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CONSTRUCTION OF SIMULTANEOUS COSPECTRAL GRAPHS
FOR ADJACENCY, LAPLACIAN AND NORMALIZED
LAPLACIAN MATRICES

ARPITA DAS! AND PRATIMA PANIGRAHI!

ABSTRACT. In this paper we construct several classes of non-regular graphs which
are co-spectral with respect to all the three matrices, namely, adjacency, Laplacian
and normalized Laplacian, and hence we answer a question asked by Butler [2].
We make these constructions starting with two pairs (G1, Hy) and (Ga, Hs) of
A-cospectral regular graphs, then considering the subdivision graphs S(G;) and
R-graphs R(H;), ¢ = 1,2, and finally making some kind of partial joins between
S(G1) and R(G2) and S(H;) and R(Hz). Moreover, we determine the number of
spanning trees and the Kirchhoff index of the newly constructed graphs.

1. INTRODUCTION

Cospectral graphs are non-isomorphic graphs which share the same eigenvalues of
the same matrices associated with them. Several cospectral graphs are known for
adjacency, combinatorial Laplacian and normalized Laplacian matrices separately. In
2010, Butler [2] asked that “Is there an example of two non-regular graphs which
are cospectral with respect to the adjacency, combinatorial Laplacian and normalized
Laplacian at the same time?” Normally regular graphs are always cospectral for
all the matrices mentioned in the question. Here we construct some non-regular
cospectral graphs for all the three matrices and hence give an answer to the above
question of Butler. To present the results of the paper we need some definitions and
terminology as follow. All graphs considered in the paper are simple and undirected.
For any graph G, we take V(G) and E(G) as the vertex set and edge set of G
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respectively. The adjacency matriz of graph G, denoted by A(G), is a square matrix
whose rows and columns are indexed by vertices of graph G, and (u,v)"™ entry is
1 if and only if vertex u is adjacent to vertex v and 0 otherwise. If D(G) is the
diagonal matrix of vertex degrees in G, then the Laplacian matriz L(G) is defined
as L(G) = D(G) — A(G) and the normalized Laplacian matriz £L(G) of G is defined
as L(G) = I — D(G)~Y?A(G)D(G)~'/? with the convention that D(G)~*(u,u) = 0 if
degree of u is zero. For a given square matrix M of size n, we denote the characteristic
polynomial det(xI, — M) by fy(z). The eigenvalues of A(G), L(G) and L(G) are
denoted by A (G) > Xao(G) > -+ > M(G), 0 = 11(G) < p2(G) < -+ < py(G), and
0=101(G) <6(G) <--- <6,(G) <2 respectively, where n is the number of vertices
of G. The multiset of eigenvalues of A(G) (respectively L(G), £(G)) is called the
adjacency (respectively Laplacian, normalized Laplacian) spectrum of G, and denoted
by A-spectrum (respectively L-spectrum, L-spectrum). Two graphs are said to be A-
cospectral (respectively L-cospectral, £-cospectral) if they have the same A-spectrum
(respectively L-spectrum, L-spectrum).

The adjacency, Laplacian and normalized Laplacian spectra of different kinds of
graphs have been computed by several researchers [4,7,11,12]. The subdivision graph
S(@Q) [6] of a graph G is obtained by inserting a new vertex into every edge of G. The R-
graph R(G) [5] of a graph G is the graph obtained from G by introducing a new vertex
u, for each e € F(G) and making u, adjacent to both the end vertices of e. The set of
such new vertices is denoted by I(G), i.e., [(G) = V(S(G))\V(G) = V(R(G))\V(G).
The partial joins of subdivision graph and R-graph which are considered in the paper
are given in the definition below.

Definition 1.1. Let G; and G5 be two vertex-disjoint graphs with number of vertices
ny and ny, and edges m; and may, respectively. Then the following hold.

(i) The subdivision-vertez-R-vertex join of G; and G, denoted by S(G1)VR(G2), is
the graph obtained from S(G;) and R(Gs) by joining each vertex of V(G) with
every vertex of V(Gs). The graph S(G1)VR(G3) has ny +ng + my + my vertices
and 2my + ning + 3me edges.

(ii) The subdivision-edge-R-edge join of Gy and Gs, denoted by S(G1)VR(Gs), is
the graph obtained from S(G1) and R(G2) by joining each vertex of I(G;) with
every vertex of I(Gy). The graph S(G1)VR(Gs) has ny + ny +my + my vertices
and mq (2 + ms) + 3my edges.

(iii) The subdivision-edge-R-vertex join of Gy and Gy, denoted by S(G1)VR(Gy), is
the graph obtained from S(G;) and R(G5) by joining each vertex of 1(Gy) with
every vertex of V(Gy). The graph S(G1)VR(Gs) has ny + ny +my + my vertices
and mq(2 + ng) + 3my edges.

(iv) The subdivision-vertez-R-edge join of Gy and Gs, denoted by S(G1)VR(Gs), is
the graph obtained from S(G4) and R(G2) by joining each vertex of V(G1) with
every vertex of I(Gs). The graph S(Gl)VR(Gg) has ny + ny + m; + my vertices
and 2m; + mo(3 + n1) edges.
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Example 1.1. Let us consider two graphs G; = P, and G = P3. The set of dark
vertices of Gy and Gy are I(G;) and I(G3), respectively.

