. Bi-Warped Product Submanifolds

In this section we have studied bi-warped product submanifolds M = Mθ1
×f1

Mθ2
×f2

Mθ3
of M̄ , where Mθ1

, Mθ2
, Mθ3

are pointwise slant submanifolds of M̄ and
an supporting example has been constructed. We denote Dθ1 , Dθ2 , D

θ3 as the tangent
spaces of Mθ1

, Mθ2
, Mθ3

, respectively.
Then we write

TM = D
θ1 ⊕ D

θ2 ⊕ D
θ3 ⊕ ⟨ξ⟩

and

T ⊥M = QD
θ1 ⊕ QD

θ2 ⊕ QD
θ3 .

Example 6.1. Consider the Kenmotsu manifold M = R ×f C
10 with the structure

(ϕ, ξ, η, g) is given by

ϕ

(

10
∑

i=1

(

Xi

∂

∂xi

+ Yi

∂

∂yi



+ Z
∂

∂t



=
10
∑

i=1

(

Xi

∂

∂yi

− Yi

∂

∂xi



,

ξ = ∂
∂t

, η = dt and g = η ⊗ η +
∑

10
i=1(dxi ⊗ dxi + dyi ⊗ dyi). Let M be a submanifold

of M̄ defined by the immersion χ as follows:

χ(u, v, θ, ϕ, r, s, t)

=(u cos θ, u sin θ, v cos ϕ, v sin ϕ, 3θ + 5ϕ, 5θ + 3ϕ, v cos θ, v sin θ, u cos ϕ, u sin ϕ, u cos r,

v cos s, u sin r, v sin s, 3r + 2s, 2r + 3s, u cos s, v cos r, u sin s, v sin r, t).

Then the local orthonormal frame of TM is spanned by the following:

Z1 = cos θ
∂

∂x1

+ sin θ
∂

∂y1

+ cos ϕ
∂

∂x5

+ sin ϕ
∂

∂y5

+ cos r
∂

∂x6

+ sin r
∂

∂x7

+ cos s
∂

∂x9

+ sin s
∂

∂x10

,

Z2 = cos ϕ
∂

∂x2

+ sin ϕ
∂

∂y2

+ cos θ
∂

∂x4

+ sin θ
∂

∂y4

+ cos s
∂

∂y6

+ sin s
∂

∂y7

+ cos r
∂

∂y9

+ sin r
∂

∂y10

,

Z3 = − u sin θ
∂

∂x1

+ u cos θ
∂

∂y1

+ 3
∂

∂x3

+ 5
∂

∂y3

− v sin θ
∂

∂x4

+ v cos θ
∂

∂y4

,
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Z4 = − v sin ϕ
∂

∂x2

+ v cos ϕ
∂

∂y2

+ 5
∂

∂x3

+ 3
∂

∂y3

− u sin ϕ
∂

∂x5

+ u cos ϕ
∂

∂y5

,

Z5 = − u sin r
∂

∂x6

+ u cos r
∂

∂x7

+ 3
∂

∂x8

+ 2
∂

∂y8

− v sin r
∂

∂y9

+ v cos r
∂

∂y10

,

Z6 =V − Xv sin s
∂

∂y6

+ v cos s
∂

∂y7

+ 2
∂

∂x8

+ 3
∂

∂y8

− u sin s
∂

∂x9

+ u cos s
∂

∂x10

and

Z7 =
∂

∂t
.

