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CONSTRUCTION OF SIMULTANEOUS COSPECTRAL GRAPHS
FOR ADJACENCY, LAPLACIAN AND NORMALIZED

LAPLACIAN MATRICES

ARPITA DAS1 AND PRATIMA PANIGRAHI1

Abstract. In this paper we construct several classes of non-regular graphs which
are co-spectral with respect to all the three matrices, namely, adjacency, Laplacian
and normalized Laplacian, and hence we answer a question asked by Butler [2].
We make these constructions starting with two pairs (G1, H1) and (G2, H2) of
A-cospectral regular graphs, then considering the subdivision graphs S(Gi) and
R-graphs R(Hi), i = 1, 2, and finally making some kind of partial joins between
S(G1) and R(G2) and S(H1) and R(H2). Moreover, we determine the number of
spanning trees and the Kirchhoff index of the newly constructed graphs.

1. Introduction

Cospectral graphs are non-isomorphic graphs which share the same eigenvalues of
the same matrices associated with them. Several cospectral graphs are known for
adjacency, combinatorial Laplacian and normalized Laplacian matrices separately. In
2010, Butler [2] asked that “Is there an example of two non-regular graphs which
are cospectral with respect to the adjacency, combinatorial Laplacian and normalized
Laplacian at the same time?” Normally regular graphs are always cospectral for
all the matrices mentioned in the question. Here we construct some non-regular
cospectral graphs for all the three matrices and hence give an answer to the above
question of Butler. To present the results of the paper we need some definitions and
terminology as follow. All graphs considered in the paper are simple and undirected.
For any graph G, we take V (G) and E(G) as the vertex set and edge set of G
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respectively. The adjacency matrix of graph G, denoted by A(G), is a square matrix
whose rows and columns are indexed by vertices of graph G, and (u, v)th entry is
1 if and only if vertex u is adjacent to vertex v and 0 otherwise. If D(G) is the
diagonal matrix of vertex degrees in G, then the Laplacian matrix L(G) is defined
as L(G) = D(G) − A(G) and the normalized Laplacian matrix L(G) of G is defined
as L(G) = I − D(G)−1/2A(G)D(G)−1/2 with the convention that D(G)−1(u, u) = 0 if
degree of u is zero. For a given square matrix M of size n, we denote the characteristic
polynomial det(xIn − M) by fM(x). The eigenvalues of A(G), L(G) and L(G) are
denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), 0 = µ1(G) ≤ µ2(G) ≤ · · · ≤ µn(G), and
0 = δ1(G) ≤ δ2(G) ≤ · · · ≤ δn(G) ≤ 2 respectively, where n is the number of vertices
of G. The multiset of eigenvalues of A(G) (respectively L(G), L(G)) is called the
adjacency (respectively Laplacian, normalized Laplacian) spectrum of G, and denoted
by A-spectrum (respectively L-spectrum, L-spectrum). Two graphs are said to be A-
cospectral (respectively L-cospectral, L-cospectral) if they have the same A-spectrum
(respectively L-spectrum, L-spectrum).

The adjacency, Laplacian and normalized Laplacian spectra of different kinds of
graphs have been computed by several researchers [4, 7, 11,12]. The subdivision graph
S(G) [6] of a graph G is obtained by inserting a new vertex into every edge of G. The R-
graph R(G) [5] of a graph G is the graph obtained from G by introducing a new vertex
ue for each e ∈ E(G) and making ue adjacent to both the end vertices of e. The set of
such new vertices is denoted by I(G), i.e., I(G) = V (S(G))\V (G) = V (R(G))\V (G).
The partial joins of subdivision graph and R-graph which are considered in the paper
are given in the definition below.
Definition 1.1. Let G1 and G2 be two vertex-disjoint graphs with number of vertices
n1 and n2, and edges m1 and m2, respectively. Then the following hold.

(i) The subdivision-vertex-R-vertex join of G1 and G2, denoted by S(G1)∨̈R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of V (G1) with
every vertex of V (G2). The graph S(G1)∨̈R(G2) has n1 + n2 + m1 + m2 vertices
and 2m1 + n1n2 + 3m2 edges.

(ii) The subdivision-edge-R-edge join of G1 and G2, denoted by S(G1)∨R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of I(G1) with
every vertex of I(G2). The graph S(G1)∨R(G2) has n1 + n2 + m1 + m2 vertices
and m1(2 + m2) + 3m2 edges.

(iii) The subdivision-edge-R-vertex join of G1 and G2, denoted by S(G1)∨̇R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of I(G1) with
every vertex of V (G2). The graph S(G1)∨̇R(G2) has n1 + n2 + m1 + m2 vertices
and m1(2 + n2) + 3m2 edges.

(iv) The subdivision-vertex-R-edge join of G1 and G2, denoted by S(G1)∨̇R(G2), is
the graph obtained from S(G1) and R(G2) by joining each vertex of V (G1) with
every vertex of I(G2). The graph S(G1)∨̇R(G2) has n1 + n2 + m1 + m2 vertices
and 2m1 + m2(3 + n1) edges.
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Example 1.1. Let us consider two graphs G1 = P4 and G2 = P3. The set of dark
vertices of G1 and G2 are I(G1) and I(G2), respectively. 