FIGURE 1. Subdivision-vertex- R-vertex join of P, and P;

F1GURE 2. Subdivision-edge- R-edge join of P, and P;

F1GURE 3. Subdivision-edge- R-vertex join of P, and P;

FIGURE 4. Subdivision-vertex- R-edge join of P, and P;

In the following lemma we find the degrees of vertices in the above constructed
graphs.
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Lemma 1.1. (i) The degree of any vertex v in S(G1)VR(Gs) is given by

ne + dg, (v), if v e V(Gy),
ds(ayyras) (V) = 4 2, if ve I(G)UI(G2),
ni + 2dG2 (’U), ZfU S V(Gg)

(i) The degree of any vertex v in S(G1)VR(Gy) is given by

dG1 (U), ifve V(Gl),

. 2 4+ ma, ifUGI(Gl),
S(Gl)ﬁR(Gﬂ(v) o 2d02 (’U), ifve V(Gg),
24+my, ifveI(Gy).

d

(i41) The degree of any vertex v in S(G1)VR(Gy) is given by

dGl(U), ifv e V(Gl),

d _ (U) _ 2 + no, if v G](Gl),
S(G1)VR(G2) 2d02 (U) + myq, ZfU € V(Gg),
2, ’Lf’U S [(Gg)

(iv) The degree of any vertez v in S(G1)VR(Gy) is given by
dG1 (U) +meo, ifveE V(Gl),

d . (U) o 2, va G I(G1)7
sE@vR@E)\Y T 2dg, (v), if v € V(Gy),
2+n1, ZfUG[(Gg)

For two matrices A and B, of same size m x n, the Hadamard product Ae B of A and
B is a matrix of the same size m x n with entries given by (Ae B);; = (A);;-(B);; (that
is entrywise multiplication). Hadamard product is commutative, that is Ae B = Be A.

Notation. Throughout the paper, for any positive integers k, ny and ns, I denotes
the identity matrix of size k, J,,, xn, denotes ny x ny matrix whose all entries are 1,
1,, stands for the column vector of size n with all entries equal to 1, K, denotes an
n X n matrix whose all entries are the same. In other words, K, x, = aJ,xn, for a
real number a. For any positive integers s and ¢, O,y; denotes the zero matrix of size
s X t.

To prove our results we need some basics as given below.

Lemma 1.2 (Schur Complement [6]). Suppose that the order of all four matrices M,
N, P and Q) satisfy the rules of operations on matrices. Then we have

P Q|
Lemma 1.3 (6]). For a square matriz A of size n and a scalar «,

det(A + adpyp) = det(A) + a1l adj(A)1,,

M N| JIQIM —NQ'P|, ifQ is a non-singular square matriz,
IM||Q — PM~IN|, if M is a non-singular square matrix.

where adj(A) is the adjugate matriz of A.
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Lemma 1.4. For any real numbers c¢,d > 0, we have
d

1
J— -1 i -
(CIn dJan) c-[n + C(C — nd) Jnxn-

Proof.
~adj(el, — dJpxn) A 2(c—nd) I, + " 2dTpxn
~det(el, — dJuxn) (¢ —nd)

1 d
- ——————Jnxn-
c N c(c—nd)" "

For a graph G on n vertices and m edges, the vertez-edge incidence matriz [8] R(G)
of G is a matrix of size n x m, with entry r;; = 1 if the i*" vertex is incident to the
g edge, and 0 otherwise. The line graph [8] of a graph G is the graph Lg, whose

vertices are the edges of G and two of these are adjacent in L if and only if they are
incident on a common vertex in G.

(el — dJpxn) ™

[l

The following is an well known result, may be found in [6].

Lemma 1.5. Let G be an r-regular graph. Then

(i) R(G)TR(G) = A(Lg) + 21,, and R(G)R(G)T = A(G) + rlL,;

(1) the eigenvalues of A(Lg) are the eigenvalues of A(G)+(r—2)I, and —2 repeated
m — n times.

Notation. The M-coronal of an nxn matrix M, denoted by I'y;(z), is defined [3,13]
as the sum of the entries of the matrix (x1, —M)~!, that is, [y (z) = 1L (21, — M)~11,,.

Lemma 1.6 (3]). If M is an n X n matriz with each row sum equal to a constant t,
then I'y(z) = .

—t

Butler [2] constructed non-regular bipartite graphs which are cospectral with respect
to both the adjacency and normalized Laplacian matrices, and then asked for existence
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. In this paper we construct
several classes of such graphs taking help of the operations subdivision-vertex- R-vertex
join, subdivision-edge- R-edge join, subdivision-edge- R-vertex join and subdivision-
vertex- R-edge join. We also find the number of spanning trees and Kirchhoff index
for all the partial join of subdivision graph and R-graph constructed here.

