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STRUCTURE OF 3-PRIME NEAR RINGS WITH GENERALIZED
(σ, τ)-n-DERIVATIONS

ASMA ALI1, ABDELKARIM BOUA2, AND INZAMAM UL HUQUE3

Abstract. In this paper, we define generalized (σ, τ)-n-derivation for any mappings
σ and τ of a near ring N and also investigate the structure of a 3-prime near
ring satisfying certain identities with generalized (σ, τ)-n-derivation. Moreover, we
characterize the aforementioned mappings.

1. Introduction

A left near ring N is a triplet (N, +, .), where + and . are two binary operations
such that (i) (N, +) is a group (not necessarily abelian); (ii) (N, .) is a semigroup,
and (iii) x.(y + z) = x.y + x.z for all x, y, z ∈ N . Analogously, if N satisfies the
right distributive law, i.e., (x + y).z = x.z + y.z for all x, y ∈ N , then N is said
to be a right near ring. The most natural example of a left near ring is the set
of all identity preserving mappings acting from right of an additive group G (not
necessarily abelian) into itself with pointwise addition and composition of mappings
as multiplication. If these mappings act from left on G, then we get a right near
ring (Pilz [10, Example 1.4]). Throughout the paper, N denotes a zero-symmetric
left near ring with multiplicative centre Z and for any pair of elements x, y ∈ N ,
[x, y] = xy − yx, x ◦ y = xy + yx and (x, y) = x + y − x − y stand for the Lie product,
Jordan Product and additive commutator respectively. Let σ and τ be mappings on
N . For any x, y ∈ N , set the symbol [x, y]σ,τ will denote xσ(y) − τ(y)x, while the
symbol (x ◦ y)σ,τ will denote xσ(y) + τ(y)x. The terminology multiplicative mappings
on a near ring N is used for the mappings σ, τ : N → N satisfying σ(xy) = σ(x)σ(y)
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and τ(xy) = τ(x)τ(y) for all x, y ∈ N . A near ring N is called zero-symmetric if
0x = 0, for all x ∈ N (recall that left distributivity yields that x0 = 0). A near ring
N is said to be 3-prime if xNy = {0} for x, y ∈ N implies that x = 0 or y = 0. A
near ring N is called 2-torsion free if (N, +) has no element of order 2. A nonempty
subset U of N is called a semigroup right (resp. semigroup left) ideal if UN ⊆ U (resp.
NU ⊆ U) and if U is both a semigroup right ideal and a semigroup left ideal, it is
called a semigroup ideal.

Let n ≥ 2 be a fixed positive integer and Nn = N × N × · · · × N︸ ︷︷ ︸
n−times

. A map ∆ :

Nn → N is said to be permuting (symmetric) on a near ring N if the relation
∆(x1, x2, . . . , xn) = ∆(xπ(1), xπ(2), . . . , xπ(n)) holds for all xi ∈ N , i = 1, 2, . . . , n, and
for every permutation π ∈ Sn, where Sn is the permutation group on {1, 2, . . . , n}. An
additive mapping F : N → N is said to be a right (resp. left) generalized derivation
with associated derivation d if F (xy) = F (x)y +xd(y) (resp. F (xy) = d(x)y +xF (y)),
for all x, y ∈ N and F is said to be a generalized derivation with associated derivation
d on N if it is both a right generalized derivation and a left generalized derivation on
N with associated derivation d.

Ozturk et al. [9] and Park et al. [6] studied bi-derivations and tri-derivations in near
rings. Further, Ceven et al. [4] and Ozturk et al. [8] defined (σ, τ) bi-derivations and
(σ, τ) tri-derivations in near rings. Let σ, τ be automorphisms on a near ring N . A
symmetric bi-additive (additive in both arguments) mapping d : N ×N → N is said to
be a (σ, τ) bi-derivation if d(xx′, y) = d(x, y)σ(x′) + τ(x)d(x′, y) holds for all x, x′, y ∈
N . A symmetric tri-additive (additive in each argument) mapping d : N ×N ×N → N
is said to be a (σ, τ) tri-derivation if d(xx′, y, z) = d(x, y, z)σ(x′)+τ(x)d(x′, y, z) holds
for all x, x′, y, z ∈ N .

Motivated by these concepts, we define (σ, τ)-n-derivation and generalized (σ, τ)-n-
derivation for any arbitrary mappings σ and τ of a near ring N in place of automor-
phisms.
Definition 1.1 ((σ, τ)-n-derivation). Let σ, τ : N → N be mappings on N . An
n-additive (additive in each argument) mapping d : N × N × · · · × N︸ ︷︷ ︸

n−times

→ N is called

a (σ, τ)-n-derivation of N if the following equations
d(x1x

′
1, x2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)d(x′
1, x2, . . . , xn),

d(x1, x2x
′
2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

2) + τ(x2)d(x1, x′
2, . . . , xn),

...
d(x1, x2, . . . , xnx′

n) =d(x1, x2, . . . , xn)σ(x′
n) + τ(xn)d(x1, x2, . . . , x′

n)
hold for all x1, x′

1, x2, x′
2, . . . , xn, x′

n ∈ N .
Definition 1.2 (Right generalized (σ, τ)-n-derivation). An n-additive (additive in
each argument) mapping F : N × N × · · · × N︸ ︷︷ ︸

n−times

→ N is called a right generalized
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(σ, τ)-n-derivation associated with (σ, τ)-n-derivation d on N if the relations

F (x1x
′
1, x2, . . . , xn) =F (x1, x2, ..., xn)σ(x′

1) + τ(x1)d(x′
1, x2, . . . , xn),

F (x1, x2x
′
2, . . . , xn) =F (x1, x2, . . . , xn)σ(x′

2) + τ(x2)d(x1, x′
2, . . . , xn),

...
F (x1, x2, . . . , xnx′

n) =F (x1, x2, . . . , xn)σ(x′
n) + τ(xn)d(x1, x2, . . . , x′

n)

hold for all x1, x′
1, x2, x′

2, . . . , xn, x′
n ∈ N .

