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GEODESIC E-INVEX SETS AND GEODESIC E-PREINVEX
FUNCTIONS ON RIEMANNIAN MANIFOLDS

ZEYNAB AMIRSHEKARI1 AND HOSSEIN MOHEBI2

Abstract. In this paper, we first introduce two new classes of sets and functions
called geodesic E-invex sets and geodesic E-preinvex functions on a Riemannian
manifold, respectively. Moreover, we present the definition and properties of geodesic
E-quasi-preinvex functions on Riemannian manifolds. Finally, we investigate the
properties and characterizations of these two classes of sets and functions.

1. Introduction

Convexity plays an important and significant role in optimization theory. This con-
cept in the linear topological vector spaces relies on the possibility of connecting
any two points of the space by the line segment between them. Since convexity is
often not enjoyed by the real problems, various approaches have been proposed by
several reseachers in order to extend the validity of results to the larger classes of
optimization. An important and significant generalization of convexity is invexity,
which was introduced by Hanson [8] in 1981. Hanson’s initial results inspired a great
deal of subsequent work which has greatly expanded the roles and applications of
invexity in nonlinear optimization and other branches of pure and applied sciences.
Ben-Isreal and Mond [5] introduced a new generalization of convex sets and convex
functions that called by Craven [6] the invex sets and preinvex functions, respectively,
see also [3].

In general, a manifold is not a linear space, but the extension of concepts and
techniques from linear spaces to Riemannian manifolds are natural and applicable.
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Rapcsak [18] and Udriste [19] proposed a generalization of convexity, called geodesic
convexity, and extended many results of convex analysis and optimization theory
to Riemannian manifolds. In this setting, the linear space has been replaced by a
Riemannian manifold and the line segment by a geodesic. For more details, we refer
the reader to [10–12,15,17,18] and the references therein.

The notion of invex functions on Riemannian manifolds was introduced in [16].
However, its generalization has been investigated by Mititelu [13]. The concept of
geodesic invex sets, geodesic invex functions and geodesic preinvex functions on a
Riemannian Manifold with respect to the particular mappings have been introduced
in [4].

In this paper, we first discuss various concepts, definitions and properties of func-
tions defined on a Riemannian manifold. The notion of invexity and its generalization
on Riemannian manifolds are presented in Section 2. In Section 3, we first define the
concept of geodesic E-invex sets and geodesic E-preinvex functions on a Riemannian
manifold. Next, we investigate their properties and characterizations. The class of
geodesic E-quasi-preinvex functions are introduced in Section 4, and we give their
characterizations.

2. Preliminaries

We first recall some definitions and known results about η-invex sets and geodesic
η-preinvex functions on Riemannian manifolds, which will be used throughout the
paper.

Let M be an n-dimensional differentiable manifold, and let TpM be the tangent
space to M at the point p ∈ M. Suppose that at each point p ∈ M , a positive inner
product gp(x, y) on TpM is given (x, y ∈ TpM). Recall that [12], a C∞ mapping
g : p → gp, which assigns a positive inner product gp on TpM to each point p ∈ M, is
called a Riemannian metric. A manifold M equipped with the Riemannian metric g
is called a Riemannian manifold. We denote by TM the tangent space to M.

Suppose that (M, g) is a complete n-dimensional Riemannian manifold with Rie-
mannian connection ∇ (see [12]). Let x, y be two points in M , and γx,y : [0, 1] → M
be a geodesic joining the points x and y, i.e., γx,y(0) = y, γx,y(1) = x.

Let us recall that [12] the length of a piecewise C1 curve γ : [a, b] → M is defined
by

L(γ) :=
∫ b

a
∥γ′(t)∥dt.

For any two points p, q ∈ M , we define [12]
d(p, q) := inf{L(γ) : γ is a piecewise C1 curve joining p and q}.

