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STRUCTURE OF 3-PRIME NEAR RINGS WITH GENERALIZED
(0, 7)-n-DERIVATIONS

ASMA ALI', ABDELKARIM BOUA? AND INZAMAM UL HUQUE?

ABSTRACT. In this paper, we define generalized (o, 7)-n-derivation for any mappings
o and 7 of a near ring N and also investigate the structure of a 3-prime near
ring satisfying certain identities with generalized (o, 7)-n-derivation. Moreover, we
characterize the aforementioned mappings.

1. INTRODUCTION

A left near ring N is a triplet (N, +,.), where + and . are two binary operations
such that (i) (IV,+) is a group (not necessarily abelian); (i) (N,.) is a semigroup,
and (i) x.(y + z) = z.y + x.z for all x,y,2 € N. Analogously, if N satisfies the
right distributive law, i.e., (x +y).z = z.z + y.z for all 2,y € N, then N is said
to be a right near ring. The most natural example of a left near ring is the set
of all identity preserving mappings acting from right of an additive group G (not
necessarily abelian) into itself with pointwise addition and composition of mappings
as multiplication. If these mappings act from left on GG, then we get a right near
ring (Pilz [10, Example 1.4]). Throughout the paper, N denotes a zero-symmetric
left near ring with multiplicative centre Z and for any pair of elements x,y € N,
[z,y] =2y —yx, roy = xy +yx and (z,y) = x +y — x — y stand for the Lie product,
Jordan Product and additive commutator respectively. Let ¢ and 7 be mappings on
N. For any z,y € N, set the symbol [z,yl,, will denote zo(y) — 7(y)z, while the
symbol (zoy),, will denote zo(y) + 7(y)z. The terminology multiplicative mappings
on a near ring N is used for the mappings o, 7 : N — N satisfying o(zy) = o(z)o(y)
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and 7(zy) = 7(x)7(y) for all x,y € N. A near ring N is called zero-symmetric if
0x = 0, for all x € N (recall that left distributivity yields that 0 = 0). A near ring
N is said to be 3-prime if xt Ny = {0} for z,y € N implies that z = 0 or y = 0. A
near ring N is called 2-torsion free if (IV,+) has no element of order 2. A nonempty
subset U of N is called a semigroup right (resp. semigroup left) ideal if UN C U (resp.
NU C U) and if U is both a semigroup right ideal and a semigroup left ideal, it is
called a semigroup ideal.

Let n > 2 be a fixed positive integer and N = N X N x --- x N. A map A :

n—times

N™ — N is said to be permuting (symmetric) on a near ring N if the relation
A1, 22, ..., n) = A(Zr), Ta(2)s - - - » Tr(ny) holds for all z; € N, i =1,2,...,n, and
for every permutation 7w € S,,, where S, is the permutation group on {1,2,...,n}. An
additive mapping F': N — N is said to be a right (resp. left) generalized derivation
with associated derivation d if F(xy) = F(x)y+xd(y) (resp. F(zy) = d(x)y+xF(y)),
for all z,y € N and F is said to be a generalized derivation with associated derivation
d on N if it is both a right generalized derivation and a left generalized derivation on
N with associated derivation d.

Ozturk et al. [9] and Park et al. [6] studied bi-derivations and tri-derivations in near
rings. Further, Ceven et al. [4] and Ozturk et al. [8] defined (o, 7) bi-derivations and
(0, 7) tri-derivations in near rings. Let o, 7 be automorphisms on a near ring N. A
symmetric bi-additive (additive in both arguments) mapping d : N x N — N is said to
be a (o, T) bi-derivation if d(zx', y) = d(z,y)o(z') + 7(z)d(2’,y) holds for all z, 2",y €
N. A symmetric tri-additive (additive in each argument) mapping d : Nx NxN — N
is said to be a (o, 7) tri-derivation if d(z2’, y, 2) = d(z,y, z)o(z') +7(z)d(2', y, z) holds
for all x,2’,y,z € N.

Motivated by these concepts, we define (o, 7)-n-derivation and generalized (o, 7)-n-
derivation for any arbitrary mappings o and 7 of a near ring N in place of automor-
phisms.

Definition 1.1 ((o,7)-n-derivation). Let 0,7 : N — N be mappings on N. An
n-additive (additive in each argument) mapping d: N X N x --- x N — N is called

n—times
a (o, 7)-n-derivation of N if the following equations
d(z12), 0y ..y ) =d(21, T, . .y wp)o (1)) + 7(x1)d(2), 20, .. 2y),
d(z1, 2oxh, ... ) =d(T1, T, . .., x)0 (1) + T(x2)d (21, 25, ... 2y),
d(xy, o, ..., xpxl) =d(x1, 20, ..., xn)0(x)) + 7(2,)d(21, 2o, . .., X))

hold for all zy, 2}, g, 25, ..., 2y, 2, € N.

Definition 1.2 (Right generalized (o, 7)-n-derivation). An n-additive (additive in
each argument) mapping F' : N X N x --- x N — N is called a right generalized

n—times
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(o, 7)-n-derivation associated with (o, 7)-n-derivation d on N if the relations

F(x12), @0, ... x,) =F (21, 29, ..., xn)0 () + 7(x1)d(2], 2o, . . ., 1),

F(xy, x00h, ..., x,) =F (21,9, ..., x)0(xy) + 7(x2)d(x1, 2, . . ., 2y),

F(xy, @0, ... xqz)) =F (21,22, ..., x,)0(x)) + 7(x,)d(21, T2, . . ., 7))
hold for all zy, 2}, x9, 2, ..., x,, 2, € N.

Definition 1.3 (Left generalized (o, 7)-n-derivation). An n-additive (additive in each
argument) mapping F' : N X N x --- x N — N is called a left generalized (o, 7)-n-

n—times

derivation associated with (o, 7)-n-derivation d on N if the relations

F(x12, o, ... x,) =d(x1, 20, .. ., xp)0(x) + 7(21) F (2], 2o, . . ., 1),

F(xy, x00h, ... x,) =d(x1,Ta, ..., 20)0(xh) + 7(x2) F (21, 2, . .., 1),

F(xy, @9, ..., xqz)) =d(x1, 29, ... xn)o(x)) + 7(x,) F (21, 22, . .., 7))
hold for all zy, 2}, x9, 2, ..., x,, 2, € N.

