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EXISTENCE RESULTS FOR A FRACTIONAL DIFFERENTIAL
INCLUSION OF ARBITRARY ORDER WITH THREE-POINT
BOUNDARY CONDITIONS

SACHIN KUMAR VERMA!, RAMESH KUMAR VATS!, HEMANT KUMAR NASHINE?3,
AND H. M. SRIVASTAVA*?®

ABSTRACT. This paper studies existence of solutions for a new class of fractional
differential inclusions of arbitrary order with three-point fractional integral boundary
conditions. Our results are based on Bohnenblust-Karlin’s fixed point theorem.

1. INTRODUCTION

Fractional differential equations are being used in various fields of science and
engineering such as control system, electrochemistry, viscoelasticity, electromagnetics,
physics, biophysics, fitting of experimental data, blood flow phenomena, electrical
circuits, biology, porous media etc. [11,12,18]. Due to these features, models of
fractional order become more practical and realistic than the models of integer-order.

A generalization of differential inequalities and equations are known as differential
inclusions. Some recent development on fractional differential equations and inclusions
can be found in [2,4-6,8-10,14-17,20,22,23]. Interesting and important applications
of differential inclusions are in problems arising from stochastic processes, optimal
control theory, economics and so on. If the velocity of a dynamical system cannot be
uniquely determined by the state of the system, then such a system can be modeled
as a differential inclusion.
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In [14], Benchohra and Hamidi studied the boundary value problem for fractional
differential inclusions given by

{CDO‘w(f) € Z(&w(€)),

w(0) = wy,

where “D® is the Caputo fractional derivative of order € (1,2] and Z : [0,00) x R —
P(R) is a multi-valued map with compact and convex values.

Ntouyas [20] investigated the existence of solutions for fractional order differential
inclusions of the form

‘Drw(§) € Z(&§w(g)), 0<E<,
w(0) = 0,w(1) = aJPw(v), 0<v<l,

where °D? is the Caputo fractional derivative of order ¢ € (1, 2], J? is the Riemann-
Liouville fractional integral of order p, Z : [0,1) x R — P(R) is a multi-valued map.

In this paper, we consider the multi-valued version of [21]. We study existence
results for solutions of the following fractional differential inclusion

(11) {CDﬁ2w<£> € Z(&w(©), €01,
w(v) =w'(0) =w'(0) = =w"2(0)=0, IPw(l)=0,

where 8, >0, n—1< B, <n, n>3, n €N, and °D? is the Caputo derivative
of fractional order f3,, I”* is the Riemann-Liouville integral of fractional order 3,

Z:10,1] x R = PR)\{0} and v"~! # mpmtt s,

2. PRELIMINARIES

Let us recall some notations, definitions and lemmas from multi-valued analysis
[13,19].

Let W = C([0,1],R) denote the standard Banach space of all continuous functions
from [0, 1] into R with the norm

[w]] = max{|w(£)] : € € [0,1]}.
A fixed point of a multi-valued map Z : W — P(W) is w € W such that w € Z(w).
Z is bounded on bounded sets if for any bounded subset D of W, Z(D) = Uyep Z(w)
is bounded in W. Z is said to be completely continuous if for every bounded subset D
of W, Z(D) is compact. Z is closed (convex) valued if Z(w) is closed (convex) for all
w € W. Z is called u.s.c. (upper semi-continuous) on W if the set Z(wy) is a nonempty
closed subset of W for each wy € W and if there exists an open neighborhood E of wy
such that Z(E) C D for each open subset D of W containing Z(wy). Z has a closed
graph if
Wy, = W, 2y — 255w, €W, 2, € Z(wy,) = 2% € Z(w).

If Z has nonempty compact values and is completely continuous, then Z has a closed
graph if and only if Z is u.s.c.
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Throughout this paper, BCC(W) is the set of all nonempty, convex, closed and
bounded subsets of W. Let L'([0,1],R) be the standard Banach space of Lebesgue
integrable functions from [0, 1] into R with the norm

1
el = [ 12(9)] de.
The following definitions are well known [1,11,18].

Definition 2.1. The Caputo fractional derivative of order 5 for at least n-times
differentiable function w : [0,00) — R is defined as

o € e ds n=1< B <m0 (4],

where [ 3] denotes the least integer function of real number §.

