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A NUMERICAL SOLUTION OF A COUPLING SYSTEM OF
CONFORMABLE TIME-DERIVATIVE TWO-DIMENSIONAL

BURGERS’ EQUATIONS

ILHEM MOUS1 AND ABDELHAMID LAOUAR2∗

Abstract. In this paper, we deal with a numerical solution of a coupling system
of fractional conformable time-derivative two-dimensional (2D) BurgersŠ equations.
The presence of both the fractional time derivative and the nonlinear terms in this
system of equations makes solving it more difficult. Firstly, we use the Cole-Hopf
transformation in order to reduce the coupling system of equations to a conformable
time-derivative 2D heat equation for which the numerical solution is calculated by
the explicit and implicit schemes. Secondly, we calculate the numerical solution of
the proposed system by using both the obtained solution of the conformable time-
derivative heat equation and the inverse Cole-Hopf transformation. This approach
shows its efficiency to deal with this class of fractional nonlinear problems. Some
numerical experiments are displayed to consolidate our approach.

1. Introduction

In the last two decades, the fractional derivatives regained an important interest,
and have been widely used in various fields, such as modelling viscoelastic problems,
signal processing, control theory, finance, etc. Thus, many classical mathematical
models have been reformulated into new models with fractional-order derivatives
for their important numerous applications (see [7, 8, 10, 13, 16]). As a result, the
scientists introduced different fractional derivative definitions (see [4,5, 10]): Caputo

Key words and phrases. BurgersŠ equation, Cole-Hopf transformation, conformable time-derivative,
fractional calculus.
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8 I. MOUS AND A. LAOUAR

fractional derivative, Riemann-Liouville fractional derivative, Grünwald–Letnikov frac-
tional derivative and others. We give for example two popular definitions below. For
α ∈ [n− 1, n), the α-derivatives of the function f are given as

(i) Riemann-Liouville definition

Dα
a (f)(t) =

1

Γ(n− α)

dn

dtn

t
∫

a

f(x)

(t− x)α−n+1
dx;

(ii) Caputo definition

Dα
a (f)(t) =

1

Γ(n− α)

t
∫

a

f (n)(x)

(t− x)α−n+1
dx.

All definitions including (i) and (ii) satisfy the property that the fractional derivative is
linear. We cite for example some research works linked with the subject. Tarasov [16]
investigated some properties of the chain rule and Leibniz rule for fractional derivatives.
Khalil et al. [9] introduced a new definition of a fractional derivative and fractional
integral (called also fractional conformable derivative and fractional integral) for which
there are large number of numerous works done (see [1, 4, 5, 9, 17, 18]). Anderson et
al. [4] introduced more precise definition of the conformable derivative motiving by
a proportional-derivative controller. Ortigueira et al. [14] analyzed the definitions of
the Grünwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives. For
instance, Abdeljawad [1] gave conformable versions of the chain rule, integration by
parts, Taylor power series expansions and Laplace transform. In [2], the authors
introduced the fractional conformable semi-group of operators whose generator will
be the fractional derivative of the semigroup at t = 0. In [3] the authors studied the
fractional logistic models in the frame of fractional operator generated by conformable
derivatives. Yavuz et al. [19] introduced the conformable derivative operator in
modelling neuronal dynamics.

In this work, we are interested in studying a coupling system of the fractional
conformable derivative 2D Burgers’ equations which incorporate the interaction be-
tween the nonlinear convection processes and the diffusive viscous processes. Many
works studied the one/two viscous Burgers’ equation (with integer-order derivative)
using the Cole-Hopf transformation [11, 15]. It is known that the Burgers’ equation
has been used as a mathematical model in various areas such as number theory, gas
dynamics, heat conduction, elasticity theory, etc. It has a lot of similarity to the
famous Navier-Stokes equations [6, 12] and has often been used as a simple model
equation for comparing the accuracy of different computational algorithms. How-
ever the inviscid Burgers’ equation lacks one most important property attributed
to turbulence since the solutions do no exhibit chaotic features like sensitivity with
respect to initial conditions. The purpose of the current study focuses in the use of
the Cole-Hopf transformation for this class of the fractional nonlinear problems. So,
we transform with the help of Cole-Hopf transformation the coupling system of the
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conformable time-derivative 2D Burgers’ equations into conformable time-derivative
heat equation. The numerical solution of the latter is obtained by the explicit and
implicit schemes. Therefore, we can easily calculate the solution of the system of the
conformable time-derivative 2D Burgers’ equations via the inverse Cole-Hopf trans-
formation. For illustration, some numerical experiments are displayed to show the
efficiency of this approach.

The paper is organized as follows. Section 2 gives some useful materiel and position
of the problem. Section 3 uses the 2D Cole-Hopf transformation. Section 4 proposes
the calculation of numerical solutions to heat equation by the explicit and implicit
schemes and gives the required solutions for the coupling of 2D Burgers’ equations.
The last section displays the numerical results.

2. Preliminaries and Position of the Problem

Let us recall below a definition and a theorem which summarizes some important
properties.

Definition 2.1 ([5, 9]). Given a function f : [0,∞) → R, then the conformable
fractional derivative of f with order α is defined by:

(2.1) Tα(f)(t) = lim
ε→0

f(t+ εt1−α) − f(t)

ε
,

for all t > 0, α ∈ (0.1). If f is α-differentiable in some (0, a), a > 0, and limt→0+ f (α)(t)
exists, then define

(2.2) f (α)(0) = lim
t→0+

f (α)(t).

Theorem 2.1 ([5, 9]). Let 0 < α ≤ 1 and f, g be α-differentiable at a point t > 0.

Then

1. Tα(af + bg) = aTα(f) + bTα(g) for all a, b ∈ R;

2. Tα(tp) = ptp−α for all p ∈ R;

3. Tα(λ) = 0 for all constant functions f(t) = λ;

4. Tα(fg) = fTα(g) + gTα(f);

5. Tα

(

f

g



= gTα(f)−fTα(g)
g2 ;

6. in addition, if f is differentiable, then Tα(f)(t) = t1−α df

dt
(t).

2.1. Coupling system of the conformable derivatives 2D Burgers’ equations.
Let us consider the following coupling system of 2D Burgers’ equations

(2.3)























∂αu

∂tα
+ u

∂u

∂x
+ v

∂u

∂y
= r

(

∂2u

∂x2
+
∂2u

∂y2

)

,

∂αv

∂tα
+ u

∂v

∂x
+ v

∂v

∂y
= r

(

∂2v

∂x2
+
∂2v

∂y2

)

,

where α ∈ (0, 1), r > 0 the diffusion coefficient, (x, y) ∈ Ω (a rectangular domain),
t > 0 and ∂αu/∂tα, ∂αv/∂tα mean conformable derivatives respectively of the functions
u(x, y, t) and v(x, y, t).
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Subject to the initial conditions

(2.4)







u(x, y, 0) = u0(x, y), for any (x, y) ∈ Ω,

v(x, y, 0) = v0(x, y), for any (x, y) ∈ Ω,

and the boundary conditions

(2.5)

{

u(x, y, t) = f(x, y, t), for any (x, y) ∈ ∂Ω, t > 0,
v(x, y, t) = g(x, y, t), for any (x, y, t) ∈ ∂Ω, t > 0,

where f, g are two given functions.
We need later to use the following potential symmetry condition

(2.6)
∂u

∂y
=
∂v

∂x
.

3. Linearizing System (2.3) by the Cole-Hopf Transformation

Using the property 6 of Theorem 2.1, we can rewrite system (2.3) as follows

(3.1)























t(1−α)∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= r

(

∂2u

∂x2
+
∂2u

∂y2

)

,

t(1−α)∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= r

(

∂2v

∂x2
+
∂2v

∂y2

)

.

The Cole-Hopf transformation is performed in two steps.

First step. Suppose that u = ψx and v = ψy, thus the system (3.1) becomes

(3.2)

{

t(1−α)ψxt + ψxψxx + ψyψxy = r (ψxxx + ψxyy) ,
t(1−α)ψyt + ψxψyx + ψyψyy = r (ψyxx + ψyyy) ,

which can be rewritten as

(3.3)















t(1−α)ψxt +
∂

∂x



1

2
ψ2

x



+
∂

∂x



1

2
ψ2

y



= r (ψxxx + ψxyy) ,

t(1−α)ψyt +
∂

∂y



1

2
ψ2

x



+
∂

∂y



1

2
ψ2

y



= r (ψyxx + ψyyy) .

Integrating respectively the first equation of system (3.3) with respect to x and the
second with respect to y, we obtain

(3.4)















t(1−α)ψt +


1

2
ψ2

x



+


1

2
ψ2

y



= r (ψxx + ψyy) + η1(y, t),

t(1−α)ψt +


1

2
ψ2

x



+


1

2
ψ2

y



= r (ψxx + ψyy) + η2(x, t),

where η1(y, t) and η2(x, t) are arbitrary functions depending respectively of y and x.
Using the condition (2.6), we can combine two equations of system (3.4) and conclude
that ψ satisfies the following equation (see [11])

(3.5) t(1−α)ψt +


1

2
ψ2

x



+


1

2
ψ2

y



= r (ψxx + ψyy) + η(t).
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Second step. Introducing the transformation as ψ = −2r lnϕ, we have

(3.6) u = −2r
ϕx

ϕ
and v = −2r

ϕy

ϕ
.

Both the derivatives of function ψ are

ψt = −2r
ϕt

ϕ
, ψx = −2r

ϕx

ϕ
, ψy = −2r

ϕy

ϕ
,(3.7)

ψxx = −2r
ϕxx

ϕ
+ 2r

ϕ2
x

ϕ2
, ψyy = −2r

ϕyy

ϕ
+ 2r

ϕ2
y

ϕ2
.(3.8)

Inserting the derivatives ψt, ψx and ψy in the left side of (3.5) and the derivatives ψxx

and ψyy in the right side, we obtain

− 2rt(1−α)ϕt

ϕ
+

1

2

(

−2r
ϕx

ϕ

)2

+
1

2

(

−2r
ϕy

ϕ

)2

=r

(

−2r
ϕxx

ϕ
+ 2r

ϕ2
x

ϕ2
− 2r

ϕyy

ϕ
+ 2r

ϕ2
y

ϕ2

)

+ η(t).(3.9)

Equation (3.9) can be reduced to

(3.10)
∂αϕ

∂tα
= r(ϕxx + ϕyy) + ζ(t)ϕ, where ζ(t) =

−η(t)

2r
.

We now state the following theorem in order to show that the calculus of the functions
u(x, y, t) and v(x, y, t) is independent of the function ζ(t).

Theorem 3.1. Let ϕ(x, y, t) be the solution of (3.10), u(x, y, t) and v(x, y, t) are

defined in (3.6), then the solution u and v are independent of ζ(t).

Proof. Let

β(t) =
∫ 1

t1−α
ζ(t)dt,

then

β′(t) =
1

t1−α
ζ(t).

Multiply by e−β(t) the two sides of (3.10), yields

(3.11)
∂αϕ

∂tα
e−β(t) = r(ϕxx + ϕyy)e−β(t) + ζ(t)ϕe−β(t).

By using the property 6 of Theorem 2.1, (3.11) becomes

(3.12) t1−α∂ϕ

∂t
e−β(t) − ζ(t)ϕe−β(t) = r(ϕxx + ϕyy)e−β(t).

Then

(3.13) t1−α ∂

∂t

(

e−β(t)ϕ


= r((e−β(t)ϕ)xx + (e−β(t)ϕ)yy).



12 I. MOUS AND A. LAOUAR

Now, let ψ(x, y, t) = e−β(t)ϕ(x, y, t). Then ψ(x, y, t) satisfies the following 2D heat
equation

(3.14) t1−α∂ψ

∂t
= r(ψxx + ψyy),

which rewrites in other form

(3.15)
∂αψ

∂tα
= r(ψxx + ψyy).

Note that the difference between the solution of (3.10) and (3.15) is the factor e−β(t).
Therefore,

u(x, y, t) =
ϕx

ϕ
=
e−β(t)ϕx

e−β(t)ϕ
=
ψx

ψ
,(3.16)

v(x, y, t) =
ϕy

ϕ
=
e−β(t)ϕy

e−β(t)ϕ
=
ψy

ψ
.(3.17)

It is clear that the solutions u and v are independent of the function ζ(t). □

For simplicity of the present study, we can take for example ζ(t) ≡ 0. Then we get
the diffusion equation

(3.18)
∂αϕ

∂tα
= r(ϕxx + ϕyy).

3.1. Initial and boundary conditions. We now try to determine a new derivation
of the initial and boundary conditions which correspond to (3.18). For the sake of
simplicity, let us take

Ω = [a, b] × [a, b], ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

with

Γ1 = ¶a ≤ x ≤ b, y = a♢, Γ2 = ¶a ≤ x ≤ b, y = b♢,

Γ3 = ¶x = a, a ≤ y ≤ b♢ and Γ4 = ¶x = b, a ≤ y ≤ b♢.

Initial condition (IC). From (3.6), we can rewrite

(3.19)
ϕx

ϕ
=
u(x, y, t)

−2r
.

Integrating the left and right sides of (3.19) with respect to x, we obtain

ln(ϕ) =
−1

2r

∫ x

a
u(s, y, t)ds+ ln(ϕ(a, y, t)).

Then we get

(3.20) ϕ(x, y, t) = ϕ(a, y, t) exp


−1

2r

∫ x

a
u(s, y, t)ds



.
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On the other hand, we rearrange the second term of (3.6) as follows

(3.21)
ϕy

ϕ
=
v(x, y, t)

−2r
.

Integration of the above equation with respect to y, then we obtain

ln(ϕ) =
−1

2r

∫ y

a
u(x, s, t)ds+ ln(ϕ(x, a, t)),

which yields

(3.22) ϕ(x, y, t) = ϕ(x, a, t) exp


−1

2r

∫ y

a
v(x, s, t)ds



.

At x = a, (3.22) gives

(3.23) ϕ(a, y, t) = ϕ(a, a, t) exp


−1

2r

∫ y

a
v(a, s, t)ds



.

Inserting (3.23) into (3.20), yields

(3.24) ϕ(x, y, t) = ϕ(a, a, t) exp


−
1

2r

∫ y

a
v(a, s, t)ds−

1

2r

∫ x

a
u(s, y, t)ds



,

and at t = 0 in (3.24), then the initial condition is written as

(3.25) ϕ(x, y, 0) = ϕ(a, a, 0) exp


−
1

2r

∫ y

a
v(a, s, 0)ds−

1

2r

∫ x

a
u(s, y, 0)ds



.

From (3.6), it is clear that ϕ(a, a, 0) has no effect on the final solution of system (2.3).
In our case, we can consider for example ϕ(a, a, 0) = 1. It yields

(3.26) ϕ0(x, y) = exp


−
1

2r

∫ y

a
v(a, s, 0)ds−

1

2r

∫ x

a
u(s, y, 0)ds



.

Boundary conditions (BC). Using (3.6), the boundary conditions are reduced to

(3.27)















ϕx = −
1

2r
u(x, y, t)ϕ(x, y, t), (x, y, t) ∈ (∂Ω × (0, T )),

ϕy = −
1

2r
v(x, y, t)ϕ(x, y, t), (x, y, t) ∈ (∂Ω × (0, T )).

Therefore, the time-conformable diffusion equation with the initial and Neumann
boundary conditions is given by

(3.28)















































Eq. :
∂αϕ

∂tα
= r(ϕxx + ϕyy),

IC : ϕ0(x, y) = exp


−
1

2r

∫ y
a v(a, s, 0)ds−

1

2r

∫ x
a u(s, y, 0)ds



,

BC :















ϕx = −
1

2r
u(x, y, t)ϕ(x, y, t), (x, y, t) ∈ (∂Ω × (0, T )),

ϕy = −
1

2r
v(x, y, t)ϕ(x, y, t), (x, y, t) ∈ (∂Ω × (0, T )).
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Reformulating problem (3.28) by using the property 6 of Theorem 2.1, it yields

(3.29)















































Eq. : t(1−α)∂ϕ

∂t
= r(ϕxx + ϕyy),

IC : ϕ0(x, y) = exp


−
1

2r

∫ y
a v(a, s, 0)ds−

1

2r

∫ x
a u(s, y, 0)ds



,

BC:















ϕx = −
1

2r
u(x, y, t)ϕ(x, y, t), (x, y, t) ∈ (∂Ω × (0, T )),

ϕy = −
1

2r
v(x, y, t)ϕ(x, y, t), (x, y, t) ∈ (∂Ω × (0, T )).

The solution of the problem (3.29) can be found in [13]. Finally, once the solution of
the problem (3.29) is known, we can easily obtain the solution of the coupled problem
(2.3)-(2.5) via the formula (3.6).

4. Numerical Study of the Problem (3.29)

We discretize the domain Ω by the finite difference method (FDM) into nx each of
length ∆x = (b−a)/nx and into ny each of length ∆y = (b−a)/ny along, respectively
the x-axis and y-axis. We define then the discrete mesh points (xi, yj, tn) by (a +
i∆x, a+ j∆y, n∆t), where i = 0, . . . , nx, j = 0, . . . , ny, n = 0, . . . , T .

4.1. An explicit scheme. By using a simple forward in time and centered in space
discretization at point (xi, yj, tn), the explicit scheme of (3.29) is given by

t(1−α)
n

ϕn+1
i,j − ϕn

i,j

∆t
= r

(

ϕn
i+1,j − 2ϕn

i,j + ϕn
i−1,j

∆x2
+
ϕn

i,j+1 − 2ϕn
i,j + ϕn

i,j−1

∆y2

)

.

For every interior point (xi, yj, tn), with i = 1, . . . , nx− 1, j = 1, . . . , ny − 1, we have

(4.1) ϕn+1
i,j = Aϕn

i,j +B(ϕn
i+1,j + ϕn

i−1,j) + C(ϕn
i,j+1 − ϕn

i,j−1),

where

A =1 −
2r∆t

∆x2 t
(1−α)
n

−
2r∆t

∆y2t
(1−α)
n

,

B =
r∆t

∆x2 t
(1−α)
n

, C =
r∆t

∆y2 t
(1−α)
n

.

Now, let us consider the so-called BC described as

(4.2)



















ϕx(xi, yj, tn) ≃
ϕn

i+1,j − ϕn
i−1,j

2∆x
= −

1

2r
un

i,jϕ
n
i,j,

ϕy(xi, yj, tn) ≃
ϕn

i,j+1 − ϕn
i,j−1

2∆y
= −

1

2r
vn

i,jϕ
n
i,j,

which can be rewritten as

(4.3)















ϕn
i+1,j = ϕn

i−1,j −
∆x

r
un

i,jϕ
n
i,j,

ϕn
i,j+1 = ϕn

i,j−1 −
∆y

r
vn

i,jϕ
n
i,j.
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Thus, we give the details for each discrete side as follows.
On the side Γ1, let j = 0 in (4.3), then we have

(4.4)















ϕn
i+1,0 = ϕn

i−1,0 −
∆x

r
un

i,0ϕ
n
i,0,

ϕn
i,1 = ϕn

i,−1 −
∆y

r
vn

i,0ϕ
n
i,0.

Substituting this constraint into (4.1) at the boundary points, for i = 1, . . . , nx, we
obtain

ϕn+1
i,0 =Aϕn

i,0 +B(ϕn
i+1,0 + ϕn

i−1,0) + C(ϕn
i,1 + ϕn

i,−1)

=Aϕn
i,0 +B

(

2ϕn
i−1,0 −

∆x

r
un

i,0ϕ
n
i,0

)

+ C

(

2ϕn
i,1 −

∆y

r
vn

i,0ϕ
n
i,0

)

.

In same way as previously, we can calculate respectively the expressions both of the
side Γ2 for j = ny, Γ3 for i = 0 and Γ4 for i = nx, for all i = 1, . . . , nx,

(4.5) ϕn+1
i,ny = Aϕn

i,ny +B

(

2ϕn
i−1,ny −

∆x

r
un

i,nyϕ
n
i,ny

)

+ C

(

2ϕn
i,ny−1 −

∆y

r
vn

i,nyϕ
n
i,ny

)

.

And for j = 1, . . . , ny,

ϕn+1
0,j =Aϕn

0,j +B

(

2ϕn
1,j +

∆x

r
un

0,jϕ
n
0,j

)

+ C

(

2ϕn
0,j−1 −

∆y

r
vn

0,jϕ
n
0,j

)

,

ϕn+1
nx,j =Aϕn

nx,j +B

(

2ϕn
nx−1,j −

∆x

r
un

nx,jϕ
n
nx,j

)

+ C

(

2ϕn
nx,j−1 −

∆y

r
vn

nx,jϕ
n
nx,j

)

.

Adding the left-lower corner point (x0, y0), we obtain

ϕn+1
0,0 = Aϕn

0,0 +B

(

2ϕn
1,0 +

∆x

r
un

0,0ϕ
n
0,0

)

+ C

(

2ϕn
0,1 +

∆y

r
vn

0,0ϕ
n
0,0

)

.

4.2. An implicit scheme. By using a simple forward in time and centered in space
(FTCS) discretization at point (xi, yj, tn), the implicit scheme for (3.29) is given by

t1−α
n

ϕn+1
i,j − ϕn

i,j

∆t
= r

(

ϕn+1
i+1,j − 2ϕn+1

i,j + ϕn+1
i−1,j

∆x2
+
ϕn+1

i,j+1 − 2ϕn+1
i,j + ϕn+1

i,j−1

∆y2

)

,

which can rewrite as

(4.6) − α(ϕn+1
i+1,j + ϕn+1

i−1,j) + γϕn+1
i,j − β(ϕn+1

i,j+1 + ϕn+1
i,j−1) = ϕn

i,j,

where

α =
r∆t

∆x2t1−α
n

, β =
r∆t

∆y2t1−α
n

, γ = 1 + 2α+ 2β,

or in matrix form

A.X = B,
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where

A =





















A B 0 · · · 0

C D K 0 · · ·
...

0
. . . . . . . . . 0

... C D K
0 · · · 0 L M





















(nx×ny,nx×ny)

,

Xt = (ϕn+1
0,0 , ϕ

n+1
0,1 , ..., ϕ

n+1
nx,ny) and B = (ϕn

0,0, ϕ
n
0,1, ..., ϕ

n
nx,ny), A, B, C, D, K, L and M

are the submatrices with dimension (nx, ny) and are defined respectively by

A =





















a −2β 0 · · · 0

−2β γ 0 · · ·
...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −2β γ





















, B =





















−2α 0 · · · · · · 0

0 b1 0 · · ·
...

...
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 bn





















,

C =





















−2α 0 · · · · · · 0

0 −α
. . .

...
...

. . . . . . . . .
...

...
. . . −α 0

0 · · · · · · 0 −2α





















, D =





















d1 −2β 0 · · · 0

−β γ −β
. . .

...

0
. . . . . . . . . 0

...
. . . . . . γ −β

0 · · · 0 −2β dny





















,

K =





















0 · · · · · · · · · 0
... −α

. . .
...

...
. . . . . . . . .

...
...

. . . −α
...

0 · · · · · · · · · 0





















, L =





















−2α 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 −2α





















,

M =





















m′ −2β 0 · · · 0

−2β m1 0 · · ·
...

0
. . . m2

. . .
...

...
. . . . . . . . . 0

0 · · · 0 −2β mny





















,

with

a = −
α∆x

r
un

0,0 + γ −
β∆y

r
vn

0,0,

bj = − 2α−
α∆x

r
un

0,j +
β∆y

r
vn

0,j, j = 1, . . . , ny,
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d1 = −
α∆x

r
un

1,0 + γ −
β∆y

r
vn

1,0,

dny = −
α∆x

r
un

nx,ny + γ +
β∆y

r
vn

nx,ny,

m′ =d1, mi = −
α∆x

r
un

i,ny + γ +
β∆y

r
vn

i,ny, for i = 1, . . . , nx.

4.3. Calculating the required solution. The calculation of solution to system
(2.3) can be obtained by the inverse Cole-Hopf transformation.

Let Dxϕ
n
i,j and Dyϕ

n
i,j denote the derivative of ϕ, respectively at point (xi, yj, tn)

with respect to x and y. The Dxϕ
n
i,j and Dyϕ

n
i,j can be calculated from the first order

centered difference formula, for i = 1, . . . , nx− 1, j = 1, . . . , ny − 1,

Dxϕ
n
i,j =

∂ϕ

∂x
≃
ϕn

i+1,j − ϕn
i−1,j

2∆x
,

Dyϕ
n
i,j =

∂ϕ

∂y
≃
ϕn

i,j+1 − ϕn
i,j−1

2∆y
.

Note that the derivatives Dyϕ
n
0,j, Dyϕ

n
nx,j, Dxϕ

n
i,0 and Dxϕ

n
i,ny at the end points are

known. Once the approximated values of ϕ, ϕx and ϕy are known at any discrete
point (xi, yj, tn), then the approximated values of u and v at discrete points can be
calculated from the following discrete version, for i = 1, . . . , nx, j = 1, . . . , ny,

(4.7)























un
i,j = −2r

Dxϕ
n
i,j

ϕn
i,j

,

vn
i,j = −2r

Dyϕ
n
i,j

ϕn
i,j

.

5. Numerical Experiments

For illustration of the proposed method, we will report the accuracy of the method
based on relative error L1-norm and L∞-norm which are defined by:

(5.1) ♣♣Erreuru♣♣L1
=

♣♣ua − un♣♣1
♣♣ua♣♣1

, ♣♣Erreurv♣♣L1
=

♣♣va − vn♣♣1
♣♣va♣♣1

,

and

(5.2) ♣♣Erreuru♣♣L∞
=

♣♣ua − un♣♣∞
♣♣ua♣♣∞

, ♣♣Erreurv♣♣L∞
=

♣♣va − vn♣♣∞
♣♣va♣♣∞

,

where the pair (ua,va) is the analytical solution (5.3) (see [11, page 581]) for the
system (2.3) and the pair (un,vn) is the computed solution (4.7) for system (2.3).

To simulate, we take the following exact solution for system (2.3) in over square
domain Ω = [0, 1] × [0, 1]

(5.3)



















ua(x, y, t) =
3

4
−

1

4[1 + exp((−4xα + 4yα− tα)/32rα)]
,

va(x, y, t) =
3

4
+

1

4[1 + exp((−4xα + 4yα− tα)/32rα)]
.
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Note that the initial and boundary conditions can be taken from the exact solutions.
After computing, we evaluate respectively the relative errors (5.1) and (5.2). We use
then the explicit and implicit schemes for the conformable time-derivative 2D heat
equation and give the convergence of each scheme in the following Table 1 and Table
2.

Table 1. Relative errors L1-norm.

Relative error ♣♣Erreuru♣♣L1
♣♣Erreurv♣♣L1

Scheme Explicit Implicit Explicit Implicit

T=0.1

∆x = ∆y = 0.2 3.30e− 03 3.34e− 03 3.20e− 03 3.22e− 03
∆x = ∆y = 0.1 2.17e− 03 2.17e− 03 1.55e− 03 1.55e− 03
∆x = ∆y = 0.05 1.46e− 03 1.53e− 03 8.19e− 04 8.02e− 04

T=0.5

∆x = ∆y = 0.2 5.60e− 03 5.64e− 03 1.63e− 03 1.58e− 03
∆x = ∆y = 0.1 4.69e− 03 4.56e− 03 1.58e− 03 1.41e− 03
∆x = ∆y = 0.05 4.48e− 03 4.52e− 03 1.46e− 03 1.37e− 03

T=1

∆x = ∆y = 0.2 7.85e− 03 7.90e− 03 1.43e− 03 1.43e− 03
∆x = ∆y = 0.1 7.37e− 03 7.47e− 03 1.37e− 03 1.31e− 03
∆x = ∆y = 0.05 7.26e− 03 7.35e− 03 1.06e− 03 1.29e− 03

We remark that the relative error decreases as time increases in the Table 1.

Figure 1. Graphs represent the tendency of the relative error .

We show through the Figure 1 the tendency of the relative errors. Let’s give in the
Figure 2 the graphs representing the numerical solution for 2D time-fractional heat
equation (3.29) by using various values of α as shown in Table 3.
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Table 2. Relative errors L∞-norm.

Relative error ♣♣Erreuru♣♣L∞
♣♣Erreurv♣♣L∞

Scheme Explicit Implicit Explicit Implicit

T=0.1

∆x = ∆y = 0.2 3.35e− 03 3.34e− 03 3.20e− 03 3.22e− 03
∆x = ∆y = 0.1 2.39e− 03 2.39e− 03 1.70e− 03 1.70e− 03
∆x = ∆y = 0.05 1.52e− 03 1.53e− 03 8.29e− 04 8.29e− 04

T=0.5

∆x = ∆y = 0.2 5.62e− 03 5.64e− 03 1.69e− 03 1.69e− 03
∆x = ∆y = 0.1 4.76e− 03 4.76e− 03 1.57e− 03 1.91e− 03
∆x = ∆y = 0.05 4.62e− 03 4.62e− 03 1.48e− 03 1.87e− 03

T=1

∆x = ∆y = 0.2 7.88e− 03 7.90e− 03 1.68e− 03 1.68e− 03
∆x = ∆y = 0.1 7.47e− 03 7.47e− 03 1.50e− 03 1.51e− 03
∆x = ∆y = 0.05 7.34e− 03 7.35e− 03 1.47e− 03 1.49e− 03

Figure 2. Graphs of the numerical solution for 2D time-fractional heat
equation, for r = 0.5,∆x = ∆y = 0.08 and α = 0.25, 0.75 and 0.92.

Table 3. The numerical solutions ϕ of heat equation.

Values of α α = 0.25 α = 0.75 α = 0.92

x y Numerical solution ϕ Numerical solution ϕ Numerical solution ϕ

0.08 0.72 0.5984 0.5971 0.5969
0.96 0.32 0.3558 0.3550 0.3548
0.48 0.32 0.5339 0.5386 0.5384
0.88 0.64 0.3115 0.3108 0.3107
0.88 0.88 0.268 0.2674 0.2673
0.96 0.96 0.2377 0.2372 0.2371



20 I. MOUS AND A. LAOUAR

In same way, we give the graphs of the exact and numerical solutions in Figure 3 for
the system (2.3).

Figure 3. Graphs of exact and numerical solution for 2D time-
fractional Burgers’ equations, for r = 0.5,∆x = ∆y = 0.08, and α =
0.25, 0.75 and 0.92.

It is clear from the graphs that exact and approximate solutions are similar and
compatible with each other. Tables 4 and 5 give the comparison of numerical and
exact results for varying α = 0.75 and 0.92. It is clear that the approximate solutions
are accurate.
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Table 4. Comparison between of the exact and numerical solutions u
of the system (2.3).

Values of α α = 0.75 α = 0.92

x y Numerical Exact Numerical Exact
solution solution solution solution

0.08 0.72 0.6153 0.6149 0.6153 0.615
0.96 0.32 0.6351 0.6348 0.6352 0.6349
0.48 0.32 0.6278 0.6273 0.6278 0.6274
0.88 0.64 0.629 0.6286 0.629 0.6287
0.88 0.88 0.625 0.6248 0.6252 0.6249
0.96 0.96 0.6246 0.6248 0.6247 0.6249

Table 5. Comparison between of the exact and numerical solutions v
of the system (2.3).

Values of α α = 0.75 α = 0.92

x y Numerical Exact Numerical Exact
solution solution solution solution

0.08 0.72 0.8857 0.8851 0.8857 0.885
0.96 0.32 0.8649 0.8652 0.8648 0.8651
0.48 0.32 0.8733 0.8727 0.8733 0.8726
0.88 0.64 0.8718 0.8714 0.8719 0.8713
0.88 0.88 0.8755 0.8752 0.8757 0.8751
0.96 0.96 0.8754 0.8752 0.8753 0.8751

6. Conclusion

In this study, we considered a coupling system of Burgers’ equations with fractional
conformable derivative in which involves nonlinearity and dissipation, it is relatively
simple in contract with the Navier-Stokes system. It makes suitable model equations
to test different numerical algorithms. For this purpose, we have used the Cole-Hopf
transformation which shows its efficiency to deal with this class of fractional nonlinear
problems. This approach is simple and effective and permits the comparison the
obtained results with exact solution of the problem. In the future, we intend in first
time to study some concrete examples that illustrate if the conformable derivative
is capable or incapable of giving the fractional derivative obtainable from Riemann-
Liouville or Caputo derivatives. In a second time, we want to apply such approach to
other complex problems such as time-space diffusion equation of the type ∂αu/∂tα =
−k(−∆)βu, where the α, β are changed into α(x, t), β(x, t).
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SOME k-FRACTIONAL INTEGRAL INEQUALITIES FOR

p-CONVEX FUNCTIONS

NAILA MEHREEN1 AND MATLOOB ANWAR1

Abstract. In this paper, we use Riemann-Liouville k-fractional and k-fractional
confomable integrals to prove Hermite-Hadamard inequality, an identity and Hermite-
Hadamard type inequality for p-convex functions. Some special cases are also dis-
cussed. Our work is extensions of other related previous results.

1. Introduction

Convex functions have been used to investigate various scientific problems. Many
refinements have been built for convex functions in order to study problems of pure
and applied sciences (see [3, 4, 8, 14–16].)

The Hermite-Hadamard inequality [6, 7] for a convex function F : H → R on an
interval H is defined by

(1.1) F

(

h1 + h2

2

)

≤
1

h2 − h1

∫ h2

h1

F(g)dg ≤
F(h1) + F(h2)

2
,

for all h1, h2 ∈ H with h1 < h2. Due to extensive applicability of Hermite-Hadamard
type inequalities and fractional integrals, number of researchers expand their research
involving generalized fractional integrals for diverse classes of convex functions. For
instance see [12,13,17–19,23,25,26] etc.

Fractional integral inequalities are helpful in estimating the uniqueness of solutions
for specific fractional partial differential equations. These inequalities also ensure
upper and lower bounds for solutions of the fractional boundary value problems. Our

Key words and phrases. Hermite-Hadamard inequality, p-convex function, Riemann-Liouville k-
fractional integrals, k-fractional conformable integrals.
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aim is to prove several Hermite-Hadamard type inequalities for p-convex functions
via Riemann-Liouville k-fractional and k-fractional confomable integrals.

2. Preliminaries

Here we give some basic definitions from the literature. For k ∈ (0, ∞) and h ∈ C,
the k-gamma function is given by (see [1, 21])

Γk(h) = lim
n→∞

n!knnk
h
k

−1

hn,k

in terms of

τn,k =

{

1, n = 0,
τ(τ + k) · · · (τ + (n − 1)k), n ∈ N,

where the integral representaion of Γk(·) is given as:

Γk(β) =
∫

∞

0
tβ−1e−

tk

k dt.

Definition 2.1 ([11]). Let F ∈ L1[h1, h2]. The left and right sided Riemann-Liouville
fractional integrals Jα

h1+F and Jα
h2−

F of order α ∈ C with Re (α) > 0 and h2 > h1 ≥ 0
are defined by

(2.1) Jα
h1+F(g) =

1

Γ(α)

∫ g

h1

(g − t)α−1F(t)dt, g > h1,

and

(2.2) Jα
h2−

F(g) =
1

Γ(α)

∫ h2

g
(t − g)α−1F(t)dt, g < h2,

respectively, where Γ(·) is the Gamma function.

Mubeen and Habibullah [20] defined the following generalized fractional integrals.

Definition 2.2 ([20]). Let F ∈ L1[h1, h2]. The left and right sided Riemann-Liouville
k-fractional integrals Jα

k,h1+F and Jα
k,h2−

F of order α ∈ C and h2 > h1 ≥ 0 are defined
by

(2.3) Jα
k,h1+F(g) =

1

kΓk(α)

∫ g

h1

(g − t)α/k−1F(t)dt, g > h1,

and

(2.4) Jα
k,h2−

F(g) =
1

kΓk(α)

∫ h2

g
(t − g)α/k−1F(t)dt, g < h2,

respectively, with Re (α), k > 0.
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Definition 2.3 ([10]). Let β ∈ C with Re (β) > 0, then the left and right sided
fractional conformable integral operators are characterised as:

β
h1
JαF(g) =

1

Γ(β)

∫ g

h1

(

(g − h1)
α − (t − h1)

α

α

)β−1
F(t)

(t − h1)1−α
dt,(2.5)

βJα
h2
F(g) =

1

Γ(β)

∫ h2

g

(

(h2 − g)α − (h2 − t)α

α

)β−1
F(t)

(h2 − t)1−α
dt,(2.6)

respectively, with α > 0.

Qi et al. [22] defined k-fractional conformable fractional integrals as follows.

Definition 2.4 ([22]). Let β ∈ C with Re (β) > 0, then the left and right sided
k-fractional conformable integrals are characterised as:

β
k,h1

JαF(g) =
1

kΓk(β)

∫ g

h1

(

(g − h1)
α − (t − h1)

α

α

)
β
k

−1
F(t)

(t − h1)1−α
dt,(2.7)

βJα
k,h2

F(g) =
1

kΓk(β)

∫ h2

g

(

(h2 − g)α − (h2 − t)α

α

)
β
k

−1
F(t)

(h2 − t)1−α
dt,(2.8)

respectively, with α, k > 0.

Definition 2.5 ([8]). Consider an interval H ⊂ (0, ∞) and p ∈ R\¶0♢. A function
F : H → R is called p-convex if

(2.9) F
(

[rh
p
1 + (1 − r)hp

2]
1

p

)

≤ rF(h1) + (1 − r)F(h2),

for all h1, h2 ∈ H and r ∈ [0, 1]. If (2.9) is reversed then F is called p-concave.

3. Inequalities for k-Fractional Integrals

First we prove the k-fractional Hadamard’s inequality for p-convex function.

Theorem 3.1. Let F : [h1, h2] ⊂ (0, ∞) → R be a p-convex function such that

F ∈ L1[h1, h2]. Then

(i) for p > 0 we have

F





[

h
p
1 + h

p
2

2

]1/p


 ≤
Γk(α + k)

2(hp
2 − h

p
1)

α
k

[

Jα
k,hp

1
+(F ◦ µ)(hp

2) + Jα
k,hp

2
−

(F ◦ µ)(hp
1)
]

≤
F(h1) + F(h2)

2
,

(3.1)

where µ(g) = g
1

p for all g ∈ [hp
1, h

p
2];
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(ii) for p < 0 we have

F





[

h
p
1 + h

p
2

2

]1/p


 ≤
Γk(α + k)

2(hp
1 − h

p
2)

α
k

[

Jα
k,hp

1
−

(F ◦ µ)(hp
2) + Jα

k,hp
2
+(F ◦ µ)(hp

1)
]

≤
F(h1) + F(h2)

2
,

(3.2)

where µ(g) = g
1

p , g ∈ [hp
2, h

p
1].

Proof. Since F is p-convex on [h1, h2], we get

F





[

up + wp

2



1

p



 ≤
F(u) + F(w)

2
.

Taking up = rh
p
1 + (1 − r)hp

2 and wp = (1 − r)hp
1 + rh

p
2 with r ∈ [0, 1], we get

(3.3) F





[

h
p
1 + h

p
2

2

]
1

p



 ≤
F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

+ F

(

[(1 − r)hp
1 + rh

p
2]

1

p

)

2
.

Multiplying (3.3) by r
α
k

−1 on both sides with r ∈ (0, 1), α > 0, and then integrating
along r over r ∈ [0, 1] and using changes of variable, we obtain

2k

α
F





[

h
p
1 + h

p
2

2

]
1

p





≤
∫ 1

0
r

α
k

−1F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr +
∫ 1

0
r

α
k

−1F

(

[rh
p
2 + (1 − r)hp

1]
1

p

)

dr

=
∫ hp

1

hp
2

(

h
p
2 − w

h
p
2 − h

p
1

)
α
k

−1

(F ◦ µ)(w)
dw

h
p
1 − h

p
2

+
∫ hp

2

hp
1

(

z − h
p
1

h
p
2 − h

p
1

)
α
k

−1

(F ◦ µ)(z)
dz

h
p
2 − h

p
1

=
kΓk(α)

(hp
2 − h

p
1)

α
k

[Jα
k,hp

1
+(F ◦ µ)(hp

2) + Jα
k,hp

2
−

(F ◦ µ)(hp
1)],

that is,

(3.4) F





[

h
p
1 + h

p
2

2

]1/p


 ≤
Γk(α + k)

2(hp
2 − h

p
1)

α
k

[

Jα
k,hp

1
+(F ◦ µ)(hp

2) + Jα
k,hp

2
−

(F ◦ µ)(hp
1)
]

.

This completes the left inequality of (3.1). For the right inequality, we consider

(3.5) F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

+ F

(

[rh
p
2 + (1 − r)hp

1]
1

p

)

≤ [F(h1) + F(h2)] .

Multiplying (3.5) by r
α
k

−1 on both sides with r ∈ (0, 1), α > 0, and then integrating
along r over ∈ [0, 1] and using changes of variable, we obtain

(3.6)
Γk(α + k)

2(hp
2 − h

p
1)

α
k

[

Jα
k,hp

1
+(F ◦ µ)(hp

2) + Jα
k,hp

2
−

(F ◦ µ)(hp
1)
]

≤
F(h1) + F(h2)

2
.
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This completes the second inequality of (3.1). Hence, from (3.4) and (3.6), we get
(3.1).

(ii) The proof is analogous to (i). □

Remark 3.1. In Theorem 3.1
(i) if p = 1, then the inequality (3.1) becomes the inequality (2.1) of Theorem 2.1

in [5];
(ii) if one takes α = k = 1, then the inequality (3.1) becomes the inequality (1.11)

of Theorem 6 in [8];
(iii) if one takes k = p = 1, then the inequality (3.1) becomes the inequality (2.1)

of Theorem 2 in [23];
(iv) if one takes α = k = p = 1, then the inequality (3.1) becomes the inequality

(1.1).

Lemma 3.1. Consider a differentiable mapping F : [h1, h2] → R on (h1, h2) with

h1 < h2. If F′ ∈ L1[h1, h2], then the following equality holds.

(i) For p > 0

F(h1) + F(h2)

2
−

Γk(α + k)

2(hp
2 − h

p
1)

α
k

[

Jα
k,hp

1
+(F ◦ µ)(hp

2) + Jα
k,hp

2
−

(F ◦ µ)(hp
1)
]

(3.7)

=
h

p
2 − h

p
1

2p

∫ 1

0

(

(1 − r)
α
k − r

α
k

)

A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr,

where A
1

p
−1

r = [rh
p
1 + (1 − r)hp

2]
1

p and µ(g) = g
1

p for all g ∈ [hp
1, h

p
2];

(ii) For p < 0

F(h1) + F(h2)

2
−

Γk(α + k)

2(hp
2 − h

p
1)

α
k

[

Jα
k,hp

1
−

(F ◦ µ)(hp
2) + Jα

k,hp
2
+(F ◦ µ)(hp

1)
]

(3.8)

=
h

p
1 − h

p
2

2p

∫ 1

0

(

(1 − r)
α
k − r

α
k

)

B
1

p
−1

r F′

(

[rh
p
2 + (1 − r)hp

1]
1

p

)

dr,

where B
1

p
−1

r = [rh
p
2 + (1 − r)kp

1]
1

p , µ(g) = g
1

p for all g ∈ [hp
2, h

p
1].

Proof. First consider

I =
∫ 1

0

(

(1 − r)
α
k − r

α
k

)

A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr(3.9)

=
[∫ 1

0
(1 − r)

α
k A

1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr



+
[

−
∫ 1

0
r

α
k A

1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr



=I1 + I2.

Integrating by parts, we obtain

I1 =
∫ 1

0
(1 − r)

α
k A

1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr(3.10)
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=
p(1 − r)

α
k

h
p
1 − h

p
2

F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

∣

∣

∣

∣

∣

1

0

+
p

h
p
1 − h

p
2

∫ 1

0

α(1 − r)
α
k

−1

k
F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

=
p

h
p
2 − h

p
1

F(h2) −
αp

k(hp
1 − h

p
2)

∫ hp
1

hp
2

(

h
p
1 − w

h
p
1 − h

p
2

)
α
k

−1
(F ◦ µ)(w)

h
p
1 − h

p
2

dw

=
p

h
p
2 − h

p
1

F(h2) −
pΓk(α + k)

(hp
2 − h

p
1)

α
k

+1
Jα

hp
2
−

(F ◦ µ)(hp
1).