2. ADJACENCY, LAPLACIAN AND NORMALIZED LAPLACIAN SPECTRA OF THE
GRAPHS

In this section we consider regular graphs G; on n; vertices, m; edges, and with
degree of regularity r;, ¢ = 1,2. To obtain the required matrices we label the vertices
of the graphs in the following way. Let V(Gy) = {v1,...,vn, }, I(G1) = {e1, ..., em, },
V(GQ) = {Ul, ce ,UNQ}, [(Gg) = {fl, ce ,me}. Then V(Gl) U ](Gl) U V(Gg) U
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I(Gy) is a partition for all V(S(G1)VR(Gz)), V(S(G1)VR(Gs)), V(S(G1)VR(G2))

and V(S(G1)VR(G>)).

Lemma 2.1. Fori = 1,2, let G; be a graph with n; vertices and m; edges. Then we

have the following:

(Z> A(S(G1>VR(G2)) =

(i1) A(S(G1)VR(G2)) =

(12) A(S(Gl)VfR(Gz)) =

(iv) A(S(G1)VR(Ga)) =

Om R(Gl)
R(G))T O,
an Xni OnQ Xmi
Omg Xni Om2 Xmi
Onl R(Gl)
R(G1>T Oml
On2 Xnq Ong Xm1
Om2 XMy sz Xmi
Onl R(Gl)
R(G))T  Op,
OTLanl Jngxml
Omgxnl Omzxml
Onl R(Gl)
R(G)T Oy
Ongxnl Onz Xm1
ng Xn1 Om2><m1

Jn1 Xng

Om1 Xng
A(G»)
R(Gy)T"

Onl Xng
Om1 XNy
A(Gy)
R(G,)T

On1 Xng
Jml Xng
A(G)
R(Go)"

On1 Xng

Om1 Xng
A(Gs)
R(Gs)T

On1 Xma

Om1 Xma .
R(G2) |’
Om,

On1 Xma

Jml Xma

R(Gy) |’
Oy

On1><m2

Om1 Xma

R(Gy) |’
Om,

J’n1 Xma

Om1 Xma

R(G3)
O,

Theorem 2.1. Fori = 1,2, let G; be an r;-regular graph with n; vertices and m;
edges. Then the adjacency spectrum of S(G1)VR(Gs) consists of:

(i) the eigenvalue £+\/11 + N;(G1) for every eigenvalue N\;(G1), i = 2,3,...,n1, of

A(Gl);

(ii) roots of the equation x* — \;(Ga)x —1re— \;(G2) = 0 for every eigenvalue \;(Gs),

Jj=2,3,...,n9, of A(Gs);

(1ii) the eigenvalue O with multiplicity my + mg — ny — no;
(iv) four roots of the equation x* —rox® — (2ry +nyng + 2r9)x® + 2r1rox + 4179 = 0.

Proof. The adjacency characteristic polynomial of S(G1)VR(Gy) is

xIm T _R(Gl) _Jn1Xn2 Onlme
. — _R(Gl) $Im1 Om1><n2 Om1><m2 _ M2
faseyimas)) () =det osens O 2Lny — A(Gs) —R(Ga) | = ™ det(S),
Om2><711 Om2 Xmq _R(GQ)T mIm2
where
xlp, —R(Gh) —Jnyxns
S=|-R(G)T xI,, Oy xns
_Jn2><’n1 Oanml xITIQ - A(Gz)
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Onlxmg 1
- (Omlxmg) - (Om2><n1 Om2><m1 _R(GQ)T)

—R(Gy)) *
J/’Inl —R(Gl) _Jn1><n2
= —R(Gl)T I]ml Om1><n2 .
_Jn2><n1 On2><m1 SE[n2 - A(G2> - %R<G2)R(G2)T
Hence,
det(S) = det (x[n2 _A(Gy) - ;R(G2)R(G2)T> det (1)
=11 (33 ~ X(G2) - 2~ AJ(Gz)) det(W),
e x x
where

v (i )

_ <—J> (xfn2 _AG) — ;R(GQ)R(GQ)T)_l (= Juzsns Onascnn)

Om1 Xng

= (x[m - FA(GQH%R(GQ)R(GQ)T(x)‘]"lml _R(G1>>

Then
1
det(W) =2™" det (»Tfm — Loy L r@n @)y (8) Jniscny — IR(GJR(GQT)

1
=™ ldet (az[nl — xR(Gl)R(Gl)T>
T @17 adj (21, — LRGHRG)T )1
A(G2)+%R(G2)R(G2)T L)1y, ad) |\ Tln, T 1 1 ni
1
—2™ det (m]m — xR(Gl)R(GﬂT)
T 1 T -1
X |1 =T y(@y)+ 2 rGr)R(GT (T) 1), (xjm - ;R(Gl)R(Gl) ) 1,

o (r— 2 MO

i=1

ni
_m o /\i(Gl)) 1_ (o) ny
* H(x x x $—7°2—2%$—2L ’

=1 T

T T ) [1 o FA(Gz)Jr%R(GQ)R(Gz)T (JI)F%R(Gl)R(Gl)T (SL’)

