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A FIXED POINT THEOREM FOR MAPPINGS SATISFYING
CYCLICAL CONTRACTIVE CONDITIONS IN

(3, 2)-W-SYMMETRIZABLE SPACES

TOMI DIMOVSKI1 AND DONČO DIMOVSKI2

Abstract. In this paper we are concerned with (3, 2)-symmetrics and (3, 2)-W-
symmetrizable spaces. First we give the basic definitions, the notation, some exam-
ples and elementary results about these spaces, then we prove the existence of a
fixed point for self mappings satisfying cyclical contractive conditions in (3, 2)-W-
symmetrizable spaces.

1. Introduction

The geometric properties of the metric spaces, their axiomatic classification and
generalizations have been considered in a lot of papers: [1, 5, 11,13–16,18–20].

The notion of an (n, m, ρ)-metric, n > m, as a generalization of the usual notion of
a pseudometric (the case n = 2, m = 1), and the notion of an (n+1)-metric (as in [14]
and [11]) was introduced in [6]. Some connections between the topologies induced by a
(3, 1, ρ)-metric and topologies induced by a pseudo-o-metric, o-metric and symmetric
(as in [19]) are given in [7]. Other characterizations of (3, j, ρ)-metrizable topological
spaces, j ∈ {1, 2} are given in [3, 4, 8, 9].

Fixed points theory plays a basic role in applications of many branches of mathemat-
ics. The Banach fixed point theorem [2] is a very simple and powerful theorem with a
wide range of applications. Several extensions and generalizations of this result have
appeared in the literature. Through the years this theorem has been generalized and
extended by many authors in various ways and directions. In [12] Kirk, Srinivasan
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and Veeramani introduced the notion of cyclical representation and characterized
the Banach’s contraction mapping principle in context of a mapping which satisfy a
cyclical contractive condition.

Here we consider only (3, 2)-W-metrizable spaces. The purpose of this paper is to
prove, using a new type of implicit relation, a fixed point theorem for mappings which
satisfy a cyclical contractive condition.

2. Preliminaries

We give the basic definitions for (3, 2, ρ)-metric spaces and (3, 2)-metric spaces, as
in [3].

Let M ̸= ∅ and M (3) = M3/α, where α is the equivalence relation on M3 defined
by:

(x, y, z)α(u, v, w) ⇔ π(u, v, w) = (x, y, z),
where π is a permutation. We will use the same notation (x, y, z) for the elements
in M (3) keeping in mind that (x, y, z) = (u, v, w) in M (3) if and only if (x, y, z) is a
permutation of (u, v, w).

Let d : M (3) → R+
0 . We state three conditions for such map:

(M0) d(x, x, x) = 0, for any x ∈ M ;
(M1) d(x, y, z) ≤ d(x, a, b) + d(y, a, b) + d(z, a, b), for any x, y, z, a, b ∈ M ;
(Ms) d(x, x, y) = d(x, y, y), for any x, y ∈ M .

Let ρ be a subset of M (3). We consider the following two conditions for such a set:
(E0) (x, x, x) ∈ ρ, for all x ∈ M ;
(E1) (x, a, b), (a, y, b), (a, b, z) ∈ ρ implies (x, y, z) ∈ ρ, for any x, y, z, a, b ∈ M .

Definition 2.1. If ρ satisfies (E0) and (E1), we say that ρ is a (3, 2)-equivalence.

Example 2.1. The set ∆ = {(x, x, x) | x ∈ M} is a (3, 2)-equivalence on M .

Example 2.2. The set ρd = {(x, y, z) | (x, y, z) ∈ M (3), d(x, y, z) = 0}, where d satisfies
(M0) and (M1) is a (3, 2)-equivalence.