Similarly, we have

I2 = −
∫ 1

0
r

α
k A

1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr(3.11)

= −
pr

α
k

h
p
1 − h

p
2

F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

∣

∣

∣

∣

∣

1

0

+
p

h
p
1 − h

p
2

∫ 1

0

αr
α
k

−1

k
F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

=
p

h
p
2 − h

p
1

F(h1) −
αp

k(hp
2 − h

p
1)

∫ hp
1

hp
2

(

h
p
2 − w

h
p
2 − h

p
1

)
α
k

−1
(F ◦ µ)(w)

h
p
1 − h

p
2

dw

=
p

h
p
2 − h

p
1

F(h1) −
pΓk(α + k)

(hp
2 − h

p
1)

α
k

+1
Jα

hp
1
+(F ◦ µ)(hp

2).

Using (3.10) and (3.11) in (3.9) and then multiplying
hp

2
−hp

1

2p
on both sides, we get

(3.7).
(ii) Proof is analogous to part (i). □

Remark 3.2. In Lemma 3.1
(i) if p = 1, then the identity (3.7) becomes the identity (2.6) of Lemma 2.3 in [5];
(ii) if one takes α = k = 1, then the identity (3.7) becomes the identity (1.12) of

Lemma 3 in [8];
(iii) if one takes k = p = 1, then the identity (3.7) becomes the identity (3.1) of

Lemma 2 in [23];
(iv) if one takes α = k = p = 1, then the identity (3.7) becomes the identity (2.1)

of Lemma 2.1 in [2].

Theorem 3.2. Consider a differentiable mapping F : [h1, h2] → R on (h1, h2) with

h1 < h2 such that F′ ∈ L1[h1, h2]. If ♣F′♣q is p-convex on [h1, h2] with q ≥ 1, then the

following inequality holds:

(i) for p > 1
∣

∣

∣

∣

∣

F(h1) + F(h2)

2
−

Γk(α + k)

2(hp
2 − h

p
1)

α
k

[

Jα
k,hp

1
+(F ◦ µ)(hp

2) + Jα
k,hp

2
−

(F ◦ µ)(hp
1)
]

∣

∣

∣

∣

∣

(3.12)
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≤
k

1

q (hp
2 − h

p
1)

2p
Q

1−
1

q

1

(

♣F′(h1)♣
q + ♣F′(h2)♣

q

α + k

)
1

q

,

where Q1 =
h1−p

2

2 2F1

(

1 − 1
p
, 1; 2; 1 −

hp
1

hp
2

)

;

(ii) for p < 1
∣

∣

∣

∣

∣

F(h1) + F(h2)

2
−

Γk(α + k)

2(hp
1 − h

p
2)

α
k

[

Jα
k,hp

1
−

(F ◦ µ)(hp
2) + Jα

k,hp
2
+(F ◦ µ)(hp

1)
]

∣

∣

∣

∣

∣

(3.13)

≤
k

1

q (hp
1 − h

p
2)

2p
Q

1−
1

q

2

(

♣F′(h1)♣
q + ♣F′(h2)♣

q

α + k

)
1

q

,

where Q2 =
hp−1

2

2 2F1

(

1 − 1
p
, 1; 2; 1 −

hp
2

hp
1

)

.

Proof. Using Lemma 3.1 and p-convexity of ♣F′♣, we get

∣

∣

∣

∣

∣

F(h1) + F(h2)

2
−

Γk(α + k)

2(hp
2 − h

p
1)

α
k

[

Jα
k,hp

1
+(F ◦ µ)(hp

2) + Jα
k,hp

2
−

(F ◦ µ)(hp
1)
]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

h
p
2 − h

p
1

2

∫ 1

0

(

(1 − r)
α
k − r

α
k

)

A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

∣

∣

∣

∣

∣

≤
h

p
2 − h

p
1

2p

(∫ 1

0
A

1

p
−1

r dr

)1−
1

q
(∫ 1

0

(

(1 − r)
α
k + r

α
k

)

∣

∣

∣

∣

F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)∣

∣

∣

∣

q

dr

)

1

q

≤
h

p
2 − h

p
1

2p

(∫ 1

0
A

1

p
−1

r dr

)1−
1

q
(∫ 1

0

(

(1 − r)
α
k + r

α
k

)

[r♣F′(h1)♣
q + (1 − r)♣F′(h2)♣

q] dr

)

1

q

=
h

p
2 − h

p
1

2p

(∫ 1

0
A

1

p
−1

r dr

)1−
1

q

×
(

♣F′(h1)♣
q
∫ 1

0
r
(

(1 − r)
α
k + r

α
k

)

+ ♣F′(h2)♣
q
∫ 1

0
(1 − r)

(

(1 − r)
α
k + r

α
k

)

dr

)

1

q

.

(3.14)

Since
∫ 1

0
A

1

p
−1

r dr =
h

1−p
2

2
2F1

(

1 −
1

p
, 1; 2; 1 −

h
p
1

h
p
2

)

,(3.15)

∫ 1

0
r(1 − r)

α
k dr =

∫ 1

0
(1 − r)r

α
k dr =

k2

(α + k)(α + 2k)
(3.16)

and
∫ 1

0
r

α
k

+1dr =
∫ 1

0
(1 − r)

α
k

+1dr =
k

α + 2k
,(3.17)

by using (3.15)−(3.17) in (3.14), we get (3.12). Hence, theorem is proved.
(ii) Proof is analogous to part (i). □
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By taking p = −1 in Theroem 3.1, Lemma 3.1 and Theorem 3.2, one can get new
results for harminically convex functions via k-fractional integrals.

4. Inequalities for k-Fractional Conformable Integrals

Here our aim is to prove Hadamard’s inequalities for p-convex function via k-
fractional conformable integrals.

Theorem 4.1. Let F : [h1, h2] ⊂ (0, ∞) → R be a p-convex function such that

F ∈ L1[h1, h2].
(i) Then for p > 0 we have

F





[

h
p
1 + h

p
2

2

]1/p


 ≤
αβ/kΓ(β + k)

2(hp
2 − h

p
1)αβ/k

[

β
k,hp

1

Jα(F ◦ µ)(hp
2) + βJα

k,hp
2

(F ◦ µ)(hp
1)
]

(4.1)

≤
F(h1) + F(h2)

2
,

where µ(g) = g
1

p for all g ∈ [hp
1, h

p
2].

(ii) Then for p < 0 we have

F





[

h
p
1 + h

p
2

2

]1/p


 ≤
αβ/kΓ(β + k)

2(hp
1 − h

p
2)αβ/k

[

βJα
k,hp

1

(F ◦ µ)(hp
2) + β

k,hp
2

Jα(F ◦ µ)(hp
1)
]

(4.2)

≤
F(h1) + F(h2)

2
,

where µ(g) = g
1

p , g ∈ [hp
2, h

p
1].

Proof. Since F is p-convex on [h1, h2], we can have

F





[

xp + up

2



1

p



 ≤
F(x) + F(u)

2
.

Taking xp = rh
p
1 + (1 − r)hp

2 and up = (1 − r)hp
1 + rh

p
2 with r ∈ [0, 1], we get

(4.3) F





[

h
p
1 + h

p
2

2

]
1

p



 ≤
F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

+ F

(

[(1 − r)hp
1 + rh

p
2]

1

p

)

2
.

Multiplying (4.3) by
(

1−rα

α

)
β
k

−1
rα−1 on both sides with r ∈ (0, 1), α > 0, and then

integrating along r over r ∈ [0, 1], we obtain

2F





[

h
p
1 + h

p
2

2

]
1

p





∫ 1

0

(

1 − rα

α

)

β
k

−1

rα−1dr(4.4)

≤
∫ 1

0

(

1 − rα

α

)

β
k

−1

rα−1F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr
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+
∫ 1

0

(

1 − rα

α

)

β
k

−1

rα−1F

(

[(1 − r)hp
1 + rh

p
2]

1

p

)

dr

=I1 + I2.

By setting w = rh
p
1 + (1 − r)hp

2, we have

I1 =
∫ 1

0

(

1 − rα

α

)

β
k

−1

rα−1F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr(4.5)

=
∫ hp

1

hp
2







1 −
(

w−hp
2

hp
1
−hp

2

)α

α







β
k

−1
(

w − h
p
2

h
p
1 − h

p
2

)α−1

(F ◦ µ)(w)
dw

h
p
1 − h

p
2

=
1

(hp
2 − h

p
1)

αβ
k

∫ hp
2

hp
1

(

(hp
2 − h

p
1)α − (hp

2 − w)α

α

)
β
k

−1

(hp
2 − w)α−1(F ◦ µ)(w)dw

=
kΓk(β)

(hp
2 − h

p
1)

αβ
k

βJα
k,hp

2

(F ◦ µ)(hp
1).

Similarly, by setting w = rh
p
2 + (1 − r)hp

1, we have

I2 =
∫ 1

0

(

1 − rα

α

)

β
k

−1

rα−1F

(

[(1 − r)hp
1 + rh

p
2]

1

p

)

dr(4.6)

=
∫ hp

2

hp
1







1 −
(

w−hp
1

hp
2
−hp

1

)α

α







β
k

−1
(

w − h
p
1

h
p
2 − h

p
1

)α−1

(F ◦ µ)(w)
dw

h
p
2 − h

p
1

=
1

(hp
2 − h

p
1)

αβ
k

∫ hp
2

hp
1

(

(hp
2 − h

p
1)α − (w − h

p
1)α

α

)
β
k

−1

(w − h
p
1)α−1(F ◦ µ)(w)dw

=
kΓk(β)

(hp
2 − h

p
1)

αβ
k

β
k,hp

1

Jα(F ◦ µ)(hp
2).

Also, we have
∫ 1

0

(

1 − rα

α

)

β
k

−1

rα−1dr =
k

βαβ/k
.

Thus, by putting values of I1 and I2 in (4.4), we get
(4.7)

k

αβ/kβ
F





[

h
p
1 + h

p
2

2

]
1

p



 ≤
kΓk(β)

(hp
2 − h

p
1)αβ/k

[

βJα
k,hp

2

(F ◦ µ)(hp
1) + β

k,hp
1

Jα(F ◦ µ)(hp
2)
]

.

This completes the first inequality of (4.1). For second inequality, we know that

(4.8) F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

+ F

(

[rh
p
2 + (1 − r)hp

1]
1

p

)

≤ [F(h1) + F(h2)] .
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Multiplying (4.8) by
(

1−rα

α

)β/k−1
rα−1 on both sides with r ∈ (0, 1), α > 0, and then

integrating with respect to r on interval [0, 1], we obtain the following inequality

(4.9)
kΓk(β)

(hp
2 − h

p
1)αβ/k

[

βJα
hp

2

(F ◦ µ)(hp
1) + β

hp
1

Jα(F ◦ µ)(hp
2)
]

≤
k

αβ/kβ
(F(h1) + F(h2)).

This completes the second inequality of (4.1). Hence, the proof is completed.
(ii) The proof is parallel to (i). □

Remark 4.1. In Theorem 4.1
(i) if we take k = 1, then we get Thoerem 2.1 in [18];
(ii) by letting p = k = 1, we find Theorem 2.1 in [24];
(iii) by letting p = k = 1 and α = 1, we obtain Theorem 2 in [23];
(iv) by letting p = −1 and k = α = 1, we get Theorem 4 in [9].

Corollary 4.1. With the parallel assumption of Theorem 4.1, if we take p = −1, then

we get the following inequality

F

(

2h1h2

h1 + h2

)

≤
(h1h2)

αβ
k αβ/kΓk(β + k)

2(h2 − h1)
αβ
k

[

βJα
k,1/h1

(F ◦ µ)
(

1

h2

)

+ β
k,1/h2

Jα(F ◦ µ)
(

1

h1

)

(4.10)

≤
F(h1) + F(h2)

2
,

where µ(g) = 1
g
, g ∈

[

1
h2

, 1
h1

]

.

Lemma 4.1. Let F : [h1, h2] ⊂ (0, ∞) → R be a differentiable function on (h1, h2)
with h1 < h2 such that F′ ∈ L1[h1, h2], then we have

(i) for p > 0
(

F(hp
1) + F(hp

2)

2

)

−
Γk(β + k)αβ/k

2(hp
2 − h

p
1)

αβ
k

[

β
k,hp

1

Jα(F ◦ µ)(hp
2) + βJα

k,hp
2

(F ◦ µ)(hp
1)
]

(4.11)

=
(hp

2 − h
p
1)αβ/k

2p

∫ 1

0





(

1 − rα

α

)β/k

−

(

1 − (1 − r)α

α

)β/k




× A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr,

where Ar = [rh
p
1 + (1 − r)hp

2];
(ii) for p < 0

(

F(hp
1) + F(hp

2)

2

)

−
Γk(β + k)αβ/k

2(hp
1 − h

p
2)

αβ
k

[

βJα
k,hp

1

(F ◦ µ)(hp
2) + β

k,hp
2

Jα(F ◦ µ)(hp
1)
]

(4.12)

=
(hp

1 − h
p
2)αβ/k

2p

∫ 1

0





(

1 − rα

α

)β/k

−

(

1 − (1 − r)α

α

)β/k
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× B
1

p
−1

r F′

(

[rh
p
2 + (1 − r)hp

1]
1

p

)

dr,

where Br = [rh
p
2 + (1 − r)hp

1].

Proof. (i) Consider

∫ 1

0





(

1 − rα

α

)β/k

−

(

1 − (1 − r)α

α

)β/k


A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr(4.13)

=
∫ 1

0

(

1 − rα

α

)β/k

A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

−
∫ 1

0

(

1 − (1 − r)α

α

)β/k

A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

=I1 − I2.

Then applying by parts integration, we achieve

I1 =
∫ 1

0

(

1 − rα

α

)β/k

A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr(4.14)

=
(

1 − rα

α

)β/k p

h
p
1 − h

p
2

F

(

[rh
p
1 + (1 − r)hp

2]
1

p

) ∣

∣

∣

∣

1

0

−
p

h
p
2 − h

p
1

∫ 1

0

β

k

(

1 − rα

α

)β/k−1

rα−1F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

=
p

αβ/k(hp
2 − h

p
1)
F(hp

2) −
pβ

(hp
2 − h

p
1)

Γk(β)

(hp
2 − h

p
1)αβ

βJα
hp

2

(F ◦ µ)(hp
1)

=
p

h
p
2 − h

p
1





F(hp
2)

αβ/k
−

Γk(β + k)

(hp
2 − h

p
1)

αβ
k

βJα
k,hp

2

(F ◦ µ)(hp
1)



 .

Similarly,

I2 =
∫ 1

0

(

1 − (1 − r)α

α

)β/k

A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr(4.15)

=

(

1 − (1 − r)α

α

)β/k
p

h
p
1 − h

p
2

F

(

[rh
p
1 + (1 − r)hp

2]
1

p

) ∣

∣

∣

∣

1

0

−
p

h
p
1 − h

p
2

∫ 1

0

β

k

(

1 − (1 − r)α

α

)
β
k

−1

(1 − r)α−1F

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

= −
p

αβ/k(hp
2 − h

p
1)
F(hp

1) +
pβ

h
p
2 − h

p
1

Γk(β)

(hp
2 − h

p
1)

αβ
k

β
hp

1

Jα(F ◦ µ)(hp
2)

= −
p

h
p
2 − h

p
1





F(hp
2)

αβ/k
−

Γk(β + k)

(hp
2 − h

p
1)

αβ
k

β
k,hp

1

Jα(F ◦ µ)(hp
2)



 .
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Here we apply change of variable by taking w = 1 − r. Hence, adding I1, −I2 and

then by multiplying by
αβ/k(hp

2
−hp

1
)

2p
, on both sides, we get (4.11).

(ii) The proof is similar to (i). □

Remark 4.2. In Lemma 4.1
(i) by letting k = 1, then one gets Lemma 2.4 in [18];
(ii) by letting p = k = 1, then one gets Lemma 3.1 in [24];
(iii) by letting p = k = 1 and α = 1, then one gets Lemma 2 in [23].

Theorem 4.2. Let F : [h1, h2] ⊂ (0, ∞) → R be a differentiable function on (h1, h2),
h1 < h2, such that F′ ∈ 1[h1, h2]. If ♣F′♣q, where q ≥ 1, is p-convex, then

(i) for p > 0
∣

∣

∣

∣

∣

∣

(

F(hp
1) + F(hp

2)

2

)

−
Γk(β + k)αβ/k

2(hp
2 − h

p
1)

αβ
k

[

β
k,hp

1

Jα(F ◦ µ)(hp
2) + βJα

k,hp
2

(F ◦ µ)(hp
1)
]

∣

∣

∣

∣

∣

∣

(4.16)

≤
(hp

2 − h
p
1)αβ/k

2p

(

h
1−p
2

2
2F1

(

1 −
1

p
, 1; 2; 1 −

h
p
1

h
p
2

))1−
1

q

×

(

1

α
β
k

+1
B

(

2

α
,
β

k
+ 1

)

[♣F′(h1)♣
q + ♣F′(h2)♣

q]

)q

;

(ii) for p < 0
∣

∣

∣

∣

∣

∣

(

F(hp
1) + F(hp

2)

2

)

−
Γ(β + 1)αβ/k

2(hp
1 − h

p
2)

αβ
k

[

βJα
k,hp

1

(F ◦ µ)(hp
2) + β

k,hp
2

Jα(F ◦ µ)(hp
1)
]

∣

∣

∣

∣

∣

∣

(4.17)

≤
(hp

1 − h
p
2)αβ/k

2p

(

h
1−p
1

2
2F1

(

1 −
1

p
, 1; 2; 1 −

h
p
2

h
p
1

))1−
1

q

×

(

1

α
β
k

+1
B

(

2

α
,
β

k
+ 1

)

[♣F′(h1)♣
q + ♣F′(h2)♣

q]

)q

,

where B and 2F1 are classical Beta and Hypergeometric functions, respectively.

Proof. Applying Lemma 4.1, modulus property, Hölder’s inequality and p-convexity
of ♣F′♣q , we achieve

∣

∣

∣

∣

∣

∣

(

F(hp
1) + F(hp

2)

2

)

−
Γk(β + k)αβ/k

2(hp
2 − h

p
1)

αβ
k

[

β
hp

1

Jα(F ◦ µ)(hp
2) + βJα

hp
2

(F ◦ µ)(hp
1)
]

∣

∣

∣

∣

∣

∣

(4.18)

=
(hp

2 − h
p
1)αβ/k

2p

∣

∣

∣

∣

∣

∣

∫ 1

0





(

1 − rα

α

)β/k

−

(

1 − (1 − r)α

α

)β/k




× A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

dr

∣

∣

∣

∣

∣

∣
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≤
(hp

2 − h
p
1)αβ/k

2p

∣

∣

∣

∣

∣

∣

∫ 1

0





(

1 − rα

α

)β/k

+

(

1 − (1 − r)α

α

)β/k




× A
1

p
−1

r F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)

∣

∣

∣

∣

∣

∣

dr

≤
(hp

2 − h
p
1)αβ/k

2p

(∫ 1

0
A

1

p
−1

r dr

)1−
1

q

×





∫ 1

0





(

1 − rα

α

)β/k

+

(

1 − (1 − r)α

α

)β/k




∣

∣

∣

∣

F′

(

[rh
p
1 + (1 − r)hp

2]
1

p

)∣

∣

∣

∣

q

dr





1/q

≤
(hp

2 − h
p
1)αβ/k

2p

(∫ 1

0
A

1

p
−1

r dr

)1−
1

q

×





∫ 1

0





(

1 − rα

α

)β/k

+

(

1 − (1 − r)α

α

)β/k


 (r♣F′(h1)♣
q + (1 − r)♣F′(h2)♣

q) dr





1/q

=
(hp

2 − h
p
1)αβ/k

2p
ν

1−
1

q



♣F′(h1)♣
q
∫ 1

0



r

(

1 − rα

α

)β/k

+ r

(

1 − (1 − r)α

α

)β/k


 dr

+ ♣F′(h2)♣
q
∫ 1

0



(1 − r)
(

1 − rα

α

)β/k

+ (1 − r)

(

1 − (1 − r)α

α

)β/k


 dr





1/q

,

where

ν =
∫ 1

0
A

1

p
−1

r dr =
h

1−p
2

2
2F1

(

1 −
1

p
, 1; 2; 1 −

h
p
1

h
p
2

)

,

and from changes of variables, x = rα and y = (1 − r)α, we find

∫ 1

0
r

(

1 − rα

α

)β/k

dr =
1

α
β
k

+1
B

(

2

α
,
β

k
+ 1

)

,

∫ 1

0
r

(

1 − (1 − r)α

α

)β/k

dr =
1

α
β
k

+1

[

B

(

1

α
,
β

k
+ 1

)

− B

(

2

α
,
β

k
+ 1

)]

,

∫ 1

0
(1 − r)

(

1 − rα

α

)β/k

dr =
1

α
β
k

+1

[

B

(

1

α
,
β

k
+ 1

)

− B

(

2

α
,
β

k
+ 1

)]

,

∫ 1

0
(1 − r)

(

1 − (1 − r)α

α

)β/k

dr =
1

α
β
k

+1
B

(

2

α
,
β

k
+ 1

)

.

Thus, by using above equalities in (4.18), we obtain the inequality (4.16).
(ii) Proof is similar to (i). □

Remark 4.3. In Theorem 4.2, if we take k = 1, then we get Thoerem 2.6 in [18].
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INTEGRAL TRANSFORMS AND EXTENDED

HERMITE-APOSTOL TYPE FROBENIUS-GENOCCHI

POLYNOMIALS

SHAHID AHMAD WANI1 AND MUMTAZ RIYASAT2

Abstract. The schemata for applications of the integral transforms of mathemat-
ical physics to recurrence relations, differential, integral, integro-differential equa-
tions and in the theory of special functions has been developed. The article aims
to introduce and present operational representations for a new class of extended
Hermite-Apostol type Frobenius-Genocchi polynomials via integral transforms. The
recurrence relations and some identities involving these polynomials are established.
The article concludes by establishing a determinant form and quasi-monomial prop-
erties for the Hermite-Apostol type Frobenius-Genocchi polynomials and for their
extended forms.

1. Introduction and preliminaries

The convolution of two or more polynomials in order to introduce the new multi-
variable generalized polynomials is a topic of research and is useful from the point
of view of applications. These polynomials are important as they possess significant
properties including the recurrence and explicit relations, functional and differential
equations, summation formulae, symmetric and convolution identities, determinant
forms et cetera. The usefulness and potential for applications of various properties
of multi-variable hybrid special polynomials in certain problems of number theory,
combinatorics, classical and numerical analysis, theoretical physics, approximation
theory and other fields of pure and applied mathematics has given motivation for
introducing many new classes of hybrid polynomials.

Key words and phrases. Quasi-monomiality, extended Hermite-Apostol type Frobenius-Genocchi
polynomials, fractional operators, operational rules.
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The properties and applications of the hybrid polynomials lie within the parent
polynomials. The applications of hybrid Legendre polynomials lie in problems dealing
with either gravitational potentials or electrostatic potentials. The hybrid polynomi-
als involving Hermite polynomials occur in quantum mechanical and optical beam
transport problems and in probability theory. The hybrid polynomials related with
truncated-exponential polynomials appear in the theory of flattened beams, which
plays an importance in optics and in super-Gaussian optical resonators and hybrid
polynomials associated with Laguerre polynomials occur in physics problems such as
the electromagnetic wave propagation and quantum beam life-time in storage rings.

Certain new classes of hybrid special polynomials associated with the Appell se-
quences were introduced and studied by Khan et al. [13, 14]. The problems arising
in different areas of science and engineering are usually expressed in terms of differ-
ential equations which in most of the cases have special functions as their solutions.
The differential equations satisfied by the hybrid special polynomials may be used to
express the problems arising in new and emerging areas of sciences.

Various forms of the Apostol type polynomials are the generalizations of the Appell
family [2]. The Appell polynomial sequences appear in different applications in pure
and applied mathematics. These sequences arise in theoretical physics, chemistry
[7, 23] and several branches of mathematics [18] such as the study of polynomial
expansions of analytic functions, number theory and numerical analysis. The typical
examples of Appell polynomial sequences are the Bernoulli, Euler and Genocchi
polynomials. These polynomials play an important role in various expansions and
approximation formulas which are useful both in analytic theory of numbers and in
classical and numerical analysis and can be defined by various methods depending on
the applications.

Several interesting results related to Frobenius type polynomials and their hybrid
forms were obtained by many authors, see [12,17], which are important from applica-
tions point of view. The hybrid class of 3-variable Hermite-Apostol type Frobenius-
Genocchi polynomials was introduced in [5] by considering the discrete convolution of
the Apostol type Frobenius-Genocchi polynomials Hn(x; λ; u) [5] with the 3-variable
Hermite polynomials Hn(x, y, z) [10].

The Apostol type Frobenius-Genocchi polynomials and the 3-variable Hermite
polynomials are defined by

(1.1)



(1 − u)t

λet − u



ext =
∞
∑

n=0

Hn(x; λ; u)
tn

n!
, u, λ ∈ C, u ̸= 1

which for x = 0 gives the Apostol type Frobenius-Euler numbers Hn(u; λ) and

(1.2) ext+yt2+zt3

=
∞
∑

n=0

Hn(x, y, z)
tn

n!
,
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which for z = 0 reduce to the 2-variable Hermite Kampé de Fériet polynomials Hn(x, y)
[3] and for z = 0, x = 2x and y = −1 become the classical Hermite polynomials
Hn(x) [1], respectively.

The 3-variable Hermite-Apostol type Frobenius-Genocchi polynomials [5] are de-
fined by means of the following generating function and series expansion:



(1 − u)t

λet − u



ext+yt2+zt3

=
∞
∑

n=0

HHn(x, y, z; λ; u)
tn

n!
, u, λ ∈ C, u ̸= 1,(1.3)

HHn(x, y, z; λ; u) =n!
n
∑

k=0

[k/3]
∑

r=0

Hn−k(λ; u)zrHk−3r(x, y)

(n − k)!r!(k − 3r)!
.(1.4)

Next, we present certain special cases of HHn(x, y, z; λ; u) in Table 1.

Table 1. Special cases of HHn(x, y, z; λ; u)

S.No. Cases Name of polynomial Generating function

I λ = 1 Hermite Frobenius-
(

(1−u)t

et
−u

)

ext+yt2+zt3

=
∞
∑

n=0

HHn(x, y, z; u) tn

n!

Genocchi polynomials [4]

u = −1, Hermite-Genocchi
(

2t
et+1

)

ext+yt2+zt3

=
∞
∑

n=0

HGn(x, y, z) tn

n!

λ = 1 polynomials [4]

II z = 0 2-variable Hermite-Apostol type
(

(1−u)t

λet
−u

)

ext+yt2

=
∞
∑

n=0

HHn(x, y; u; λ) tn

n!

Frobenius-Genocchi polynomials [5]

z = 0, 2-variable Hermite-Frobenius-
(

(1−u)t

et
−u

)

ext+yt2

=
∞
∑

n=0

HHn(x, y; u) tn

n!

λ = 1 Genocchi polynomials [4]

III x = 2x, Hermite-Apostol type
(

(1−u)t

λet
−u

)

e2xt−t2

=
∞
∑

n=0

HHn(x; λ; u) tn

n!

y = −1, z = 0 Frobenius-Genocchi polynomials [5]

x = 2x, y = −1 Hermite-Frobenius-Genocchi
(

(1−u)t

et
−u

)

e2xt−t2

=
∞
∑

n=0

HHn(x; u) tn

n!

z = 0, λ = 1 polynomials [4]

Fractional calculus is one of the most intensively developing areas of mathematical
analysis. Its fields of application range from biology through physics and electro-
chemistry to economics, probability theory and statistics. Integration to an arbitrary
order named fractional calculus has a long history. The idea of non-integral order of
integration is drawn back to the origin of differential calculus. The Newton’s rival
Leibnitz made some assertions on the meaning and possibility of fractional derivative
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of order 1/2 in the end of 17th century. However, a precise and rigorous research was
first carried out by Liouville. Methods connected with the use of integral transforms
have been successfully applied to the solution of differential and integral equations.
Fractional operators have been attracting the attention of mathematicians and engi-
neers from long time ago [19,24]. The use of integral transforms to deal with fractional
derivatives was originated by Riemann and Liouville [19, 24]. The combined use of
integral transforms and special polynomials provides a powerful tool to deal with
fractional derivatives, see for example [6, 11,15,16].

The possibility of using integral transforms in a wider context was discussed by
Dattoli et al. [11], where by using Euler’s integral:

(1.5) a−ν =
1

Γ(ν)

∫

∞

0
e−attν−1dt, min¶Re(ν), Re(a)♢ > 0,

it was shown that [11]:


α −
∂

∂x



−ν

f(x) =
1

Γ(ν)

∫

∞

0
e−αttν−1 et ∂

∂x f(x)dt(1.6)

=
1

Γ(ν)

∫

∞

0
e−αttν−1 f(x + t)dt,

whereas for the cases involving second order derivatives, it was shown that

(1.7)



α −
∂2

∂x2



−ν

f(x) =
1

Γ(ν)

∫

∞

0
e−αttν−1 et ∂2

∂x2 f(x)dt.

The fractional operators can be treated in an efficient way by combining the prop-
erties of exponential operators and suitable integral representations.

In this article, the extended Hermite-Apostol type Frobenius Genocchi polynomials
are introduced using integral transforms. The recurrence relations and some identities
involving these polynomials are also derived. Finally, the quasi-monomial properties
for the Hermite-Apostol type Frobenius-Genocchi polynomials and for their extended
forms are obtained.

2. Extended Hermite-Apostol Type Frobenius-Genocchi Polynomials

In order to develop extended forms of the Hermite-Apostol type Frobenius-Genocchi
polynomials via Euler’s integral, we first establish the operational connection for the
Hermite-Apostol type Frobenius-Genocchi polynomials.

From generating equation (1.3), we find that the Hermite-Apostol type Frobenius-
Genocchi polynomials are the solutions of the following equations:

∂

∂y
HHn(x, y, z; λ; u) =

∂2

∂x2 HHn(x, y, z; λ; u),

∂

∂z
HHn(x, y, z; λ; u) =

∂3

∂x3 HHn(x, y, z; λ; u),
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under the following initial condition:

(2.1) HHn(x, 0, 0; λ; u) = Hn(x; λ; u),

where Hn(x; λ; u) are the Apostol type Frobenius-Genocchi polynomials [5].
Thus, in view of above equation, it follows that, for the Hermite-Apostol type

Frobenius-Genocchi polynomials the following operational connection holds true:

(2.2) HHn(x, y, z; λ; u) = exp



y
∂2

∂x2
+ z

∂3

∂x3



¶Hn(x; λ; u)♢.

Further by making use of operational rule (2.2) and Euler’s integral, we derive the
operational relation for the polynomials

νHHn(x, y, z; λ; u; α). For this we prove the
following result.

Theorem 2.1. For the extended Hermite-Apostol type Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α), the following operational connection holds true:

(2.3)



α −



y
∂2

∂x2
+ z

∂3

∂x3



−ν

Hn(x; λ; u) =
νHHn(x, y, z; λ; u; α).

Proof. Replacing a by α −


y ∂2

∂x2 + z ∂3

∂x3



in integral (1.5) and then operating the

resultant equation on Hn(x; λ; u), it follows that


α −



y
∂2

∂x2
+ z

∂3

∂x3



−ν

Hn(x; λ; u) =
1

Γ(ν)

∫

∞

0
e−αttν−1 exp



yt
∂2

∂x2
+ zt

∂3

∂x3



× Hn(x; λ; u)dt,(2.4)

which in view of equation (2.2) gives
(2.5)


α −



y
∂2

∂x2
+ z

∂3

∂x3



−ν

Hn(x; λ; u) =
1

Γ(ν)

∫

∞

0
e−αttν−1

HHn(x, yt, zt; λ; u)dt.

The transform on the r.h.s of equation (2.5) defines a new family of polynomials as
the extended Hermite-Apostol type Frobenius-Genocchi polynomials, i.e.,

(2.6)
νHHn(x, y, z; λ; u; α) =

1

Γ(ν)

∫

∞

0
e−αttν−1

HHn(x, yt, zt; λ; u)dt.

Thus, in view of equations (2.5) and (2.6), assertion (2.3) follows. □

Remark 2.1. We know that for λ = 1, the Hermite-Apostol type Frobenius-Genocchi
polynomials HHn(x, y, z; λ; u) [5] reduce to the Hermite-Frobenius-Genocchi polyno-
mials HHn(x, y, z; u) [4]. Therefore, taking λ = 1 in the both sides of equation (2.3),
we find the following operational connection between extended Hermite-Frobenius-
Genocchi polynomials

νHHn(x, y, z; u; α) and the Frobenius-Genocchi polynomials
Hn(x; u) [25]:

(2.7)



α −



y
∂2

∂x2
+ z

∂3

∂x3



−ν

Hn(x; u) =
νHHn(x, y, z; u; α).
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Remark 2.2. For λ = 1 and u = −1, the Hermite-Apostol type Frobenius-Genocchi
polynomials HHn(x, y, z; λ; u) [5] reduce to the Hermite-Genocchi polynomials

HGn(x, y, z) [4]. Therefore, taking λ = 1 and u = −1 in both sides of equation
(2.3), we find the following operational connection between the extended Hermite-
Genocchi polynomials

νHGn(x, y, z; α) and the Genocchi polynomials Gn(x) [21]:

(2.8)



α −



y
∂2

∂x2
+ z

∂3

∂x3



−ν

Gn(x) =
νHGn(x, y, z; α).

Next, we derive the generating function for the extended Hermite-Apostol type
Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α) by proving the following result.

Theorem 2.2. For the extended Hermite-Apostol type Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α), the following generating function holds true:

(2.9)
(1 − u)w exp(xw)

(λew − u) (α − (yw2 + zw3))ν
=

∞
∑

n=0
νHHn(x, y, z; λ; u; α)

wn

n!
.

Proof. Multiplying both sides of equation (2.6) by wn

n!
, then summing it over n and

making use of equation (1.3) in the r.h.s. of the resultant equation, we find
(2.10)

∞
∑

n=0
νHHn(x, y, z; λ; u; α)

wn

n!
=

(1 − u)w exp(xw)

(λew − u) Γ(ν)

∫

∞

0
e

−



α−(yw2+zw3)



t
tν−1dt,

which in view of integral (1.5) yields assertion (2.9). □

Remark 2.3. We know that for λ = 1, the Hermite-Apostol type Frobenius-Genocchi
polynomials HHn(x, y, z; λ; u) [5] reduce to the Hermite-Frobenius-Genocchi polyno-
mials HHn(x, y, z; u) [4]. Therefore, by taking λ = 1 in the both sides of equation
(2.9), we find the following generating for the extended Hermite-Frobenius-Genocchi
polynomials

νHHn(x, y, z; u; α):

(2.11)
(1 − u)w exp(xw)

(ew − u) (α − (yw2 + zw3))ν
=

∞
∑

n=0
νHHn(x, y, z; u; α)

wn

n!
.

Remark 2.4. We know that for λ = 1 and u = −1, the Hermite-Apostol type Frobenius-
Genocchi polynomials HHn(x, y, z; λ; u) [5] reduce to the Hermite-Genocchi polynomi-
als HGn(x, y, z) [4]. Therefore, by taking λ = 1 and u = −1 in both sides of equation
(2.9), we find the following generating function for the extended Hermite-Genocchi
polynomials

νHGn(x, y, z; α):

(2.12)
2w exp(xw)

(ew + 1) (α − (yw2 + zw3))ν
=

∞
∑

n=0
νHGn(x, y, z; α)

wn

n!
.

Now, we derive the recurrence relations for the extended Hermite-Apostol type
Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α) by taking into consideration its
generating relation. A recurrence relation is an equation that recursively defines a
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sequence or multidimensional array of values, once one or more initial terms are given:
each further term of the sequence or array is defined as a function of the preceding
terms.

On differentiating generating function (2.9) with respect to x, y, z and α, we find
the following recurrence relations for the extended Hermite-Apostol type Frobenius-
Genocchi polynomials

νHHn(x, y, z; λ; u; α):

∂

∂x



νHHn(x, y, z; λ; u; α)


= n
νHHn−1(x, y, z; λ; u; α),

∂

∂y



νHHn(x, y, z; λ; u; α)


= ν n(n − 1)
ν+1HHn−2(x, y, z; λ; u; α),

∂

∂z



νHHn(x, y, z; λ; u; α)


= ν n(n − 1)(n − 2)
ν+1HHn−3(x, y, z; λ; u; α),

∂

∂α



νHHn(x, y, z; λ; u; α)


= −ν
ν+1HHn(x, y, z; λ; u; α).(2.13)

In view of the above relations, it follows that

∂

∂y



νHHn(x, y, z; λ; u; α)


= −
∂3

∂x2∂α νHHn(x, y, z; λ; u; α),

∂

∂z



νHHn(x, y, z; λ; u; α)


= −
∂4

∂x3∂α νHHn(x, y, z; λ; u; α).

Theorem 2.3. For the extended Hermite-Apostol type Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α), the following explicit series expansion holds true:

(2.14)
νHHn(x, y, z; λ; u; α) = n!

n
∑

k=0

[k/3]
∑

r=0

Hn−k(λ; u)zrHk−3r(x, yt)(ν)r

αν+r (n − k)!r!(k − 3r)!
.

Proof. Using the series expansion (1.4) in the r.h.s of equation (2.6), we find

νHHn(x, y, z; λ; u; α) =
Γ(ν + r)

Γ(ν)Γ(ν + r)

∫

∞

0
e−αttν+r−1n!(2.15)

×
n
∑

k=0

[k/3]
∑

r=0

Hn−k(λ; u)zrHk−3r(x, yt)

(n − k)!r!(k − 3r)!
dt,

which in view of integral (1.5) yields assertion (2.14). □

In the next section, we establish the determinant form and quasi-monomial proper-
ties for the Hermite-Apostol type Frobenius-Genocchi polynomials HHn(x, y, z; λ; u)
and derive corresponding results for their extended forms.

3. Determinant Approach and Quasi-Monomial Properties

Operational methods can be exploited to simplify the derivation of the properties
associated with ordinary and generalized special functions and to define new families
of special functions. The use of operational techniques in the study of hybrid special
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functions provide explicit solutions for the families of partial differential equations
including those of Heat and d’Alembert type and to frame the hybrid special polyno-
mials within the context of linear algebraic approach. We use the operational rules to
establish the determinant forms for the special cases of the extended Hermite-Apostol
type Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α).
We recall the following operational definition and the generating function of the

extended 3-variable Hermite polynomials from [11]:

νHn(x, y, z; α) =



α −



y
∂2

∂x2
+ z

∂3

∂x3



−ν

xn,(3.1)

(α − (yt2 + zt3))−νext =
∞
∑

n=0

νHn(x, y, z; α)
tn

n!
.(3.2)

Theorem 3.1. For the extended Hermite-Apostol type Frobenius-Genocchi polyno-

mials
νHHn(x, y, z; λ; u; α), the following explicit summation formula in terms of the

generalized Hermite polynomials νHn(x, y, z; α) and Apostol type Frobenius-Genocchi

polynomials Hn(w; λ; u) holds true:

(3.3)

νHHn(x, y, z; λ; u; α) =
n
∑

l=0

n
∑

p=0



n

l



n − l

p



(−w)l
Hp(w; λ; u)νHn−l−p(x, y, z; α).

Proof. We consider the product of generating equations (3.2) and (1.1) such that

(3.4)



(1 − u)t

λet − u



ewt(α − (yt2 + zt3))−νext =
∞
∑

n=0

∞
∑

p=0

Hp(w; λ; u)νHn(x, y, z; α)
tn+p

n! p!
,

which on rearranging the terms yields



(1 − u)t

λet − u



(α − (yt2 + zt3))−νext =
∞
∑

n=0

n
∑

l=0

n
∑

p=0



n

l



n − l

p



(−w)l
Hp(w; λ; u)(3.5)

× νHn−l−p(x, y, z; α)
tn

n!
.

Finally, using generating function (2.9) in the l.h.s. of equation (3.5) and then by
equating the coefficients of like powers of t in the resultant equation, assertion (3.3)
follows. □

Next, by making use of determinant form of Genocchi polynomials [20], we obtained
the determinant form of the extended Hermite-Genocchi polynomials.
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Definition 3.1. The Genocchi polynomials Gn(x) of degree n are defined by [20]

(3.6)

G0(x) = 1,

Gn(x) = (−1)n
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where n = 1, 2, . . .

Now, apply operational rules (3.1) in the r.h.s. and (2.8) in the l.h.s. of determinant
form (3.6) of Genocchi polynomials and after simplification, we find the following
determinant form for the extended Hermite-Genocchi polynomials

νHGn(x, y, z; α):

(3.7)
νHG0(x, y, z; α) = 1,

νHGn(x, y, z; α)
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where n = 1, 2, . . .
The method proposed in this article can be used in combination with the mono-

miality principle as a useful tool in analysing the solutions of a wide class of partial
differential equations often encountered in physical problems. The combination of
monomiality principle along with operational techniques in the case of multi-variable
hybrid special polynomials yields new mechanism of analysis for the solutions of a
large class of partial differential equations usually experienced in physical problems.
The operational methods open new possibilities to deal with the theoretical founda-
tions of special polynomials and also to introduce new families of special polynomials.
The concept of monomiality principle arises from the idea of poweroid suggested
by Steffensen [22]. This idea was reformulated and systematically used by Dattoli
[9]. Ben Cheikh [8] was shown that every polynomial set is quasi-monomial and the
properties of a given polynomial set may be deduced from the quasi-monomiality.
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In order to frame the polynomials HHn(x, y, z; λ; u) within the context of monomi-
ality principle, the following result is proved.

Theorem 3.2. The Hermite-Apostol type Frobenius-Genocchi polynomials

HHn(x, y, z; λ; u) are quasi-monomial with respect to the following multiplicative and

derivative operators:

(3.8) M̂HH = x + 2y∂x + 3z∂2
x −

λe∂x(1 − ∂x) − u

λe∂x − u

and

(3.9) P̂HH = ∂x, ∂x :=
∂

∂x
,

respectively.

Proof. Differentiating equation (1.3) partially with respect to t, it follows that

(3.10)



x + 2yt + 3zt2 −
λet(1 − t) − u

λet − u



(1 − u)t

λet − u



=
∞
∑

n=0

HHn+1(x, y, z; λ; u)
tn

n!
.

Now, using identity

(3.11) ∂x¶HHn(x, y, z; λ; u)♢ = t¶HHn(x, y, z; λ; u)♢

and generating equation (1.3) in the l.h.s of equation (3.10), it follows that


x + 2y∂x + 3z∂2
x −

λe∂x(1 − ∂x) − u

λe∂x − u



∞
∑

n=0

HHn(x, y, z; λ; u)(3.12)

=
∞
∑

n=0

HHn+1(x, y, z; λ; u),

which in view of monomiality principle equation M̂¶pn(x)♢ = pn+1(x) and then
equating the coefficients of same powers of t in both sides yields assertion (3.8).

Again, in view of generating function (1.3) and identity (3.11), it follows that

(3.13) ∂x







∞
∑

n=0

HHn(x, y, z; λ; u)
tn

n!







=
∞
∑

n=1

HHn−1(x, y, z; λ; u)
tn

(n − 1)!
.