Definition 1.3 (Left generalized (σ, τ)-n-derivation). An n-additive (additive in each
argument) mapping F : N × N × · · · × N︸ ︷︷ ︸

n−times

→ N is called a left generalized (σ, τ)-n-

derivation associated with (σ, τ)-n-derivation d on N if the relations

F (x1x
′
1, x2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′
1, x2, . . . , xn),

F (x1, x2x
′
2, . . . , xn) =d(x1, x2, . . . , xn)σ(x′

2) + τ(x2)F (x1, x′
2, . . . , xn),

...
F (x1, x2, . . . , xnx′

n) =d(x1, x2, . . . , xn)σ(x′
n) + τ(xn)F (x1, x2, . . . , x′

n)

hold for all x1, x′
1, x2, x′

2, . . . , xn, x′
n ∈ N .

A mapping F : N × N × · · · × N︸ ︷︷ ︸
n−times

→ N is called a generalized (σ, τ)-n-derivation

associated with (σ, τ)-n-derivation d on N if F is both a right generalized (σ, τ)-n-
derivation and a left generalized (σ, τ)-n-derivation associated with (σ, τ)-n-derivation
d on N .

Example 1.1. Let S be a zero-symmetric left near ring and

N =


 0 x y

0 0 z
0 0 0

 | x, y, z, 0 ∈ S

.

Then N is a zero-symmetric left near ring with respect to matrix addition and matrix
multiplication. Define mappings F, d : N × N × · · · × N︸ ︷︷ ︸

n−times

→ N by

F


 0 x1 y1

0 0 z1
0 0 0

 ,

 0 x2 y2
0 0 z2
0 0 0

 , . . . ,

 0 xn yn

0 0 zn

0 0 0


 =

 0 0 0
0 0 z1z2 . . . zn

0 0 0

 ,

d


 0 x1 y1

0 0 z1
0 0 0

 ,

 0 x2 y2
0 0 z2
0 0 0

 , . . . ,

 0 xn yn

0 0 zn

0 0 0


 =

 0 x1x2 . . . xn 0
0 0 0
0 0 0

 .
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Define σ, τ : N → N by

σ

 0 x y
0 0 z
0 0 0

 =

 0 0 y2

0 0 0
0 0 0

 and τ

 0 x y
0 0 z
0 0 0

 =

 0 xy 0
0 0 z
0 0 0

 .

It is easy to check that F is a nonzero right (but not left) generalized (σ, τ)-n-derivation
associated with a nonzero (σ, τ)-n-derivation d of N , where σ and τ are any arbitrary
mappings on N .

Example 1.2. Let N be a zero-symmetric left near ring as in Example 1.1. Define
mappings F, d : N × N × · · · × N︸ ︷︷ ︸

n−times

→ N by

F


 0 x1 y1

0 0 z1
0 0 0

 ,

 0 x2 y2
0 0 z2
0 0 0

 , . . . ,

 0 xn yn

0 0 zn

0 0 0


 =

 0 x1x2 . . . xn 0
0 0 0
0 0 0

 ,

d


 0 x1 y1

0 0 z1
0 0 0

 ,

 0 x2 y2
0 0 z2
0 0 0

 , . . . ,

 0 xn yn

0 0 zn

0 0 0


 =

 0 0 0
0 0 z1z2 . . . zn

0 0 0

 .

Define σ, τ : N → N by

σ

 0 x y
0 0 z
0 0 0

 =

 0 x2 0
0 0 z
0 0 0

 and τ

 0 x y
0 0 z
0 0 0

 =

 0 0 y
0 0 z2

0 0 0

 .

It can be easily seen that F is a nonzero left (but not right) generalized (σ, τ)-n-
derivation associated with a nonzero (σ, τ)-n-derivation d of N for any arbitrary
mappings σ and τ on N .

Example 1.3. Let S be a zero-symmetric left near ring and

N =


 0 x y

0 0 0
0 z 0

 | x, y, z, 0 ∈ S

.

It is easy to see that N is a zero-symmetric left near ring with respect to matrix
addition and matrix multiplication. Define mappings F, d : N × N × · · · × N︸ ︷︷ ︸

n−times

→ N by

F


 0 x1 y1

0 0 0
0 z1 0

 ,

 0 x2 y2
0 0 0
0 z2 0

 , . . . ,

 0 xn yn

0 0 0
0 zn 0


 =

 0 0 y1y2 . . . yn

0 0 0
0 0 0

 ,

d


 0 x1 y1

0 0 0
0 z1 0

 ,

 0 x2 y2
0 0 0
0 z2 0

 , . . . ,

 0 xn yn

0 0 0
0 zn 0


 =

 0 0 0
0 0 0
0 z1z2 . . . zn 0

 .
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Define σ, τ : N → N by

σ

 0 x y
0 0 0
0 z 0

 =

 0 x2 y
0 0 0
0 0 0

 and τ

 0 x y
0 0 0
0 z 0

 =

 0 x 0
0 0 0
0 yz 0

 .

It can be easily verified that F is a nonzero right as well as left generalized (σ, τ)-n-
derivation associated with a nonzero (σ, τ)-n-derivation d of N , where σ and τ are
any arbitrary mappings on N .

Obviously this notion covers the notion of a generalized n-derivation (in case σ =
τ = I), notion of an n-derivation (in case F = d, σ = τ = I), notion of a left
n-centralizer (in case d = 0, σ = I), notion of a (σ, τ)-n-derivation (in case F = d)
and the notion of a left σ-n-multiplier (in case d = 0). Thus, it is interesting to
investigate the properties of this general notion. In [7], Bresar has proved that if R
is a 2-torsion free semiprime ring and F : R → R is an additive map on R such that
F (x)x + xF (x) = 0 for all x ∈ R, then F = 0. Further, Vukman [5] proved that if
there exist a derivation d : R → R and an automorphism α : R → R, where R is
2-torsion free semiprime ring such that [d(x)x + xd(x), x] = 0 for all x ∈ R, then d
and α − I, I denotes the identity mapping on R, map R into its centre. Motivated
by the mentioned results we prove that if a 3-prime near ring N with a generalized
(σ, τ)-n-derivation F satisfies certain identity, then N is a commutative ring and F is
a left σ-n-multiplier on N .