Then

ϕZ1 = cos θ
∂

∂y1

− sin θ
∂

∂x1

+ cos ϕ
∂

∂y5

− sin ϕ
∂

∂x5

+ cos r
∂

∂y6

+ sin r
∂

∂y7

+ cos s
∂

∂y9

+ sin s
∂

∂y10

,

ϕZ2 = cos ϕ
∂

∂y2

− sin ϕ
∂

∂x2

+ cos θ
∂

∂y4

− sin θ
∂

∂x4

− cos s
∂

∂x6

− sin s
∂

∂x7

− cos r
∂

∂x9

− sin r
∂

∂x10

,

ϕZ3 = − u sin θ
∂

∂y1

− u cos θ
∂

∂x1

+ 3
∂

∂y3

− 5
∂

∂x3

− v sin θ
∂

∂y4

− v cos θ
∂

∂x4

,

ϕZ4 = − v sin ϕ
∂

∂y2

− v cos ϕ
∂

∂x2

+ 5
∂

∂y3

− 3
∂

∂x3

− u sin ϕ
∂

∂y5

− u cos ϕ
∂

∂x5

,

ϕZ5 = − u sin r
∂

∂y6

+ u cos r
∂

∂y7

+ 3
∂

∂y8

− 2
∂

∂x8

+ v sin r
∂

∂x9

− v cos r
∂

∂x10

,

ϕZ6 =v sin s
∂

∂x6

− v cos s
∂

∂x7

+ 2
∂

∂y8

− 3
∂

∂x8

− u sin s
∂

∂y9

+ u cos s
∂

∂y10

.

We take D
θ1 = Span¶Z1, Z2♢, Dθ2 = Span¶Z3, Z4♢ and D

θ3 = Span¶Z5, Z6♢. Then it
is clear that Dθ1 , Dθ2 and D

θ3 are proper pointwise slant distributions with slant func-
tions cos−1¶1

2
cos(r − s)♢, cos−1( 16

u2+v2+34
) and cos−1( 5

u2+v2+13
), respectively. Clearly,

D
θ1 , Dθ2 and D

θ3 are integrable distributions. Let us say that Mθ1
, Mθ2

and Mθ3
are

integral submanifolds of Dθ1 , Dθ2 and D
θ3 , respectively. Then the metric tensor gM

of M is given by

gM = 4(du2 + dv2) + (u2 + v2 + 34)(dθ2 + dϕ2) + (u2 + v2 + 13)(dr2 + ds2)

= gMθ1
+ (u2 + v2 + 34)gMθ2

+ (u2 + v2 + 13)gMθ3
.

Thus, M = Mθ1
×f1

Mθ2
×f2

Mθ3
is a bi-warped product submanifold of M̄ with the

warping functions f1 =
√

u2 + v2 + 34 and f2 =
√

u2 + v2 + 13.

Proposition 6.1 ([33]). Let M = Mθ1
×f1

Mθ2
×f2

Mθ3
be a bi-warped product

submanifold of M̄ . Then M is a single warped product if ξ is orthogonal to D
θ1.
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Proposition 6.2 ([33]). Let M = Mθ1
×f1

Mθ2
×f2

Mθ3
be a bi-warped product

submanifold of M̄ such that ξ such that M is tangent to Mθ1
. Then

(6.1) ξ(ln fi) = 1, for all i = 1, 2.

Lemma 6.1. Let M = Mθ1
×f1

Mθ2
×f2

Mθ3
be a bi-warped product submanifold of

M̄ such that ξ is tangent to Mθ1
. Then

g(h(X1, Y1), QX3) = g(h(X1, X3), QY1),(6.2)

g(h(X2, Y2), QX3) = g(h(X1, X3), QY2),(6.3)

g(h(X1, X2), QX3) = g(h(X1, X3), QX2),(6.4)

for every X1, Y1 ∈ Γ(Dθ1), X2, Y2 ∈ Γ(Dθ2) and X3 ∈ Γ(Dθ3).

Proof. Proof is similar to the proof of Lemma 4.1. □

Lemma 6.2. Let M = Mθ1
×f1

Mθ2
×f2

Mθ3
be a bi-warped product submanifold of

M̄ such that ξ is tangent to Mθ1
. Then

g(h(X2, Y2), QX1) − g(h(X1, X2), QY2)(6.5)

=(P1X1 ln f1)g(X2, Y2) + [X1(ln f1) − η(X1)]g(X2, P2Y2),

g(h(X3, Y3), QX1) − g(h(X1, X3), QY3)(6.6)

=(P1X1 ln f2)g(X3, Y3) + [X1(ln f2) − η(X1)]g(X3, P3Y3),

g(h(X3, Y3), QX2) − g(h(X2, X3), QY3)(6.7)

=(P2X2 ln f2)g(X3, Y3) + X2(ln f2)g(X3, P3Y3),

for every X1 ∈ Γ(Dθ1), X2, Y2 ∈ Γ(Dθ2) and X3, Y3 ∈ Γ(Dθ3).