Rearranging the terms in above equation and using monomiality principle equation
P̂¶pn(x)♢ = n pn−1(x) and then by equating the coefficients of same powers of t in
both sides of the resultant equation, assertion (3.9) follows. □

Remark 3.1. By making use of expressions (3.8) and (3.9) in relation P̂¶pn(x)♢ =
n pn−1(x), we find that the following differential equation for the Hermite-Apostol
type Frobenius-Genocchi polynomials HHn(x, y, z; λ; u) holds true:

(3.14)



x∂x + 2y∂2
x + 3z∂3

x −
λe∂x(1 − ∂x) − u

λe∂x − u
∂x − n



HHn(x, y, z; λ; u) = 0.
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Next, with the use of integral transforms, we show that the extended Hermite-
Apostol type Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α) are quasi-mono-
mial.

Consider the operation (Θ): replacement of y by yt and z by zt, multiplication by
1

Γ(ν)
e−attν−1 and then integration with respect to t from t = 0 to t = ∞.

Operating (Θ) on equations (3.8) and (3.9) and then using equation (2.15) and

further in view of recurrence relations M̂¶pn(x)♢ = pn+1(x) and P̂¶pn(x)♢ = npn−1(x),
we find that the extended Hermite-Apostol type Frobenius-Genocchi polynomials

νHHn(x, y, z; λ; u; α) are quasi-monomial with respect to the following multiplicative
and derivative operators:

(3.15) M̂νHH = x + 2y∂x∂α + 3z∂2
x∂α −

λe∂x(1 − ∂x) − u

λe∂x − u

and

(3.16) P̂νHH = ∂x,

respectively.

Further, use of equations (3.15) and (3.16) in relation P̂¶pn(x)♢ = npn−1(x) yields
the following differential equation for the extended Hermite-Apostol type Frobenius-
Genocchi polynomials

νHHn(x, y, z; λ; u; α):
(3.17)



x∂x + 2y∂2
x∂α + 3z∂3

x∂α −
λe∂x(1 − ∂x) − u

λe∂x − u
∂x − n



νHHn(x, y, z; λ; u; α) = 0.

The combined use of integral transforms and special polynomials provides a powerful
tool to deal with fractional operators. To bolster the contention of using this approach,
the extended form of hybrid type polynomials are introduced. The generating function
and recurrence relations for the extended hybrid polynomials are derived here. These
results may be useful in the investigation of other useful properties of these polynomials
and may have applications in physics.
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ON GRADED 2-ABSORBING SECOND SUBMODULES OF

GRADED MODULES OVER GRADED COMMUTATIVE RINGS

KHALDOUN AL-ZOUBI1 AND MARIAM AL-AZAIZEH2

Abstract. In this paper, we introduce the concepts of graded 2-absorbing second
and graded strongly 2-absorbing second submodules. A number of results concerning
these classes of graded submodules are given.

1. Introduction and Preliminaries

Throughout this paper all rings are commutative, with identity and all modules are
unitary.

Let G be a group with identity e and R be a commutative ring with identity
1R. Then R is a G-graded ring if there exist additive subgroups Rg of R such that
R =

⊕
g∈G Rg and RgRh ⊆ Rgh for all g, h ∈ G. The elements of Rg are called to be

homogeneous of degree g where the Rg’s are additive subgroups of R indexed by the
elements g ∈ G. If x ∈ R, then x can be written uniquely as

∑
g∈G xg, where xg is the

component of x in Rg. Moreover, h(R) =
⋃

g∈G Rg. Let I be an ideal of R. Then I is
called a graded ideal of (R, G) if I =

⊕
g∈G(I

⋂
Rg). Thus, if x ∈ I, then x =

∑
g∈G xg

with xg ∈ I (see [19]).
Let R be a G-graded ring and M an R-module. We say that M is a G-graded

R-module (or graded R-module) if there exists a family of subgroups ¶Mg♢
g∈G

of M
such that M =

⊕

g∈G

Mg (as abelian groups) and RgMh ⊆ Mgh for all g, h ∈ G. Here,

RgMh denotes the additive subgroup of M consisting of all finite sums of elements
rgsh with rg ∈ Rg and sh ∈ Mh. Also, we write h(M) =

⋃

g∈G

Mg and the elements of

Key words and phrases. Completely graded irreducible submodule, graded 2-absorbing second
submodule, graded strongly 2-absorbing second submodule.
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h(M) are called to be homogeneous. Let M =
⊕

g∈G

Mg be a graded R-module and N

a submodule of M . Then N is called a graded submodule of M if N =
⊕

g∈G

Ng where

Ng = N ∩ Mg for g ∈ G. In this case, Ng is called the g-component of N (see [19]).
For more details, one can refer to [16,20,21].

Let R be a G-graded ring, M a graded R-module and N a graded submodule of
M . Then (N :R M) is defined as (N :R M) = ¶r ∈ R ♣ rM ⊆ N♢. It is shown in
[11, Lemma 2.1] that if N is a graded submodule of M , then (N :R M) = ¶r ∈ R ♣
rN ⊆ M♢ is a graded ideal of R. The annihilator of M is defined as (0 :R M) and is
denoted by AnnR(M).

The notion of graded prime ideals was introduced in [24] and studied in [12,23,25].
A proper graded ideal P of R is said to be a graded prime ideal if whenever rs ∈ P ,
we have r ∈ P or s ∈ P, where r, s ∈ h(R).

S. E. Atani in [11] extended graded prime ideals to graded prime submodules. A
proper graded submodule P of M is said to be a graded prime submodule if whenever
r ∈ h(R) and m ∈ h(M) with rm ∈ P , then either r ∈ (P :R M) or m ∈ P .
Several authors investigated properties of graded prime submodules, for examples see
[3, 6, 7, 15,22].

The notion of graded 2-absorbing ideals as a generalization of graded prime ideals
was introduced and studied in [4, 18]. A proper graded ideal I of R is said to be a

graded 2-absorbing ideal of R if whenever r, s, t ∈ h(R) with rst ∈ I, then rs ∈ I or
rt ∈ I or st ∈ I.

K.Al-Zoubi and R.Abu-Dawwas in [2] extended graded 2-absorbing ideals to graded
2-absorbing submodules. A proper graded submodule N of M is said to be a graded

2-absorbing submodule of M if whenever r, s ∈ h(R) and m ∈ h(M) with rsm ∈ N ,
then either rs ∈ (N :R M) or rm ∈ N or sm ∈ N.

The notion of graded second submodules was introduced in [9] and studied in
[1, 10, 14]. A non-zero graded submodule N of M is said to be a graded second

(gr-second) if for each homogeneous element r of R, the endomorphism of N given
by multiplication by r is either surjective or zero. Recently, H. Ansari-Toroghy and
F. Farshadifar, in [8] studied 2-absorbing second and strongly 2-absorbing second
submodules.

The scope of this paper is devoted to the theory of graded modules over graded
commutative rings. One use of rings and modules with gradings is in describing
certain topics in algebraic geometry. Here, we introduced the concepts of graded
2-absorbing second and graded strongly 2-absorbing second submodules, investigate
some properties of these graded submodules and give some characterizations of them.

2. Graded 2-Absorbing Second Submodules

Definition 2.1. Let R be a G-graded ring and M a graded R-module. A proper
graded submodule C of M is said to be a completely graded irreducible if C = ∩α∈∆Cα,
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where ¶Cα♢α∈∆ is a family of graded submodules of M , implies that C = Cβ for some
β ∈ ∆.

Lemma 2.1. Let R be a G-graded ring, M a graded R-module and N a proper graded

submodule of M . If m ∈ h(M) − N, then there exists a completely graded irreducible

submodule C of M such that N ⊆ C and m /∈ C.

Proof. Let m ∈ h(M) − N and Λ be the set of all graded submodules of M that
contains N and not containing m. Then Λ ̸= ∅, since N ∈ Λ. Order Λ by inclusion,
i.e. for K, L ∈ Λ then K ≤ L if K ⊆ L. Clearly, (Λ, ≤) is a partially ordered set. Let
¶Cα♢α∈Ω be any chain in Λ. It is clear that ∪α∈ΩCα is an upper bound of ¶Cα♢α∈Ω in
Λ. Thus, by Zorn’s Lemma, Λ contains a maximal element C. We claim that C is a
completely graded irreducible submodule of M. Let ¶Lβ♢β∈∆ be a family of graded
submodules of M such that C = ∩β∈∆Lβ. Suppose to the contrary that C ≠ Lβ for
all β ∈ ∆. Then each Lβ contain m, it follows that m ∈ ∩β∈∆Lβ = C, which is a
contradiction. □

Lemma 2.2. Let R be a G-graded ring, M a graded R-module and K, L be two

proper graded submodules of M . Then K ⊆ L if and only if every completely graded

irreducible submodule containing L, also contains K.

Proof. (⇒) is clear.
(⇐) Assume that every completely graded irreducible submodule of M containing

L, also contains K. Suppose to the contrary that K ⊈ L. Since K is generated by
K ∩ h(M), there exists k ∈ K ∩ h(M) − L. By Lemma 2.1, there exists a completely
graded irreducible submodule C of M such that L ⊆ C and k /∈ C. This implies that
K ⊈ C, which is a contradiction. □

Theorem 2.1. Let R be a G-graded ring and M a graded R-module. Then every

proper graded submodule of M is the intersection of all completely graded irreducible

submodules containing it.

Proof. Let K be a proper graded submodule of M and ¶Cβ♢β∈∆ be the set of all
completely graded irreducible submodules containing K. It is clear that K ⊆

⋂

β∈∆

Cβ.

If k =
∑

g∈G kg /∈ K, then there exists h ∈ G such that kh /∈
⋂

β∈∆

Cβ. By Lemma

2.1, there exists a completely graded irreducible submodule C such that K ⊆ C and
kh /∈ C. Hence C = Cα for some α ∈ ∆, it follows that kh /∈

⋂

β∈∆

Cβ. So, k /∈
⋂

β∈∆

Cβ.

Consequently,
⋂

β∈∆

Cβ ⊆ K. □

Definition 2.2. Let R be a G-graded ring and M a graded R-module. A non-zero
graded submodule S of M is said to be a graded 2-absorbing second submodule of M
if whenever r, t ∈ h(R), C is a completely graded irreducible submodule of M and
rtS ⊆ C, then rS ⊆ C or tS ⊆ C or rt ∈ AnnR(S).
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Let R be a G-graded ring. The graded radical of a graded ideal I, denoted by
Gr(I), is the set of all x =

∑
g∈G xg ∈ R such that for each g ∈ G there exists ng > 0

with xng
g ∈ I. Note that, if r is a homogeneous element, then r ∈ Gr(I) if and only if

rn ∈ I for some n ∈ N (see [23]).
Let M be a non-zero graded R-module. Then M is said to be a graded secondary if

for each homogeneous element r of R, the endomorphism of M given by multiplication
by r is either surjective or nilpotent. This implies that Gr(AnnR(M)) = P is a graded
prime ideal of R. For convenience, a graded submodule of M which is graded secondary,
is called a graded secondary submodule of M (see [13]).

Lemma 2.3. Let R be a G-graded ring and M a graded R-module of M.

(i) If S is a graded second submodule of M and rS ⊆ K, where r ∈ h(R) and K is

a graded submodule of M , then either rS = 0 or S ⊆ K.
(ii) If S is a graded secondary submodule of M and rS ⊆ K, where r ∈ h(R) and K

is a graded submodule of M , then either rnS = 0 for some n ∈ N or S ⊆ K.

Proof. Straightforward. □

Theorem 2.2. Let R be a G-graded ring and M a graded R-module. Then the

following hold.

(i) If either S is a graded second submodule of M or S is a sum of two graded second

submodules of M , then S is a graded 2-absorbing second submodule.

(ii) If S is a graded secondary submodule of M and R/AnnR(S) has no non-zero

nilpotent homogeneous element, then S is a graded 2-absorbing second submodule.

Proof. (i) Assume that S is a graded second submodule of M . Let r, t ∈ h(R) and
C be a completely graded irreducible submodule of M with rtS ⊆ C. By Lemma
2.3 (i), either rtS = 0 or S ⊆ C. Thus S is a graded 2-absorbing second submodule.
Now assume that S = S1 + S2, where S1 and S2 are graded second submodules of
M . Let r, t ∈ h(R) and C be a completely graded irreducible submodule of M with
rtS ⊆ C. Since S1 is a graded second submodule, by Lemma 2.3 (i), we have either
rtS1 = 0 or S1 ⊆ C. Similarly, we have rtS2 = 0 or S2 ⊆ C. If rtS1 = 0 and rtS2 = 0,
then rt ∈ Ann(S1 + S2), we are done. If S1 ⊆ C and S2 ⊆ C, then we are done.
Assume that rtS1 = 0 and S2 ⊆ L. Then rt ∈ AnnR(S1). By [9, Proposition 3.15],
AnnR(S1) is a graded prime ideal. This yields that r ∈ AnnR(S1) or t ∈ AnnR(S1).
If r ∈ AnnR(S1), then r(S1 + S2) ⊆ rS1 + S2 ⊆ S2 ⊆ C. Similarly, If t ∈ AnnR(S1),
we get t(S1 + S2) ⊆ C. Also if rtS2 = 0 and S1 ⊆ C, we get either r(S1 + S2) ⊆ C
or t(S1 + S2) ⊆ C. Therefore S is a graded 2-absorbing second submodule.

(ii) Since C is a graded secondary submodule of M, Gr(AnnR(C)) is a graded prime
ideal. This yields that AnnR(C) is a graded prime ideal because R/AnnR(C) has no
non-zero nilpotent homogeneous element. By [10, Proposition 2.3 (i)], we have C is a
graded second submodule and hence C is a graded 2-absorbing second submodule by
part (i). □
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Lemma 2.4. Let R be a G-graded ring, M a graded R-module and S a graded 2-

absorbing second submodule of M . Let I =
⊕

g∈G Ig be a graded ideal of R. If r ∈ h(R),
g ∈ G and C is a completely graded irreducible submodule of M with IgrS ⊆ C, then

either rS ⊆ C or IgS ⊆ C or Igr ⊆ AnnR(S).

Proof. Assume that r ∈ h(R), g ∈ G and C is a completely graded irreducible
submodule of M such that IgrS ⊆ C, rS ⊈ C and Igr ⊈ AnnR(S). We have to show
that IgS ⊆ C. Assume that ig ∈ Ig. By assumption there exists i′

g ∈ Ig such that

ri′

gS ̸= 0. Since S is a graded 2-absorbing second submodule of M , ri′

gS ⊆ C, rS ⊈ C
and ri′

g /∈ AnnR(S), we get i′

gS ⊆ C. By (ig + i′

g) ∈ Ig it follows that (ig + i′

g)rS ⊆ C.
Then either (ig +i′

g)S ⊆ C or (ig +i′

g)r ∈ AnnR(S) as S is a graded 2-absorbing second
submodule of M. If (ig + i′

g)S ⊆ C, then we get igS ⊆ C. If (ig + i′

g)r ∈ AnnR(S), then
igr /∈ AnnR(S). Since S is a graded 2-absorbing second, igrS ⊆ C, igr /∈ AnnR(S)
and rS ⊈ C, we get igS ⊆ C. Therefore, IgS ⊆ C. □

Theorem 2.3. Let R be a G-graded ring, M a graded R-module and S a non-zero

graded submodule of M . Let I =
⊕

g∈G Ig, J =
⊕

g∈G Jg be a graded ideals of R. Then

the following statement are equivalent.

(i) S is a graded 2-absorbing second submodule of M .

(ii) If C is a completely graded irreducible submodule of M and g, h ∈ G with

IgJhS ⊆ C, then either IgS ⊆ C or JhS ⊆ C or IgJh ⊆ AnnR(S).

Proof. (i)⇒(ii) Assume that S is a graded 2-absorbing second submodule of M.
Let C be a completely graded irreducible submodule of M and g, h ∈ G such that
IgJhS ⊆ C, IgS ⊈ C and JhS ⊈ C. We show that IgJh ⊆ AnnR(S). Assume that
ig ∈ Ig and jh ∈ Jh. By assumption there exists i′

g ∈ Ig such that i′

gS ⊈ L. Since

i′

gJhS ⊆ C, JhS ⊈ C and i′

gS ⊈ C, by Lemma 2.4 we get i′

gJh ⊆ AnnR(S) and hence

(Ig\(C :R S))Jh ⊆ AnnR(S). Similarly there exists j′

h ∈ Jh and j′

hS ⊈ C such that
j′

hIg ⊆ AnnR(S) and also (Jh\(C :R S))Ig ⊆ AnnR(S). Thus we have i′

gj′

h ∈ AnnR(S),
i′

gjh ∈ AnnR(S) and igj′

h ∈ AnnR(S). By (ig + i′

g) ∈ Ig and (jh + j′

h) ∈ Jh it follows
that (ig + i′

g)(jh + j′

h)S ⊆ C. Since S is a graded 2-absorbing second, we get either
(ig + i′

g)S ⊆ C or (jh + j′

h)S ⊆ C or (ig + i′

g)(jh + j′

h) ∈ AnnR(S). If (ig + i′

g)S =

igS + i′

gS ⊆ C, then igS ⊈ C. So ig ∈ Ig\(C :R S) it follows that igjh ∈ AnnR(S).
Similarly by (jh + j′

h)S ⊆ C we get igjh ∈ AnnR(S). If (ig + i′

g)(jh + j′

h) ∈ AnnR(S),
then igjh+igj′

h+i′

gjh+i′

gj′

h ∈ AnnR(S) and so igjh ∈ AnnR(S). Thus IgJh ⊆ AnnR(S).
(ii)⇒ (i) Assume that (ii) holds. Let rg, th, ∈ h(R) and C be a completely graded

irreducible submodule of M with rgthS ⊆ C. Let I = rgR and J = thR be a graded
ideals of R generated by rg and th, respectively. Then IgJhS ⊆ C. By our assumption
we obtain IgS ⊆ C or JhS ⊆ C or IgJh ⊆ AnnR(S). Hence rgS ⊆ C or thS ⊆ C or
rgth ∈ AnnR(S). Therefore, S is a graded 2-absorbing second submodule of M. □

Theorem 2.4. Let R be a G-graded ring, M a graded R-module and S a graded

2-absorbing second submodule of M . Then we have the following.
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(i) If AnnR(S) is a graded prime ideal of R, then (C :R S) is a graded prime ideal

of R for all completely graded irreducible submodule C of M such that S ⊈ C.
(ii) If Gr(AnnR(S)) = P for some graded prime ideal P of R, then Gr((C :R S))

is a graded prime ideal of R containing P for all completely graded irreducible

submodule C of M such that S ⊈ C.

Proof. (i) Let r, t ∈ h(R), C be a completely graded irreducible submodule of M such
that S ⊈ C and rt ∈ (C :R S). So rtS ⊆ C. Since S is a graded 2-absorbing second
submodule, we have rS ⊆ C or tS ⊆ C or rt ∈ AnnR(S). If rS ⊆ C or tS ⊆ C, then
we are done. If rt ∈ AnnR(S), then r ∈ AnnR(S) or t ∈ AnnR(S) because AnnR(S)
is a graded prime ideal of R. This yields that r ∈ (C :R S) or t ∈ (C :R S). Thus
(C :R S) is a graded prime ideal of R.

(ii) Let r, t ∈ h(R) and rt ∈ Gr((C :R S)). Then (rt)n ∈ (C :R S) for some n ∈ Z+.
So rntnS ⊆ C. Since S is a graded 2-absorbing second submodule, we have rnS ⊆ C
or tnS ⊆ C or rntn ∈ AnnR(S). If rnS ⊆ C or tnS ⊆ C, then r ∈ Gr((C :R S)) or t ∈
Gr((C :R S)) so we are done. Now assume that rntn ∈ AnnR(S) so rt ∈ Gr(AnnR(S)).
Then r ∈ Gr(AnnR(S)) or t ∈ Gr(AnnR(S)) as Gr((AnnR(S)) is a graded prime
ideal of R. Since AnnR(S) ⊆ (C :R S), we have Gr(AnnR(S)) ⊆ Gr((C :R S)). This
yields that r ∈ Gr((C :R S)) or t ∈ Gr((C :R S)). Therefore, Gr((C :R S)) is a graded
prime ideal of R containing P . □

Let R be a G-graded ring and M , M ′ graded R-modules. Let φ : M → M ′ be an R-
module homomorphism. Then φ is said to be a graded homomorphism if φ(Mg) ⊆ M ′

g

for all g ∈ G (see [21].)

Lemma 2.5. Let R be a G-graded ring and M, M ′ be two graded R-modules and let

φ : M → M ′ be a graded monomorphism.

(i) If C is a completely graded irreducible submodule of M, then φ(C) is a completely

graded irreducible submodule of φ(M).
(ii) If C ′ is a graded completely irreducible submodule of φ(M), then φ−1(C ′) is a

completely graded irreducible submodule of M.

Proof. Straightforward. □

Theorem 2.5. Let R be a G-graded ring and M , M ′ be two graded R-modules. Let

φ: M → M ′ be a graded monomorphism. Then we have the following.

(i) If S is a graded 2-absorbing second submodule of M , then φ(S) is a graded

2-absorbing second submodule of φ(M).
(ii) If S ′ is a graded 2-absorbing second submodule of φ(M), then φ−1(S ′) is a graded

2-absorbing second submodule of M.

Proof. (i) Since S ≠ 0 and φ is a graded monomorphism, we have φ(S) ̸= 0. Let
r, t ∈ h(R) and C ′ be a graded completely irreducible submodule of φ(M) with
rtφ(S) ⊆ C ′. Then rtS ⊆ φ−1(C ′). By Lemma 2.5 (ii), we have φ−1(C ′) is a graded
completely irreducible submodule of M . Then either rS ⊆ φ−1(C ′) or tS ⊆ φ−1(C ′)
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or rtS = 0 as S is graded 2-absorbing second submodule of M . If rtS = 0, then
rtφ(S) = 0. If rS ⊆ φ−1(C ′), then rφ(S) = φ(rS) ⊆ φφ−1(C ′) = C ′ ∩ φ(M) = C ′.
Similarly, if tS ⊆ φ−1(C ′), we get tφ(S) ⊆ C ′. Therefore, φ(S) is a graded 2-absorbing
second submodule of φ(M).

(ii) If φ−1(S ′) = 0, then φ(M) ∩ S ′ = φφ−1(S ′) = φ(0) = 0. Thus S ′ = 0 which is
a contradiction. So φ−1(S ′) ̸= 0. Now let r, t ∈ h(R) and C be a completely graded
irreducible submodule of M with rtφ−1(S ′) ⊆ C. Then rtS ′ = rt(S ′ ∩ φ(M)) =
rtφφ−1(S ′) = φ(rtφ−1(S ′)) ⊆ φ(C). By Lemma 2.5(i), we have φ(C) is a completely
graded irreducible submodule of φ(M). Then rS ′ ⊆ φ(C) or tS ′ ⊆ φ(C) or rtS ′ = 0 as
S ′ is a graded 2-absorbing second submodule of φ(M). Thus rφ−1(S ′) ⊆ φ−1φ(C) = C
or tφ−1(S ′) ⊆ φ−1φ(C) = C or rtφ−1(S ′) = 0. Therefore, φ−1(S ′) is a graded 2-
absorbing second submodule of M. □

3. Graded 2-Absorbing Strongly Second Submodules

Definition 3.1. Let R be a G-graded ring and M a graded R-module. A non-zero
graded submodule S of M is said to be a graded strongly 2-absorbing second submodule

of M if whenever r, t ∈ h(R), C1, C2 are completely graded irreducible submodules of
M , and rtS ⊆ C1 ∩ C2, then rS ⊆ C1 ∩ C2 or tS ⊆ C1 ∩ C2 or rt ∈ AnnR(S).

Clearly every graded strongly 2-absorbing second submodule is a graded 2-absorbing
second submodule.

Lemma 3.1. Let R be a G-graded ring, M a graded R-module and S a graded

strongly 2-absorbing second submodule of M . Let I =
⊕

g∈G Ig be a graded ideal of

R. If r ∈ h(R), g ∈ G and C1, C2 are completely graded irreducible submodules of M
with IgrS ⊆ C1 ∩ C2, then either rS ⊆ C1 ∩ C2 or IgS ⊆ C1 ∩ C2 or Igr ⊆ AnnR(S).

Proof. The proof is similar to the proof of Lemma 2.4, so we omit it. □

Theorem 3.1. Let R be a G-graded ring, M a graded R-module and S a non-zero

graded submodule of M . Let I =
⊕

g∈G Ig, J =
⊕

g∈G Jg be a graded ideals of R. Then

the following statements are equivalent.

(i) S is a graded strongly 2-absorbing second submodule of M .

(ii) If L1 and L2 are a completely graded irreducible submodules of M and g, h ∈ G
with IgJhS ⊆ L1 ∩ L2, then either IgS ⊆ L1 ∩ L2 or JhS ⊆ L1 ∩ L2 or IgJh ⊆
AnnR(S).

Proof. The proof is similar to the proof of Theorem 2.3, so we omit it. □

Theorem 3.2. Let R be a G-graded ring, M a graded R-module and S a non-zero

graded submodule of M . Let I =
⊕

g∈G Ig, J =
⊕

g∈G Jg be a graded ideals of R. Then

the following statements are equivalent.

(i) S is a graded strongly 2-absorbing second submodule of M .

(ii) For every graded submodule K of M and g, h ∈ G such that IgJhS ⊆ K, either

IgS ⊆ K or JhS ⊆ K or IgJh ⊆ AnnR(S).
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(iii) For every graded submodule K of M and every pair of elements rg, th ∈ h(R)
such that rgthS ⊆ K, either rgS ⊆ K or thS ⊆ K or rgthS ⊆ AnnR(S).

(iv) For every pair of elements rg, th ∈ h(R), either rgthS = rgS or rgthS = thS or

rgthS = 0.

Proof. (i)⇒(ii) Let g, h ∈ G and K a graded submodule of M such that IgJhS ⊆
K and IgJh ⊈ AnnR(S). By Theorem 2.3, for all completely graded irreducible
submodule C of M such that K ⊆ C, we have either IgS ⊆ C or JhS ⊆ C and hence
either IgS ⊆ K or JhS ⊆ K by Lemma 2.2. If IgS ⊆ C (resp. JhS ⊆ C) for all
completely graded irreducible submodule C of M with K ⊆ C, we are done. Now
suppose that C1 and C2 are two completely graded irreducible submodules of M with
K ⊆ C1, K ⊆ C2, IgS ⊈ C1 and JhS ⊈ C2. Since S is a graded 2-absorbing second
submodule, IgJhS ⊆ C1, IgS ⊈ C1 and IgJh ⊈ AnnR(S), by Theorem 2.3, we have
JhS ⊆ C1. Similarly by JhS ⊈ C2 we get IgS ⊆ C2. Since S is a graded strongly
2-absorbing second submodule of M, IgJhS ⊆ C1 ∩ C2, IgJh ⊈ AnnR(S), by Theorem
3.1, we conclude that either IgS ⊆ C1 ∩ C2 or JhS ⊆ C1 ∩ C2. Hence, either IgS ⊆ C1

or JhS ⊆ C2, which is a contradiction.
(ii)⇒(iii) Assume that rgthS ⊆ K where rg, th ∈ h(R) and K a graded submodule of

M . Let I = rgR, J = thR be a graded ideals of R generated by rg and th, respectively.
Then IgJjS ⊆ K. By our assumption we have either IgS ⊆ K or JhS ⊆ K or
IgJh ⊆ AnnR(S). It follows that either rgS ⊆ K or thS ⊆ K or rgthS ⊆ AnnR(S).

(iii)⇒(iv) Let rg, th ∈ h(R). Then rgthS ⊆ rgthS implies that rgS ⊆ rgthS or
thS ⊆ rgthS or rgth ∈ Ann(S). This yields that rgS = rgthS or thS = rgthS or
rgth ∈ Ann(S).

(iv)⇒(i) This is clear. □

Lemma 3.2. Let R be a G-graded ring, M a graded R-module and S a graded strongly

2-absorbing second submodule of M. Then AnnR(S) is a graded 2-absorbing ideal of

R.

Proof. Let rg, sh, tλ ∈ h(R) such that rgshtλ ∈ AnnR(S). Since S a graded strongly
2-absorbing second submodule of M and rg, sh, ∈ h(R), by Theorem 3.2, we get either
rgS = rgshS or shS = rgshS or rgshS = 0. If rgshS = 0, then rgsh ∈ AnnR(S). If
rgS = rgshS, then tλrgS ⊆ tλrgshS = 0 and hence tλrg ∈ AnnR(S). Similarly, by
shS = rgshS we get tλsh ∈ AnnR(S). Therefore, AnnR(S) is a graded 2-absorbing
ideal of R. □

Theorem 3.3. Let R be a G-graded ring, M a graded R-module and S a graded

strongly 2-absorbing second submodule of M . If K is a graded submodule of M such

that S ⊈ K, then (K :R S) is a graded 2-absorbing ideal of R.

Proof. Let rg, sh, tλ ∈ h(R) such that rgshtλ ∈ (K :R S). Then rgshtλS ⊆ K. Since
S is a graded strongly 2-absorbing second submodule of M and rgsh(tλS) ⊆ K, by
Theorem 3.2 we conclude that either rgtλS ⊆ K or shtλS ⊆ K or rgshtλS = 0, which
means rgtλ ∈ (K :R S) or shtλ ∈ (K :R S) or rgshtλ ∈ AnnR(S). If rgtλ ∈ (K :R S)
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or shtλ ∈ (K :R S), then we are done. Assume that rgshtλ ∈ AnnR(S). Then either
rgsh ∈ AnnR(S) or rgtλ ∈ AnnR(S) or sh tλ ∈ AnnR(S) by Lemma 3.2. This yields
that either rgsh ∈ (K :R S) or rgtλ ∈ (K :R S) or shtλ ∈ (K :R S). Hence, (K :R S) is
a graded 2-absorbing ideal of R. □

Lemma 3.3. Let R be a G-graded ring, J a graded 2-absorbing ideal of R and

I =
⊕

g∈G Ig a graded ideal of R. If r, s ∈ h(R) and g ∈ G with rsIg ⊆ J , then either

rIg ⊆ J or sIg ⊆ J or rs ∈ J.

Proof. Let r, s ∈ h(R) and g ∈ G such that rsIg ⊆ J and rs /∈ J. Let ig ∈ Ig so
rsig ∈ J. Then rig ∈ J or sig ∈ J as J is a graded 2-absorbing ideal of R. If rig ∈ J for
all ig ∈ Ig, then rIg ⊆ J, we are done. Similarly, if sig ∈ J for all ig ∈ Ig, then sIg ⊆ J,
we are done. Suppose that there exist ig1, ig2 ∈ Ig such that rig1 /∈ J and sig2 /∈ J.
Since J is a graded 2-absorbing ideal, rsig1 ∈ J, rig1 /∈ J and rs /∈ J, we conclude
that sig1 ∈ J. Also rsig2 ∈ J implies that rig2 ∈ J , since J is a graded 2-absorbing
ideal. Since rs(ig1 + ig2) ∈ J and rs /∈ J, we conclude that either r(ig1 + ig2) ∈ J
or s(ig1 + ig2) ∈ J as J is a graded 2-absorbing ideal and hence either sig2 ∈ J or
rig1 ∈ J, which is a contradiction. □

Lemma 3.4. Let R be a G-graded ring and J a graded 2-absorbing ideal of R. Let

I =
⊕

g∈G Ig and K =
⊕

g∈G Kg be a graded ideals of R. If r ∈ h(R) and g, h ∈ G
with rIgKh ⊆ J , then either rIg ⊆ J or rKh ⊆ J or IgKh ⊆ J.

Proof. Let r ∈ h(R) and g, h ∈ G such that rIgKh ⊆ J , rIg ⊈ J and rKh ⊈ J . We
have to show that IgKh ⊆ J . Assume that ig ∈ Ig and kh ∈ Kh. By assumption there
exist i′

g ∈ Ig and k′

h ∈ Kh such that ri′

g /∈ J and rk′

h /∈ J. Since ri′

gKh ⊆ J , rKh ⊈ J
and ri′

g /∈ J, by Lemma 3.3, we get i′

gKh ⊆ J . Also, since rk′

hIg ⊆ J, rk′

h /∈ J and

rIg ⊈ J , by Lemma 3.3, we get k′

hIg ⊆ J . By (ig + i′

g) ∈ Ig and (k′

h + kh) ∈ Kh, we
get r(ig + i′

g)(k′

h + kh) ∈ J. Then either r(ig + i′

g) ∈ J or r(k′

h + kh) ∈ J as J is a
graded 2-absorbing ideal. If r(ig + i′

g) ∈ J , then rig /∈ J. Which implies that igkh ∈ J
by Lemma 3.3. Similarly, by r(k′

h + kh) ∈ J, we conclude that igkh ∈ J. Therefore,
IgKh ⊆ J. □

Theorem 3.4. Let R be a G-graded ring and J a proper graded ideal of R. Let

I =
⊕

g∈G Ig, J =
⊕

g∈G Jg and K =
⊕

g∈G Kg be a graded ideals of R. Then the

following statements are equivalent.

(i) J is a graded 2-absorbing ideal of R.
(ii) For every g, h, λ ∈ G with IgKhLλ ⊆ J , either IgLλ ⊆ J or KhLλ ⊆ J or

IgKh ⊆ J.

Proof. (i)⇒(ii) Assume that J is a graded 2-absorbing ideal of R. Let g, h, λ ∈ G such
that IgKhLλ ⊆ J and IgLλ ⊈ J . Then for all kh ∈ Kh either khIg ⊆ J or khLλ ⊆ J
by Lemma 3.4. If khIg ⊆ J for all kh ∈ Kh, then IgKh ⊆ J, we are done. Similarly, if
khLλ ⊆ J for all kh ∈ Kh, then KhLλ ⊆ J , we are done. Suppose that kh1, kh2 ∈ Kh

are such that kh1Ig ⊈ J and kh2Lλ ⊈ J. It follows that kh1Lλ ⊆ J and kh2Ig ⊆ J. Since
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(kh1 + kh2)IgLλ ⊆ J , by Lemma 3.4. we have (kh1 + kh2)Lλ ⊆ J or (kh1 + kh2)Ig ⊆ J .
By (kh1 + kh2)Lλ ⊆ J it follows that kh2Lλ ⊆ J, which is a contradiction. Similarly
by (kh1 + kh2)Ig ⊆ J we get a contradiction. Therefore KhLλ ⊆ J or IgKh ⊆ J.

(ii)⇒(i) Assume that (ii) holds. Let rg, sh, tλ ∈ h(R) such that rgshtλ ∈ J. Let
I = rgR, K = shR and L = tλR be a graded ideals of R generated by rg, sh and
tλ, respectively. Then IgKhLλ ⊆ J. By our assumption we obtain IgKh ⊆ J or
IgLλ ⊆ J or KhLλ ⊆ J. Hence, rgsh ∈ J or rgtλ ∈ J or shtλ ∈ J. Therefore, J is a
graded 2-absorbing ideal of R. □

Theorem 3.5. Let R be a G-graded ring, M a graded R-module and S a graded

strongly 2-absorbing second submodule of M. Let I =
⊕

g∈G

Ig be a graded ideal of R.

Then for each g ∈ G, In
g S = In+1

g S for all n ⩾ 2.

Proof. Let g ∈ G. It is enough to show that I2
g S = I3

g S. It is clear that I3
g S ⊆ I2

g S.

Since S a graded strongly 2-absorbing second submodule of M, I3
g S ⊆ I3

g S implies

that I2
g S ⊆ I3

g S or IgS ⊆ I3
g S or I3

g S = 0 by Theorem 3.2. If IgS ⊆ I3
g S or I2

g S ⊆ I3
g S,

then we are done. Assume that I3
g S = 0, hence I3

g ⊆ AnnR(S). By Lemma 3.2 and

Theorem 3.4, we get I2
g ⊆ AnnR(S) and hence I2

g S ⊆ I3
g S. Therefore, I2

g S = I3
g S. □

Theorem 3.6. Let R be a G-graded ring, M a graded R-module and S a graded

strongly 2-absorbing second submodule of M . If Gr(AnnR(S)) = P for some graded

prime ideal P of R, C1 and C2 are completely graded irreducible submodules of M
such that S ⊈ C1 and S ⊈ C2. Then either Gr((C1 :R S)) ⊆ Gr((C2 :R S)) or

Gr((C2 :R S)) ⊆ Gr((C1 :R S)).

Proof. Assume that Gr((C1 :R S))) ⊈ Gr((C2 :R S)). Since Gr((C1 :R S)) is generated
by Gr((C1 :R S)) ∩ h(R), there exists r ∈ Gr((C1 :R S)) ∩ h(R) − Gr((C2 :R S)).
Now, let t ∈ Gr((C2 :R S)) ∩ h(R). Then there exists a positive integer n such that
tnS ⊆ C2, rnS ⊆ C1 and rnS ⊈ C2. Hence tnrnS ⊆ C1 ∩ C2. So either tnS ⊆ C1 ∩ C2

or tnrn ⊆ AnnR(S) as S is a graded strongly 2-absorbing second submodule of M.
If tnS ⊆ C1 ∩ C2, then tnS ⊆ C1, which implies t ∈ Gr((C1 :R S)). So, assume that
tnrn ⊆ AnnR(S). Then tr ∈ Gr(AnnR(S)) = P . Since P is a graded prime ideal of
R, either r ∈ P or t ∈ P. If r ∈ P, then rmS = 0 ∈ C2 for some m ∈ Z+ which
is a contradiction. This yields that t ∈ P = Gr(AnnR(S)) ⊆ Gr((C1 :R S)). Thus,
Gr((C2 :R S)) ⊆ Gr((C1 :R S)). □

Theorem 3.7. Let R be a G-graded ring and M , M ′ be two graded R-modules. Let

φ : M → M ′ be a graded monomorphism. Then the following hold.

(i) If S is a graded strongly 2-absorbing second submodule of M , then φ(S) is a

graded 2-absorbing second submodule of M ′.
(ii) If S ′ is a graded strongly 2-absorbing second submodule of M ′ and S ′ ⊆ φ(M),

then φ−1(S ′) is a graded 2-absorbing second submodule of M.

Proof. By using Theorem 3.2 the proof is similar to that of Theorem 2.5. □
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GEODESIC E-INVEX SETS AND GEODESIC E-PREINVEX

FUNCTIONS ON RIEMANNIAN MANIFOLDS

ZEYNAB AMIRSHEKARI1 AND HOSSEIN MOHEBI2

Abstract. In this paper, we first introduce two new classes of sets and functions
called geodesic E-invex sets and geodesic E-preinvex functions on a Riemannian
manifold, respectively. Moreover, we present the definition and properties of geodesic
E-quasi-preinvex functions on Riemannian manifolds. Finally, we investigate the
properties and characterizations of these two classes of sets and functions.

1. Introduction

Convexity plays an important and significant role in optimization theory. This con-
cept in the linear topological vector spaces relies on the possibility of connecting
any two points of the space by the line segment between them. Since convexity is
often not enjoyed by the real problems, various approaches have been proposed by
several reseachers in order to extend the validity of results to the larger classes of
optimization. An important and significant generalization of convexity is invexity,
which was introduced by Hanson [8] in 1981. Hanson’s initial results inspired a great
deal of subsequent work which has greatly expanded the roles and applications of
invexity in nonlinear optimization and other branches of pure and applied sciences.
Ben-Isreal and Mond [5] introduced a new generalization of convex sets and convex
functions that called by Craven [6] the invex sets and preinvex functions, respectively,
see also [3].

In general, a manifold is not a linear space, but the extension of concepts and
techniques from linear spaces to Riemannian manifolds are natural and applicable.

Key words and phrases. Geodesic E-invex set, geodesic E-preinvex function, geodesic E-quasi-
preinvex function, Riemannian manifold.

2010 Mathematics Subject Classification. Primary: 26B25. Secondary: 15A18, 49J52, 90C56.
DOI 10.46793/KgJMat2401.067A
Received: July 31, 2020.
Accepted: February 17, 2021.

67



68 Z. AMIRSHEKARI AND H. MOHEBI

Rapcsak [18] and Udriste [19] proposed a generalization of convexity, called geodesic
convexity, and extended many results of convex analysis and optimization theory
to Riemannian manifolds. In this setting, the linear space has been replaced by a
Riemannian manifold and the line segment by a geodesic. For more details, we refer
the reader to [10–12,15,17,18] and the references therein.

The notion of invex functions on Riemannian manifolds was introduced in [16].
However, its generalization has been investigated by Mititelu [13]. The concept of
geodesic invex sets, geodesic invex functions and geodesic preinvex functions on a
Riemannian Manifold with respect to the particular mappings have been introduced
in [4].

In this paper, we first discuss various concepts, definitions and properties of func-
tions defined on a Riemannian manifold. The notion of invexity and its generalization
on Riemannian manifolds are presented in Section 2. In Section 3, we first define the
concept of geodesic E-invex sets and geodesic E-preinvex functions on a Riemannian
manifold. Next, we investigate their properties and characterizations. The class of
geodesic E-quasi-preinvex functions are introduced in Section 4, and we give their
characterizations.

2. Preliminaries

We first recall some definitions and known results about η-invex sets and geodesic
η-preinvex functions on Riemannian manifolds, which will be used throughout the
paper.

Let M be an n-dimensional differentiable manifold, and let TpM be the tangent
space to M at the point p ∈ M. Suppose that at each point p ∈ M , a positive inner
product gp(x, y) on TpM is given (x, y ∈ TpM). Recall that [12], a C∞ mapping
g : p → gp, which assigns a positive inner product gp on TpM to each point p ∈ M, is
called a Riemannian metric. A manifold M equipped with the Riemannian metric g
is called a Riemannian manifold. We denote by TM the tangent space to M.

Suppose that (M, g) is a complete n-dimensional Riemannian manifold with Rie-
mannian connection ∇ (see [12]). Let x, y be two points in M , and γx,y : [0, 1] → M
be a geodesic joining the points x and y, i.e., γx,y(0) = y, γx,y(1) = x.

Let us recall that [12] the length of a piecewise C1 curve γ : [a, b] → M is defined
by

L(γ) :=
∫ b

a
∥γ′(t)∥dt.

For any two points p, q ∈ M , we define [12]

d(p, q) := inf¶L(γ) : γ is a piecewise C1 curve joining p and q♢.

Then, d is a distance which induces the original topology on M . We know that on
every Riemannian manifold there exists exactly one covariant derivation called Levi-
Civita connection, denoted by ∇XY for any vector fields X, Y ∈ M . We also recall
that a geodesic is a C∞ smooth path γ whose tangent is parallel along the path γ,
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i.e., γ satisfies the equation ∇dγ(t)/d(t)dγ(t)/d(t)=0. Any path γ joining p and q ∈ M
such that L(γ) = d(p, q) is a geodesic and is called a minimal geodesic.

Definition 2.1 ([9]). A subset A of Rn is called η-invex with respect to the function
η : Rn × R

n → R
n if x, y ∈ A, λ ∈ [0, 1], then y + λη(x, y) ∈ A.

It is obvious that Definition 2.1 is a generalization of the notion of a convex set
(with η(x, y) := x − y). Note that any set in R

n is invex with respect to η(x, y) ≡ 0,
for all x, y ∈ R

n.
In 1987, Hanson and Mond [9] introduced the notion of preinvex functions. The

following definition of a preinvex function has been given by Jeyakumar [19].

Definition 2.2 ([19]). Let f be a real valued function defined on an η-invex set
A ⊆ R

n. Then, f is said to be preinvex with respect to η : Rn × R
n → R

n if

f [y + λη(x, y)] ≤ λf(x) + (1 − λ)f(y), for all x, y ∈ A, λ ∈ [0, 1].

In the sequel, we consider the function E : Rn → R
n.

Definition 2.3. ([7, Definition 2.2]). A subset A of Rn is said to be E-invex with
respect to a given mapping η : Rn × R

n → R
n if

E(y) + λη(E(x), E(y)) ∈ A, for all x, y ∈ A, λ ∈ [0, 1].

Definition 2.4. ([7, Definition 2.3]). Let A ⊆ R
n be an E-invex set with respect to

a given mapping η : Rn × R
n → R

n. A function f : Rn → R is said to be E-preinvex
on A with respect to η if

f(E(y) + λη(E(x), E(y)) ≤ λf(E(x)) + (1 − λ)f(E(y)), for all x, y ∈ A, λ ∈ [0, 1].