2. Some Preliminaries

Lemma 2.1. ([1, Lemmas 1.2]). Let N be 3-prime near ring.
(i) If z ∈ Z \ {0}, then z is not a zero divisor.
(ii) If Z \ {0} and x is an element of N for which xz ∈ Z, then x ∈ Z.

Lemma 2.2. ([1, Lemmas 1.3 and Lemma 1.4]). Let N be 3-prime near ring and U
be a nonzero semigroup ideal of N .

(i) If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.
(ii) If x ∈ N and xU = {0} or Ux = {0}, then x = 0.

Lemma 2.3. ([1, Lemma 1.5]). If N is a 3-prime near ring and Z contains a nonzero
semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative ring.

Lemma 2.4. If N is a 3-prime near ring admitting a generalized (σ, τ)-n-derivation
F associated with a (σ, τ)-n-derivation d of N such that σ and τ are multiplicative
mappings on N , then

{d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)}σ(z1)
=d(x1, x2, . . . , xn)σ(y1)σ(z1) + τ(x1)F (y1, x2, . . . , xn)σ(z1),

{d(x1, x2, . . . , xn)σ(y2) + τ(x2)F (x1, y2, . . . , xn)}σ(z2)
=d(x1, x2, . . . , xn)σ(y2)σ(z2) + τ(x2)F (x1, y2, . . . , xn)σ(z2),
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...
{d(x1, x2, . . . , xn)σ(yn) + τ(xn)F (x1, x2, . . . , yn)}σ(zn)

=d(x1, x2, . . . , xn)σ(yn)σ(zn) + τ(xn)F (x1, x2, . . . , yn)σ(zn),
for all x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn ∈ N .

Proof. For all x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn ∈ N

F (x1y1z1, x2, . . . , xn) =F (x1y1, x2, . . . , xn)σ(z1) + τ(x1y1)d(z1, x2, . . . , xn)
={d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)}σ(z1)

+ τ(x1)τ(y1)d(z, u2, . . . , un)(2.1)
and

F (x1y1z1, x2, . . . , xn) =d(x1, x2, . . . , xn)σ(y1z1) + τ(x1)F (y1z1, x2, . . . , xn)
=d(x1, x2, . . . , xn)σ(y1)σ(z1) + τ(x1)F (y1, x2, . . . , xn)σ(z1)

+ τ(x1)τ(y1)d(z1, x2, . . . , xn).(2.2)
Combining (2.1) and (2.2), we get

{d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)}σ(z1)
=d(x1, x2, . . . , xn)σ(y1)σ(z1) + τ(x1)F (y1, x2, . . . , xn)σ(z1).

Similarly, we can prove other relations for i = 2, 3, . . . , n. □

Remark 2.1. If σ is an onto map on N , then Lemma 2.4 becomes
{d(x1, x2, . . . , xn)σ(y1) + τ(x1)F (y1, x2, . . . , xn)}a

=d(x1, x2, . . . , xn)σ(y1)a + τ(x1)F (y1, x2, . . . , xn)a,

{d(x1, x2, . . . , xn)σ(y2) + τ(x2)F (x1, y2, . . . , xn)}a

=d(x1, x2, . . . , xn)σ(y2)a + τ(x2)F (x1, y2, . . . , xn)a,

...
{d(x1, x2, . . . , xn)σ(yn) + τ(xn)F (x1, x2, . . . , yn)}a

=d(x1, x2, . . . , xn)σ(yn)a + τ(xn)F (x1, x2, . . . , yn)a,

for all x1, y1, x2, y2, . . . , xn, yn, a ∈ N .

Lemma 2.5. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ and τ be mappings on N such that Ui ⊆ τ(Ui) for i = 1, 2, . . . , n.
If d is a nonzero (σ, τ)-n-derivation on N , then d(U1, U2, . . . , Un) ̸= {0}.

Proof. Assume that
(2.3) d(u1, u2, . . . , un) = 0, for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing u1 by u1r1, where r1 ∈ N in (2.3) and using (2.3), we get
τ(u1)d(r1, u2, . . . , un) = 0.
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Since Ui ⊆ τ(Ui) for i = 1, 2, . . . , n, we have U1d(r1, u2, . . . , un) = {0}. Applying
Lemma 2.2 (ii), we obtain d(r1, u2, . . . , un) = 0 for all u2 ∈ U2, . . . , un ∈ Un and
r1 ∈ N . Replacing u2 by u2r2, where r2 ∈ N in the last expression and another
application of Lemma 2.2(ii) yields that d(r1, r2, . . . , un) = 0. Proceeding inductively,
we conclude that d(r1, r2, . . . , rn) = 0 for all r1, r2, . . . , rn ∈ N, a contradiction which
completes the proof. □

Lemma 2.6. Let N be a 3-prime near-ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ, τ be multiplicative mappings on Ui such that U1 ⊆ σ(U1). If
d is a nonzero (σ, τ)-n-derivation on N such that d(U1, U2, . . . Un)σ(a) = {0} or
σ(a)d(U1, U2, . . . Un) = {0} for all a ∈ N , then σ(a) = 0.

Proof. Suppose that d(U1, U2, . . . , Un)σ(a) = {0}. Then

(2.4) d(u1, u2, . . . , un)σ(a) = 0, for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing u1 by u1u
′
1 in (2.4) and using it again yields that

d(u1, u2, . . . , un)σ(u′
1)σ(a) = 0, for all u1, u′

1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Equivalently,

d(u1, u2, . . . , un)σ(U1)σ(a) = {0}, for all u1, ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Since U1 ⊆ σ(U1), we obtain

d(u1, u2, . . . , un)U1σ(a) = {0}, for all u1, ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Applying Lemma 2.2 (i) and Lemma 2.5, we obtain σ(a) = 0. Similarly, we can prove
the result for later case. □

Lemma 2.7. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ be a onto map on N such that U1 ⊆ σ(U1) and U1 ∩ Z ≠ ∅. If d is
a (σ, σ)-n-derivation on N , then d(Z, U2, U3, . . . , Un) ⊆ Z.

Proof. Suppose that z ∈ U1 ∩ Z. Then

d(zx1, x2, . . . , xn) = d(x1z, x2, . . . , xn), for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un,

and

d(z, x2, . . . , xn)σ(x1) + σ(z)d(x1, x2, . . . , xn)
=σ(x1)d(z, x2, . . . , xn) + d(x1, x2, . . . , xn)σ(z).