Then, d is a distance which induces the original topology on M . We know that on
every Riemannian manifold there exists exactly one covariant derivation called Levi-
Civita connection, denoted by ∇XY for any vector fields X, Y ∈ M . We also recall
that a geodesic is a C∞ smooth path γ whose tangent is parallel along the path γ,
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i.e., γ satisfies the equation ∇dγ(t)/d(t)dγ(t)/d(t)=0. Any path γ joining p and q ∈ M
such that L(γ) = d(p, q) is a geodesic and is called a minimal geodesic.
Definition 2.1 ([9]). A subset A of Rn is called η-invex with respect to the function
η : Rn × Rn → Rn if x, y ∈ A, λ ∈ [0, 1], then y + λη(x, y) ∈ A.

It is obvious that Definition 2.1 is a generalization of the notion of a convex set
(with η(x, y) := x − y). Note that any set in Rn is invex with respect to η(x, y) ≡ 0,
for all x, y ∈ Rn.

In 1987, Hanson and Mond [9] introduced the notion of preinvex functions. The
following definition of a preinvex function has been given by Jeyakumar [19].
Definition 2.2 ([19]). Let f be a real valued function defined on an η-invex set
A ⊆ Rn. Then, f is said to be preinvex with respect to η : Rn × Rn → Rn if

f [y + λη(x, y)] ≤ λf(x) + (1 − λ)f(y), for all x, y ∈ A, λ ∈ [0, 1].
In the sequel, we consider the function E : Rn → Rn.

Definition 2.3. ([7, Definition 2.2]). A subset A of Rn is said to be E-invex with
respect to a given mapping η : Rn × Rn → Rn if

E(y) + λη(E(x), E(y)) ∈ A, for all x, y ∈ A, λ ∈ [0, 1].
Definition 2.4. ([7, Definition 2.3]). Let A ⊆ Rn be an E-invex set with respect to
a given mapping η : Rn × Rn → Rn. A function f : Rn → R is said to be E-preinvex
on A with respect to η if
f(E(y) + λη(E(x), E(y)) ≤ λf(E(x)) + (1 − λ)f(E(y)), for all x, y ∈ A, λ ∈ [0, 1].

The concept of geodesic invex sets and the invexity of a function f defined on an
open geodesic invex subset of a Riemannian manifold were given in [4].
Definition 2.5. ([4, Definition 3.1]). Let M be a Riemannian manifold and η :
M ×M → TM be a function such that η(x, y) ∈ TyM for each x, y ∈ M. A nonempty
subset S of M is said to be geodesic invex with respect to η if for each x, y ∈ S there
exists exactly one geodesic αx,y : [0, 1] → M such that

αx,y(0) = y, α′
x,y(0) = η(x, y), αx,y(t) ∈ S, for all t ∈ [0, 1].

Recall that a subset S of a Riemannian manifold is called geodesic convex if any
two points x, y ∈ S can be joined by exactly one geodesic of length d(x, y), which
belongs entirely to S.
Definition 2.6. ([4, Definition 3.3]). Let M be a Riemannian manifold and η :
M × M → TM be a function such that η(x, y) ∈ TyM for each x, y ∈ M. Let S ⊆ M
be a geodesic invex set with respect to η. We say that a function f : S → R is geodesic
η-preinvex if

f(αx,y(t)) ≤ tf(x) + (1 − t)f(y), for all t ∈ [0, 1], x, y ∈ S,

where αx,y is the unique geodesic which defined by Definition 2.5. If the inequality is
strict, then we say that f is a strictly geodesic η-preinvex function.
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3. Geodesic E-Invex Sets and Geodesic E-Preinvex Functions

The definition of a preinvex function on Rn was given in [20], see also [3, 14, 21]
for the properties of preinvex functions. Fulga and Preda [7] introduced the class of
E-preinvex and E-quasi-preinvex functions defined on Rn. In [4, 10, 11], this notion
has been extended for Reimannian manifolds.