A mapping F : N X N x---x N — N is called a generalized (o, 7)-n-derivation

n—times
associated with (o, 7)-n-derivation d on N if F' is both a right generalized (o, 7)-n-
derivation and a left generalized (o, 7)-n-derivation associated with (o, 7)-n-derivation

don N.

FExample 1.1. Let S be a zero-symmetric left near ring and
0 =z y
N:{ 0 0 z |x,y,z,0€5}.
0 00

Then N is a zero-symmetric left near ring with respect to matriz addition and matriz
multiplication. Define mappings F,d : N Xx N x --- x N = N by

n—times
0 1 un 0 z o 0 =, yn 0 0 0
F( 0 0 2 |,]0 0 2 |,....]10 0 =z ): 0 0 z20...2, |,
0O 0 O 0 0 0 0 0 0 0 0 0

0 =1 u 0 22 0 =, yn 0
d( 0 0 z |.[O0 2 |,.... 0 0 =z, ): 0 0 0
0 0 0 0

0 0 O 0
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Define o, 7: N — N by

0z y 0 0 o2 0z y 0 zy 0
cl 00 z =100 0 and 7 0 0 z | =10 0 =z
0 0 0 00 O 0 0 0 0 0 0

~—
—~

It is easy to check that F' is a nonzero right (but not left) generalized (o, T)-n-derivation
associated with a nonzero (o, T)-n-derivation d of N, where o and T are any arbitrary

mappings on N.

Example 1.2. Let N be a zero-symmetric left near ring as in Example 1.1. Define
mappings F,d: N X N x---x N — N by

n—times
0 =1 »n 0 2 Yo 0 =, Yn 0 zyx9...2, O
F( 0 0 2 |,1]0 0 2 |,....,] 0 0 =z =10 0 01,
0 0 0 0 0 0 0 0 O 0 0 0
0 1w 0 x2 o 0 x, Yn 00 0
d( 0O 0 2 |,]0 0 2z |,....10 0 =z =1 0 0 z122...2,
0 0 O 0 0 O 0 0 O 00 0
Define o, 7: N — N by
0z vy 0 22 0 0z y 00 y
ol 00 2z |=[0 0 =z and 7| 0 0 2z | =0 0 22
0 0 O 0 0 0 0 0O 00 0

It can be easily seen that F is a nonzero left (but not right) generalized (o, T)-n-
derivation associated with a nonzero (o,T)-n-derivation d of N for any arbitrary
mappings o and T on N.

FExample 1.3. Let S be a zero-symmetric left near ring and

0 = y
N:{ 000 \x,y,z,OeS}.
0 2 0

It is easy to see that N is a zero-symmetric left near ring with respect to matrix
addition and matriz multiplication. Define mappings Fy,d: N x N x --- x N — N by

n—times
( 0 =1 wn 0 z Yo 0 zn, yn ) 0 0 yiye---yn
F o o0 o0 11,10 0 O{,....10 0 O =100 0 ,
0 2z O 0 z O 0 =z, O 0 0 0
0 =1 1 0 zo 9o 0 =z, yn 0 0 0
d( o 0o o0 1,0 0 O|,....10 0 O ) =10 0 0
0 2 O 0 z O 0 2z, O 0 z129...2, 0
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Define o,7: N — N by

0z y 0 22 vy 0z y 0 z 0
cl 00 0=10 0 0 and 7| 0 0 O |=([0 0 O
0 =z O 0 0 O 0 z O 0 yz 0O

It can be easily verified that F is a nonzero right as well as left generalized (o, T)-n-
derivation associated with a nonzero (o,7)-n-derivation d of N, where o and T are
any arbitrary mappings on N.

Obviously this notion covers the notion of a generalized n-derivation (in case o =
7 = I), notion of an n-derivation (in case F' = d, 0 = 7 = I), notion of a left
n-centralizer (in case d = 0, 0 = I), notion of a (o, 7)-n-derivation (in case F' = d)
and the notion of a left o-n-multiplier (in case d = 0). Thus, it is interesting to
investigate the properties of this general notion. In [7], Bresar has proved that if R
is a 2-torsion free semiprime ring and F': R — R is an additive map on R such that
F(z)x +xF(z) = 0 for all z € R, then F = 0. Further, Vukman [5] proved that if
there exist a derivation d : R — R and an automorphism « : R — R, where R is
2-torsion free semiprime ring such that [d(z)x 4+ zd(z),z] = 0 for all x € R, then d
and o — I, I denotes the identity mapping on R, map R into its centre. Motivated
by the mentioned results we prove that if a 3-prime near ring N with a generalized
(o, 7)-n-derivation F satisfies certain identity, then N is a commutative ring and F' is
a left o-n-multiplier on N.

2. SOME PRELIMINARIES

Lemma 2.1. ([1, Lemmas 1.2]). Let N be 3-prime near ring.

(i) If z € Z \ {0}, then z is not a zero divisor.
(ii) If Z \ {0} and x is an element of N for which vz € Z, then x € Z.

Lemma 2.2. ([1, Lemmas 1.3 and Lemma 1.4]). Let N be 3-prime near ring and U
be a nonzero semigroup ideal of N.

(i) If x,y € N and 2Uy = {0}, then x =0 ory = 0.

(ii) If x € N and U = {0} or Uz = {0}, then z = 0.
Lemma 2.3. ([1, Lemma 1.5]). If N is a 3-prime near ring and Z contains a nonzero
semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative ring.