The concept of geodesic invex sets and the invexity of a function f defined on an
open geodesic invex subset of a Riemannian manifold were given in [4].

Definition 2.5. ([4, Definition 3.1]). Let M be a Riemannian manifold and η :
M ×M → TM be a function such that η(x, y) ∈ TyM for each x, y ∈ M. A nonempty
subset S of M is said to be geodesic invex with respect to η if for each x, y ∈ S there
exists exactly one geodesic αx,y : [0, 1] → M such that

αx,y(0) = y, α′

x,y(0) = η(x, y), αx,y(t) ∈ S, for all t ∈ [0, 1].

Recall that a subset S of a Riemannian manifold is called geodesic convex if any
two points x, y ∈ S can be joined by exactly one geodesic of length d(x, y), which
belongs entirely to S.

Definition 2.6. ([4, Definition 3.3]). Let M be a Riemannian manifold and η :
M × M → TM be a function such that η(x, y) ∈ TyM for each x, y ∈ M. Let S ⊆ M
be a geodesic invex set with respect to η. We say that a function f : S → R is geodesic
η-preinvex if

f(αx,y(t)) ≤ tf(x) + (1 − t)f(y), for all t ∈ [0, 1], x, y ∈ S,

where αx,y is the unique geodesic which defined by Definition 2.5. If the inequality is
strict, then we say that f is a strictly geodesic η-preinvex function.
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3. Geodesic E-Invex Sets and Geodesic E-Preinvex Functions

The definition of a preinvex function on R
n was given in [20], see also [3, 14, 21]

for the properties of preinvex functions. Fulga and Preda [7] introduced the class of
E-preinvex and E-quasi-preinvex functions defined on R

n. In [4, 10, 11], this notion
has been extended for Reimannian manifolds.

Throughout the paper, let E : M → M and η : M × M → TM be fixed mappings.
We now introduce the concept of geodesic E-invex sets and geodesic E-preinvex
functions on a Riemannian manifold as follows.

Definition 3.1. Let M be a Riemannian manifold and η : M × M → TM be a
function such that η(x, y) ∈ TyM for each x, y ∈ M. A nonempty subset S of M is
said to be geodesic E-invex with respect to η if for each x, y ∈ S there exists exactly
one geodesic αE(x),E(y) : [0, 1] → M such that

αE(x),E(y)(0) = E(y), α′

E(x),E(y)(0) = η(E(x), E(y)),

αE(x),E(y)(t) ∈ S, for all t ∈ [0, 1].

Note that, in the special case, let M := R
n, η : Rn ×R

n → R
n be a function. Consider

αx,y : [0, 1] → R
n is defined by αx,y(t) := y + tη(x, y) for all t ∈ [0, 1]. Then

αx,y(0) = y, α′

x,y(0) = lim
t→0

αx,y(t) − αx,y(0)

t
= lim

t→0

y + tη(x, y) − y

t
= η(x, y),

and αx,y(t) ∈ S for all t ∈ [0, 1] because S is invex with respect to η. Therefore, the
definition of geodesic invexity and geodesic E-invexity coincide in R

n.

Definition 3.2. Let M be a Riemannian manifold and S ⊆ M be a geodesic E-invex
set with respect to η : M × M → TM . A function f : S → R is said to be geodesic
E-preinvex with respect to η if

f(αE(x),E(y)(t)) ≤ tf(E(x)) + (1 − t)f(E(y)), for all t ∈ [0, 1], x, y ∈ S,

where αE(x),E(y) is the unique geodesic which defined by Definition 3.1. If the inequality
is strict, then we say that f is strictly geodesic E-preinvex with respect to η.

Let M := R
n and S ⊆ R

n be a geodesic invex set with respect to η : Rn ×R
n → R

n.
Consider αx,y(t) = y + tη(x, y) for all t ∈ [0, 1]. Then f(αx,y(t)) = f(y + tη(x, y)) ≤
tf(x) + (1 − t)f(y), i.e., the definition of geodesic preinvex and geodesic E-preinvex
coincide for a function f : S ⊆ R

n → R whenever M = R
n.

From now on, for simplicity, we will call geodesic E-invex set with respect to η,
geodesic E-quasi-preinvex set with respect to η, geodesic E-preinvex function with
respect to η and geodesic E-quasi-preinvex function with respect to η by geodesic
E-invex set, geodesic E-quasi-preinvex set, geodesic E-preinvex function and gedesic
E-quasi-preinvex function, respectively.

We now give some results related to geodesic E-convex sets on Riemannian mani-
folds (see also [1]).
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Proposition 3.1. Every geodesic invex set A ⊆ M is geodesic E-invex.

Proof. The proof is obvious by taking the mapping E : M → M as the identity
map. □

Proposition 3.2. Let A be a subset of M . If A is a geodesic E-invex set, then

E(A) ⊆ A.

Proof. Since A is geodesic E-invex set, then for each x, y ∈ A there exists exactly
one geodesic αE(x),E(y) : [0, 1] → M such that αE(x),E(y)(0) = E(y), α′

E(x),E(y)(0) =

η(E(x), E(y)) and αE(x),E(y)(t) ∈ A for all t ∈ [0, 1]. Put t := 0, then E(y) =
αE(x),E(y)(0) ∈ A, so, E(A) ⊆ A. □

Proposition 3.3. Let E(A) be an invex set. If E(A) ⊆ A, then A is a geodesic

E-invex set.

Proof. Let x, y ∈ A be arbitrary. Then E(x), E(y) ∈ E(A). Since E(A) is invex with
respect to η, thus there exists exactly one geodesic αE(x),E(y) : [0, 1] → M such that
αE(x),E(y)(0) = E(y), α′

E(x),E(y)(0) = η(E(x), E(y)) and αE(x),E(y)(t) ∈ E(A) ⊆ A for

all t ∈ [0, 1], hence, A is a geodesic E-invex set. □

Proposition 3.4. If ¶Ai♢i∈I is an arbitrary collection of geodesic E-invex subsets of

M with respect to the mapping E : M → M , then ∩i∈IAi is a geodesic E-invex subset

of M .

Proof. Let ¶Ai♢i∈I be a collection of geodesic E-invex subsets of M with respect
to the mapping E : M → M . If ∩i∈IAi = ∅, we are done. Let x, y ∈ ∩i∈IAi be
arbitrary. Then x, y ∈ Ai for all i ∈ I. By the geodesic E-invexity of Ai, there
exists exactly one geodesic αE(x),E(y) : [0, 1] → M such that αE(x),E(y)(0) = E(y),
α′

E(x),E(y)(0) = η(E(x), E(y)) and αE(x),E(y)(t) ∈ Ai for all t ∈ [0, 1] and all i ∈ I,

which implies that αE(x),E(y)(t) ∈ ∩i∈IAi for all t ∈ [0, 1], and hence, ∩i∈IAi is a
geodesic E-invex set. □

Lemma 3.1. Let A ⊆ M be a geodesic E1-invex and E2-invex set. Then A is a

geodesic E1 ◦ E2-invex and E2 ◦ E1-invex set, where E1, E2 : M → M are arbitrary

mappings.

Proof. By the hypothesis, since A ⊆ M is a geodesic E1-invex and E2-invex set,
then for each x, y ∈ A there exist exactly one geodesic αE1(x),E1(y) : [0, 1] → M
such that αE1(x),E1(y)(0) = E1(y), α′

E1(x),E1(y)(0) = η(E1(x), E1(y)), αE1(x),E1(y)(t) ∈ A,

and exactly one geodesic αE2(x),E2(y) : [0, 1] → M such that αE2(x),E2(y)(0) = E2(y),
α′

E2(x),E2(y)(0) = η(E2(x), E2(y)) and αE2(x),E2(y)(t) ∈ A for all t ∈ [0, 1]. Now, let

x, y ∈ A be arbitrary. Put x0 := E2(x) and y0 := E2(y). Thus, in view of Proposition
3.2, we conclude that x0, y0 ∈ A. Therefore,

αE1◦E2(x),E1◦E2(y)(0) = αE1(x0),E1(y0)(0) = E1(y0) = E1 ◦ E2(y)
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and

α′

E1◦E2(x),E1◦E2(y)(0) = α′

E1(x0),E1(y0) = η(E1(x0), E1(y0)) = η(E1 ◦ E2(x), E1 ◦ E2(y))

and

αE1◦E2(x),E1◦E2(y)(t) = αE1(x0),E1(y0)(t) ∈ A, for all t ∈ [0, 1],

so, A ⊆ M is a geodesic E1 ◦E2-invex set. Similarly, A ⊆ M is a geodesic E2 ◦E1-invex
set. □

Theorem 3.1. Let A ⊆ M be a geodesic invex set with respect to the function

η : M ×M → TM and f : A → R be a geodesic η-preinvex function. If g : I ⊆ R → M
is an increasing (strictly increasing) convex function such that ran(f) ⊆ I, then g ◦ f
is geodesic (strictly geodesic) η-preinvex function on A.

Proof. Since f is a geodesic η-preinvex functin, we have f(αx,y(t)) ≤ tf(x)+(1−t)f(y)
for all x, y ∈ A and all t ∈ [0, 1], where αx,y is the unique geodesic which defined by
Definition 2.5. Since g is an increasing convex function, we get

g[f(αx,y(t))] ≤ g[(1 − t)f(y) + tf(x)]

≤ (1 − t)g(f(y)) + tg(f(x))

= (1 − t)(g ◦ f)(y) + t(g ◦ f)(x),

which shows that g ◦ f is a geodesic η-preinvex function on A. Similarly, we can show
that g ◦ f is a strictly geodesic η-preinvex function if g is a strictly increasing convex
function. □

Theorem 3.2. Let A ⊆ M be a geodesic E-invex set, and let fi : A → R, i = 1, . . . , p
be a geodesic E-preinvex function. Then, f :=

∑p
i=1 λifi is a geodesic E-preinvex

function on A with respect to the function η, where λi ∈ R with λi ≥ 0, i = 1, . . . , p.

Proof. By the hypothesis, for each i = 1, . . . , p, one has

fi(αE(x),E(y)(t)) ≤ (1 − t)fi(E(y)) + tfi(E(x)),

where αE(x),E(y) is the unique geodesic which defined by Definition 2.5. It follows that

λifi(αE(x),E(y)(t)) ≤ (1 − t)λifi(E(y)) + tλifi(E(x)),

and hence
p∑

i=1

λifi(αE(x),E(y)(t)) ≤ (1 − t)
p∑

i=1

λifi(E(y)) + t
p∑

i=1

λifi(E(x)),

which completes the proof. □

Proposition 3.5. Let M be a Riemannian manifold and A ⊆ M be a geodesic E-

invex set. Assume that E : M → M is an idempotent mapping (i.e., E2 = E). Suppose

that f ◦ E : A → R is a geodesic E-preinvex function. Then the following holds.

(i) Every lower level set of f◦E which defined by S(f◦E, λ) := ¶x ∈ A : (f◦E)(x) ≤
λ♢, λ ∈ R, is a geodesic E-invex set with respect to the function η : M × M → TM .
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(ii) The solution set K of the following optimization problem:

(P ) min(f ◦ E)(x) subject to x ∈ A,

is a geodesic E-invex set.

Moreover, if f is a strictly geodesic E-preinvex function, then K contains at most

one point.

Proof. (i) Let x, y ∈ S(f ◦ E, λ) ⊆ A be arbitrary. Since A is a geodesic E-
invex set with respect to the function η, then there exists exactly one geodesic
αE(x),E(y) : [0, 1] → M such that αE(x),E(y)(0) = E(y), α′

E(x),E(y)(0) = η(E(x), E(y))

and αE(x),E(y)(t) ∈ A for all t ∈ [0, 1]. By the geodesic E-preinvexity of f ◦ E, we have

(f ◦ E)(αE(x),E(y)(t)) ≤ tf(E(E(x))) + (1 − t)f(E(E(y)))

= t(f ◦ E2)(x) + (1 − t)(f ◦ E2)(y)

= tf(E(x)) + (1 − t)f(E(y))

≤ tλ + (1 − t)λ

= λ, for all t ∈ [0, 1].

Therefore, αE(x),E(y)(t) ∈ S(f ◦ E, λ) for all t ∈ [0, 1], and so, S(f ◦ E, λ) is a geodesic
E-invex set with respect to the function η.

(ii) Put α := infx∈A(f ◦ E)(x). Then, clearly K = ∩λ>αS(f ◦ E, λ), i.e., K is an
intersection of geodesic E-invex sets, and so in view of Proposition 3.4, it is a geodesic
E-invex set.

Now, suppose that f is a strictly geodesic E-preinvex function. If K = ∅, we are
done. Assume that K ̸= ∅. We claim that K has only one point. Assume if possible
that there exist x, y ∈ K such that x ≠ y. Then, by the geodesic E-invexity of K
with respect to the function η, there exists exactly one geodesic βE(x),E(y) : [0, 1] → M
such that

βE(x),E(y)(0) = E(y), β′

E(x),E(y)(0) = η(E(x), E(y)),

and βE(x),E(y)(t) ∈ K for all t ∈ [0, 1]. Since f is a strictly E-preinvex function, thus

α = f(βE(x),E(y)(t))

< tf(E(x)) + (1 − t)f(E(y))

≤ tα + (1 − t)α

= α, for all t ∈ [0, 1],

which is a contradiction. □

4. Generalized Geodesic E-preinvex Functions

In [16], it has been introduced the notion of η-quasi-preinvex functions on an invex
set. In [2], this notion extended to geodesic η-quasi-preinvexity on a geodesic invex
set by replacing the line segments with geodesics. In this section, we extend this
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concept and define geodesic E-quasi-preinvex functions. Moreover, some properties
and characterizations of this class of functions are presented.

Definition 4.1. Let A ⊆ M be a nonempty geodesic E-invex set with respect to
η : M × M → TM. A function f : A → R is said to be

(i) geodesic E-quasi-preinvex if

f(αE(x),E(y)(t)) ≤ max¶f(E(x)), f(E(y))♢,

for all x, y ∈ A and all t ∈ [0, 1];
(ii) strictly geodesic E-quasi-preinvex if for all x, y ∈ A with E(x) ̸= E(y) and all

t ∈ (0, 1), f(αE(x),E(y)(t)) < max¶f(E(x)), f(E(y))♢.

Theorem 4.1. Let A ⊆ M be a geodesic E-invex set and let ¶fi♢i∈I be a collection

of real valued functions defined on A such that supi∈I fi(x) is finite for each x ∈ A.

Let f : A → R be defined by f(x) := supi∈I fi(x) for each x ∈ A.

(i) If fi : A → R, i ∈ I, is a geodesic E-preinvex function on A with respect to the

function η : M × M → TM , then the function f is geodesic E-preinvex on A.

(ii) If fi : A → R, i ∈ I, is a geodesic E-quasi-preinvex function on A, then the

function f is geodesic E-quasi-preinvex on A.

Proof. (i) Let fi : A → R, i ∈ I, be a geodesic E-preinvex function on A. Then, for
each x, y ∈ A and each t ∈ [0, 1], we have

fi(αE(x),E(y)(t)) ≤ (1 − t)fi(E(x)) + tfi(E(y)), for all i ∈ I,

and so

f(αE(x),E(y)(t)) = sup
i∈I

fi(αE(x),E(y)(t))

≤ sup
i∈I

[(1 − t)fi(E(x)) + tfi(E(y))]

≤ (1 − t) sup
i∈I

fi(E(x)) + t sup
i∈I

fi(E(y))

= (1 − t)f(E(x)) + tf(E(y)).

So, f is a geodesic E-preinvex function on A.
(ii) Suppose that fi : A → R, i ∈ I, is a geodesic E-quasi-preinvex function on A.

Therefore, by Definition 4.1, for each x, y ∈ A and each t ∈ [0, 1], one has

f(αE(x),E(y)(t)) = sup
i∈I

fi(αE(x),E(y)(t))

≤ sup
i∈I

max¶fi(E(x)), fi(E(y))♢

≤ max¶sup
i∈I

fi(E(x)), sup
i∈I

fi(E(y))♢

= max¶f(E(x)), f(E(y))♢,

and hence, f is a geodesic E-quasi-preinvex function on A. □
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Let A ⊆ M be a nonempty geodesic E-invex set. It follows from Proposition 3.2
that E(A) ⊆ A. Hence, for any function f : A → R, define the restriction f̃ of f to
E(A) by f̃(x̃) := f(x̃) for all x̃ ∈ E(A).

Theorem 4.2. Let A ⊆ M be a geodesic E-invex set and let f : A → R be a geodesic

E-quasi-preinvex function on A. Then the restriction f̃ : C → R of f to any nonempty

invex subset C of E(A) is a geodesic η-quasi-preinvex function on C.

Proof. Let x, y ∈ C ⊆ E(A) be arbitrary. Then there exist x1, y1 ∈ A such that
x = E(x1) and y = E(y1). Since C is an invex set, there exists exactly one geodesic
αE(x),E(y) : [0, 1] → M such that αx,y(0) = y, α′

x,y(0) = η(x, y) and αx,y(t) ∈ C for all
t ∈ [0, 1]. But, αE(x1),E(y1)(t) = αx,y(t) ∈ C for all t ∈ [0, 1]. Therefore, since f is a
geodesic E-quasi-preinvex function on A, we conclude that

f̃(αx,y(t)) = f(αE(x1),E(y1)(t))

≤ max¶f(E(x1)), f(E(y1))♢

= max¶f(x), f(y)♢

= max¶f̃(x), f̃(y)♢,

which completes the proof. □

Theorem 4.3. Let A ⊆ M be a geodesic E-invex set, f : A → R be a real valued

function and E(A) be an invex set. Then, f is geodesic E-quasi-preinvex on A if and

only if its restriction f̃ to E(A) is geodesic E-quasi-preinvex on E(A).

Proof. Let x, y ∈ A be arbitrary. So, E(x), E(y) ∈ E(A). By the hypothesis, E(A)
is an invex set. Therefore, by the definition, we have αE(x),E(y)(t) ∈ E(A) for all
t ∈ [0, 1], where αE(x),E(y) is the unique geodesic function corresponding to E(A).
Since E(A) ⊆ A (because A is a geodesic E-invex set and using Proposition 3.4), it
follows that

(4.1) αE(x),E(y)(t) ∈ A, for all t ∈ [0, 1], x, y ∈ A.

Now, suppose that f is a geodesic E-quasi-preinvex function on A. Then

f̃(αE(x),E(y)(t)) = f(αE(x),E(y)(t))

≤ max¶f(E(x)), f(E(y))♢

= max¶f̃(E(x)), f̃(E(y))♢,

i.e., f̃ is geodesic E-quasi-preinvex on E(A).
Conversely, assume that f̃ is a geodesic E-quasi-preinvex function on E(A). Then,

by (4.1), for each x, y ∈ A and each t ∈ [0, 1], one has

f(αE(x),E(y)(t)) = f̃(αE(x),E(y)(t))

⩽ max¶f̃(E(x)), f̃(E(y))♢

= max¶f(E(x)), f(E(y))♢,
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and the proof is complete. □

An analogous result to Theorem 4.2 for the geodesic E-preinvex functions is presented
as follows. The proof is similar to the one of Theorem 4.2.

Theorem 4.4. Let A ⊆ M be a geodesic E-invex set and f : A → R be a geodesic

E-preinvex function on A. Then, the restriction f̃ : C → R of f to any nonempty

invex subset C of E(A) is a geodesic invex function.

An analogous result to Theorem 4.3 for the geodesic E-preinvex functions is pre-
sented as follows. The proof is similar to the one of Theorem 4.3.

Theorem 4.5. Let A ⊆ M be a geodesic E-invex set, f : A → R be a real valued

function and E(A) be an invex set. Then, f is a geodesic E-preinvex function on A
if and only if its restriction f̃ to E(A) is a geodesic E-preinvex function on E(A).

We now characterize geodesic E-quasi-preinvex functions in terms of their lower
level sets. For any real number r ∈ R, the lower level set of the function f ◦E : A → R

is defined by Lr(f ◦ E) := ¶x ∈ A : (f ◦ E)(x) = f(E(x)) ⩽ r♢. Moreover, the lower
level set of the function f̃ : E(A) → R is defined by Lr(f̃) := ¶x̃ ∈ E(A) : f̃(x̃) =
f(x̃) ⩽ r♢.

Theorem 4.6. Let E(A) be an invex set and f : A → R be a real valued function. A

function f is geodesic E-quasi-preinvex if and only if the lower level set Lr(f̃) is an

invex set for each r ∈ R.

Proof. Suppose that f is a geodesic E-quasi-preinvex function. Since E(A) is an invex
set, for each x, y ∈ A, we have E(x), E(y) ∈ E(A) and αE(x),E(y)(t) ∈ E(A) ⊆ A,
where αE(x),E(y) is the unique geodesic which defined by Definition 2.5. Let r ∈ R and

E(x), E(y) ∈ Lr(f̃) be arbitrary. Put x̃ := E(x) and ỹ := E(y). Then, x̃, ỹ ∈ Lr(f̃),
and so, f(x̃) ⩽ r and f(ỹ) ⩽ r. Thus,

f̃(αx̃,ỹ(t)) = f(αE(x),E(y)(t)) ⩽ max¶f(E(x)), f(E(y))♢ = max¶f(x̃), f(ỹ)♢ ⩽ r,

which shows that αx̃,ỹ(t) ∈ Lr(f̃) for all t ∈ [0, 1]. Moreover, one has αx̃,ỹ(0) =
αE(x),E(y)(0) = E(y) = ỹ and α′

x̃,ỹ(0) = α′

E(x),E(y)(0) = η(E(x), E(y)) = η(x̃, ỹ)

because E(A) is an invex set. Hence, Lr(f̃) is an invex set.
Conversely, assume that Lr(f̃) is an invex set for each r ∈ R. Let x, y ∈ A and

t ∈ [0, 1] be arbitrary. Take r := max¶f(E(x)), f(E(y))♢ and x̃ := E(x), ỹ := E(y).
Therefore, f̃(x̃) = f(E(x)) ≤ r and f̃(ỹ) = f(E(y)) ≤ r because E(x), E(y) ∈ E(A).
This implies that x̃, ỹ ∈ Lr(f̃). Since, by the hypothesis, Lr(f̃) is an invex set, so there
exists exactly one geodesic αx̃,ỹ : [0, 1] → M such that αx̃,ỹ(0) = ỹ, α′

x̃,ỹ(0) = η(x̃, ỹ)

and αx̃,ỹ(t) ∈ Lr(f̃) for all t ∈ [0, 1]. Then, since Lr(f̃) ⊆ E(A), it follows that

f(αE(x),E(y)(t)) = f(αx̃,ỹ(t)) = f̃(αx̃,ỹ(t)) ⩽ r = max¶f(E(x)), f(E(y))♢,

and so, f is a geodesic E-quasi-preinvex function. □
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The geodesic E-quasi-preinvexity preserves under nondecreasing functions.

Theorem 4.7. Let A ⊆ M be a nonempty geodesic E-invex set and let f : A → R

be a geodesic E-quasi-preinvex function. Suppose that Φ : R → R is a nondecreasing

function. Then Φ ◦ f is a geodesic E-quasi-preinvex function on A.

Proof. Since the function f : A → R is geodesic E-quasi-preinvex and Φ : R → R is a
nondecreasing function, then, for all x, y ∈ A and all t ∈ [0, 1], it follows that

(Φ ◦ f)(αE(x),E(y)(t)) = Φ(f(αE(x),E(y)(t)))

≤ Φ¶max¶f(E(x)), f(E(y))♢

≤ max¶Φ(f(E(x)), Φ(f(E(y)))♢

= max¶(Φ ◦ f)(E(x)), (Φ ◦ f)(E(y))♢,

which shows that Φ ◦ f is a geodesic E-quasi-preinvex function on A. □

Theorem 4.8. If the function f : A → R is geodesic E-preinvex on A, then f is a

geodesic E-quasi-preinvex function on A.

Proof. Let f be geodesic E-preinvex on A. Then, for all x, y ∈ A and all t ∈ [0, 1], we
have

f(αE(x),E(y)(t)) ≤(1 − t)f(E(y)) + tf(E(x))

≤(1 − t) max¶f(E(x)), f(E(y))♢,

+ t max¶f(E(x)), f(E(y))♢

= max¶f(E(x)), f(E(y))♢,

and hence, f is a geodesic E-quasi-preinvex function on A. □
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ON UNIFORMLY STRONGLY PRIME Γ-SEMIHYPERRING

JITENDRASING J. PATIL1 AND KISHOR F. PAWAR2

Abstract. The Γ-semihyperring is a generalization of the concepts of a semiring,
a semihyperring and a Γ-semiring. The concepts of uniformly strongly (weak) prime
Γ-semihyperring and essential extension for the Γ-semihyperring are introduced and
studied some important properties in this respect. It is proved that any essential
extension of a uniformly strongly prime Γ-semihyperring is a uniformly weak prime
Γ-semihyperring. Also strongly prime radical of a Γ-semihyperring is introduced
and its characterization is made with the help of a super sp-system. A necessary
and sufficient condition for a ideal of Γ-semihyperring to be a right strongly prime
ideal is provided with the help of sp-system and super sp-system.

1. Introduction and Preliminaries

In 1975, Hadelman and Lawrence [4] introduced the notion of strongly prime ring
motivated by the notion of primitive group ring and proved some properties of strongly
prime rings. In 2006, Dutta and Das [2] introduced the notion of strongly prime ideal
in a semiring and strongly prime semiring. Again in 2006, Dutta and Dhara [3]
introduced the concept of uniformly strongly prime Γ-semirings and studied uniformly
strongly prime k-radical of a Γ-semiring as special class via its operator semiring.
The notion of essential ideal and essential extension for semirings was introduced and
studied some important properties in this respect by Pawar and Deore [7].

The notion of hypergroup was introduced by Marty [5] in 1934. After that, many
authors studied algebraic hyperstructure which are generalization of classical alge-
braic structure. In classical algebraic structure, the composition of two elements is
an element, while in an algebraic hyperstructure composition of two elements is a

Key words and phrases. Prime Γ-semihyperring, uniformly strongly prime Γ-semihyperring, super
sp-system.
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set. Let H be a non-empty set. Then, the map ◦ : H × H → ℘∗(H) is called a
hyperopertion, where ℘∗(H) is the family of all non-empty subsets of H and the
couple (H, ◦) is called a hypergroupoid. Moreover, the couple (H, ◦) is called a semi-
hypergroup if for every a, b, c ∈ H we have (a ◦ b) ◦ c = a ◦ (b ◦ c). The notion of
Γ-semihyperrings as a generalization of semiring, semihyperring and Γ-semiring was
introduced by Dehkordi and Davvaz [8]. Also, Pawar et al. [6] introduced regular
(strongly regular) Γ-semihyperrings and made it’s characterization with the help of
ideals in Γ-semihyperrings.

In now days hyperstructure theory was studied widely as it has vast applications in
various streams of sciences. In this paper, we extended various concepts of classical
algebraic structure to a Γ-semihyperring. In Section 2, we introduced the notion of
uniformly strongly prime Γ-semihyperring, essential ideal and essential extension for Γ-
semihyperring and proved some important properties. In Section 3, we introduced the
notion of right strongly prime ideal and super sp-system. These concepts are studied
analogously with the concepts of classical algebraic structures which are studied in
[2, 3].

Here are some useful definitions and the readers are requested to refer [8].

Definition 1.1. Let R be a commutative semihypergroup and Γ be a commutative
group. Then, R is called a Γ-semihyperring if there is a map R × Γ × R → ℘∗(R)
(images to be denoted by aαb for all a, b ∈ R and α ∈ Γ) and ℘∗(R) is the set of all
non-empty subsets of R satisfying the following conditions:

(1) aα(b + c) = aαb + aαc;
(2) (a + b)αc = aαc + bαc;
(3) a(α + β)c = aαc + aβc;
(4) aα(bβc) = (aαb)βc,

for all a, b, c ∈ R and for all α, β ∈ Γ.

Definition 1.2. A Γ-semihyperring R is said to be commutative if aαb = bαa for all
a, b ∈ R and α ∈ Γ.

Definition 1.3. A Γ-semihyperring R is said to be with zero, if there exists 0 ∈ R
such that a ∈ a + 0 and 0 ∈ 0αa, 0 ∈ aα0 for all a ∈ R and α ∈ Γ.

Let A and B be two non-empty subsets of a Γ-semihyperring R and x ∈ R. Then

A + B = ¶x ♣ x ∈ a + b, a ∈ A, b ∈ B♢,

AΓB = ¶x ♣ x ∈ aαb, a ∈ A, b ∈ B, α ∈ Γ♢.

Definition 1.4. A non-empty subset R1 of Γ-semihyperring R is said to be a Γ-
subsemihyperring if it is closed with respect to the addition and multiplication, that
is, R1 + R1 ⊆ R1 and R1ΓR1 ⊆ R1.

Definition 1.5. A right (left) ideal I of a Γ-semihyperring R is an additive sub
semihypergroup of (R, +) such that IΓR ⊆ I(RΓI ⊆ I). If I is both right and left
ideal of R, then we say that I is a two sided ideal or simply an ideal of R.
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2. Uniformly Strongly (Weak) Prime Γ-Semihyperrings

Definition 2.1. A Γ-semihyperring R is said to be a finitely multiplicative if F and
G are finite subsets of R and ∆ is finite subset of Γ, then F∆G is finite subset of R.

Definition 2.2. A Γ-semihyperring R is said to be a finitely additive if F and G are
finite subsets of R, then F + G is finite subset of R.

Example 2.1 ([6]). Consider the following:

R =

{

x y
z w



♣ x, y, z, w ∈ R

}

,

Γ = ¶z ♣ z ∈ Z♢,

Aα =

{

αa 0
0 αb



♣ a, b ∈ R, α ∈ Γ

}

.

Then, R is a Γ-semihyperring under the matrix addition with hyperoperation MαN 7→
MAαN for all M, N ∈ R and α ∈ Γ. Here R is a finitely additive but not finitely
multiplicative.

Example 2.2. Let X be a non-empty set and τ is a topology on X. We define the
hyperoperation of the addition and the multiplication on τ as A, B ∈ τ, A + B =
A ∪ B, A · B = A ∩ B. Then τ is a Γ-semihyperring, where Γ is a commutative group,
if we define xαy 7→ x · y for every x, y ∈ τ, α ∈ Γ. Here τ is a finitely additive as well
as finitely multiplicative.

Throughout this paper we consider that a Γ-semihyperring R is always finitely
multiplicative, finitely additive and contains a zero element.

Definition 2.3. A Γ-semihyperring R is called uniformly right strongly prime if there
exist a finite subset F of R and a finite subset ∆ of Γ if 0 /∈ A ⊆ R and 0 ∈ Aδ1fδ2B
for all δ1, δ2 ∈ ∆ and f ∈ F implies that 0 ∈ B. The pair (F, ∆) is called a uniform
right insulator for R.

Definition 2.4. A Γ-semihyperring R is called uniformly right weak prime if there
exist a finite subset F of R and a finite subset ∆ of Γ if x(̸= 0) ∈ R and 0 ∈ xδ1fδ2y
for all δ1, δ2 ∈ ∆ and f ∈ F implies that y = 0. The pair (F, ∆) is called a uniform
right insulator for R.

Analogously we can define uniformly left strongly (weak) prime Γ-semihyperring. It
is obvious that a uniformly right (left) strongly prime Γ-semihyperring R is uniformly
right (left) weak prime.

Definition 2.5 ([1]). A Γ-semihyperring R with zero is called prime if 0 ∈ xαrβy for
all r ∈ R and α, β ∈ Γ implies that either x = 0 or y = 0.

Theorem 2.1. A Γ-semihyperring R is uniformly right weak prime if and only if

there exist finite subsets F of R and ∆ of Γ such that for any two nonzero elements

x and y of R, there exists f ∈ F and δ1, δ2 ∈ Γ such that 0 /∈ xδ1fδ2y.
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Proof. Let R be a uniformly right weak prime Γ-semihyperring and (F, ∆) be a
uniform right insulator for R. Suppose x and y be a two nonzero elements of R and
0 ∈ xδ1fδ2y, for all δ1, δ2 ∈ Γ and f ∈ F . Then we get y = 0, a contradiction. So
there exist f ∈ F and δ1, δ2 ∈ Γ such that 0 /∈ xδ1fδ2y.

Conversely, let for any two nonzero elements x and y of R there exist f ∈ F and
δ1, δ2 ∈ Γ such that 0 /∈ xδ1fδ2y. Consider a(̸= 0) ∈ R and 0 ∈ aδ1fδ2b, for all
δ1, δ2 ∈ Γ and f ∈ F so by our hypothesis b must be 0. Therefore, by definition
Γ-semihyperring R is uniformly right weak prime. □

Theorem 2.2. A Γ-semihyperring R is uniformly right strongly prime if and only if

there exist finite subsets F of R and ∆ of Γ such that for any two non-empty subsets A
and B of R and 0 /∈ A, 0 /∈ B, there exist f ∈ F and δ1, δ2 ∈ ∆ such that 0 /∈ Aδ1fδ2B.

Corollary 2.1. A Γ-semihyperring R is uniformly right weak (strongly) prime if and

only if R is uniformly left weak (strongly) prime.

So, we can use uniformly strongly (weak) prime instead of uniformly right (left)
strongly (weak) prime and uniform insulator instead of uniform right (left) insulator.

Proposition 2.1. A uniformly weak prime Γ-semihyperring is prime.

Proof. Let R be a uniformly weak prime Γ-semihyperring and (F, ∆) is a uniform
insulator for R. Let x(̸= 0) ∈ R and 0 ∈ xαrβy for all α, β ∈ Γ and r ∈ R. Now,
F ⊆ R and ∆ ⊆ Γ, so 0 ∈ xδ1fδ2y, for all δ1, δ2 ∈ ∆ and f ∈ F . Since R is a
uniformly weak prime Γ-semihyperring and (F, ∆) is a uniform insulator for R, then
y = 0. Therefore, by definition, R is a prime Γ-semihyperring. □

Proposition 2.2. If R is uniformly weak prime Γ-semihyperring, then for nonzero

ideal I of R, there exist finite subsets F of I and ∆ of Γ such that 0 ∈ fδy for all

f ∈ F and δ ∈ ∆, then y = 0.

Proof. Let I be a nonzero ideal of a uniformly weak prime Γ-semihyperring R and
(F, ∆) is a uniform insulator for R. Let x(̸= 0) ∈ I. Then F ′ = x∆F is finite subset
of I. Also if 0 ∈ xδ1fδ2y for all δ1, δ2 ∈ ∆ and f ∈ F , then y = 0. Then 0 ∈ f

′

δy, for
all f

′

∈ F
′

, δ ∈ ∆ implies that 0 ∈ xδ1fδ2y, for all δ1, δ2 ∈ ∆ and f ∈ F gives that
y = 0. This complete the proof. □

Definition 2.6. A nonzero ideal I of a Γ-semihyperring R is called an essential ideal
of R if for any nonzero ideal J of R, x(̸= 0) ∈ I ∩ J .

Definition 2.7. A Γ-semihyperring T is said to be an essential extension of a Γ-
semihyperring R if R is an essential ideal of T .

Definition 2.8. Let A be a non-empty subset of a Γ-semihyperring R. Right annihi-
lator of A in R, denoted by annr(A), is defined as annr(A) = ¶x ∈ R ♣ 0 ∈ aαx for
all a ∈ A, α ∈ Γ♢.

Similarly, we can define left annihilator of A in R, i.e., annl(A).
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Lemma 2.1. Let R be a Γ-semihyperring and T be its essential extension. If R is a

uniformly strongly prime Γ-semihyperring, then for each nonzero x of T , 0 ∈ xαf for

all α ∈ Γ, f ∈ F implies that x ∈ annr(R) and 0 ∈ fαx for all α ∈ Γ, f ∈ F implies

that x ∈ annl(R), where (F, ∆) is a uniform insulator for R.

Proof. Let T be an essential extension of a uniformly strongly prime Γ-semihyperring
R and (F, ∆) is uniform insulator for R. Let x(̸= 0) ∈ T and 0 ∈ xαf for all
α ∈ Γ, f ∈ F . Then 0 ∈ (kγx)δ1fδ2(kγx) for all δ1, δ2 ∈ ∆, γ ∈ Γ, f ∈ F and
k ∈ R. Since R is a uniformly strongly prime Γ-semihyperring and (F, ∆) is a uniform
insulator for R, 0 ∈ kγx for all k ∈ R, γ ∈ Γ, i.e., x ∈ annr(R).

On similar lines, we can prove 0 ∈ fαx for all α ∈ Γ, f ∈ F implies that x ∈
annl(R). □

Lemma 2.2. If R is a uniformly strongly prime Γ-semihyperring and I is an ideal

of R, then I is a uniformly weak prime Γ-subsemihyperring.

Proof. Let R be a uniformly strongly prime Γ-semihyperring and (F, ∆) be a uniform
insulator for R. If I is zero ideal, then obviously I is a uniformly weak prime Γ-
subsemihyperring. Suppose I ̸= 0 and r be a fixed nonzero element of I. Let
F

′

= ¶x ∈ f1αrβf2 ♣ f1, f2 ∈ F, α, β ∈ ∆♢. Since I is an ideal of R and F , ∆ are
finite subsets, F

′

is finite subset of I. Let x(̸= 0) ∈ I and y ∈ I. If 0 ∈ xδ1f
′

δ2y
for all δ1, δ2 ∈ ∆ and f

′

∈ F
′

, then 0 ∈ xδ1f1αrβf2δ2y for all f1, f2 ∈ F and for all
δ1, δ2, α, β ∈ ∆, i.e., 0 ∈ xδ1f1α(rβf2δ2y) for all f1, f2 ∈ F and for all δ1, δ2, α, β ∈ ∆.
Since rβf2δ2y ⊆ R, for all f2 ∈ F and for all β, δ2 ∈ ∆ and R is a uniformly
strongly prime Γ-semihyperring with x ̸= 0, then 0 ∈ rβf2δ2y for all f2 ∈ F and
for all β, δ2 ∈ ∆. But as r ≠ 0 it gives y = 0. Hence, I is a uniformly weak prime
Γ-semihyperring and (F

′

, ∆) is uniform insulator for I. □

Definition 2.9. An element k of a Γ-semihyperring R is additively aggressive with
respect to subset A of R if k belongs to aαb(bαa) and aαc(cαa) for all a ∈ A and
α ∈ Γ, then for any p ∈ b + c, k ∈ aαp (k ∈ pαa) for all a ∈ A and α ∈ Γ.

Definition 2.10. An element k of a Γ-semihyperring R is multiplicatively aggressive
with respect to subset A of R if k belongs to aαb(bαa) for all a ∈ A and α ∈ Γ, then
for any p ∈ bαt(p ∈ tαb), where α ∈ Γ, t ∈ R, we have k ∈ aαp(k ∈ pαa) for all a ∈ A
and α ∈ Γ.

Example 2.1 zero element (zero matrix) is a multiplicatively aggressive.

Definition 2.11. An element k of a Γ-semihyperring R is additively and multiplica-
tively aggressive with respect to all subset A of R, then k is aggressive element of a
Γ-semihyperring R.
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Example 2.3 ([6]). Let R = ¶a, b, c, d♢. Then R is commutative semihypergroup with
following hyperoperations

+ a b c d
a ¶a♢ ¶a, b♢ ¶a, c♢ ¶a, d♢
b ¶a, b♢ ¶b♢ ¶b, c♢ ¶b, d♢
c ¶a, c♢ ¶b, c♢ ¶c♢ ¶c, d♢
d ¶a, d♢ ¶b, d♢ ¶c, d♢ ¶d♢

,

· a b c d
a ¶a♢ ¶a, b♢ ¶a, b, c♢ ¶a, b, c, d♢
b ¶a, b♢ ¶b♢ ¶b, c♢ ¶b, c, d♢
c ¶a, b, c♢ ¶b, c♢ ¶c♢ ¶c, d♢
d ¶a, b, c, d♢ ¶b, c, d♢ ¶c, d♢ ¶d♢

.

Then R be a Γ-semihyperring, where Γ-is any commutative group with operation
xαy 7→ x · y for x, y ∈ R and α ∈ Γ. Here a is a aggressive element of R.

Theorem 2.3. If zero is an aggressive element of a Γ-semihyperring R, then annr(A)
is a right ideal of R and annl(A) is a left ideal of R. If A is an ideal of Γ-semihyperring

R, then both annihilators are ideals of R.

Now in the rest part of the given section we consider zero as aggressive element of
Γ-semihyperring R.

Lemma 2.3. Let R be a uniformly weak prime Γ-semihyperring and T be its essential

extension. Then both annihilators of R in T are zero.

Proof. Let (F, ∆) is a uniform insulator for R. If possible let annr(R) ̸= 0. Then
annr(R) is nonzero ideal of T . Since R is an essential ideal of T , annr(R) ∩ R ̸= 0.
Let x(̸= 0) ∈ annr(R) ∩ R. Then 0 ∈ kαx, for all k ∈ R, α ∈ Γ. As ∆ ⊆ Γ and
F ⊆ R, it gives 0 ∈ xδ1rδ2x for all δ1, δ2 ∈ ∆ and r ∈ F . Since R is a uniformly weak
prime Γ-semihyperring, x = 0, a contradiction. Therefore annr(R) = 0.

Similarly, we can prove that annl(R) = 0. □

Lemma 2.4. Let R be a uniformly strongly prime Γ-semihyperring with pair (F, ∆)
be a uniform insulator for R and T be its essential extension. Then for any nonzero

element x of T there exist some f ∈ F , δ ∈ ∆ such that 0 /∈ xδf .

Proof. Let (F, ∆) be a uniform insulator for R and T be an essential extension of R.
Let x be a nonzero element of T . Suppose that 0 ∈ xδf for all δ ∈ ∆, f ∈ F , then
by Lemma 2.1, x ∈ annr(R). Also, by Lemma 2.3, annr(R) = 0, which implies that
x = 0, a contradiction. Therefore, 0 /∈ xδf for some f ∈ F, δ ∈ ∆. □

Lemma 2.5. Let R be a uniformly strongly prime Γ-semihyperring with pair (F, ∆)
be a uniform insulator for R and T be its essential extension. Then for any nonzero

element x of T there exist some f ∈ F , δ ∈ ∆ such that 0 /∈ fδx.
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Theorem 2.4. Any essential extension of a uniformly strongly prime Γ-semihyperring

R is a uniformly weak prime Γ-semihyperring.

Proof. Let (F, ∆) be a uniform insulator for R and T be an essential extension of
R. Let y, z be two nonzero elements of T . Then by Lemmas 2.4 and 2.5, there
exist f1, f2 ∈ F and δ1, δ2 ∈ ∆ such that 0 /∈ yδ1f1 and 0 /∈ f2δ2z. Since R is an
ideal of T , so yδ1f1 and f2δ2z are subsets of R. Again since R is uniformly strongly
prime and (F, ∆) be a uniform insulator for R, then by Theorem 2.2, there exist
α, β ∈ ∆ and f ∈ F such that 0 /∈ yδ1f1αfβf2δ2z. Let F

′

= ¶k ∈ f1αfβf2 ♣ 0 /∈
yδ1f1αfβf2δ2z; f1, f, f2 ∈ F, α, β, δ1, δ2 ∈ ∆, y, z ∈ T♢. Then F

′

⊆ T is finite subset,
since F and ∆ are finite subset. Hence, by Theorem 2.1, T is uniformly weak prime
Γ-semihyperring with insulator (F

′

, ∆). □

3. Right Uniformly Strongly Prime Radical

Definition 3.1. An ideal I of a Γ-semihyperring R is said to be right strongly prime
if a /∈ I, then there are two finite sets F ⊆< a > and ∆ ⊆ Γ such that F∆b ⊆ I
implies that b ∈ I.