Therefore,

ni r )\z G 2 T (G
fas@yim) (@) =z™a™ ] (x - - (x 1)> 11 (x — A(G2) — ;2 B J(xz))
j=1

i=1 T
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U ni
X |1 —

2ry

TR TEL

ni
=M T M M2 N2 H{$2 —ry— )\’L(Gl)}

X ﬁ{x2 — Nj(G2)z — 12 — Aj(Ga)}

x {x* — ryx® — (2r) 4+ ning + 2ry)x? + 2r1rox + 4riro},
and the result follows immediately. 0

Theorem 2.2. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the adjacency spectrum of S(G1)VR(Gs) consists of:

(i) the eigenvalue £/ + Ni(G1) for every eigenvalue N\i(G1), i = 2,3,...,ny, of
A(Gh);

(ii) roots of the equation x* — \;(Ga)x —1r2— \;(G2) = 0 for every eigenvalue \;(Gz),
j = 2,3, ..o, OfA(GQ),'

(131) the eigenvalue O with multiplicity my + me — ny — na;

(iv) four roots of the equation x* —ryx — (2ry +mimeo+2r9)x? + (2r1m0 +mymars)x +
47"17‘2 = 0.

Proof. The adjacency characteristic polynomial of S(G1)VR(Gy) is

x‘[nl T _R(Gl) On1Xn2 On1><m2
_ _ _R(Gl) 'IIWH Oﬂ’u XNo —Jm1><m2 _n
Tas@iaen =AU 0 Oy #hy — A(G2) —R(Ga) |7 AU
OmQXTLl _Jm2><m1 _R(GQ)T .’L'Im2
where
$]m1 Om1><nz _JM1><m2
S = Oanml ZL‘In2 - A(GQ) _R(GQ)
_Jm2><m1 _R(G2)T ‘ijz
_R(Gl)T 1
- On2><n1 *<_R(G1) On1><n2 OTLleg)
O X
maXni
l’]ml - iR(Gl)TR(Gﬁ Omlxnz _Jmlxmz
= On2><m1 IIM - A(G2> _R(G2)
_ngxm1 —R(GQ)T {L‘Imz
Hence,

det($) = det (1, - ;R(Gl)TR(G1)> det (V)

— det (ﬂml _ i(A(LGl) 4 2[m1)> det (W)
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— i ﬁ (CL’ _ E _ Al(G1)> det(W),

i=1 x x
where
(71— AGY) —R(Go)
| —R(GY)T L,
1 -1
( mm) <a;1m1—x G1)TR(G )) (Omixns —Jomasms)
_ A(Gy) —R(G>)
( 2> :E] FlR(G1)TR(G’1)( )Jm2><m2 ’
Then

det(S) :det(xlm2 - F%R(Gl)TR(Gl)('r)JWQXWQ)
x det(xl,, — A(Gs) — R(G2)(x1,,, — F%R(Gl)TR(Gl)(x)ngme)’1R(G2)T)

ma2
=z (]_ — P;R(G1)TR(G1)("E>ZE> det

-'L']nz - A(Gg)

F%R(Gl)TR(Gl)(x)

z(r — mQF%R(Gl)TR(G’l)($))
ma m2
=X (1 - FiR(Gl)TR(Gl)(x)x) det (ZL‘IHQ - A(Gg)

1le( )TR(Gl)( )

r(r — m2F%R(G1)TR(G1)(x))

_ R(Gg){ilm + JmQXmQ}R(Gz)T]

— iR(GQ)R(GQ)T - R(G2>Jm2><m2R(G2>T>

m My
=" (]_ — FiR(Gl)TR(Gl)(x)x> det <$In2 — A(GQ)

F%R(Gl)TR(G1)<x> J )
w(x —mal's piayyrr(Gy) (7)) e

1
=™ (1 - FiR(Gl)TR(Gl)(m)nf) [det (ﬂm — AlG2) - q;R<G2)R(G2)T>

1
— ;R(GQ)R(GQ)T — T%

r2l: x
y 2 ZR(GI)TR(Gl)( ) 122 adj <$[n2 _ A(Gg) _ 1R(G2)R(G2)T) an]
z(r — mQF%R(Gl)TR(Gl)(x)) Z

1
=™ (1 - FiR(G1)TR(G1)($)TZ2) det (ﬂm —AlG) - xR(G2>R(Gz)T>

rgl—‘%R(G’l)TR(Gl))(x)

z(z — mQF%R(Gl)TR(Gl)("E))

X (% —A(Gs) — iR(Gg)R(Gg)T>11n2]

X |1—

T
1,
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m 1
2 (1 _ FiR(Gl)TR(Gl)(x>x2) det ($In2 — A(Gy) — 5(7“2]712 + A(Gz))>