Definition 2.2. Let d : M (3) → R+
0 and ρ = ρd are as above.

i) If d satisfies (M0) and (M1), then we say that d is a (3, 2, ρ)-metric on M and
the pair (M, d) is said to be a (3, 2, ρ)-metric space.

ii) If d satisfies (M0),(M1) and (Ms), then we say that d is a (3, 2, ρ)-symmetric
on M , and the pair (M, d) is said to be a (3, 2, ρ)-symmetric space.

If ρ = ∆ = {(x, x, x) | x ∈ M}, then we write (3, 2) instead of (3, 2, ∆).

Example 2.3. Let M be a nonempty set. The map d : M (3) → R+
0 defined by:

d(x, y, z) =
{

0, x = y = z,
1, otherwise,

is a (3, 2)-metric on M (the discrete 3-metric).

Proposition 2.1. If d is a (3, 2, ρ)-metric on M , then
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(i) d(x, x, y) ≤ 2d(x, a, b) + d(y, a, b);
(ii) d(x, x, y) ≤ 2d(x, y, y);

(iii) d(x, x, y) ≤ 2d(x, z, z) + d(y, z, z),
for any x, y, z, a, b ∈ M .

Proof. Follows directly from Definition 2.2. □

Definition 2.3. Let d be a (3, 2, ρ)-metric on M , x, y ∈ M and ϵ > 0. We define the
following ϵ-balls as subsets of M :

i) B(x, y, ϵ) = {z | z ∈ M, d(x, y, z) < ϵ} - with center at (x, y) and radius ϵ;
ii) B(x, ϵ) = {z | z ∈ M , there is a v ∈ M such that d(x, z, v) < ϵ} - with center at

x and radius ϵ.

Proposition 2.2. For any (3, 2, ρ)-metric d on M and for any x ∈ M , ϵ > 0,
B(x, x, ϵ) ⊆ B(x, ϵ).

Proof. Follows directly from the previous definition. □

Definition 2.4. For a (3, 2, ρ)-metric d on M and U ⊆ M , we define the topology
τ(W, d) on M by: U ∈ τ(W, d) if and only if for any x ∈ U , there is an ϵ > 0 such
that B(x, ϵ) ⊆ U .

Definition 2.5. We say that a topological space (M, τ) is (3, 2)-W-metrizable if there
is a (3, 2)-metric d on M such that τ = τ(W, d).

Definition 2.6. We say that a topological space (M, τ) is (3, 2)-W-symmetrizable if
there is a (3, 2)-symmetric d on M such that τ = τ(W, d).

Proposition 2.3. For any (3, 2, ρ)-metric d and any sequence (xn)+∞
n=1, the following

conditions are equivalent:
(C1) d(xn, xm, xp) → 0 as n, m, p → +∞ and
(C2) d(xn, xm, xm) → 0 as n, m → +∞.

Proof. Let d satisfy (C1). For any n, m ∈ N we choose p, q > max {m, n}. By the
previous proposition we obtain

d(xn, xm, xm) ≤ d(xn, xp, xq) + 2d(xm, xp, xq).
Thus, d(xn, xm, xm) → 0, as n, m → +∞.

Let d satisfy the condition (C2). For any n, m, p ∈ N we choose q > max{m, n, p}
and we obtain

d(xn, xm, xp) ≤ d(xn, xq, xq) + d(xm, xq, xq) + d(xp, xq, xq).
Thus, d(xn, xm, xp) → 0 as n, m, p → +∞. □

Definition 2.7. A sequence (xn)+∞
n=1 in (3, 2, ρ)-metric space (M, d) is called (3, 2)-

Cauchy if it satisfies (C1) or (C2).

In the following we use notations and results from [10].
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Definition 2.8 ([10]). We say that a sequence (xn)+∞
n=1 in a (3, 2, ρ)-metric space

(M, d):
(i) 1-converges to x ∈ M if d(x, x, xn) → 0 as n → +∞;

(ii) 2-converges to x ∈ M if d(x, xn, xn) → 0 as n → +∞;
(iii) 3-converges to x ∈ M if d(x, xn, xm) → 0 as n, m → +∞.