Throughout the paper, let E : M → M and η : M × M → TM be fixed mappings.
We now introduce the concept of geodesic E-invex sets and geodesic E-preinvex
functions on a Riemannian manifold as follows.

Definition 3.1. Let M be a Riemannian manifold and η : M × M → TM be a
function such that η(x, y) ∈ TyM for each x, y ∈ M. A nonempty subset S of M is
said to be geodesic E-invex with respect to η if for each x, y ∈ S there exists exactly
one geodesic αE(x),E(y) : [0, 1] → M such that

αE(x),E(y)(0) = E(y), α′
E(x),E(y)(0) = η(E(x), E(y)),

αE(x),E(y)(t) ∈ S, for all t ∈ [0, 1].

Note that, in the special case, let M := Rn, η : Rn ×Rn → Rn be a function. Consider
αx,y : [0, 1] → Rn is defined by αx,y(t) := y + tη(x, y) for all t ∈ [0, 1]. Then

αx,y(0) = y, α′
x,y(0) = lim

t→0

αx,y(t) − αx,y(0)
t

= lim
t→0

y + tη(x, y) − y

t
= η(x, y),

and αx,y(t) ∈ S for all t ∈ [0, 1] because S is invex with respect to η. Therefore, the
definition of geodesic invexity and geodesic E-invexity coincide in Rn.

Definition 3.2. Let M be a Riemannian manifold and S ⊆ M be a geodesic E-invex
set with respect to η : M × M → TM . A function f : S → R is said to be geodesic
E-preinvex with respect to η if

f(αE(x),E(y)(t)) ≤ tf(E(x)) + (1 − t)f(E(y)), for all t ∈ [0, 1], x, y ∈ S,

where αE(x),E(y) is the unique geodesic which defined by Definition 3.1. If the inequality
is strict, then we say that f is strictly geodesic E-preinvex with respect to η.

Let M := Rn and S ⊆ Rn be a geodesic invex set with respect to η : Rn ×Rn → Rn.
Consider αx,y(t) = y + tη(x, y) for all t ∈ [0, 1]. Then f(αx,y(t)) = f(y + tη(x, y)) ≤
tf(x) + (1 − t)f(y), i.e., the definition of geodesic preinvex and geodesic E-preinvex
coincide for a function f : S ⊆ Rn → R whenever M = Rn.

From now on, for simplicity, we will call geodesic E-invex set with respect to η,
geodesic E-quasi-preinvex set with respect to η, geodesic E-preinvex function with
respect to η and geodesic E-quasi-preinvex function with respect to η by geodesic
E-invex set, geodesic E-quasi-preinvex set, geodesic E-preinvex function and gedesic
E-quasi-preinvex function, respectively.

We now give some results related to geodesic E-convex sets on Riemannian mani-
folds (see also [1]).
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Proposition 3.1. Every geodesic invex set A ⊆ M is geodesic E-invex.

Proof. The proof is obvious by taking the mapping E : M → M as the identity
map. □

Proposition 3.2. Let A be a subset of M . If A is a geodesic E-invex set, then
E(A) ⊆ A.

Proof. Since A is geodesic E-invex set, then for each x, y ∈ A there exists exactly
one geodesic αE(x),E(y) : [0, 1] → M such that αE(x),E(y)(0) = E(y), α′

E(x),E(y)(0) =
η(E(x), E(y)) and αE(x),E(y)(t) ∈ A for all t ∈ [0, 1]. Put t := 0, then E(y) =
αE(x),E(y)(0) ∈ A, so, E(A) ⊆ A. □

Proposition 3.3. Let E(A) be an invex set. If E(A) ⊆ A, then A is a geodesic
E-invex set.