Substituting x′
1 ∈ U1 and z′ ∈ U1 ∩ Z for σ(x1) and σ(z) respectively, we get

d(z, x2, . . . , xn)x′
1 = x′

1d(z, x2, . . . , xn), for all x′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Replacing x′
1 by x′

1r for r ∈ N in above expression and using it again, we find that
x′

1[d(z, x2, . . . , xn), r] = 0. Hence, d(Z, U2, U3, . . . , Un) ⊆ Z by Lemma 2.2 (ii). □
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Lemma 2.8. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Let σ, τ be mappings on N such that Ui ⊆ σ(Ui) and Ui ⊆ τ(Ui) for
i = 1, 2, . . . , n. If F is a nonzero right generalized (σ, τ)-n-derivation associated with
a (σ, τ)-n-derivation d on N , then F (U1, U2, . . . , Un) ̸= {0}.

Proof. Let

(2.5) F (u1, u2, . . . , un) = 0, for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing u1 by u1r1, where r1 ∈ N in (2.5) and using (2.5), we get

τ(u1)d(r1, u2, . . . , un) = {0}.

Since U1 ⊆ τ(U1), we have

U1d(r1, u2, . . . , un) = {0}, for all u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N.

Applying Lemma 2.2(ii), we find

(2.6) d(r1, u2, . . . , un) = 0, for all u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N.

Now replacing u2 by u2r2 in (2.6) for r2 ∈ N and another application of Lemma 2.2
(ii) yields that d(r1, r2, u3, . . . , un) = 0 for all u3 ∈ U3, . . . , un ∈ Un and r1, r2 ∈ N.
Proceeding inductively, we get d(r1, r2, . . . , rn) = 0 for all r1, r2, . . . , rn ∈ N , i.e., d = 0.
Therefore, our hypothesis reduces to

F (r1u1, u2, . . . , un) = F (r1, u2, . . . , un)σ(u1) = 0,

for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N which implies that

(2.7) F (r1, u2, . . . , un) = 0, for all u2 ∈ U2, . . . , un ∈ Un and r1 ∈ N.

Replacing u2 by r2u2 in (2.7), we get F (r1, r2, . . . , un)U2 = {0} and Lemma 2.2 (ii)
gives F (r1, r2, u3, . . . , un) = 0 for all u3 ∈ U3, . . . , un ∈ Un and r1, r2 ∈ N. Proceeding
inductively, we obtain F = 0 on N , a contradiction. □

3. Main Results

Theorem 3.1. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero semigroup
ideals of N . Suppose that σ, τ are multiplicative mappings on Ui for i = 1, 2, . . . , n,
such that Ui ⊆ τ(Ui) for i = 1, 2, . . . , n, and σ is onto on N . If N admits a
generalized (σ, τ)-n-derivation F associated with a (σ, τ)-n-derivation d such that
F (x1x

′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)F (x′

1, x2, . . . , xn) for all x1, x′
1 ∈ U1, x2 ∈

U2, . . . , xn ∈ Un, then F is a left σ-n-multiplier on N .

Proof. By hypothesis

F (x1x
′
1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′
1, x2, . . . , xn)

= F (x1, x2, . . . , xn)F (x′
1, x2, . . . , xn),
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for all x1, x′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Replacing x′

1 by x′
1z for z ∈ U1 in the above

relation, we get
{d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′
1, x2, . . . , xn)}F (z, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x′
1z) + τ(x1){d(x′

1, x2, . . . , xn)σ(z) + τ(x′
1)F (z, x2, . . . , xn)}.

Applying Lemma 2.4 and using the hypothesis, we obtain
d(x1, x2, . . . , xn)σ(x′

1)F (z, x2, . . . , xn) + τ(x1)d(x′
1, x2, . . . , xn)σ(z)

+ τ(x1)τ(x′
1)F (z, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x′
1z) + τ(x1)d(x′

1, x2, . . . , xn)σ(z) + τ(x1)τ(x′
1)F (z, x2, . . . , xn),

which reduces to
d(x1, x2, . . . , xn)σ(x′

1)(F (z, x2, . . . , xn) − σ(z)) = 0,

for all x1, x′
1, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. This implies that

d(x1, x2, . . . , xn)U1(F (z, x2, . . . , xn) − σ(z)) = {0}.

By Lemma 2.2 (i), we obtain d(x1, x2, . . . , xn) = 0 or F (z, x2, . . . , xn) = σ(z) for all
z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

If F (z, x2, . . . , xn) = σ(z) for all z ∈ U1, replacing z by zt, we get
τ(z)d(t, x2, . . . , xn) = 0.

Putting u ∈ U1 in place of τ(z) and using Lemma 2.2 (ii), we obtain d(t, x2, . . . , xn) = 0
for all t ∈ U1. Therefore, in both cases we arrive at d(U1, U2, . . . , Un) = {0}. Now
arguing in the similar manner as we have done in Lemma 2.5, we can get d = 0 on N ,
which completes the proof. □

Theorem 3.2. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semigroup
ideals of N . Suppose that σ is a multiplicative mapping on Ui for i = 1, 2, . . . , n, such
that Ui ⊆ σ(Ui) for i = 1, 2, . . . , n. If N admits a nonzero generalized (σ, σ)-n-
derivation F associated with a (σ, σ)-n-derivation d such that F (U1, U2, . . . , Un) ⊆
Z(N), then N is a commutative ring.

Proof. If d ̸= 0, then for all u1, u′
1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.1) F (u1u
′
1, u2, . . . , un) = d(u1, u2, . . . , un)σ(u′

1) + σ(u1)F (u′
1, u2, . . . , un) ∈ Z(N).

Now commuting (3.1) with the element σ(u1) and using Lemma 2.4, we get
d(u1, u2, . . . , un)σ(u′

1)σ(u1) = σ(u1)d(u1, u2, . . . , un)σ(u′
1).

Since σ is an onto map on N , replacing σ(u′
1) by r1 ∈ N in above expression, we find

that
(3.2) d(u1, u2, . . . , un)r1σ(u1) = σ(u1)d(u1, u2, . . . , un)r1.