Definition 3.2. A subset G of a Γ-semihyperring R is called an sp-system if for any
g ∈ G there are two finite sets F ⊆< g > and ∆ ⊆ Γ such that (fδz) ∩ G ≠ ∅ for all
f ∈ F , δ ∈ ∆ and z ∈ G.

Proposition 3.1. An ideal I of a Γ-semihyperring R is a right strongly prime if and

only if R \ I is an sp-system.

Proof. Let I be a right strongly prime ideal of R and let g ∈ R \ I. Then g /∈ I. So
there exists a finite subsets F of < g > and ∆ of Γ such that F∆b ⊆ I implies that
b ∈ I, i.e., (fδz) ∩ (R \ I) ̸= ∅ for all f ∈ F , δ ∈ ∆ and z ∈ R \ I. Therefore, R \ I is
an sp-system.

Conversely, suppose R \ I is an sp-system. Let a /∈ I. Then a ∈ R \ I. So there
exists a finite subsets F of < a > and ∆ of Γ such that (fδz) ∩ (R \ I) ̸= ∅ for all
f ∈ F, δ ∈ ∆ and z ∈ R \ I. Let F∆b ⊆ I. Then F∆b ∩ (R \ I) = ∅. If possible let
b /∈ I. Then b ∈ R \ I which implies that (fδb) ∩ (R \ I) ̸= ∅ for all f ∈ F , δ ∈ ∆, a
contradiction. Hence, b ∈ I. Therefore, I is a right strongly prime ideal of R. □

Definition 3.3. Right strongly prime radical of a Γ-semihyperring R is a defined by
SP (R) = ∩¶I ♣ I is a right strongly prime ideal of R♢.

Definition 3.4. A pair of subsets (G, P ) where P is an ideal of a Γ-semihyperring R
and G is a non-empty subset of R is called a super sp-system of R if G ∩ P contains
no nonzero element of R and for any g ∈ G there are finite subsets F of < g > and ∆
of Γ such that (fδz) ∩ G ̸= ∅ for all f ∈ F , δ ∈ ∆ and z /∈ P .

Remark 3.1. An ideal I of a Γ-semihyperring R is a right strongly prime ideal if and
only if (R \ I, I) is super sp-system.



86 J. PATIL AND K. PAWAR

Theorem 3.1. Let any Γ-semihyperring R. Then x ∈ SP (R) if and only if whenever

x ∈ G and (G, P ) is super sp-system for some ideal P of R, then 0 ∈ G.

Proof. Let x ∈ SP (R). If possible let x ∈ G where (G, P ) is a super sp-system and
0 /∈ G. Then G ∩ P = ∅. By Zorn’s Lemma choose an ideal Q with P ⊆ Q and Q is
maximal with respect to G∩Q = ∅. We now prove that Q is a right strongly prime ideal
of R. Let a /∈ Q. Then there is a g ∈ G such that < g >⊆ Q+ < a >. Since (G, P )
is a super sp-system there exists a finite subsets F = ¶f1, f2, . . . , fm♢ ⊆< g > and
∆ ⊆ Γ such that fiδz ∩ G ≠ ∅ for all fi ∈ F , δ ∈ ∆ and z /∈ P . Since F ⊆ Q+ < a >
each fi ∈ qi + ai for some qi ∈ Q and ai ∈< a >. Let F ∗ = ¶a1, a2, . . . , am♢.
Then F ∗ ⊆< a >. Let z ∈ R such that f ∗

i
δz ⊆ Q for all f ∗

i
∈ F ∗, δ ∈ ∆. Then

fiδz ⊆ (qi + ai)δz ⊆ Q for all fi ∈ F , δ ∈ ∆, i.e., F∆z ⊆ Q. If z /∈ Q, then
fiδz ∩ G ̸= ∅, because P ⊆ Q. But this contradict G ∩ Q = ∅. Hence, z ∈ Q must
hold. So, Q is a right strongly prime ideal. But x /∈ Q, since x ∈ G, which is a
contradiction. Hence, 0 ∈ G.

Conversely, let whenever x ∈ G and (G, P ) is super sp-system for some ideal P of
R, then 0 ∈ G. Then there exists a right strongly prime ideal I of R such that x /∈ I.
Then (R \ I, I) is a super sp-system where x ∈ R \ I but 0 /∈ R \ I, a contradiction.
Hence, converse follows. □
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APPLICATIONS POISSON DISTRIBUTION AND RUSCHEWEYH

DERIVATIVE OPERATOR FOR BI-UNIVALENT FUNCTIONS

ABBAS KAREEM WANAS1 AND JANUSZ SOKÓŁ2

Abstract. In this paper we establish upper bounds for the second and third
coefficients of holomorphic and bi-univalent functions in a new family which involve
the Bazilevič functions and β-pseudo-starlike functions under a new operator joining
Poisson distribution with Ruscheweyh derivative operator. Also, we discuss Fekete-
Szegö problem of functions in this family.

1. Introduction

Let A be the collection of functions f that are holomorphic in the unit disk D =
¶♣z♣ < 1♢ in the complex plane C and that have the form:

(1.1) f(z) = z +
∞
∑

n=2

anz
n, z ∈ D.

Further, let S be the sub-collection of A containing of functions which are univalent
in D. According to the Koebe one-quarter theorem (see [3]), every function f ∈ S

has an inverse f−1 such that f−1(f(z)) = z, z ∈ D, and f(f−1(w)) = w, ♣w♣ < r0(f),
r0(f) ≥ 1

4
. If f is of the form (1.1), then

(1.2)

f−1(w) = w − a2w
2 +



2a2
2 − a3



w3 −


5a3
2 − 5a2a3 + a4



w4 + · · · , ♣w♣ < r0(f).

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent
in D. We denote by Σ the set of bi-univalent functions in D. Srivastava et al. [19]
have apparently resuscitated the study of holomorphic and bi-univalent functions in

Key words and phrases. Bi-univalent function, (M, N)-Lucas polynomial, coefficient bound, Fekete-
Szegö problem, Poisson distribution, subordination, Ruscheweyh derivative.
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recent years. It was followed by such works as those by Frasin and Aouf [5], Goyal and
Goswami [6], Srivastava and Bansal [15] and others (see, for example [2, 16Ű18,20]).

For the polynomials M(x) and N(x) with real coefficients, the (M,N)-Lucas Poly-
nomials LM,N,k(x) are deĄned by the following recurrence relation (see [8]):

LM,N,k(x) = M(x)LM,N,k−1(x) +N(x)LM,N,k−2(x), k ≥ 2,

with

(1.3) LM,N,0(x) = 2, LM,N,1(x) = M(x) and LM,N,2(x) = M2(x) + 2N(x).

The Lucas Polynomials play an important role in a diversity of disciplines in the
mathematical, statistical, physical and engineering sciences (see, for example [4,9,21]).
The generating function of the (M,N)-Lucas Polynomial LM,N,k(x) (see [9]) is given
by

(1.4) TM(x),N(x)(z) =
∞
∑

k=2

LM,N,k(x)zk =
2 −M(x)z

1 −M(x)z −N(x)z2
.

Let the functions f and g be holomorphic in D, we say that the function f is
subordinate to g, if there exists a function w, holomorphic in D with w(0) = 0 and
♣w(z)♣ < 1, z ∈ D, such that f(z) = g (w(z)). This subordination is indicated by
f ≺ g or f(z) ≺ g(z), z ∈ D. Furthermore, if the function g is univalent in D, then
we have the following equivalence (see [10])

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(D) ⊂ g(D).

A function f ∈ A is called Bazilevič function of order α, α ≥ 0, if (see [14])

Re

{

z1−αf ′(z)

(f(z))1−α

}

> 0, z ∈ D.

A function f ∈ A is called β-pseudo-starlike function of order β, β ≥ 1, if (see [1])

Re

{

z (f ′(z))β

f(z)

}

> 0, z ∈ D.

Recall that a random variable X has the Poisson distribution with parameter θ, if

P (X = r) =
θre−θ

r!
, r = 0, 1, 2, 3, . . .

Recently, Porwal [11] introduced a power series whose coefficients are probabilities
of ŤPoisson distributionŞ

K(θ, z) = z +
∞
∑

n=2

θn−1

(n− 1)!
e−θzn, z ∈ D,

where θ > 0. By ratio test the radius of convergence of the above series is inĄnity.
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In 2016, Porwal and Kumar [12] introduced and investigated a linear operator
I(θ, z) : A → A, θ > 0, by using the Hadamard product (or convolution) and deĄned
as follows

I(θ, z)f(z) = K(θ, z) ∗ f(z) = z +
∞
∑

n=2

θn−1

(n− 1)!
e−θanz

n, z ∈ D,

where Ť∗Ş indicate the Hadamard product (or convolution) of two power series.
In this paper, for f ∈ A we introduce a new linear operator Jδ

θ : A → A by

(1.5) Jδ
θf(z) = I(θ, z) ∗ Rδ,

where Rδ, δ ∈ N0 = ¶0, 1, 2, . . .♢, denote the Ruscheweyh derivative operator [13]
given by

Rδf(z) = z +
∞
∑

n=2

Γ(δ + n)

Γ(δ + 1)Γ(n)
anz

n, z ∈ D.

It is easy to obtain from (1.5) that

Jδ
θf(z) = z +

∞
∑

n=2

θn−1Γ(δ + n)

Γ(δ + 1) (Γ(n))2 e
−θanz

n, z ∈ D,

where θ > 0, δ ∈ N0 = ¶0, 1, 2, . . .♢.

2. Main Results

We begin this section by deĄning the family ΥΣ(λ, α, β, δ, θ;h) as follows.

Definition 2.1. Assume that α ≥ 0, β ≥ 1, δ ∈ N0, 0 ≤ λ ≤ 1, θ > 0 and h is
analytic in D, h(0) = 1. The function f ∈ Σ is in the family ΥΣ(α, β, δ, λ, θ;h) if it
fulĄlls the subordinations:

(1 − λ)
z1−α



Jδ
θf(z)



′



Jδ
θf(z)

1−α + λ
z





Jδ
θf(z)



′

β

Jδ
θf(z)

≺ h(z)

and

(1 − λ)
w1−α



Jδ
θf

−1(w)


′



Jδ
θf

−1(w)
1−α + λ

w





Jδ
θf

−1(w)


′

β

Jδ
θf

−1(w)
≺ 1 + e1z + e2z

2 + · · · ,

where f−1 is given by (1.2).

In particular, if we choose λ = 1 in DeĄnition 2.1, the family ΥΣ(α, β, δ, λ, θ;h)
reduces to the family LΣ(β, δ, θ;h) of β-pseudo bi-starlike functions which satisfying
the following subordinations:

z





Jδ
θf(z)



′

β

Jδ
θf(z)

≺ h(z)



92 A. K. WANAS AND J. SOKÓŁ

and

w





Jδ
θf

−1(w)


′

β

Jδ
θf

−1(w)
≺ h(w).

If we choose λ = 0 in DeĄnition 2.1, the family ΥΣ(α, β, δ, λ, θ;h) reduces to the
family BΣ(α, δ, θ;h) of Bazilevič bi-univalent functions which satisfying the following
subordinations:

z1−α


Jδ
θf(z)



′



Jδ
θf(z)

1−α ≺ h(z)

and

w1−α


Jδ
θf

−1(w)


′



Jδ
θf

−1(w)
1−α ≺ h(w).

If we choose λ = β = 1 in DeĄnition 2.1, the family ΥΣ(α, β, δ, λ, θ;h) reduces to the
family SΣ(δ, θ;h) of bi-starlike functions which satisfying the following subordinations:

z


Jδ
θf(z)



′

Jδ
θf(z)

≺ h(z)

and

w


Jδ
θf

−1(w)


′

Jδ
θf

−1(w)
≺ h(w).

Theorem 2.1. Assume that α ≥ 0, β ≥ 1, δ ∈ N0, 0 ≤ λ ≤ 1 and θ > 0. If f ∈ Σ of

the form (1.1) is in the class ΥΣ(α, β, δ, λ, θ;h), with h(z) = 1 + e1z+ e2z
2 + · · · , then

(2.1) ♣a2♣ ≤
♣e1♣

[(1 − λ)(α+ 1) + λ(2β − 1)] (δ + 1)θe−θ
=

♣e1♣

A

and

(2.2) ♣a3♣ ≤ min

{

max

{

∣

∣

∣

∣

e1

B

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

e2

B
−
Ce2

1

A2B

∣

∣

∣

∣

∣

}

,max

{

∣

∣

∣

∣

e1

B

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

e2

B
−

(2B + C)e2
1

A2B

∣

∣

∣

∣

∣

}}

,

where

A = [(1 − λ)(α+ 1) + λ(2β − 1)] (δ + 1)θe−θ,(2.3)

B =
1

4
[(1 − λ)(α+ 2) + λ(3β − 1)] (δ2 + 3δ + 2)θ2e−θ,

C =


1

2
(1 − λ)(α+ 2)(α− 1) + λ (2β(β − 2) + 1)



(δ + 1)2
θ2e−2θ.

Proof. Suppose that f ∈ ΥΣ(α, β, δ, λ, θ; ; e1; e2). Then there exist two holomorphic
functions ϕ, ψ : D → D given by

(2.4) ϕ(z) = r1z + r2z
2 + r3z

3 + · · · , z ∈ D,
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and

(2.5) ψ(w) = s1w + s2w
2 + s3w

3 + · · · , w ∈ D,

with ϕ(0) = ψ(0) = 0, ♣ϕ(z)♣ < 1, ♣ψ(w)♣ < 1, z, w ∈ D such that

(1 − λ)
z1−α



Jδ
θf(z)



′



Jδ
θf(z)

1−α + λ
z





Jδ
θf(z)



′

β

Jδ
θf(z)

= 1 + e1ϕ(z) + e2ϕ
2(z) + · · ·(2.6)

and

(1 − λ)
w1−α



Jδ
θf

−1(w)


′



Jδ
θf

−1(w)
1−α + λ

w





Jδ
θf

−1(w)


′

β

Jδ
θf

−1(w)
= 1 + e1ψ(w) + e2ψ

2(w) + · · · .

(2.7)

Combining (2.4), (2.5), (2.6) and (2.7), yield

(1 − λ)
z1−α



Jδ
θf(z)



′



Jδ
θf(z)

1−α + λ
z





Jδ
θf(z)



′

β

Jδ
θf(z)

= 1 + e1r1z +
[

e1r2 + e2(x)r2
1

]

z2 + · · ·

(2.8)

and

(1 − λ)
w1−α



Jδ
θf

−1(w)


′



Jδ
θf

−1(w)
1−α +λ

w





Jδ
θf

−1(w)


′

β

Jδ
θf

−1(w)
=1 + e1s1w +

[

e1s2 + e2s
2
1

]

w2+· · · .

(2.9)

It is quite well-known that if ♣ϕ(z)♣ < 1 and ♣ψ(w)♣ < 1, z, w ∈ D, we get

(2.10) ♣rj♣ ≤ 1 and ♣sj♣ ≤ 1, j ∈ N.

In the light of (2.8) and (2.9), after simplifying, we Ąnd that

[(1 − λ)(α+ 1) + λ(2β − 1)] (δ + 1)θe−θa2 = e1r1,(2.11)

1

4
[(1 − λ)(α+ 2) + λ(3β − 1)] (δ2 + 3δ + 2)θ2e−θa3

+


1

2
(1 − λ)(α+ 2)(α− 1) + λ (2β(β − 2) + 1)



(δ + 1)2
θ2e−2θa2

2

=e1r2 + e2r
2
1,(2.12)

− [(1 − λ)(α+ 1) + λ(2β − 1)] (δ + 1)θe−θa2 = e1s1(2.13)
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and

1

4
[(1 − λ)(α+ 2) + λ(3β − 1)] (δ2 + 3δ + 2)θ2e−θ



2a2
2 − a3



+


1

2
(1 − λ)(α+ 2)(α− 1) + λ (2β(β − 2) + 1)



(δ + 1)2
θ2e−2θa2

2

=e1s2 + e2s
2
1.(2.14)

Inequality (2.1) follows from (2.11) and (2.13). If we apply notation (2.3), then (2.11)
and (2.12) become

(2.15) Aa2 = e1r1, Ba3 + Ca2
2 = e1r2 + e2r

2
1.

This gives

(2.16)
B

e1

a3 = r2 +


e2

e1

−
Ce1

A2



r2
2,

and on using the known sharp result [7, page 10]:

(2.17) ♣r2 − µr2
1♣ ≤ max ¶1, ♣µ♣♢ ,

for all µ ∈ C, we obtain

(2.18)
∣

∣

∣

∣

B

e1

∣

∣

∣

∣

♣a3♣ ≤ max


1,
∣

∣

∣

∣

e2

e1

−
Ce1

A2

∣

∣

∣

∣



.

In the same way, (2.13) and (2.14) become

(2.19) − Aa2 = e1s1, B(2a2
2 − a3) + Ca2

2 = e1s2 + e2s
2
1.

This gives

(2.20) −
B

e1

a3 = s2 +



e2

e1

−
(2B + C)e1

A2



s2
2.

Applying (2.17), we obtain

(2.21)
∣

∣

∣

∣

B

e1

∣

∣

∣

∣

♣a3♣ ≤ max

{

1,

∣

∣

∣

∣

∣

e2

e1

−
(2B + C)e1

A2

∣

∣

∣

∣

∣

}

.

Inequality (2.2) follows from (2.18) and (2.21). □

If we take the generating function (1.4) of the (M,N)-Lucas polynomials LM,N,k(x)
as h(z) + 1, then from (1.3), we have e1 = M(x) and e2 = M2(x) + 2N(x) and
Theorem 2.1 becomes the following corollary.

Corollary 2.1. If f ∈ Σ of the form (1.1) is in the class ΥΣ(α, β, δ, λ, θ;TM(x),N(x)−1),
then

♣a2♣ ≤
♣M(x)♣

[(1 − λ)(α+ 1) + λ(2β − 1)] (δ + 1)θe−θ
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and

♣a3♣ ≤ min

{

max

{
∣

∣

∣

∣

∣

M(x)

B

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

M2(x) + 2N(x)

B
−
CM2(x)

A2B

∣

∣

∣

∣

∣

}

,

max

{∣

∣

∣

∣

∣

M(x)

B

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

M2(x) + 2N(x)

B
−

(2B + C)M2(x)

A2B

∣

∣

∣

∣

∣

}}

,

for all α, β, δ, λ, θ, x such that α ≥ 0, β ≥ 1, δ ∈ N0, 0 ≤ λ ≤ 1, θ > 0 and x ∈ R,

where A,B,C are given by (2.3) and TM(x),N(x) is given by (1.4).

In the next theorem, we discuss a bound for ♣a3 − ηa2
2♣ called Ťthe Fekete-Szegö

problemŞ.

Theorem 2.2. If f ∈ Σ of the form (1.1) is in the class ΥΣ(α, β, δ, λ, θ;h), then

∣

∣

∣a3 − ηa2
2

∣

∣

∣

(2.22)

≤
♣e1♣

B
min

{

max

{

1,

∣

∣

∣

∣

∣

e2

e1

−
(C − ηB)e1

A2

∣

∣

∣

∣

∣

}

,max

{

1,

∣

∣

∣

∣

∣

e2

e1

−
(2B + C − ηB)e1

A2

∣

∣

∣

∣

∣

}}

,

for all α, β, δ, λ, θ, η such that α ≥ 0, β ≥ 1, δ ∈ N0, 0 ≤ λ ≤ 1, θ > 0 and η ∈ C,

where A,B,C are given by (2.3).

Proof. We apply the notations from the proof of Theorem 2.1. From (2.15) and from
(2.16), we have

(2.23) a3 − ηa2
2 =

e1

B



r2 +



e2

e1

−
(C − ηB)e1

A2



r2
1



and on using the known sharp result ♣r2 − µr2
1♣ ≤ max ¶1, ♣µ♣♢, we get

(2.24) ♣a3 − ηa2
2♣ ≤

♣e1♣

B
max

{

1,

∣

∣

∣

∣

∣

e2

e1

−
(C − ηB)e1

A2

∣

∣

∣

∣

∣

}

.

In the same way, from (2.19) and from (2.20), we have

(2.25) a3 − ηa2
2 = −

e1

B



s2 +



e2

e1

−
(2B + C − ηB)e1

A2



s2
1



and on using ♣s2 − µs2
1♣ ≤ max ¶1, ♣µ♣♢, we get

(2.26) ♣a3 − ηa2
2♣ ≤

♣e1♣

B
max

{

1,

∣

∣

∣

∣

∣

e2

e1

−
(2B + C − ηB)e1

A2

∣

∣

∣

∣

∣

}

.

Inequality (2.22) follows from (2.24) and (2.26). □
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Corollary 2.2. If f ∈ Σ of the form (1.1) is in the class ΥΣ(α, β, δ, λ, θ;TM(x),N(x)−1),
then
∣

∣

∣a3 − ηa2
2

∣

∣

∣ ≤
♣M(x)♣

B
min

{

max

{

1,

∣

∣

∣

∣

∣

M2(x) + 2N(x)

M(x)
−

(C − ηB)M(x)

A2

∣

∣

∣

∣

∣

}

,

max

{

1,

∣

∣

∣

∣

∣

M2(x) + 2N(x)

M(x)
−

(2B + C − ηB)M(x)

A2

∣

∣

∣

∣

∣

}}

,

for all α, β, δ, λ, θ, η, x such that α ≥ 0, β ≥ 1, δ ∈ N0, 0 ≤ λ ≤ 1, θ > 0, η ∈ C and

x ∈ R, where A,B,C are given by (2.3) and TM(x),N(x) is given by (1.4).
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HALF LIGHTLIKE SUBMANIFOLDS OF A GOLDEN

SEMI-RIEMANNIAN MANIFOLD

NERGIZ (ÖNEN) POYRAZ1, EROL YAŞAR2, AND DOĞAN DÖNMEZ3

Abstract. We present half lightlike submanifolds of a golden semi-Riemannian
manifold. We prove that there is no radical anti-invariant half lightlike submanifold
of a golden semi-Riemannian manifold. We get results for screen semi-invariant
half lightlike submanifolds of a golden semi-Riemannian manifold. We prove the
conditions for integrability of distributions on screen semi-invariant half lightlike
submanifolds and investigate the geometry of leaves of distributions. Moreover, we
study screen conformal half lightlike submanifolds of a golden semi-Riemannian
manifold.

1. Introduction

The theory of lightlike submanifolds is a signiĄcant topic of research in modern
differential geometry. Lightlike submanifolds were developed by Duggal and Bejancu
[5] and Duggal and Şahin [9]. Class of lightlike submanifolds of codimension 2 is
called half lightlike or coisotropic submanifolds the according to the rank of its radical
distribution. This class is composed of two subclasses [6]. Half lightlike submani-
fold is a special case of the general r-lightlike submanifold such that r = 1 and its
geometry is more general form than that of coisotropic submanifold or lightlike hy-
persurface [5]. Screen semi-invariant half lightlike submanifolds of a semi-Riemannian
product manifold were studied in [3]. Real half lightlike submanifolds of an indeĄnite
Kaehler manifold were studied in [17]. Semi-invariant lightlike submanifolds of a
semi-Riemannian product manifold were presented in [2].

Key words and phrases. Golden semi-Riemannian manifolds, golden structure, half lightlike sub-
manifolds, screen semi-invariant half lightlike submanifolds.
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Notion of a f -structure which is a (1,1)-tensor Ąeld of constant rank on Ñ and
satisĄes the equality f 3 + f = 0. It is a generalization of almost complex and
almost contact structures. This notion is presented in [22]. It has been generalized
by Goldberg and Yano. They deĄned a polynomial structure of degree d which
is a (1,1)-tensor Ąeld f of constant rank on Ñ and satisĄes the equation Q(f) =
fd + adfd−1 + · · · + a2f + a1I = 0, where a1, a2, . . . , ad are real numbers and I is

the identity tensor of type (1, 1) [12]. The number ϕ = 1+
√

5
2

≈ 1.618 . . . which is
a solution of the equation x2 − x − 1 = 0 represents the golden proportion. The
golden proportion has been used in many different areas such as in architecture,
music, arts and philosophy. Using the golden proportion, Crasmareanu and Hretcanu
deĄned a golden manifold Ñ by a tensor Ąeld P̃ on Ñ satisĄes P̃ 2 = P̃ + I in [4].
They also deĄned golden Riemannian manifolds and studied their submanifolds in
[15]. Şahin and Akyol introduced golden maps between golden Riemannian manifolds
and showed that such maps are harmonic maps [21]. Gök, Keleş and Kılıç studied
some characterizations for any submanifold of a golden Riemannian manifold to be
semi-invariant in terms of canonical structures on the submanifold, induced by the
golden structure of the ambient manifold [13]. Poyraz and Yaşar introduced lightlike
hypersurfaces of a golden semi-Riemannian manifold [20]. Moreover several works in
this direction are studied [1, 10,11].

In this paper, we introduce half lightlike submanifolds of a golden semi-Riemannian
manifold. In Section 2, we give basic concepts. In Section 3, we introduce half
lightlike submanifolds of a golden semi-Riemannian manifold. We deĄne invariant,
screen semi-invariant and radical anti-invariant half lightlike submanifolds. Moreover,
we prove that there is no radical anti-invariant half lightlike submanifold of a golden
semi-Riemannian manifold. In Section 4, we obtain results for screen semi-invariant
half lightlike submanifolds. We prove the conditions for integrability of distributions
on screen semi-invariant half lightlike submanifolds and investigate the geometry of
leaves of distributions. We also give two examples. We Ąnd condition for its Ricci
tensor to be symmetric. In Section 5, we investigate screen conformal half lightlike
submanifolds of a golden semi-Riemannian manifold.

2. Preliminaries

Let Ñ be an n-dimensional differentiable manifold. If a tensor Ąeld P̃ of type (1, 1)
satisĄes the following equation

(2.1) P̃ 2 = P̃ + I,

then P̃ is called a golden structure on Ñ , where I is the identity transformation [14].
Let (Ñ , g̃) be a semi-Riemannian manifold and P̃ be a golden structure on Ñ . If

P̃ satisĄes the following equation

(2.2) g̃(P̃X, Y ) = g̃(X, P̃Y ),

then (Ñ , g̃, P̃ ) is called a golden semi-Riemannian manifold [19].
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Let (Ñ , g̃, P̃ ) be a golden semi-Riemannian manifold. Then the equation (2.2) is
equivalent to

(2.3) g̃(P̃X, P̃Y ) = g̃(P̃X, Y ) + g̃(X, Y ),

for any X, Y ∈ Γ(TÑ).
If F is an almost product structure on Ñ , then

P̃ =
1

2
(I +

√
5F )

is a golden structure on Ñ . Conversely, if P̃ is a golden structure on Ñ , then

F =
1√
5

(2P̃ − I)

is an almost product structure on Ñ [4].

Let Ńp and Ńq be real space forms with constant sectional curvatures cp and cq,
respectively. Then similar calculations of semi-Riemannian product real space form
(see [23]), one obtains the Riemannian curvature tensor R̃ of a locally golden product

space form (Ñ = Ńp(cp) × Ńq(cq), g̃, P̃ ) as the following

R̃(X, Y )Z =



−(1 − ϕ)cp − ϕcq

2
√

5



¶g̃(Y, Z)X − g̃(X,Z)Y + g̃(P̃ Y, Z)P̃X

− g̃(P̃X, Z)P̃ Y ♢ +



−(1 − ϕ)cp + ϕcq

4



¶g̃(P̃ Y, Z)X(2.4)

− g̃(P̃X, Z)Y + g̃(Y, Z)P̃X − g̃(X,Z)P̃ Y ♢.
Let (Ñ , g̃) be an (n+ 3)-dimensional semi-Riemannian manifold of index q ≥ 1 and

Ń be a lightlike submanifold of codimension 2 of Ñ . Then the radical distribution
Rad(TŃ) = TŃ ∩ TŃ⊥ of Ń is a vector subbundle of the tangent bundle TŃ and

the normal bundle TŃ⊥ of rank 1 or 2. If rank(Rad(TŃ)) = 1, then Ń is called
half lightlike submanifold of Ñ . Then there exist complementary non-degenerate
distributions S(TŃ) and S(TŃ⊥) of Rad(TŃ) in TŃ and TŃ⊥, which are called the

screen and the screen transversal distribution on Ń respectively. Thus, we have

(2.5) TŃ = Rad(TŃ) ⊥ S(TŃ), T Ń⊥ = Rad(TŃ) ⊥ S(TŃ⊥).

Choose L ∈ Γ(S(TŃ⊥)) as a unit vector Ąeld with g̃ (L,L) = ϵ = ±1. Consider the

orthogonal complementary distribution S(TŃ)⊥ to S(TŃ) in TÑ . Then ξ and L

belong to Γ(S(TŃ)⊥). Thus, we obtain

S(TŃ)⊥ = S(TŃ⊥) ⊥ S(TŃ⊥)⊥,

where S(TŃ⊥)⊥ is the orthogonal complementary to S(TŃ⊥) in S(TŃ)⊥. For any

null section ξ ∈ Rad(TŃ) on a coordinate neighborhood U ⊂ Ń , there exists a

uniquely determined null vector Ąeld N ∈ Γ(ltr(TŃ)) satisfying

g̃ (N, ξ) = 1, g̃ (N,N) = g̃(N,X) = g̃(N,L) = 0, for all X ∈ Γ(TŃ).
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We call N , ltr(TŃ) and tr(TŃ) = S(TŃ⊥) ⊥ ltr(TŃ) the lightlike transversal

vector Ąeld, lightlike transversal vector bundle and transversal vector bundle of Ń
with respect to S(TŃ), respectively. Hence we have

TÑ = TŃ ⊕ tr(TŃ)

= ¶Rad(TŃ) ⊕ ltr(TŃ)♢ ⊥ S(TŃ) ⊥ S(TŃ⊥).(2.6)

Let ∇̃ be the Levi-Civita connection of Ñ . Using (2.6) we deĄne the projection

morphism Q : Γ(TŃ) → Γ(S(TŃ)). Hence we derive

∇̃XY = ∇XY +D1(X, Y )N +D2(X, Y )L,(2.7)

∇̃XU = −AUX + ∇t
XU,(2.8)

∇̃XN = −ANX + τ(X)N + ρ(X)L,(2.9)

∇̃XL = −ALX + ψ(X)N,(2.10)

∇XQY = ∇∗
XQY + E(X,QY )ξ,(2.11)

∇Xξ = −A∗
ξX − τ(X)ξ,(2.12)

for any X, Y ∈ Γ(TŃ), ξ ∈ Γ(Rad(TŃ)), U ∈ Γ(tr(TŃ)), N ∈ Γ(ltr(TŃ)) and

L ∈ Γ(S(TŃ⊥)). Then ∇ and ∇∗ are called induced linear connections on TŃ and

S(TŃ) respectively, D1 and D2 are called the local second fundamental forms of

Ń , C is called the local second fundamental form on S(TŃ). AN , A∗
ξ and AL are

called linear operators on TŃ . Also τ , ρ and ψ are called 1-forms on TŃ . Since
the connection ∇̃ of Ñ is torsion-free, ∇ of Ń is also torsion-free and D1 and D2 are
symmetric on TŃ . D1 and D2 satisfy

(2.13) D1(X, ξ) = 0, D2(X, ξ) = −ϵψ(X),

for all X ∈ Γ(TŃ).

The induced connection ∇ of Ń is not metric and satisĄes

(∇Xg)(Y, Z) = D1(X, Y )η(Z) +D1(X,Z)η(Y ),

for any X, Y, Z ∈ Γ(TŃ), where η is a 1−form deĄned by

η(X) = g̃(X,N),

for all X ∈ Γ(TŃ). Therefore, one obtains

D1(X, Y ) = g(A∗
ξX, Y ), g(A∗

ξX,N) = 0,(2.14)

E(X,QY ) = g(ANX,QY ), g(ANX,N) = 0,(2.15)

ϵD2(X,QY ) = g(ALX,QY ), g(ALX,N) = ϵρ(X),(2.16)

ϵD2(X, Y ) = g(ALX, Y ) − ψ(X)η(Y ),(2.17)

for all X, Y ∈ Γ(TŃ). By (2.14) and (2.15), A∗
ξ and AN are Γ(S(TŃ))-valued shape

operators related to D1 and E, respectively and A∗
ξξ = 0.
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Using (2.7), (2.12) and (2.13), one derives

(2.18) ∇̃Xξ = −A∗
ξX − τ(X)ξ − ϵψ(X)L,

for any X ∈ Γ(TŃ).

Definition 2.1. A half lightlike submanifold (Ń , g) of a semi-Riemannian manifold

(Ñ , g̃) is said to be irrotational [18] if ∇̃Xξ ∈ Γ(TŃ) for any X ∈ Γ(TŃ). From (2.13)
and (2.18), deĄnition of irrotational is equivalent to the condition ψ(X) = 0, that is,

D2(X, ξ) = 0 for any X ∈ Γ(TŃ).

Definition 2.2. A half lightlike submanifold (Ń , g) of a semi-Riemannian manifold

(Ñ , g̃) is called totally umbilical in Ñ , if there is a smooth vector Ąeld H ∈ Γ(tr(TŃ))
on any coordinate neighborhood U such that

h(X, Y ) = Hg(X, Y ),

for any X, Y ∈ Γ(TŃ), where

(2.19) h(X, Y ) = D1(X, Y )N +D2(X, Y )L

is the global second fundamental form tensor of Ń . In case H = 0 on U , we say that
Ń is totally geodesic [6].

It is easy to see that Ń is totally umbilical iff, on each coordinate neighborhood U ,
there exist smooth vector functions λ and δ such that

(2.20) D1(X, Y ) = λg(X, Y ), D2(X, Y ) = δg(X, Y ),

for any X, Y ∈ Γ(TŃ).

Definition 2.3. We say that the screen distribution S(TŃ) of Ń is totally umbilical

[6] in Ń if there is a smooth function γ on any coordinate neighborhood U ⊂ Ń such
that

(2.21) E(X,QY ) = γg(X, Y ),

for any X, Y ∈ Γ(TŃ). If γ = 0 on U , then we say that S(TŃ) is totally geodesic in

Ń .

We indicate by R̃, R and R∗ the curvature tensors of ∇̃, ∇ and ∇∗, respectively.
From (2.7)Ű(2.12), we derive the Gauss-Codazzi equations for Ń and S(TŃ):

g̃(R̃(X, Y )Z,QW ) =g(R(X, Y )Z,QW )

+D1(X,Z)E(Y,QW ) −D1(Y, Z)E(X,QW )(2.22)

+ ϵ ¶D2(X,Z)D2(Y,QW ) −D2(Y, Z)D2(X,QW )♢ ,
g̃(R̃(X, Y )Z, ξ) =(∇XD1)(Y, Z) − (∇YD1)(X,Z)

+ τ(X)D1(Y, Z) − τ(Y )D1(X,Z)(2.23)

+ ψ(X)D2(Y, Z) − ψ(Y )D2(X,Z),
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g̃(R̃(X, Y )Z,N) =g(R(X, Y )Z,N)

+ ϵ ¶ρ(Y )D2(X,Z) − ρ(X)D2(Y, Z)♢ ,(2.24)

g̃(R̃(X, Y )ξ,N) =g(A∗
ξX,ANY ) − g(A∗

ξY,ANX)

− 2dτ(X, Y ) + ρ(X)ψ(Y ) − ρ(Y )ψ(X),(2.25)

g(R(X, Y )QZ,QW ) =g(R∗(X, Y )Z,QW ) +D1(Y,QW )E(X,QZ)

−D1(X,QW )E(Y,QZ),(2.26)

g̃(R(X, Y )QZ,N) =(∇XE)(Y,QZ) − (∇YE)(X,QZ)

+ τ(Y )E(X,QZ) − τ(X)E(Y,QZ),(2.27)

for any X, Y, Z ∈ Γ(TŃ).

3. Half Lightlike Submanifolds of a Golden Semi-Riemannian
Manifold

Let (Ñ , g̃, P̃ ) be a golden semi-Riemannian manifold and Ń be a half lightlike

submanifold of Ñ . For any X ∈ Γ(TŃ), N ∈ Γ(ltr(TŃ)) and L ∈ Γ(S(TŃ⊥)), we
can write

P̃X = PX + θ1(X)N + θ2(X)L,(3.1)

P̃N = U + θ1(N)N + θ2(N)L,(3.2)

P̃L = W + θ1(L)N + θ2(L)L,(3.3)

where PX,U,W ∈ Γ(TŃ) and θ1 and θ2 are 1-forms deĄned by

θ1(·) = g(·, P̃ ξ), θ2(·) = ϵg(·, P̃L).

Lemma 3.1. Let Ń be a half lightlike submanifold of a golden semi-Riemannian

manifold (Ñ , g̃, P̃ ). Then, we have

P 2X =PX +X − θ1(X)U − θ2(X)W,(3.4)

θ1(PX) =θ1(X)(1 − θ1(N)) − θ2(X)θ1(L),(3.5)

θ2(PX) =θ2(X)(1 − θ2(L)) − θ1(X)θ2(N),(3.6)

PU =U(1 − θ1(N)) − θ2(N)W,(3.7)

θ1(U) =1 + θ1(N) − (θ1(N))2 − θ2(N)θ1(L),(3.8)

θ2(U) =θ2(N)(1 − θ1(N)) − θ2(N)θ2(L),(3.9)

PW =(1 − θ2(L))W − θ1(L)U,(3.10)

θ1(W ) =θ1(L)(1 − θ1(N) − θ2(L)),(3.11)

θ2(W ) =1 + θ2(L) − (θ2(L))2 − θ1(L)θ2(N),(3.12)

g(PX, Y ) − g(X,PY ) =(−θ1 ⊗ η + η ⊗ θ1)(X, Y ),(3.13)

g(PX,PY ) =g(PX, Y ) + g(X, Y ) + θ1(X)η(Y ) − η(PX)θ1(Y )(3.14)
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− θ1(X)η(PY ) − ϵθ2(X)θ2(Y ),

for any X, Y ∈ Γ(TŃ).

Proof. Applying P̃ to (3.1), using (2.1) and taking tangential, lightlike transversal
and screen transversal parts of the resulting equation, we derive (3.4), (3.5) and (3.6).
Similarly, applying P̃ to (3.2) and (3.3), using (2.1), we get (3.7), (3.8), (3.9), (3.10),
(3.11) and (3.12). Using (2.2), (2.3) and (3.1), we obtain (3.13) and (3.14). □

Lemma 3.2. Let Ń be a half lightlike submanifold of a golden semi-Riemannian

manifold (Ñ , g̃, P̃ ) with ∇̃P̃ = 0. Then, we have

(∇XP )Y =θ1(Y )ANX + θ2(Y )ALX +D1(X, Y )U +D2(X, Y )W,(3.15)

(∇Xθ1)Y = −D1(X,PY ) − τ(X)θ1(Y ) − ϕ(X)θ2(Y )

+D1(X, Y )θ1(N) +D2(X, Y )θ1(L),(3.16)

(∇Xθ2)Y = −D2(X,PY ) − ρ(X)θ1(Y ) +D1(X, Y )θ2(N)

+D2(X, Y )θ2(L),(3.17)

∇XU = − PANX + τ(X)U + ρ(X)W + θ1(N)ANX + θ2(N)ALX,(3.18)

D1(X,U) = −X(θ1(N)) − ϕ(X)θ2(N) − θ1(ANX) + ρ(X)θ1(L),(3.19)

D2(X,U) = −X(θ2(N)) − ρ(X)θ1(N) − θ2(ANX) + τ(X)θ2(N)

+ ρ(X)θ2(L),(3.20)

∇XW = − PALX + θ1(L)ANX + θ2(L)ALX + ϕ(X)U,(3.21)

D1(X,W ) = − τ(X)θ1(L) − ϕ(X)θ2(L) − θ1(ALX) + ϕ(X)θ1(N)

−X(θ1(L)),(3.22)

D2(X,W ) = − ρ(X)θ1(L) −X(θ2(L)) − θ2(ALX) + ϕ(X)θ2(N),(3.23)

for any X, Y ∈ Γ(TŃ).

Proof. Since ∇̃P̃ = 0, we obtain ∇̃XP̃ Y = P̃ ∇̃XY for any X, Y ∈ Γ(TŃ). Taking
tangential, lightlike transversal and screen transversal parts of the resulting equation,
we get (3.15), (3.16) and (3.17). Similarly, replacing Y with N and L respectively we
obtain (3.18), (3.19), (3.20), (3.21), (3.22) and (3.23). □

Throughout this paper, we assume that ∇̃P̃ = 0.

Definition 3.1. Let Ń be a half lightlike submanifold of a golden semi-Riemannian
manifold (Ñ , g̃, P̃ ).

i) We say that Ń is an invariant half lightlike submanifold if P̃ (TŃ) = TŃ .

ii) We say that Ń is a screen semi-invariant half lightlike submanifold if

P̃ (Rad(TŃ)) ⊂ S(TŃ) and P̃ (ltr(TŃ)) ⊂ S(TŃ).

iii) We say that Ń is a radical anti-invariant half lightlike submanifold if

P̃ (Rad(TŃ)) = ltr(TŃ).
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Theorem 3.1. Let Ń be a half lightlike submanifold of a golden semi-Riemannian

manifold (Ñ , g̃, P̃ ). Then the following assertions are equivalent.

i) Ń is invariant.

ii) θ1 and θ2 vanish on Ń .

iii) P is a golden structure on Ń .

Proof. Ń is invariant if and only if P̃X = PX for any X ∈ Γ(TŃ). Then θ1(X) =
θ2(X) = 0 and we obtain i)⇔ii).

θ1 and θ2 vanish on Ń if and only if P̃X = PX for any X ∈ Γ(TŃ). Then

P 2X = PX + X and g(PX, Y ) = g(X,PY ) for any X, Y ∈ Γ(TŃ). Thus, P is a

golden structure on Ń and we get ii)⇔iii). □

Theorem 3.2. There is no radical anti-invariant half lightlike submanifold of a golden

semi-Riemannian manifold.

Proof. Suppose on the contrary that Ń is a radical anti-invariant half lightlike sub-
manifold of a golden semi-Riemannian manifold Ñ . By the deĄnition of radical
anti-invariant for ξ ∈ Γ(Rad(TŃ)), P̃ ξ ∈ Γ(ltr(TŃ)). Using (2.3), we obtain

g̃(P̃ ξ, P̃ ξ) = g̃(P̃ ξ, ξ) + g̃(ξ, ξ),

0 = g̃(P̃ ξ, ξ) + 0.

Thus, g̃(P̃ ξ, ξ) = 0 and P̃ ξ /∈ Γ(ltr(TŃ)) which is a contradiction. □

4. Screen Semi-invariant Half Lightlike Submanifolds of a Golden
Semi-Riemannian Manifold

Let (Ń , g, S(TŃ)) be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). If we take L1 = P̃ (Rad(TŃ)), L2 = P̃ (ltr(TŃ))

and L3 = P̃ (S(TŃ⊥)), then we can write

S(TŃ) = L0 ⊥ ¶L1 ⊕ L2♢ ⊥ L3,

where L0 is a (n− 3)-dimensional distribution. Therefore, we have

TÑ = L0 ⊥ ¶L1 ⊕ L2♢ ⊥ L3 ⊥ ¶Rad(TŃ) ⊕ ltr(TŃ)♢ ⊥ S(TŃ⊥).

If we set

L = L0 ⊥ Rad(TŃ) ⊥ P̃ (Rad(TŃ)) and L⊥ = L2 ⊥ L3,

we can write

(4.1) TŃ = L⊕ L⊥, T Ñ = ¶L⊕ L⊥♢ ⊕ ltr(TŃ) ⊥ S(TŃ⊥).