Proof. Let x, y ∈ A be arbitrary. Then E(x), E(y) ∈ E(A). Since E(A) is invex with
respect to η, thus there exists exactly one geodesic αE(x),E(y) : [0, 1] → M such that
αE(x),E(y)(0) = E(y), α′

E(x),E(y)(0) = η(E(x), E(y)) and αE(x),E(y)(t) ∈ E(A) ⊆ A for
all t ∈ [0, 1], hence, A is a geodesic E-invex set. □

Proposition 3.4. If {Ai}i∈I is an arbitrary collection of geodesic E-invex subsets of
M with respect to the mapping E : M → M , then ∩i∈IAi is a geodesic E-invex subset
of M .

Proof. Let {Ai}i∈I be a collection of geodesic E-invex subsets of M with respect
to the mapping E : M → M . If ∩i∈IAi = ∅, we are done. Let x, y ∈ ∩i∈IAi be
arbitrary. Then x, y ∈ Ai for all i ∈ I. By the geodesic E-invexity of Ai, there
exists exactly one geodesic αE(x),E(y) : [0, 1] → M such that αE(x),E(y)(0) = E(y),
α′

E(x),E(y)(0) = η(E(x), E(y)) and αE(x),E(y)(t) ∈ Ai for all t ∈ [0, 1] and all i ∈ I,
which implies that αE(x),E(y)(t) ∈ ∩i∈IAi for all t ∈ [0, 1], and hence, ∩i∈IAi is a
geodesic E-invex set. □

Lemma 3.1. Let A ⊆ M be a geodesic E1-invex and E2-invex set. Then A is a
geodesic E1 ◦ E2-invex and E2 ◦ E1-invex set, where E1, E2 : M → M are arbitrary
mappings.

Proof. By the hypothesis, since A ⊆ M is a geodesic E1-invex and E2-invex set,
then for each x, y ∈ A there exist exactly one geodesic αE1(x),E1(y) : [0, 1] → M
such that αE1(x),E1(y)(0) = E1(y), α′

E1(x),E1(y)(0) = η(E1(x), E1(y)), αE1(x),E1(y)(t) ∈ A,

and exactly one geodesic αE2(x),E2(y) : [0, 1] → M such that αE2(x),E2(y)(0) = E2(y),
α′

E2(x),E2(y)(0) = η(E2(x), E2(y)) and αE2(x),E2(y)(t) ∈ A for all t ∈ [0, 1]. Now, let
x, y ∈ A be arbitrary. Put x0 := E2(x) and y0 := E2(y). Thus, in view of Proposition
3.2, we conclude that x0, y0 ∈ A. Therefore,

αE1◦E2(x),E1◦E2(y)(0) = αE1(x0),E1(y0)(0) = E1(y0) = E1 ◦ E2(y)
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and
α′

E1◦E2(x),E1◦E2(y)(0) = α′
E1(x0),E1(y0) = η(E1(x0), E1(y0)) = η(E1 ◦ E2(x), E1 ◦ E2(y))

and
αE1◦E2(x),E1◦E2(y)(t) = αE1(x0),E1(y0)(t) ∈ A, for all t ∈ [0, 1],

so, A ⊆ M is a geodesic E1 ◦E2-invex set. Similarly, A ⊆ M is a geodesic E2 ◦E1-invex
set. □

Theorem 3.1. Let A ⊆ M be a geodesic invex set with respect to the function
η : M ×M → TM and f : A → R be a geodesic η-preinvex function. If g : I ⊆ R → M
is an increasing (strictly increasing) convex function such that ran(f) ⊆ I, then g ◦ f
is geodesic (strictly geodesic) η-preinvex function on A.