Figure 1. Subdivision-vertex-R-vertex join of P4 and P3

 

Figure 2. Subdivision-edge-R-edge join of P4 and P3

 

Figure 3. Subdivision-edge-R-vertex join of P4 and P3

 

Figure 4. Subdivision-vertex-R-edge join of P4 and P3

In the following lemma we find the degrees of vertices in the above constructed
graphs.
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Lemma 1.1. (i) The degree of any vertex v in S(G1)∨̈R(G2) is given by

dS(G1)∨̈R(G2)(v) =


n2 + dG1(v), if v ∈ V (G1),
2, if v ∈ I(G1)

⋃
I(G2),

n1 + 2dG2(v), if v ∈ V (G2).

(ii) The degree of any vertex v in S(G1)∨R(G2) is given by

d
S(G1)∨R(G2)(v) =


dG1(v), if v ∈ V (G1),
2 + m2, if v ∈ I(G1),
2dG2(v), if v ∈ V (G2),
2 + m1, if v ∈ I(G2).

(iii) The degree of any vertex v in S(G1)∨̇R(G2) is given by

d
S(G1)∨̇R(G2)(v) =


dG1(v), if v ∈ V (G1),
2 + n2, if v ∈ I(G1),
2dG2(v) + m1, if v ∈ V (G2),
2, if v ∈ I(G2).

(iv) The degree of any vertex v in S(G1)∨̇R(G2) is given by

d
S(G1)∨̇R(G2)(v) =


dG1(v) + m2, if v ∈ V (G1),
2, if v ∈ I(G1),
2dG2(v), if v ∈ V (G2),
2 + n1, if v ∈ I(G2).

For two matrices A and B, of same size m×n, the Hadamard product A•B of A and
B is a matrix of the same size m×n with entries given by (A•B)ij = (A)ij ·(B)ij (that
is entrywise multiplication). Hadamard product is commutative, that is A•B = B •A.

Notation. Throughout the paper, for any positive integers k, n1 and n2, Ik denotes
the identity matrix of size k, Jn1×n2 denotes n1 × n2 matrix whose all entries are 1,
1n stands for the column vector of size n with all entries equal to 1, Kn×n denotes an
n × n matrix whose all entries are the same. In other words, Kn×n = αJn×n, for a
real number α. For any positive integers s and t, Os×t denotes the zero matrix of size
s × t.

To prove our results we need some basics as given below.

Lemma 1.2 (Schur Complement [6]). Suppose that the order of all four matrices M ,
N , P and Q satisfy the rules of operations on matrices. Then we have∣∣∣∣∣M N

P Q

∣∣∣∣∣ =

|Q||M − NQ−1P |, if Q is a non-singular square matrix,

|M ||Q − PM−1N |, if M is a non-singular square matrix.

Lemma 1.3 ([6]). For a square matrix A of size n and a scalar α,

det(A + αJn×n) = det(A) + α1T
n adj(A)1n,

where adj(A) is the adjugate matrix of A.
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Lemma 1.4. For any real numbers c, d > 0, we have

(cIn − dJn×n)−1 = 1
c
In + d

c(c − nd)Jn×n.

Proof.

(cIn − dJn×n)−1 =adj(cIn − dJn×n)
det(cIn − dJn×n) = cn−2(c − nd)In + cn−2dJn×n

cn−1(c − nd)

=1
c
In + d

c(c − nd)Jn×n. □

For a graph G on n vertices and m edges, the vertex-edge incidence matrix [8] R(G)
of G is a matrix of size n × m, with entry rij = 1 if the ith vertex is incident to the
jth edge, and 0 otherwise. The line graph [8] of a graph G is the graph LG, whose
vertices are the edges of G and two of these are adjacent in LG if and only if they are
incident on a common vertex in G.

The following is an well known result, may be found in [6].

Lemma 1.5. Let G be an r-regular graph. Then
(i) R(G)T R(G) = A(LG) + 2Im and R(G)R(G)T = A(G) + rIn;
(ii) the eigenvalues of A(LG) are the eigenvalues of A(G)+(r−2)In and −2 repeated

m − n times.

Notation. The M -coronal of an n×n matrix M , denoted by ΓM(x), is defined [3,13]
as the sum of the entries of the matrix (xIn−M)−1, that is, ΓM(x) = 1T

n (xIn−M)−11n.

Lemma 1.6 ([3]). If M is an n × n matrix with each row sum equal to a constant t,
then ΓM(x) = n

x−t
.

Butler [2] constructed non-regular bipartite graphs which are cospectral with respect
to both the adjacency and normalized Laplacian matrices, and then asked for existence
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. In this paper we construct
several classes of such graphs taking help of the operations subdivision-vertex-R-vertex
join, subdivision-edge-R-edge join, subdivision-edge-R-vertex join and subdivision-
vertex-R-edge join. We also find the number of spanning trees and Kirchhoff index
for all the partial join of subdivision graph and R-graph constructed here.