Lemma 2.4. If N is a 3-prime near ring admitting a generalized (o, 7)-n-derivation
F associated with a (o, 7)-n-derivation d of N such that o and 7 are multiplicative
mappings on N, then
{d(xb To,. .. wrn)o-(yl) + T($1>F<y17 Loy ... 7xn)}0-(21)
:d(xla T, ... ,.flfn)0'<y1)0-(2’1) + T(xl)F(yla T, ... 71"71)0-(21)
{d(xb Xy ... an)a<y2) + T(x2>F<x17 Y2, .- 7In)}o-(22
=d(r1, T2, ..., 7,)0(y2)0(22) + T(22) F (21,92, - - -, Tn)0(22)

Y
Y
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{d(z1, 22, ..., 20)0(Yn) + T(T0) F (1, T2, . -, Yn) Fo(2)
=d(z1, %2, ..., Tp)0(Yn)o(2n) + T(xn) F (21,29, . .., Yn)o(2n),
for all 1,41, 21, T2, Y2, 22, - - -, Ty Yny 2n € N.
Proof. For all xq,y1, 21, T2, Y2, 22, - - - s Ty Yn, 2n € N
F(xiyiz1, 20, ..., xn) =F(x191, X2, . ., x0)0(21) + T(x1y1)d(21, T2) - -, T0)
={d(z1, 22, ..., 2n)0(1) + 7(21)F(y1, 2, ..., 2n) }o(21)
(2.1) + 7(x1)T(y1)d(2, ug, . . ., up)
and
F(xyyiz1, 20, ..., xp) =d(x1, 29, ..., xp)0(y121) + 7(21) F (Y121, T2, - - -, Ty)
=d(z1,x9,...,x,)0(y1)o(z1) + 7(x1)F(y1, 22, . . ., xp)0(21)
(2.2) + 7(x1)T(y1)d(21, 2y - -, X)-
Combining (2.1) and (2.2), we get
{d(x1, 29, ..., 2p)0(y1) + 7(x1) F (Y1, 22, . . ., 20) }o(21)
=d(x1,x9,...,2,)0(y1)o(z1) + 7(x1) F(y1, x2, . . ., x5)0(21).
Similarly, we can prove other relations for i = 2,3,...,n. 0

Remark 2.1. 1f o is an onto map on N, then Lemma 2.4 becomes

{d(z1, 29, ..., 25)0(y1) + 7(x1)F(y1, 22, ..., 2,) }a
=d(x1, o, ..., zp)0(y1)a + 7(x1)F(y1, 22, ..., x,)a,
{d(z1, 29, ..., 25)0(y2) + T(x2) F (21,92, ...,2,)}a
=d(x1, T2, ..., Tp)0(y2)a + T(x2) F(x1,Y2, ..., 2,)a,

{d<x17 Ty ... 7'rn)0-(yn) + T(ZEn)F<J]1, X2y 7y7l)}a
=d(z1,x9,...,25)0(yn)a + 7(xn) F(x1, 22, ..., Yn)a,

for all x1,y1, %2, Y2, ..., Tpn, Yn,a € N.

Lemma 2.5. Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero semigroup
ideals of N. Let ¢ and 7 be mappings on N such that U; C 7(U;) for i = 1,2,....n
If d is a nonzero (o, 7)-n-derivation on N, then d(Uy,Us,...,U,) # {0}.

Proof. Assume that

(2.3) d(uy,ug, ... ,u,) =0, forallu, € Uyug €Uy, ... ,u, € U,.

Replacing uy by uyry, where r; € N in (2.3) and using (2.3), we get
T(uy)d(ry, ug, ..., uy,) = 0.
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Since U; C 7(U;) for i = 1,2,...,n, we have Uyd(ry,us,...,u,) = {0}. Applying
Lemma 2.2 (ii), we obtain d(rq,us,...,u,) = 0 for all uy € Us,...,u, € U, and
ry € N. Replacing us by usry, where 7o € N in the last expression and another
application of Lemma 2.2(ii) yields that d(rq,79,...,u,) = 0. Proceeding inductively,

we conclude that d(ry,r,...,7,) =0 for all ri,ry, ..., 7, € N, a contradiction which
completes the proof. O
Lemma 2.6. Let N be a 3-prime near-ring and Uy, Us, ..., U, be nonzero semigroup

ideals of N. Let 0,7 be multiplicative mappings on U; such that U; C o(Uy). If
d is a nonzero (o, 7)-n-derivation on N such that d(Uy,Us,...U,)o(a) = {0} or
o(a)d(Uy,Us,...U,) = {0} for all a € N, then o(a) = 0.

Proof. Suppose that d(Uy,Us, ..., U,)o(a) = {0}. Then
(2.4) d(uy, ug, ..., up)o(a) =0, forall u; € Uy,ug € Uy, ... u, € U,.
Replacing u; by wju) in (2.4) and using it again yields that

d(uy, ug, . .., up)o(u))o(a) =0, for all uy,u) € Up,ug € Us, ..., u, € U,.
Equivalently,

d(uy, ug, ..., uy)o(Ur)o(a) = {0}, for all uy, € Uy, ug € Uy, ..., u, € U,.
Since U; C o(U;), we obtain

d(uy,ug, ..., u,)Uro(a) = {0}, forall uy, € Uy, us € Us, ..., u, € U,.

Applying Lemma 2.2 (i) and Lemma 2.5, we obtain o(a) = 0. Similarly, we can prove
the result for later case. U

Lemma 2.7. Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero semigroup
ideals of N. Let o be a onto map on N such that U; C o(U;) and Uy N Z # (. If d is
a (o,0)-n-derivation on N, then d(Z,U,,Us,...,U,) C Z.

Proof. Suppose that z € U; N Z. Then
d(zxy, 29, ..., xy) = d(x12,29,...,2,), forall zy € Uy,xg € Us,...,x, € Uy,
and
d(z,x9,...,x5)0(x1) + o(2)d(x1, 2o, ..., T,)
=0 (z1)d(z,x2,...,2,) + d(x1, 22, ..., 2,)0(2).
Substituting ) € Uy and 2’ € U; N Z for o(z1) and o(z) respectively, we get
d(z,x9,...,x,)2) = 21d(2, 29, ..., 2,), forallx] € Uy, xe € Us,..., x, € U,.

Replacing x] by z{r for r € N in above expression and using it again, we find that
2y [d(z,za, ..., x,), 7] = 0. Hence, d(Z,Us,Us,...,U,) C Z by Lemma 2.2 (ii). d
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Lemma 2.8. Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero semigroup
ideals of N. Let 0,7 be mappings on N such that U; C o(U;) and U; C 7(U;) for
i=1,2,...,n. If Fis a nonzero right generalized (o, 7)-n-derivation associated with
a (o, 7)-n-derivation d on N, then F'(Uy,Us,...,U,) # {0}.