Proof. Since f is a geodesic η-preinvex functin, we have f(αx,y(t)) ≤ tf(x)+(1−t)f(y)
for all x, y ∈ A and all t ∈ [0, 1], where αx,y is the unique geodesic which defined by
Definition 2.5. Since g is an increasing convex function, we get

g[f(αx,y(t))] ≤ g[(1 − t)f(y) + tf(x)]
≤ (1 − t)g(f(y)) + tg(f(x))
= (1 − t)(g ◦ f)(y) + t(g ◦ f)(x),

which shows that g ◦ f is a geodesic η-preinvex function on A. Similarly, we can show
that g ◦ f is a strictly geodesic η-preinvex function if g is a strictly increasing convex
function. □

Theorem 3.2. Let A ⊆ M be a geodesic E-invex set, and let fi : A → R, i = 1, . . . , p
be a geodesic E-preinvex function. Then, f := ∑p

i=1 λifi is a geodesic E-preinvex
function on A with respect to the function η, where λi ∈ R with λi ≥ 0, i = 1, . . . , p.

Proof. By the hypothesis, for each i = 1, . . . , p, one has
fi(αE(x),E(y)(t)) ≤ (1 − t)fi(E(y)) + tfi(E(x)),

where αE(x),E(y) is the unique geodesic which defined by Definition 2.5. It follows that
λifi(αE(x),E(y)(t)) ≤ (1 − t)λifi(E(y)) + tλifi(E(x)),

and hence
p∑

i=1
λifi(αE(x),E(y)(t)) ≤ (1 − t)

p∑
i=1

λifi(E(y)) + t
p∑

i=1
λifi(E(x)),

which completes the proof. □

Proposition 3.5. Let M be a Riemannian manifold and A ⊆ M be a geodesic E-
invex set. Assume that E : M → M is an idempotent mapping (i.e., E2 = E). Suppose
that f ◦ E : A → R is a geodesic E-preinvex function. Then the following holds.

(i) Every lower level set of f◦E which defined by S(f◦E, λ) := {x ∈ A : (f◦E)(x) ≤
λ}, λ ∈ R, is a geodesic E-invex set with respect to the function η : M × M → TM .



GEODESIC E-INVEX SETS AND GEODESIC E-PREINVEX FUNCTIONS 73

(ii) The solution set K of the following optimization problem:
(P ) min(f ◦ E)(x) subject to x ∈ A,

is a geodesic E-invex set.
Moreover, if f is a strictly geodesic E-preinvex function, then K contains at most

one point.

Proof. (i) Let x, y ∈ S(f ◦ E, λ) ⊆ A be arbitrary. Since A is a geodesic E-
invex set with respect to the function η, then there exists exactly one geodesic
αE(x),E(y) : [0, 1] → M such that αE(x),E(y)(0) = E(y), α′

E(x),E(y)(0) = η(E(x), E(y))
and αE(x),E(y)(t) ∈ A for all t ∈ [0, 1]. By the geodesic E-preinvexity of f ◦ E, we have

(f ◦ E)(αE(x),E(y)(t)) ≤ tf(E(E(x))) + (1 − t)f(E(E(y)))
= t(f ◦ E2)(x) + (1 − t)(f ◦ E2)(y)
= tf(E(x)) + (1 − t)f(E(y))
≤ tλ + (1 − t)λ
= λ, for all t ∈ [0, 1].

Therefore, αE(x),E(y)(t) ∈ S(f ◦ E, λ) for all t ∈ [0, 1], and so, S(f ◦ E, λ) is a geodesic
E-invex set with respect to the function η.

(ii) Put α := infx∈A(f ◦ E)(x). Then, clearly K = ∩λ>αS(f ◦ E, λ), i.e., K is an
intersection of geodesic E-invex sets, and so in view of Proposition 3.4, it is a geodesic
E-invex set.