Theorem 2.1 ([10]). For any sequence (xn)+∞
n=1 in (3, 2, ρ)-metric space (M, d) the

following conditions are equivalent:
(i) (xn)+∞

n=1 1-converges to x ∈ M ;
(ii) (xn)+∞

n=1 2-converges to x ∈ M ;
(iii) (xn)+∞

n=1 3-converges to x ∈ M .

Definition 2.9. We say that a sequence (xn)+∞
n=1 in a (3, 2, ρ)-metric space (M, d) is

(3, 2)-convergent if it satisfies any of the conditions in the previous theorem.

Lemma 2.1. Let x, y ∈ M and (xn)+∞
n=1, (yn)+∞

n=1 be sequences in M . For any
(3, 2, ρ)-symmetric d on M , if d(xn, x, x) → 0 and d(yn, y, y) → 0 as n → +∞,
then d(xn, y, y) → d(x, y, y) and d(xn, yn, yn) → d(x, y, y) as n → +∞.

Proof. From
d(xn, y, y) = d(xn, xn, y) ≤ 2d(xn, x, x) + d(y, x, x) = 2d(xn, x, x) + d(x, y, y),

we obtain
(2.1) d(xn, y, y) − d(x, y, y) ≤ 2d(xn, x, x).
From d(x, y, y) = d(x, x, y) ≤ 2d(x, xn, xn) + d(y, xn, xn) = 2d(xn, x, x) + d(xn, y, y),
we obtain
(2.2) d(xn, y, y) − d(x, y, y) ≥ −2d(xn, x, x).
From (2.1) and (2.2) it follows that

|d(xn, y, y) − d(x, y, y)| ≤ 2d(xn, x, x),
from where d(xn, y, y) → d(x, y, y) as n → +∞.

From d(xn, yn, yn) = d(xn, xn, yn) ≤ 2d(xn, x, x) + d(yn, x, x) = 2d(xn, x, x) +
d(yn, yn, x) ≤ 2d(xn, x, x) + 2d(yn, y, y) + d(x, y, y) we obtain
(2.3) d(xn, yn, yn) − d(x, y, y) ≤ 2(d(xn, x, x) + d(yn, y, y)).
From d(x, y, y) = d(x, x, y) ≤ 2d(x, xn, xn) + d(y, xn, xn) = 2d(xn, x, x) + d(xn, y, y) ≤
2d(xn, x, x) + 2d(y, yn, yn) + d(xn, yn, yn) we obtain
(2.4) d(xn, yn, yn) − d(x, y, y) ≥ −2(d(xn, x, x) + d(yn, y, y)).
From (2.3) and (2.4) it follows that

|d(xn, yn, yn) − d(x, y, y)| ≤ 2(d(xn, x, x) + d(yn, y, y)),
from where d(xn, yn, yn) → d(x, y, y) as n → +∞. □
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Lemma 2.2. Let (M, τ)-be a (3, 2)-W-metrizable space via (3, 2)-metric d. Let A ⊆
M, x ∈ M and (xn)+∞

n=1 be a sequence in A. If d(xn, x, x) → 0 as n → +∞, then
x ∈ A.

Proof. Let (xn)+∞
n=1 be a sequence in A such that d(xn, x, x) → 0 as n → +∞. Let

U ∈ τ and x ∈ U . Then there is an ϵ > 0 such that B(x, ϵ) ⊆ U . There is an n0 ∈ N
such that for n ≥ n0, xn ∈ B(x, x, ϵ). So, xn ∈ B(x, x, ϵ) ⊆ B(x, ϵ) ⊆ U for n ≥ n0.
Thus, U ∩ A ̸= ∅, i.e., x ∈ A. □

Definition 2.10. Let (M, τ)-be a (3, 2)-W-metrizable space via (3, 2)-metric d. We
say that (M, τ) is (3, 2)-complete if any (3, 2)-Cauchy sequence in M is (3, 2)-convergent
(with respect to the (3, 2)-metric d).