Let U , V and W be vector Ąelds deĄned by

(4.2) U = P̃N, V = P̃ ξ, W = P̃L.
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From Lemma 3.1, Lemma 3.2, differentiating (4.2) with X and using Gauss-
Weingarten formulas we obtain

P 2X =PX +X − θ1(X)U − θ2(X)W,(4.3)

θ1(PX) =θ1(X), θ2(PX) = θ2(X), PU = U, PW = W,(4.4)

θ1(U) =1, θ2(U) = 0, θ1(W ) = 0, θ2(W ) = 1,(4.5)

g(PX, Y ) − g(X,PY ) =(−θ1 ⊗ η + η ⊗ θ1)(X, Y ),(4.6)

g(PX,PY ) =g(PX, Y ) + g(X, Y ) + θ1(X)η(Y ) − η(PX)θ1(Y )

− θ1(X)η(PY ) − ϵθ2(X)θ2(Y ),(4.7)

(∇XP )Y =θ1(Y )ANX + θ2(Y )ALX +D1(X, Y )U

+D2(X, Y )W,(4.8)

(∇Xθ1)Y = −D1(X,PY ) − τ(X)θ1(Y ) − ψ(X)θ2(Y ),(4.9)

(∇Xθ2)Y = −D2(X,PY ) − ρ(X)θ1(Y ),(4.10)

∇XU = − PANX + τ(X)U + ρ(X)W,(4.11)

∇XV = − PA∗
ξX − τ(X)V − ϵψ(X)W,(4.12)

∇XW = − PALX + ψ(X)U,(4.13)

D1(X,U) = − E(X,V ), D1(X,W ) = −ϵD2(X,V ),(4.14)

ϵD2(X,U) = − E(X,W ),

D1(X,V ) =E(X,U) = D2(X,W ) = 0,(4.15)

for any X, Y ∈ Γ(TŃ).

Corollary 4.1. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then, we have

D1(X,V ) = 0,

that is, vector field V degenerates local second fundamental form of Ń .

Corollary 4.2. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then, there is no L2-component of A∗
ξ.

Proof. From (2.14)-1 and (4.15), we get D1(X,V ) = g(A∗
ξX,V ) = 0. Thus, the proof

is completed. □

Corollary 4.3. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then, there is no L1-component of AN .

Proof. From (2.15)-1 and (4.15), we obtain E(X,U) = g(ANX,U) = 0, which proves
the assertion. □

Corollary 4.4. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then, there is no L3-component of AL.
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Proof. From (2.16)-1 and (4.15), we have D2(X,W ) = g(ALX,W ) = 0. Thus, the
proof is completed. □

Proposition 4.1. The distribution L0 and L are invariant distributions with respect

to P̃ .

Example 4.1. Let (Ñ = R
7
3, g̃) be a 7-dimensional semi-Euclidean space with signature

(−,+,−,+,+,+,−) and (x1, x2, x3, x4, x5, x6, x7) be the standard coordinate system
of R

7
3. If we deĄne a mapping P̃ by P̃ (x1, x2, x3, x4, x5, x6, x7) = (ϕx1, ϕx2, (1 −

ϕ)x3, (1 − ϕ)x4, ϕx5, (1 − ϕ)x6, ϕx7), then P̃ 2 = P̃ + I and P̃ is a golden structure on

Ñ . Let Ń be a half lightlike submanifold in Ñ given by the equations

x1 = t1 + ϕt2 − ϕ

2(2 + ϕ)
t3, x2 = t1 + ϕt2 +

ϕ

2(2 + ϕ)
t3,

x3 = ϕt1 − t2 +
1

2(2 + ϕ)
t3, x4 = ϕt1 − t2 − 1

2(2 + ϕ)
t3,

x5 =
√

2ϕt4 + t5, x6 = −t4, x7 = ϕt4 +
√

2t5,

where ti, 1 ≤ i ≤ 5, are real parameters. Thus, TŃ = Span¶U1, U2, U3, U4, U5♢, where

U1 =
∂

∂x1

+
∂

∂x2

+ ϕ
∂

∂x3

+ ϕ
∂

∂x4

, U2 = ϕ
∂

∂x1

+ ϕ
∂

∂x2

− ∂

∂x3

− ∂

∂x4

,

U3 = − 1

2(2 + ϕ)



ϕ
∂

∂x1

− ϕ
∂

∂x2

− ∂

∂x3

+
∂

∂x4



, U4 =
√

2ϕ
∂

∂x5

− ∂

∂x6

+ ϕ
∂

∂x7

,

U5 =
∂

∂x5

+
√

2
∂

∂x7

.

We easily check that the vector U1 is a degenerate vector, Ń is a 1-lightlike sub-
manifold of Ñ . We set ξ = U1, then we have Rad(TŃ) = Span¶ξ♢ and S(TŃ) =
Span¶U2, U3, U4, U5♢. We can easily obtain

ltr(TŃ) = Span

{

N = − 1

2(2 + ϕ)



∂

∂x1

− ∂

∂x2

+ ϕ
∂

∂x3

− ϕ
∂

∂x4

}

and

S(TŃ⊥) = Span

{

L =
√

2
∂

∂x5

+ ϕ
∂

∂x6

+
∂

∂x7

}

.

Thus, Ń is a half lightlike submanifold of Ñ . We also get

P̃ ξ = U2, P̃N = U3, P̃L = U4.

If we set L0 = Span¶U5♢, L1 = Span¶U2♢, L2 = Span¶U3♢, L3 = Span¶U4♢, then Ń
is a screen semi-invariant half lightlike submanifold of Ñ .

Example 4.2. Let (Ñ = R
8
2, g̃) be a 8-dimensional semi-Euclidean space with signa-

ture (+,+,−,+,−,+,+,+) and (x1, x2, x3, x4, x5, x6, x7, x8) be the standard coor-
dinate system of R8

2. If we deĄne a mapping P̃ by P̃ (x1, x2, x3, x4, x5, x6, x7, x8) =
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(ϕx1, ϕx2, ϕx3, ϕx4, (1 − ϕ)x5, ϕx6, (1 − ϕ)x7, (1 − ϕ)x8), then P̃ 2 = P̃ + I and P̃ is

a golden structure on Ñ . Let Ń be a half lightlike submanifold in Ñ given by the
equations

x1 = t1 + t4 + ϕt5 + t6, x2 = −t2 + t4 + ϕt5,

x3 =
1√
2
t1 +

1√
2
t2 +

√
2t4 +

√
2ϕt5 +

1√
2
t6, x4 =

1

2
log(1 + (t1 − t2)

2),

x5 = (1 − ϕ)t2 + ϕt4 − t5, x6 = ϕt3, x7 = −(1 − ϕ)t2 + ϕt4 − t5, x8 = t3,

where ti, 1 ≤ i ≤ 6, are real parameters. Thus, TŃ = Span¶U1, U2, U3, U4, U5, U6♢,
where

U1 =
∂

∂x1

+
1√
2

∂

∂x3

+
(t1 − t2)

(1 + (t1 − t2)2)

∂

∂x4

,

U2 = − ∂

∂x2

+
1√
2

∂

∂x3

− (t1 − t2)

(1 + (t1 − t2)2)

∂

∂x4

+ (1 − ϕ)
∂

∂x5

− (1 − ϕ)
∂

∂x7

,

U3 = ϕ
∂

∂x6

+
∂

∂x8

, U4 =
∂

∂x1

+
∂

∂x2

+
√

2
∂

∂x3

+ ϕ
∂

∂x5

+ ϕ
∂

∂x7

,

U5 = ϕ
∂

∂x1

+ ϕ
∂

∂x2

+
√

2ϕ
∂

∂x3

− ∂

∂x5

− ∂

∂x7

, U6 =
∂

∂x1

+
1√
2

∂

∂x3

.

It follows that Rad(TŃ) = Span¶U4♢ and S(TŃ) = Span¶W1 = U1,W2 = U5,W3 =
− φ

2(2+φ)
(U1 + U2) ,W4 = U3,W5 = U6♢. By direct calculations we obtain

ltr(TŃ) = Span

{

N = − 1

2(2 + ϕ)



∂

∂x1

− ∂

∂x2

+
√

2
∂

∂x3

+ ϕ
∂

∂x5

− ϕ
∂

∂x7

}

and

S(TŃ⊥) = Span

{

L =
∂

∂x6

− ϕ
∂

∂x8

}

.

Thus, Ń is a half lightlike submanifold of Ñ . We also get

P̃ ξ = W2, P̃N = W3, P̃L = W4.

If we set L0 = Span¶W1,W5♢, L1 = Span¶W2♢, L2 = Span¶W3♢, L3 = Span¶W4♢,

then Ń is a screen semi-invariant half lightlike submanifold of Ñ .

Theorem 4.1. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then L0 is integrable if and only if

D1(P̃X, P̃Y ) = D1(P̃X, Y ) +D1(X, Y ),

E(P̃X, P̃Y ) = E(Y, P̃X) + E(Y,X),

D2(P̃X, P̃Y ) = D2(P̃X, Y ) +D2(X, Y ),

E(P̃X, Y ) = E(Y, P̃X),

for any X, Y ∈ Γ(L0).



110 N. (ÖNEN) POYRAZ, E. YAŞAR, AND D. DÖNMEZ

Proof. Since L0 is invariant, if X ∈ Γ(L0), then P̃X ∈ Γ(L0). The distribution L0 is
integrable if and only if

θ1([P̃X, Y ]) = θ3([P̃X, Y ]) = θ2([P̃X, Y ]) = η([P̃X, Y ]) = 0,

for any X, Y ∈ Γ(L0), where θ3 is 1-form deĄned by

θ3(X) = g(X, P̃N).

Then from (2.2), (2.3), (2.7) and (2.11) we derive

θ1([P̃X, Y ]) =D1(P̃X, P̃Y ) −D1(Y, P̃X) −D1(Y,X),(4.16)

θ3([P̃X, Y ]) =E(P̃X, P̃Y ) − E(Y, P̃X) − E(Y,X),(4.17)

θ2([P̃X, Y ]) =ϵD2(P̃X, P̃Y ) − ϵD2(Y, P̃X) − ϵD2(Y,X),(4.18)

η([P̃X, Y ]) =E(P̃X, Y ) − E(Y, P̃X).(4.19)

From (4.16), (4.17), (4.18) and (4.19) we derive our theorem. □

Theorem 4.2. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then the distribution L is integrable if and

only if

D1(P̃X, P̃Y ) = D1(P̃X, Y ) +D1(X, Y ),

D2(P̃X, P̃Y ) = D2(P̃X, Y ) +D2(X, Y ),

for any X, Y ∈ Γ(L).

Proof. L is integrable if and only if

θ1([P̃X, Y ]) = θ2([P̃X, Y ]) = 0,

for any X, Y ∈ Γ(L). Then using (4.16) and (4.18) we obtain our assertion. □

Theorem 4.3. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). If L0 is integrable, then leaves of L0 have a

golden structure.

Proof. Let Ń be a screen semi-invariant half lightlike submanifold and Ń ′ be a leaf
of L0. Then for any p ∈ Ń ′ we obtain TpŃ

′ = (L0)p. Since X ∈ Γ(L0), then
θ1(X) = θ2(X) = 0. Therefore, from (3.1) we get P̃X = PX.

Letting P ′ = P♣L0
, we say that P ′ deĄnes an (1, 1)-tensor Ąeld on Ń ′ because L0

is P̃ -invariant. For any X ∈ Γ(L0) we deriveP ′2X = P ′X + X, which proves the
assertion. □

From Theorem 4.3 we derive Corollary 4.5.

Corollary 4.5. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). If L is integrable, then the leaves of L have a

golden structure.
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Theorem 4.4. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then the following assertions are equivalent.

i) The distribution L is parallel.

ii) D1(X, P̃Y ) = D2(X, P̃Y ) = 0 for any X, Y ∈ Γ(L).
iii) (∇XP )Y = 0 for any X, Y ∈ Γ(L).

Proof. Using (4.1)-1, L is parallel if and only if θ1(∇XY ) = θ2(∇XY ) = 0, for any
X, Y ∈ Γ(L). Then from (2.7), we derive

θ1(∇XY ) = D1(X, P̃Y ),

θ2(∇XY ) = D2(X, P̃Y ).

Thus, we derive i)⇔ii). For any Y ∈ Γ(L), then θ1(Y ) = θ2(Y ) = 0. From (4.8), we
derive

(∇XP )Y = D1(X, Y )U +D2(X, Y )W.

Hence, we have ii)⇔iii). □

Theorem 4.5. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then Ń is totally geodesic if and only if

(∇XP )Y = 0,(4.20)

(∇XP )U = ANX,(4.21)

(∇XP )W = ALX,(4.22)

for any X ∈ Γ(TŃ) and Y ∈ Γ(L).

Proof. Let Ń be totally geodesic. For any Y ∈ Γ(L), we have θ1(Y ) = θ2(Y ) = 0
and thus, from (4.8), we get (∇XP )Y = 0. Similarly, letting Y = U in (4.8), we get
(∇XP )U = ANX. Similarly, letting Y = W in (4.8), we get (∇XP )W = ALX.

Conversely, we suppose that the conditions (4.20), (4.21) and (4.22) hold. If Y ∈
Γ(TŃ), using (4.1)-1, we can write Y = Yl + fU + hW for any Y ∈ Γ(TŃ). Thus,
we obtain

D1(X, Y ) = D1(X, Yl) + fD1(X,U) + hD1(X,W ),(4.23)

D2(X, Y ) = D2(X, Yl) + fD2(X,U) + hD2(X,W ).(4.24)

Using (4.20) and replacing Y by Yl in (4.8), we Ąnd D1(X, Yl)U + D2(X, Yl)W =
−θ1(Yl)ANX − θ2(Yl)ALX = 0. From this fact we get D1(X, Yl) = D2(X, Yl) = 0.
Using (4.21) and replacing Y by U in (4.8), we derive D1(X,U)U +D2(X,U)W = 0.
From this we obtain D1(X,U) = D2(X,U) = 0. From (4.15) we have D2(X,W ) = 0.
Moreover, replacing Y by W in (4.8), using (4.15) and (4.22) we derive D1(X,W )U
= 0, which implies D1(X,W ) = 0. Considering (4.23) and (4.24) we obtain D1 =
D2 = 0. Hence, the claim holds. □
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Definition 4.1. Let Ń be a screen semi-invariant half lightlike submanifold of a
golden semi-Riemannian manifold (Ñ , g̃, P̃ ). Then Ń is mixed totally geodesic if and
only if

D1(X, Y ) = D2(X, Y ) = 0,

for any X ∈ Γ(L) and Y ∈ Γ(L⊥).

Theorem 4.6. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). Then the following assertions are equivalent.

i) Ń is mixed totally geodesic.

ii) ∇Y P̃X has no component in Γ(L⊥) for any X ∈ Γ(L) and Y ∈ Γ(L⊥).
iii) (∇Y P )X = 0 for any X ∈ Γ(L) and Y ∈ Γ(L⊥).

Proof. Ń is mixed totally geodesic if and only if for any X ∈ Γ(L), Y ∈ Γ(L⊥),
D1(X, Y ) = D2(X, Y ) = 0. Since D1 and D2 are symmetric and using (2.3) and (2.7)
we get

(4.25) D1(X, Y ) = D1(Y,X) = g(∇Y P̃X, P̃ ξ) −D1(Y, P̃X)

and

(4.26) ϵD2(X, Y ) = ϵD2(Y,X) = g(∇Y P̃X, P̃L) − ϵD2(Y, P̃X).

From (4.25) and (4.26) we derive D1(Y,X)+D1(Y, P̃X)=D1(Y, P̃ 2X)=g(∇Y P̃X, P̃ ξ)
and ϵD2(Y,X) + ϵD2(Y, P̃X) = ϵD2(Y, P̃

2X) = g(∇Y P̃X, P̃L), respectively. Thus,
we have i)⇔ii). For any X ∈ Γ(L), Y ∈ Γ(L⊥), θ1(X) = θ2(X) = 0 and from (4.8)
we derive

(∇Y P )X = D1(Y,X)U +D2(Y,X)W.

Thus, we have i)⇔iii). □

Theorem 4.7. Let Ń be a totally umbilical screen semi-invariant half lightlike sub-

manifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ). Then Ń is totally geodesic.

Proof. Let Ń be a totally umbilical screen semi-invariant half lightlike submanifold
of a golden semi-Riemannian manifold Ñ . From (4.14)-2, we have D1(X,W ) =

−ϵD2(X,V ). Since Ń is totally umbilical, using (2.20) we derive λg(X,W ) = −ϵδg
(X,V ). Replacing X by U and W in this equation, respectively, we obtain λ = δ = 0.
Thus, the proof is completed. □

Theorem 4.8. Let Ń be a totally umbilical screen semi-invariant half lightlike sub-

manifold of a locally golden product space form (Ñ = Ńp(cp) × Ńq(cq), g̃, P̃ ). Then we

have cp = cq = 0.

Proof. From (2.4) we get

g̃(R̃(X, Y )Z, ξ) =



−(1 − ϕ)cp − ϕcq

2
√

5



{

g(P̃ Y, Z)θ1(X) − g(P̃X, Z)θ1(Y )
}
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+



−(1 − ϕ)c+ ϕcq

4



¶g(Y, Z)θ1(X) − g(X,Z)θ1(Y )♢ ,(4.27)

for any X, Y, Z ∈ Γ(TŃ). Using Theorem 4.7 in (2.23) we derive g̃(R̃(X, Y )Z, ξ) = 0.
Moreover, letting X = U , Y = ξ, Z = U in (4.27), we obtain

(4.28)
(1 − ϕ)cp − ϕcq

2
√

5
= 0.

Similarly, if we let X = U , Y = V , Z = U in (4.27), we get

(4.29)



−(1 − ϕ)cp − ϕcq

2
√

5



+



−(1 − ϕ)cp + ϕcq

4



= 0.

From (4.28) and (4.29), we obtain cp = cq = 0. Thus, the proof is completed. □

Theorem 4.9. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). If S(TŃ) is totally umbilical, then S(TŃ) is

totally geodesic.

Proof. Let S(TŃ) be a totally umbilical. From (2.21) and (4.15) we get

E(X,U) = γg(X,U) = 0,

for any X ∈ Γ(TŃ). Letting X = V in last equation, we obtain γ = 0, i.e., E = 0.
Thus, the proof is completed. □

Theorem 4.10. Let Ń be a screen semi-invariant half lightlike submanifold of a

golden semi-Riemannian manifold (Ñ , g̃, P̃ ). Then we have the following assertions.

i) If P is parallel with respect to ∇ on Ń , then ρ(X) = ψ(X) = D2(X,U) = 0,

(4.30) E(X,Z)θ1(Y ) + ϵD2(X,Z)θ2(Y ) +D1(X, Y )θ3(Z) +D2(X, Y )θ2(Z) = 0

and

D1(X, Y ) = −E(X,V )θ1(Y ) − ϵD2(X,V )θ2(Y ),(4.31)

D2(X, Y ) = −E(X,W )θ1(Y ),(4.32)

for any X, Y ∈ Γ(TŃ) and Z ∈ Γ(S(TŃ)).

ii) If V is parallel with respect to ∇ on Ń , then τ(X) = 0,

A∗
ξX = θ2(A

∗
ξX)W and θ2(A

∗
ξX) = −ϵψ(X),

for any X ∈ Γ(TŃ).

iii) If U is parallel with respect to ∇ on Ń , then

ANX = θ1(ANX)U + θ2(ANX)W, θ1(ANX) = τ(X) and θ2(ANX) = ρ(X),

for any X ∈ Γ(TŃ).

iv) If W is parallel with respect to ∇ on Ń , then ρ(X) = 0,

ALX = ψ(X)U and θ1(ALX) = ψ(X),
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for any X ∈ Γ(TŃ).

Moreover, if all of V , U and W are parallel with respect to ∇ on Ń , then S(TŃ)

is totally geodesic in Ń and τ = ρ = 0.

Proof. Let P be parallel with respect to ∇. Then taking the scalar product with for
any Z ∈ Γ(TŃ) and V in (4.8) we obtain (4.30) and (4.31), respectively. Taking the
scalar product with W in (4.8) and using (4.15) we derive (4.32). Moreover, taking
the scalar product with for any N in (4.8) we get

(4.33) ϵρ(X)θ2(Y ) = 0.

Taking Y = W in (4.33) we get ρ(X) = 0. Similarly, taking the scalar product with
for any U in (4.8) and using (4.15) we get D2(X,U) = 0. Moreover letting Y = ξ in
(4.32) we get ψ(X) = 0.

If V is parallel with respect to ∇ on Ń , then from (4.12) we obtain

−P̃A∗
ξX + θ1(A

∗
ξX)N + θ2(A

∗
ξX)L− τ(X)V − ϵψ(X)W = 0.

Using (2.14)-1 and (4.15), we derive D1(X,V ) = θ1(A
∗
ξX) = 0. Thus, we get

(4.34) − P̃A∗
ξX + θ2(A

∗
ξX)L− τ(X)V − ϵψ(X)W = 0,

for any X ∈ Γ(TŃ). Applying P̃ to (4.34) and from (2.1), (3.1) and (4.2), we derive

− PA∗
ξX − A∗

ξX − τ(X)V + (θ2(A
∗
ξX) − ϵψ(X))W − τ(X)ξ − θ2(A

∗
ξX)L

− ϵψ(X)L = 0,(4.35)

for any X ∈ Γ(TŃ). Then subtracting (4.12) from (4.35) and taking tangential and
normal part of the resulting equation, we get ii). Similarly, by using (2.1), (3.1), (4.2),
(4.11) and (4.13), we have iii) and iv).

Suppose that all of V , U and W are parallel with respect to ∇ on Ń . Then from
iii) we have ANX = θ1(ANX)U + θ2(ANX)W . From ii) and iii) we get θ1(ANX) =
τ(X) = 0 and from iii) and iv) we obtain ρ(X) = θ2(ANX) = 0. Thus, AN = 0, that

is, S(TŃ) is totally geodesic in Ń . □

From Theorem 4.10 i) we have Corollary 4.6.

Corollary 4.6. Let Ń be a screen semi-invariant half lightlike submanifold of a golden

semi-Riemannian manifold (Ñ , g̃, P̃ ). If P is parallel with respect to ∇ on Ń , then Ń
is irrotational.

Theorem 4.11. Let Ń be a screen semi-invariant half lightlike submanifold of a

golden semi-Riemannian manifold (Ñ , g̃, P̃ ). If P and V are parallel with respect to

∇ on Ń , then Ń is totally geodesic in Ñ and the 1-forms ρ, ψ and τ vanish.

Proof. Suppose that P and V are parallel with respect to ∇ on Ń . Then from Theorem
4.10 i) and ii) we have ρ(X) = ψ(X) = τ(X) = 0 and A∗

ξX = −ϵψ(X)W . From this
fact, we get A∗

ξ = 0, i.e., D1 = 0.
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For any Y ∈ Γ(TŃ), we have (4.24). Using (4.32) with Y = Yl ∈ Γ(L), we Ąnd
D2(X, Yl) = −E(X,W )θ1(Yl) = 0. From this fact we get D2(X, Yl) = 0. From (4.15)
and Theorem 4.10 i) we have D2(X,U) = D2(X,W ) = 0. Using (4.24) we obtain
D2 = 0. Thus, we get D = 0, which completes the proof. □

Theorem 4.12. Let Ń be a screen semi-invariant half lightlike submanifold of a

golden semi-Riemannian manifold (Ñ , g̃, P̃ ). If P is parallel with respect to ∇ on

Ń , then L and L⊥ are parallel and integrable distributions with respect to ∇ and

Ń is locally a product manifold Ń1 × Ń2, where Ń1 and Ń2 are leaves of L and L⊥,

respectively.

Proof. Since ∇̃ is a metric connection, from (2.2), (2.3), (2.7) and (2.18), we derive

g(∇Xξ, V ) = D1(X,V ), g(∇XV, V ) = 0, g(∇XY, V ) = D1(X, P̃Y ),

g(∇Xξ,W ) = ϵD2(X,V ), g(∇XV,W ) = ϵD2(X,V ) − ψ(X),(4.36)

g(∇XY,W ) = ϵD2(X, P̃Y ),

for any X ∈ Γ(L) and Y ∈ Γ(L0).
Since ∇̃ is a metric connection, using (2.2), (2.3), (2.7), (2.9) and (2.11), we derive

g(∇ZW,N) = −ϵD2(Z,U), g(∇ZW,U) = −ϵD2(Z,U) − ϵρ(Z),

g(∇ZW,Y ) = −ϵD2(Z, P̃Y ), g(∇ZU,N) = E(Z,U),(4.37)

g(∇ZU,U) = 0, g(∇ZU, Y ) = −E(Z, P̃Y ),

for any Z ∈ Γ(L⊥) and Y ∈ Γ(L0).
From (4.15) we have D1(X,V ) = 0. Letting Y = V in equation (4.32) we obtain

D2(X,V ) = 0 for any X ∈ Γ(TŃ). If we replace Y by P̃ Y ∈ Γ(L0) in equation
(4.31) and (4.32) then we derive D1(X, P̃Y ) = D2(X, P̃Y ) = 0. Also, from (4.15)
and Theorem 4.10 i) we have E(X,U) = ρ(X) = ψ(X) = D2(X,U) = 0 for any

X ∈ Γ(TŃ). Replacing X, Y, Z by Z ∈ Γ(L⊥), U, P̃Y ∈ Γ(L0), respectively, in
equation (4.30) and if D2(X,U) = 0 is used in this equation, we get E(Z, P̃Y ) = 0.
Thus, we prove our theorem. □

Theorem 4.13. Let Ń be a totally umbilical screen semi-invariant half lightlike

submanifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ). Then L is a parallel

and integrable distribution with respect to ∇ and Ń is locally a product manifold

Ru ×Rw × Ń1, where Ru and Rw are null and non-null curves tangent to P̃ (ltr(TŃ))

and P̃ (S(TŃ⊥)), respectively, and Ń1 is a leaf of L.

Proof. Suppose that Ń is totally umbilical, then Ń is totally geodesic and D1 =
D2 = ψ = 0. All terms of (4.36) are zero. Hence, L is a parallel and integrable

distribution with respect to ∇. Moreover, P̃ (ltr(TŃ)) and P̃ (S(TŃ⊥)) are integrable
distributions. Hence, the proof is completed. □
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Theorem 4.14. Let Ń be a half lightlike submanifold of a semi-Remannian manifold

(Ñ , g̃). Then the screen transversal distribution S(TŃ⊥) is parallel with respect to ∇̃
if and only if AL = 0 on Γ(TŃ) [16].

Theorem 4.15. Let Ń be a screen semi-invariant half lightlike submanifold of a

locally golden product space form (Ñ = Ńp(cp) × Ńq(cq), g̃, P̃ ) with a parallel screen

transversal distribution. If S(TŃ) is totally umbilicial, then cp = cq = 0.

Proof. Let Ń be a screen semi-invariant half lightlike submanifold of a locally golden
product space form (Ñ = Ńp(cp) × Ńq(cq), g̃, P̃ ), cp, cq ≠ 0, with a parallel screen
transversal distribution. From (2.4) we derive

g̃(R̃(ξ, Y )QZ,N) =



−(1 − ϕ)cp − ϕcq

2
√

5



¶g̃(Y,QZ) − θ1(QZ)θ3(Y )♢

+



−(1 − ϕ)cp + ϕcq

4



¶g̃(P̃ Y,QZ) − θ1(QZ)η(Y )♢.(4.38)

Since S(TŃ) is totally umbilicial and screen transversal distribution is parallel, using
Theorem 4.9 and Theorem 4.14 in (2.24) and (2.27) we obtain

(4.39) g̃(R̃(X, Y )QZ,N) = 0.

If we put Y = V , Z = U in (4.38), we obtain

(4.40)
(1 − ϕ)cp + ϕcq

2
√

5
= 0.

Similarly, if we put Y = U , Z = V in (4.38), we get

(4.41)



−(1 − ϕ)cp − ϕcq

2
√

5



+



−(1 − ϕ)cp + ϕcq

4



= 0.

From (4.40) and (4.41), we obtain cp = cq = 0, which proves the assertion. □

The induced Ricci type tensor R(0,2) of Ń is deĄned by

R(0,2) = trace ¶Z → R(Z,X)Y ♢ ,
for any X, Y, Z ∈ Γ(TŃ), where

R(0,2)(X, Y ) =
n
∑

i=1

ϵig(R(Ei, X)Y,Ei) + ḡ(R(ξ,X)Y,N),

for the quasi-orthonormal frame ¶E1, . . . , En, ξ♢ of TpŃ and where ϵi = g(Ei, Ei) is
the sign of Ei. Generally, the induced Ricci type tensor R is not symmetric [5Ű7]. A
tensor Ąeld R(0,2) of lightlike submanifold M is called its induced Ricci tensor if it is
symmetric. A symmetric R(0,2) tensor will be indicated by Ric.

If Ñ = Ńp(cp) × Ńq(cq) is a locally golden product space form, then we have

R(0,2)(X, Y ) =



−(1 − ϕ)cp − ϕcq

2
√

5



¶(n− 1)g̃(X, Y ) − θ1(Y )θ3(X)



HALF LIGHTLIKE SUBMANIFOLDS 117

+ ((trP̃ ) − 1 + θ3(ξ))g̃(P̃X, Y )♢

+



−(1 − ϕ)cp + ϕcq

4



¶(n− 1)g̃(P̃X, Y )(4.42)

+ ((trP̃ ) + θ3(ξ))g̃(X, Y ) − θ1(Y )η(X)♢
+D1(X, Y )trAN +D2(X, Y )trAL − g(ANX,A

∗
ξY )

− ϵg(ALX,ALY ) + ρ(X)ψ(Y ).

From (4.42), we have

R(0,2)(X, Y ) −R(0,2)(Y,X) =



−(1 − ϕ)cp − ϕcq

2
√

5



(θ1(X)θ3(Y ) − θ1(Y )θ3(X))

+



−(1 − ϕ)cp + ϕcq

4



(θ1(X)η(Y ) − θ1(Y )η(X))

+ g(A∗
ξX,ANY ) − g(A∗

ξY,ANX)(4.43)

+ ρ(X)ψ(Y ) − ρ(Y )ψ(X).

From (2.4) and (2.25) we get

2dτ(X, Y ) = − (1 − ϕ)cp − ϕcq

2
√

5
(θ1(X)θ3(Y ) − θ1(Y )θ3(X))

+



−(1 − ϕ)cp + ϕcq

4



(θ1(X)η(Y ) − θ1(Y )η(X))

+ g(A∗
ξX,ANY ) − g(A∗

ξY,ANX) + ρ(X)ψ(Y ) − ρ(Y )ψ(X).(4.44)

Thus, from (4.43) and (4.44) we obtain

(4.45) R(0,2)(X, Y ) −R(0,2)(Y,X) = 2dτ(X, Y ).

From (4.45), we obtain Theorem 4.16.

Theorem 4.16. Let Ń be a screen semi-invariant half lightlike submanifold of a locally

golden product space form (Ñ = Ńp(cp) × Ńq(cq), g̃, P̃ ). Then, R(0,2) is a symmetric

if and only if τ is closed.

5. Screen Conformal Screen Semi-invariant Half Lightlike
Submanifolds Of A Golden Semi-Riemannian Manifold

A half lightlike submanifold (Ń , g, S(TŃ)) of a semi-Riemannian manifold (Ñ , g̃)

is screen conformal if the shape operators AN and A∗
ξ of Ń and S(TŃ), respectively

are related by AN = φA∗
ξ , or equivalently

(5.1) E(X,QY ) = φD1(X, Y ),

for all X, Y ∈ Γ(TŃ), where φ is a non-vanishing smooth function on a neighborhood

U in Ń . In particular, if φ is a non-zero constant, then Ń is called screen homothetic
[8].
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Remark 5.1. If Ń is a screen conformal half lightlike submanifold, then E is symmetric
on Γ(S(TŃ)). Thus, S(TŃ) is integrable distribution and Ń is locally a product

manifold Rξ × Ń∗ where Rξ is a null curve tangent to Rad(TŃ) and Ń∗ is a leaf of

S(TŃ) [5].

Theorem 5.1. Let Ń be a screen conformal totally umbilical screen semi-invariant

half lightlike submanifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ). Then, Ń

and S(TŃ) are totally geodesic.

Proof. Let Ń be a screen conformal totally umbilical screen semi-invariant half lightlike
submanifold of Ñ . Then from Theorem 4.7 we have D1 = D2 = 0. Since Ń is screen
conformal, E(X,QY ) = φD1(X, Y ) = 0, which proves the assertion. □

Theorem 5.2. Let Ń be a screen conformal screen semi-invariant half lightlike sub-

manifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ). If P is parallel with respect

to ∇ on Ń , then Ń and S(TŃ) are totally geodesic in Ñ and ρ = ψ = 0.

Proof. Suppose that P is parallel with respect to ∇ on Ń . For any Y ∈ Γ(TŃ), we
have (4.23) and (4.24). Replacing Y by Yl in (4.31) and (4.32), we Ąnd D1(X, Yl) =
D2(X, Yl) = 0. From (4.15) and (5.1) we have E(X,U) = φD1(X,U) = 0. Taking
Y = V in (4.32) we get D2(X,V ) = 0 and from (4.14)-2 we obtain D1(X,W ) =
−ϵD2(X,V ) = 0. From (4.15) and Theorem 4.10 i) we have D2(X,U)=D2(X,W )=0.

Considering (4.23) and (4.24) we obtain D1 = D2 = 0. Since Ń is conformal, E = 0.
Also, from Theorem 4.10 i) ρ(X) = ψ(X) = 0, which proves the assertion. □

Theorem 5.3. Let Ń be a screen conformal totally umbilical screen semi-invariant

half lightlike submanifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ). If U or

W is parallel with respect to ∇ on Ń , then L and L⊥ are parallel and integrable

distribution with respect to ∇ and Ń is locally a product manifold Ń1 × Ń2, where Ń1

is a leaf of L and Ń2 is a leaf of L⊥.

Proof. Let Ń be totally umbilical. From Theorem 5.2 Ń and S(TŃ) are totally

geodesic and all terms of (4.36) and (4.37) are zero except ρ(Z). Since S(TŃ) is
totally geodesic and U is parallel, using Theorem 4.10 iii) we obtain θ2(ANX) =
ϵE(X,W ) = ρ(X) = 0.

If W is parallel, from Theorem 4.10 (iv), we have ρ(X) = 0. Hence L and L⊥ are

parallel and integrable distributions on Ń . This completes the proof. □

From (2.19), (4.14), (4.15) and (5.1), we have

h(X,U) =D1(X,U)N +D2(X,U)L = −E(X,V )N − ϵE(X,W )L

= − φD1(X,V )N − ϵφD1(X,W )L

=φD1(X,V )N + φD2(X,V )L = φh(X,V ),
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for any X ∈ Γ(TŃ). Thus, we have

(5.2) h(X,U − φV ) = 0.

Since ¶U, V ♢ is a basis for Γ(P̃ (Rad(TŃ))⊕ P̃ (ltr(TŃ))), ¶ω1, ω2♢ is an orthogonal

basis of Γ(P̃ (Rad(TŃ)) ⊕ P̃ (ltr(TŃ))), where

ω1 = U − φV, ω2 = U + φV.

Let R (ω1) = Span ¶ω1♢. Then S (ω1) = L0 ⊥ Span ¶ω2,W♢ is a complementary

vector subbundle to R (ω1) in S(TŃ). Thus, we have

(5.3) S(TŃ) = R (ω1) ⊥ S (ω1) .

Theorem 5.4. Let Ń be a screen conformal totally umbilical screen semi-invariant

half lightlike submanifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ) such that

S(TŃ⊥) is parallel distribution with respect to ∇̃. Then the non-null vector field ω1

is parallel with respect to ∇ if and only if the 1-forms ρ, τ and ψ vanish and Ń is

screen homothetic.

Proof. Since P is linear and using (4.11), (4.12), AN = φA∗
ξ , we obtain

∇Xω1 = τ(X)U + (φτ(X) −X [φ])V + (ρ (X) + ϵφψ (X))W,

for any X ∈ Γ(TŃ). Thus, we say that ω1 is parallel if and only if

τ(X)U + (φτ(X) −X [φ])V + (ρ (X) + ϵφψ (X))W = 0.

If we take the scalar product with U , V and W , respectively, we obtain τ(X) =
φτ(X) − X [φ] = ρ (X) + ϵφψ (X) = 0. Since τ(X) = 0, then X [φ] = 0, i.e.,

Ń is screen homothetic. If S(TŃ⊥) is parallel, then we obtain ρ (X) = 0. Thus,
ψ (X) = 0. □

Theorem 5.5. Let Ń be a screen conformal screen semi-invariant half lightlike sub-

manifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ) such that S(TŃ⊥) is parallel

distribution with respect to ∇̃. If ω1 is parallel with respect ∇, then Ń is locally a

product manifold Rξ × Rω1
× Ń1, where Rξ is null curve tangent to TŃ⊥, Rω1

is

non-null geodesic tangent to R (ω1) and Ń1 is a leaf of S (ω1). Also, Ń is screen

homothetic.

Proof. For any X ∈ Γ(S (ω1)) and Y ∈ Γ(L0), we have

g(∇XY, ω1) = g(∇̃XY, ω1) = −g(Y, ∇̃Xω1) = −g(Y,∇Xω1) = 0,

g(∇Xω2, ω1) = g(∇̃Xω2, ω1) = −g(ω2,∇Xω1) = X [φ] − 2φτ(X),(5.4)

g(∇XW,ω1) = g(∇̃XW,ω1) = −g(W,∇Xω1) = −ρ (X) − ϵφψ (X) .

From Theorem 5.4, the 1-forms ρ, τ and ψ vanish and Ń is screen homothetic. Then
all equations in (5.4) are zero. Thus, the distribution S (ω1) is a parallel and integrable
distribution. Using this fact and Remark 5.1, we derive our assertion. □
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Theorem 5.6. Let Ń be a screen conformal screen semi-invariant half lightlike sub-

manifold of a golden semi-Riemannian manifold (Ñ , g̃, P̃ ) such that S(TŃ⊥) is parallel

distribution with respect to ∇̃. If ω1 is parallel with respect to ∇ on Ń , then Ń is

locally a product manifold Rω1
× Ń1, where Rω1

is non-null geodesic tangent to R (ω1)

and Ń1 is a leaf of G (ω1) = L0 ⊥ Span ¶ξ, ω2,W♢ respectively. Furthermore, Ń is

screen homothetic.

Proof. From (2.5) and (5.3), we derive TŃ = R (ω1) ⊕orth G (ω1). For any X ∈
Γ(G (ω1)) and Y ∈ Γ(L0), we derive

g(∇XY, ω1) = g(∇̃XY, ω1) = −g(Y, ∇̃Xω1) = −g(Y,∇Xω1) = 0,

g(∇Xξ, ω1) = g(∇̃Xξ, ω1) = −g(ξ, ∇̃Xω1) = −D1(X,ω1) = 0,(5.5)

g(∇Xω2, ω1) = g(∇̃Xω2, ω1) = −g(ω2,∇Xω1) = X [φ] − 2φτ(X),

g(∇XW,ω1) = g(∇̃XW,ω1) = −g(W,∇Xω1) = −ρ (X) − ϵφψ (X) .

From Theorem 5.4, all equations in (5.5) is zero. Thus, distribution G (ω1) is a parallel
and integrable. Thus, we derive our assertion. □

Theorem 5.7. Let Ń be a screen conformal screen semi-invariant half lightlike sub-

manifold of a locally golden product space form (Ñ = Ńp(cp) × Ńq(cq), g̃, P̃ ). Then,

we have cp = (ϕ+ 1)cq.

Proof. From (2.4) and (2.23), we derive

(∇XD1)(Y, Z) − (∇YD1)(X,Z) + τ(X)D1(Y, Z) − τ(Y )D1(X,Z)

+ ψ(X)D2(Y, Z) − ψ(Y )D2(X,Z)

=



−(1 − ϕ)cp − ϕcq

2
√

5



¶g̃(P̃ Y, Z)θ1(X) − g̃(P̃X, Z)θ1(Y )♢

+



−(1 − ϕ)cp + ϕcq

4



¶g̃(Y, Z)θ1(X) − g̃(X,Z)θ1(Y )♢,(5.6)

for any X, Y, Z ∈ Γ(TŃ). Using (2.4), (2.24), (2.27) and (5.1) we get

g̃(R̃(X, Y )QZ,N) =



−(1 − ϕ)cp − ϕcq

2
√

5



¶g̃(Y,QZ)η(X) − g̃(X,QZ)η(Y )

+ g̃(P̃ Y,QZ)θ3(X) − g̃(P̃X,QZ)θ3(Y )♢

+



−(1 − ϕ)cp + ϕcq

4



¶g̃(P̃ Y,QZ)η(X)(5.7)

− g̃(P̃X,QZ)η(Y ) + g̃(Y,QZ)θ3(X) − g̃(X,QZ)θ3(Y )♢
and

g̃(R̃(X, Y )QZ,N) =φ((∇XD1)(Y, Z) − (∇YD1)(X,Z)) + φτ(Y )D1(X,QZ)

− φτ(X)D1(Y,QZ) +X [φ]D1(Y,QZ) − Y [φ]D1(X,QZ)
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+ ϵ ¶ρ(Y )D2(X,QZ) − ρ(X)D2(Y,QZ)♢ .(5.8)

Thus, from (5.6), (5.7) and (5.8), we derive


−(1 − ϕ)cp − ϕcq

2
√

5



¶φg̃(P̃ Y,QZ)θ1(X) − φg̃(P̃X,QZ)θ1(Y )

− g̃(Y,QZ)η(X) + g̃(X,QZ)η(Y ) − g̃(P̃ Y,QZ)θ3(X) + g̃(P̃X,QZ)θ3(Y )♢

+



−(1 − ϕ)cp + ϕcq

4



¶φg̃(Y,QZ)θ1(X) − φg̃(X,QZ)θ1(Y )(5.9)

− g̃(P̃ Y,QZ)η(X) + g̃(P̃X,QZ)η(Y ) − g̃(Y,QZ)θ3(X) + g̃(X,QZ)θ3(Y )♢
= [−X [φ] + 2φτ(X)]D1(Y,QZ) + [Y [φ] − 2φτ(Y )]D1(X,QZ)

− [φψ(Y ) + ϵρ(Y )]D2(X,QZ) + [φψ(X) + ϵρ(X)]D2(Y,QZ).

Replacing QZ by ω1 in (5.9) and using (5.2), we obtain


−(1 − ϕ)cp + ϕcq

4



¶−φθ1(X)η(Y ) + φθ1(Y )η(X) + θ3(X)η(Y ) − θ3(Y )η(X)♢ = 0.

Letting X = V , Y = ξ in last equation we get


−(1 − ϕ)cp + ϕcq

4



= 0.

From this, we see that cp = (ϕ+ 1)cq, which completes the proof. □

Corollary 5.1. There is no screen conformal screen semi-invariant half lightlike

submanifold of a locally golden product space form (Ñ = Ńp(cp) × Ńq(cq), g̃, P̃ ) with

cp ̸= (ϕ+ 1)cq.
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ON THE STRUCTURE OF SOME TYPES OF HIGHER

DERIVATIONS

AMIN HOSSEINI1∗ AND NADEEM UR REHMAN2

Abstract. In this paper we introduce the concepts of higher ¶Lgn
, Rhn

♢-derivation,
higher ¶gn, hn♢-derivation and Jordan higher ¶gn, hn♢-derivation. Then we give a
characterization of higher ¶Lgn

, Rhn
♢-derivations and higher ¶gn, hn♢-derivations in

terms of ¶Lg, Rh♢-derivations and ¶g, h♢-derivations, respectively. Using this result,
we prove that every Jordan higher ¶gn, hn♢-derivation on a semiprime algebra is a
higher ¶gn, hn♢-derivation. In addition, we show that every Jordan higher ¶gn, hn♢-
derivation of the tensor product of a semiprime algebra and a commutative algebra
is a higher ¶gn, hn♢-derivation. Moreover, we show that there is a one to one
correspondence between the set of all higher ¶Lgn

, Rhn
♢-derivations and the set of

all sequences of ¶LGn
, RHn

♢-derivations. Also, it is presented that if A is a unital
algebra and ¶fn♢ is a generalized higher derivation associated with a sequence ¶dn♢
of linear mappings, then ¶dn♢ is a higher derivation. Some other related results are
also discussed.