Now, suppose that f is a strictly geodesic E-preinvex function. If K = ∅, we are
done. Assume that K ̸= ∅. We claim that K has only one point. Assume if possible
that there exist x, y ∈ K such that x ̸= y. Then, by the geodesic E-invexity of K
with respect to the function η, there exists exactly one geodesic βE(x),E(y) : [0, 1] → M
such that

βE(x),E(y)(0) = E(y), β′
E(x),E(y)(0) = η(E(x), E(y)),

and βE(x),E(y)(t) ∈ K for all t ∈ [0, 1]. Since f is a strictly E-preinvex function, thus
α = f(βE(x),E(y)(t))

< tf(E(x)) + (1 − t)f(E(y))
≤ tα + (1 − t)α
= α, for all t ∈ [0, 1],

which is a contradiction. □

4. Generalized Geodesic E-preinvex Functions

In [16], it has been introduced the notion of η-quasi-preinvex functions on an invex
set. In [2], this notion extended to geodesic η-quasi-preinvexity on a geodesic invex
set by replacing the line segments with geodesics. In this section, we extend this
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concept and define geodesic E-quasi-preinvex functions. Moreover, some properties
and characterizations of this class of functions are presented.

Definition 4.1. Let A ⊆ M be a nonempty geodesic E-invex set with respect to
η : M × M → TM. A function f : A → R is said to be

(i) geodesic E-quasi-preinvex if

f(αE(x),E(y)(t)) ≤ max{f(E(x)), f(E(y))},

for all x, y ∈ A and all t ∈ [0, 1];
(ii) strictly geodesic E-quasi-preinvex if for all x, y ∈ A with E(x) ̸= E(y) and all

t ∈ (0, 1), f(αE(x),E(y)(t)) < max{f(E(x)), f(E(y))}.

Theorem 4.1. Let A ⊆ M be a geodesic E-invex set and let {fi}i∈I be a collection
of real valued functions defined on A such that supi∈I fi(x) is finite for each x ∈ A.
Let f : A → R be defined by f(x) := supi∈I fi(x) for each x ∈ A.

(i) If fi : A → R, i ∈ I, is a geodesic E-preinvex function on A with respect to the
function η : M × M → TM , then the function f is geodesic E-preinvex on A.

(ii) If fi : A → R, i ∈ I, is a geodesic E-quasi-preinvex function on A, then the
function f is geodesic E-quasi-preinvex on A.

Proof. (i) Let fi : A → R, i ∈ I, be a geodesic E-preinvex function on A. Then, for
each x, y ∈ A and each t ∈ [0, 1], we have

fi(αE(x),E(y)(t)) ≤ (1 − t)fi(E(x)) + tfi(E(y)), for all i ∈ I,

and so

f(αE(x),E(y)(t)) = sup
i∈I

fi(αE(x),E(y)(t))

≤ sup
i∈I

[(1 − t)fi(E(x)) + tfi(E(y))]

≤ (1 − t) sup
i∈I

fi(E(x)) + t sup
i∈I

fi(E(y))

= (1 − t)f(E(x)) + tf(E(y)).

So, f is a geodesic E-preinvex function on A.
(ii) Suppose that fi : A → R, i ∈ I, is a geodesic E-quasi-preinvex function on A.

Therefore, by Definition 4.1, for each x, y ∈ A and each t ∈ [0, 1], one has

f(αE(x),E(y)(t)) = sup
i∈I

fi(αE(x),E(y)(t))

≤ sup
i∈I

max{fi(E(x)), fi(E(y))}

≤ max{sup
i∈I

fi(E(x)), sup
i∈I

fi(E(y))}

= max{f(E(x)), f(E(y))},

and hence, f is a geodesic E-quasi-preinvex function on A. □
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Let A ⊆ M be a nonempty geodesic E-invex set. It follows from Proposition 3.2
that E(A) ⊆ A. Hence, for any function f : A → R, define the restriction f̃ of f to
E(A) by f̃(x̃) := f(x̃) for all x̃ ∈ E(A).

Theorem 4.2. Let A ⊆ M be a geodesic E-invex set and let f : A → R be a geodesic
E-quasi-preinvex function on A. Then the restriction f̃ : C → R of f to any nonempty
invex subset C of E(A) is a geodesic η-quasi-preinvex function on C.