“Du(¢) =

Definition 2.2. The Riemann-Liouville integral of fractional order § is defined as

1 £
IPw(¢ :7/ € —s)tw(s)ds, B >0,
©)= 5., €= 90
provided the integral exists.
Lemma 2.1 ([21]). Let v ! # (61+n71)(515::1) gomy B> 0,n—1< 5B <,

0<v<1. Then for z € C([0,1],R), the fmctzonal differential system

‘DPw(€) = 2(§), €el0,1],
(2.1) {w(u) =w'(0) =w"(0) =+ =w"2(0) =0, I"w(l)=0,

is equivalent to the integral equation

22wl =g /0 6= ) ds = s [ =) ) ds
L - 61 fnﬁ: Q/ §)PrHB 14 (5) ds
S Lo

?;hg) ” (g + )

F(n) — V”_l(ﬁl +n— 1)(51 +n— 2) ce (61 + 1)
Lemma 2.2 ([20]). A function w € AC™([0,1],R) satisfying boundary conditions
w(v) =w'(0) =w’(0) =--- =w"20) =0, IMw(l)=0,

is a solution of fractional differential inclusion (1.1) if z(§) € Z(&,w(&)) on [0,1] for
some function z € L'([0,1],R) and

w(§) :F(lﬁz) /06(5 — )" a(s) ds —

1
L(5.)

/OV(V — 5)2712(s) ds
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(=g he 5)hta1
+ T+ B) / 2l (s)ds

_Q( " 1) v—28)2"15(5)ds
FWﬁJWWQA( ) ds.

For the forthcoming analysis, we need the following assumptions.

(A) Z : [0,1] x R - BCC(R) for each w € R, (§,w) — z(§,w) is u.s.c. with
respect to w for a.e. £ € [0, 1] and is measurable with respect to ¢ and the set
Sz is non-empty for each fixed w € R.

(B) There exists a function m, € L'([0,1],R,) for each ¢ > 0 such that

12(&, w)| = sup{[v] : v(§) € Z(§, w)} < me(£),
for each (§,w) € [0,1] x R with |w| < € and

1
lierinffOmg(f)dg =5 < 0.
e—+00 €

Lemma 2.3 ([3]). Let J be a compact real interval and Z be a multi-valued map
satisfying assumption (A) and let ¢ be a continuous and linear function from L'(J,R)
into C(J). Then the operator

(oSz:C(J) = BCC(J), yr (CoSz)(y) = C(5zy),
is a closed graph operator in C(J) x C(J).

Lemma 2.4 ([7]). Let W be a Banach space and D be a nonempty, convez, closed
and bounded subset of W. Let Z : D — P(W)\{0} has convex, closed values and is
u.s.c. with Z(D) C D and Z(D) is compact. Then Z has a fived point.

Let us define a multi-valued map ¢ : W — P(W) as

1
[(52)

ww:%ew4ﬁw:éﬂf@—wa@w—
+( ém 1 Q/ ﬁ1+52 1 (S)dS

/Oy(u — 5)2712(s) ds

['(B1 + B2)
_Q( —& v —s)P2 (s S}
FWHJWWﬁA( JrrAe)dsy

for z € Sz, = {2(£) € L*([0,1],R) : 2(£) € Z(&,y) for a.e. £ € [0,1]}.

Observe that a fixed point of 1 is a solution of (1.1). For convenience, we put

2 Q] Q|

A ) "I OBtD) TTGit ft D)
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3. MAIN RESULTS

Theorem 3.1. Assume that (A) and (B) hold with Ay < 1. Then the fractional
differential inclusion (1.1) has at least one solution.

Proof. The proof is divided into four steps.

Step I. ¥(w) is convex for each w € C]0, 1].

Let A € [0,1] and y1,y2 € ¥(w). Then there exist 21, 29 € Sz, such that for each
¢ €10, 1], we have

yi(€) :F(l&) /05(5 $)2712i(s) ds — (152) /Oy(y—s)ﬂz—lzi(s) ds
( fn ' Q 1+82—1
+ 51 ) / §) P2l (5) ds
—Q< =) v—8)2"1z(s)ds
DG+ 0 y
Now,
O+ (1= (€)= 6= ) )+ (1= Nale)) s
B F(lﬁ) L= 9% 0 (s) + (1= Mza(s)) ds
(! = )Q 1+h2-1 — A)z9(8)) ds
taea [ =95 0 s) 4 (1= Nza(s)) d
Q¢

T (81 + )0 (Be) /0 (v = 5)" " (A= (s) + (1 = A)2a(s)) ds.