3. Main results

Definition 3.1 ([12]). Let {Ai}p
i=1 be a family of nonempty sets and A = ∪p

i=1Ai.
We say that a mapping f : A → A is p-cyclic if f(Ai) ⊆ Ai+1, i = 1, 2, 3, . . . , p, where
Ap+1 = A1.

Definition 3.2. Let F denote the set of all lower semi-continuous functions F :
(R+)6 → R satisfying the following conditions:

(F1) for all x, y ∈ R+, x < y, F (a, b, c, d, e, x) ≥ F (a, b, c, d, e, y) (non-increasing on
the 6th coordinate);

(F2) there is an h ∈ [0, 1) such that for all u, v ≥ 0, F (u, v, v, u, 0, 2u + v) ≤ 0
implies u ≤ hv;

(F3) F (t, t, 0, 0, t, t) > 0 for t > 0.

Example 3.1. The function F (a, b, c, d, e, f) = a−xb−y max{c, d, e, f}, where x, y ≥ 0
and x + 3y < 1 is an element of F.

(F1) Obviously true.
(F2) Let u, v ≥ 0 and F (u, v, v, u, 0, 2u + v) = u − xv − y max{u, v, 2u + v} ≤ 0.

Then if u > v we obtain that u[1 − (x + 3y)] ≤ 0, which is a contradiction. Hence,
u ≤ v, which implies u ≤ hv, where 0 ≤ h = x + 3y < 1.

(F3) F (t, t, 0, 0, t, t) = t[1 − (x + 3y)] > 0, for all t > 0.

Theorem 3.1. Let (M, τ) be a (3, 2)-complete (3, 2)-W-symmetrizable space via (3, 2)-
symmetric d and {Ai}p

i=1 be a family of nonempty closed subsets of M . Let A = ∪p
i=1Ai

and let f : A → A be a p-cyclic mapping such that for all x ∈ Ai, y ∈ Ai+1,
i = 1, 2, . . . , p and F ∈ F

(3.1) F

(
d(fx, fy, fy), d(x, y, y), d(x, fx, fx),
d(y, fy, fy), d(y, fx, fx), d(x, fy, fy)

)
≤ 0.

Then f has a unique fixed point in ∩p
i=1Ai.

Proof. Let x0 be an arbitrary point of A1. We define xn = fxn−1, n = 1, 2, . . . From
Definition 3.1 and (3.1), for x0 ∈ A1 and x1 ∈ A2, we have xp−1 = fxp−2 ∈ Ap,
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xp = fxp−1 ∈ Ap+1 = A1, xp+1 = fxp ∈ A2 and

F

(
d(fx0, fx1, fx1), d(x0, x1, x1), d(x0, fx0, fx0),
d(x1, fx1, fx1), d(x1, fx0, fx0), d(x0, fx1, fx1)

)
≤ 0,

i.e., F (d(x1, x2, x2), d(x0, x1, x1), d(x0, x1, x1), d(x1, x2, x2), 0, d(x0, x2, x2)) ≤ 0. Since
d is (3, 2)-symmetric, we have
(3.2) d(x0, x2, x2) ≤ d(x0, x1, x1) + 2d(x2, x1, x1) = d(x0, x1, x1) + 2d(x1, x2, x2).
From (3.2) and (F1) we obtain

F

(
d(x1, x2, x2), d(x0, x1, x1), d(x0, x1, x1),

d(x1, x2, x2), 0, d(x0, x1, x1) + 2d(x1, x2, x2)

)
≤ 0.

By (F2) we obtain
d(x1, x2, x2) ≤ hd(x0, x1, x1).

Hence, we have
d(xn, xn+1, xn+1) ≤ hd(xn−1, xn, xn) ≤ · · · ≤ hnd(x0, x1, x1).