Proof. Let x, y ∈ C ⊆ E(A) be arbitrary. Then there exist x1, y1 ∈ A such that
x = E(x1) and y = E(y1). Since C is an invex set, there exists exactly one geodesic
αE(x),E(y) : [0, 1] → M such that αx,y(0) = y, α′

x,y(0) = η(x, y) and αx,y(t) ∈ C for all
t ∈ [0, 1]. But, αE(x1),E(y1)(t) = αx,y(t) ∈ C for all t ∈ [0, 1]. Therefore, since f is a
geodesic E-quasi-preinvex function on A, we conclude that

f̃(αx,y(t)) = f(αE(x1),E(y1)(t))
≤ max{f(E(x1)), f(E(y1))}
= max{f(x), f(y)}
= max{f̃(x), f̃(y)},

which completes the proof. □

Theorem 4.3. Let A ⊆ M be a geodesic E-invex set, f : A → R be a real valued
function and E(A) be an invex set. Then, f is geodesic E-quasi-preinvex on A if and
only if its restriction f̃ to E(A) is geodesic E-quasi-preinvex on E(A).

Proof. Let x, y ∈ A be arbitrary. So, E(x), E(y) ∈ E(A). By the hypothesis, E(A)
is an invex set. Therefore, by the definition, we have αE(x),E(y)(t) ∈ E(A) for all
t ∈ [0, 1], where αE(x),E(y) is the unique geodesic function corresponding to E(A).
Since E(A) ⊆ A (because A is a geodesic E-invex set and using Proposition 3.4), it
follows that
(4.1) αE(x),E(y)(t) ∈ A, for all t ∈ [0, 1], x, y ∈ A.

Now, suppose that f is a geodesic E-quasi-preinvex function on A. Then
f̃(αE(x),E(y)(t)) = f(αE(x),E(y)(t))

≤ max{f(E(x)), f(E(y))}
= max{f̃(E(x)), f̃(E(y))},

i.e., f̃ is geodesic E-quasi-preinvex on E(A).
Conversely, assume that f̃ is a geodesic E-quasi-preinvex function on E(A). Then,

by (4.1), for each x, y ∈ A and each t ∈ [0, 1], one has
f(αE(x),E(y)(t)) = f̃(αE(x),E(y)(t))

⩽ max{f̃(E(x)), f̃(E(y))}
= max{f(E(x)), f(E(y))},
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and the proof is complete. □

An analogous result to Theorem 4.2 for the geodesic E-preinvex functions is presented
as follows. The proof is similar to the one of Theorem 4.2.

Theorem 4.4. Let A ⊆ M be a geodesic E-invex set and f : A → R be a geodesic
E-preinvex function on A. Then, the restriction f̃ : C → R of f to any nonempty
invex subset C of E(A) is a geodesic invex function.

An analogous result to Theorem 4.3 for the geodesic E-preinvex functions is pre-
sented as follows. The proof is similar to the one of Theorem 4.3.

Theorem 4.5. Let A ⊆ M be a geodesic E-invex set, f : A → R be a real valued
function and E(A) be an invex set. Then, f is a geodesic E-preinvex function on A
if and only if its restriction f̃ to E(A) is a geodesic E-preinvex function on E(A).

We now characterize geodesic E-quasi-preinvex functions in terms of their lower
level sets. For any real number r ∈ R, the lower level set of the function f ◦E : A → R
is defined by Lr(f ◦ E) := {x ∈ A : (f ◦ E)(x) = f(E(x)) ⩽ r}. Moreover, the lower
level set of the function f̃ : E(A) → R is defined by Lr(f̃) := {x̃ ∈ E(A) : f̃(x̃) =
f(x̃) ⩽ r}.

Theorem 4.6. Let E(A) be an invex set and f : A → R be a real valued function. A
function f is geodesic E-quasi-preinvex if and only if the lower level set Lr(f̃) is an
invex set for each r ∈ R.