1. Introduction and Preliminaries

Let A be an algebra and let g, h : A → A be linear mappings. A linear mapping
f : A → A is said to be a ¶Lg, Rh♢-derivation (resp. ¶Rg, Lh♢-derivation) if f(ab) =
g(a)b + ah(b) (resp. f(a) = h(a)b + ag(b)) for all a, b ∈ A. By following Brešar [1], a
linear mapping f is called a ¶g, h♢-derivation on A if it is both a ¶Lg, Rh♢-derivation
and a ¶Rg, Lh♢-derivation, i.e., f(ab) = g(a)b + ah(b) = h(a)b + ag(b) for all a, b ∈ A.
A linear mapping f is called a Jordan ¶g, h♢-derivation if f(a ◦ b) = g(a) ◦ b + a ◦ h(b)
for all a, b ∈ A, where a ◦ b = ab + ba. We call a ◦ b the Jordan product of a and b. It
is evident that a ◦ b = b ◦ a for all a, b ∈ A. The notion of a Jordan ¶g, h♢-derivation

Key words and phrases. Higher ¶Lgn
, Rhn

♢-derivation, higher ¶gn, hn♢-derivation, Jordan higher
¶gn, hn♢-derivation, generalized higher derivation.
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is a generalization of what is called a Jordan generalized derivation in [10]. Recall
that a linear mapping f : A → A is called a Jordan generalized derivation if there
exists a linear mapping d : A → A such that f(a ◦ b) = f(a) ◦ b + a ◦ d(b) for all
a, b ∈ A; in this case d is called an associated linear mapping of f . It is clear that
f(a ◦ b) = d(a) ◦ b + a ◦ f(b) for all a, b ∈ A. Obviously, the deĄnition of a generalized
Jordan derivation is generally not equivalent to that of Jordan generalized derivation.
For more details in this regard, see e.g., [1, 10], and the references therein.

As an important result, Brešar [1, Theorem 4.3] proved that every Jordan ¶g, h♢-
derivation of a semiprime algebra A is a ¶g, h♢-derivation. He also showed that
every Jordan ¶g, h♢-derivation of the tensor product of a semiprime algebra and a
commutative algebra is a ¶g, h♢-derivation. It is evident that every ¶g, h♢-derivation
is a Jordan ¶g, h♢-derivation, but the converse is in general not true, for instance, see
[1, Example 2.1].

In this study, we introduce the concepts of higher ¶Lgn
, Rhn

♢-derivation, higher
¶Rgn

, Lhn
♢-derivation, higher ¶gn, hn♢-derivation, Jordan higher ¶gn, hn♢-derivation

and then we present a characterization of these concepts on algebras. Throughout this
paper, A denotes an algebra over a Ąeld F with char(F) = 0 and I denotes the identity
mapping on A. Let f be a ¶Lg, Rh♢-derivation (resp. ¶Rg, Lh♢-derivation) on an

algebra A. An easy induction argument implies that fn(ab) =
∑n

k=0

(

n

k

)

gn−k(a)hk(b)

(resp. fn(ab) =
∑n

k=0

(

n

k

)

hn−k(a)gk(b)) (Leibniz rule) for each a, b ∈ A and each

nonnegative integer n, where f 0 = g0 = h0 = I. Hence, if f is a ¶g, h♢-derivation, then

fn(ab) =
∑n

k=0

(

n

k

)

gn−k(a)hk(b) =
∑n

k=0

(

n

k

)

hn−k(a)gk(b) for all a, b ∈ A. Suppose

that f is a ¶Lg, Rh♢-derivation on A. If we deĄne the sequences ¶fn♢, ¶gn♢ and ¶hn♢

of linear mappings on A by fn = fn

n!
, gn = gn

n!
and hn = hn

n!
, with f0 = g0 = h0 = I,

then it follows from the Leibniz rule that fnŠs, gnŠs and hnŠs satisfy

fn(ab) =
n
∑

k=0

gn−k(a)hk(b),(1.1)

for each a, b ∈ A and each nonnegative integer n. Similarly, if f is a ¶Rg, Lh♢-
derivation, then the above fn, gn and hn satisfy

fn(ab) =
n
∑

k=0

hn−k(a)gk(b),(1.2)

for each a, b ∈ A and each nonnegative integer n. Also, if f is a ¶g, h♢-derivation,
then we have

fn(ab) =
n
∑

k=0

gn−k(a)hk(b) =
n
∑

k=0

hn−k(a)gk(b),(1.3)

for each a, b ∈ A and each nonnegative integer n. This is our motivation to investigate
the sequences ¶fn♢, ¶gn♢ and ¶hn♢ of linear mappings on an algebra A that satisfy
(1.1) or (1.2) or (1.3). A sequence ¶fn♢ of linear mappings on A is called a higher
¶Lgn

, Rhn
♢-derivation (resp. higher ¶Rgn

, Lhn
♢-derivation) if there exist two sequences
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¶gn♢ and ¶hn♢ of linear mappings on A satisfying (1.1) (resp. (1.2)). A sequence
¶fn♢ of linear mappings on A is called a higher ¶gn, hn♢-derivation if it is both a
higher ¶Lgn

, Rhn
♢-derivation and a higher ¶Rgn

, Lhn
♢-derivation on A. In addition, a

sequence ¶fn♢ of linear mappings on A is called a Jordan higher ¶gn, hn♢-derivation
if there exist two sequences ¶gn♢ and ¶hn♢ of linear mappings on A satisfying

fn(a ◦ b) =
n
∑

k=0

gn−k(a) ◦ hk(b),

for each a, b ∈ A and each nonnegative integer n. Notice that if ¶fn♢ is a higher
¶fn, fn♢-derivation (resp. Jordan higher ¶fn, fn♢-derivation), then it is an ordinary
higher derivation (resp. Jordan higher derivation). We know that if f is a ¶Lg, Rh♢-

derivation, then ¶fn = fn

n!
♢ is a higher ¶Lgn

, Rhn
♢-derivation, where gn = gn

n!
, hn = hn

n!

and f0 = g0 = h0 = I. We call this kind of higher ¶Lgn
, Rhn

♢-derivation an ordinary
higher ¶Lgn

, Rhn
♢-derivation, but this is not the only example of a higher ¶Lgn

, Rhn
♢-

derivation. We have the same expression for higher ¶Rgn
, Lhn

♢-derivations and higher
¶gn, hn♢-derivations. Using the idea of [10] and to make the article more accurate,
we consider generalized derivations as follows: A linear mapping f : A → A is called
an l-generalized derivation (resp. r-generalized derivation) associated with a linear
mapping d : A → A if f is a ¶Lf , Rd♢-derivation (resp. ¶Rf , Ld♢-derivation) on A.
Naturally, a linear mapping f is called a two-sided generalized derivation if it is both
an l-generalized derivation associated with a linear mapping d1 and a r-generalized
derivation associated with a linear mapping d2 on A. Recently, Hosseini [7] has
studied two-sided generalized derivations and in that article he has presented a r-
generalized derivation which is not an l-generalized derivation. A sequence ¶fn♢ of
linear mappings is called a higher l-generalized derivation associated with a sequence
¶dn♢ of linear mappings if it is a higher ¶Lfn

, Rdn
♢-derivation. Similarly, the concepts

of higher r-generalized derivations and two-sided generalized higher derivations are
deĄned. Most authors who have studied generalized higher derivations suppose that
these mappings are dependent on higher derivations, see, e.g. [5, 12, 14], and the
references therein. In this paper and in the characterization that we offer, we do not
use this assumption. In fact, if ¶fn♢ is a generalized higher derivation (resp. Jordan
generalized higher derivation) associated with a sequence ¶dn♢ of linear mappings, we
do not assume that the sequence ¶dn♢ is necessarily a higher derivation (resp. Jordan
higher derivation).

In 2010, Miravaziri [11] characterized all higher derivations on an algebra A in terms
of derivations on A. In this article, by getting idea and using techniques of [11], our
aim is to characterize higher ¶Lgn

, Rhn
♢-derivations, higher ¶Rgn

, Lhn
♢-derivations

and higher ¶gn, hn♢-derivations on an algebra A in terms of ¶Lg, Rh♢-derivations,
¶Rg, Lh♢-derivations and ¶g, h♢-derivations, respectively. As the main result of this
article, we prove that if ¶fn♢ is a higher ¶Lgn

, Rhn
♢-derivation (resp. higher ¶Rgn

, Lhn
♢-

derivation) on an algebra A with f0 = g0 = h0 = I, then there exists a sequence ¶Fn♢
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of ¶LGn
, RHn

♢-derivations on A such that






























fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Fr1
· · · Fri

)

,

gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n.
The same is also true for higher ¶gn, hn♢-derivations. Using this result, if ¶fn♢ is a
higher l-generalized derivation (resp. higher r-generalized derivation) associated with
a sequence ¶dn♢, then we characterize ¶fn♢ without assuming that ¶dn♢ is a higher
derivation. Mirzavaziri and Tehrani [12] characterized generalized higher derivations
while assuming the associated sequences are higher derivations. So, our results improve
their work.

As an application of the main result of this article, we investigate Jordan higher
¶gn, hn♢-derivations on algebras. Let us give a brief background in this regard. It is
a classical question in which algebras (or rings) a Jordan derivation is necessarily a
derivation. In 1957, Herstein [9] achieved a result which asserts any Jordan derivation
on a prime ring of characteristic different from two is a derivation. A brief proof of
HersteinŠs result can be found in [3]. In 1975, Cusack [4] generalized HersteinŠs result
to 2-torsion free semiprime rings (see also [2] for an alternative proof). Moreover,
Vukman [13] investigated generalized Jordan derivations on semiprime rings and he
proved that every generalized Jordan derivation of a 2-torsion free semiprime ring
is a generalized derivation. Recently, the Ąrst name author along with Ajda Fošner
[6] have studied the same problem for (σ, τ)-derivations from a C∗-algebra A into
a Banach A-module M. In this paper, we show that if ¶fn♢ is a Jordan higher
¶gn, hn♢-derivation of a semiprime algebra A with f0 = g0 = h0 = I, then it is a
higher ¶gn, hn♢-derivation, and further we prove that if A is a semiprime algebra, S is
a commutative algebra, and ¶fn♢ is a Jordan higher ¶gn, hn♢-derivation of A⊗S, with
f0 = g0 = h0 = I, then ¶fn♢ is a higher ¶gn, hn♢-derivation. Here, A ⊗ S denotes the
tensor product of A and S. Also, some results related to generalized higher derivations
are presented.

2. Main Results

Throughout the article, A denotes an algebra over a Ąeld of characteristic zero, and
I is the identity mapping on A. We begin with the following deĄnitions.

Definition 2.1. Let f, g, h : A → A be linear mappings. We say that f is a
¶Lg, Rh♢-derivation (resp. ¶Rg, Lh♢-derivation) if f(ab) = g(a)b+ah(b) (resp. f(ab) =
h(a)b + ag(b)) for all a, b ∈ A.

Following Brešar [1], a linear mapping f is called a ¶g, h♢-derivation on A if it is
both a ¶Lg, Rh♢-derivation and a ¶Rg, Lh♢-derivation, i.e., f(ab) = g(a)b + ah(b) =
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h(a)b + ag(b) for all a, b ∈ A. A linear mapping f is called a Jordan ¶g, h♢-derivation
if f(a ◦ b) = g(a) ◦ b + a ◦ h(b) for all a, b ∈ A, where a ◦ b = ab + ba.

Definition 2.2. A sequence ¶fn♢ of linear mappings on A is called a higher ¶Lgn
, Rhn

♢-
derivation (resp. higher ¶Rgn

, Lhn
♢-derivation) if there exist two sequences ¶gn♢ and

¶hn♢ of linear mappings on A satisfying (1.1) (resp. (1.2)). A sequence ¶fn♢ of linear
mappings on A is called a higher ¶gn, hn♢-derivation if it is both a higher ¶Lgn

, Rhn
♢-

derivation and a higher ¶Rgn
, Lhn

♢-derivation on A. In addition, a sequence ¶fn♢ of
linear mappings on A is called a Jordan higher ¶gn, hn♢-derivation if there exist two
sequences ¶gn♢ and ¶hn♢ of linear mappings on A satisfying

fn(a ◦ b) =
n
∑

k=0

gn−k(a) ◦ hk(b),(2.1)

for each a, b ∈ A and each nonnegative integer n.

Before establishing the Ąrst result of this paper, we would like to draw your attention
to the following discussion that makes clear the process of characterizing of higher
¶Lgn

, Rhn
♢-derivations by ¶Lg, Rh♢-derivations. Let ¶fn♢ be a higher ¶Lgn

, Rhn
♢-

derivation. So, fn(ab) =
∑n

k=0 gn−k(a)hk(b) for each a, b ∈ A and each nonnegative
integer n. If f0 = g0 = h0 = I, then we have f1(ab) = g1(a)b + ah1(b), which means
that f1 is a ¶Lg1

, Rh1
♢-derivation. Therefore, we have

f 2
1 (ab) = f1 (g1(a)b + ah1(b))

= g2
1(a)b + g1(a)h1(b) + g1(a)h1(b) + ah2

1(b)

= g2
1(a)b + 2g1(a)h1(b) + ah2

1(b).

Thus,

2g1(a)h1(b) = f 2
1 (ab) − g2

1(a)b − ah2
1(b), a, b ∈ A.(2.2)

Note that f2(ab) = g2(a)b + g1(a)h1(b) + ah2(b). So, 2f2(ab) = 2g2(a)b + 2g1(a)h1(b) +
2ah2(b) holds for all a, b ∈ A. Putting (2.2) in the previous formula, we deduce that
2f2(ab) = 2g2(a)b + f 2

1 (ab) − g2
1(a)b − ah2

1(b) + 2ah2(b) for all a, b ∈ A. Hence, we can
write

2f2(ab) − f 2
1 (ab) =

(

2g2(a) − g2
1(a)

)

b + a
(

2h2(b) − h2
1(b)

)

.(2.3)

Letting F2 = 2f2 − f 2
1 , G2 = 2g2 − g2

1 and H2 = 2h2 − h2
1 in (2.3), we arrive at

F2(ab) = G2(a)b + aH2(b), a, b ∈ A,

which means that F2 is a ¶LG2
, RH2

♢-derivation. If we assume that F1 = f1, G1 = g1

and H1 = h1, then we have f2 = 1
2
F 2

1 + 1
2
F2, g2 = 1

2
G2

1 + 1
2
G2 and h2 = 1

2
H2

1 + 1
2
H2.

Indeed, we characterize f2 by F1 and F2, where F1 is a ¶LG1
, RH1

♢-derivation and
F2 is a ¶LG2

, RH2
♢-derivation. By a process similar to the one described above, we

achieve that f3 = 1
6
F 3

1 + 1
6
F1F2 + 1

3
F2F1 + 1

3
F3, g3 = 1

6
G3

1 + 1
6
G1G2 + 1

3
G2G1 + 1

3
G3

and h3 = 1
6
H3

1 + 1
6
H1H2 + 1

3
H2H1 + 1

3
H3, where Fi is a ¶LGi

, RHi
♢-derivation on A
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for i ∈ ¶1, 2, 3♢. Thus, we can inductively construct a sequence ¶Fn♢ of ¶LGn
, RHn

♢-
derivations characterizing a higher ¶Lgn

, Rhn
♢-derivation ¶fn♢ with f0 = g0 = h0 = I.

This inductive method leads us to this idea that every higher ¶Lgn
, Rhn

♢-derivation
is characterized by a sequence of ¶LGn

, RHn
♢-derivations. The same is also true

for higher ¶Rgn
, Lhn

♢-derivations and higher ¶g, h♢-derivations. In the following, we
show that the characterization of higher ¶Lgn

, Rhn
♢-derivations is not necessarily

unique. In view of the above discussion, if ¶fn♢ is a higher ¶Lgn
, Rhn

♢-derivation
with f0 = g0 = h0 = I, then we have f2 = 1

2
F 2

1 + 1
2
F2, where F1 = f1 and F2 is a

¶LG2
, RH2

♢-derivation. But we can also characterize the higher ¶Lgn
, Rhn

♢-derivation
¶fn♢ in other form. We know that f1(ab) = g1(a)b + ah1(b) for all a, b ∈ A. Therefore,

f 2
1 (ab) = f1 (g1(a)b + ah1(b))

= g2
1(a)b + g1(a)h1(b) + g1(a)h1(b) + ah2

1(b)

= g2
1(a)b + 2g1(a)h1(b) + ah2

1(b).

Thus,

g1(a)h1(b) =
1

2

(

f 2
1 (ab) − g2

1(a)b − ah2
1(b)

)

, a, b ∈ A.(2.4)

Also, we know that f2(ab) = g2(a)b + g1(a)h1(b) + ah2(b) for all a, b ∈ A. Putting
(2.4) in the previous equation, we deduce that f2(ab) = g2(a)b + 1

2
f 2

1 (ab) − 1
2
g2

1(a)b −
1
2
ah2

1(b) + ah2(b) for all a, b ∈ A. Hence, we have

f2(ab) −
1

2
f 2

1 (ab) =
(

g2(a) −
1

2
g2

1(a)
)

b + a

(

h2(b) −
1

2
h2

1(b)
)

,(2.5)

for all a, b ∈ A. Letting F2 = f2 − 1
2
f 2

1 , G2 = g2 − 1
2
g2

1 and H2 = h2 − 1
2
h2

1 in (2.5), we
arrive at

F2(ab) = G2(a)b + aH2(b), a, b ∈ A.

Thus, F2 is a ¶LG2
, RH2

♢-derivation. So, we have f2 = 1
2
f 2

1 + F2, g2 = 1
2
g2

1 + G2 and

h2 = 1
2
h2

1 + H2. The above expressions show that the term f2 is characterized by f1

and F2, where f1 is a ¶Lg1
, Rh1

♢-derivation and F2 is a ¶LG2
, RH2

♢-derivation. Using
the above method and doing more calculations, we get

(

f3 −
1

6
f 3

1 − f1F2

)

(ab) =
(

g3 −
1

6
g3

1 − g1G2

)

(a)b + a

(

h3 −
1

6
h3

1 − h1H2

)

(b)

=
(

h3 −
1

6
h3

1 − h1H2

)

(a)b + a

(

g3 −
1

6
g3

1 − g1G2

)

(b).

Letting F3 = f3 − 1
6
f 3

1 − f1F2, G3 = g3 − 1
6
g3

1 − g1G2 and H3 = h3 − 1
6
h3

1 − h1H2, it is
observed that F3 is a ¶LG3

, RH3
♢-derivation. Thus, we see that the terms f3, g3 and

h3 are characterized as follows:















f3 = 1
6
f 3

1 + f1F2 + F3,

g3 = 1
6
g3

1 + g1G2 + G3,

h3 = 1
6
h3

1 + h1H2 + H3.
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The aforementioned discussion demonstrates that the characterization of higher
¶Lgn

, Rhn
♢-derivations is not necessarily unique. Therefore, one can think that if

¶fn♢ is a higher ¶Lgn
, Rhn

♢-derivation with f0 = g0 = h0 = I, then there exist
two sequences of ¶LGn

, RHn
♢-derivations and ¶LGn

, RHn
♢-derivations characterizing

the higher ¶Lgn
, Rhn

♢-derivation ¶fn♢. The same is also valid for higher ¶Rgn
, Lhn

♢-
derivations and higher ¶gn, hn♢-derivations. In particular, if ¶dn♢n=0,1,... with d0 = I

is a higher derivation on A, we can obtain two sequences ¶δn♢n=0,1,... and ¶∆n♢n=0,1,...

of derivations on A characterizing ¶dn♢.
We begin our results with the following lemma which will be used extensively to

prove the main theorem of this article. The following lemma has been motivated by
[11].

Lemma 2.1. Let ¶fn♢ be a higher ¶Lgn
, Rhn

♢-derivation on an algebra A with f0 =
g0 = h0 = I. Then there is a sequence ¶Fn♢ of ¶LGn

, RHn
♢-derivations on A such

that










(n + 1)fn+1 =
∑n

k=0 Fk+1fn−k,

(n + 1)gn+1 =
∑n

k=0 Gk+1gn−k,

(n + 1)hn+1 =
∑n

k=0 Hk+1hn−k,

for each nonnegative integer n. The same is also true for higher ¶gn, hn♢-derivations.

Proof. Using induction on n, we prove this lemma. Let n = 0. We know that
f1(ab) = g1(a)b + ah1(b) for all a, b ∈ A. Thus, if F1 = f1, G1 = g1 and H1 = h1, then
F1 is a ¶LG1

, RH1
♢-derivation on A and further, (0 + 1)f0+1 =

∑0
k=0 Fk+1f0−k, (0 +

1)g0+1 =
∑0

k=0 Gk+1g0−k and (0 + 1)h0+1 =
∑0

k=0 Hk+1h0−k. As induction assumption,
suppose that Fk is a ¶LGk

, RHk
♢-derivation for any k ≤ n and further











(r + 1)fr+1 =
∑r

k=0 Fk+1fr−k,

(r + 1)gr+1 =
∑r

k=0 Gk+1gr−k,

(r + 1)hr+1 =
∑r

k=0 Hk+1hr−k,

for r = 0, 1, . . . , n−1. Put Fn+1 = (n+1)fn+1 −
∑n−1

k=0 Fk+1fn−k, Gn+1 = (n+1)gn+1 −
∑n−1

k=0 Gk+1gn−k and Hn+1 = (n + 1)hn+1 −
∑n−1

k=0 Hk+1hn−k. Our next task is to show
that Fn+1 is a ¶LGn+1

, RHn+1
♢-derivation on A. For a, b ∈ A, we have

Fn+1(ab) = (n + 1)fn+1(ab) −
n−1
∑

k=0

Fk+1fn−k(ab)

= (n + 1)
n+1
∑

k=0

gk(a)hn+1−k(b) −
n−1
∑

k=0

Fk+1

(

n−k
∑

l=0

gl(a)hn−k−l(b)

)

.

So, we have

Fn+1(ab) =
n+1
∑

k=0

(n + 1)gk(a)hn+1−k(b) −
n−1
∑

k=0

Fk+1

(

n−k
∑

l=0

gl(a)hn−k−l(b)

)

=
n+1
∑

k=0

(k + n + 1 − k)gk(a)hn+1−k(b) −
n−1
∑

k=0

Fk+1

(

n−k
∑

l=0

gl(a)hn−k−l(b)

)

.
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Since Fk is a ¶LGk
, RHk

♢-derivation for each k = 1, 2, . . . , n,

Fn+1(ab) =
n+1
∑

k=0

kgk(a)hn+1−k(b) +
n+1
∑

k=0

gk(a)(n + 1 − k)hn+1−k(b)

−
n−1
∑

k=0

n−k
∑

l=0

[Gk+1 (gl(a)) hn−k−l(b) + gl(a)Hk+1 (hn−k−l(b))] .

Letting

G =
n+1
∑

k=0

kgk(a)hn+1−k(b) −
n−1
∑

k=0

n−k
∑

l=0

Gk+1 (gl(a)) hn−k−l(b),

H =
n+1
∑

k=0

gk(a)(n + 1 − k)hn+1−k(b) −
n−1
∑

k=0

n−k
∑

l=0

gl(a)Hk+l (hn−k−l(b)) ,

we have Fn+1(ab) = G+H. Here, we compute G and H. In the summation
∑n−1

k=0

∑n−k
l=0 ,

we have 0 ≤ k + l ≤ n and k ̸= n. Thus if we put r = k + l, then we can write it as
the form

∑n
r=0

∑

k+l=r,k ̸=n. Putting l = r − k, we Ąnd that

G =
n+1
∑

k=0

kgk(a)hn+1−k(b) −
n
∑

r=0

∑

0≤k≤r,k ̸=n

Gk+1 (gr−k(a)) hn−r(b)

=
n+1
∑

k=0

kgk(a)hn+1−k(b) −
n−1
∑

r=0

r
∑

k=0

Gk+1 (gr−k(a)) hn−r(b) −
n−1
∑

k=0

Gk+1 (gn−k(a)) b.

It means that

G +
n−1
∑

k=0

Gk+1 (gn−k(a)) b =
n+1
∑

k=0

kgk(a)hn+1−k(b) −
n−1
∑

r=0

r
∑

k=0

Gk+1 (gr−k(a)) hn−r(b).

Putting r + 1 instead of k in the Ąrst summation of above, we have

G +
n−1
∑

k=0

Gk+1 (gn−k(a)) b

=
n
∑

r=0

(r + 1)gr+1(a)hn−r(b) −
n−1
∑

r=0

r
∑

k=0

Gk+1 (gr−k(a)) hn−r(b)

=
n−1
∑

r=0

[

(r + 1)gr+1(a) −
r
∑

k=0

Gk+1 (gr−k(a))

]

hn−r(b) + (n + 1)gn+1(a)b.

According to the induction hypothesis, (r + 1)gr+1(a) =
∑r

k=0 Gk+1 (gr−k(a)) for
r = 0, . . . , n − 1. So, it is obtained that

G =

[

(n + 1)gn+1(a) −
n−1
∑

k=0

Gk+1 (gn−k(a))

]

b = Gn+1(a)b.
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Like above, we achieve that

H = a

[

(n + 1)hn+1(b) −
n−1
∑

k=0

Hk+1 (hn−k(b))

]

= aHn+1(b).

Therefore, we have Fn+1(ab) = G + H = Gn+1(a)b + aHn+1(b). □

Example 2.1. Using Lemma 2.1, the Ąrst Ąve terms of a higher ¶Lgn
, Rhn

♢-derivation
¶fn♢ are as follows:

f0 =I,

f1 =F1,

2f2 =F1f1 + F2f0 = F1F1 + F2,

f2 =
1

2
F 2

1 +
1

2
F2,

3f3 =F1f2 + F2f1 + F3f0 = F1(
1

2
F 2

1 +
1

2
F2) + F2F1 + F3,

f3 =
1

6
F 3

1 +
1

6
F1F2 +

1

3
F2F1 +

1

3
F3,

4f4 =F1f3 + F2f2 + F3f1 + F4f0

=F1

(

1

6
F 3

1 +
1

6
F1F2 +

1

3
F2F1 +

1

3
F3

)

+ F2

(

1

2
F 2

1 +
1

2
F2

)

+ F3F1 + F4,

f4 =
1

24
F 4

1 +
1

24
F 2

1 F2 +
1

12
F1F2F1 +

1

12
F1F3 +

1

8
F2F

2
1 +

1

8
F 2

2 +
1

4
F3F1 +

1

4
F4.

We are now in a position to present the Ąrst main theorem of this article.

Theorem 2.1. Let ¶fn♢ be a higher ¶Lgn
, Rhn

♢-derivation on an algebra A with

f0 = g0 = h0 = I. Then there is a sequence ¶Fn♢ of ¶LGn
, RHn

♢-derivations on A

such that






























fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Fr1
· · · Fri

)

,

gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n.

The same is also valid for higher ¶gn, hn♢-derivations.

Proof. Let ¶fn♢ be a higher ¶Lgn
, Rhn

♢-derivation. We Ąrst show that if fn, gn and hn

are of the above forms, then they satisfy the recursive relations of Lemma 2.1. Since
the solution of the recursive relation is unique, this proves the theorem. Simplifying
the notation, we put ar1,...,ri

=
∏i

j=1
1

rj+···+ri
. Note that if r1 + · · · + ri = n + 1, then

(n + 1)ar1,...,ri
= ar2,...,ri

. Furthermore, an+1 = 1
n+1

. According to the aforementioned
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assumptions, we have

fn+1 =
n+1
∑

i=2









∑

∑i

j=1
rj=n+1

ar1,...,ri
Fr1

· · · Fri









+ an+1Fn+1

=
n+1
∑

i=2









∑

∑i

j=1
rj=n+1

ar1,...,ri
Fr1

· · · Fri









+
Fn+1

n + 1
.

So,

(n + 1)fn+1 =
n+1
∑

i=2









∑

∑i

j=1
rj=n+1

(n + 1)ar1,...,ri
Fr1

· · · Fri









+ Fn+1

=
n+1
∑

i=2









∑

∑i

j=1
rj=n+1

ar2,...,ri
Fr1

· · · Fri









+ Fn+1

=
n+1
∑

i=2









n+2−i
∑

r1=1

Fr1

∑

∑i

j=2
rj=n+1−r1

ar2,...,ri
Fr2

· · · Fri









+ Fn+1

=
n
∑

r1=1

Fr1

n−(r1−1)
∑

i=2









∑

∑i

j=2
rj=n−(r1−1)

ar2,...,ri
Fr2

· · · Fri









+ Fn+1

=
n
∑

r1=1

Fr1
fn−(r1−1) + Fn+1

=
n
∑

k=0

Fk+1fn−k.

Reasoning like above, we get that
{

(n + 1)gn+1 =
∑n

k=0 Gk+1gn−k,

(n + 1)hn+1 =
∑n

k=0 Hk+1hn−k,

for each nonnegative integer n. Putting n + 1 = m, we Ąnd that

mfm =
m−1
∑

k=0

Fk+1fm−1−k =
m−2
∑

k=0

Fk+1fm−1−k + Fm,

and consequently

Fm = mfm −
m−2
∑

k=0

Fk+1fm−1−k.
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Similarly, we have
{

Gm = mgm −
∑m−2

k=0 Gk+1gm−1−k,

Hm = mhm −
∑m−2

k=0 Hk+1hm−1−k.

Therefore, we can deĄne Fn, Gn, Hn : A → A by F0 = G0 = H0 = 0 and










Fn = nfn −
∑n−2

k=0 Fk+1fn−1−k,

Gn = ngn −
∑n−2

k=0 Gk+1gn−1−k,

Hn = nhn −
∑n−2

k=0 Hk+1hn−1−k,

for each positive integer n. It follows from Lemma 2.1 that ¶Fn♢ is a sequence of
¶LGn

, RHn
♢-derivations. In addition, we prove that if fn, gn and hn have the forms











(n + 1)fn+1 =
∑n

k=0 Fk+1fn−k,

(n + 1)gn+1 =
∑n

k=0 Gk+1gn−k,

(n + 1)hn+1 =
∑n

k=0 Hk+1hn−k,

where ¶Fn♢ is a sequence of ¶LGn
, RHn

♢-derivations, then ¶fn♢ is a higher ¶Lgn
, Rhn

♢-
derivation on A with f0 = g0 = h0 = I. To see this, we use induction on n. For n = 0,
we have f0(ab) = ab = g0(a)h0(b). As the inductive hypothesis, assume that

fk(ab) =
k
∑

i=0

gi(a)hk−i(b), for k ≤ n.

Therefore, we have

(n + 1)fn+1(ab) =
n
∑

k=0

Fk+1fn−k(ab)

=
n
∑

k=0

Fk+1

n−k
∑

i=0

gi(a)hn−k−i(b)

=
n
∑

i=0

(

n−i
∑

k=0

Gk+1gn−k−i(a)

)

hi(b) +
n
∑

i=0

gi(a)

(

n−i
∑

k=0

Hk+1hn−k−i(b)

)

.

According to the above-mentioned recursive relations, we continue the previous ex-
pressions as follows:

(n + 1)fn+1(ab) =
n
∑

i=0

(n − i + 1)gn−i+1(a)hi(b) +
n
∑

i=0

gi(a)(n − i + 1)hn−i+1(b)

=
n+1
∑

i=1

igi(a)hn+1−i(b) +
n
∑

i=0

(n − i + 1)gi(a)hn+1−i(b)

= (n + 1)
n+1
∑

i=0

gi(a)hn+1−i(b),

which means that fn+1(ab) =
∑n+1

i=0 gi(a)hn+1−i(b). Thus, ¶fn♢ is a higher ¶Lgn
, Rhn

♢-
derivation on A which is characterized by the sequence ¶Fn♢ of ¶LGn

, RHn
♢-derivations.

The same can be proved for higher ¶gn, hn♢-derivations. □
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In the next example, using the above theorem, we characterize term f4 of a higher
¶Lgn

, Rhn
♢-derivation ¶fn♢.

Example 2.2. We compute the coefficients ar1,...,ri
for the case n = 4. First, note that

4 = 1 + 3 = 3 + 1 = 2 + 2 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 1 + 1 + 1 + 1. Based
on the deĄnition of ar1,...,ri

we have

a4 =
1

4
,

a1,3 =
1

1 + 3
·

1

3
=

1

12
,

a3,1 =
1

3 + 1
·

1

1
=

1

4
,

a2,2 =
1

2 + 2
·

1

2
=

1

8
,

a1,1,2 =
1

1 + 1 + 2
·

1

1 + 2
·

1

2
=

1

24
,

a1,2,1 =
1

1 + 2 + 1
·

1

2 + 1
·

1

1
=

1

12
,

a2,1,1 =
1

2 + 1 + 1
·

1

1 + 1
·

1

1
=

1

8
,

a1,1,1,1 =
1

1 + 1 + 1 + 1
·

1

1 + 1 + 1
·

1

1 + 1
·

1

1
=

1

24
.

Therefore, f4, g4 and h4 are characterized as follows:

f4 =
1

4
F4 +

1

12
F1F3 +

1

4
F3F1 +

1

8
F2F2 +

1

24
F1F1F2 +

1

12
F1F2F1

+
1

8
F2F1F1 +

1

24
F1F1F1F1,

g4 =
1

4
G4 +

1

12
G1G3 +

1

4
G3G1 +

1

8
G2G2 +

1

24
G1G1G2 +

1

12
G1G2G1

+
1

8
G2G1G1 +

1

24
G1G1G1G1,

h4 =
1

4
H4 +

1

12
H1H3 +

1

4
H3H1 +

1

8
H2H2 +

1

24
H1H1H2 +

1

12
H1H2H1

+
1

8
H2H1H1 +

1

24
H1H1H1H1.

Corollary 2.1. Let ¶fn♢ be a higher ¶gn, hn♢-derivation on an algebra A with f0 =
g0 = h0 = I. Then there is a sequence ¶Fn♢ of ¶Gn, Hn♢-derivations on A such that











(i) (n + 1)fn+1 =
∑n

k=0 Fk+1fn−k,

(ii) (n + 1)gn+1 =
∑n

k=0 Gk+1gn−k,

(iii) (n + 1)hn+1 =
∑n

k=0 Hk+1hn−k,
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for each nonnegative integer n. Furthermore, we have






























(iv) fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Fr1
· · · Fri

)

,

(v) gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

(vi) hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n.

Proof. According to Lemma 2.1, if ¶fn♢ is a higher ¶Lgn
, Rhn

♢-derivation on an algebra
A with f0 = g0 = h0 = I, then there exists a sequence ¶Fn♢ of ¶LGn

, RHn
♢-derivations

on A satisfying recursive relations (i)-(vi). On the other hand, ¶fn♢ is a higher
¶Rgn

, Lhn
♢-derivation on A. Hence, there is a sequence ¶Fn♢ of ¶RGn

, LHn
♢-derivations

on A satisfying all the equations of (i)-(vi). But, we know that the solution of the
recursive relations is unique. Therefore, we infer that Fn = Fn, Gn = Gn and Hn = Hn

for all positive integers n. □

In [12], Mirzavaziri and Tehrani presented a characterization of generalized higher
derivations. They deĄned a generalized higher derivation as follows. A sequence ¶fn♢
of linear mappings on A is called a generalized higher derivation if there exists a
higher derivation ¶dn♢ on A such that fn(ab) =

∑n
k=0 fn−k(a)dk(b) for each a, b ∈ A

and each nonnegative integer n. In fact, they assume that each generalized higher
derivation is dependent on a higher derivation. In the following corollary, we show
that this assumption is unnecessary.

Corollary 2.2. Let ¶fn♢ be a higher ¶Lfn
, Rdn

♢-derivation (resp. higher ¶Rfn
, Ldn

♢-

derivation) on an algebra A with f0 = d0 = I. Then there is a sequence ¶Fn♢ of

¶LFn
, RDn

♢-derivations (resp. ¶RFn
, LDn

♢-derivations) on A such that
{

(n + 1)fn+1 =
∑n

k=0 Fk+1fn−k,

(n + 1)dn+1 =
∑n

k=0 Dk+1dn−k,

for each nonnegative integer n. Furthermore, we have














fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Fr1
· · · Fri

)

,

dn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Dr1
· · · Dri

)

,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n.

We are now going to give an example of a generalized higher derivation that does
not depend on a higher derivation.

Example 2.3. Let R be a ring and let

R =

















0 a b

0 0 c

0 0 0





 : a, b, c ∈ R











.
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Clearly, R is a ring. DeĄne the additive mappings f, d : R → R by

f













0 a b

0 0 c

0 0 0











 =







0 a 0
0 0 0
0 0 0





 ,

d











0 a b

0 0 c

0 0 0









 =







0 a b

0 0 −c

0 0 0





 .

It is routine to see that

f(AB) = f(A)B + Ad(B), A, B ∈ R,

which means that f is an l-generalized derivation associated with d in which d is
not a derivation. DeĄne fn = fn

n!
and dn = dn

n!
for each nonnegative integer n with

f 0 = d0 = I. A straightforward veriĄcation shows that fn(ab) =
∑n

k=0 fn−k(a)dk(b)
for each nonnegative integer n, while ¶dn♢ is not a higher derivation.

Theorem 2.2. Let ¶fn♢ be a sequence of linear mappings satisfying

fn =
n
∑

i=1









∑

∑i

j=1
rj=n





i
∏

j=1

1

rj + · · · + ri



Fr1
· · · Fri









,

for each positive integer n with f0 = I, where Fn is a ¶LGn
, RHn

♢-derivation (resp.

¶RGn
, LHn

♢-derivation) for each positive integer n. Then there exist two sequences

¶gn♢ and ¶hn♢ of linear mappings such that














gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

,

for each positive integer n with g0 = h0 = I, where the inner summation is taken

over all positive integers rj with
∑i

j=1 rj = n and furthermore, ¶fn♢ is a higher

¶Lgn
, Rhn

♢-derivation (resp. higher ¶Rgn
, Lhn

♢-derivation) on A.

Proof. We use induction on n. Suppose that if

fk =
k
∑

i=1









∑

∑i

j=1
rj=k





i
∏

j=1

1

rj + · · · + ri



Fr1
· · · Fri









,

for 1 ≤ k ≤ n, where Fi is a ¶LGi
, RHi

♢-derivation for each i ≤ k, then there exist the
linear mappings gk and hk such that















gk =
∑k

i=1

(

∑

∑i

j=1
rj=k

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hk =
∑k

i=1

(

∑

∑i

j=1
rj=k

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

,
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with g0 = h0 = I and further fk(ab) =
∑k

i=0 gk−i(a)hi(b) for all a, b ∈ A. Based on
the assumption, we have the following equation:

fn+1 =
n+1
∑

i=1









∑

∑i

j=1
rj=n+1





i
∏

j=1

1

rj + · · · + ri



Fr1
· · · Fri









,

in which Fi is a ¶LGi
, RHi

♢-derivation for each 1 ≤ i ≤ n + 1. Now, we deĄne















gn+1 =
∑n+1

i=1

(

∑

∑i

j=1
rj=n+1

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hn+1 =
∑n+1

i=1

(

∑

∑i

j=1
rj=n+1

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

.

It follows from the proof of Theorem 2.1 that gn+1 and hn+1 satisfy the following
recursive relations:

{

(n + 1)gn+1 =
∑n

k=0 Gk+1gn−k,

(n + 1)hn+1 =
∑n

k=0 Hk+1hn−k.

Our next task is to show that fn+1(ab) =
∑n+1

i=0 gi(a)hn+1−i(b) for all a, b ∈ A. Reusing
the proof of Theorem 2.1, we have (n+1)fn+1(ab) =

∑n
k=0 Fk+1fn−k(ab) for all a, b ∈ A.

Therefore,

(n + 1)fn+1(ab) =
n
∑

k=0

Fk+1fn−k(ab)

=
n
∑

k=0

Fk+1

n−1
∑

i=0

gi(a)hn−k−i(b)

=
n
∑

i=0

(

n−i
∑

k=0

Gk+1gn−k−i(a)

)

hi(b) +
n
∑

i=0

gi(a)

(

n−i
∑

k=0

Hk+1hn−k−i(b)

)

=
n
∑

i=0

(n − i + 1)gn−i+1(a)hi(b) +
n
∑

i=0

(n − i + 1)gi(a)hn−i+1(b)

=
n+1
∑

i=1

igi(a)hn+1−i(b) +
n
∑

i=0

(n − i + 1)gi(a)hn−i+1(b)

=
n+1
∑

i=0

(n + 1)gi(a)hn+1−i(b),

which means that

fn+1(ab) =
n+1
∑

i=0

gi(a)hn+1−i(b).

Thereby, our proof is complete. □
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Corollary 2.3. Let ¶fn♢ be a sequence of linear mappings satisfying

fn =
n
∑

i=1









∑

∑i

j=1
rj=n





i
∏

j=1

1

rj + · · · + ri



Fr1
· · · Fri









,

for each positive integer n with f0 = I, where Fn is a generalized derivation associated

with a linear mapping Dn for each positive integer n. Then there exists a sequence

¶dn♢ of linear mappings such that

dn =
n
∑

i=1









∑

∑i

j=1
rj=n





i
∏

j=1

1

rj + · · · + ri



Dr1
· · · Dri









,(2.6)

for each positive integer n with d0 = I, where the inner summation is taken over all

positive integers rj with
∑i

j=1 rj = n and furthermore, ¶fn♢ is a generalized higher

derivation associated with the sequence ¶dn♢.

For instance, let Fi be a generalized derivation associated with a linear mapping
Di for i ∈ ¶1, 2, 3♢ on A and let f3 = 1

6
F 3

1 + 1
6
F1F2 + 1

3
F2F1 + 1

3
F3. So we have the

following calculations:

f3(ab) =
(

1

6
F 3

1 (a) +
1

6
F1F2(a) +

1

3
F2F1(a) +

1

3
F3(a)

)

b

+
(

1

2
F 2

1 (a) +
1

2
F2(a)

)

d1(b) + f1(a)
(

1

2
D2

1(b) +
1

2
D2(b)

)

+ a

(

1

6
D3

1(a) +
1

6
D1D2(a) +

1

3
D2D1(a) +

1

3
D3(a)

)

,

for all a, b ∈ A. Considering d2 = 1
2
D2

1 + 1
2
D2 and d3 = 1

6
D3

1 + 1
6
D1D2 + 1

3
D2D1 + 1

3
D3,

we see that

f3(ab) = f3(a)b + f2(a)d1(b) + f1(a)d2(b) + ad3(b) =
3
∑

k=0

f3−k(a)dk(b).

This leads us to the sequence ¶dn♢ satisfying (2.6) and further

fn(ab) =
n
∑

k=0

fn−k(a)dk(b).

In the following, there are some immediate consequences of the previous results.
Before it, recall that a sequence ¶fn♢ of linear mappings on A is called a Jordan higher
¶gn, hn♢-derivation if there exist two sequences ¶gn♢ and ¶hn♢ of linear mappings on A

such that fn(a◦b) =
∑n

k=0 gn−k(a)◦hk(b) holds for each a, b ∈ A and each nonnegative
integer n. Since the Jordan product is commutative, we have

fn(a ◦ b) = fn(b ◦ a) =
n
∑

k=0

gn−k(b) ◦ hk(a) =
n
∑

k=0

gk(b) ◦ hn−k(a) =
n
∑

k=0

hn−k(a) ◦ gk(b).
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So, it is observed that if ¶fn♢ is a Jordan higher ¶gn, hn♢-derivation, then

fn(a ◦ b) =
n
∑

k=0

gn−k(a) ◦ hk(b) =
n
∑

k=0

hn−k(a) ◦ gk(b),

for all a, b ∈ A.

Corollary 2.4. Let ¶fn♢ be a Jordan higher ¶gn, hn♢-derivation on a semiprime

algebra A with f0 = g0 = h0 = I. Then ¶fn♢ is a higher ¶gn, hn♢-derivation.