Substituting r1r2 where r2 ∈ N in place of r1 in (3.2) and using it again, we obtain
d(u1, u2, . . . , un)N [σ(u1), r2] = {0}.
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By 3-primeness of N , we get d(u1, u2, . . . , un) = 0 or [σ(u1), r] = 0 for all u1 ∈ U1, u2 ∈
U2, . . . , un ∈ Un and r ∈ N .

Case 1. Suppose there exists x0 ∈ U1 such that d(x0, u2, . . . , un) = 0 for all
u2 ∈ U2, . . . , un ∈ Un. Then

F (u1x0, u2, . . . , un) = F (u1, u2, . . . , un)σ(x0) ∈ Z(N),

for all u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Since F (u1, u2, . . . , un) ̸= 0, then σ(x0) ∈ Z(N)
by Lemma 2.1 (ii).

Case 2. Suppose there exists x0 ∈ U1 such that [σ(x0), r] = 0 for all r ∈ N , then
σ(x0) ∈ Z(N).

In both cases, we obtain σ(U1) ⊆ Z(N) which implies that U1 ⊆ Z(N). Hence, by
Lemma 2.3, we conclude that N is a commutative ring.

Assume that d = 0, then another application of Lemma 2.1 (ii) and Lemma 2.8,
our hypothesis gives U1 ⊆ Z(N) and N is a commutative ring by Lemma 2.3. □

The following example shows that the 3-primeness hypothesis in Theorem 3.2 can
not be omitted.

Example 3.1. Let us consider Example 1.3. Consider

U =


 0 x 0

0 0 0
0 z 0

 | x, y, z, 0 ∈ S

.

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left
near ring N . If we choose U1 = U2 = · · · = Un = U , then F (U1, U2, . . . , Un) ⊆ Z(N).
However, N is not commutative.

Theorem 3.3. Let N be a 3-prime near-ring and U1, U2, . . . , Un are nonzero semigroup
ideals of N . Suppose that σ, τ are multiplicative mappings on Ui for i = 1, 2, . . . , n,
such that Ui ⊆ σ(Ui), Ui ⊆ τ(Ui) for i = 1, 2, . . . , n, and σ is onto on N . If N
admits a generalized (σ, τ)-n-derivation F associated with a (σ, τ)-n-derivation d such
that F (x1x

′
1, x2, . . . , xn) = F (x′

1, x2, . . . , xn)F (x1, x2, . . . , xn) for all x1, x′
1 ∈ U1, x2 ∈

U2, . . . , xn ∈ Un, then N is commutative ring.

Proof. By hypothesis,

F (x1x
′
1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x′

1) + τ(x1)F (x′
1, x2, . . . , xn)

= F (x′
1, x2, . . . , xn)F (x1, x2, . . . , xn),(3.3)

for all x1, x′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Substituting x1x

′
1 for x′

1 in (3.3) and using
Remark 2.1, we obtain

F (x1(x1x
′
1), x2, . . . , xn) =F (x1x

′
1, x2, . . . , xn)F (x1, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x′
1)F (x1, x2, . . . , xn)

+ τ(x1)F (x′
1, x2, . . . , xn)F (x1, x2, . . . , xn).
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Also, using the definition of F , we get
F (x1(x1x

′
1), x2, . . . , xn) =d(x1, x2, . . . , xn)σ(x1x

′
1) + τ(x1)F (x1x

′
1, x2, . . . , xn)

=d(x1, x2, . . . , xn)σ(x1)σ(x′
1)

+ τ(x1)F (x′
1, x2, . . . , xn)F (x1, x2, . . . , xn).

By comparing the last two equations, we can easily arrive at
(3.4) d(x1, x2, . . . , xn)σ(x′

1)F (x1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x1)σ(x′
1).

Since σ is onto on N , we get
d(x1, x2, . . . , xn)r1F (x1, x2, . . . , xn) = d(x1, x2, . . . , xn)σ(x1)r1.

Now substituting r1r2 for r1 in above expression and using it again, we find that
d(x1, x2, . . . , xn)N [F (x1, x2, . . . , xn), r2] = {0},

for all x1, ∈ U1, x2 ∈ U2, . . . , xn ∈ Un and r2 ∈ N . Since N is 3-prime, we have
d(x1, x2, . . . , xn) = 0 or F (x1, x2, . . . , xn) ∈ Z(N) for all x1, ∈ U1, x2 ∈ U2, . . . , xn ∈
Un. Using the same argument as used in the proof of the Lemma 2.5 and Theorem
3.2, we conclude that N is a commutative ring. □

Theorem 3.4. Let N be a 3-prime near-ring and U1, U2, . . . , Un are nonzero semigroup
ideals of N . Let σ be an automorphism and τ be a homomorphism on N such that
U1 ⊆ σ(U1) and Ui ⊆ τ(Ui) for i = 1, 2, . . . , n. If N admits a left generalized (σ, τ)-n-
derivation F associated with a (σ, τ)-n-derivation d such that F ([x, y], u2, . . . , un) =
±τ([x, y]) for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un, then N is a commutative ring.

Proof. By hypothesis
(3.5) F ([x, y], u2, . . . , un) = ±τ([x, y]), for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.5) and using [x, xy] = x[x, y], we get
d(x, u2, . . . , un)σ([x, y]) + τ(x)F ([x, y], u2, . . . , un) = ±(τ(x)τ(xy) − τ(x)τ(yx)),

which reduces to
(3.6) d(x, u2, . . . , un)σ([x, y]) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

This implies that
d(x, u2, . . . , un)σ(x)σ(y) = d(x, u2, . . . , un)σ(y)σ(x).

Substituting yz in place of y, where z ∈ N in the last expression and using it again,
we find that

d(x, u2, . . . , un)σ(y)[σ(x), σ(z)] = 0.