Proof. Suppose that f is a geodesic E-quasi-preinvex function. Since E(A) is an invex
set, for each x, y ∈ A, we have E(x), E(y) ∈ E(A) and αE(x),E(y)(t) ∈ E(A) ⊆ A,
where αE(x),E(y) is the unique geodesic which defined by Definition 2.5. Let r ∈ R and
E(x), E(y) ∈ Lr(f̃) be arbitrary. Put x̃ := E(x) and ỹ := E(y). Then, x̃, ỹ ∈ Lr(f̃),
and so, f(x̃) ⩽ r and f(ỹ) ⩽ r. Thus,

f̃(αx̃,ỹ(t)) = f(αE(x),E(y)(t)) ⩽ max{f(E(x)), f(E(y))} = max{f(x̃), f(ỹ)} ⩽ r,

which shows that αx̃,ỹ(t) ∈ Lr(f̃) for all t ∈ [0, 1]. Moreover, one has αx̃,ỹ(0) =
αE(x),E(y)(0) = E(y) = ỹ and α′

x̃,ỹ(0) = α′
E(x),E(y)(0) = η(E(x), E(y)) = η(x̃, ỹ)

because E(A) is an invex set. Hence, Lr(f̃) is an invex set.
Conversely, assume that Lr(f̃) is an invex set for each r ∈ R. Let x, y ∈ A and

t ∈ [0, 1] be arbitrary. Take r := max{f(E(x)), f(E(y))} and x̃ := E(x), ỹ := E(y).
Therefore, f̃(x̃) = f(E(x)) ≤ r and f̃(ỹ) = f(E(y)) ≤ r because E(x), E(y) ∈ E(A).
This implies that x̃, ỹ ∈ Lr(f̃). Since, by the hypothesis, Lr(f̃) is an invex set, so there
exists exactly one geodesic αx̃,ỹ : [0, 1] → M such that αx̃,ỹ(0) = ỹ, α′

x̃,ỹ(0) = η(x̃, ỹ)
and αx̃,ỹ(t) ∈ Lr(f̃) for all t ∈ [0, 1]. Then, since Lr(f̃) ⊆ E(A), it follows that

f(αE(x),E(y)(t)) = f(αx̃,ỹ(t)) = f̃(αx̃,ỹ(t)) ⩽ r = max{f(E(x)), f(E(y))},

and so, f is a geodesic E-quasi-preinvex function. □
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The geodesic E-quasi-preinvexity preserves under nondecreasing functions.

Theorem 4.7. Let A ⊆ M be a nonempty geodesic E-invex set and let f : A → R
be a geodesic E-quasi-preinvex function. Suppose that Φ : R → R is a nondecreasing
function. Then Φ ◦ f is a geodesic E-quasi-preinvex function on A.

Proof. Since the function f : A → R is geodesic E-quasi-preinvex and Φ : R → R is a
nondecreasing function, then, for all x, y ∈ A and all t ∈ [0, 1], it follows that

(Φ ◦ f)(αE(x),E(y)(t)) = Φ(f(αE(x),E(y)(t)))
≤ Φ{max{f(E(x)), f(E(y))}
≤ max{Φ(f(E(x)), Φ(f(E(y)))}
= max{(Φ ◦ f)(E(x)), (Φ ◦ f)(E(y))},

which shows that Φ ◦ f is a geodesic E-quasi-preinvex function on A. □

Theorem 4.8. If the function f : A → R is geodesic E-preinvex on A, then f is a
geodesic E-quasi-preinvex function on A.

Proof. Let f be geodesic E-preinvex on A. Then, for all x, y ∈ A and all t ∈ [0, 1], we
have

f(αE(x),E(y)(t)) ≤(1 − t)f(E(y)) + tf(E(x))
≤(1 − t) max{f(E(x)), f(E(y))},

+ t max{f(E(x)), f(E(y))}
= max{f(E(x)), f(E(y))},

and hence, f is a geodesic E-quasi-preinvex function on A. □
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