Proof. Using the proof of Theorem 2.1, we can show that if ¶fn♢ is a Jordan higher
¶gn, hn♢-derivation on an algebra A with f0 = g0 = h0 = I, then there exists a
sequence ¶Fn♢ of Jordan ¶Gn, Hn♢-derivations on A such that

fn =
n
∑

i=1









∑

∑i

j=1
rj=n





i
∏

j=1

1

rj + · · · + ri



Fr1
· · · Fri









,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n.
Since A is a semiprime algebra, [1, Theorem 4.3] proves the corollary. □

In the following, A ⊗ S denotes the tensor product of two algebras A and S, where
both A and S are deĄned over a Ąeld F of characteristic zero. We know that the tensor
product of two vector spaces V and W over a Ąeld F is also a vector space over F.

Corollary 2.5. Let A be a semiprime and S be a commutative algebra, and let ¶fn♢
be a Jordan higher ¶gn, hn♢-derivation of A ⊗ S with f0 = g0 = h0 = I. Then ¶fn♢ is

a higher ¶gn, hn♢-derivation.

Proof. As stated above, for a Jordan higher ¶gn, hn♢-derivation ¶fn♢ of A ⊗ S with
f0 = g0 = h0 = I there exists a sequence ¶Fn♢ of Jordan ¶Gn, Hn♢-derivations on the
algebra A ⊗ S such that

fn =
n
∑

i=1









∑

∑i

j=1
rj=n





i
∏

j=1

1

rj + · · · + ri



Fr1
· · · Fri









,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n.
Theorems 3.1 and 4.3 of [1] together show that every Jordan ¶g, h♢-derivation of
the tensor product of a semiprime and a commutative algebra is a ¶g, h♢-derivation.
This fact along with the above-mentioned characterization of ¶fn♢ implies that the
Jordan higher ¶gn, hn♢-derivation ¶fn♢ with f0 = g0 = h0 = I is a higher ¶gn, hn♢-
derivation. □

Corollary 2.6. Let A be a semiprime and S be a commutative algebra, and let ¶dn♢
be a Jordan higher derivation of A⊗ S with d0 = I. Then ¶dn♢ is a higher derivation.

Proof. This is an immediate consequence of [1, Corollary 4.4] and [11, Theorem
2.3]. □
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The importance of Corollary 2.5 and 2.6 is that the algebra A⊗ S is not semiprime
if S is not semiprime. On the other hand, even the tensor product of semiprime
algebras is not always semiprime. So, we are presenting a characterization of higher
¶gn, hn♢-derivations on some algebras which maybe are not semiprime.

Remark 2.1. We know that the notion of a Jordan ¶g, h♢-derivation is a generalization
of Jordan generalized derivations (see Introduction). A sequence ¶fn♢ of linear map-
pings on an algebra A is called a Jordan generalized higher derivation if there exists
a sequence ¶dn♢ of linear mappings on A such that fn(a ◦ b) =

∑n
k=0 fn−k(a) ◦ dk(b)

for all a, b ∈ A. So, Corollaries 2.4 and 2.5 are also valid for Jordan generalized higher
derivations.

Motivated by [11, Theorem 2.5], we prove the following theorem.

Theorem 2.3. Let f be the set of all higher ¶Lgn
, Rhn

♢-derivations ¶fn♢n=0,1,... on A

with f0 = g0 = h0 = I and F be the set of all sequences ¶Fn♢n=0,1,... of ¶LGn
, RHn

♢-

derivations on A with F0 = G0 = H0 = 0. Then there is a one to one correspondence

between f and F. The same is also valid for higher ¶gn, hn♢-derivations.

Proof. Let ¶fn♢ ∈ f. We are going to obtain a sequence ¶Fn♢n=0,1,... of ¶LGn
, RHn

♢-
derivations with F0 = G0 = H0 = 0 that characterizes the higher ¶Lgn

, Rhn
♢-derivation

¶fn♢. DeĄne Fn, Gn, Hn : A → A by F0 = G0 = H0 = 0 and










Fn = nfn −
∑n−2

k=0 Fk+1fn−1−k,

Gn = ngn −
∑n−2

k=0 Gk+1gn−1−k,

Hn = nhn −
∑n−2

k=0 Hk+1hn−1−k,

for each positive integer n. Then it follows from Lemma 2.1 that ¶Fn♢ is a sequence
of ¶LGn

, RHn
♢-derivations characterizing the higher ¶Lgn

, Rhn
♢-derivation ¶fn♢. Con-

versely, suppose that ¶Fn♢ ∈ F which means that every Fn is a ¶LGn
, RHn

♢-derivation
with F0 = G0 = H0 = 0. We will show that there exists a higher ¶Lgn

, Rhn
♢-derivation

¶fn♢ with f0 = g0 = h0 = I which is characterized by the sequence ¶Fn♢n=0,1,.... We
deĄne fn, gn, hn : A → A by f0 = g0 = h0 = I and































fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Fr1
· · · Fri

)

,

gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

.

By Theorem 2.1, fn, gn and hn satisfy the following recursive relations:










(n + 1)fn+1 =
∑n

k=0 Fk+1fn−k,

(n + 1)gn+1 =
∑n

k=0 Gk+1gn−k,

(n + 1)hn+1 =
∑n

k=0 Hk+1hn−k.

Based on the last part of the proof of Theorem 2.1, ¶fn♢ is a higher ¶Lgn
, Rhn

♢-
derivation on A with f0 = g0 = h0 = I. Thus, ¶fn♢ ∈ f. Now, deĄne F : F → f by
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F(¶Fn♢) = ¶fn♢, where






























fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Fr1
· · · Fri

)

,

gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

.

Clearly, F is a one to one correspondence. This yields the desired result. □

Remark 2.2. Let A be a unital algebra with the identity element e and let ¶fn♢ be
a higher ¶gn, hn♢-derivation on A with f0 = g0 = h0 = I. According to Theorem 2.1,
there exists a sequence ¶Fn♢ of ¶Gn, Hn♢-derivations on A such that































fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Fr1
· · · Fri

)

,

gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Gr1
· · · Gri

)

,

hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

Hr1
· · · Hri

)

,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n. It
follows from [8, Theorem 3.1] that if f is a ¶g, h♢-derivation on a unital algebra, then
f , g and h are generalized derivation associated with the derivation δ. Indeed, we
have f = δ + Lf(e), g = δ + Lg(e) and h = δ + Lh(e). Using this fact and that every
¶Fn♢ is a ¶Gn, Hn♢-derivation, we deduce that there is a sequence ¶Dn♢ of derivations
such that Fn = Dn + LFn(e), Gn = Dn + LGn(e) and Hn = Dn + LHn(e) for any n ∈ N.
It means that every Fn, Gn and Hn is a generalized derivation associated with the
derivation Dn. We can thus infer from [12] that ¶fn♢, ¶gn♢ and ¶hn♢ are generalized
higher derivations. We can see that






























fn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

(Dr1
+ LFr1

(e)) · · · (Dri
+ LFri

(e))
)

,

gn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

(Dr1
+ LGr1

(e)) · · · (Dri
+ LGri

(e))
)

,

hn =
∑n

i=1

(

∑

∑i

j=1
rj=n

(

∏i
j=1

1
rj+···+ri

)

(Dr1
+ LHr1

(e)) · · · (Dri
+ LHri

(e))
)

,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n.
Easily, we deduce that there is a higher derivation

dn =
n
∑

i=1









∑

∑i

j=1
rj=n





i
∏

j=1

1

rj + · · · + ri



Dr1
· · · Dri









,

where the inner summation is taken over all positive integers rj with
∑i

j=1 rj = n on
A such that











fn(ab) =
∑n

k=0 fn−k(a)dk(b),
gn(ab) =

∑n
k=0 gn−k(a)dk(b),

hn(ab) =
∑n

k=0 hn−k(a)dk(b),
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for all a, b ∈ A and n ∈ N. It follows from [1] that if f is a ¶g, h♢-derivation on a
unital algebra, then f(e), g(e), h(e) ∈ Z(A). So, we have

Fn(ab) = Dn(ab) + LFn(e)(ab)

= Dn(a)b + aDn(b) + Fn(e)ab

= Dn(a) + a (Dn(b) + Fn(e)b)

= Dn(a)b + aFn(b),

for all a, b ∈ A and n ∈ N. Similarly, Gn(ab) = Dn(a)b + aGn(b) and Hn(ab) =
Dn(a)b + aHn(b) for all a, b ∈ A and n ∈ N. So, one can easily obtain that











fn(ab) =
∑n

k=0 dn−k(a)fk(b),
gn(ab) =

∑n
k=0 dn−k(a)gk(b),

hn(ab) =
∑n

k=0 dn−k(a)hk(b),

for all a, b ∈ A and n ∈ N.

Proposition 2.1. Let R be a unital ring with the identity element e and let ¶fn♢ be a

higher ¶gn, hn♢-derivation on R. Then fn(e), gn(e), hn(e) ∈ Z(R) for any nonnegative

integer n.

Proof. Using induction on n, we prove this proposition. According to page 2 of [1],
the result is certainly true if n = 1. We show that the result is true for n = 2. We
know that

f2(xy) = g2(x)y + g1(x)h1(y) + xh2(y) = h2(x)y + h1(x)g1(y) + xg2(y),(2.7)

for all x, y ∈ R. Taking y = e in (2.7), we obtain

f2(x) = g2(x) + g1(x)h1(e) + xh2(e) = h2(x) + h1(x)g1(e) + xg2(e),(2.8)

and taking x = e, we get

f2(y) = g2(e)y + g1(e)h1(y) + h2(y) = h2(e)y + h1(e)g1(y) + g2(y).(2.9)

Comparing (2.8) and (2.9) and using the fact that h1(e), g1(e) ∈ Z(R), we see that
g2(e), h2(e) ∈ Z(R) and consequently, f2(e) ∈ Z(R). As induction hypothesis, assume
that the result is true for any k < n. We have

fn(xy) = gn(x)y + gn−1(x)h1(y) + · · · + xhn(y)

= hn(x)y + hn−1(x)g1(y) + · · · + xgn(y).

Reasoning like above, we have

fn(x) = gn(x) + gn−1(x)h1(e) + · · · + xhn(e)

= hn(x) + hn−1(x)g1(e) + · · · + xgn(e)

and also

fn(y) = gn(e)y + gn−1(e)h1(y) + · · · + hn(y)

= hn(e)y + hn−1(e)g1(y) + · · · + gn(y).
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Comparing the above equations and using the inductive hypothesis, we get that
gn(e), hn(e) ∈ Z(R) and consequently, fn(e) ∈ Z(R). □

The article ends with the following theorem.

Theorem 2.4. Let A be a unital algebra with the identity element e and let ¶fn♢ be

a generalized higher derivation associated with a sequence ¶dn♢ of linear mappings.

Then ¶dn♢ is a higher derivation.

Proof. We use induction to get our goal. The result trivially holds for n = 1. Now
suppose that dk(ab) =

∑k
i=0 dk−i(a)di(b) for any k < n. We have

fn(ab) =
n
∑

k=0

fn−k(a)dk(b) = fn(a)b + adn(b) +
n−1
∑

k=1

fn−k(a)dk(b).

Since A is unital, we get that

fn(b) = fn(e)b + dn(b) +
n−1
∑

k=1

fn−k(e)dk(b)

and consequently, we have

dn(b) = fn(b) − fn(e)b −
n−1
∑

k=1

fn−k(e)dk(b),

for all b ∈ A. Now, we have the following expressions:

dn(ab) =fn(ab) − fn(e)ab −
n−1
∑

k=1

fn−k(e)dk(ab)

=
n
∑

k=0

fn−k(a)dk(b) − fn(e)ab −
n−1
∑

k=1

fn−k(e)
k
∑

i=0

dk−i(a)di(b)

= [fn(a) − fn(e)a − fn−1(e)d1(a) − · · · − f1(e)dn−1(a)] b

+ [fn−1(a) − fn−1(e)a − fn−2(e)d1(a) − · · · − f1(e)dn−2(a)] d1(b)

+ · · · + adn(b)

=dn(a)b + dn−1(a)d1(b) + · · · + adn(b)

=
n
∑

k=0

dn−k(a)dk(b).

It means that ¶dn♢ is a higher derivation, as desired. □
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SOME PROPERTIES OF NEW HYPERGEOMETRIC FUNCTIONS

IN FOUR VARIABLES

MAGED G. BIN-SAAD1, JIHAD A. YOUNIS1, AND KOTTAKKARAN S. NISAR2∗

Abstract. In this paper, we introduce ten new quadruple hypergeometric series.
We also obtain their various properties such that integral representations, fractional
derivatives, N-fractional connections, operational relations and generating functions.

1. Introduction

In recent years, several interesting and useful properties of certain multiple hyper-
geometric functions have been investigated by many authors (see, e.g., [1, 3–9,11,12,
14, 15, 17, 21, 22, 25, 26]). In a sequel of such type of works mentioned above in this
paper, we introduce ten new hypergeometric series of four variables as below

X
(4)
70 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c3, c4; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)2p+n+q(a3)q

(c1)m(c2)n(c3)p(c4)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.1)

X
(4)
71 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c2, c3; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)2p+n+q(a3)q

(c1)m+n(c2)p(c3)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.2)

X
(4)
72 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c1, c3; x, y, z, u)
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=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)2p+n+q(a3)q

(c1)m+p(c2)n(c3)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.3)

X
(4)
73 (a1, a1, a2, a2, a1, a2, a2, a3; c2, c1, c1, c3; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)2p+n+q(a3)q

(c1)n+p(c2)m(c3)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.4)

X
(4)
74 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c1, c2; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)2p+n+q(a3)q

(c1)m+n+p(c2)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.5)

X
(4)
75 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c3, c4; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)n+p+q(a3)p(a4)q

(c1)m(c2)n(c3)p(c4)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.6)

X
(4)
76 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c1, c2, c3; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)n+p+q(a3)p(a4)q

(c1)m+n(c2)p(c3)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.7)

X
(4)
77 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c1, c3; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)n+p+q(a3)p(a4)q

(c1)m+p(c2)n(c3)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.8)

X
(4)
78 (a1, a1, a2, a2, a1, a2, a3, a4; c2, c1, c1, c3; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)n+p+q(a3)p(a4)q

(c1)n+p(c2)m(c3)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.9)

X
(4)
79 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c1, c1, c2; x, y, z, u)

=
∞
∑

m,n,p,q=0

(a1)2m+n(a2)n+p+q(a3)p(a4)q

(c1)m+n+p(c2)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
,(1.10)

where (a)m is the Pochhammer symbol defined by

(a)m =
Γ(a + m)

Γ(a)
= a(a + 1) · · · (a + m − 1),

for m ≥ 1, (a)0 = 1, Γ being the well-known Gamma function.
The present paper aims at introducing and investigating certain properties of hy-

pergeometric series X
(4)
70 , X

(4)
72 , . . . , X

(4)
79 . The structure of this paper is as follows. In

Section 2, integral representations of Laplace-type are obtained. In Section 3, we
establish some fractional derivatives for our series. Section 4 presents certain con-
nections by means of N-fractional operator. Section 5 deals with the derivation of

operational relations between the quadruple functions X
(4)
70 , X

(4)
72 , . . . , X

(4)
79 and triple
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hypergeometric functions. The generating functions are given in the last section of
this paper.

2. Integral Representations of Laplace-Type

In this section, we present certain integrals of Laplace-type involving the quadruple

series X
(4)
i , i = 70, 71, . . . , 79. For our purpose, we begin by recalling the following

confluent hypergeometric functions [23]:

0F1 (−; c; x) =
∞
∑

m=0

1

(c)m

·
xm

m!
,(2.1)

1F1 (a; c; x) =
∞
∑

m=0

(a)m

(c)m

·
xm

m!
,(2.2)

Φ3 (a; c; x, y) =
∞
∑

m,n=0

(a)m

(c)m+n

·
xm

m!
·

yn

n!
,(2.3)

H6 (a; c; x, y) =
∞
∑

m,n=0

(a)2m+n

(c)m+n

·
xm

m!
·

yn

n!
,(2.4)

H7 (a; b, c; x, y) =
∞
∑

m,n=0

(a)2m+n

(b)m(c)n

·
xm

m!
·

yn

n!
.(2.5)

Now, if we consider the definitions of the confluent hypergeometric functions

0F1, 1F1, Φ3, H6 and H7, we can derive the following integral representations:

X
(4)
70 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c3, c4; x, y, z, u)

=
1

Γ(a2)

∫

∞

0
e−ssa2−1

H7 (a1; c1, c2; x, sy) 0F1



−; c3; s2z


1F1 (a3; c4; su) ds,

Re (a2) > 0,(2.6)

X
(4)
71 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c2, c3; x, y, z, u)

=
1

Γ(a2)

∫

∞

0
e−ssa2−1

H6 (a1; c1; x, sy) 0F1



−; c2; s2z


1F1 (a3; c3; su) ds,

Re (a2) > 0,(2.7)

X
(4)
72 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c1, c3; x, y, z, u)

=
1

Γ(a1)Γ(a2)

∫

∞

0

∫

∞

0
e−(s+t)sa1−1 ta2−1

0F1



−; c1; s2x + t2z


× 0F1 (−; c2; sty) 1F1 (a3; c3; tu) dsdt, Re (a1) > 0, Re (a2) > 0,(2.8)

X
(4)
73 (a1, a1, a2, a2, a1, a2, a2, a3; c2, c1, c1, c3; x, y, z, u)

=
1

Γ(a1)Γ(a2)

∫

∞

0

∫

∞

0
e−(s+t)sa1−1 ta2−1

0F1



−; c1; sty + t2z


× 0F1



−; c2; s2x


1F1 (a3; c3; tu) dsdt, Re (a1) > 0, Re (a2) > 0,(2.9)
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X
(4)
74 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c1, c2; x, y, z, u)

=
1

Γ(a1)Γ(a2)

∫

∞

0

∫

∞

0
e−(s+t)sa1−1 ta2−1

0F1



−; c1; s2x + sty + t2z


× 1F1 (a3; c2; tu) dsdt, Re (a1) > 0, Re (a2) > 0,(2.10)

X
(4)
75 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c3, c4; x, y, z, u)

=
1

Γ(a2)

∫

∞

0
e−ssa2−1

H7 (a1; c1, c2; x, sy) 1F1 (a3; c3; sz) 1F1 (a4; c4; su) ds,

Re (a2) > 0,(2.11)

X
(4)
76 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c1, c2, c3; x, y, z, u)

=
1

Γ(a2)

∫

∞

0
e−ssa2−1

H6 (a1; c1; x, sy) 1F1 (a3; c2; sz) 1F1 (a4; c3; su) ds,

Re (a2) > 0,(2.12)

X
(4)
77 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c1, c3; x, y, z, u)

=
1

Γ(a1)Γ(a2)

∫

∞

0

∫

∞

0
e−(s+t)sa1−1 ta2−1Φ3



a3; c1; tz, s2x


0F1 (−; c2; sty)

× 1F1 (a4; c3; tu) dsdt, Re (a1) > 0, Re (a2) > 0,(2.13)

X
(4)
78 (a1, a1, a2, a2, a1, a2, a3, a4; c2, c1, c1, c3; x, y, z, u)

=
1

Γ(a1)Γ(a2)

∫

∞

0

∫

∞

0
e−(s+t)sa1−1 ta2−1Φ3 (a3; c1; tz, sty) 0F1



−; c2; s2x


× 1F1 (a4; c3; tu) dsdt, Re (a1) > 0, Re (a2) > 0,(2.14)

X
(4)
79 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c1, c1, c2; x, y, z, u)

=
1

Γ(a1)Γ(a2)Γ(a3)

∫

∞

0

∫

∞

0

∫

∞

0
e−(s+t+v)sa1−1 ta2−1 va3−1

× 0F1



−; c1; s2x + sty + tvz


1F1 (a4; c2; tu) dsdtdv,

Re (a1) > 0, Re (a2) > 0, Re (a3) > 0.(2.15)

Proof. To establish (2.6), denote by I the right side of the relation (2.6). Then, by
substituting the expression of the confluent hypergeometric functions (2.1), (2.2) and
(2.5) into the right hand side of (2.6), we have

I =
∞
∑

m,n,p,q=0

(a1)2m+n(a3)q

(c1)m(c1)n(c1)p(c1)qΓ(a2)
·

xm

m!
·

yn

n!
·

zp

p!
·

uq

q!

∫

∞

0
e−ssa2+2p+n+q−1ds,

by using the known equality (see [23])

Γ(a) =
∫

∞

0
e−s sa−1ds, Re (a) > 0,

we get the result after some simplifications. Similarly, one can proof the relations
(2.6) to (2.15). □
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3. Fractional Derivatives

The fractional derivative operator Dk
w that was introduced by Miller and Ross [16]

is given as

Dk
wwa =

Γ(a + 1)

Γ(a − k + 1)
wa−k, Re (a) > −1.(3.1)

Now, by using the above operator, we aim in this section at establishing the following
fractional derivative formulae:

Da1−c
w

[

wa1−1X
(4)
70



c, c, a2, a2, c, a2, a2, a3; c1, c2, c3, c4; w2x, wy, z, u
]

=
Γ(a1)

Γ(c)
wc−1X

(4)
70



a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c3, c4; w2x, wy, z, u


,

(3.2)

Da2−c
w

[

wa2−1X
(4)
71



a1, a1, c, c, a1, c, c, a3; c1, c1, c2, c3; x, wy, w2z, wu
]

=
Γ(a2)

Γ(c)
wc−1X

(4)
71



a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c2, c3; x, wy, w2z, wu


,

(3.3)

Da1−c
w1

Da2−c
′

w2

[

wa1−1
1 wa2−1

2 X
(4)
72



c, c, c
′

, c
′

, c, c
′

, c
′

, a3; c1, c2, c1, c3; w2
1x, w1w2y,

w2
2z, w2u

]

=
Γ(a1)Γ(a2)

Γ(c)Γ(c′)
wc−1

1 wc
′

−1
2 X

(4)
72 (a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c1, c3; w2

1x, w1w2y,

w2
2z, w2u



,

(3.4)

Da1−c
w1

Da3−c
′

w2

[

wa1−1
1 wa3−1

2 X
(4)
73



c, c, a2, a2, c, a2, a2, c
′

; c2, c1, c1, c3; w2
1x, w1y, z, w2u

]

=
Γ(a1)Γ(a3)

Γ(c)Γ(c′)
wc−1

1 wc
′

−1
2 X

(4)
73 (a1, a1, a2, a2, a1, a2, a2, a3; c2, c1, c1, c3; w2

1x, w1y, z, w2u


,

(3.5)

Da1−c
w1

Da2−c
′

w2
Da3−c

′′

w3

[

wa1−1
1 wa2−1

2 wa3−1
3 X

(4)
74



c, c, c
′

, c
′

, c, c
′

, c
′

, c
′′

; c1, c1, c1, c2; w2
1x,

w1w2y, w2
2z, w2w3u

]

=
Γ(a1)Γ(a2)Γ(a3)

Γ(c)Γ(c′)Γ(c′′)
wc−1

1 wc
′

−1
2 wc

′′

−1
3

× X
(4)
74



a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c1, c2; w2
1x, w1w2y, w2

2z, w2w3u


,

(3.6)

Da3−c
w1

Da4−c
′

w2

[

wa3−1
1 wa4−1

2 X
(4)
75



a1, a1, a2, a2, a1, a2, c, c
′

; c1, c2, c3, c4; x, y, w1z, w2u
]
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=
Γ(a3)Γ(a4)

Γ(c)Γ(c′)
wc−1

1 wc
′

−1
2 X

(4)
75 (a1, a1, a2, a2, a1, a2, a2, a3; c2, c1, c1, c3; x, y, w1z, w2u) ,

(3.7)

Da2−c
w

[

wa2−1X
(4)
76



a1, a1, a2, a2, a1, a2, c, c
′

; c1, c1, c2, c3; x, wy, wz, wu
]

=
Γ(a2)

Γ(c)
wc−1X

(4)
76 (a1, a1, a2, a2, a1, a2, a2, a3; c2, c1, c1, c3; x, wy, wz, wu) ,

(3.8)

Da1−c
w1

Da2−c
′

w2
Da3−c

′′

w3
Da4−c

′′′

w4

[

wa1−1
1 wa2−1

2 wa3−1
3 wa4−1

4 X
(4)
77



c, c, c
′

, c
′

, c, c
′

, c
′′

, c
′′′

;

(3.9)

c1, c2, c1, c3; w2
1x, w1w2y, w2w3z, w2w4u

]

=
Γ(a1)Γ(a2)Γ(a3)Γ(a4)

Γ(c)Γ(c′)Γ(c′′)Γ(c′′′)
wc−1

1 wc
′

−1
2 wc

′′

−1
3 wc

′′′

−1
4

× X
(4)
77



a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c1, c3; w2
1x, w1w2y, w2w3z, w2w4u



,

(3.10)

Da2−c
w1

Da3−c
′

w2
Da4−c

′′

w3

[

wa2−1
1 wa3−1

2 wa4−1
3 X

(4)
78



a1, a1, c, c, a1, c, c
′

, c
′′

; c2, c1, c1, c3;

x, w1y, w1w2z, w1w3u)]

=
Γ(a2)Γ(a3)Γ(a4)

Γ(c)Γ(c′)Γ(c′′)
wc−1

1 wc
′

−1
2 wc

′′

−1
3

× X
(4)
78 (a1, a1, a2, a2, a1, a2, a3, a4; c2, c1, c1, c3; x, w1y, w1w2z, w1w3u) ,

(3.11)

Da1−c
w1

Da2−c
′

w2

[

wa1−1
1 wa2−1

2 X
(4)
79



c, c, c
′

, c
′

, c, c
′

, a3, a4; c1, c1, c1, c2; w2
1x, w1w2y,

w2z, w2u)]

=
Γ(a1)Γ(a2)

Γ(c)Γ(c′)
wc−1

1 wc
′

−1
2

× X
(4)
79



a1, a1, a2, a2, a1, a2, a3, a4; c1, c1, c1, c2; w2
1x, w1w2y, w2z, w2u



.

(3.12)

Proof. We have

Da1−c
w

[

wa1−1X
(4)
70



c, c, a2, a2, c, a2, a2, a3; c1, c2, c3, c4; w2x, wy, z, u
]

=
∞
∑

m,n,p,q=0

(c)2m+n(a2)2p+n+q(a3)q

(c1)m(c2)n(c3)p(c4)q

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!
Da1−c

w wa1+2m+n−1.

Now, with the help of (3.1) and Definition 1.1, the proof of the first fractional derivative
formula is completed. The proofs of the assertions (3.3) to (3.12) run parallel to that
of the assertion (3.2) then we skip the details. □
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4. N-Fractional Connections

First, by recalling the N-fractional operator due to Bin-Saad [4]:

M
a,c,b
w =

[

wa−1(1 − w)−b
]

a−c
=

Γ(a − c)

2πi

∫

C

ηa−1(1 − η)−b

(η − z)a−c
dη,(4.1)

where a, b, c ∈ C and (a − c) /∈ Z, we aim in this section to investigate the following
relationships:

M
a,c,b
u X12



a1, b; c1, c2, c3; x,
y

(1 − u)
,

z

(1 − u)2



=AX
(4)
70 (a1, a1, b, b, a1, b, b, a; c1, c2, c3, c; x, y, z, u) ,(4.2)

M
a,c,b
u X10



a1, b; c1, c2; x,
y

(1 − u)
,

z

(1 − u)2



=AX
(4)
71 (a1, a1, b, b, a1, b, b, a; c1, c1, c2, c; x, y, z, u) ,(4.3)

M
a,c,b
u X11



a1, b; c1, c2; x,
y

(1 − u)
,

z

(1 − u)2



=AX
(4)
72 (a1, a1, b, b, a1, b, b, a; c1, c2, c1, c; x, y, z, u) ,(4.4)

M
a,c,b
u X10



b, a1; c1, c2;
x

(1 − u)2
,

y

(1 − u)
, z



=AX
(4)
73 (a1, a1, b, b, a1, b, b, a; c2, c1, c1, c; z, y, x, u) ,(4.5)

M
a,c,b
u X9



a1, b; c1; x,
y

(1 − u)
,

z

(1 − u)2



=AX
(4)
74 (a1, a1, b, b, a1, b, b, a; c1, c1, c1, c; x, y, z, u) ,(4.6)

M
a,c,b
u X17



a1, b, a2; c1, c2, c3; x,
y

(1 − u)
,

z

(1 − u)



=AX
(4)
75 (a1, a1, b, b, a1, b, a2, a; c1, c2, c3, c; x, y, z, u) ,(4.7)

M
a,c,b
u X14



a1, b, a2; c1, c2; x,
y

(1 − u)
,

z

(1 − u)



=AX
(4)
76 (a1, a1, b, b, a1, b, a2, a; c1, c1, c2, c; x, y, z, u) ,(4.8)

M
a,c,b
u X16



a1, b, a2; c1, c2; x,
y

(1 − u)
,

z

(1 − u)



=AX
(4)
77 (a1, a1, b, b, a1, b, a2, a; c1, c2, c1, c; x, y, z, u) ,(4.9)

M
a,c,b
u X15



a1, b, a2; c2, c1; x,
y

(1 − u)
,

z

(1 − u)
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=AX
(4)
78 (a1, a1, b, b, a1, b, a2, a; c2, c1, c1, c; x, y, z, u) ,(4.10)

M
a,c,b
u X13



a1, b, a2; c1; x,
y

(1 − u)
,

z

(1 − u)



=AX
(4)
79 (a1, a1, b, b, a1, b, a2, a; c1, c1, c1, c; x, y, z, u) ,(4.11)

where A = e−πi(a−c) Γ(1−c)
Γ(1−a)

uc−1 and X9, X10, . . . , X17 are Exton’s hypergeometric func-

tions of three variables [10] defined by

X9 (a1, a2; c; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+2p

(c)m+n+p

·
xm

m!
·

yn

n!
·

zp

p!
,(4.12)

X10 (a1, a2; c1, c2; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+2p

(c1)m+n(c2)p

·
xm

m!
·

yn

n!
·

zp

p!
,(4.13)

X11 (a1, a2; c1, c2; x, y, ) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+2p

(c1)m+p(c2)n

·
xm

m!
·

yn

n!
·

zp

p!
,(4.14)

X12 (a1, a2; c1, c2, c3; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+2p

(c1)m(c2)n(c3)p

·
xm

m!
·

yn

n!
·

zp

p!
,(4.15)

X13 (a1, a2, a3; c; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+p(a3)p

(c)m+n+p

·
xm

m!
·

yn

n!
·

zp

p!
,(4.16)

X14 (a1, a2, a3; c1, c2; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+p(a3)p

(c1)m+n(c2)p

·
xm

m!
·

yn

n!
·

zp

p!
,(4.17)

X15 (a1, a2, a3; c2, c1; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+p(a3)p

(c1)n+p(c2)m

·
xm

m!
·

yn

n!
·

zp

p!
,(4.18)

X16 (a1, a2, a3; c1, c2; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+p(a3)p

(c1)m+p(c2)n

·
xm

m!
·

yn

n!
·

zp

p!
,(4.19)

X17 (a1, a2, a3; c1, c2, c3; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n+p(a3)p

(c1)m(c2)n(c3)p

·
xm

m!
·

yn

n!
·

zp

p!
.(4.20)

Proof. To prove (4.2), from the equality (4.15), we can write

M
a,c,b
u X12



a1, b; c1, c2, c3; x,
y

(1 − u)
,

z

(1 − u)2



=
∞
∑

m,n,p=0

(a1)2m+n(b)n+2p

(c1)m(c2)n(c3)p

·
xm

m!
·

yn

n!
·

zp

p!
M

a,c,b
u (1 − u)−(n+2p).

By applying the formula (4.1) and in view of the relation (1.1) one can get the
result with direct calculations. The proofs of the remaining relations run in the same
way. □
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5. Operational Relations

Here, in this section, we shall discuss some operational relations by means of the
following operational formulas (see [3, 20]):

Dk
ααa =

Γ(a + 1)

Γ(a − k + 1)
αa−k,(5.1)

D−k
α αa =

Γ(a + 1)

Γ(a + k + 1)
αa+k,(5.2)

k ∈ N ∪ {0}, a ∈ C − {−1, −2, . . .}, where Dα denotes the derivative operator and
D−1

α denotes the inverse of the derivative.
In the following, certain operational connections among the hypergeometric series

of three and four variables as:

[

1 −


D2
αβ−1D−1

β γ−1D−1
γ α2



u
]

−a
X8 (a1, a2, a3; c1, c2, c3; x, αy, z)



αa2−1βc4−1γa−1


(5.3)

=αa2−1βc4−1γa−1X
(4)
70 (a2, a2, a1, a1, a2, a1, a1, a3; c4, c2, c1, c3; u, αy, x, z) ,

[

1 −


D2
αβ−1D−1

β γ−1D−1
γ α2



u
]

−a
X14 (a1, a2, a3; c1, c2; x, αy, αz)



αa2−1βc3−1γa−1


(5.4)

=αa2−1βc3−1γa−1X
(4)
71 (a1, a1, a2, a2, a1, a2, a3, a3; c1, c1, c3, c2; x, αy, u, αz) ,

[

1 −


Dα1
Dα2

β−1D−1
β γ−1D−1

γ α1α2



u
]

−a
X20



a1, a2,
a3

2
,
a3 + 1

2
; c1, c2; α2

1x, α1y,

(5.5)

4α2
2z
 

αa1−1
1 αa3−1

2 βc3−1γa−1


=αa1−1
1 αa3−1

2 βc3−1γa−1X
(4)
72



a3, a3, a1, a1, a3, a1, a1, a2; c1, c3, c1, c2; α2
2z, u, α2

1x, α1y


,

[

1 −


D2
αβ−1D−1

β γ−1D−1
γ α2



u
]

−a
X6 (a1, a2, a3; c1, c2; x, αy, z)



αa2−1βc3−1γa−1


(5.6)

=αa2−1βc3−1γa−1X
(4)
73 (a2, a2, a1, a1, a2, a1, a1, a3; c3, c1, c1, c2; u, αy, x, z) ,

[

1 −


Dα1
Dα2

β−1D−1
β γ−1D−1

γ α1α2



u
]

−a
X20



a1, a2,
a3

2
,
a3 + 1

2
; c1, c2; α2

1βx,

(5.7)

α1y, 4α2
2βz





αa1−1
1 αa3−1

2 βc1−1γa−1


=αa1−1
1 αa3−1

2 βc1−1γa−1

× X
(4)
74



a3, a3, a1, a1, a3, a1, a1, a2; c1, c1, c1, c2; α2
2βz, u, α2

1βx, α1y


,
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[

1 −


Dα1
Dα2

β−1D−1
β γ−1D−1

γ α1α2



u
]

−a
X17 (a1, a2, a3; c1, c2, c3; x, α1y, α1z)

(5.8)

×


αa2−1
1 αa4−1

2 βc4−1γa−1


=αa2−1
1 αa4−1

2 βc4−1γa−1X
(4)
75 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c3, c4; x, α1y, α1z, u) ,

[

1 −


D2
αβ−1D−1

β γ−1D−1
γ α2



u
]

−a
F (3)A (a1, a2, a3, a4; c1, c2, c3; αβx, y, z)

×


αa2−1βc1−1γa−1


=αa2−1βc1−1γa−1X
(4)
76 (a2, a2, a1, a1, a2, a1, a3, a4; c1, c1, c2, c3; u, αβx, y, z) ,

[

1 −


Dα1
Dα2

β−1D−1
β γ−1D−1

γ α1α2



u
]

−a
X16 (a1, a2, a3; c1, c2; x, α1y, α1z)

(5.9)

×


αa2−1
1 αa4−1

2 βc3−1γa−1


=αa2−1
1 αa4−1

2 βc3−1γa−1X
(4)
77 (a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c1, c3; x, α1y, α1z, u) ,

[

1 −


D2
αβ−1D−1

β γ−1D−1
γ α2



u
]

−a
FG (a1, a1, a1, a2, a3, a4; c1, c2, c2; x, αy, z)

(5.10)

×


αa3−1βc3−1γa−1


=αa3−1βc3−1γa−1X
(4)
78 (a3, a3, a1, a1, a3, a1, a4, a2; c3, c2, c2, c1; u, αy, z, x) ,

[

1 −


Dα1
Dα2

β−1D−1
β γ−1D−1

γ α1α2



u
]

−a

(5.11)

× FN



a1,
a2

2
, a3, a4,

a2 + 1

2
, a4; c1, c2, c2; α2x, 4α2

1βy, α2βz




αa2−1
1 αa4−1

2 βc2−1γa−1


=αa2−1
1 αa4−1

2 βc2−1γa−1

× X
(4)
79



a2, a2, a4, a4, a2, a4, a3, a1; c2, c2, c2, c1; α2
1βy, u, α2βz, α2x



,

where X6, X8 and X20 are the Exton’s triple hypergeometric series defined by [10]

X6 (a1, a2, a3; c1, c2; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n+p(a2)n(a3)p

(c1)m+n(c2)p

·
xm

m!
·

yn

n!
·

zp

p!
,(5.12)

X8 (a1, a2, a3; c1, c2, c3; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n+p(a2)n(a3)p

(c1)m(c2)n(c3)p

·
xm

m!
·

yn

n!
·

zp

p!
,

(5.13)

X20 (a1, a2, a3, a4; c1, c2; x, y, z) =
∞
∑

m,n,p=0

(a1)2m+n(a2)n(a3)p(a4)p

(c1)m+p(c2)n

·
xm

m!
·

yn

n!
·

zp

p!
,

(5.14)

and F
(3)
A , FG, FN denote the Lauricella’s series of three variables (see [13]).
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Proof. To solve equation (5.3), first we assume the left hand side of (5.3) by the
notation I, then expressing the Exton’s function X8 as a series in the left hand side
of (5.3) and using the binomial theorem, it follows that:

I =
∞
∑

m,n,p,q=0

(a1)2m+n+p(a2)n(a3)p(a)q

(c1)m(c2)n(c3)p

·
xm

m!
·

yn

n!
·

zp

p!
·

uq

q!

× β−qγ−qD2q
α D−q

β D−q
γ



αa2+n+2q−1βc4−1γa−1


.

Now, we use the above formulas in (5.1) and (5.2), then in view of Definition 1.1, we
arrive at the desired result (5.3). In a similar manner, one can prove the relations
(5.4) to (5.11). □

6. Generating Functions

In this section, we will consider some generating functions for our quadruple series.
Because the proofs of the following relations are similar to the proofs of results in
[2, 18, 19,23,24], we omit these proofs.

The generating relations of series X
(4)
70 , X

(4)
72 , . . . , X

(4)
79 given as below

∞
∑

k=0

(a1)k

k!
X

(4)
70 (a1 + k, a1 + k, a2, a2, a1 + k, a2, a2, a3; c1, c2, c3, c4; x, y, z, u) tk

(6.1)

=(1 − t)−a1X
(4)
70



a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c3, c4;
x

(1 − t)2
,

y

(1 − t)
, z, u



,

∞
∑

k=0

(a2)k

k!
X

(4)
71 (a1, a1, a2 + k, a2 + k, a1, a2 + k, a2 + k, a3; c1, c1, c2, c3; x, y, z, u) tk

(6.2)

=(1 − t)−a2X
(4)
71



a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c2, c3; x,
y

(1 − t)
,

z

(1 − t)2
,

u

(1 − t)



,

∞
∑

k1,k2=0

(a1)k1
(a2)k2

k1!k2!
X

(4)
72 (a1 + k1, a1 + k1, a2 + k2, a2 + k2, a1 + k1, a2 + k2, a2 + k2,

(6.3)

a3; c1, c2, c1, c3; x, y, z, u) tk1

1 tk2

2

=(1 − t1)
−a1(1 − t2)

−a2X
(4)
72



a1, a1, a2, a2, a1, a2, a2, a3; c1, c2, c1, c3;
x

(1 − t1)2
,

y

(1 − t1)(1 − t2)
,

z

(1 − t2)2
,

u

(1 − t2)



,

∞
∑

k1,k2=0

(a1)k1
(a3)k2

k1!k2!
X

(4)
73 (a1 + k1, a1 + k1, a2, a2, a1 + k1, a2, a2, a3 + k2;

(6.4)
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c2, c1, c1, c3; x, y, z, u)tk1

1 tk2

2

=(1 − t1)
−a1(1 − t2)

−a3X
(4)
73



a1, a1, a2, a2, a1, a2, a2, a3; c2, c1, c1, c3;
x

(1 − t1)2
,

y

(1 − t1)
, z,

u

(1 − t2)



,

∞
∑

k=0

(a3)k

k!
X

(4)
74 (a1, a1, a2, a2, a1, a2, a2, a3 + k; c1, c1, c1, c2; x, y, z, u) tk

(6.5)

=(1 − t)−a3X
(4)
74



a1, a1, a2, a2, a1, a2, a2, a3; c1, c1, c1, c2; x, y, z,
u

(1 − t)



,

∞
∑

k=0

(a2)k

k!
X

(4)
75 (a1, a1, a2 + k, a2 + k, a1, a2 + k, a3, a4; c1, c2, c3, c4; x, y, z, u) tk

(6.6)

=(1 − t)−a2X
(4)
75



a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c3, c4; x,
y

(1 − t)
,

z

(1 − t)
,

u

(1 − t)



,

∞
∑

k1,k2=0

(a1)k1
(a2)k2

k1!k2!
X

(4)
76 (a1 + k1, a1 + k1, a2 + k2, a2 + k2, a1 + k1, a2 + k2, a3, a4;

(6.7)

c1, c1, c2, c3; x, y, z, u)tk1

1 tk2

2

=(1 − t1)
−a1(1 − t2)

−a2X
(4)
76



a1, a1, a2, a2, a1, a2, a3, a4; c1, c1, c2, c3;
x

(1 − t1)2
,

y

(1 − t1)(1 − t2)
,

z

(1 − t2)
,

u

(1 − t2)



,

∞
∑

k1,k2=0

(a3)k1
(a4)k2

k1!k2!
X

(4)
77



a1, a1, a2, a2, a1, a2, a3 + k1, a4 + k2; c1, c2, c1, c3;

(6.8)

x, y, z, u



tk1

1 tk2

2

=(1 − t1)
−a3(1 − t2)

−a4X
(4)
77



a1, a1, a2, a2, a1, a2, a3, a4; c1, c2, c1, c3; x, y,

z

(1 − t1)
,

u

(1 − t2)



,

∞
∑

k1,k2,k3=0

(a1)k1
(a2)k2

(a3)k3

k1!k2!k3!
X

(4)
78 (a1 + k1, a1 + k1, a2 + k2, a2 + k2, a1 + k1, a2 + k2,

(6.9)
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a3 + k3, a4; c2, c1, c1, c3; x, y, z, u)tk1

1 tk2

2 tk3

3

=(1 − t1)
−a1(1 − t2)

−a2(1 − t3)
−a3X

(4)
78



a1, a1, a2, a2, a1, a2, a3, a4; c2, c1, c1, c3;

x

(1 − t1)2
,

y

(1 − t1)(1 − t2)
,

z

(1 − t2)(1 − t3)
,

u

(1 − t2)



,

∞
∑

k1,k2,k3,k4=0

(a1)k1
(a2)k2

(a3)k3
(a4)k4

k1!k2!k3!k4!
X

(4)
79 (a1 + k1, a1 + k1, a2 + k2, a2 + k2, a1 + k1,

(6.10)

a2 + k2, a3 + k3, a4 + k4; c1, c1, c1, c2; x, y, z, u)tk1

1 tk2

2 tk3

3 tk4

4

=(1 − t1)
−a1(1 − t2)

−a2(1 − t3)
−a3(1 − t4)

−a4X
(4)
79 (a1, a1, a2, a2, a1, a2, a3, a4;

c1, c1, c1, c2;
x

(1 − t1)2
,

y

(1 − t1)(1 − t2)
,

z

(1 − t2)(1 − t3)
,

u

(1 − t2)(1 − t4)



.
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