2. Adjacency, Laplacian and Normalized Laplacian Spectra of the
Graphs

In this section we consider regular graphs Gi on ni vertices, mi edges, and with
degree of regularity ri, i = 1, 2. To obtain the required matrices we label the vertices
of the graphs in the following way. Let V (G1) = {v1, . . . , vn1}, I(G1) = {e1, . . . , em1},
V (G2) = {u1, . . . , un2}, I(G2) = {f1, . . . , fm2}. Then V (G1) ∪ I(G1) ∪ V (G2) ∪
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I(G2) is a partition for all V (S(G1)∨̈R(G2)), V (S(G1)∨R(G2)), V (S(G1)∨̇R(G2))
and V (S(G1)∨̇R(G2)).

Lemma 2.1. For i = 1, 2, let Gi be a graph with ni vertices and mi edges. Then we
have the following:

(i) A(S(G1)∨̈R(G2)) =


On1 R(G1) Jn1×n2 On1×m2

R(G1)T Om1 Om1×n2 Om1×m2

Jn2×n1 On2×m1 A(G2) R(G2)
Om2×n1 Om2×m1 R(G2)T Om2

 ;

(ii) A(S(G1)∨R(G2)) =


On1 R(G1) On1×n2 On1×m2

R(G1)T Om1 Om1×n2 Jm1×m2

On2×n1 On2×m1 A(G2) R(G2)
Om2×n1 Jm2×m1 R(G2)T Om2

 ;

(iii) A(S(G1)∨̇R(G2)) =


On1 R(G1) On1×n2 On1×m2

R(G1)T Om1 Jm1×n2 Om1×m2

On2×n1 Jn2×m1 A(G2) R(G2)
Om2×n1 Om2×m1 R(G2)T Om2

 ;

(iv) A(S(G1)∨̇R(G2)) =


On1 R(G1) On1×n2 Jn1×m2

R(G1)T Om1 Om1×n2 Om1×m2

On2×n1 On2×m1 A(G2) R(G2)
Jm2×n1 Om2×m1 R(G2)T Om2

 .

Theorem 2.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨̈R(G2) consists of:
(i) the eigenvalue ±

√
r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of

A(G1);
(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 − r2x

3 − (2r1 + n1n2 + 2r2)x2 + 2r1r2x + 4r1r2 = 0.

Proof. The adjacency characteristic polynomial of S(G1)∨̈R(G2) is

fA(S(G1)∨̈R(G2))(x) = det


xIn1 −R(G1) −Jn1×n2 On1×m2

−R(G1)T xIm1 Om1×n2 Om1×m2
−Jn2×n1 On2×m1 xIn2 − A(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T xIm2

 = xm2 det(S),

where

S =

 xIn1 −R(G1) −Jn1×n2

−R(G1)T xIm1 Om1×n2

−Jn2×n1 On2×m1 xIn2 − A(G2)


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−

On1×m2

Om1×m2

−R(G2)

 1
x

(
Om2×n1 Om2×m1 −R(G2)T

)

=

 xIn1 −R(G1) −Jn1×n2

−R(G1)T xIm1 Om1×n2

−Jn2×n1 On2×m1 xIn2 − A(G2) − 1
x
R(G2)R(G2)T

 .

Hence,

det(S) = det
(

xIn2 − A(G2) − 1
x

R(G2)R(G2)T
)

det(W )

=
n2∏

j=1

(
x − λj(G2) − r2

x
− λj(G2)

x

)
det(W ),

where

W =
(

xIn1 −R(G1)
−R(G1)T xIm1

)

−
(

−Jn1×n2

Om1×n2

)(
xIn2 − A(G2) − 1

x
R(G2)R(G2)T

)−1 (
−Jn2×n1 On2×m1

)
=
(

xIn1 − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)Jn1×n1 −R(G1)
−R(G1)T xIm1

)
.

Then

det(W ) =xm1 det
(

xIn1 − ΓA(G2)+ 1
x

R(G2)R(G2)T (x)Jn1×n1 − 1
x

R(G1)R(G1)T
)

=xm1

[
det

(
xIn1 − 1

x
R(G1)R(G1)T

)

− ΓA(G2)+ 1
x

R(G2)R(G2)T (x)1T
n1 adj

(
xIn1 − 1

x
R(G1)R(G1)T

)
1n1

]

=xm1 det
(

xIn1 − 1
x

R(G1)R(G1)T
)

×
[
1 − ΓA(G2)+ 1

x
R(G2)R(G2)T (x)1T

n1

(
xIn1 − 1

x
R(G1)R(G1)T

)−1
1n1

]

=xm1
n1∏
i=1

(
x − r1

x
− λi(G1)

x

)[
1 − ΓA(G2)+ 1

x
R(G2)R(G2)T (x)Γ 1

x
R(G1)R(G1)T (x)

]

=xm1
n1∏
i=1

(
x − r1

x
− λi(G1)

x

) [
1 − n2

x − r2 − 2r2
x

n1

x − 2r1
x

]
.