Proof. Proof is similar to the proof of Lemma 4.2. □

Lemma 6.3. Let M = Mθ1
×f1

Mθ2
×f2

Mθ3
be a bi-warped product submanifold of

M̄ such that ξ is tangent to Mθ1
. Then

g(h(X1, Y2), QP2X2) − g(h(X1, P2X2), QY2)(6.8)

=2 cos2 θ2¶(X1 ln f1) − η(X1)♢g(X2, Y2),

g(h(X1, X3), QP3Y3) − g(h(X1, P3X3), QY3)(6.9)

=2 cos2 θ3¶(X1 ln f2) − η(X1)♢g(X3, Y3),

g(h(X2, X3), QP3Y3) − g(h(X2, P3X3), QY3)(6.10)

=2 cos2 θ3(X2 ln f2)g(X3, Y3),

for every X1 ∈ Γ(Dθ1), X2, Y2 ∈ Γ(Dθ2) and X3, Y3 ∈ Γ(Dθ3).

Proof. By polarization of (6.5), we get

g(h(X2, Y2), QX1) − g(h(X1, Y2), QZ) =(P1X1 ln f1)g(X2, Y2)(6.11)

+ [X1(ln f1) − η(X1)]g(X2, Y2).
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Subtracting (6.11) from (6.4), we find

(6.12) g(h(X1, Y2), QX2) − g(h(X1, X2), QY2) = 2[X1(ln f1) − η(X1)]g(X2, P2Y2).

Replacing X2 by P2X2 in (6.12), we get (6.8). Similarly, (6.9) follows from (6.6) and
(6.10) follows from (6.7). □

Theorem 6.1. Let M = Mθ1
×f1

Mθ2
×f2

Mθ3
be a bi-warped product submanifold of

M̄ such that ξ is tangent to Mθ1
. Then M can be D

θ1 − D
θ2 and D

θ1 − D
θ3 mixed

totally geodesic but cannot be D
θ2 − D

θ3 mixed totally geodesic.

Proof. The theorem follows from Lemma 6.3. □

7. Inequality

In this section, we establish a Chen-type inequality on a bi-warped product sub-
manifold M = Mθ1

×f1
Mθ2

×f2
Mθ3

of M̄ of dimension n such that ξ is tan-
gent to Mθ1

. We take dim Mθ1
= 2p + 1, dim Mθ2

= 2q, dim Mθ3
= 2s and

their corresponding tangent spaces are D
θ1 , D

θ2 and D
θ3 , respectively. Assume

that ¶e1, e2, . . . , ep, ep+1 = sec θ1P1e1, . . . , e2p = sec θ1P1ep, e2p+1 = ξ♢, ¶e2p+2 =
e∗

1, . . . , e2p+q+1 = e∗

q, e2p+q+2 = e∗

q+1 = sec θ2P2e
∗

1, . . . , e2p+2q+1 = e∗

2q = sec θ2P2e
∗

q♢ and
¶e2p+2q+2 = ê1, . . . , e2p+2q+s+1 = ês, e2p+2q+s+2 = ês+1 = sec θ3P3ê1, . . . , e2p+2q+2s+1 =
ê2s = sec θ3P3ês♢ are local orthonormal frames of Dθ1 , Dθ2 and D

θ3 , respectively. Then
the local orthonormal frames for QD

θ1 , QD
θ2 , QD

θ3 and ν are ¶ẽ1 = csc θ1Qe1, . . . ,

ẽp = csc θ1Qep, ẽp+1 = csc θ1 sec θ1QP1e1, . . . , ẽ2p csc θ1 sec θ1QP1ep♢, ¶ẽ2p+1 = ẽ∗

1 =
csc θ2Qe∗

1, . . . , ẽ2p+q = ẽ∗

q = csc θ2Qe∗

q, ẽ2p+q+1 = ẽ∗

q+1 = csc θ2 sec θ2QP2e
∗

1, . . . , ẽ2p+2q

= ẽ∗

2q = csc θ2 sec θ2QP2e
∗

q♢, ¶ẽ2p+2q+1 = ˜̂e1 = csc θ3Qê1, . . ., ẽ2p+2q+s = ˜̂es = csc θ3Qês,

ẽ2p+2q+s+1 = ˜̂es+1 = csc θ3 sec θ3QP3ê1, . . . , ẽ2p+2q+2s = ˜̂e2s = csc θ3 sec θ3QP3ês♢ and
¶ẽ2p+2q+2s+1, . . . , ẽ2m+1♢ of dimensions 2p, 2q, 2s and (2m + 1 − n − 2p − 2q − 2s),
respectively.