Proof. Let
(2.5) F(uy,ug, ... ,uy) =0, forallu, € Up,uy € Uy,... ,u, € U,.
Replacing uy by uyr1, where r; € N in (2.5) and using (2.5), we get
T(up)d(ry, ug, ..., u,) = {0}.

Since U; C 7(U;), we have

Urd(ry,ug, ... u,) = {0}, for all uy € Uy, ..., u, € U, and r; € N.
Applying Lemma 2.2(ii), we find
(2.6) d(ry,ug,...,u,) =0, foralluy € Us,...,u, € U, and r; € N.

Now replacing uy by usry in (2.6) for 7 € N and another application of Lemma 2.2
(ii) yields that d(ry, 79, us,...,u,) = 0 for all uz € Us,...,u, € U, and ry,ry € N.
Proceeding inductively, we get d(rq,rq,...,r,) = 0forall ry,ro, ... 7, € N ie., d=0.
Therefore, our hypothesis reduces to

F(rlul,u2, Ce ,un) = F(TI,UQ, . ,un)a(ul) = 0,
for all uy € Uy, us € Us, ..., u, € U, and r; € N which implies that
(2.7) F(ry,ug, ... ,u,) =0, foralluy € Us,...,u, € U, and r; € N.

Replacing us by rous in (2.7), we get F(ry,ra,...,u,)Us = {0} and Lemma 2.2 (ii)
gives F(ry,ra,us, ..., u,) =0 for all ug € Us, ..., u, € U, and 1,79 € N. Proceeding
inductively, we obtain F' =0 on N, a contradiction. O

3. MAIN RESULTS

Theorem 3.1. Let N be a 3-prime near ring and Uy, Us, ..., U, are nonzero semigroup
ideals of N. Suppose that o, T are multiplicative mappings on U; for 1 =1,2,...,n,
such that U; C 7(U;) for i = 1,2,...,n, and o is onto on N. If N admits a
generalized (o, T)-n-derivation F associated with a (o, T)-n-derivation d such that
F(xx), xo, ... x,) = F(ay,z9,.. ., x)F (2], 20, ... x,) for all xq,2) € Up,xe €
Us,...,z, € Uy, then F is a left c-n-multiplier on N.

Proof. By hypothesis

F(a2, xe, ... xn) = d(xy, 29, ... xp)o(2)) + 7(x1) F (2], 22, ..., 2y)

= F(x1,%9,...,0,)F (2}, 29, ..., 2y),
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for all zy, 2} € Uy, 29 € Uy, ..., x, € U,. Replacing x| by 2z for z € U; in the above
relation, we get

{d(x1, 29, ..., 2n)0(x)) + 7(x1)F (2], 22, . .., 20) }F (2,22, ..., Ty)
=d(x1,Ta, ..., xn)0(x)2) + T(x){d(2], 22, .. ., 20)0(2) + T(2)) F (2,22, ..., x,) }.
Applying Lemma 2.4 and using the hypothesis, we obtain

d(zy, o, ... xp)o (X)) F (2,29, ..., 2y) + T(x)d(2), 20y . . . 1) 0(2)
+ 7(x1)7 () F (2,29, . . ., 20
:d(xb Loy ... 7xn)0-(‘rllz) + T(xl)d(x/h To, ... 7Q3n>0(2) + T('rl)T(xll)F(ZJ Loy .. 7xn)7

which reduces to

d(z1, 22, ..., x0)0(2))(F(2,29,...,2,) —0(2)) =0,
for all z1, 2,2 € Uy, 9 € Uy, ..., x, € U,. This implies that

d(zy, 29, ..., 20U (F(2,29,...,2,) —0(2)) = {0}.

By Lemma 2.2 (i), we obtain d(xy,zs,...,x,) = 0 or F(z,x9,...,z,) = o(z) for all
z € Ul,l’g € UQ,...,ZEn S Un
If F(z,29,...,2,) = o(2) for all z € Uy, replacing z by zt, we get
T(2)d(t, z2,...,z,) = 0.
Putting u € U; in place of 7(z) and using Lemma 2.2 (ii), we obtain d(¢, xs,...,2,) =0
for all t € U;. Therefore, in both cases we arrive at d(Uy, Us,...,U,) = {0}. Now

arguing in the similar manner as we have done in Lemma 2.5, we can get d = 0 on /V,
which completes the proof. O

Theorem 3.2. Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero semigroup
ideals of N. Suppose that o is a multiplicative mapping on U; foriv=1,2,...,n, such
that U; C o(U;) for i = 1,2,...,n. If N admits a nonzero generalized (o,c)-n-
derivation F associated with a (o, 0)-n-derivation d such that F(Uy,Us,...,U,) C
Z(N), then N is a commutative ring.

Proof. If d # 0, then for all uy, v} € Uy,us € Us, ..., u, € U,
(3.1) F(ujuy,ug,...,u,) =d(uy,ug,...,u,)o(u)) + o(u)F(uy,ug, ... u,) € Z(N).
Now commuting (3.1) with the element o(u;) and using Lemma 2.4, we get

d(uy, ug, . . ., up)o(u))o(ur) = o(ur)d(uy, us, . . ., uy)o(uh).

Since o is an onto map on N, replacing o(u}) by r1 € N in above expression, we find
that

(3.2) d(uy, ug, ..., up)rio(uy) = o(uy)d(uy, ug, ..., up)ry.
Substituting r;7r where ro € N in place of r; in (3.2) and using it again, we obtain

d(uy, ug, ..., up,)No(uy), ] ={0}.
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By 3-primeness of N, we get d(uy, ug, ..., u,) = 0or [o(u),r] =0 forall uy € Uy, uy €
Us,...,u, € U,and r € N.

Case 1. Suppose there exists xy € U; such that d(zg,us,...,u,) = 0 for all
ug € Us, ..., u, € U,. Then

F(uyzo, ug, ..., uy) = Fug,ug, ..., uy)o(x) € Z(N),

for all uy € Uy,up € Us, ..., u, € U,. Since F(uy,us,...,u,) # 0, then o(zy) € Z(N)
by Lemma 2.1 (ii).