Since U1 ⊆ σ(U1), then Lemma 2.2 (i) yields that d(x, u2, . . . , un) = 0 or σ(x) ∈ Z(N)
for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Since σ is an automorphism on N , then
d(x, u2, . . . , un) = 0 or x ∈ Z(N) for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Using Lemma
2.7, we get d(U1, U2, . . . , Un) ∈ Z(N) which forces that N is a commutative ring by
Theorem 3.2 which completes the proof. □
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Theorem 3.5. Let N be a 2-torsion free 3-prime near-ring and U1, U2, . . . , Un are
nonzero semigroup ideals of N . Let σ be an automorphism on N and τ be a homomor-
phism on N such that U1 ⊆ σ(U1) and Ui ⊆ τ(Ui) for i = 1, 2, . . . , n. Then N admits
no left generalized (σ, τ)-n-derivation F associated with a nonzero (σ, τ)-n-derivation
d satisfying one of the following conditions:

(i) F (x ◦ y, u2, . . . , un) = ±τ([x, y]) for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un;
(ii) F (x ◦ y, u2, . . . , un) = ±τ(x ◦ y) for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un;
(iii) F (x ◦ y, u2, . . . , un) = 0 for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Proof. (i) Assume that

(3.7) F (x ◦ y, u2, . . . , un) = ±τ([x, y]), for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.7), we get

d(x, u2, . . . , un)σ(x ◦ y) + τ(x)F (x ◦ y, u2, . . . , un) = ±(τ(x)τ(xy) − τ(x)τ(yx)),

which implies that

d(x, u2, . . . , un)σ(x ◦ y) + τ(x)F (x ◦ y, u2, . . . , un) = ±τ(x)τ([x, y]).

Using the hypothesis, we find that

d(x, u2, . . . , un)σ(x ◦ y) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un,

which implies that

(3.8) d(x, u2, . . . , un)σ(y)σ(x) = −d(x, u2, . . . , un)σ(x)σ(y).

Substituting yz for y in (3.8) where z ∈ N , we have

d(x, u2, . . . , un)σ(y)σ(z)σ(x) = −d(x, u2, . . . , un)σ(x)σ(y)σ(z)
= d(x, u2, . . . , un)σ(x)σ(y)(−σ(z))
= (−d(x, u2, . . . , un)σ(y)σ(x))(−σ(z))
= d(x, u2, . . . , un)σ(y)(−σ(x))(−σ(z))
= d(x, u2, . . . , un)σ(y)σ(−x)σ(−z),

which implies that

0 = d(x, u2, . . . , un)σ(y)(σ(z)σ(x) − σ(−x)σ(−z))
= d(x, u2, . . . , un)σ(y)(−σ(z)σ(−x) + σ(−x)σ(z)).

Since U1 ⊆ σ(U1), Lemma 2.2 (i) yields that

(3.9) d(x, u2, . . . , un) = 0 or σ(−x) ∈ Z(N), for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Suppose there exists x0 ∈ U1 such that σ(−x0) ∈ Z(N). Since −U1 is a nonzero
semigroup left ideal of N , replacing x and y by −x0 in (3.8), we get

2d(−x0, u2, . . . , un)σ(−x0)σ(−x0) = 0,
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for all u2 ∈ U2, . . . , un ∈ Un. Using 2-torsion freeness of N , we conclude that
d(−x0, u2, . . . , un)Nσ(−x0)Nσ(−x0) = {0} for all u2 ∈ U2, . . . , un ∈ Un. By 3-
primeness of N , we arrive at d(−x0, u2, . . . , un) = 0 or σ(−x0) = 0 for all u2 ∈
U2, . . . , un ∈ Un. Since σ is an automorphism of N , by (3.9) we get d(x, u2, . . . , un) = 0
for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un, so d(U1, U2, . . . , Un) = {0}, which contradicts
Lemma 2.5.

(ii) Suppose that

(3.10) F (x ◦ y, u2, . . . , un) = ±τ(x ◦ y), for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.10), we get

d(x, u2, . . . , un)σ(x ◦ y) + τ(x)F (x ◦ y, u2, . . . , un) = ±τ(x)τ(x ◦ y),

which reduces to

(3.11) d(x, u2, . . . , un)σ(y)σ(x) = −d(x, u2, . . . , un)σ(x)σ(y).

Since (3.11) is same as (3.8), arguing in the similar manner as in (i), we find a
contradiction with our hypothesis.

Using the same techniques, we can prove the result for (iii). □

Theorem 3.6. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero semi-
group ideals of N . Let σ be an homomorphism on N such that Ui ⊆ σ(Ui) for
i = 1, 2, . . . , n. If N admits a left generalized (σ, σ)-n-derivation F associated with a
(σ, σ)-n-derivation d such that F ([x, y], u2, . . . , un) = [σ(x), y]σ,σ for all x, y ∈ U1, u2 ∈
U2, . . . , un ∈ Un, then F is a right σ-n-multiplier on N or N is commutative.

Proof. By hypothesis

(3.12) F ([x, y], u2, . . . , un) = [σ(x), y]σ,σ, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.12), we get

d(x, u2, . . . , un)σ([x, y]) + σ(x)F ([x, y], u2, . . . , un) = σ(x)[σ(x), y]σ,σ,

which reduces to

(3.13) d(x, u2, . . . , un)σ([x, y]) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

As (3.13) is same as (3.6), arguing in the similar manner as in Theorem 3.4, we obtain
the result. □

Theorem 3.7. Let N be a 2-torsion free 3-prime near-ring and U1, U2, . . . , Un are
nonzero semigroup ideals of N . Let σ be a homomorphism on N such that Ui ⊆ σ(Ui)
for i = 1, 2, . . . , n. Then N admits no left generalized (σ, σ)-n-derivation F associated
with a nonzero (σ, σ)-n-derivation d satisfying one of the following conditions:

(i) F (x ◦ y, u2, . . . , un) = [σ(x), y]σ,σ for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un;
(ii) F (x ◦ y, u2, . . . , un) = (σ(x) ◦ y)σ,σ for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.
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Proof. (i) Suppose that
(3.14) F (x ◦ y, u2, . . . , un) = [σ(x), y]σ,σ, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Replacing y by xy in (3.14), we get
d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) = σ(x)[σ(x), y]σ,σ,

which reduces to
(3.15) d(x, u2, . . . , un)σ(x ◦ y) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Since (3.15) is same as (3.8), arguing as in the proof of Theorem 3.5, we find that
d(x, u2, . . . , un) = 0 for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un or N is a commutative ring.
If N is a commutative ring, then our hypothesis becomes

2F (xy, u2, . . . , un) = 0,

for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. By 2-torsion freeness of N , we have
F (xy, u2, . . . , un) = 0 for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. This implies that

d(x, u2, . . . , un)σ(y) + σ(x)F (y, u2, . . . , un) = 0.