Therefore,

fA(S(G1)∨̈R(G2))(x) =xm1xm2
n1∏
i=1

(
x − r1

x
− λi(G1)

x

) n2∏
j=1

(
x − λj(G2) − r2

x
− λj(G2)

x

)
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×
[
1 − n2

x − r2 − 2r2
x

n1

x − 2r1
x

]

=xm1−n1xm2−n2
n1∏
i=2

{x2 − r1 − λi(G1)}

×
n2∏

j=2
{x2 − λj(G2)x − r2 − λj(G2)}

× {x4 − r2x
3 − (2r1 + n1n2 + 2r2)x2 + 2r1r2x + 4r1r2},

and the result follows immediately. □

Theorem 2.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨R(G2) consists of:
(i) the eigenvalue ±

√
r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of

A(G1);
(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 −r2x

3 −(2r1 +m1m2 +2r2)x2 +(2r1r2 +m1m2r2)x+
4r1r2 = 0.

Proof. The adjacency characteristic polynomial of S(G1)∨R(G2) is

f
A(S(G1)∨R(G2))(x)=det


xIn1 −R(G1) On1×n2 On1×m2

−R(G1)T xIm1 Om1×n2 −Jm1×m2
On2×n1 On2×m1 xIn2 − A(G2) −R(G2)
Om2×n1 −Jm2×m1 −R(G2)T xIm2

=xn1 det(S),

where

S =

 xIm1 Om1×n2 −Jm1×m2

On2×m1 xIn2 − A(G2) −R(G2)
−Jm2×m1 −R(G2)T xIm2


−

−R(G1)T

On2×n1

Om2×n1

 1
x

(
−R(G1) On1×n2 On1×m2

)

=

xIm1 − 1
x
R(G1)T R(G1) Om1×n2 −Jm1×m2

On2×m1 xIn2 − A(G2) −R(G2)
−Jm2×m1 −R(G2)T xIm2

 .

Hence,

det(S) = det
(

xIm1 − 1
x

R(G1)T R(G1)
)

det(W )

= det
(

xIm1 − 1
x

(A(LG1) + 2Im1)
)

det(W )
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= xm1−n1
n1∏
i=1

(
x − r1

x
− λi(G1)

x

)
det(W ),

where

W =
(

xIn2 − A(G2) −R(G2)
−R(G2)T xIm2

)

−
(

On2×m1

−Jm2×m1

)(
xIm1 − 1

x
R(G1)T R(G1)

)−1 (
Om1×n2 −Jm1×m2

)
=
(

xIn2 − A(G2) −R(G2)
−R(G2)T xIm2 − Γ 1

x
R(G1)T R(G1)(x)Jm2×m2

)
.

Then

det(S) = det(xIm2 − Γ 1
x

R(G1)T R(G1)(x)Jm2×m2)

× det(xIn2 − A(G2) − R(G2)(xIm2 − Γ 1
x

R(G1)T R(G1)(x)Jm2×m2)−1R(G2)T )

=xm2

(
1 − Γ 1

x
R(G1)T R(G1)(x)m2

x

)
det

[
xIn2 − A(G2)

− R(G2)
{1

x
Im2 +

Γ 1
x

R(G1)T R(G1)(x)
x(x − m2Γ 1

x
R(G1)T R(G1)(x))Jm2×m2

}
R(G2)T

]

=xm2

(
1 − Γ 1

x
R(G1)T R(G1)(x)m2

x

)
det

(
xIn2 − A(G2)

− 1
x

R(G2)R(G2)T −
Γ 1

x
R(G1)T R(G1)(x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))R(G2)Jm2×m2R(G2)T

)

=xm2

(
1 − Γ 1

x
R(G1)T R(G1)(x)m2

x

)
det

(
xIn2 − A(G2)

− 1
x

R(G2)R(G2)T − r2
2

Γ 1
x

R(G1)T R(G1)(x)
x(x − m2Γ 1

x
R(G1)T R(G1)(x))Jn2×n2

)

=xm2

(
1 − Γ 1

x
R(G1)T R(G1)(x)m2

x

)[
det

(
xIn2 − A(G2) − 1

x
R(G2)R(G2)T

)

×
r2

2Γ 1
x

R(G1)T R(G1)(x)
x(x − m2Γ 1

x
R(G1)T R(G1)(x))1T

n2 adj
(

xIn2 − A(G2) − 1
x

R(G2)R(G2)T
)

1n2

]

=xm2

(
1 − Γ 1

x
R(G1)T R(G1)(x)m2

x

)
det

(
xIn2 − A(G2) − 1

x
R(G2)R(G2)T

)