Case 2. Suppose there exists z¢ € Uy such that [o(zg),7] = 0 for all » € N, then
0'(3?0) S Z(N)

In both cases, we obtain ¢(U;) C Z(N) which implies that U; C Z(N). Hence, by
Lemma 2.3, we conclude that N is a commutative ring.

Assume that d = 0, then another application of Lemma 2.1 (ii) and Lemma 2.8,
our hypothesis gives U; C Z(N) and N is a commutative ring by Lemma 2.3. O

The following example shows that the 3-primeness hypothesis in Theorem 3.2 can
not be omitted.

Example 3.1. Let us consider Example 1.3. Consider

0 =z O
U:{ 0 00 |x,y,z,0€5}.
0 z 0

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left
near ring N. If we choose Uy = Uy = --- = U, = U, then F(Uy,Us,...,U,) C Z(N).
However, N is not commutative.

Theorem 3.3. Let N be a 3-prime near-ring and Uy, Us, . . ., U, are nonzero semigroup
ideals of N. Suppose that o, 7 are multiplicative mappings on U; for i = 1,2,...,n,
such that U; C o(U;), U; € 7(U;) for i = 1,2,...,n, and o is onto on N. If N
admits a generalized (o, 7)-n-derivation F' associated with a (o, 7)-n-derivation d such
that F(xi2), 29, ..., x,) = F(2), 29, ..., 2,)F(21,22,...,2,) for all z1,2] € Uy, 29 €
Us,...,z, € U,, then N is commutative ring.

Proof. By hypothesis,
F(xa, xe, ... xp) = d(xy, 29, ... xp)o(2)) + (1) F(2), 22, ..., 2y)
(3.3) = F(2], %9, ..., 00 F(x1, 29, ..., 2,),
for all z1,2) € Uy, x5 € Us, ..., x, € U,. Substituting z,2} for ] in (3.3) and using
Remark 2.1, we obtain
F(xy(x12)), 22, ... xy) =F (2127, T, . ., 20 F (21, 29, . .., 2)
=d(x1, %, ..., Tn)0o(x))F (21,29, ...,2,)

+ 7(21)F (2, 0y ..o ) F (21, 20, ..., 2y).
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Also, using the definition of I, we get

F(xy(z12)), 22, ..., ) =d(x1, e, . . ., Tp)0(x12)) + 7(201) F (2127, oy - -, )

=d(x1, T2, ..., 2n)0(x1)0(2))
+ 7(x1)F (2, Ty . . ) F (21, T2, . .o 1),
By comparing the last two equations, we can easily arrive at
(3.4) d(z1, 22, ..., xp)o(2))F (21,29, ..., 2,) = d(1, 2, ..., 2)0(x1)0(2]).
Since o is onto on N, we get
d(x1,xo, ..., xp)r1 F (21,29, ..., x,) = d(x1, T2, ..., Tp)0(T1)77.
Now substituting r17ry for r; in above expression and using it again, we find that
d(x1, 29, ..., xn)N[F (21,29, ...,2,),72] = {0},

for all x1,€ Uy,25 € Us,...,x, € U, and 7, € N. Since N is 3-prime, we have
d(z1,x,...,x,) = 0 or F(xy,29,...,x,) € Z(N) for all x1,€ Uy, 29 € Us,...,x, €
U,. Using the same argument as used in the proof of the Lemma 2.5 and Theorem
3.2, we conclude that N is a commutative ring. O

Theorem 3.4. Let N be a 3-prime near-ring and Uy, Us, ..., U, are nonzero semigroup
ideals of N. Let o be an automorphism and T be a homomorphism on N such that
Uy Co(Uy) and U; C 7(U;) fori=1,2,...,n. If N admits a left generalized (o, T)-n-
derivation F associated with a (o, T)-n-derivation d such that F([x,y], us, ..., u,) =
+7([x,y]) for all z,y € Uy,us € Uy, ... ,u, € Uy, then N is a commutative ring.

Proof. By hypothesis
(3.5)  F(lz,y],ug,...,u,) = £7([x,y]), forall z,y € Uy,us € Uy, ..., u, € U,.
Replacing y by xy in (3.5) and using [z, zy] = x[z, y|, we get

d(x,ug, ... ,up)o([x,y]) + 7(x)F([z,y], u2, . .., u,) = £(7(x)7(2y) — 7(2)7(y2)),
which reduces to
(3.6) d(z,ug,...,up)o([x,y]) =0, forall x,y € U,uy € Us,...,u, € U,.
This implies that

d(x,ug, ..., uy)o(x)o(y) = d(x,ug, ..., u,)o(y)o(x).

Substituting yz in place of y, where z € N in the last expression and using it again,
we find that
d(x,ug,...,uy)o(y)lo(x),o(z)] = 0.

Since U; C o(U;), then Lemma 2.2 (i) yields that d(x, us,...,u,) =0or o(x) € Z(N)
for all x € Uy,us € Us,...,u, € U,. Since ¢ is an automorphism on N, then
d(z,ug,...,u,) =0or x € Z(N) for all x € Uy, uy € Us,...,u, € U,. Using Lemma
2.7, we get d(Uy,Us, ..., U,) € Z(N) which forces that N is a commutative ring by
Theorem 3.2 which completes the proof. O
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Theorem 3.5. Let N be a 2-torsion free 3-prime near-ring and Uy, Us, ..., U, are
nonzero semigroup ideals of N. Let o be an automorphism on N and T be a homomor-
phism on N such that Uy C o(Uy) and U; C 7(U;) fori=1,2,...,n. Then N admits
no left generalized (o, T)-n-derivation F associated with a nonzero (o, T)-n-derivation
d satisfying one of the following conditions:

(i) F(xoy,ug,...,u,) = t7([x,y]) for all z,y € Uy,us € Us, ..., u, € Upy;
(ii) F(zoy,ug,...,u,) = E7(zoy) for all z,y € Uy,us € Us, ..., u, € Uy;
(iii) F(xoy,ug,...,u,) =0 for all z,y € Uj,us € Us, ... ,u, € Up,.