Replacing y by yz in last expression, we obtain d(x, u2, . . . , un)σ(y)σ(z) = 0 for all
x, y, z ∈ U1, u2 ∈ U2, . . . , un ∈ Un which implies that d(x, u2, . . . , un)σ(U1)σ(z) = {0}
for all x, z ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Since U1 ⊆ σ(U1), we get

d(x, u2, . . . , un)U1σ(z) = {0},

for all x, z ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Using Lemma 2.2 (i), we have d(x, u2, . . . , un) =
0 for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un or σ(U1) = U1 = {0}. Since U1 ̸= {0}, we
conclude that d(U1, U2, . . . , Un) = {0} which contradicts Lemma 2.5.

(ii) Assume that
(3.16) F (x ◦ y, u2, . . . , un) = (σ(x) ◦ y)σ,σ, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Substituting xy for y in (3.16), we have
F (x(x ◦ y), u2, . . . , un) =σ(x)σ(xy) + σ(xy)σ(x),

d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) =σ(x)(σ(x) ◦ y)σ,σ,

which implies that
d(x, u2, . . . , un)σ(x ◦ y) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Arguing in the similar manner as we have done above, we obtain d(x, u2, . . . , un) = 0
for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un, we again get a contradiction. □

Theorem 3.8. Let N be a 3-prime near-ring and U1, U2, . . . , Un are nonzero semigroup
ideals of N . Let σ be an homomorphism on N such that Ui ⊆ σ(Ui) for i = 1, 2, . . . , n.
If N admits a left generalized (σ, σ)-n-derivation F associated with a nonzero (σ, σ)-
n-derivation d such that F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(y)] for all x, y ∈
U1, u2 ∈ U2, . . . , un ∈ Un, then N is a commutative ring.
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Proof. Suppose that for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.17) F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(y)].

Replacing y by xy in (3.17), we get

d(x, u2, . . . , un)σ([x, y]) + σ(x)F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(xy)].

In view of our hypothesis, the above expression gives

d(x, u2, . . . , un)σ(xy) − d(x, u2, . . . , un)σ(yx) + σ(x)d(x, u2, . . . , un)σ(y)
− σ(x)σ(y)d(x, u2, . . . , un)

=d(x, u2, . . . , un)σ(xy) − σ(xy)d(x, u2, . . . , un),

which implies that

(3.18) d(x, u2, . . . , un)σ(y)σ(x) = σ(x)d(x, u2, . . . , un)σ(y).

Replacing y by yu in the last equation and using it, we can easily arrive at

d(x, u2, . . . , un)σ(y)[σ(x), σ(u)] = 0.

Since U1 ⊆ σ(U1), by Lemma 2.2 (i), we conclude that
(3.19)

d(x, u2, . . . , un) = 0 or σ(x) ∈ Z(U1), for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Suppose there exists x0 ∈ U such that σ(x0) ∈ Z(U1). Then σ(x0)v = vσ(x0) for
all v ∈ U1 and replacing v by vn, where n ∈ N and using it, we conclude that
U [σ(x0), n] = {0} for all n ∈ N by Lemma 2.2 (ii), we conclude that σ(x0) ∈ Z(N).
In this case, (3.19) becomes
(3.20)

d(x, u2, . . . , un) = 0 or σ(x) ∈ Z(N) for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

In all cases, the equation (3.17) becomes

(3.21) F ([x, y], u2, . . . , un) = 0, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

This equation is a special case of Theorem 3.4 with τ = 0, which is already treated
previously. □

Theorem 3.9. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un are
nonzero semigroup ideals of N . Let σ be an automorphism on N such that Ui ⊆ σ(Ui)
for i = 1, 2, . . . , n. Then N admits no left generalized (σ, σ)-n-derivation F associated
with a nonzero (σ, σ)-n-derivation d satisfying one of the following conditions:

(i) F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(y);
(ii) F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(y)],

for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.
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Proof. (i) By hypothesis, for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.22) F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(y).

Substituting xy for y in (3.22) and using (x ◦ xy) = x(x ◦ y), we obtain

d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(xy).

Using the hypothesis, we find that

(3.23) d(x, u2, . . . , un)σ(y)σ(x) = −σ(x)d(x, u2, . . . , un)σ(y).

Replacing y by yz where z ∈ N in the last expression and using the same steps that we
introduced previously, we obtain d(x, u2, . . . , un)σ(y)(−σ(z)σ(−x) + σ(−x)σ(z)) = 0
for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un, z ∈ N. Since σ(U1) = U1 and invoking Lemma
2.2 (i) and Lemma 2.3, we conclude that d(x, u2, . . . , un) = 0 or σ(−x) ∈ Z(N).

Suppose there exists x0 ∈ U such that σ(−x0) ∈ Z(N). Since −U1 is a nonzero
semigroup left ideal of N , replacing x and y by −x0 in (3.23), we get

2d(−x0, u2, . . . , un)σ(−x0)σ(−x0) = 0, for all u2 ∈ U2, . . . , un ∈ Un.

Using 2-torsion freeness of N , we conclude that

d(−x0, u2, . . . , un)Nσ(−x0)Nσ(−x0) = {0},

for all u2 ∈ U2, . . . , un ∈ Un. By 3-primeness of N , we arrive at d(−x0, u2, . . . , un) = 0
or σ(−x0) = 0 for all u2 ∈ U2, . . . , un ∈ Un. Since σ is an automorphism of N , by (3.9)
we get d(x, u2, . . . , un) = 0 for all x ∈ U1, u2 ∈ U2, . . . , un ∈ Un, so d(U1, U2, . . . , Un) =
{0}, which contradicts Lemma 2.5.

(ii) By hypothesis, we have for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un

(3.24) F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(y)].