Since Z has convex values, Sz, is also convex. Thus, for 21,2, € Sz, and A € [0, 1],
we have A\z; + (1 — N)zg € Sz, Hence, Ay + (1 — Ny € ¢(w), i.e., ¥(w) is convex.

Step II. Let ¢ > 0 and B. = {w € C[0,1] : ||w|]| < €}. Then B, is a closed,
convex and bounded set in C[0, 1]. We shall prove that there exists € > 0 such that
¥(B,) C B.. Suppose it is not true. Then for each € > 0, there exist w. € B, and
Ye € Y(w,) with ||¢(w,)|| > € and

_ 1 ¢ — 51y (s ST L Vz/—sﬁrlzs s
(v = hHa a1
+ I 51‘*‘52 / 5 p ze(s) ds
QT =) v—28)2712(s)ds
RS ACREARECLR

for some z. € Sz,
Now,

e <[[¢(wd)l
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! ‘ — 5)%27 2 (s)| ds L VV—SBQ’lzs s
>/0<£ P2 e ds + g [ 0= 9 o)l d

<_ -
_F(ﬁg
fn 1 Q 51-&-52 1

51+@2 / Jze(s)] ds

Q( fn 1) o i S
i L(B, + 1) (By) /0 (v — )" |ze(s)] d

1 1 1 1
SF(BQ)/O me(s)ds—i-w/o me(s) ds

+@‘/1 me(s)ds + | /1 me(s) ds.
L(B1 + B2) Jo LB+ 1I(B2) Jo
Dividing both sides by € and letting ¢ — 0o, we get

2 Q] Q|
7 T e T T2

implying Ay > 1, which contradicts the given assumption. Therefore, there exists
e > 0 such that w( ) C
Step III. ¢ (B,) is equlcontmuous
Let &,& € [0,1] with & < & and w € B, y € ¢)(w). Then there exists z € Sz,
such that for each £ € [0, 1], we have
Y(E) = / (€= ) 2o ds — e [ = 9)% a(s) ds
0 (52)

F(Bz)
fn 1 Q 51+52
r@+m fo- 2(s) ds

_Q( &" 1) v—8)2"15(8)ds
F(61+1)F(62)/0< A ds.

Now,

1 1 . 1
€)= 9@ <pgy [ 16 = )% = (6 = 56 ds

w5 e = s e
n—1
|Q||§ _52 |/ ,6’1+B2 1|Z )]ds

51 +52
_ ¢n—1
/ ’ §2 — — (&= 5)" N me(s) ds

+ F(BZ) /51 |£2 - S|52 me(s) ds
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31+ﬂ2 1m€<8) ds

* 51-1—52

IQIIS — &

1

me(s) ds.

+
g, +1nr

Y

Now, the right-hand side approaches zero when &; approaches &, independently of

w € B.. Hence, ¥(B) is equicontinuous.

Combining Steps I to III and by a consequence of Arzela-Ascoli theorem, we get

that 1 is a compact valued map.
Step IV. ¢ has a closed graph.

Let w,, = w*, y, € ¥(w,) and y, — y*. We shall prove that y* € ¢ (w*).
Now, y,, € ¥(w,) implies that there exists z, € Sz, such that for each £ € [0, 1],

we have
1

I'(B32)

(' =hHe
I'( 51 + 2) /

QU — g
LB+ DT(B2)

Yn(§) =

+

/5<§ —5)271, (s)ds —

! ’ —8)%2712 (s)ds

ﬁ1+ﬁ2 1, (S)dS

/0 (v — 5)%2712,(s) ds.

We shall show that there exists z* € Sz ,+ such that for each £ € [0, 1], we have

1

['(B2)

("' =hHQ
I'( 51 + B2) /

Q=g
LB + 1)I'(52)

¥ (§)

_|_

Consider the continuous linear operator ¢ : L*(]0, 1],

X /j(ﬁ — 8)2 71 2(s) ds —

(v =hHQ
I'( 51 + B2) /

Qe =g
L(B1 + 1)I(B2)

Now, it is clear that ||y, (&)

/j(g ) (s) ds -

I

—y*(&)]| = 0 as n — oo.