×
[
1 −

r2
2Γ 1

x
R(G1)T R(G1))(x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))1T
n2

×
(

xIn2 − A(G2) − 1
x

R(G2)R(G2)T
)−1

1n2

]
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=xm2

(
1 − Γ 1

x
R(G1)T R(G1)(x)m2

x

)
det

(
xIn2 − A(G2) − 1

x
(r2In2 + A(G2))

)

×
[
1 −

r2
2Γ 1

x
R(G1)T R(G1)(x)ΓA(G2)+ 1

x
R(G2)R(G2)T (x)

x(x − m2Γ 1
x

R(G1)T R(G1)(x))

]

=xm2

(
1 − m1m2

x(x − 2r1
x

)

) n2∏
j=1

{
x − λj(G2) − 1

x
(r2 + λj(G2))

}

×
[
1 − r2

2m1n2

x(x − 2r1
x

)(x − m1m2
x− 2r1

x

)(x − r2 − 2r2
x

)

]
.

Therefore,

f
A(S(G1)∨R(G2))(x) =xn1xm1−n1xm2

(
1 − m1m2

x(x − 2r1
x

)

)
n1∏
i=1

(
x − r1

x
− λi(G1)

x

)

×
n2∏

j=1

{
x − λj(G2) − 1

x
(r2 + λj(G2))

}

×

1 − r2
2m1n2

x(x − 2r1
x

)(x − m1m2
x− 2r1

x

)(x − r2 − 2r2
x

)


=xm1−n1xm2−n2

n1∏
i=2

{x2 − r1 − λi(G1)}

×
n2∏

j=2
{x2 − λj(G2)x − r2 − λj(G2)}

× {x4 − r2x
3 − (2r1 + m1m2 + 2r2)x2

+ (2r1r2 + m1m2r2)x + 4r1r2},

and hence the result follows. □

Theorem 2.3. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨̇R(G2) consists of:
(i) the eigenvalue ±

√
r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of

A(G1);
(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),

j = 2, 3, . . . , n2, of A(G2);
(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 − r2x

3 − (2r1 +m1n2 +2r2)x2 +2r1r2x+4r1r2 = 0.

Proof. The proof is similar to that of proof of Theorem 2.2. □

Theorem 2.4. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the adjacency spectrum of S(G1)∨̇R(G2) consists of:
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(i) the eigenvalue ±
√

r1 + λi(G1) for every eigenvalue λi(G1), i = 2, 3, . . . , n1, of
A(G1);

(ii) roots of the equation x2 −λj(G2)x−r2 −λj(G2) = 0 for every eigenvalue λj(G2),
j = 2, 3, . . . , n2, of A(G2);

(iii) the eigenvalue 0 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 −r2x

3 −(2r1 +m1n2 +2r2)x2 +(2r1r2 +r2n1m2)x+
4r1r2 = 0.

Proof. The proof is similar to that of proof of Theorem 2.1. □

In the similar way as above we obtain Laplacian and normalized Laplacian spectra
of the partial join graphs, which are given below.

Lemma 2.2. We have the following Laplacian matrices:

(i) L(S(G1)∨̈R(G2)) =


(r1 + n2)In1 −R(G1) −Jn1×n2 On1×m2

−R(G1)T 2Im1 Om1×n2 Om1×m2

−Jn2×n1 On2×m1 (r2 + n1)In2 + L(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T 2Im2

 ;

(ii) L(S(G1)∨R(G2)) =


r1In1 −R(G1) On1×n2 On1×m2

−R(G1)T (2 + m2)Im1 Om1×n2 −Jm1×m2

On2×n1 On2×m1 r2In2 + L(G2) −R(G2)
Om2×n1 −Jm2×m1 −R(G2)T (2 + m1)Im2

 ;

(iii) L(S(G1)∨̇R(G2)) =


r1In1 −R(G1) On1×n2 On1×m2

−R(G1)T (2 + n2)Im1 −Jm1×n2 Om1×m2
On2×n1 −Jn2×m1 (r2 + m1)In2 + L(G2) −R(G2)
Om2×n1 Om2×m1 −R(G2)T 2Im2

 ;

(iv) L(S(G1)∨̇R(G2)) =


(r1 + m2)In1 −R(G1) On1×n2 −Jn1×m2

−R(G1)T 2Im1 Om1×n2 Om1×m2

On2×n1 On2×m1 r2In2 + L(G2) −R(G2)
−Jm2×n1 Om2×m1 −R(G2)T (2 + n1)Im2

 .

Theorem 2.5. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨̈R(G2) consists of:
(i) roots of the equation x2 − (2 + r1 + n2)x + 2n2 + µi(G1) = 0 for every eigenvalue

µi(G1) ,i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation x2 − (2 + r2 + n1 + µj(G2))x + 2n1 + 3µj(G2) = 0 for every

eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation x4 − (4 + r1 + r2 + n1 + n2)x3 + (4 + 4n1 + 4n2 + 2r1 +

2r2 + r1r2 + r1n1 + r2n2)x2 − 2(2n1 + 2n2 + r1n1 + r2n2)x = 0.