Theorem 7.1. Let M = Mθ1
×f1

Mθ2
×f2

Mθ3
be both D

θ1 −D
θ2 and D

θ1 −D
θ3 mixed

totally geodesic bi-warped product submanifold of M̄ such that ξ is tangent to Mθ1
.

Then the squared norm of the second fundamental form satisfies

∥h∥2 ≥2q csc2 θ1(cos2 θ1 + cos2 θ2)(∥∇ ln f1∥2 − 1)(7.1)

+ 2s csc2 θ1(cos2 θ1 + cos2 θ3)(∥∇ ln f2∥2 − 1),

where 2q= dim Mθ1
, 2s = dim Mθ3

, ∇ ln f1 and ∇ ln f2 are the gradients of warping

function ln f1 and ln f2 along Mθ1
and Mθ2

, respectively.

If the equality sign of (7.1) holds, then Mθ1
is totally geodesic and Mθ2

, Mθ3
are

totally umbilical submanifolds of M̄ .

Proof. From the definition of h, we have

(7.2) ∥h∥2 =
2p+1
∑

i,j=1

g(h(ei, ej), h(ei, ej)).
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Now by decomposing (7.2) in our constructed frame fields, we get

∥h∥2 =
2m+1
∑

r=n+1

2p+1
∑

i,j=1

g(h(ei, ej), ẽr)
2 + 2

2m+1
∑

r=n+1

2p+1
∑

i=1

2q
∑

j=1

g(h(ei, e∗

j), ẽr)
2

+ 2
2m+1
∑

r=n+1

2p+1
∑

i=1

2s
∑

j=1

g(h(ei, êj), ẽr)
2 +

2m+1
∑

r=n+1

2q
∑

i,j=1

g(h(e∗

i , e∗

j), ẽr)
2(7.3)

+ 2
2m+1
∑

r=n+1

2q
∑

i=1

2s
∑

j=1

g(h(e∗

i , êj), ẽr)
2 +

2m+1
∑

r=n+1

2s
∑

i,j=1

g(h(êi, êj), ẽr)
2.

Neglecting the ν component terms of (7.3), we obtain

♣h∥2 ≥
2p
∑

r=1

2p+1
∑

i,j=1

g(h(ei, ej), ẽr)
2 +

2q
∑

r=1

2p+1
∑

i,j=1

g(h(ei, ej), ẽr)
2(7.4)

+
2s
∑

r=1

2p+1
∑

i,j=1

g(h(ei, ej), ẽr)
2 + 2

2p
∑

i,r=1

2q
∑

j=1

g(h(ei, e∗

j), ẽr)
2

+ 2
2q
∑

r,j=1

2p
∑

i=1

g(h(ei, e∗

j), ẽr)
2 + 2

2s
∑

r=1

2p
∑

i=1

2q
∑

j=1

g(h(ei, e∗

j), ẽr)
2

+ 2
2p
∑

i,r=1

2s
∑

j=1

g(h(ei, êj), ẽr)
2 + 2

2q
∑

r=1

2p
∑

i=1

2s
∑

j=1

g(h(ei, êj), ẽr)
2

+ 2
2s
∑

r,j=1

2p
∑

i=1

g(h(ei, êj), ẽr)
2 +

2p
∑

r=1

2q
∑

i,j=1

g(h(e∗

i , e∗

j), ẽr)
2

+
2q
∑

i,j,r=1

g(h(e∗

i , e∗

j), ẽr)
2 +

2s
∑

r=1

2q
∑

i,j=1

g(h(e∗

i , e∗

j), ẽr)
2

+ 2
2p
∑

r=1

2q
∑

i=1

2s
∑

j=1

g(h(e∗

i , êj), ẽr)
2 + 2

2q
∑

i,r=1

2s
∑

j=1

g(h(e∗

i , êj), ẽr)
2

+ 2
2s
∑

j,r=1

2q
∑

i=1

g(h(e∗

i , êj), ẽr)
2 +

2p
∑

r=1

2s
∑

i,j=1

g(h(êi, êj), ẽr)
2

+
2q
∑

r=1

2s
∑

i,j=1

g(h(êi, êj), ẽr)
2 +

2s
∑

i,j,r=1

g(h(êi, êj), ẽr)
2.