. [1 B TSF;R(Gl)TR(Gl)(x)FA(G2)+;R(GQ)R(GQ)T(ZE)]

z(r — mQF%R(Gl)TR(Gl)(I))

n2

—ome (1= VT e - a@ - (2 A(G2)}

x 7j=1
2
x [1- fmins .
oo = Z)(o — B3 (@ — 5 — )
Therefore,
_ — M M= N .M2 _ M . i E . A%(Gl)
Fasianany (®) =212 e (1 (x — 2;1)) 1;[1 ("T r @
no 1
x T1 {7 = X(G2) =~z + Xi(G2))
j=1
X 1 - 2r T%T?lnn2 27
oo~ E) (@ - ) (@ - 7~ )
ni
=™ Mg TT{a? —ry — N(Gh)}
i=2
X H{.TZ — )\j(GQ)I — T9 — )\j(GQ)}
j=2
x {x* — rox® — (2r) + myimy + 2ry)2?
+ (2179 + mymare)x + 4ryra},
and hence the result follows. O

Theorem 2.3. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the adjacency spectrum of S(G1)VR(Gy) consists of:

(1) the eigenvalue £4/r1 + Ni(Gy) for every eigenvalue \;(G1), i = 2,3,...,n1, of
A(Gh);

(ii) roots of the equation x* — \;(Ga)x —1r2— \;(G2) = 0 for every eigenvalue \;(G2),
j = 2,37 ..., Na, OfA(GQ),’

(131) the eigenvalue O with multiplicity my + me — ny — na;

(iv) four roots of the equation x* —rox® — (2ry +myng +2r9)a? + 2r rox +4r1re = 0.

Proof. The proof is similar to that of proof of Theorem 2.2. 0

Theorem 2.4. For 1 = 1,2, let G; be an ri-reqular graph with n; vertices and m;
edges. Then the adjacency spectrum of S(G1)VR(Gs) consists of:
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(i) the eigenvalue £/ + Ni(G1) for every eigenvalue N\i(G1), i = 2,3,...,ny, of
A(G1>;

(ii) roots of the equation x* — \;(Ga)x —1r2— \;(G2) = 0 for every eigenvalue \;(Gz),
j = 2,3, ...y Na, OfA(Gz),'

(131) the eigenvalue O with multiplicity my + me — ny — na;

(iv) four roots of the equation x* —rox® — (2r; +myng +2ry) 2% + (2r1ry +r9nymy) T +
47"17“2 = 0.

Proof. The proof is similar to that of proof of Theorem 2.1. O

In the similar way as above we obtain Laplacian and normalized Laplacian spectra
of the partial join graphs, which are given below.

Lemma 2.2. We have the following Laplacian matrices:

(rl + n2)In1 _R(Gl) _Jnl X1Nno On1 Xmeo
. v o _R<G1)T 21m1 Om1Xn2 Om1><m2 .
(O LISGOVRIG2) = | 7 Oy (ra 4+ 1)y & L(G) —R(Gy) |
Omzxru Omngl _R(GQ)T 217”2
lenl _R(Gl) On1 XMNo On1 Xma
. 7 _ _R(GI)T (2 + m2)1m1 Om1 Xng2 _Jm1 Xmg2 .
(ZZ) L(S(Gl)VR(G2)) — On2><n1 Onzxm1 T2]n2 + L(Gg) —R(Gg) 9
Omgxnl _Jm2><m1 _R(GQ)T (2 + ml)Im2
T].Inl _R(Gl) On1 XN On1 Xmo
o \/ _ _R(GI)T (2 + nQ)Iml _Jml XM Om1 xma | .
(ZZZ) L(S(GI)VR(G2)) - Onanl _Jngxml (T2 + ml)In2 + L(GQ) _R(G2) ’
Om2 Xn1 Om2 Xmi _R(GQ)T 21’!712
(Tl + m2>In1 _R(Gl) On1 XN _Jnl Xmo
. - . —R(G1>T 2[m1 Om1 X1g Oml Xm2
(7/0) L(S(Gl)\/fR(GQ)) - On2><n1 On2><m1 r2In2 + L(GQ) —R(G2>
_szxm Omng1 _R<G2)T (2 + nl)]mg

Theorem 2.5. Fori = 1,2, let G; be an r;-regular graph with n; vertices and m;
edges. Then the Laplacian spectrum of S(G1)VR(Gz) consists of:

(i) roots of the equation x* — (2411 4+ ng)x + 2ny + p;(G1) = 0 for every eigenvalue
,LLZ(Gl) ,i = 2, 3, ey ng, Of L(Gl),

(¢i) roots of the equation x* — (2+ry +mn1 + p1;(Ga))x + 2n1 + 31;(G2) = 0 for every
eigenvalue pi(Gs), 3 =2,3,...,n9, of L(Gs);

(i) the eigenvalue 2 with multiplicity my + mg — ny — no;

(iv) four roots of the equation x* — (4+11 + 79 +n1 +no)x3 + (4+4ng +4ny +2r) +
2ry + 1179 + TNy + Tong) T — 2(2ny + 21y + 1Ny + rong)z = 0.