Theorem 2.6. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨R(G2) consists of:
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(i) roots of the equation x2 −(2+r1 +m2)x+r1m2 +µi(G1) = 0 for every eigenvalue
µi(G1), i = 2, 3, . . . , n1, of L(G1);

(ii) roots of the equation x2−(2+r2+m1+µj(G2))x+r2m1+3µj(G2)+m1µj(G2) = 0
for every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);

(iii) the eigenvalue 2 + m2 with multiplicity m1 − n1;
(iv) the eigenvalue 2 + m1 with multiplicity m2 − n2;
(v) four roots of the equation x4 − (4 + r1 + r2 + m1 + m2)x3 + (4 + 2r1 + 2r2 + r1r2 +

r1m1 +r2m2 +2m1 +2m2 +r1m2 +r2m1)x2 −(2r1m2 +2r2m1 +r1r2m1 +r1r2m2)x = 0.

Theorem 2.7. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨̇R(G2) consists of:
(i) roots of the equation x2 − (2 + r1 + n2)x + r1n2 + µi(G1) = 0 for every eigenvalue

µi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation x2 − (2 + r2 + m1 + µj(G2))x + 2m1 + 3µj(G2) = 0 for

every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 + n2 with multiplicity m1 − n1;
(iv) the eigenvalue 2 with multiplicity m2 − n2;
(v) four roots of the equation x4 − (4 + r1 + r2 + m1 + n2)x3 + (4 + 2r1 + 2r2 + 4m1 +

2n2 + r1r2 + r1m1 + r1n2 + r2n2)x2 − (4m1 + 2r1m1 + 2r1n2 + r1r2n2)x = 0.

Theorem 2.8. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the Laplacian spectrum of S(G1)∨̇R(G2) consists of:
(i) roots of the equation x2 − (2+r1 +m2)x+2m2 +µi(G1) = 0 for every eigenvalue

µi(G1), i = 2, 3, . . . , n1 of L(G1);
(ii) roots of the equation x2 −(2+r2 +n1 +µj(G2))x+r2n1 +3µj(G2)+n1µj(G2) = 0

for every eigenvalue µj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 2 with multiplicity m1 − n1;
(iv) the eigenvalue 2 + n1 with multiplicity m2 − n2;
(v) four roots of the equation x4 − (4 + r1 + r2 + m2 + n1)x3 + (4 + 2r1 + 2r2 + 4m2 +

2n1 + r1r2 + r2m2 + r1n1 + r2n1)x2 − (4m2 + 2r2m2 + 2r2n1 + r1r2n1)x = 0.

Lemma 2.3. We have the following normalized Laplacian matrices:
(i)

L(S(G1)∨̈R(G2)) =


In1 −cR(G1) −Kn1×n2 On1×m2

−cR(G1)T Im1 Om1×n2 Om1×m2

−Kn2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 Om2×m1 −dR(G2)T Im2

 ,

where Kn1×n2 is the matrix of size n1 × n2 with all entries equal to 1√
(r1+n2)(2r2+n1)

,
B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries
are r2

2r2+n1
, c is the constant whose value is 1√

2(r1+n2)
, d is the constant whose value

is 1√
2(2r2+n1)

;
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(ii)

L(S(G1)∨R(G2)) =


In1 −cR(G1) On1×n2 On1×m2

−cR(G1)T Im1 Om1×n2 −Km1×m2

On2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 −Km2×m1 −dR(G2)T Im2

 ,

where Km1×m2 is the matrix of size m1 × m2 with all entries equal to 1√
(2+m2)(2+m1)

,
B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries
are r2

2r2
, c is the constant whose value is 1√

r1(2+m2)
, d is the constant whose value is

1√
2r2(2+m1)

;
(iii)

L(S(G1)∨̇R(G2)) =


In1 −cR(G1) On1×n2 On1×m2

−cR(G1)T Im1 −Km1×n2 Om1×m2

On2×n1 −Kn2×m1 L(G2) • B(G2) −dR(G2)
Om2×n1 Om2×m1 −dR(G2)T Im2

 ,

where Km1×n2 is the matrix of size m1 × n2 with all entries equal to 1√
(2+n2)(2r2+m1)

,
B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries
are r2

2r2+m1
, c is the constant whose value is 1√

r1(2+n2)
, d is the constant whose value

is 1√
2(2r2+m1)

;
(iv)

L(S(G1)∨̇R(G2)) =


In1 −cR(G1) On1×n2 −Kn1×m2

−cR(G1)T Im1 Om1×n2 Om1×m2

On2×n1 On2×m1 L(G2) • B(G2) −dR(G2)
−Km2×n1 Om2×m1 −dR(G2)T Im2

 ,

where Km1×n2 is the matrix of size m1 × n2 with all entries equal to 1√
(2+n1)(r1+m2)

,
B(G2) is the n2 × n2 matrix whose all diagonal entries are 1 and off-diagonal entries
are r2

2r2
, c is the constant whose value is 1√

2(r1+m2)
, d is the constant whose value is

1√
2r2(2+n1)

.