Substituting xy for y in (3.24) and using (x ◦ xy) = x(x ◦ y), we obtain

d(x, u2, . . . , un)σ(x ◦ y) + σ(x)F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(xy)],

which reduces to

(3.25) d(x, u2, . . . , un)σ(y)σ(x) = −σ(x)d(x, u2, . . . , un)σ(y).

(3.25) is same as (3.23), arguing in the similar manner as above, we conclude that
d(U1, U2, . . . , Un) = {0}, which leads to a contradiction. □

Theorem 3.10. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero semi-
group ideals of N . Let σ be an homomorphism on N such that Ui ⊆ σ(Ui) for
i = 1, 2, . . . , n. If F is a left generalized (σ, σ)-n-derivation associated with a nonzero
(σ, σ)-n-derivation d on N such that d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(y)] for
all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un, then F is a right σ-n-multiplier on N or N is a
commutative ring.
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Proof. Assume that
(3.26) d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(y)],
for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Replacing y by xy in (3.26), we get

d(x[x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(xy)],
which implies that

d(x, u2, . . . , un)σ([x, y]) + σ(x)d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(x)σ(y)].
Using (3.26), the last equation becomes

d(x, u2, . . . , un)σ([x, y]) + σ(x)F (x, u2, . . . , un)σ(y) = F (x, u2, . . . , un)σ(x)σ(y).
For x = y, (3.26) gives F (x, u2, . . . , un)σ(x) = σ(x)F (x, u2, . . . , un) which implies that
d(x, u2, . . . , un)σ([x, y]) = 0. As this equation is same as (3.6), arguing in the similar
manner as in Theorem 3.4, we obtain the result. □

Theorem 3.11. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un are
nonzero semigroup ideals of N such that U1 is closed under addition. Let σ be a
onto homomorphism on N such that U1 ⊆ σ(U1). Then N admits no generalized
(σ, σ)-n-derivation F associated with a (σ, σ)-n-derivation d such that U1 ∩ Z ̸= ∅,
d(U1 ∩ Z, U2, U3, . . . , Un) ̸= {0} and d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(y) for
all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un.

Proof. Suppose that
(3.27) d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(y),
for all x, y ∈ U1, u2 ∈ U2, . . . , un ∈ Un. Let z ∈ U1∩Z such that d(z, u2, u3, . . . , un) ̸= 0
and replacing y by zy in (3.27), we get

d(z, u2, . . . , un)σ(x ◦ y) + σ(z)d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(z)σ(y).
Substituting arbitrary element z′ ∈ U1∩Z for σ(z) in above expression and using (3.27),
we obtain d(z, u2, . . . , un)σ(x◦y) = 0. By Lemma 2.7, it is clear that d(z, u2, . . . , un) ∈
Z \ {0} which means that d(z, u2, . . . , un)Nσ(x ◦ y) = {0}. By 3-primeness of N , we
conclude that σ(x ◦ y) = 0 for all x, y ∈ U1 which implies that σ(x) ◦ σ(y) = 0. Now
replacing σ(x) and σ(y) by x′ and y′ for all x′, y′ ∈ U1 respectively, we have x′ ◦ y′ = 0.
In particular x′2 = 0 for all x′ ∈ U1. Since U1 is closed under addition, we have
u(u + u′)2 = 0 for all u, u′ ∈ U1 this gives uu′u = 0 for all u, u′ ∈ U1, i.e., uU1u = {0}.
Thus, U1 = {0}, which contradicts our hypothesis. □

The following example shows that the 3-primeness hypothesis in Theorems 3.4 to
3.11 can not be omitted.

Example 3.2. Let S be a zero-symmetric left near-ring which is not abelian. Consider

N =


 0 x y

0 0 0
0 0 0

 | x, y, 0 ∈ S


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and

U =


 0 x 0

0 0 0
0 0 0

 | x, 0 ∈ S

.

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left near
ring N. Define mappings F, d : N × N × · · · × N︸ ︷︷ ︸

n−times

→ N by

F


 0 x1 y1

0 0 0
0 0 0

 ,

 0 x2 y2
0 0 0
0 0 0

 , . . . ,

 0 xn yn

0 0 0
0 0 0


 =

 0 x1x2 . . . xn 0
0 0 0
0 0 0

 ,

d


 0 x1 y1

0 0 0
0 0 0

 ,

 0 x2 y2
0 0 0
0 0 0

 , . . . ,

 0 xn yn

0 0 0
0 0 0


 =

 0 0 y1y2 . . . yn

0 0 0
0 0 0

 .

Define σ, τ : N → N by

τ

 0 x y
0 0 0
0 0 0

 =

 0 x −y
0 0 0
0 0 0

 and σ = idN .

If we choose U1 = U2 = · · · = Un = U , then it is easy to see that F is a nonzero
generalized (σ, σ)-n-derivation associated with a nonzero (σ, σ)-n-derivation d and also
a nonzero generalized (σ, τ)-n-derivation associated with a nonzero (σ, τ)-n-derivation
d of N satisfying

(i) F (x ◦ y, u2, . . . , un) = 0;
(ii) F ([x, y], u2, . . . , un) = ±τ([x, y]);

(iii) F (x ◦ y, u2, . . . , un) = ±τ([x, y]);
(iv) F (x ◦ y, u2, . . . , un) = (σ(x) ◦ y)σ,σ;
(v) F ([x, y], u2, . . . , un) = [σ(x), y]σ,σ;

(vi) F (x ◦ y, u2, . . . , un) = [σ(x), y]σ,σ;
(vii) F (x ◦ y, u2, . . . , un) = ±τ(x ◦ y);

(viii) F ([x, y], u2, . . . , un) = [d(x, u2, . . . , un), σ(y)];
(ix) d([x, y], u2, . . . , un) = [F (x, u2, . . . , un), σ(y)];
(x) F (x ◦ y, u2, . . . , un) = [d(x, u2, . . . , un), σ(y)];

(xi) F (x ◦ y, u2, . . . , un) = d(x, u2, . . . , un) ◦ σ(y);
(xii) d(x ◦ y, u2, . . . , un) = F (x, u2, . . . , un) ◦ σ(y),

for all x, y, u2, . . . , un ∈ U . However, N is not a commutative ring.
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