Theorem 2.6. For i = 1,2, let G; be an ri-reqular graph with n; vertices and m;
edges. Then the Laplacian spectrum of S(G1)VR(Gs) consists of:
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i) roots of the equation i (2471 +mo)x+r1mo+u;(G1) = 0 for every eigenvalue
,U/i(G1>; 1= 2, 3, oy, Of L(G1>,

(i) roots of the equation x*—(24+ra+my+pu;(Ga))x+romy+3p;(Ga)+map; (Gs) = 0
for every eigenvalue pj(Gs), 7 =2,3,...,n9, of L(Gs);

(1i1) the eigenvalue 2 + mo with multiplicity my — ny;

(iv) the eigenvalue 2 + my with multiplicity mq — na;

(v) four roots of the equation x* — (4+11+ro+mq +mo)x® + (4+2r; +2ry + 1179 +
1My +7r9Mmao + 2m1 +2m2 +7r1ms +T2m1)l’2 — (2r1m2 +27’2m1 +7riromgq +7’17’2m2)l’ =0.

Theorem 2.7. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the Laplacian spectrum of S(G1)VR(G5) consists of:

(i) roots of the equation x* — (2411 +ng)x +ring + u;(G1) = 0 for every eigenvalue
wi(Gr), i =2,3,...,n1, of L(Gy);

(ii) roots of the equation x* — (2 4+ ro + my + p;(G2))x + 2my + 3p;(G2) = 0 for
every eigenvalue 1;(Gs), 7 =2,3,...,n2, of L(G2);

(1ii) the eigenvalue 2 + ny with multiplicity my — nq;

(iv) the eigenvalue 2 with multiplicity mg — ng;

(v) four roots of the equation x* — (441, +ro+my +ng)x + (4 + 2r) + 27y +4my +
2ng + 1179 + rimy + TNy + Tong)x? — (dmy + 2rimy + 2ring + rireng)z = 0.

Theorem 2.8. Fori = 1,2, let G; be an ri-reqular graph with n; vertices and m;
edges. Then the Laplacian spectrum of S(G1)VR(Gq) consists of:

(7) roots of the equation x* — (2411 +ma)x +2ma+ w;(G1) = 0 for every eigenvalue
,LLl'(Gl), 1= 2, 3, BN 51 Of L(G1>,

(i) roots of the equation x*— (212411 + 1 (Ga))x+rong + 31 (G2) +nip; (Ga) = 0
for every eigenvalue pj(Gs), j =2,3,...,n9, of L(Gs);

(i) the eigenvalue 2 with multiplicity my — ny;

(iv) the eigenvalue 2 4+ ny with multiplicity ma — no;

(v) four roots of the equation x* — (4411 +1ro+mo+ny)x3 + (44 2ry + 27y + 4my +
211 + 1179 + romy + ring + rong )z — (dmy + 2rama + 2rong + rirong )z = 0.

Lemma 2.3. We have the following normalized Laplacian matrices:

(2)

[nl T _CR(Gl) _Kn1><n2 On1><m2
. —CR(Gl) ]m Om Xn Om xXm
L(S(G1)VR(G)) = ! Y NS N
(S(G1)VR(G2)) —Kiysny  Ongxmy  L(G2) @ B(Gy) —dR(G5)
Omgxnl Omgxml _dR(GQ)T Imz
. . . . . 1
where K, «xn, s the matriz of size ny X ng with all entries equal to JorTon @)
B(Gy) is the ny X ny matriz whose all diagonal entries are 1 and off-diagonal entries
ro . . 1 .
are 5=, € iS the constant whose value is T d s the constant whose value
. 1
is

2(2"’2 —H’Ll) ’
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(i)

Inl _CR(Gl) OTL1><1’L2 On1><m2
= - —CR(Gl)T ]ml Omlxng _Km1><m2
L(S(G1)VR(Gy)) = Onysxny Onyxm,  £(Gs) @ B(Ga) —dR(G,) |
Omgxnl _ngxml _dR(GQ)T Imz

1

(24m2)(2+m1)’
B(Gy) is the ny X ny matriz whose all diagonal entries are 1 and off-diagonal entries
are 22, ¢ is the constant whose value is L , d 1s the constant whose value is

where Ky xm, @S the matriz of size my X my with all entries equal to

2r2 r1(24+m2)
1 .
\/2r2 (2+m1) ¢
(41)
[nl _CR(Gl) O?’Ll Xng On1><m2
\/ _ _CR(G1>T Iml _KleTLQ Omlxmg
LEEIVRG) = |5 0 R L(Ga) e B(G) —dR(Ga) |
Om2 Xn1 Omg Xmq _dR(G2>T Im?

1
\V/ (2+n2)(2ra+ma)’

B(Gs) is the ng X ny matriz whose all diagonal entries are 1 and off-diagonal entries
T2 1

where K, xn, 1S the matriz of size my X ny with all entries equal to

are , ¢ is the constant whose value is , d s the constant whose value
r2+mi r1(24n2)
. 1 .
v y/2(2r2+m1)7
(iv)
Inl T _CR(GI) O?’LlXTLQ _Knlxmg
- —cR(G) I O, x O, x
L(S(GVR(Gy)) = | ¢ ™ e s
SEVRED =10y Oy £(Ga) 0 B(Ga) ~dR(G) |
_KmQX'ILl Oszml _dR(G2)T [m2

where K, xn, s the matriz of size my X ny with all entries equal to S S—
v (24+n1)(r1+mz)