Theorem 2.9. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨̈R(G2) consists of:
(i) roots of the equation 2(r1 + n2)x2 − 4(r1 + n2)x + 2n2 + r1δi(G1) = 0 for every

eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2r2+n1)x2−2(3r2+2n1+r2δj(G2))x+2n1+3r2δj(G2) = 0

for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation (2r1r2 + r1n1 + 2r2n2 + n1n2)x4 − (5r1r2 + 3r1n1 +

5r2n2 + 3n1n2)x3 + (3r1r2 + 3r1n1 + 5r2n2 + 3n1n2)x2 − (r1n1 + 3r2n2 + n1n2)x = 0.
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Theorem 2.10. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨R(G2) consists of:
(i) roots of the equation (2 + m2)x2 − 2(2 + m2)x + m2 + δi(G1) = 0 for every

eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2 + m1)x2 − (6 + 3m1 + 2δj(G2) + m1δj(G2))x + m1 +

3δj(G2) + m1δj(G2) = 0 for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation 2(4 + 2m1 + 2m2 + m1m2)x4 − 7(4 + 2m1 + 2m2 +

m1m2)x3 + (24 + 14m1 + 16m2 + 7m1m2)x2 − 2(2m1 + 3m2 + m1m2)x = 0.
Theorem 2.11. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨̇R(G2) consists of:
(i) roots of the equation (2+n2)x2 −2(2+n2)x+n2 +δi(G1) = 0 for every eigenvalue

δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2r2+m1)x2−2(3r2+2m1+r2δj(G2))x+2m1+3r2δj(G2) =

0 for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation (4r2 +2r2n2 +2m1 +m1n2)x4 − (10r2 +5r2n2 +6m1 +

3m1n2)x3 + (6r2 + 5r2n2 + 6m1 + 3m1n2)x2 − (3r2n2 + 2m1 + m1n2)x = 0.
Theorem 2.12. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then the normalized Laplacian spectrum of S(G1)∨̇R(G2) consists of:
(i) roots of the equation 2(r1 + m2)x2 − 4(r1 + m2)x + 2m2 + r2δi(G1) = 0 for every

eigenvalue δi(G1), i = 2, 3, . . . , n1, of L(G1);
(ii) roots of the equation 2(2 + n1)x2 − (6 + 3n2 + 2δj(G2) + n1δj(G2))x + n1 +

3δj(G2) + n1δj(G2) = 0 for every eigenvalue δj(G2), j = 2, 3, . . . , n2, of L(G2);
(iii) the eigenvalue 1 with multiplicity m1 + m2 − n1 − n2;
(iv) four roots of the equation 2(2r1 + r1n1 + 2m2 + m2n1)x4 − 7(2r1 + r1n1 + 2m2 +

m2n1)x3 + (12r1 + 7r1n1 + 16m2 + 7m2n1)x2 − 2(r1n1 + 3m2 + m2n1)x = 0.

3. Simultaneous Cospectral Graphs

In this section we present the main result of the paper. We construct several classes
of non-regular graphs which are cospectral with respect to all the three matrices,
namely, adjacency, Laplacian and normalized Laplacian. For the construction of these
graphs we consider two pairs of A-cospectral regular graphs, which are readily available
in the literature, for example see [14]. Then we take partial join of subdivision graph
and R-graph belong to different pairs.

The following lemma is immediate from the definition of Laplacian and normalized
Laplacian matrices.
Lemma 3.1. (i) If G is an r-regular graph, then L(G) = rIn − A(G) and L(G) =
In − 1

r
A(G).

(ii) If G1 and G2 are A-cospectral regular graphs, then they are also cospectral with
respect to the Laplacian and normalized Laplacian matrices.
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Observation. From all the theorems given in the previous section we observe
that the adjacency, Laplacian and normalized Lpalacian spectra of all the partial
join graphs S(G1)∨̈R(G2), S(G1)∨R(G2), S(G1)∨̇R(G2), and S(G1)∨̇R(G2), depend
only on the number of vertices, number of edges, degree of regularities, and the
corresponding spectrum of G1 and G2. Furthermore, we note that, although G1 and
G2 are regular graphs, S(G1)∨̈R(G2), S(G1)∨R(G2), S(G1)∨̇R(G2) and S(G1)∨̇R(G2)
are non-regular graphs.

The following theorem is the main result of the paper.

Theorem 3.1. Let Gi, Hi, i = 1, 2 be regular graphs, where G1 need not be dif-
ferent from H1. If G1 and H1 are A-cospectral, and G2 and H2 are A-cospectral
then S(G1)∨̈R(G2) (respectively, S(G1)∨R(G2), S(G1)∨̇R(G2), S(G1)∨̇R(G2)) and
S(H1)∨̈R(H2) (respectively, S(H1)∨R(H2), S(H1)∨̇R(H2), S(H1)∨̇R(H2)) are simul-
taneously A-cospectral, L-cospectral and L-cospectral.