In view of Lemma (6.1), the second, third and thirteenth terms are equal to zero. Us-
ing the Dθ1 −D

θ2 and D
θ1 −D

θ3 mixed totally geodesic condition, seventh to thirteenth
terms are also equal to zero. Also we can not find any relation for g(h(Dθ1 ,Dθ1), QD

θ1),
g(h(Dθ2 ,Dθ1), QD

θ2), g(h(Dθ2 ,Dθ2), QD
θ3), g(h(Dθ2 ,Dθ3), QD

θ3), g(h(Dθ3 ,Dθ3),
QD

θ2) and g(h(Dθ3 ,Dθ3), QD
θ3), so we neglect first, eleventh, twelfth, fourteenth,
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fifteenth, seventeenth and eighteenth terms of (7.4) and obtain

∥h∥2 ≥ csc2 θ1

p
∑

r=1

2q
∑

i,j=1

g(h(e∗

i , e∗

j), Qer)
2 + csc2 θ1 sec2 θ1

p
∑

r=1

2q
∑

i,j=1

g(h(e∗

i , P1e
∗

j), QP1er)
2

+ csc2 θ1

p
∑

r,=1

2s
∑

i,j=1

g(h(êi, êj), Qer)
2+csc2 θ1 sec2 θ1

p
∑

r=1

2s
∑

i,j=1

g(h(êi, P1êj), QP1er)
2.

By virtue of Lemma 6.2, the above relation yields

∥h∥2 ≥ csc2 θ1

p
∑

r=1

2q
∑

i,j=1

(P1er ln f1)
2g(e∗

i , e∗

j)
2

+ csc2θ1

p
∑

r=1

2q
∑

i,j=1

[(er ln f1) − η(er)]
2g(e∗

i , P2e
∗

j)
2

+ csc2 θ1 cos2 θ1

p
∑

r=1

2q
∑

i,j=1

(er ln f1)
2g(e∗

i , e∗

j)
2

+ csc2 θ1

p
∑

r,=1

2q
∑

i,j=1

(P1er ln f1)
2g(e∗

i , P2e
∗

j)
2

+ csc2 θ1

p
∑

r=1

2s
∑

i,j=1

(P1er ln f2)
2g(êi, êj)

2

+ csc2θ1

p
∑

r=1

2q
∑

i,j=1

[(er ln f2) − η(er)]
2g(êi, P3êj)

2

+ csc2 θ1 cos2 θ1

p
∑

r=1

2s
∑

i,j=1

(er ln f2)
2g(êi, êj)

2

+ csc2 θ1

p
∑

r,=1

2s
∑

i,j=1

(P1er ln f2)
2g(êi, P3êj)

2

=2q csc2 θ1(1 + sec2 θ1 cos2 θ2)
p
∑

r=1

(P1er ln f1)
2

+ 2qcsc2θ1(cos2 θ1 + cos2 θ2)
p
∑

r=1

[(er ln f1) − η(er)]
2

+ 2q csc2 θ1(1 + sec2 θ1 cos2 θ3)
p
∑

r=1

(P1er ln f2)
2

+ 2qcsc2θ1(cos2 θ1 + cos2 θ3)
p
∑

r=1

[(er ln f2) − η(er)]
2.
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Thus, we find

∥h∥2 ≥2q csc2 θ1(cos2 θ1 + cos2 θ2)





2p+1
∑

r=1

(P1er ln f1)
2 − (ξ ln f1)

2



(7.5)

+ 2s csc2 θ1(cos2 θ1 + cos2 θ3)





2p+1
∑

r=1

(P1er ln f2)
2 − (ξ ln f2)

2



 .

Using (2.8) and Proposition 6.2, in (7.5), we get the inequality (7.1). If equality of
(7.1) holds, for omitting ν components terms of (6.3), we get

h(Dθ1 ,Dθ1)⊥ν, h(Dθ2 ,Dθ2)⊥ν, h(Dθ2 ,Dθ3)⊥ν, h(Dθ2 ,Dθ3)⊥ν.