B(Gy) is the ny X ny matriz whose all diagonal entries are 1 and off-diagonal entries

1

are 2%, ¢ is the constant whose value is T d is the constant whose value is
r1+mo

1

\/2r2 (2+n1) ’

Theorem 2.9. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the normalized Laplacian spectrum of S(G1)VR(Gy) consists of:

(i) roots of the equation 2(ry + ng)x* — 4(r1 + n2)x + 2ny + 116;(G1) = 0 for every
eigenvalue 6;(G1), i = 2,3,...,n1, of L(G1);

(ii) roots of the equation 2(2r9+ny)x?—2(3re+2n1+720;(Ga))x+2n1+3r90,;(G2) = 0
for every eigenvalue 6;(Gs), j =2,3,...,n9, of L(G2);

(131) the eigenvalue 1 with multiplicity my + mae — ny — na;

(iv) four roots of the equation (2riro + ring + 2rong + nying)a* — (5riry + 3ring +
579y + 3ning)x® + (3riry + 3ring + 5rang + 3ning)x® — (ring + 3rang + ning)x = 0.
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Theorem 2.10. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the normalized Laplacian spectrum of S(G1)VR(Gs) consists of:

(i) roots of the equation (2 4+ mg)z* — 2(2 + ma)x + ma + 6;(G1) = 0 for every
eigenvalue §;(G1), i =2,3,...,n1, of L(G1);

(ii) roots of the equation 2(2 4+ my)x* — (6 + 3my + 20;(Ga) + m10;(G2))x + my +
36;(G2) +m10;(Gs) = 0 for every eigenvalue 6;(Gz), j =2,3,...,n9, of L(G2);

(1ii) the eigenvalue 1 with multiplicity my + mg — ny — no;

(iv) four roots of the equation 2(4 + 2my + 2my + mymy)xt — 7(4 + 2my + 2my +
m1m2)$3 + (24 + 14?711 + 16m2 + 7m1m2)x2 — 2(2m1 + 3m2 + mlmg)x =0.

Theorem 2.11. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then the normalized Laplacian spectrum of S(G1)VR(Gy) consists of:

(4) roots of the equation (24ny)x?* —2(2+n3)xz+nge+0;(G1) = 0 for every eigenvalue
51(G1), 1= 2,3, oo, ng, Of,C(Gl),'

(i) roots of the equation 2(2ry+my )z —2(3ra+2my+120;(Ga))x+2my+3r26;(Ga) =
0 for every eigenvalue §;(G2), j = 2,3,...,n2, of L(G2);

(1ii) the eigenvalue 1 with multiplicity my + mg — ny — ng;

(iv) four roots of the equation (4ry + 2r9ng +2my +myng)axt — (107 + 5rong + 6my +
3ming)xd + (6ry + 5rang + 6my + 3ming)z? — (3rang + 2my + ming)z = 0.

Theorem 2.12. For i = 1,2, let G; be an r;-regular graph with n; vertices and m;
edges. Then the normalized Laplacian spectrum of S(G1)VR(Gs) consists of:

(i) roots of the equation 2(ry +mg)x? — 4(ry + ma)x + 2ma + 120;(G1) = 0 for every
eigenvalue §;(G1), 1 =2,3,...,n1, of L(G1);

(ii) roots of the equation 2(2 4+ ni)x® — (6 + 3na + 20;(G2) + n16,;(G2))x + ny +
36;(G2) +n16;(G2) = 0 for every eigenvalue §;(G2), j =2,3,...,n2, of L(G2);

(1ii) the eigenvalue 1 with multiplicity my + mg — ny — no;

(iv) four roots of the equation 2(2ry +riny + 2msg +mony )zt — 7(2ry +ring + 2ms +
maony )z + (12r) + Tring + 16msy + Tmaony)z? — 2(ring + 3may + mony )z = 0.

3. SIMULTANEOUS COSPECTRAL GRAPHS

In this section we present the main result of the paper. We construct several classes
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. For the construction of these
graphs we consider two pairs of A-cospectral regular graphs, which are readily available
in the literature, for example see [14]. Then we take partial join of subdivision graph
and R-graph belong to different pairs.

The following lemma is immediate from the definition of Laplacian and normalized
Laplacian matrices.

Lemma 3.1. (i) If G is an r-reqular graph, then L(G) = rl, — A(G) and L(G) =
I, — %A(G).

(17) If Gy and Go are A-cospectral reqular graphs, then they are also cospectral with
respect to the Laplacian and normalized Laplacian matrices.
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Observation. From all the theorems given in the previous section we observe
that the adjacency, Laplacian and normalized Lpalacian spectra of all the partial
jOiIl graphs S(Gl)\/:R.(GQ), S(Gl)vR(Gg), S(G1>V9Q<G2), and S(Gl)v:R(Gg), depend
only on the number of vertices, number of edges, degree of regularities, and the
corresponding spectrum of G; and G. Furthermore, we note that, although G and
Gy are regular graphs, S(G1)VR(Gy), S(G1)VR(Gy), S(G1)VR(Gs) and S(G1)VR(Gy)
are non-regular graphs.