Proof. Follows from Lemma 3.1 and the above observation. □

4. Spanning Trees and Kirchhoff Indices

Applying the results on Laplacian and normalized Laplacian spectra given in Section
2, we find the number of spanning trees and Kirchhoff index of all the partial join
graphs constructed in the paper.

Let t(G) denote the number of spanning trees of G. It is well known [5] that if G
is a connected graph on n vertices with Laplacian spectrum 0 = µ1(G) ≤ µ2(G) ≤
· · · ≤ µn(G), then t(G) = µ2(G)···µn(G)

n
.

The Kirchhoff index of a graph G, denoted by Kf(G), is defined as the sum of
resistances between all pairs of vertices [1, 10] in G. For a connected graph G on n
vertices, the Kirchhoff index [9] can be expressed as Kf(G) = n

∑n
i=2

1
µi(G) .

Theorem 4.1. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then

(i) t(S(G1)∨̈R(G2)) =
2m1+m2−n1−n2 ·2(2n1+2n2+r1n1+r2n2)·

n1∏
i=2

(2n2+µi(G1))·
n2∏

j=2
(2n1+3µj(G2))

n1+n2+m1+m2
;

(ii)
t(S(G1)∨R(G2)) =(2 + m2)m1−n1 · (2 + m1)m2−n2

×

(2r1m2+2r2m1+r1r2m1+r1r2m2)·
n1∏
i=2

(r1m2+µi(G1))·
n2∏

j=2
(r2m1+3µj (G2)+m1µj (G2))

n1+n2+m1+m2
;

(iii)

t(S(G1)∨̇R(G2)) =(2 + n2)m1−n1 · 2m2−n2

×
(4m1+2r1m1+2r1n2+r1r2n2)·

n1∏
i=2

(r1n2+µi(G1))·
n2∏

j=2
(2m1+3µj (G2))

n1+n2+m1+m2
;
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(iv)

t(S(G1)∨̇R(G2)) =2m1−n1 · (2 + n1)m2−n2

×
(4m2+2r2m2+2r2n1+r1r2n1)·

n1∏
i=2

(2m2+µi(G1))·
n2∏

j=2
(r2n1+3µj (G2)+n1µj (G2))

n1+n2+m1+m2
.

Theorem 4.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and mi

edges. Then
(i)

Kf(S(G1)∨̈R(G2)) =(n1 + n2 + m1 + m2)
m1 + m2 − n1 − n2

2

+ 4 + 4n1 + 4n2 + 2r1 + 2r2 + r1r2 + r1n1 + r2n2

2(2n1 + 2n2 + r1n1 + r2n2)

+
n1∑
i=2

2 + r1 + n2

2n2 + µi(G1)
+

n2∑
j=2

2 + r2 + n1 + µj(G2)
2n1 + 3µj(G2)

;

(ii)

Kf(S(G1)∨R(G2)) =(n1 + n2 + m1 + m2) ×

m1 − n1

2 + m2
+ m2 − n2

2 + m1

+4 + 2r1 + 2r2 + r1r2 + r1m1 + r2m2+2m1 + 2m2 + r1m2 + r2m1
2r1m2 + 2r2m1 + r1r2m1 + r1r2m2

+
n1∑
i=2

2 + r1 + m2

r1m2 + µi(G1)
+

n2∑
j=2

2 + r2 + m1 + µj(G2)
r2m1 + 3µj(G2) + m1µj(G2)

;

(iii)

Kf(S(G1)∨̇R(G2)) =(n1 + n2 + m1 + m2)

×

m1 − n1

2 + n2
+ m2 − n2

2

+ 4 + 2r1 + 2r2 + 4m1 + 2n2 + r1r2 + r1m1 + r1n2 + r2n2

4m1 + 2r1m1 + 2r1n2 + r1r2n2

+
n1∑
i=2

2 + r1 + n2

r1n2 + µi(G1)
+

n2∑
j=2

2 + r2 + m1 + µj(G2)
2m1 + 3µj(G2)

;

(iv)

Kf(S(G1)∨̇R(G2)) =(n1 + n2 + m1 + m2)

×
(

m1 − n1

2 + m2 − n2

2 + n1



CONSTRUCTION OF SIMULTANEOUS COSPECTRAL GRAPHS 963

+4 + 2r1 + 2r2 + 4m2 + 2n1 + r1r2 + r2m2 + r1n1 + r2n1
4m2 + 2r2m2 + 2r2n1 + r1r2n1

+
n1∑
i=2

2 + r1 + m2

2m2 + µi(G1)
+

n2∑
j=2

2 + r2 + n1 + µj(G2)
r2n1 + 3µj(G2) + n1µj(G2)

)
.

5. Concluding remarks

The main result of the paper is based on regular A-cospectral graphs and certain
operations on a pair of these graphs so that the operated (or resultant) graphs are
non-regular and having adjacency, Laplacian and normalized Laplacian spectra which
depend on only the order, size, degree of regularity and spectrum of the original graphs.
Thus one may search for some other graph operations to construct simultaneous
cospectral graphs like in the paper.
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