Proof. (i) Assume that
(3.7)  F(xoy,ug...,u,) =*x7([x,y]), forall z,y € Uj,us € Us,...,u, € U,.
Replacing y by zy in (3.7), we get
d(z,ug, ... ,up)o(xoy)+7(x)F(x oy, ug,. .. u,) = +(7(x)7(xy) — 7(2)7(y2)),

which implies that

d(x,ug, ... ,up)o(xoy)+7(x)F(r oy, uy,... u,) = t7(z)7([2,9]).
Using the hypothesis, we find that

d(x,ug,...,uy)o(xoy) =0, forall z,y € Uy,us € Us,...,u, €U,
which implies that
(3.8) d(x,ug,...,up)o(y)o(r) = —d(z,us, ..., u,)o(x)o(y).
Substituting yz for y in (3.8) where z € N, we have

d(x,ug,...,up)o(y)o(z)o(z) = —d(x,us, ... ,u,)o(x)o(y)o(z)
=d(z,ug,...,uy)o(x)o(y)(—o(z))

which implies that
0=d(x,ug,...,uy)o(y)(o(z)o(z) — o(—x)o(—2))
=d(x,ug,...,uy)o(y)(—o(2)o(—z) + o(—x)o(z)).
Since U; C o(Uy), Lemma 2.2 (i) yields that
(3.9) d(z,ug,...,u,) =0o0ro(—z) € Z(N), forallzeU,uy€Us,...,u, € U,.

Suppose there exists g € U; such that o(—x¢) € Z(N). Since —U; is a nonzero
semigroup left ideal of N, replacing x and y by —zg in (3.8), we get

2d(—xg,us, ..., uy)o(—x0)o(—x9) = 0,
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for all ug € Us,...,u, € U,. Using 2-torsion freeness of N, we conclude that
d(—xg,us, ..., up)No(—zg)No(—z9) = {0} for all uy € Us,...,u, € U,. By 3-
primeness of N, we arrive at d(—zg,us,...,u,) = 0 or o(—z9) = 0 for all uy €

Us, ..., u, € U,. Since o is an automorphism of N, by (3.9) we get d(z, ug,...,u,) =0
for all x € Uy,ug € Uy, ..., u, € U,, so d(Uy,Us,...,U,) = {0}, which contradicts
Lemma 2.5.

(ii) Suppose that

(3.10)  F(zroy,ug,...,u,) ==*7(xoy), foralzyeUy,uy€lUs,...,u, €U,.
Replacing y by xy in (3.10), we get

d(z,ug, ..., up)o(xoy)+7(x)F(zroy,us,...,u,) = £7(x)7(x 0Y),
which reduces to
(3.11) d(x,ug,...,up)o(y)o(r) = —d(z,us, ..., u,)o(x)o(y).

Since (3.11) is same as (3.8), arguing in the similar manner as in (i), we find a
contradiction with our hypothesis.
Using the same techniques, we can prove the result for (iii). O

Theorem 3.6. Let N be a 3-prime near ring and Uy, Us, ..., U, are nonzero semi-
group ideals of N. Let ¢ be an homomorphism on N such that U; C o(U;) for
i=1,2,...,n. If N admits a left generalized (o, o)-n-derivation F' associated with a
(0, 0)-n-derivation d such that F'([z,y], ua, ..., u,) = [0(2),y], forall x,y € Uy, us €
Us,...,u, € Uy, then F is a right o-n-multiplier on N or N is commutative.

Proof. By hypothesis
(3.12)  F([z,y],uay ... ,up) = [0(2),Yloy, forallx,ye Upuy € Us,... u, € U,.
Replacing y by xy in (3.12), we get

d(x, ug, ..., un)o([2,y]) + o (@) F([z,y], uz, ..., un) = 0 (2)[0(2), Yo,
which reduces to
(3.13) d(z,ug,...,uy)o([x,y]) =0, forall x,y € Uj,uy € Us,...,u, € U,.

As (3.13) is same as (3.6), arguing in the similar manner as in Theorem 3.4, we obtain
the result. ]

Theorem 3.7. Let N be a 2-torsion free 3-prime near-ring and Uy, Us, ..., U, are
nonzero semigroup ideals of N. Let o be a homomorphism on N such that U; C o(Uj)
fori=1,2,...,n. Then N admits no left generalized (o, c)-n-derivation F associated
with a nonzero (o, 0)-n-derivation d satisfying one of the following conditions:

(i) F(zoy,ug,...,uy) = [0(2),Yloo for all x,y € Uy,ug € Us, ..., u, € Up;
(ii) F(xroy,ug,...,uy) = (0(x) 0Y)oo for all x,y € Uy,ug € Us, ..., u, € U,.
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Proof. (i) Suppose that
(3.14) F(zoy,ug,...,u,) = [0(2),y]se, forallz,y € Uy, us € Us,... ,u, € U,.
Replacing y by xy in (3.14), we get

d(z,ug, ..., up)o(xoy)+o(x)F(roy,us,...,u,) =0o(z)[o(x),Ylse
which reduces to
(3.15) d(x,ug,...,up)o(xoy) =0, forall z,y € Uy,uy € Us,...,u, € U,.

Since (3.15) is same as (3.8), arguing as in the proof of Theorem 3.5, we find that
d(x,ug,...,u,) =0 for all x € Uy,us € Uy, ..., u, € U, or N is a commutative ring.
If N is a commutative ring, then our hypothesis becomes

2F (zy,ug, ..., u,) =0,

for all x,y € Uy,us € Usy,...,u, € U,. By 2-torsion freeness of N, we have
F(zy,ug,...,u,) =0 for all z,y € Uy,us € Uy, ..., u, € U,. This implies that

d(z,ug,...,up)o(y) +o(z)F(y,us,...,u,) =0.

Replacing y by yz in last expression, we obtain d(x,us, ..., u,)o(y)o(z) = 0 for all
x,y,z € Uy,ug € Uy, ..., u, € U, which implies that d(x,us, ..., u,)o(U;)o(z) = {0}
for all x,z € Uy,us € Uy, ..., u, € U,. Since U; C o(U;), we get

d(x,ug, ..., u,)Uio(z) = {0},

forall z, 2z € Uy,up € Us, ..., u, € U,. Using Lemma 2.2 (i), we have d(x, us, ..., u,) =
0 for all x € Uy,uy € Us,...,u, € U, or o(U;) = Uy = {0}. Since U; # {0}, we
conclude that d(Uy, Us,...,U,) = {0} which contradicts Lemma 2.5.