The following theorem is the main result of the paper.

Theorem 3.1. Let G;, H;, i = 1,2 be reqular graphs, where G need not be dif-
ferent from Hy. If Gy and Hy are A-cospectral, and Gy and Hy are.A—caspectml
then S(G1)VR(Gy) (respectively, S(G1)VR(Gy), S(G1)VR(Gs), S(G1)VR(Gs)) and
S(Hy)VR(H,) (respectively, S(H,)VR(H,), S(Hy)VR(Hy), S(H,)VR(Hy)) are simul-
taneously A-cospectral, L-cospectral and L-cospectral.

Proof. Follows from Lemma 3.1 and the above observation. 0

4. SPANNING TREES AND KIRCHHOFF INDICES

Applying the results on Laplacian and normalized Laplacian spectra given in Section
2, we find the number of spanning trees and Kirchhoff index of all the partial join
graphs constructed in the paper.

Let ¢(G) denote the number of spanning trees of G. It is well known [5] that if G
is a connected graph on n vertices with Laplacian spectrum 0 = p1(G) < po(G) <

- < (@), then t(G) = #2l@ (@)

The Kirchhoff index of a graph G, denoted by K f(G), is defined as the sum of
resistances between all pairs of vertices [1,10] in G. For a connected graph G onn
vertices, the Kirchhoff index [9] can be expressed as K f(G) =n> I, e

Theorem 4.1. For i = 1,2, let G; be an r;-reqular graph with n; vertices and m;
edges. Then

ni ny
gmitmg—ny—ng -2(2n1+2n2+r1n1+r2n2)- H (2n2+,ui(G1))- H (2n1+3,u]~ (Gg))

(1) t(S(G1)VR(G2)) = — = ;

ni+nz+mi+ma
(22)

t(S(Gl)Wﬂ%(Gz)) :(2 + m2)m1—n1 . (2 + ml)mz—nQ

ni n2

(2rymo+2rgmy +ryrgmy+rirgma)- H (rymo+pi(G))- H (romy+3p;(G2)+myp;(G2))
y i=2 j=2
ni+ng+mi+mo

(i)
t(S(G1)VR(Ga)) =(2 + ng)™ ™ . 22772

ni n2
(4my+2r1my+2ryng+rirang)- [ [ (ring+us(GD)- [ ] (2m1+31;(G2))
% i=2 j=2

ni+ng+mi+mg
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()
t(S(G1)VR(Gy)) =27 - (2 4y )™ "2

(4my+2rgmat2rgny +rirany)- [ [ @ma+us(GD)- [ ] (ran1+36;(G2)+n1 ;i (G2))
i=2 j=2
X ni+ng+mqi+mo

Theorem 4.2. For i = 1,2, let G; be an r;-regular graph with n; vertices and m;

edges. Then

(2)
mi +mg — Ny — No

K f(S(G1)VR(G2)) =(n1 + ng + my + my) ( 5

4+ 4ny + 4ng + 2r1 + 2rg + 7o + 110y 4 T2Ng
2(2n1 + 2ng + 110y + ToN2)

il 2+7“1—|—n2 ”22+r2+n1+uj(G2)>

)

* Z 2n9 + 1;(G1) * Z 211 + 3p;(Go)

i=2 Jj=2
(47)
mp—m mo — N2
2 -+ mo 2 —+ mq

Kf(S(G1)VR(Gy)) =(ny + ng +myq +my) x (

44 2r1 + 2r9 + rire + rimy + roma+2my + 2mo + rima + romy
2rimsg + 2romy + riromy + riroms

+§: 2+1r1+mso i 2+T2+7TL1+,M]'(G2) ]
= rima + i (Gh) =2 T2+ 315(G2) + mapi(Ga) |

(131)
Kf(S(Gl)VR(GQ)) :(m + ng +mp + mg)
mp —nq Mo — N9
2 —f- %) 2
n 44 2r1 4+ 2r9 +4mq + 2ng + 1179 + 1My + 1Ny + TaNg
dmy + 2rymy + 2ring + rirang

o 2+r1+n2 "22+T2+m1+uj(G2)
4 ;
1Mo + ILL,L(G1> 2m1 + 3,LLJ (Gg)

i=2 =2

(iv)
K f(S(G1)VR(Gy)) =(ny + ny + my +my)
% miy —ny mo — Ny
2 2 —I— n1
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+4 + 2r1 + 2ry + 4mo + 2nq + rire + romo + ring + rony
dma + 2rome + 2rong + rirang
i 24711+ my + S 2+ ry+n1 + p(Gs) )
= 2may + wi(Gr) =2 T2 + 3Mj(G2) + n1Mj(G2) '

5. CONCLUDING REMARKS

The main result of the paper is based on regular A-cospectral graphs and certain
operations on a pair of these graphs so that the operated (or resultant) graphs are
non-regular and having adjacency, Laplacian and normalized Laplacian spectra which
depend on only the order, size, degree of regularity and spectrum of the original graphs.
Thus one may search for some other graph operations to construct simultaneous
cospectral graphs like in the paper.
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