Also, for neglecting terms of (7.4), we obtain h(Dθ1 ,Dθ1)⊥QD
θ1 , h(Dθ2 ,Dθ2)⊥QD

θ2 ,
h(Dθ2 ,Dθ2)⊥QD

θ3 , h(Dθ2 ,Dθ3)⊥QD
θ2 , h(Dθ2 ,Dθ3)⊥QD

θ2 , h(Dθ2 ,Dθ3)⊥QD
θ3 ,

h(Dθ3 ,Dθ3)⊥QD
θ2 , h(Dθ3 ,Dθ3)⊥QD

θ3 . Next, since M is both D
θ1 −D

θ2 and D
θ1 −D

θ3

mixed totally geodesic, we get

(7.6) h(Dθ1 ,Dθ2) = 0, h(Dθ1 ,Dθ3) = 0.

Also, from Lemma 6.1 with (6.6), we get

h(Dθ1 ,Dθ1)⊥QD
θ2 , h(Dθ1 ,Dθ1)⊥QD

θ3 , h(Dθ1 ,Dθ1)⊥QD
θ2 .

Thus, we can say that

h(Dθ1 ,Dθ1) = 0,(7.7)

h(Dθ2 ,Dθ2) ⊂ QD
θ1 ,(7.8)

h(Dθ2 ,Dθ3) ⊂ QD
θ1 ,(7.9)

h(Dθ3 ,Dθ3) ⊂ QD
θ1 .(7.10)

From (7.6) and (7.7), Mθ1
is totally geodesic in M and hence in M̄ [5, 7]. Again,

since Mθ2
and Mθ3

are totally umbilical in M [5, 7], with the fact (7.8)–(7.10), we
conclude that Mθ2

and Mθ3
are totally umbilical in M̄ . Hence, the theorem is proved

completely. □

8. Some Applications

As consequences of Theorem 5.1 we have the following.
1. If we take dim Mθ2

= 0 and replace θ3 by θ2, then M changes to a warped
product pointwise bi-slant submanifold of the form Mθ1

×f Mθ2
, studied in [17]. In

this case Theorem 5.1 of this paper takes the following form (Theorem 5.1 of [17]).
Let M be a proper pointwise bi-slant submanifold of M̄ such that ξ ∈ Γ(Dθ1), then

M is locally a warped product submanifold of the form Mθ1
×f Mθ2

if and only if

AQP1X1
Y2 − AQX1

P2Y2 + AQP2Y2
X1 − AQY2

P1X1

=(cos2 θ2 − cos2 θ1)[(X1µ) − η(X1)]Y2,
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for any X1 ∈ Γ(Dθ1), X2 ∈ Γ(Dθ2), for some smooth function µ on M satisfying
(Y µ) = 0, for any W ∈ Γ(Dθ2). Thus, Theorem 5.1 of this paper is a generalisation
of Theorem 5.1 of [17].

2. If we take θ1 = 0, θ2 = constant = θ, θ3 = π
2
, then M changes to a warped

product skew CR-submanifold of the form M1 ×f M⊥, where M1 = MT × Mθ, studied
in [28]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.3
of [28]).

Let M be a proper skew CR-submanifold of M̄ , then M is locally a D
θ − D

⊥

mixed totally geodesic warped product submanifold of the form M1 ×f M⊥, where
M1 = MT × Mθ if and only if

(i) AφZX ∈ Γ(D⊥) for any X ∈ Γ(DT ⊕ D
θ) ⊕ ¶ξ♢ and Z ∈ Γ(D⊥);

(ii) for any X1 ∈ Γ(DT ), X2 ∈ Γ(Dθ) and Z ∈ Γ(D⊥), AφZX1 = −(ϕX1µ),
AφZX2 = 0, AQX2Z = (P2X2µ)Z, (ξµ) = 1,
for some smooth function µ on M satisfying (V µ) = 0, for any V ∈ Γ(D⊥). Thus,
Theorem 5.1 of this paper is a generalization of Theorem 5.3 of [28].

3. If we take θ1 = π
2
, θ2 = constant = θ, θ3 = 0, then M changes to a warped

product skew CR-submanifold of the form M2 ×f MT , where M2 = M⊥ × Mθ, studied
in [19]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.1
of [19]).