(ii) Assume that
(3.16) F(xoy,ug,...,uy) = (0(x)0y)ss, forallz,ye Uy,us € Us,... u, € U,.

Substituting zy for y in (3.16), we have

o(z)o(zy) + o(zy)o(z),
o(z)(o(x) Yoo,

F(x(zoy),ug,..., uy,)
d(z,ug,...,up)o(zoy) +o(z)F(roy, us, ..., uy,)

which implies that
d(x,ug,...,uy)o(xoy) =0, forall z,y € Uy,us € Us,...,u, € U,.

Arguing in the similar manner as we have done above, we obtain d(x, ug, ..., u,) =0
for all x € Uy, ug € Us, ..., u, € U,, we again get a contradiction. O
Theorem 3.8. Let N be a 3-prime near-ring and Uy, Us, ..., U, are nonzero semigroup

ideals of N. Let o be an homomorphism on N such that U; C o(U;) fori=1,2,...,n.
If N admits a left generalized (o, 0)-n-derivation F associated with a nonzero (o,0)-
n-derivation d such that F([z,y], ug, ... u,) = [d(z,us,...,uy),0(y)] for all x,y €
Uy,us € Uy, ..., u, € U,, then N is a commutative ring.
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Proof. Suppose that for all z,y € Uy, us € Us, ..., u, € U,
(3.17) F(lz,y],ug, ... ,u,) = [d(z,us, ..., u,),o(y)].
Replacing y by xy in (3.17), we get
d(z,ug, ... up)o([z,y]) + o(2)F([z,y], ug, ..., un) = [d(x, us, . .., u,), o(zy)].

In view of our hypothesis, the above expression gives

d(x,ug, ... ,up)o(xy) — d(x,us, ..., uy)o(yz) + o(z)d(z, ug, . .., uy)o(y)

—o(z)o(y)d(z,us, ..., uy,)

=d(z,ug,...,uy)o(xy) — o(zy)d(z,us, ..., uy,),

which implies that
(3.18) d(z,ug,...,up)o(y)o(x) = o(x)d(x,ug, ..., uy)o(y).
Replacing y by yu in the last equation and using it, we can easily arrive at

d(z,ug, ..., up)o(y)[o(z),o(u)] = 0.

Since U; C o(Uy), by Lemma 2.2 (i), we conclude that
(3.19)
d(x,ug,...,u,) =0 or o(x)e Z(Uy), forallz e Uy,us €Us,...,u, € U,.

Suppose there exists zy € U such that o(zg) € Z(U;). Then o(zg)v = vo(xg) for
all v € U; and replacing v by vn, where n € N and using it, we conclude that
Ulo(zg),n] = {0} for all n € N by Lemma 2.2 (ii), we conclude that o(zg) € Z(N).
In this case, (3.19) becomes
(3.20)

d(xz,ug,...,u,) =0 or o(x)€ Z(N) forallxz € Uy,us € Uy,...,u, € U,.

In all cases, the equation (3.17) becomes
(3.21) F([z,y],uz,...,u,) =0, forall x,y € Uy,uy € Us,...,u, € U,.

This equation is a special case of Theorem 3.4 with 7 = 0, which is already treated
previously. O

Theorem 3.9. Let N be a 2-torsion free 3-prime near ring and Uy, Us, ... U, are
nonzero semigroup ideals of N. Let o be an automorphism on N such that U; C o(U;)
fori=1,2,....,n. Then N admits no left generalized (o, c)-n-derivation F associated
with a nonzero (o, 0)-n-derivation d satisfying one of the following conditions:

(i) F(zoy,ug,...,u,) =d(x,ug,...,u,)oo(y);
(ii) F(xoy,ug,...,u,) = [d(z,us,...,u,),0(y)l,
forall x,y € Uy,us € Uy, ..., u, € U,.
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Proof. (i) By hypothesis, for all z,y € Uy, uy € Us, ..., u, € U,

(3.22) F(xoy,ug,...,u,) =d(z,us,...,u,)oo(y).

Substituting zy for y in (3.22) and using (z o zy) = z(x o y), we obtain
d(x,ug,...,up)o(xoy)+o(x)F(xoy,ug,...,u,) =d(x,ug,...,u,)ooc(xy).

Using the hypothesis, we find that

(3.23) d(x,ug, ..., up)o(y)o(z) = —o(z)d(z,ug, . .., uy)o(y).

Replacing y by yz where z € N in the last expression and using the same steps that we
introduced previously, we obtain d(z,us, ..., u,)o(y)(—o(2)o(—x) + o(—x)o(2)) =0
for all z,y € Uy,ugs € Us, ..., u, € Uy,,z € N. Since ¢(U;) = Uy and invoking Lemma
2.2 (i) and Lemma 2.3, we conclude that d(x,us,...,u,) =0 or o(—z) € Z(N).

Suppose there exists o € U such that o(—zg) € Z(N). Since —U; is a nonzero
semigroup left ideal of N, replacing = and y by —x, in (3.23), we get

2d(—xg, ug, ..., up)o(—x0)o(—x9) =0, forall ug € Us,...,u, € U,.
Using 2-torsion freeness of N, we conclude that
d(_:EOa Ug, . .. 7un)N0—(_'x0)N0—(_x0) = {0}7

for all uy € Us, ..., u, € U,. By 3-primeness of N, we arrive at d(—xq, ug, ..., u,) =0
or o(—xg) = 0 for all ug € Uy, ..., u, € U,. Since o is an automorphism of N, by (3.9)
we get d(z,ug, ..., u,) =0forall x € Uy,us € Uy, ... u, € Uy, sod(Uy,Us,...,U,) =
{0}, which contradicts Lemma 2.5.

(ii) By hypothesis, we have for all x,y € Uy, uy € Us, ..., u, € U,

(3.24) F(roy,ug,...,u,) = [d(z,ug, ... u,),c(y)l.