Then, for all m, n ∈ N, m > n,
d(xn, xm, xm) ≤ d(xn, xn+1, xn+1) + 2d(xm, xn+1, xn+1)

≤ d(xn, xn+1, xn+1) + 4d(xn+1, xn+2, xn+2) + 2d(xm, xn+2, xn+2)
≤ d(xn, xn+1, xn+1) + 4d(xn+1, xn+2, xn+2)

+ 4d(xn+2, xn+3, xn+3) + 2d(xm, xn+3, xn+3)
≤ d(xn, xn+1, xn+1) + 4d(xn+1, xn+2, xn+2)

+ 4d(xn+2, xn+3, xn+3) + · · · + 4d(xm−1, xm, xm)
≤ 4(hn + hn+1 + · · · + hm−1)d(x0, x1, x1)

≤ 4 hn

1 − h
d(x0, x1, x1).

Thus, d(xn, xm, xm) → 0 as n, m → +∞, i.e., (xn)+∞
n=1 is (3, 2)-Cauchy sequence. Since

(M, τ) is (3, 2)-complete, there is z ∈ M , such that d(xn, z, z) → 0 as n → +∞. Then
the sequences (xnp)+∞

n=0,(xnp+1)+∞
n=0, . . . , (xnp+p−1)+∞

n=0 converge to z. Since xnp+i−1 ∈ Ai,
i = 1, 2, . . . , p, and the family {Ai}p

i=1 is a family of nonempty closed subsets of M ,
by Lemma 2.2 we get z ∈ ∩p

i=1Ai.
Next we will prove that z is a fixed point of f . If we set x = xn and y = z at the

inequality (3.1), we obtain

F

(
d(fxn, fz, fz), d(xn, z, z), d(xn, fxn, fxn),
d(z, fz, fz), d(z, fxn, fxn), d(xn, fz, fz)

)
≤ 0,

i.e.,

(3.3) F

(
d(xn+1, fz, fz), d(xn, z, z), d(xn, xn+1, xn+1),
d(z, fz, fz), d(z, xn+1, xn+1), d(xn, fz, fz)

)
≤ 0.
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It is obvious that d(xn, xn+1, xn+1) → 0 and d(z, xn+1, xn+1) → 0 as n → +∞.
From lemma 2.1 it follows that d(xn+1, fz, fz) → d(z, fz, fz) and d(xn, fz, fz) →
d(z, fz, fz) as n → +∞. If we use all these combined with the fact that F is lower
semi-continuous function, and let n → +∞ in (3.3), we obtain that
(3.4) F (d(z, fz, fz), 0, 0, d(z, fz, fz), 0, d(z, fz, fz)) ≤ 0.

From (3.4) and the condition (F1) we get
F (d(z, fz, fz), 0, 0, d(z, fz, fz), 0, 2d(z, fz, fz)) ≤ 0.

And by (F2) we obtain that d(z, fz, fz) = 0, i.e., fz = z.
Next we will prove the uniqueness of point z. Suppose that there is another fixed

point z′ ∈ ∩p
i=1Ai. If we set x = z and y = z′ at the inequality (3.1), we obtain

F

(
d(fz, fz′, fz′), d(z, z′, z′), d(z, fz, fz),

d(z′, fz′, fz′), d(z′, fz, fz), d(z, fz′, fz′)

)
≤ 0,

i.e.
F (d(z, z′, z′), d(z, z′, z′), 0, 0, d(z′, z, z), d(z, z′, z′)) ≤ 0.

Since d is a (3, 2)-symmetric, d(z′, z, z) = d(z, z′, z′). Hence,
F (d(z, z′, z′), d(z, z′, z′), 0, 0, d(z, z′, z′), d(z, z′, z′)) ≤ 0.

From (F3) it follows that d(z, z′, z′) = 0. Thus, z = z′, i.e., z is the unique fixed point
of f such that z′ ∈ ∩p

i=1Ai. □
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