Let M be a proper skew CR-submanifold of M̄ , then M is locally a warped product
submanifold of the form M2 ×f MT , where M2 = M⊥ × Mθ if and only if

(i) AφZX = ¶η(Z) − (Zµ)♢ϕX;
(ii) AQUX = ¶η(U) − (Uµ)♢ϕX + (P2Uµ)X;
(iii) (ξµ) = 1,

for any X ∈ Γ(DT ), U ∈ Γ(Dθ), Z ∈ Γ(D⊥), for some smooth function µ on M

satisfying (Y µ) = 0, for any Y ∈ Γ(DT ). Thus, Theorem 5.1 of this paper is a
generalisation of Theorem 5.1 of [19].

4. If we take θ1 = 0, θ2 = π
2

and θ3 = θ then M changes to a warped product
submanifold of the form M3 ×f Mθ, where M3 = MT × M⊥, studied in [18]. In this
case Theorem 5.1 of this paper takes the following form (Theorem 5.1 of [18]).

Let M be a submanifold of a Kenmotsu manifold M̄ such that TM = D
T ⊕D

⊥ ⊕D
θ

with ξ is orthogonal to Mθ. Then M is locally a warped product submanifold of the
form M = M3 ×f Mθ, where M3 = MT × M⊥, if and only if the following relations
hold:

(i) AQV ϕX − AQP V X = sin2 θ[(Xµ) − η(X)]V ;
(ii) AφZPV − AQP V Z = − cos2 θ[(Zµ) − η(Z)]V ;
(iii) (ξµ) = 1,

for every X ∈ Γ(DT ), Z ∈ Γ(D⊥) and V ∈ Γ(Dθ) and (V µ) = 0 for some function µ

on M satisfying (Wµ) = 0, for any W ∈ Γ(Dθ). Thus, Theorem 5.1 of this paper is a
generalisation of Theorem 5.1 of [18].

As consequences of Theorem 7.1, we have the following.
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1. If we consider θ1 = constant, θ2 = 0, θ3 = π
2
, then the submanifold M changes

to bi-warped product submanifold of the form Mθ ×f1
MT ×f2

M⊥, studied in [33]. In
this case Theorem 7.1 of this paper takes the following form.

Let M = Mθ ×f1
MT ×f2

M⊥ be a bi-warped product submanifold of M̄ such that
ξ is tangent to Mθ, then the squared norm of the second fundamental form satisfies

∥h∥2 ≥2q csc2 θ(1 + cos2 θ)(∥∇ ln f1∥2 − 1) + 2s cot2 θ(∥∇ ln f2∥2 − 1),

where 2q = dim MT , 2s = dim M⊥, ∇ ln f1 and ∇ ln f2 are the gradients of warping
function ln f1 and ln f2 along MT and M⊥, respectively.

If the equality sign holds, then Mθ is totally geodesic and MT , , M⊥ are totally
umbilical submanifold of M̄ . Taking dim MT = 2q = m1 and dim M⊥ = 2s = m2,
we see that this statement coincides with the statement of Theorem 6 of [33]. Thus,
Theorem 7.1 of this paper is a generalisation of Theorem 6 of [33].

2. If we consider dim Mθ2
= 0, then the submanifold M changes into warped

product pointwise bi-slant submanifold of the form Mθ1
×f Mθ2

studied in [17]. In
this case Theorem 7.1 of this paper takes the following form.

Let M = Mθ1
×f Mθ2

be a warped product pointwise bi-slant submanifold of M̄

such that ξ is tangent to Mθ1
, then the squared norm of the second fundamental form

satisfies
∥h∥2 ≥ 2q csc2 θ1(cos2 θ1 + cos2 θ2)(∥∇ ln f∥2 − 1),

where 2q = dim Mθ2
, ∇ ln f is the gradient of warping function ln f along Mθ1

. If
the equality sign holds, then Mθ1

is totally geodesic and Mθ2
is totally umbilical

submanifold of M̄ . Thus, we see that this statement coincides with the statement of
Theorem 6.1 of [19]. Hence Theorem 7.1 of this paper is a generalization of Theorem
6.1 of [17].
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