Substituting zy for y in (3.24) and using (z o xy) = x(z o y), we obtain
d(x,ug,...,up)o(xoy)+o(x)F(xoy,us,...,u,) = [d(z,us, ..., u,),o(zy)l,

which reduces to

(3.25) d(x,ug, ..., up)o(y)o(z) = —o(z)d(z,ug, . .., uy)o(y).

(3.25) is same as (3.23), arguing in the similar manner as above, we conclude that

d(Uy, Uy, ..., U,) = {0}, which leads to a contradiction. O

Theorem 3.10. Let N be a 3-prime near ring and Uy, Us, ..., U, are nonzero semi-
group ideals of N. Let o be an homomorphism on N such that U; C o(U;) for
i=1,2,...,n. If F is a left generalized (o, 0)-n-derivation associated with a nonzero
(0,0)-n-derivation d on N such that d([x,y], us, ..., u,) = [F(x,us, ... ,u,),0(y)] for
all v,y € Uy,up € Uy, ..., u, € U,, then F is a right o-n-multiplier on N or N is a
commutative ring.
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Proof. Assume that

(3.26) d([z,y], ug,y ... un) = [F(x,ug, ..., u,),0(y)],
for all x,y € Uy, ug € Uy, ..., u, € U,. Replacing y by zy in (3.26), we get

]

d(z[z,y|,us, ... ,uy) = [F(z,ug,...,u,),o(zry)
which implies that
d(z,ug, ... up)o([z,y]) + o(z)d([x, Y], ua, . . ., uy) = [F(z,u2, ..., u,),0(x)o(y)].
Using (3.26), the last equation becomes
d(x,ug, ..., up)o([x,y]) + o(z)F(x,ug, ..., u,)o(y) = F(x,ug, ... u,)o(x)o(y).
For x = y, (3.26) gives F'(x,ua, ..., u,)o(x) = o(z)F(x,us, ..., u,) which implies that

d(z,ug, ..., uy)o([z,y]) = 0. As this equation is same as (3.6), arguing in the similar
manner as in Theorem 3.4, we obtain the result. 0

Theorem 3.11. Let N be a 2-torsion free 3-prime near ring and Uy, Us, ..., U, are
nonzero semigroup tideals of N such that Uy is closed under addition. Let o be a
onto homomorphism on N such that Uy C o(Uy). Then N admits no generalized
(0,0)-n-derivation F associated with a (o,0)-n-derivation d such that Uy N Z # (),
d(UyNZ,Uy,Us, ..., U,) # {0} and d(z oy, us, ..., u,) = F(x,ug,...,u,)0c(y) for
all T,y € Ul,UQ S Ug,...,un € Un

Proof. Suppose that
(3.27) d(zoy,ug,...,u,) = F(x,ug,...,u,)00(y),
forallz,y € Uy, ug € Us, ... ,u, € U,. Let z € UyNZ such that d(z, ug, us, ..., u,) # 0
and replacing y by zy in (3.27), we get
d(z,ug, ... ,uy)o(zoy)+o(z)d(xoy,ug,...,u,) = F(z,us,...,u,)o0(2)o(y).

Substituting arbitrary element 2’ € U;NZ for o(z) in above expression and using (3.27),
we obtain d(z, ug, ..., u,)o(xoy) = 0. By Lemma 2.7, it is clear that d(z, us, ..., u,) €
Z \ {0} which means that d(z,us,...,u,)No(x oy) = {0}. By 3-primeness of N, we
conclude that o(z o y) = 0 for all x,y € U; which implies that o(x) o o(y) = 0. Now
replacing o(z) and o(y) by 2’ and y' for all ’,y" € U; respectively, we have 2’0oy’ = 0.
In particular 2’2 = 0 for all 2’ € U;. Since U; is closed under addition, we have
uw(u+u')? =0 for all u,u’ € U; this gives uu'u = 0 for all u,u’ € Uy, i.e., ulUyu = {0}.
Thus, U; = {0}, which contradicts our hypothesis. O

The following example shows that the 3-primeness hypothesis in Theorems 3.4 to
3.11 can not be omitted.

Example 3.2. Let S be a zero-symmetric left near-ring which is not abelian. Consider

0 z vy
N:{ 0 00 |a:,y,()€S}
0 00
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0 « O
U:{ 0 00 |x,O€S}.
000

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left near
ring N. Define mappings F,d: N X N X -+ X N — N by

and

n—times
0 z1 1 0 =9 9o 0 z, Yn 0 zyx9...2, O
F(OO0,000,..,O()O):O 0 01,
0 0 O 0 0 O 0 0 O 0 0 0
0 21 ®n 0 @2 Yo 0 zn yn 0 0 viy2...Yn
d o o0 o0 1,0 0 OJ,....10 0 O =100 0
0 0 O 0 0 O 0 0 0 0 0 0
Define o,7 : N — N by
0 =z vy 0 z —y
{ 00 0O |=100 O and o =1idy.
0 0 0 0 0 O
If we choose Uy = Uy = --- = U, = U, then it is easy to see that F is a nonzero

generalized (o, o)-n-derivation associated with a nonzero (o, 0)-n-derivation d and also
a nonzero generalized (o, T)-n-derivation associated with a nonzero (o, T)-n-derivation
d of N satisfying

(1) F(xoy,ug,...,u,) =0;
(17) F([x,y],ug, ... u,) = £7([z,9]);
(1it) F(z oy, ug,...,u,) = x7([z,y]);
(iv) F(xroy,ug,...,uy) = (0(2) 0Y)ros
(v) F(lz,y] vz, ... ua) = [0(2), Yo,
(vi) F(xoy,ug,...,u,) = [0(2),Ylso;
(vii) F(zoy,ug,..., u,) = x7(z0y);
(viit) F([z,y],u2, ... ,u,) = [d(x,us, ..., uy),0(y)];
(1z) d([z,y],uz, ... ,uy) = [F(z,us,...,u,),o0(y);
() F(xoy,ug,...,u,) = [d(x,ug,...,u,),0(y)];
(xi) F(zoy,ug,...,u,) =d(x,ug,...,u,)o0(y);

(xii) d(x oy, ug, ..., uy) = F(z,us,...,u,) 00(y),

for all x,y,us,...,u, € U. However, N is not a commutative ring.
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