(152) /OV(V — 5)271 % (s) ds

51+52 1 *(8) ds

/0 (v — 8)2712*(s) ds.

R) — (0, 1] given by

(152) /OV(Z/ — 5271 2(s) ds

51-1—32 1 (8) ds

$)%2 71 2(s) ds.

As a consequence of Lemma 2.3, we deduce that ¢ o .Sz is a closed graph operator

with 4, (€) € C(Sz.0,)-
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Since w,, — w*, we have from Lemma 2.3

* _L ¢ 552 1 o* S— 1 VV_SBQflz*S )
( fn 1 Q 1+82—1 _*
- I'( 51 + Bs) / B g Z"(s)ds
QUMY e ) s
T(8 4+ DI(3) /0 (v —s) (s)ds,

for some 2* € Sz -.
Thus, the compact operator v is u.s.c. with closed, convex values. From Lemma
2.4, we conclude that there exists a fixed point w of 9, which is a solution of (1.1). O

Theorem 3.2. Assume that (A) and the following condition hold.
(C) There exist functions ki(€), ko(€) € LY([0, 1], RY) such that

12(&, w)l| < k1 ()w] + ka(E),
for each (&, w) € [0,1] x R, with Al|k||z: < 1.
Then the BVP (1.1) has at least one solution on [0, 1].

Proof. The proof follows by taking ki (&)e + k2(&) in place of m.(£) in the proof of
Theorem 3.1. O

Theorem 3.3. Assume that (A) and the following condition hold.
(D) There exist functions ky(€), k2(€) € L'([0,1],RY), o € [0,1] such that

12(&; w)l| < k(&) w]” + k2(E),
for each (&, w) € [0,1] x R.
Then the BVP (1.1) has at least one solution on [0, 1].

Proof. The proof is obvious. Here we have k;1(£)e? 4 k2(€) in place of m(§). O

4. EXAMPLES
In this section, we give some examples in order to illustrate our results.

FExample 4.1. As the first example, let us consider the following fractional differential
inclusion

(@) “Diw(¢) € Z(&,w(e), £€0.1)
‘ w(L) =0, w'(0)=0, IFw(l)=0,
where Z (&, w(§)) is such that || Z(¢, )H < 8(€+1 \w\ +e7%.

(€
Here 85 = % implying n =5, v = 10, b=

n—1 _ 4 1 ”] F(“)
T T 100007 Bian—DBitn—2)- B+ 1)
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4 64
(BB +2)(B+3) (B +4) 19305
|w|+e7¢, therefore (C) is satisfied with ||k ||,1 = § In2. Further,

= (0.003315.

As [[Z(&,w)]| <
AllFy || e

1
8(£+1)

=uk1uL1[ 2, L(fi+5)
F(Ba+1) T(B+1)T(B+DITGB) — (B +4)(B1+3)(B1+2)(B1 + 1)
I'(BL+5) ]
L(Br + B2+ 1II(5) — v4(Br +4)(B1 + 3)(B1 + 2)(B1 + 1)
64 286 2027025 /7 ]

945./7 * 7\/m % 3.879344 * 28 x 7! x 3.879344

+

1
~8

1n2[

1
zg In 2[0.03821 + 5.942029 + 0.717803]
~0.58034 < 1.

Thus, by Theorem 3.2, there exists at least one solution of the fractional differential
inclusion (4.1).

FExample 4.2. Now, consider the following fractional inclusion
(42) “Diw(€) € Z(&,w(6)), €€[0.1],
' w(3) =0, w(0)=0, I:w(l)=0,
where Z(&,w(§)) is such that ||Z(§ w)|| < 4(£+1 2|w]3 +e ¢,
Here 5 = g i
n—1 2 _ 1 7& F(n) = 2 = é
4 (ﬁl‘i‘n—1)(514-71—2)"‘(51‘1‘1) (Br+2)(B+1) 35

Also, (D) is satisfied with k;(§) = 4(£+1 e and ks(§) = e7¢ with o = 4. Therefore, it
follows from Theorem 3.3 that there exists at least one solution of (4.2).

implies n =3, v = 2, b=
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